Методи та Засоби Трійкових Симетричних Перетворень для Цифрової Обробки Інформації

Артем Ізмайлов кафедра комп'ютерних наук та інформаційних систем Прикарпатський національний університет Івано-Франківськ, Україна aiartefact@gmail.com

Methods and Devices of Symmetric Ternary Transforms for Digital Information Processing

Artem Izmailov dept. of Computer Science and Information Systems Precarpathian National University Ivano-Frankivsk, Ukraine aiartefact@gmail.com

Анотація-На основі трійкових симетричних функцій синтезовано відповідні дискретні ортогональне та вейвлетперетворення. Для застосування синтезованих методів для цифрової обробки інформації запропоновано засоби відповідних перетворень. Доведено ефективність застосування запропонованих засобів для зменшення обсягу пам'яті для зберігання даних у системах цифрової обробки інформації у прикладних галузях.

Abstract-Orthogonal and wavelet transforms are basic methods for processing of the digital data. Properties of these methods depend on function systems they are based on. At the same time, existing transforms do not always satisfy rising demands for data processing quality. Therefore, synthesis of the new transforms is an actual problem of digital information processing. This paper deals with the discrete orthogonal and wavelet transforms synthesized on the basis of symmetric ternary functions. In order to apply their advantages in digital infor mation processing, the respective devices were introduced. These devices were applied in systems for processing of the high correlated data (gasaccounting and transmission control; control of the drilling process for oil and gas wells). Application of the introduced devices allowed to reduce the amount of memory required for data storage up to 20% depending on data type.

Ключові слова-цифрова обробка інформації; дискретне ортогональне перетворення; дискретне вейвлетперетворення; трійкові симетричні функції

Keywords—digital information processing; discrete orthogonal transform; discrete wavelet transform; symmetric ternary functions

I. Вступ

Розвиток науки і техніки зумовив появу нових задач у різних галузях економіки, управління, виробництва та зв'язку. Для розв'язання цих задач застосовано технічні системи, які функціонують під управлінням комп'ютерних систем. Функціонування таких систем пов'язане з обробкою цифрових даних, яка забезпечена застосуванням методів та засобів цифрової обробки інформації (ЦОІ) [1-5].

Основними методами обробки цифрових даних є ортогональні та вейвлет-перетворення, в основі яких лежать системи функцій, якими визначено властивості відповідних перетворень [1-5]. У зв'язку з розширенням переліку прикладних галузей ЦОІ, існуючі перетворення не завжди задовольняють вимоги щодо якості результатів обробки даних [1-7]. Цим зумовлена актуальність синтезу нових перетворень та удосконалення існуючих.

Актуальним завданням ЦОІ є зменшення обсягу пам'яті для зберігання даних [1, 3]. Одним із підходів до розв'язання цього завдання є застосування ортогональних вейвлет-перетворень $[1-5]$. При цьому та пілхолі зберігають не самі дані, а коефіцієнти перетворення, частина з яких рівна нулю або близька до нуля. Такі коефіцієнти відкидають, а при відновленні даних замінюють нулями [1-5].

Аналіз останніх досліджень вказує на те, що трійкові симетричні функції (ТСФ) раніше не застосовувались у якості основи ортогональних та вейвлет-перетворень [2,

6, 7]. При цьому, доведено ефективність застосування трійкового симетричного кодування, породженого ТСФ, у системах ЦОІ, яке забезпечило приріст ефективності в межах 25÷30% за критерієм інформаційної потужності кодової матриці у порівнянні з відомими кодовими системами [8, 9]. Відповідно, застосування трійкового симетричного кодування у системах ЦОІ зменшує обсяг пам'яті для зберігання даних. Цим зумовлена актуальність аналізу ефективності застосування ТСФ у якості базису ортогональних та вейвлет-перетворень.

Метою дослідження є зменшення обсягу пам'яті для зберігання корельованих даних шляхом розробки методів та засобів цифрової обробки інформації на основі трійкових симетричних перетворень.

