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CONVERGENCE OF SOME BRANCHED CONTINUED FRACTIONS
WITH INDEPENDENT VARIABLES

R. I. Dmytryshyn. Convergence of some branched continued fractions with independent vari-
ables, Mat. Stud. 47 (2017), 150-159.

In this paper, we investigate a convergence of associated multidimensional fractions and
multidimensional J-fractions with independent variables that are closely related to each other;
the coefficients of its partial numerators are positive constants or are non-zero complex
constants from parabolic regions. We have established the uniform convergence of the sequences
of odd and even approximants of the above mentioned fractions to holomorphic functions on
compact subsets of certain domains of CV. And also, we have proved that a condition of
convergence for the considered branched continued fractions in certain subsets of CV is the
divergence of the series composed of its coefficients. Moreover, we have established that the
convergence is uniform to a holomorphic function on all compact subsets of domains of CV,
which are interior of the above mentioned subsets.

1. Introduction. It is known that the branched continued fractions are multidimensional
generalization of continued fractions [4|. Perhaps the most important subclass of such fracti-
ons is the branched continued fractions with independent variables. These fractions are an
efficient tool for the approximation of multivariable functions, which are represented by multi-
ple power series [3, 5, 8, 9]. By structure the branched continued fractions with independent
variables are their analogues.

A convergence criteria have been given in [1, 3] for multidimensional C-fractions with
independent variables
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where the c;y), i(k) € Zy, k > 1, are complex constants such that c;) # 0, i(k) € I, k > 1,
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denote the sets of multiindices, and where z = (21, 2y, . .., zy) € CV, in [7] for multidimensi-
onal g-fractions with independent variables

N i1 2
50 Z gi(1)%iy Z gi(2)(1 - gi(l))»% Z 9i(3)(1 - gi(2))zi2 o
L+ i1=1 1 T i2=1 1 T ig=1 1 + 7

2010 Mathematics Subject Classification: 11A55, 11J70, 30B70, 40A15.

Keywords: convergence, uniform convergence, branched continued fraction, associated multidimensional
fraction, multidimensional J-fraction.

doi:10.15330/ms.47.2.150-159

(© R. 1. Dmytryshyn, 2017



CONVERGENCE OF BRANCHED CONTINUED FRACTIONS 151

where the s¢ is a positive constant and the g, i(k) € Z, k > 1, are real constants such
that 0 < g;) < 1, i(k) € Iy, k > 1, and z € C", and in [6] for multidimensional J-fractions
with independent variables
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where the a;) and by, i(k) € Iy, kK > 1, are complex constants such that a;u) # 0,
i(k) € Iy, k > 1, and z € CV.

In this paper, we investigate the associated multidimensional fractions with independent
variables of the form
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where the a;x), i(k) € Z, k > 1, are complex constants such that a;) # 0, i(k) € Iy,
k > 1, and dy, is the Kronecker delta, 1 < k,p < N, z € CV, which are the expansions of
Taylor series for multiple variables [5]. We use the parabolic convergence regions in establi-
shing convergence criteria. They form the basis of Theorems 2 and 3. These theorems give us
the intersection of open disk and angular openings for the sets of convergence of associated
multidimensional fractions with independent variables. In Theorem 4, the angular openi-
ngs are obtained for the domain of convergence of the above mentioned fractions. As an
application of these theorems, we derive in Section 3 three new convergence criteria for the
multidimensional J-fractions with independent variables of the form
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where the a;y € C\{0}, i(k) € Zy, k > 1, and 6y, is the Kronecker delta, 1 < k,p < N,
z € CV, which are the expansions of Laurent series for multiple variables (|5]).

For use in the proof of our results, we include the following theorem, which follows from
Theorem 2 (|2]).

Theorem 1. Let the elements ¢y, i(k) € Iy, k > 1, of branched continued fraction of the
special form

i1
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N
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satisfy the following conditions

2_:1 3+... (3)
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where ;0), Di0); Pik) and pixy, i(k) € Iy, k > 1, are real numbers such that

loioy| <@, pioy 20, o] <. 0 < pigy < (1 —€)cospiry, i(k) €Ly, k>1,
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where € and ¢ are constants such that 0 < e <1 and 0 < ¢ < 7/(2(1 +¢€)). Let
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be the n-th approximant of (3), n > 1. Then:
(A) The approximants of branched continued fraction of special form (3) are all finite
and lie in the half-plane

V ={@: Re(we ¥©) > —pyn}.

