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In this paper, we investigate a convergence of associated multidimensional fractions and
multidimensional J -fractions with independent variables that are closely related to each other;
the coefficients of its partial numerators are positive constants or are non-zero complex
constants from parabolic regions. We have established the uniform convergence of the sequences
of odd and even approximants of the above mentioned fractions to holomorphic functions on
compact subsets of certain domains of CN . And also, we have proved that a condition of
convergence for the considered branched continued fractions in certain subsets of CN is the
divergence of the series composed of its coefficients. Moreover, we have established that the
convergence is uniform to a holomorphic function on all compact subsets of domains of CN ,
which are interior of the above mentioned subsets.

1. Introduction. It is known that the branched continued fractions are multidimensional
generalization of continued fractions [4]. Perhaps the most important subclass of such fracti-
ons is the branched continued fractions with independent variables. These fractions are an
efficient tool for the approximation of multivariable functions, which are represented by multi-
ple power series [3, 5, 8, 9]. By structure the branched continued fractions with independent
variables are their analogues.

A convergence criteria have been given in [1, 3] for multidimensional C -fractions with
independent variables

1 +
N∑

i1=1

ci(1)zi1
1 +

i1∑
i2=1

ci(2)zi2
1 +

i2∑
i3=1

ci(3)zi3
1 +

· · · ,
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denote the sets of multiindices, and where z = (z1, z2, . . . , zN) ∈ CN , in [7] for multidimensi-
onal g-fractions with independent variables
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where the s0 is a positive constant and the gi(k), i(k) ∈ Ik, k ≥ 1, are real constants such
that 0 < gi(k) < 1, i(k) ∈ Ik, k ≥ 1, and z ∈ CN , and in [6] for multidimensional J -fractions
with independent variables
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where the ai(k) and bi(k), i(k) ∈ Ik, k ≥ 1, are complex constants such that ai(k) ̸= 0,
i(k) ∈ Ik, k ≥ 1, and z ∈ CN .

In this paper, we investigate the associated multidimensional fractions with independent
variables of the form
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where the ai(k), i(k) ∈ Ik, k ≥ 1, are complex constants such that ai(k) ̸= 0, i(k) ∈ Ik,
k ≥ 1, and δk,p is the Kronecker delta, 1 ≤ k, p ≤ N, z ∈ CN , which are the expansions of
Taylor series for multiple variables [5]. We use the parabolic convergence regions in establi-
shing convergence criteria. They form the basis of Theorems 2 and 3. These theorems give us
the intersection of open disk and angular openings for the sets of convergence of associated
multidimensional fractions with independent variables. In Theorem 4, the angular openi-
ngs are obtained for the domain of convergence of the above mentioned fractions. As an
application of these theorems, we derive in Section 3 three new convergence criteria for the
multidimensional J -fractions with independent variables of the form
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where the ai(k) ∈ C\{0}, i(k) ∈ Ik, k ≥ 1, and δk,p is the Kronecker delta, 1 ≤ k, p ≤ N,
z ∈ CN , which are the expansions of Laurent series for multiple variables ([5]).

For use in the proof of our results, we include the following theorem, which follows from
Theorem 2 ([2]).

Theorem 1. Let the elements ci(k), i(k) ∈ Ik, k ≥ 1, of branched continued fraction of the
special form
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satisfy the following conditions

ik−1∑
ik=1

|ci(k)| − Re(ci(k)e
−i(φi(k−1)+φi(k)))

cosφi(k) − pi(k)
≤ 2(1− ε)pi(k−1), i(k) ∈ Ik, k ≥ 1,

where φi(0), pi(0), φi(k) and pi(k), i(k) ∈ Ik, k ≥ 1, are real numbers such that

|φi(0)| ≤ φ, pi(0) ≥ 0, |φi(k)| ≤ φ, 0 ≤ pi(k) ≤ (1− ε) cosφi(k), i(k) ∈ Ik, k ≥ 1,
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where ε and φ are constants such that 0 < ε < 1 and 0 < φ < π/(2(1 + ε)). Let
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ci(1)
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· · ·
+

in−1∑
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ci(n)
1

be the n-th approximant of (3), n ≥ 1. Then:
(A) The approximants of branched continued fraction of special form (3) are all finite

and lie in the half-plane

V =
{
ϖ : Re(ϖe−iφi(0)) ≥ −pi(0)

}
.

