Please use this identifier to cite or link to this item:
http://hdl.handle.net/123456789/18371
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kozlenko, Mykola | - |
dc.contributor.author | Козленко, Микола Іванович | - |
dc.date.accessioned | 2024-01-09T07:14:10Z | - |
dc.date.available | 2024-01-09T07:14:10Z | - |
dc.date.issued | 2023-11-29 | - |
dc.identifier.citation | M. Kozlenko, "Weak sinusoidal signal extraction from white noise using convolutional neural network," 2023 2nd International Conference on Innovative Solutions in Software Engineering (ICISSE), Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine, Nov. 29-30, 2023, doi: 10.5281/zenodo.10467333 | uk_UA |
dc.identifier.isbn | 978-966-640-549-7 | - |
dc.identifier.other | 10.5281/zenodo.10467333 | - |
dc.identifier.uri | https://doi.org/10.5281/zenodo.10467333 | - |
dc.identifier.uri | https://zenodo.org/records/10467333 | - |
dc.identifier.uri | http://hdl.handle.net/123456789/18371 | - |
dc.description.abstract | A great number of analog and digital data communications schemes use the sinusoidal waveform as a basic elementary signal, including the spread spectrum data exchange techniques. Detection of the presence of the sinusoidal waveform in a mixture of signal and noise is a common task, regardless the specific modulation scheme. This paper presents the machine learning-based approach for detection of the sinusoidal wave. It presents the structure of the convolutional neural network, as well as the performance metrics for the sinusoidal signals detection. The paper provides an assessment of the overall accuracy for the binary signals. It reports the overall accuracy value of 0.93 for the sinusoidal signal detection in the presence of additive white Gaussian noise at the signal-to-noise ratio value of −20 dB for a balanced dataset. | uk_UA |
dc.language.iso | en_US | uk_UA |
dc.publisher | Vasyl Stefanyk Precarpathian National University | uk_UA |
dc.subject | digital communications | uk_UA |
dc.subject | modulation | uk_UA |
dc.subject | manipulation keying | uk_UA |
dc.subject | demodulation | uk_UA |
dc.subject | detection | uk_UA |
dc.subject | bit error rate | uk_UA |
dc.subject | machine learning | uk_UA |
dc.subject | deep learning | uk_UA |
dc.subject | convolutional neural network | uk_UA |
dc.subject | JT65 | uk_UA |
dc.title | Weak sinusoidal signal extraction from white noise using convolutional neural network | uk_UA |
dc.type | Article | uk_UA |
Appears in Collections: | Статті та тези (ФМІ) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2023_ICISSE_paper_77_final.pdf | 356.3 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.