(B) Both the sequences of even and odd approximants { fa,} and {fs,—1} of branched
continued fraction of the special form (3) converge.
(C) A branched continued fraction of special form (3) converges if the series

00 -1
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diverges.

2. Associated multidimensional fractions with independent variables. In this sec-
tion we shall give three new convergence criteria for the associated multidimensional fractions
with independent variables (1).

For use in the following theorem we introduce the notation for the tails of (1): FZ.((T;L)) (z) =1,
i(n) €Z,,n>1,

in—1
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where i(k) € Zp, 1 <k <n—1,n>2. Let

_1_'_Zal zll
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be the n-th approximant of (1), n > 1.
Now we shall prove the following two results.

Theorem 2. Let the coefficients a;(, i(k) € Iy, k > 1, of the associated multidimensional
fraction with independent variables (1) satisfy the conditions

|ai(1)] — Re(aq))
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where the l;, 1 < k < N, are positive numbers and the g, gix), i(k) € Iy, k > 1, are real
numbers such that

gio) 2 0, 0<gix) <1—g¢, (6)
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where 0 < ¢ < 1. Then:
(A) For all z in the set

2 cos(arg(zx))

) arg(a)] <
k

Diytyine = {z € CV: |z < , 1<k< N} , (7

T
2(1+¢)
the even and odd approximants of the associated multidimensional fraction with independent
variables (1) converge to finite values p(z) and q(z), respectively. Both even and odd approxi-
mants converge uniformly on every compact subset of IntDy, ;, .. and p(z), ¢(z) are
holomorphic on Int Dy, 1, 1 -

(B) For each z € Dy, 1, 1., the associated multidimensional fraction with independent
variables (1) converges to a finite value f(z) if the series

00 -1
max |a; 8
> (g o) ®

diverges. The convergence is uniform in every compact subset of Int Dy, 1, 1y, and f(z) is

holomorphic on Int Dy, 1, iy .e-

Proof. We set z, = rpe?, 1 < k < N, and choose

Di0) = Gi(0),  Pitk) = Yitk) €08(i, ), (k) € Iip, k> 1. 9)

Then from (4) it follows that
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and for all i(k) € Zy, k > 1, inequality (5) implies that

sz |@i(ht1) Zig Ziga | — R‘e((_1>6ik7ik+lai(k+1)zik’z’ik+1 efi(%’“w%“)) < (1 —=e)ri b G

ipr1=1 Tikﬂlikﬂ (1 - gi(k—i—l)) - 2
that is
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and for all i(k) € Z, k > 1,
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It follows from (7) and (9) that

rel < 2cos(pr), 1<k<N. (12)
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Using (12) we may write (10) as

laiyzi, | — Re(aiq) i, e i)
Z Ccos %1) Pi1) ( ) © ( )

and for all i(k) € Z, k> 1, (11) as

—i(%k+<ﬁik+1))

i |ai(k+1)zikzik+l| - Re(<_1)5ik’ik+l Qi(k+1) Zig, Zig 1 ©

<201 —e)piwy.-  (14)
COS(SOZ'IC-"-l) — Di(k+1) *)
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Moreover, it follows from (6) that
0 <pix < (L —e)cos(ypy,), i(k)ely, k>1. (15)

Thus, the elements of (1) satisfy the conditions of Theorem 1, with ¢;) = 0, iff z €
_____ ine- 1t follows from part (B) of Theorem 1 that the even and odd approximants
of (1) converge to finite values for all z € D, , ;. .. Moreover, part (A) of this theorem
implies that for every index i, 1 < i; < N, the values of all tails F(g))( ), n > 2, of (1) are
finite and lie in the half-plane

Vi (@i, piry)) = {@ : Re(we 1) > cos(ei,) — piy) }- (16)

It follows from (15) that Fi((%(z) # 0 for all indices. Thus, the approximants f,(z), n > 1,
of (1) form a sequence of holomorphic functions in Int Dy,
Let

lo,..,INE"
2 cos(arg(zx)) o
D oe=142€CV: < e <" _1<KkK<NY, (17
I 2yl 0, {z B T+ o)l | arg(z)| 2019 <k< (17)
where 0 < ¢ < 1, be a domain contained in Int D;, j, ;.. Set