(B) Both the sequences of even and odd approximants {f2n} and {f2n−1} of branched
continued fraction of the special form (3) converge.

(C) A branched continued fraction of special form (3) converges if the series
∞∑
k=1

(
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i(k)∈Ik

|ci(k)|
)−1

diverges.

2. Associated multidimensional fractions with independent variables. In this sec-
tion we shall give three new convergence criteria for the associated multidimensional fractions
with independent variables (1).

For use in the following theorem we introduce the notation for the tails of (1): F (n)
i(n)(z) = 1,

i(n) ∈ In, n ≥ 1,
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,

where i(k) ∈ Ik, 1 ≤ k ≤ n− 1, n ≥ 2. Let

fn(z) = 1 +
N∑

i1=1

ai(1)zi1

F
(n)
i(1)(z)

be the n-th approximant of (1), n ≥ 1.
Now we shall prove the following two results.

Theorem 2. Let the coefficients ai(k), i(k) ∈ Ik, k ≥ 1, of the associated multidimensional
fraction with independent variables (1) satisfy the conditions

N∑
i1=1

|ai(1)| − Re(ai(1))

li1(1− gi(1))
≤ (1− ε)gi(0), (4)

ik∑
ik+1=1

|ai(k+1)| − Re
(
(−1)δik,ik+1ai(k+1)

)
lik+1

(1− gi(k+1))
≤

(1− ε)likgi(k)
2

, i(k) ∈ Ik, k ≥ 1, (5)

where the lk, 1 ≤ k ≤ N, are positive numbers and the gi(0), gi(k), i(k) ∈ Ik, k ≥ 1, are real
numbers such that

gi(0) ≥ 0, 0 ≤ gi(k) ≤ 1− ε, (6)
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where 0 < ε < 1. Then:
(A) For all z in the set

Dl1,l2,...,lN ,ε =

{
z ∈ CN : |zk| ≤

2 cos(arg(zk))

lk
, | arg(zk)| <

π

2(1 + ε)
, 1 ≤ k ≤ N

}
, (7)

the even and odd approximants of the associated multidimensional fraction with independent
variables (1) converge to finite values p(z) and q(z), respectively. Both even and odd approxi-
mants converge uniformly on every compact subset of IntDl1,l2,...,lN ,ε, and p(z), q(z) are
holomorphic on Int Dl1,l2,...,lN ,ε.

(B) For each z ∈ Dl1,l2,...,lN ,ε, the associated multidimensional fraction with independent
variables (1) converges to a finite value f(z) if the series

∞∑
k=1

(
max
i(k)∈Ik

|ai(k)|
)−1

(8)

diverges. The convergence is uniform in every compact subset of Int Dl1,l2,...,lN ,ε, and f(z) is
holomorphic on Int Dl1,l2,...,lN ,ε.

Proof. We set zk = rke
iφk , 1 ≤ k ≤ N, and choose

pi(0) = gi(0), pi(k) = gi(k) cos(φik), i(k) ∈ Ik, k ≥ 1. (9)

Then from (4) it follows that

N∑
i1=1

|ai(1)zi1 | − Re(ai(1)zi1e
−iφi1 )

ri1li1(1− gi(1))
≤ (1− ε)gi(0)

and for all i(k) ∈ Ik, k ≥ 1, inequality (5) implies that
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(
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)
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2

that is

N∑
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|ai(1)zi1 | − Re(ai(1)zi1e
−iφi1 )

ri1li1
cos(φi1)

(cos(φi1)− pi(1))

≤ (1− ε)pi(0) (10)

and for all i(k) ∈ Ik, k ≥ 1,

ik∑
ik+1=1

|ai(k+1)zikzik+1
| − Re

(
(−1)δik,ik+1ai(k+1)zikzik+1
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)
)

rik+1
lik+1

cos(φik+1
)
(cos(φik+1

)− pi(k+1))

≤
(1− ε)rik likpi(k)

2 cos(φik)
. (11)

It follows from (7) and (9) that

rklk < 2 cos(φk), 1 ≤ k ≤ N. (12)
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Using (12) we may write (10) as

N∑
i1=1

|ai(1)zi1 | − Re(ai(1)zi1e
−iφi1 )

cos(φi1)− pi(1)
≤ 2(1− ε)pi(0) (13)

and for all i(k) ∈ Ik, k ≥ 1, (11) as

ik∑
ik+1=1

|ai(k+1)zikzik+1
| − Re

(
(−1)δik,ik+1ai(k+1)zikzik+1

e−i(φik
+φik+1

)
)

cos(φik+1
)− pi(k+1)