Наукова новизна отриманих результатів полягає в успішному синтезі методів та засобів дискретних ортогонального та вейвлет-перетворень на основі системи ТСФ та їх застосуванні у системах ЦОІ корельованих даних, що дозволило зменшити обсяг пам'яті для зберігання даних у таких системах.

II. ТРІЙКОВЕ СИМЕТРИЧНЕ ОРТОГОНАЛЬНЕ ПЕРЕТВОРЕННЯ

В основі трійкових симетричних перетворень лежить система ТСФ. При цьому, у зв'язку з недоліками цієї системи [10, 11] застосовується система ортогоналізованих добутків ТСФ. На основі функцій цієї системи синтезовано трійкове безпосередньо симетричне ортогональне перетворення (ТСОП), яке обчислюється у виглялі

$$
Y = T_n X \,, \tag{1}
$$

де Y - вектор коефіцієнтів перетворення, T_n - матриця перетворення розміру n, X - вектор вхідних даних.

Матриця Т_п у виразі (1) є ортогональною, що забезпечено множенням матриці значень системи ортогоналізованих добутків ТСФ на нормуючі множники, уведені у [11]. Матриця ТСОП розміру 9 Т₉ має наступний виглял

$$
T_{9} = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & -\sqrt{2} & -\sqrt{2} & -\sqrt{2} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & -\sqrt{2} & -\sqrt{2} & -\sqrt{2} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & -\sqrt{2} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & -\sqrt{2} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & -\sqrt{2} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & -\sqrt{2} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & -\sqrt{2} & \frac{1}{3} \\ \frac{1}{3} & -\sqrt{2} & \frac{1}{3} \\ \frac{1}{3} & -\sqrt{2} & \frac{1}{3} \\ \frac{1}{3} & -\sqrt{2} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac
$$

У зв'язку з ортогональністю матриць вигляду (2) обернене ТСОП обчислюється у вигляді

$$
X = (T_n)^T Y, \qquad (3)
$$

де $(T_n)^T$ – транспонована матриця перетворення розміру n.

Матриці виду Т_п допускають обчислення матриць старших порядків на основі молодших. На основі цієї властивості розроблено швидкий метод реалізації перетворень (1) та (3), який наведено у [11]. Зазначений швидкий метод ТСОП застосовано для створення засобу ТСОП, структурна схема якого наведена на рис. 1.

Рис. 1. Структурна схема засобу ТСОП

Засіб ТСОП (рис. 1) складається з інформаційного входу 1, мультиплексорів 2, 18-20, блоку пам'яті 3, демультиплексорів $4 - 6$, регістрів пам'яті $7 - 12$ операційного блоку $(x_0 + x_1) + x_2$ 13, операційних блоків $(-x_0 + x_1)$ 14, 17, операційного блоку $(x_0 + x_1) - 2x_2$ 15, операційного блоку (x₀+x₁) 16, генератора адрес 21, блоку синхронізації 22 та інформаційного виходу 23. Для спрощення процедури синтезу та моделювання роботи запропонованого засобу, його реалізовано засобами ПЛІС. Така реалізація передбачає, також, спрощення імплементації засобу ТСОП у системах ЦОІ.

III. ТРІЙКОВЕ СИМЕТРИЧНЕ ВЕЙВЛЕТ-ПЕРЕТВОРЕННЯ

Властивості функцій системи ортогоналізованих добутків ТСФ вказують на те, що їх можна застосувати у якості вейвлет-функцій для синтезу відповідного трійкового дискретного симетричного вейвлетперетворення (ТСВП) [10]. При цьому, у такому перетворенні, зважаючи на особливості побудови системи ТСФ, застосовано два материнські вейвлети та одну функцію [12]. Першим материнським масштабну вейвлетом визначено функцію, значення якої наведено у другому рядку матриці (2), другим - функцію у третьому рядку матриці (2), а у якості масштабної функції визначено одиничну функцію (перший рядок матриці (2)).