C = max_|a;)|
1<i1 <N

Then for the arbitrary z € Dy, 1, in.0e © Int Dy, 1, 1x e, We obtain for n > 1

@iz 2C cos(pi,
e |<1+Z |ai] 2| +Z (i)

R’e(Fz((Ti)( ) 72%1 (1 + o)l (cos(i,) — pi(l)) -

N N
<1—|— <1—|—E —_MIDIZN.’ o),
i1=1 (1 ﬂil(l gi(l)) =1 (1 + 0>5lil ( U In )
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where the constant M (Dy, ,.. iy.0-) depends only on the domain (17), i.e. the sequence
{fn(2z)} is uniformly bounded in Dy, 1, iy.0e-

Let KC be an arbitrary compact subset of Int Dy, ;, 1, .. Let us cover K with domains of
form (17). From this cover we choose the finite subcover

Dz§1>,zgl>,...,z§;>,o<1>,eu)7 Dz§2>,zg2>,...,z§3),g<2>,5<2)v T Dlgk),lék),...,lg\?),a(m,s(k)’
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Set
M(K) = 1213;(]{ M(Dl(r) W 1) o) Em).

Then for arbitrary z € K we obtain |f,(z)| < M(K), for n > 1, i.e. the sequence {f,(z)}
is uniformly bounded on every compact subset of IntDj 4, ... An application of
Theorem 24.2 [10, p. 108-109] (see also Theorem 2.17 [4, p. 66]) yields the uniform conver-
gence of the even and odd approximants of (1) to holomorphic functions on all compact
subsets of Int Dy, 1, ;4. This proves part (A). The proof of part (B) follows readily from
part (C) of Theorem 1. O

Theorem 3. Let the coefficients a;(, i(k) € Iy, k > 1, of the associated multidimensional
fraction with independent variables (1) satisfy the conditions

laiy] — Re(aiqy) < (1 =)l gio)(1 — gir)), 1 <4 <N, (18)
@i — Re((—1) 51k ayp) < (1= )iy Lingis—1y (1 — giwy) /2, i(k) € Ty, k>2, (19)

where I, 1 < k < N, are positive numbers and g;o), Gir), i(k) € Iy, k > 1, are real numbers
satisfying (6), where 0 < ¢ < 1. Then:
(A) For all z in the set

N

lk|Zk| ™
Ontie = 4zec: Sl <sro
l1,l2,.. N, {Z ; 2COS(&I‘g<Zk)) = ’arg(zk)‘ 2<1 + 5)

1<k< N} . (20)
the even and odd approximants of the associated multidimensional fraction with independent
variables (1) converge to finite values p(z) and q(z), respectively. Both even and odd approxi-
mants converge uniformly on every compact subset of IntOy, 1, 1y and p(z), q(z) are
holomorphic on Int Oy, 1, 1y .-

(B) For each z € Oy, 4,1y .=, the associated multidimensional fraction with independent
variables (1) converges to a finite value f(z) if the series (8) diverges. The convergence is

uniform in every compact subset of IntOy, 4, . 1 <, and f(z) is holomorphic on Int Oy, 1, 1y -

Proof. As in the proof of Theorem 2 we set 2z, = rpe*?*, 1 < k < N, and choose the Pi(o) and
Pik), i(k) € Iy, k > 1, as well as in (9). Then from (18) and (20) it follows that

Z |aig)2i, | — Re(ai)zie”1)

< 2(1—-¢)gio
1 — 9i( )) COS(SDM) ©

i1=1

that is (13). For the arbitrary of multiindex i(k) € Zy, k > 1, (19) and (20) imply

ik Oig i —i(Pip TPiry1)
Z |@iht1) Zig, Ziga | — Re((—l) B Q4 1) i Rig € kT R )

< (1 —=e)rili,gix
(1 = gi(k+1)) cos(@iy, ) e

ig41=1

that is

Zk |ai(k+1)zikzik+1| - Re((—l) P Qi (k1) By Rig 41 © ot Hl)) (1- E)Tiklikpi(k) (21)

