Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/5095
Title: Continuity and hypercyclicity of composition operators on algebras of symmetric analytic functions on Banach spaces
Authors: Chernega, Iryna
Holubchak, Oleh
Novosad, Zoryana
Zagorodnyuk, Andriy
Keywords: Hypercyclic operators · Functional spaces · Composition operators · Symmetric analytic functions
Issue Date: 2-Dec-2019
Publisher: Springer
Citation: European Journal of Mathematics (2020) 6:153–163
Series/Report no.: 6;153-163
Abstract: We consider some conditions for continuity and hypercyclicity of composition operators on algebras of symmetric analytic functions of bounded type on 1, L∞[0, 1), and L∞[0,∞)∩ L1[0,∞). We establish hypercyclicity of some special composition operators, namely of compositions with translations on algebras of symmetric analytic functions and some other algebras generated by countable sequences of homogeneous polynomials.
Description: https://doi.org/10.1007/s40879-019-00390-z
URI: http://hdl.handle.net/123456789/5095
ISSN: 2199-6768
Appears in Collections:Статті та тези (ФМІ)

Files in This Item:
File Description SizeFormat 
Chernega2020_Article_ContinuityAndHypercyclicityOfC.pdf277.16 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.