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MULTIPLICATIVE CONVOLUTION ON THE ALGEBRA OF BLOCK-SYMMETRIC  
ANALYTIC FUNCTIONS 

А. V. Zagorodnyuk  and  V. V. Kravtsiv  UDC 517.98 

We introduce and study a multiplicative convolution operator on the spectrum of the algebra of block-
symmetric analytic functions of bounded type on an infinite  ℓ1 -sum of copies of the Banach space    !!

s .  

The case of the algebra of block-symmetric functions on the space    !!
2   and the action of multiplicative 

convolution on its spectrum are studied separately. 

Introduction 

The algebra of analytic functions of bounded type in a complex Banach space  X   is a standard object of 
investigations in nonlinear functional analysis.  They were studied in [2, 4, 16, 17] and many other publications.  
In [1, 3, 5, 6–8, 10, 15], the authors studied the spectra of the algebras of symmetric (invariant) analytic func-
tions on the spaces   ℓ p ,  1 ≤ p ≤ ∞ ,  L∞ ,  and   L∞[0, +∞)∩ L1[0, +∞)   relative to the groups of isometric map-
pings of these spaces.   The analytic functions on the  ℓ p -sums of finite-dimensional spaces (“blocks”) symmet-
ric relative to the permutation of these blocks (block-symmetric) were considered in [11–13].  

Thus, in particular, the algebraic basis of block-symmetric polynomials in the space   

 
   
!!n ⊗ ℓ p = ⊕ℓ p!!

n    

was described in [13].  In the present work, we study an analog of symmetric multiplicative convolution (see 
[6]) for the case of block-symmetric polynomials.  

Note that the block-symmetric polynomials are used in combinatorics and have applications in the field of 
quantum mechanics, where they are also called the MacMahon symmetric polynomials, diagonal polynomials, 
or multisymmetric polynomials (see [9, 14]).  

1.  Preliminarily Data 

Let      X∞
s = ⊕ℓ1""

s   be an infinite  ℓ1 -sum of copies of the Banach space    !!
s .  Then every element from  

 x ∈X∞
s   can be represented in the form of a sequence  x = (x1,…, xn ,…) ,  where    xn ∈!!s ,  with the norm  

 x = xki
i=1

s

∑
k=1

∞

∑ . 
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A polynomial  P   in the space      X∞
s = ⊕ℓ1""

s   is called block-symmetric (or vector-symmetric) if 

 

 

P

x11

x12

!

x1s

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
1

,…,

xm1

xm2

!

xms

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
m

,…

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

= P

x11

x12

!

x1s

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
σ(1)

,…,

xm1

xm2

!

xms

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
σ(m)

,…

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

, 

for any substitution   σ ∈G ,  where   G   is the group of substitutions on the set   N   and      (xi
1, xi2,…, xis )⊤ ∈!!s . 

By   Pvs (X∞
s )   we denote the algebra of block-symmetric polynomials on   X∞

s . 

In [11], it was proved that the algebraic basis of the algebra   Pvs (X∞
s )   is formed by the polynomials 

 Hn
k1, k2 ,…, ks (x1, x2,…, xs ) = (xi1)k1

i=1

∞

∑ (xi2 )k2 …(xis )ks , 

 k1 + k2 +…+ ks = n . 

By  Hbvs (X∞
s )  we denote the algebra of block-symmetric analytic functions of bounded type.  Let  Mbvs (X∞

s )   
be the spectrum of this algebra. 

2.  Multiplicative Convolution 

In [6], the definition of multiplicative shift was introduced for elements of the space  ℓ1 .  In a similar way, 

we introduce the definition of multiplicative shift for elements of the space   X∞
s . 

Definition 1.  Let  (x1, x2,…, xs )   and   (y
1, y2,…, ys ) ∈X∞

s .  The multiplicative shift of the elements  

(x1, x2,…, xs )   and  (y1, y2,…, ys )   is introduced as a vector formed by the elements     (xi
1y j1, xi2y j2,…, xisy js)⊤   

enumerated in any order,   i, j ∈N ,  and denoted by  (x1, x2,…, xs ) ◊ (y1, y2,…, ys ) . 