≤ 2(1− ε)pi(k). (14)

Moreover, it follows from (6) that

0 ≤ pi(k) ≤ (1− ε) cos(φik), i(k) ∈ Ik, k ≥ 1. (15)

Thus, the elements of (1) satisfy the conditions of Theorem 1, with φi(0) = 0, iff z ∈
Dl1,l2,...,lN ,ε. It follows from part (B) of Theorem 1 that the even and odd approximants
of (1) converge to finite values for all z ∈ Dl1,l2,...,lN ,ε. Moreover, part (A) of this theorem
implies that for every index i1, 1 ≤ i1 ≤ N, the values of all tails F

(n)
i(1)(z), n ≥ 2, of (1) are

finite and lie in the half-plane

Vi(1)(φi1 , pi(1)) =
{
ϖ : Re(ϖe−iφi1 ) ≥ cos(φi1)− pi(1)

}
. (16)

It follows from (15) that F
(n)
i(1)(z) ̸≡ 0 for all indices. Thus, the approximants fn(z), n ≥ 1,

of (1) form a sequence of holomorphic functions in IntDl1,l2,...,lN ,ε.
Let

Dl1,l2,...,lN ,σ,ε =

{
z ∈ CN : |zk| <

2 cos(arg(zk))

(1 + σ)lk
, | arg(zk)| <

σπ

2(1 + ε)
, 1 ≤ k ≤ N

}
, (17)

where 0 < σ < 1, be a domain contained in IntDl1,l2,...,lN ,ε. Set

C = max
1≤i1≤N

|ai(1)|.

Then for the arbitrary z ∈ Dl1,l2,...,lN ,σ,ε ⊆ Int Dl1,l2,...,lN ,ε, we obtain for n ≥ 1

|fn(z)| ≤ 1 +
N∑
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|ai(1)||zi1 |
Re

(
F

(n)
i(1)(z)e

−iφi1

) < 1 +
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2C cos(φi1)

(1 + σ)li1(cos(φi1)− pi(1))
≤

≤ 1 +
N∑

i1=1

2C

(1 + σ)li1(1− gi(1))
≤ 1 +

N∑
i1=1

2C

(1 + σ)εli1
= M(Dl1,l2,...,lN ,σ,ε),

where the constant M(Dl1,l2,...,lN ,σ,ε) depends only on the domain (17), i.e. the sequence
{fn(z)} is uniformly bounded in Dl1,l2,...,lN ,σ,ε.

Let K be an arbitrary compact subset of IntDl1,l2,...,lN ,ε. Let us cover K with domains of
form (17). From this cover we choose the finite subcover

D
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l
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1 ,l
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N ,σ(2),ε(2)

, . . . , D
l
(k)
1 ,l

(k)
2 ,...,l

(k)
N ,σ(k),ε(k)

.
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Set
M(K) = max

1≤r≤k
M

(
D

l
(r)
1 ,l

(r)
2 ,...,l

(r)
N ,σ(r),ε(r)

)
.

Then for arbitrary z ∈ K we obtain |fn(z)| ≤ M(K), for n ≥ 1, i.e. the sequence {fn(z)}
is uniformly bounded on every compact subset of IntDl1,l2,...,lN ,ε. An application of
Theorem 24.2 [10, p. 108–109] (see also Theorem 2.17 [4, p. 66]) yields the uniform conver-
gence of the even and odd approximants of (1) to holomorphic functions on all compact
subsets of IntDl1,l2,...,lN ,ε. This proves part (A). The proof of part (B) follows readily from
part (C) of Theorem 1.

Theorem 3. Let the coefficients ai(k), i(k) ∈ Ik, k ≥ 1, of the associated multidimensional
fraction with independent variables (1) satisfy the conditions

|ai(1)| − Re(ai(1)) ≤ (1− ε)li1gi(0)(1− gi(1)), 1 ≤ i1 ≤ N, (18)

|ai(k)| − Re
(
(−1)δik−1,ikai(k)

)
≤ (1− ε)lik−1

likgi(k−1)(1− gi(k))/2, i(k) ∈ Ik, k ≥ 2, (19)

where lk, 1 ≤ k ≤ N, are positive numbers and gi(0), gi(k), i(k) ∈ Ik, k ≥ 1, are real numbers
satisfying (6), where 0 < ε < 1. Then:

(A) For all z in the set

Ol1,l2,...,lN ,ε =

{
z ∈ CN :

N∑
k=1

lk|zk|
2 cos(arg(zk))

≤ 1, | arg(zk)| <
π

2(1 + ε)
, 1 ≤ k ≤ N

}
, (20)

the even and odd approximants of the associated multidimensional fraction with independent
variables (1) converge to finite values p(z) and q(z), respectively. Both even and odd approxi-
mants converge uniformly on every compact subset of IntOl1,l2,...,lN ,ε, and p(z), q(z) are
holomorphic on Int Ol1,l2,...,lN ,ε.

(B) For each z ∈ Ol1,l2,...,lN ,ε, the associated multidimensional fraction with independent
variables (1) converges to a finite value f(z) if the series (8) diverges. The convergence is
uniform in every compact subset of IntOl1,l2,...,lN ,ε, and f(z) is holomorphic on Int Ol1,l2,...,lN ,ε.

Proof. As in the proof of Theorem 2 we set zk = rke
iφk , 1 ≤ k ≤ N, and choose the pi(0) and

pi(k), i(k) ∈ Ik, k ≥ 1, as well as in (9). Then from (18) and (20) it follows that

N∑
i1=1

|ai(1)zi1 | − Re(ai(1)zi1e
−iφi1 )

(1− gi(1)) cos(φi1)
≤ 2(1− ε)gi(0)

that is (13). For the arbitrary of multiindex i(k) ∈ Ik, k ≥ 1, (19) and (20) imply

ik∑
ik+1=1

|ai(k+1)zikzik+1
| − Re

(
(−1)δik,ik+1ai(k+1)zikzik+1

e−i(φik
+φik+1

)
)

(1− gi(k+1)) cos(φik+1
)

≤ (1− ε)rik likgi(k)

that is

ik∑
ik+1=1

|ai(k+1)zikzik+1
| − Re

(
(−1)δik,ik+1ai(k+1)zikzik+1

e−i(φik
+φik+1

)
)

cos(φik+1
)− pi(k+1)

≤
(1− ε)rik likpi(k)

cos(φik)
. (21)
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It follows from (9) and (20) that inequalities (12) hold. Using (12) we may write (21) as
(14). Moreover, from (6) implies that inequalities (15) are valid. Thus, the elements of (1)
satisfy the assumptions of Theorem 1, with φi(0) = 0, iff z ∈ Ol1,l2,...,lN ,ε. It follows from
part (B) of Theorem 1 that the even and odd approximants of (1) converge to finite values
for all z ∈ Ol1,l2,...,lN ,ε. Moreover, part (A) of this theorem implies that for every index i1,

1 ≤ i1 ≤ N, the values of all tails F
(n)
i(1)(z), n ≥ 2, of (1) are finite and lie in (16). Inequality

(15) yields that F (n)
i(1)(z) ̸≡ 0 for all indices. Thus, the approximants fn(z), n ≥ 1, of (1) form

a sequence of holomorphic functions in IntOl1,l2,...,lN ,ε.
Let

Ol1,l2,...,lN ,σ,ε =

=

{
z ∈ CN :

N∑
k=1

|zk|
lk cos(arg(zk))

< 2σ, | arg(zk)| <
σπ

2(1 + ε)
, 1 ≤ k ≤ N

}
, (22)

where 0 < σ < 1, be a domain contained in IntOl1,l2,...,lN ,ε. Set

C = max
1≤i1≤N

|ai(1)|, l = max
1≤k≤N

lk.

Then for the arbitrary z ∈ Ol1,l2,...,lN ,σ,ε ⊆ IntOl1,l2,...,lN ,ε, we obtain for n ≥ 1

|fn(z)| ≤ 1+
N∑

i1=1

|ai(1)||zi1 |
Re

(
F

(n)
i(1)(z)e

−iφi1

) ≤ 1+
N∑

i1=1

C|zi1 |
cos(φi1)− pi(1)

≤ 1+
2σlC

ε
= M(Ol1,l2,...,lN ,σ,ε),

where the constant M(Ol1,l2,...,lN ,σ,ε) depends only on the domain (22), i.e. the sequence
{fn(z)} is uniformly bounded in Ol1,l2,...,lN ,σ,ε.

