Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/16175
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFrontczak, Robert-
dc.contributor.authorГой, Тарас Петрович-
dc.contributor.authorShattuck, Mark-
dc.contributor.authorHoi, Taras-
dc.date.accessioned2023-04-10T06:23:04Z-
dc.date.available2023-04-10T06:23:04Z-
dc.date.issued2022-
dc.identifier.citationFrontczak R., Goy T., Shattuck M. Fibonacci–Lucas–Pell–Jacobsthal relations. Annales Mathematicae et Informaticae. 2022. Vol. 55. P. 28-48.uk_UA
dc.identifier.urihttp://hdl.handle.net/123456789/16175-
dc.description.abstractIn this paper, we prove several identities involving linear combinations of convolutions of the generalized Fibonacci and Lucas sequences. Our results apply more generally to broader classes of second-order linearly recurrent sequences with constant coefficients. As a consequence, we obtain as special cases many identities relating exactly four sequences amongst the Fibonacci, Lucas, Pell, Pell–Lucas, Jacobsthal, and Jacobsthal–Lucas number sequences. We make use of algebraic arguments to establish our results, frequently employing the Binet-like formulas and generating functions of the corresponding sequences. Finally, our identities above may be extended so that they include only terms whose subscripts belong to a given arithmetic progression of the non-negative integers.uk_UA
dc.language.isoenuk_UA
dc.subjectGeneralized Fibonacci sequenceuk_UA
dc.subjectgeneralized Lucas sequenceuk_UA
dc.subjectFibonacci numbersuk_UA
dc.subjectLucas numbersuk_UA
dc.subjectPell numbersuk_UA
dc.subjectJacobsthal numbersuk_UA
dc.subjectgenerating functionuk_UA
dc.titleFibonacci–Lucas–Pell–Jacobsthal relationsuk_UA
dc.typeArticleuk_UA
Appears in Collections:Статті та тези (ФМІ)

Files in This Item:
File Description SizeFormat 
AMI_55_from28to48.pdf538.45 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.