COS(@M-H) — Di(k+1) - COS(QDik)

tgr1=1
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It follows from (9) and (20) that inequalities (12) hold. Using (12) we may write (21) as
(14). Moreover, from (6) implies that inequalities (15) are valid. Thus, the elements of (1)
satisfy the assumptions of Theorem 1, with ;) = 0, iff z € Oy, 1y [t follows from
part (B) of Theorem 1 that the even and odd approximants of (1) converge to finite values
for all z € Oy, 4, 1y Moreover, part (A) of this theorem implies that for every index i,

1 <43 < N, the values of all tails F;(g; (z), n > 2, of (1) are finite and lie in (16). Inequality

(15) yields that Fi(g; (z) # 0 for all indices. Thus, the approximants f,(z), n > 1, of (1) form

a sequence of holomorphic functions in IntOy, 1, 1y -
Let

OllJ?"“)lNzo-%C" -

N
= ev.y o lml T _1<k<N 22
{Z © Z I cos(arg(zy,)) <20, |arg(ze)] < 2(1+¢)  —  ~ ’ (22)

where 0 < ¢ < 1, be a domain contained in IntQy, 4, ;. .. Set

C = max |ayy|, = max [.
1<i1 <N 1<k<N

Then for the arbitrary z € Oy, 4, 15,0 C IntOy, 4,1y, We obtain for n > 1

ai()||Zi % 201C
fulz |<1+z ’;” oy '1' <1427 MOty tyme),

1= 1 ) _up” i1=1 cos SO’Ll ( ) €
where the constant M (O, 1, 1yv.0e) depends only on the domain (22), i.e. the sequence
{fn(z)} is uniformly bounded in Oy, 1, i1y .0e-
Let K be an arbitrary compact subset of IntQy, ;, 1, .. Let us cover K with domains of
form (22). From this cover we choose the finite subcover

Q0,0 o s 0@ @ 1) oy s -0 Oy ) ey -

Set
M(K) = max M(Ol§r>7l(2r>wl§;>7g<r>,g(r))‘

1<r<k

Then for arbitrary z € K we obtain |f,(z)] < M(K), for n > 1, i.e. the sequence {f,(z)}
is uniformly bounded on every compact subset of IntOj;, ;... An application of
Theorem 24.2 |10, pp. 108-109] yields the uniform convergence of the even and odd approxi-
mants of (1) to holomorphic functions on all compact subsets of IntOy, 4,1, .. This proves
part (A). The proof of part (B) follows readily from part (C) of Theorem 1. O

The following theorem is the application of Theorem 2.

Theorem 4. Let the coefficients a;(), i(k) € Iy, k > 1, of the associated multidimensional
fraction with independent variables (1) satisfy the conditions

Qj(1) > 0, 1<y < ]\77 (—1)6ik—1’ikai(k) > O, Z(kf) € Ik, k > 2. (23)

Then:
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(A) The even and odd approximants of the associated multidimensional fraction with
independent variables (1) converge to holomorphic function in the domain

Da:{ZGCN |arg zx| < 1§k§N}, (24)

T
P
where 0 < € < 1. Both even and odd approximants converge uniformly on every compact
subset of D..

(B) The associated multidimensional fraction with independent variables (1) converges
to a holomorphic function in D, if series (8) diverges. The convergence is uniform in every
compact subset of D..

Proof. If gioy = 1/2, gixy = 1/2 and a;¢1y > 0, (—1)§ik*"k+1 i1y > 0 for all i(k) € Iy, k > 1,
then conditions (4) and (5) holds for all I, >0, 1 <k < N.

Let K be an arbitrary compact set contained in D,. Then K C Int Dy, 4, iy € D, for
some Iy, s, ..., Iy sufficiently small, for which Int Dj, 5, . ;, . is an interior of set (7).

Thus, Theorem 4 is an immediate consequence of Theorem 2. O]

3. Multidimensional J-fractions with independent variables. Various criteria for the
convergence of multidimensional J-fractions with independent variables (2) can be obtai-
ned by considering the equivalent associated multidimensional fractions with independent
variables of the form

@1 i(— >1a 5“51:22:(— >1a ﬁzzfzs+..., (25)

22:1 i3=1

an

where & = 1/2z,, 1 < k < N, &€ = (£&,&,...,&nv) € CV. For more details on equivalent
transformations, see [4, p. 29-33].
From Theorem 2 it follows that for all £ in the set

2 cos(arg(éx))

Do i {aecN ) < 2B g < 1§ks§N}, (26)