Лискретне ТСВП у обчислювальних засобах реалізовано у фільтровій формі із застосуванням операцій згортки та трійкової децимації (проріджування). Для позначення цієї операції та оберненої до неї уведено відповідні оператори

$$
\downarrow_{3}[X],\tag{4}
$$

де X - дискретний вхідний набір даних довільної скінченної довжини,

$$
\uparrow_{3}[X].\tag{5}
$$

Оператор (4) з вхідного набору даних Х залишає кожен третій елемент, відкидаючи решту, а оператор (5) - після кожного елемента вхідного набору даних Х додає два нульових елементи. Із застосуванням операторів (4) та (5) пряме дискретне ТСВП у згортковій формі записано у вигляді

$$
a_{j+1} = \bigvee_{3} [a_{j} * h^{*}], dI_{j+1} = \bigvee_{3} [a_{j} * gI^{*}],
$$

\n
$$
d2_{j+1} = \bigvee_{3} [a_{j} * g2^{*}],
$$
\n(6)

де a_i - послідовність апроксимуючих коефіцієнтів, одержаних на j-iй iтерації алгоритму ТСВП, d1_i послідовність деталізуючих коефіцієнтів, одержаних на і-ій ітерації алгоритму ТСВП, які відповідають першому материнському вейвлету, $d2j$ – послідовність деталізуючих
коефіцієнтів, одержаних на j-ій ітерації алгоритму ТСВП, які відповідають другому материнському вейвлету, * операція згортки, h^{*}, g1^{*}, g2^{*} - дискретні фільтри декомпозиції, які двоїсті до фільтрів відновлення, наведених у таблиці 1.

TABLE I. КОЕФІЦІЄНТИ ДИСКРЕТНИХ ФІЛЬТРІВ ВІДНОВЛЕННЯ ДЛЯ ТСВП

Позначення фільтру	Коефіцієнти фільтру	Функція, якій відповідає фільтр
h[n]	$\sqrt{3}$ $\sqrt{3}$ $\sqrt{3}$	Масштабна функція
g1[n]		Перший материнський вейвлет
g2[n]		Другий материнський вейвлет

У термінах операторів (4) та (5) обернене дискретне ТСВП у згортковій формі записано у вигляді

$$
a_j = \uparrow_3 [a_{j+1}] * h + \uparrow_3 [dI_{j+1}] * gI + \uparrow_3 [d2_{j+1}] * g2 ,
$$
 (7)

де h, g1, g2 - дискретні фільтри відновлення (табл. 1).

У загальному випадку, у виразах (6) та (7) індекс $j \in Z$, однак, у практиці ЦОІ приймають $j \in N_0$, причому, у якості послідовності апроксимуючих коефіцієнтів a_0 (початкове наближення) покладають послідовність значень вхідного набору даних Х [2, 5, 6].

На основі виразів (6) та (7) реалізовано процедуру обчислення ТСВП у відповідному апаратно-програмному засобі. Апаратна складова запропонованого засобу реалізована за допомогою мікроконтролера, а програмна у вигляді додатку для встановлення на робочу станцію, до якої підключено апаратну складову. Така організація запропонованого засобу ТСВП спрощує його інтеграцію у системи ЦОІ, зокрема аналіз та зберігання результатів перетворення.

IV. ЕФЕКТИВНІСТЬ ЗАСТОСУВАННЯ ЗАСОБІВ ТРІЙКОВИХ СИМЕТРИЧНИХ ПЕРЕТВОРЕНЬ

Дослідження ефективності застосування ТСОП для зменшення автокореляції вхідних даних з метою їх ущільнення вказали на максимальну перевагу цього перетворення за заданим критерієм у порівнянні з перетвореннями Уолша-Адамара та Хаара (як найбільш близьких за властивостями та областю застосування) у випадку високих (>0,7) значень автокореляції. Звідси випливає, що одним із застосувань запропонованого засобу ТСОП є системи обліку та контролю параметрів передачі газу, оскільки, вони оперують даними з високим рівнем автокореляції. Зокрема, оцінено ефективність застосування запропонованого засобу у якості компонента пристроїв, які отриманих архівують значення показників [13]. Застосування засобу ТСОП дозволило знизити значення автокореляції архівованих даних і збільшити ступінь їх ущільнення. Результати оцінки приросту кількості даних для зберігання у пристроях обліку та контролю параметрів передачі газу наведено у таблиці 2 та обчислено за наступною формулою

$$
(\frac{T}{S} - I) \cdot 100\% \,. \tag{8}
$$

де S – кількість записів у архіві без застосування ТСОП, Т – кількість записів у архіві із застосуванням ТСОП.

