Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://hdl.handle.net/123456789/12763
Повний запис метаданих
Поле DCЗначенняМова
dc.contributor.authorПолітанський, Руслан Леонідович-
dc.contributor.authorГорбулик, Володимир Іванович-
dc.contributor.authorКогут, Ігор Тимофійович-
dc.contributor.authorВістак, Марія Володимирівна-
dc.date.accessioned2022-08-15T07:31:40Z-
dc.date.available2022-08-15T07:31:40Z-
dc.date.issued2022-
dc.identifier.citationПолітанський Р. Л. Моделювання процесів росту на поверхні кристалів / Р. Л. Політанський, В. І. Горбулик, І. Т. Когут, М. В. Вістак // Фізика і хімія твердого тіла. - 2022. - Т. 23. - № 2. - С. 387-393.uk_UA
dc.identifier.other10.15330/pcss.23.2.387-393-
dc.identifier.urihttp://hdl.handle.net/123456789/12763-
dc.description.abstractУ статті розглядаються моделі процесів росту плівок та інших структур на поверхнях кристалів, які мають подібну кристалічну структуру із незначним параметром невідповідності граток речовин, із яких утворені плівка та кристалічна підкладка. Проведений огляд методів моделювання, що основані на аналітичних співвідношення та обчислювальних алгоритмах. Розглянуто ряд методів моделювання найбільш типових процесів: формування поверхні у вигляді пірамідальних утворень (так звані голчасті кристали), двовимірний із початковими острівцями росту та тривимірний нерівномірний процеси росту. Для моделювання процесу росту голчастих кристалів запропоновано використовувати метод, що оснований на гаусовій статистиці приростів висоти поверхні. Розглянуто також модель тривимірного росту кристалічної поверхні, яка використовує ітераційний алгоритм Фосса, і яка дає можливість дослідити процеси ступінчатого, нерівномірного росту кристалів. На противагу ступінчатому росту розглянуто модель субмоноатомного росту плівки, що основана на методі Монте-Карло. Для субмоноатомного росту плівки застосовано псевдовипадкові послідовності, які моделюють початкове розміщення острівців зародження наступного шару на кристалічній поверхні. Визначені обчислювальні характеристики цього методу, а саме залежність числа ітерацій, необхідних для заповнення поверхні цілком, від коефіцієнту початкового заповнення поверхні.uk_UA
dc.language.isouk_UAuk_UA
dc.publisherПрикарпатський національний університет імені Василя Стефаникаuk_UA
dc.subjectметод Монте-Карлоuk_UA
dc.subjectріст кристалівuk_UA
dc.subjectаналітичні методиuk_UA
dc.titleМоделювання процесів росту на поверхні кристалівuk_UA
dc.title.alternativeThe Modeling of growth process on the surface of crystaluk_UA
dc.typeArticleuk_UA
Розташовується у зібраннях:Т. 23, № 2

Файли цього матеріалу:
Файл Опис РозмірФормат 
5691-Текст статті-17013-1-10-20220629.pdf1.31 MBAdobe PDFПереглянути/Відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.