Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/9078
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKozlenko, Mykola-
dc.contributor.authorLazarovych, Ihor-
dc.contributor.authorKuz, Mykola-
dc.contributor.authorКозленко, Микола Іванович-
dc.contributor.authorЛазарович, Ігор Миколайович-
dc.contributor.authorКузь, Микола Васильович-
dc.date.accessioned2021-02-01T12:50:31Z-
dc.date.available2021-02-01T12:50:31Z-
dc.date.issued2020-09-30-
dc.identifier.citationM. Kozlenko, I. Lazarovych, and M. Kuz, "Deep learning approach to signal processing in infocommunications," in Proc. 4th International Scientific and Practical Conference on Applied Systems and Technologies in the Information Society (AISTIS), V. Pleskach and V. Mironova, Eds. Taras Shevchenko National University of Kyiv, Kyiv, Ukraine, Sept. 30, 2020, pp. 81-82, doi: 10.5281/zenodo.4482757.uk_UA
dc.identifier.urihttp://hdl.handle.net/123456789/9078-
dc.description.abstractDigital communications techniques based on random, chaotic, or noisy carriers are well known and successfully used in a number of applications. Simple on-off or amplitude shift noise keying modulation schemes are among the most popular. In this paper, we propose to use a classification model based on an artificial dense neural network and a deep learning approach for software-defined demodulation of spread spectrum signals.uk_UA
dc.language.isoen_USuk_UA
dc.publisherTaras Shevchenko National University of Kyivuk_UA
dc.subjectspread spectrumuk_UA
dc.subjectcommunication systemuk_UA
dc.subjectampitude noise shift keyinguk_UA
dc.subjectdigital communicationsuk_UA
dc.subjectdemodulationuk_UA
dc.subjectsoftware defined radiouk_UA
dc.subjectmachine learninguk_UA
dc.subjectdeep learninguk_UA
dc.subjectartificial neural networkuk_UA
dc.subjectdeep neural networkuk_UA
dc.subjectinterference immunityuk_UA
dc.subjectbit error rateuk_UA
dc.subjectsymbol error rateuk_UA
dc.titleDeep learning approach to signal processing in infocommunicationsuk_UA
dc.typeArticleuk_UA
Appears in Collections:Статті та тези (ФМІ)

Files in This Item:
File Description SizeFormat 
2020_AISTIS_kozlenko.pdf492.61 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.