Proposition 1.  For any   !x = (x1, x2,…, xs ) ,    !y = (y1, y2,…, ys ) ∈X∞
s ,  the following assertions are true: 

 (1°°)   
!x ◊ !y ∈X∞

s   and   
!x ◊ !y ≤ !x ⋅ !y ; 

 (2°°)  Hn
k1,…, ks ( !x ◊ !y) = Hn

k1,…, ks ( !x)Hn
k1,…, ks ( !y) ; 

 (3°°) if P  is an n -homogeneous polynomial on   X∞
s ,  and   !y   is a fixed element from   X∞

s ,   then the func-
tion   !x " P( !x ◊ !y)   is an n -homogeneous polynomial. 
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Proof.  It is clear that  

 
 

!x ◊ !y = xiky jk
k=1

s

∑
i, j=1

∞

∑ ≤ xik
k=1

s

∑
i=1

∞

∑ ⋅ y jk
k=1

s

∑
i=1

∞

∑  

  =  
 
(x1, x2,…, xs ) ⋅ (y1, y2,…, ys ) = !x ⋅ !y . 

Moreover, 

 
 
Hn

k1,…,ks ( !x ◊ !y) = (ximy jm )km
m=1

s

∏
i, j=1

∞

∑ = (xim )km
m=1

s

∏
i=1

∞

∑ ⋅ (y jm )km
m=1

s

∏
j=1

∞

∑ . 

Condition (3°°) follows from the equality   λ( !x ◊ !y) = (λ!x ◊ !y) .  
The proposition is proved. 

Let    !y ∈X∞
s .  The mapping   

   
!x ∈X∞

s
π !y
→ ( !x ◊ !y) ∈X∞

s  

is linear and continuous, which follows from Proposition 1.  If   f ∈Hbvs (X∞
s ) ,  then  

  
f ! π "y ∈Hbvs (X∞

s )   be-
cause  

 
f ! π "y   is analytic and bounded on bounded sets, and   f (σ( !x) ◊ !y) = f ( !x ◊ !y)   for any permuta-

tion   σ ∈G .  We call the operator 
 
M !y = f " π !y   a multiplicative convolution operator.  It is obvious that 

 
M !y  = 

 
Mσ( !y)   for any permutation   σ ∈G   and  

 
M !y(Hn

k1,…, ks ) = Hn
k1,…, ks ( !y) ⋅Hn

k1,…, ks . 

Moreover, it is clear that 

 
 
π !y+ !z ( !x) = ( !x ◊ ( !y + !z)) = ( !x ◊ !y) + ( !x ◊ !z) = π !y( !x) + π !z ( !x) , 

 
 
πλ!y( !x) = ( !x ◊ λ!y) = λ( !x ◊ !y) = λπ !y( !x) . 

Proposition 2.  For any    !y ∈X∞
s ,  the multiplicative convolution operator  

 
M !y   is a continuous homomor-

phism of the algebra   Hbvs (X∞
s )   into itself. 

Proof.  Let   
!x = (x1, x2,…, xs ) ,    

!y = (y1, y2,…, ys ) ∈X∞
s ,  and    f ( !x) = f (x1, x2,…, xs ) ∈Hbvs (X∞

s ) .   

We now show that    f ( !x ◊ !y) ∈Hbvs (X∞
s ) .  Since every function   f ∈Hbvs (X∞

s )   can be uniformly approximated 

by the polynomials   Pn ∈Pvs (X∞
s ) ,  we find  

 
 
f ( !x ◊ !y) = Pn

n=0

∞

∑ ( !x ◊ !y)  
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  =  
  

Gn
n=0

∞

∑ (H 1,0,…, 0 ( !x ◊ !y),…,H k1,k2 ,…, ks ( !x ◊ !y),…)  

  =  
  

Gn
n=0

∞

∑ (H 1,0,…, 0 ( !x) ⋅H 1,0,…, 0 ( !y),  

      …,H k1, k2 ,…, ks ( !x) ⋅H k1, k2 ,…, ks ( !y),…)∈Hbvs (X∞
s ) . 

The fact that  
 
M !y   is a homomorphism follows from the equalities  

   ∀λ ∈!!     
 
Mλ!y(Pn ) = Pn " πλ!y = Pn " λπ !y = λnPn " π !y = λnM !y(Pn ) , 

 
 
M !y+ !z (Pn ) = Pn " π !y+ !z = Pn " (π !y + π !z )  

  =  
 
Pn ! π "y + Pn ! π "z = M "y(Pn ) + M "z (Pn ) . 

The continuity of the operator  
 
M !y   is a consequence of the inequality 

 
 
M !y(Pn ) = Pn " π !y ≤ Pn ⋅ y n . 

Thus,  
 
M !y   is a continuous homomorphism on   Hbvs (X∞

s ).   

The proposition is proved. 

