Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/14586
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKozlenko, Mykola-
dc.contributor.authorКозленко, Микола Іванович-
dc.date.accessioned2023-01-09T07:31:33Z-
dc.date.available2023-01-09T07:31:33Z-
dc.date.issued2022-11-29-
dc.identifier.citationM. Kozlenko, "Supervised machine learning based signal demodulation in chaotic communications," 2022 International Conference on Innovative Solutions in Software Engineering (ICISSE), Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine, Nov. 29-30, 2022, pp. 313-317, doi: 10.5281/zenodo.7512427uk_UA
dc.identifier.isbn978-966-640-534-3-
dc.identifier.other10.5281/zenodo.7512427-
dc.identifier.urihttps://zenodo.org/record/7512427-
dc.identifier.urihttp://hdl.handle.net/123456789/14586-
dc.description.abstractA chaotic modulation scheme is an efficient wideband communication method. It utilizes the deterministic chaos to generate pseudo-random carriers. Chaotic bifurcation parameter modulation is one of the well-known and widely-used techniques. This paper presents the machine learning based demodulation approach for the bifurcation parameter keying. It presents the structure of a convolutional neural network as well as performance metrics values for signals generated with the chaotic logistic map. The paper provides an assessment of the overall accuracy for binary signals. It reports the accuracy value of 0.88 for the bifurcation parameter deviation of 1.34% in the presence of additive white Gaussian noise at the normalized signal-to-noise ratio value of 20 dB for balanced dataset.uk_UA
dc.language.isoen_USuk_UA
dc.publisherVasyl Stefanyk Precarpathian National Universityuk_UA
dc.subjectbifurcationuk_UA
dc.subjectbifurcation parameter keyinguk_UA
dc.subjectbit error rateuk_UA
dc.subjectchaotic communicationsuk_UA
dc.subjectchaotic signaluk_UA
dc.subjectconvolutional neural networkuk_UA
dc.subjectdeep learninguk_UA
dc.subjectdemodulationuk_UA
dc.subjectdeterministic chaosuk_UA
dc.subjectmachine learninguk_UA
dc.titleSupervised machine learning based signal demodulation in chaotic communicationsuk_UA
dc.typeArticleuk_UA
Appears in Collections:Статті та тези (ФМІ)

Files in This Item:
File Description SizeFormat 
2022_ICISSE-320-324.pdf469.9 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.