Let K be an arbitrary compact subset of IntOl1,l2,...,lN ,ε. Let us cover K with domains of
form (22). From this cover we choose the finite subcover

O
l
(1)
1 ,l

(1)
2 ,...,l

(1)
N ,σ(1),ε(1)

, O
l
(2)
1 ,l

(2)
2 ,...,l

(2)
N ,σ(2),ε(2)

, . . . , O
l
(k)
1 ,l

(k)
2 ,...,l

(k)
N ,σ(k),ε(k)

.

Set
M(K) = max

1≤r≤k
M

(
O

l
(r)
1 ,l

(r)
2 ,...,l

(r)
N ,σ(r),ε(r)

)
.

Then for arbitrary z ∈ K we obtain |fn(z)| ≤ M(K), for n ≥ 1, i.e. the sequence {fn(z)}
is uniformly bounded on every compact subset of IntOl1,l2,...,lN ,ε. An application of
Theorem 24.2 [10, pp. 108–109] yields the uniform convergence of the even and odd approxi-
mants of (1) to holomorphic functions on all compact subsets of IntOl1,l2,...,lN ,ε. This proves
part (A). The proof of part (B) follows readily from part (C) of Theorem 1.

The following theorem is the application of Theorem 2.

Theorem 4. Let the coefficients ai(k), i(k) ∈ Ik, k ≥ 1, of the associated multidimensional
fraction with independent variables (1) satisfy the conditions

ai(1) > 0, 1 ≤ i1 ≤ N, (−1)δik−1,ikai(k) > 0, i(k) ∈ Ik, k ≥ 2. (23)

Then:
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(A) The even and odd approximants of the associated multidimensional fraction with
independent variables (1) converge to holomorphic function in the domain

Dε =

{
z ∈ CN : | arg zk| <

π

2(1 + ε)
, 1 ≤ k ≤ N

}
, (24)

where 0 < ε < 1. Both even and odd approximants converge uniformly on every compact
subset of Dε.

(B) The associated multidimensional fraction with independent variables (1) converges
to a holomorphic function in Dε if series (8) diverges. The convergence is uniform in every
compact subset of Dε.

Proof. If gi(0) = 1/2, gi(k) = 1/2 and ai(1) > 0, (−1)δik,ik+1ai(k+1) > 0 for all i(k) ∈ Ik, k ≥ 1,
then conditions (4) and (5) holds for all lk > 0, 1 ≤ k ≤ N.

Let K be an arbitrary compact set contained in Dε. Then K ⊆ Int Dl1,l2,...,lN ,ε ⊆ Dε for
some l1, l2, . . . , lN sufficiently small, for which Int Dl1,l2,...,lN ,ε is an interior of set (7).

Thus, Theorem 4 is an immediate consequence of Theorem 2.

3. Multidimensional J -fractions with independent variables. Various criteria for the
convergence of multidimensional J -fractions with independent variables (2) can be obtai-
ned by considering the equivalent associated multidimensional fractions with independent
variables of the form

N∑
i1=1

ai(1)ξi1
1 +

i1∑
i2=1

(−1)δi1,i2ai(2)ξi1ξi2
1 +

i2∑
i3=1

(−1)δi2,i3ai(3)ξi2ξi3
1 +

· · · , (25)

where ξk = 1/zk, 1 ≤ k ≤ N, ξ = (ξ1, ξ2, . . . , ξN) ∈ CN . For more details on equivalent
transformations, see [4, p. 29–33].

From Theorem 2 it follows that for all ξ in the set

D′
l1,l2,...,lN ,ε =

{
ξ ∈ CN : |ξk| ≤

2 cos(arg(ξk))

lk
, | arg(ξk)| <

π

2(1 + ε)
, 1 ≤ k ≤ N

}
, (26)

where 0 < ε < 1 and the lk, 1 ≤ k ≤ N, are positive numbers, the even and odd approximants
of (25) converge to finite values p(ξ) and q(ξ), respectively, if conditions (4)–(6) hold. Both
even and odd approximants converge uniformly on every compact subset of Int D′

l1,l2,...,lN ,ε,
and p(ξ), q(ξ) are holomorphic on Int D′

l1,l2,...,lN ,ε. Moreover, for each ξ ∈ D′
l1,l2,...,lN ,ε, the

associated multidimensional fraction with independent variables (25) converges to a finite
value f(ξ) if series (8) diverges. The convergence is uniform in every compact subset of
Int D′

l1,l2,...,lN ,ε, and f(ξ) is holomorphic on Int D′
l1,l2,...,lN ,ε.