In [12], the authors introduced the notion of radius function R(ϕ)  of a complex homomor-

phism   ϕ ∈Mbvs (X∞
s )  as the infimum of all  r   such that  ϕ   is continuous on  

  
Auvs(rBX∞

s ) ,  where  
  
Auvs(rBX∞

s )   

is the algebra of all uniformly continuous block-symmetric analytic functions on the sphere  
 
rBX∞

s ⊂ X∞
s   of 

radius  r .  It was proved that the quantity  R(ϕ)   can be found by using the following formula: 

 R(ϕ) = lim sup
n→∞

ϕn
1
n , 

where  ϕn   is the restriction of the functional  ϕ   to the subspace of  n -homogeneous block-symmetric poly-
nomials.  

Proposition 3.  For all   θ ∈Hbvs (X∞
s ′)   and any    !y ∈X∞

s ,  the radius function of the continuous homomor-
phism  

 
θ !M "y   can be estimated as follows: 

 
 
R(θ !M "y ) ≤ R(θ) ⋅ "y . (1) 
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Proof.  We perform reasoning similar to that used in [6].  Let   !y ∈X∞
s .  We denote by 

 
(θ !M "y )n  (resp., θn ),  

the restriction of 
 
θ !M "y   (resp.,  θ )  to the subspace of n -homogeneous block-symmetric polynomials.  We get  

 
 

(θ !M "y )n = sup
f ≤1

θn
M "y( fn )
"y n

⎛

⎝
⎜

⎞

⎠
⎟ ⋅ "y n ≤ θn ⋅ "y n . 

Thus, 

 
  
R(θ !M "y ) ≤ lim sup

n→∞
( θn ⋅ "y n)

1
n = R(θ) ⋅ "y .  

The proposition is proved. 

We now introduce the multiplicative convolution on   Hbvs (X∞
s ′)   by analogy with [6]. 

Definition 2.  For any functions   f ∈Hbvs (X∞
s )   and   θ ∈Hbvs (X∞

s ′) ,  the multiplicative convolution is de-
fined by the formula 

   (θ ◊ f )( !x) = θ[M !x ( f )]     for every      !x ∈X∞
s . 

Definition 3.  For any  φ,θ ∈Hbvs (X∞
s ′) ,  the multiplicative convolution is defined by the formula 

 (φ ◊ θ)( f ) = φ(θ ◊ f )     for any     f ∈Hbvs (X∞
s ) . 

Proposition 4.  If   φ,θ ∈Mbvs (X∞
s ) ,  then   φ ◊ θ ∈Mbvs (X∞

s ) . 

Proof.  It follows from the multiplicativity of  
 
M !y   that  φ ◊ θ   is a character. 

The fact that   φ ◊ θ ∈Mbvs (X∞
s )   follows from (1), i.e., from the inequality 

 R(φ ◊ θ) ≤ R(φ) ⋅R(θ) . 

Hence,   φ ◊ θ ∈Mbvs (X∞
s ) .  

The proposition is proved. 

Theorem 1.  For any   φ,θ ∈Mbvs (X∞
s ) ,  the multiplicative convolution is commutative and associative. 

Moreover, this convolution satisfies the equality 

 (φ ◊ θ)(H k1,…, ks ) = φ(H k1,…, ks ) ⋅θ(H k1,…, ks ) . (2) 
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Proof.  Since every function   f ∈Hbvs (X∞
s )   can be uniformly approximated on bounded sets by block-

symmetric polynomials that can be represented in the form of the algebraic combination of polynomi-
als  H k1,…, ks ,  it suffices to check the associativity and commutativity of multiplicative convolution for the  
polynomials  H k1,…, ks . 

First, we check equality (2).  Indeed, 

   (θ ◊ H
k1,…, ks)( !x) = θ(M !x (H k1,…, ks ))  

  =    θ(H
k1,…, ks ( !x) ⋅H k1,…, ks) = H k1,…, ks ( !x) ⋅θ(H k1,…, ks) . 

This is why, we get 

 (φ ◊ θ)(H k1,…, ks ) = φ(θ ◊H k1,…, ks )  

  =    φ(H
k1,…, ks ( !x) ⋅θ(H k1,…, ks )) = φ(H k1,…, ks)⋅θ(H k1,…, ks). 

The last inequality implies the associativity and commutativity of multiplicative convolution on the poly-
nomials  H k1,…, ks   and, hence, for any function   f ∈Hbvs (X∞

s ) .   
The theorem is proved. 

For the elements    !x, !y ∈X∞
s ,  the notion of symmetric shift   !x !y   was introduced in [12] by the formula 

 

 

!x !y =

x11

x12

"

x1s

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

,

y11

y12

"

y1s

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

,…,

xi1

xi2

"

xis

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

,

yi1

yi2

"

yis

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

,…

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

. 

Moreover, it was shown that    !x !y ∈X∞
s . 

