Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/14633
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKozlenko, Mykola-
dc.contributor.authorKuz, Mykola-
dc.contributor.authorZamikhovska, Olena-
dc.contributor.authorZamikhovskyi, Leonid-
dc.contributor.authorКозленко, Микола Іванович-
dc.contributor.authorКузь, Микола Васильович-
dc.contributor.authorЗаміховська, Олена-
dc.contributor.authorЗаміховський, Леонід Михайлович-
dc.date.accessioned2023-01-10T07:39:53Z-
dc.date.available2023-01-10T07:39:53Z-
dc.date.issued2022-09-30-
dc.identifier.citationM. Kozlenko, M. Kuz, O. Zamikhovska, and L. Zamikhovskyi, "Fault diagnosis of natural gas pumping unit based on machine learning," 6th International Scientific and Practical Conference on Applied Systems and Technologies in the Information Society (AISTIS), V. Pleskach, V. Zosimov, and M. Pyroh, Eds. Taras Shevchenko National University of Kyiv, Kyiv, Ukraine, Sept. 30, 2022, pp. 271-274, doi: 10.5281/zenodo.7409180uk_UA
dc.identifier.other10.5281/zenodo.7409180-
dc.identifier.urihttps://zenodo.org/record/7409180-
dc.identifier.urihttp://hdl.handle.net/123456789/14633-
dc.description.abstractThis paper presents a method for fault detection of natural gas pumping unit. It is a very difficult object for diagnosis. A lot of combinations of technical equipment, different operational conditions, and other factors require design and implementation of reliable diagnosis methods. Acoustic signal based fault diagnosis of natural gas pumping units is well known and widely used in a number of applications. Statistical modeling and frequency analysis are among the most popular. In this paper, we share our experience in the use of the classification model based on an artificial multilayered dense feed forward neural network and a deep learning approach for software-implemented diagnosis of a GTK-25-i type of pumping unit. The paper reports the overall accuracy of 0.98 and minimum F1-score of 0.8. This is competitive compared to the latest industry research findings.uk_UA
dc.language.isoen_USuk_UA
dc.publisherTaras Shevchenko National University of Kyivuk_UA
dc.subjectdeep learninguk_UA
dc.subjectneural networkuk_UA
dc.subjectfault diagnosisuk_UA
dc.subjectfault detectionuk_UA
dc.subjectnatural gasuk_UA
dc.subjectpumping unituk_UA
dc.subjectdigital signal processinguk_UA
dc.subjectclassificationuk_UA
dc.subjectacoustic emissionuk_UA
dc.subjectvibrationuk_UA
dc.titleFault diagnosis of natural gas pumping unit based on machine learninguk_UA
dc.typeArticleuk_UA
Appears in Collections:Статті та тези (ФМІ)

Files in This Item:
File Description SizeFormat 
AISTIS-2022_kozlenko.pdf216.97 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.