It follows from (26) that

|1/zk| ≤ (2/lk) cos(arg(1/zk)), | arg(1/zk)| < π/(2(1 + ε)), 1 ≤ k ≤ N,

that is
Re(zk) ≥ lk/2, | arg(zk)| < π/(2(1 + ε)), 1 ≤ k ≤ N.

Therefore, the following corollary is a simple application of Theorem 2.
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Corollary 1. Let the coefficients ai(k), i(k) ∈ Ik, k ≥ 1, of the multidimensional J-fraction
with independent variables (2) satisfy the conditions (4) and (5), where the lk, 1 ≤ k ≤ N,
are positive numbers and gi(0), gi(k), i(k) ∈ Ik, k ≥ 1, are real numbers satisfying (6), where
0 < ε < 1. Then:

(A) For all z in the set

Pl1,l2,...,lN ,ε =

{
z ∈ CN : Re(zk) ≥

lk
2
, | arg(zk)| <

π

2(1 + ε)
, 1 ≤ k ≤ N

}
,

the even and odd approximants of the multidimensional J-fraction with independent variables
(2) converge to finite values p(z) and q(z), respectively. Both even and odd approximants
converge uniformly on every compact subset of IntPl1,l2,...,lN ,ε, and p(z), q(z) are holomorphic
on IntPl1,l2,...,lN ,ε.

(B) For each z ∈ Pl1,l2,...,lN ,ε, the multidimensional J-fraction with independent variables
(2) converges to a finite value f(z) if the series (8) diverges. The convergence is uniform in
every compact subset of Int Pl1,l2,...,lN ,ε, and f(z) is holomorphic on Int Pl1,l2,...,lN ,ε.

From Theorem 3 we obtain the following corollary.

Corollary 2. Let the coefficients ai(k), i(k) ∈ Ik, k ≥ 1, of the multidimensional J-fraction
with independent variables (2) satisfy the conditions (18) and (19), where the lk, 1 ≤ k ≤ N,
are positive numbers and gi(0), gi(k), i(k) ∈ Ik, k ≥ 1, are real numbers satisfying (6), where
0 < ε < 1. Then:

(A) For all z in the set

Ql1,l2,...,lN ,ε =

{
z ∈ CN :

N∑
k=1

lk
Re(zk)

≥ 2, | arg(zk)| <
π

2(1 + ε)
, 1 ≤ k ≤ N

}
,

the even and odd approximants of the multidimensional J-fraction with independent variables
(2) converge to finite values p(z) and q(z), respectively. Both even and odd approximants
converge uniformly on every compact subset of Int Ql1,l2,...,lN ,ε, and p(z), q(z) are holomorphic
on Int Ql1,l2,...,lN ,ε.

(B) For each z ∈ Pl1,l2,...,lN ,ε, the multidimensional J-fraction with independent variables
(2) converges to a finite value f(z) if the series (8) diverges. The convergence is uniform in
every compact subset of Int Ql1,l2,...,lN ,ε, and f(z) is holomorphic on Int Ql1,l2,...,lN ,ε.

Finally, from Theorem 4 we deduce the following result.

Corollary 3. Let the coefficients ai(k), i(k) ∈ Ik, k ≥ 1, of the multidimensional J-fraction
with independent variables (2) satisfy the condition (23). Then:

(A) The even and odd approximants of the multidimensional J-fraction with independent
variables (2) converge to holomorphic function in domain (24), where 0 < ε < 1. The
convergence is uniform in every compact subset of Dε.

(B) The multidimensional J-fraction with independent variables (2) converges to a ho-
lomorphic function in Dε if series (8) diverges.

We remark that from a convergence criteria that have been given in [6], we have the
following domains of convergence for (2)

Rl1,l2,...,lN ,ε =

{
z ∈ CN : Re(−izk) > lk, | arg(−izk)| <

π

2(1 + ε)
, 1 ≤ k ≤ N

}
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and
Rε =

{
z ∈ CN : | arg(−izk)| <

π

2(1 + ε)
, 1 ≤ k ≤ N

}
,

where the lk, 1 ≤ k ≤ N, are positive numbers and where ε is a constant such that 0 < ε < 1.
In view of this, we conclude that Corollaries 1–3 give us another sets of convergence for the
multidimensional J -fraction with independent variables (2), in certain conditions, on the
coefficients of its partial numerators.
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