In [12], for any   φ,θ ∈Mbvs (X∞
s )   and  f ∈Hbvs (X∞

s ) , the operation of symmetric convolution   φ ! θ   was 
defined as follows:  

 
   
(φ ! θ)( f ) = φ (θ ! f ) = φ( !y" θ(T !y

s ( f ))) , 

where   

 
  
T !y

s ( f )( !x) = f ( !x ⋅ !y) . 

Proposition 5.  For any   ϕ, φ,θ ∈Mbvs (X∞
s ) ,  the following equality is true: 

  θ ◊ (ϕ ! φ)= (θ ◊ ϕ) ! (θ ◊ φ) . 
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Proof.  By using equality (2) and Theorem 3 [12], we obtain 

   ((θ ◊ ϕ) ! (θ ◊ φ))(H
k1,…, ks ) = (θ ◊ ϕ)(H k1,…, ks ) + (θ ◊ φ)(H k1,…, ks )  

  =  θ(H k1,…, ks ) ⋅ϕ(H k1,…, ks ) + θ(H k1,…, ks ) ⋅ φ(H k1,…, ks )  

  =   θ(H
k1,…, ks ) ⋅(ϕ(H k1,…, ks ) + φ(H k1,…, ks ))  

  =   θ(H
k1,…, ks ) ⋅ ϕ ! φ( ) (H k1,…, ks )  

  =    (θ ◊ (ϕ ! φ))(H
k1,…, ks ) . 

The proposition is proved.  

3.  The Case of the Space     X∞∞
2 == ⊕⊕ℓℓ1""

2  

Another algebraic basis of the algebra   Pvs (X∞
2 )   is formed by the polynomials 

 Rk1, k2 (x1, x2 ) = xi1
1

i1<…<ik1
j1<…< jk2
ik≠ jl

∞

∑ … xik1
1 x j1

2 … x jk2
2 , 

where  k1   and  k2   are the numbers of elements  xik
1   and   x jℓ

2 ,  respectively [12]. 

Let    !!{t1, t2}   be the space of all power series over    !!
2 .  The representations 

 

  

R(ϕ)(t1, t2 ) = t1
k1

n=0
k1+k2=n

∞

∑ t2
k2ϕ(Rk1, k2) , 

 

  

H(ϕ)(t1, t2 ) = t1
k1

n=1
k1+k2=n

∞

∑ t2
k2ϕ(H k1, k2)  

acting from   Mbvs (X∞
2 )   into    !!{t1, t2}   were considered in [12].  In particular, it was shown that the set   

  {R(ϕ)(t1, t2 ) :   ϕ ∈Mbvs (X∞
2 )}    

is the set of functions of exponential type. 
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Note that, for any    (a1, a2 ) ∈!!
2   and the vector  

 (a1, a2 ) =
a1
a2

⎛
⎝⎜

⎞
⎠⎟
,

0
0

⎛
⎝⎜

⎞
⎠⎟
,…,

0
0

⎛
⎝⎜

⎞
⎠⎟
,…

⎛
⎝⎜

⎞
⎠⎟

, 

we get  

 δ(a1, a2 )◊ t1
k1

n=0
k1+k2=n

∞

∑ t2
k2Rk1,k2⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
(x1, x2 )  

  =  M (x1, x2 ) t1
k1

n=0
k1+k2=n

∞

∑ t2
k2Rk1, k2⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
(a1, a2 )  

  =  

 

t1
k1

n=0
k1+k2=n

∞

∑ t2
k2Rk1, k2((x1, x2 )◊(a1, a2 ))  

  =  t1
k1

n=0
k1+k2=n

∞

∑ t2
k2Rk1, k2

x11a1

x12a2

⎛

⎝
⎜

⎞

⎠
⎟ ,

x21a1

x22a2

⎛

⎝
⎜

⎞

⎠
⎟ ,…,

xi1a1

xi2a2

⎛

⎝
⎜

⎞

⎠
⎟ ,…

⎛

⎝
⎜

⎞

⎠
⎟  

  =  t1
k1

n=0
k1+k2=n

∞

∑ t2
k2a1

k1a2
k2Rk1, k2 (x1, x2 ) . 

Therefore, 

 

 

R ϕ ◊ δ(a1, a2 )( ) = ϕ t1
k1

n=0
k1+k2=n

∞

∑ t2
k2a1

k1a2
k2Rk1, k2⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 

  =  t1
k1

n=0
k1+k2=n

∞

∑ t2
k2a1

k1a2
k2ϕ(Rk1, k2 ) . 

