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We propose a simple method how to construct an analytic hypercyclic operators on Fréchet
spaces and Banach spaces. Some examples are presented.
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[Ipemtoxken mpoCTOii CMOCOO TMOCTPOEHNS AHATUTUIECKUX THIEPIUKINIECKAX OMepaTOPOB
Ha mpocrpancTBax Ppeire n 6AHAXOBBIX MPOCTPaHCcTBaX. IIpuBeaeHbI TPUMEPHI

Let X be a Fréchet linear space. An operator T: X — X is called hypercyclic if there is
a vector x € X whose orbit under T’

Orb (T,z) = {z, Tz, T?x,...}

is dense in X. Every such vector x is called a hypercyclic vector for T. Many authors
studied hypercyclic linear operators (see, e.g., the survey of Grosse-Erdmann [3]). Nonli-
near hypercyclic operators were not studied in details. In [1| was shown that there is no
n-homogeneous hypercyclic polynomial operator on any Banach space if n > 1. In [4] Peris
constructed some examples of nonhomogeneous hypercyclic polynomial operators on Banach
spaces using the Julia set theory.

In this paper we provide a simple method how to construct polynomial and analytic
hypercyclic operators.

Let F' be an analytic automorphism of X onto X and 7" be an hypercyclic operator on
X. Then Tp := FTF! (and Tp-1 := F'TF as well) must be hypercyclic ([3]) and, in
the general case, they are nonlinear. The following examples show that 7% are nonlinear for
some well known hypercyclic operators 7' and simple analytic automorphisms F.

Example 1. Let A(D) be the disk-algebra of all analytic functions on the unit disk D of
C which are continuous on the closure D. Denote X; = {> 7o ag1t** ! € A(D)} and
XQ = {ZZO:O (letzk S A(D)} Clearly A(D) = X1 D XQ.

For every f = f1 + f2, f1 € X4, fo € Xy we put

F(fi) = fh, FY(f) = f,
{F<fz) = fotp.  Themwehave {Flf) fo— 2.

Thus F is a polynomial automorphism of X. Let T(f(t)) = f(%21). It is known that T is
hypercyclic on A(D) (|2, p. 4]).
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Let us show that T = FTF~! is nonlinear. Tt is enough to check that Tr(\f) # ATk (f)
for some A € C and f € A(D). Let f(t) =t +t* € A(D). Then

Tr(\f) = F(T(F*(\t+ X?))) = F(T(Mt + X2 — \?1?))
— F(T(M+ (A — A1) = F()\(t;—l) T (A=) (%) )
A=At (A3 =43+ AN12 (BN =)\
2 * 4 L

for any A # 0, A # 1. Thus Tr(\f) # A\Tr(f).
In a similar way, in the following example we consider the space of entire analytic functions
H(C) and T(f) = f(z + a) to show that Tp-1 is nonlinear, where F is defined as above.

Example 2. Let f(t) =t +t*> € H(C) then F(f) =t + 2t2, F(\f) = A(t + t*) + A*?. Thus

T(FAf)) = Mt +a) + 2\(1 + Nat + (A + A (£ + a?)
for any A # 0. Since F~1(f) =t — t*, we have
FITFONf) =AMt + %) —4Na®(t +°) + Ma + a® + 2t) + 4\%at(t + a)
—4Nat(t + a) — AN3a*t2 (2 + N) # ANTp (f).
Thus, the operator Tp-1 = F~'TF is nonlinear.

Example 3. Next we consider the Hilbert space 5. Let (ex)?2; be an orthonormal basis in
ly and z = Zzozl rrer € fy. We define an analytic automorphism F': {5 — (5 by the formula

F(xok_1€2k-1) = Tok—_1€26-1
F(xopeor) = xope "2k-legy, k=12, ...

Let T, be a weighted shift,

T,(x) = (pxe, pxs, . . .).

It is known that T}, is a hypercyclic operator if || > 1 (see [5]). Then the operator Tp =
FT,F~! is hypercyclic. We will show that Tp is nonlinear.

Let a € {, a = (a1,a9,...an,...), a = Y o age,, and A € C. We will show that
TF(>\6L> 7£ )\TF(CL)

F'T,F(A\a) = (phase ™, phase™ 2" phagze ™%, phase’ 44" ).,

Thus, Tp(Aa) # ATr(a) and moreover, the map A ~» T),(Aa) is not polynomial. Therefore
Tr is an analytic (not polynomial) hypercyclic map.
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