T
2(1+¢)’
where 0 < € < 1 and the [, 1 < k < N, are positive numbers, the even and odd approximants
of (25) converge to finite values p(€) and ¢(&), respectively, if conditions (4)—(6) hold. Both
even and odd approximants converge uniformly on every compact subset of Int D; ,
and p(§), ¢(§) are holomorphic on Int Dj ,, . Moreover, for each §& € D; ;,, , _, the
associated multidimensional fraction with independent variables (25) converges to a finite
value f(&) if series (8) diverges. The convergence is uniform in every compact subset of
Int Dj ;, .. and f(€) is holomorphic on Int D,
It follows from (26) that

2, ulnyer

11/2| < (2/1) cos(arg(1/z;)), |arg(l/zx)| <7/(2(1+4¢)), 1<k<N,

that is
Re(z) > 1,/2, |arg(z)| < 7/(2(14¢)), 1<k<N.

Therefore, the following corollary is a simple application of Theorem 2.
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Corollary 1. Let the coefficients a;yy, i(k) € i, k > 1, of the multidimensional J-fraction
with independent variables (2) satisfy the conditions (4) and (5), where the I, 1 < k < N,
are positive numbers and gi(), i), i(k) € Iy, k > 1, are real numbers satisfying (6), where
0 < e < 1. Then:

(A) For all z in the set

Iy

Phits.ine = {z € CY: Re(z) > oL |arg(zx)| < , 1<k< N} :

™
2(1+¢)
the even and odd approximants of the multidimensional J-fraction with independent variables
(2) converge to finite values p(z) and q(z), respectively. Both even and odd approximants
converge uniformly on every compact subset of IntPy, ;, i, -, and p(z), q(z) are holomorphic
on IntPll,l%m’lN,s.

(B) For each z € Py, 4.1y, the multidimensional J-fraction with independent variables
(2) converges to a finite value f(z) if the series (8) diverges. The convergence is uniform in
every compact subset of Int Py, 4, 1y, and f(z) is holomorphic on Int Py, 4, 1y .-

From Theorem 3 we obtain the following corollary.

Corollary 2. Let the coefficients a;yy, i(k) € i, k > 1, of the multidimensional J-fraction
with independent variables (2) satisfy the conditions (18) and (19), where the [y, 1 < k < N,
are positive numbers and g;), Gik), (k) € Iy, k > 1, are real numbers satisfying (6), where
0 < e < 1. Then:

(A) For all z in the set

N
l
Qi oyl = {Z eC": Z — >, | arg(zx)| <
k=

J1<E<NY,
“ Re(zk) }

2(1+e)

the even and odd approximants of the multidimensional J-fraction with independent variables
(2) converge to finite values p(z) and q(z), respectively. Both even and odd approximants
converge uniformly on every compact subset of Int Qy, 1, 1., and p(z), q(z) are holomorphic
onInt Qi ine

(B) For each z € Py, 4,1y, the multidimensional J-fraction with independent variables
(2) converges to a finite value f(z) if the series (8) diverges. The convergence is uniform in
every compact subset of Int Qy, ;, 1., and f(z) is holomorphic on Int Qy, 1, 1y .-

Finally, from Theorem 4 we deduce the following result.

Corollary 3. Let the coefficients a;xy, i(k) € Iy, k > 1, of the multidimensional J-fraction
with independent variables (2) satisfy the condition (23). Then:

(A) The even and odd approximants of the multidimensional J-fraction with independent
variables (2) converge to holomorphic function in domain (24), where 0 < ¢ < 1. The
convergence is uniform in every compact subset of D,.

(B) The multidimensional J-fraction with independent variables (2) converges to a ho-
lomorphic function in D, if series (8) diverges.

We remark that from a convergence criteria that have been given in [6], we have the
following domains of convergence for (2)

Rists.ine = {z € CV : Re(—iz) > Iy, |arg(—iz)| <
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and
T

2(1+¢)
where the [, 1 < k < N, are positive numbers and where € is a constant such that 0 < e < 1.
In view of this, we conclude that Corollaries 1-3 give us another sets of convergence for the
multidimensional J-fraction with independent variables (2), in certain conditions, on the
coefficients of its partial numerators.

REZ{ZECNZ |arg(—izg)| < ,1§k§N},
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