It follows from Theorem 3 [12] that 

 
 

δ(a1, a2 ) ! δ(b1, b2 ) = δ a1
a2( ), b1

b2( ), 0
0( ),…, 0

0( ),…⎛
⎝

⎞
⎠
. 
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By using Proposition 5 and Theorem 4 [12], we obtain 

 
 

R ϕ ◊ δ
a1
a2( ), b1

b2( ), 0
0( ),…, 0

0( ),…( )
⎛

⎝⎜
⎞

⎠⎟
(t1, t2 )  

  =  
 
R ϕ ◊ δ(a1,a2 )( ) ! ϕ ◊ δ(b1,b2 )( )( ) (t1, t2 )  

  =  
 
R ϕ ◊ δ(a1,a2 )( ) (t1, t2 ) ·R ϕ ◊ δ(b1,b2 )( ) (t1, t2 )  

  =  

 

t1
k1

n=0
k1+k2=n

∞

∑ t2
k2a1

k1a2
k2ϕ(Rk1, k2 ) ⋅ t1

k1

n=0
k1+k2=n

∞

∑ t2
k2b1

k1b2
k2ϕ(Rk1, k2) . 

In a more general form, we can write  

 

 

R ϕ ◊ δ x11

x12
⎛
⎝⎜

⎞
⎠⎟
,…, xm1

xm2
⎛
⎝⎜

⎞
⎠⎟
, 0

0( ),…⎛
⎝⎜

⎞
⎠⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
(t1, t2 )   =  

  

t1
k1

n=0
k1+k2=n

∞

∑
ℓ=1

m

∏ t2
k2 (xℓ1)k1 (xℓ2 )k2ϕ(Rk1, k2) . 

Since the sequence   

 δ x11

x12
⎛
⎝⎜

⎞
⎠⎟
,…, xm1

xm2
⎛
⎝⎜

⎞
⎠⎟
, 0

0( ),…⎛
⎝⎜

⎞
⎠⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
m

   

is pointwise convergent to   

 δ x11

x12
⎛
⎝⎜

⎞
⎠⎟
,…, xm1

xm2
⎛
⎝⎜

⎞
⎠⎟
,…

⎛
⎝⎜

⎞
⎠⎟

   

in   Mbvs (X∞
2 ),   the sequence   

 ϕ ◊ δ x11

x12
⎛
⎝⎜

⎞
⎠⎟
,…, xm1

xm2
⎛
⎝⎜

⎞
⎠⎟
, 0

0( ),…⎛
⎝⎜

⎞
⎠⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
m

   

is pointwise convergent to   

 ϕ ◊ δ x11

x12
⎛
⎝⎜

⎞
⎠⎟
,…, xm1

xm2
⎛
⎝⎜

⎞
⎠⎟
,…

⎛
⎝⎜

⎞
⎠⎟

. 
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Therefore,  

 

   

R ϕ ◊ δ(x1, x2 )( ) (t1, t2 ) = t1
k1

n=0
k1+k2=n

∞

∑
ℓ=1

∞

∏ t2
k2 (xℓ1)k1 (xℓ2 )k2ϕ(Rk1, k2)  

for any   

 
 

(x1, x2 ) =
x11

x12
⎛

⎝
⎜

⎞

⎠
⎟ ,…,

xm1

xm2
⎛

⎝
⎜

⎞

⎠
⎟ ,…w

⎛

⎝
⎜

⎞

⎠
⎟ ∈X∞

2 . 

In [12], we constructed a family      (φ(k,ℓ) : (k, ℓ) ∈""
2)  of elements of the set   Mbvs (X∞

2 )   such that 

   φ(k,ℓ)(H
1,0) = k ,       φ(k,ℓ)(H

0,1) = ℓ ,     and       φ(k,ℓ)(H
k1,k2 ) = 0     ∀k1, k2 > 1 .   

It was also shown that   

    R(φ(k,ℓ))(t1, t2 )  =  ekt1+ℓt2 . 

It is easy to see that 

   (φ(k,ℓ) ◊ ϕ)(H 1,0 ) = kϕ(H 1,0 ) , 

   (φ(k,ℓ) ◊ ϕ)(H 0,1) = ℓϕ(H 0,1) , 

   (φ(k,ℓ) ◊ ϕ)(H k1,k2 ) = 0     ∀k1, k2 > 1 , 

    R(φ(k,ℓ) ◊ ϕ)(t1, t2 ) = ekϕ(H
1,0 )t1+ℓϕ(H 0,1)t2 . 

Thus, the operation of multiplicative convolution with functionals   φ(k,ℓ)   acts as a shift on the elements  

   R(φ(k,ℓ))(t1, t2 ) .  
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