ПРИРІСТ ЕФЕКТИВНОСТІ ЗБЕРІГАННЯ ДАНИХ ПРИСТРОЯМИ TABLE II. ОБЛІКУ ТА КОНТРОЛЮ ПАРАМЕТРІВ ПЕРЕДАЧІ ГАЗУ

N_2	Шифр	Тип запису	S		Приріст ефективності
	пристрою				зберігання даних, %
	ОЕ-22ЛА	Добовий	64	77	20,3125
\overline{c}	TEMP-OE	Добовий	126	153	21,4286
3		Зміна стану лічильника	540	657	21,6667
$\overline{4}$		Зміна у конфігурації лічильника	128	155	21,0938

Результати проведеного аналізу ефективності (табл. 2) застосування запропонованого засобу ТСОП у якості компонента пристроїв обліку та контролю параметрів передачі газу, вказали на підвищення ефективності зберігання даних в середньому на 20%.

Запропонований засіб ТСВП застосовано у якості компонента пристрою реєстрації інформації комплексу засобів наземного контролю і керування процесом буріння нафтових і газових свердловин СКУБ-М2 [14]. Цей пристрій забезпечує ведення архіву даних, які пов'язані з циклічними процесами у буровому обладнанні і допускають ущільнення шляхом відкидання близьких до нуля коефіцієнтів вейвлет-перетворення.

Для оцінювання ефективності запропонованого засобу здійснено порівняння значень критерію середньої абсолютної похибки у відсотках МАРЕ (mean absolute percentage error) відновлення даних (9) [3] за частиною коефіцієнтів перетворення, одержаних для ТСВП (ST). вейвлета Хаара (haar), вейвлета Лобеші 4-го порядку (db4) та біортогонального вейвлета з параметрами 2.6 (bior2.6) при відновленні послідовностей значень технологічного параметра моменту механічного лівого (табл. 3)

$$
MAPE = \frac{1}{N} \sum_{i=0}^{N-1} \frac{|X(i) - X_i(i)|}{X(i)} \cdot 100\%,
$$
 (9)

 ne N – кількість відліків у векторі вхідних даних X, $X(i)$ – вхідні дані, $X_r(i)$ – відновлені після ущільнення дані.

TABLE III. СЕРЕДНІ ЗНАЧЕННЯ МАРЕ ДЛЯ РІЗНИХ ВЕЙВЛЕТІВ ПРИ ВІДКИДАННІ 30% КОЕФІЦІЄНТІВ ПЕРЕТВОРЕННЯ

No	Вейвлет	Середнє значення MAPE, %
	ST	3.2359
	haar	4.0129
3	db4	3.4910
	bior _{2.6}	3.9712

З даних у таблиці 3 випливає, що застосування засобу ТСВП забезпечило наступний приріст ефективності за критерієм мінімальної похибки відновлення (9): порівнянні з haar -20% , db4 -8% , bior $2.6 - 18,5\%$.

Висновки

Застосування ТСОП та ТСВП забезпечило приріст ефективності ущільнення корельованих даних у системах ЦОІ на рівні 8-20%. Одержані показники вказують на відповідне підвищення ефективності використання пам'яті у таких системах, що рівнозначно зменшенню обсягу пам'яті для зберігання даних при незмінному рівні функціональності. При цьому, однак, досягнутий результат забезпечений втратами частини інформації умежах допустимого значення похибки відновлення даних, яке для проаналізованих систем складає 5% . Полальші дослідження полягають у розширенні функціоналу запропонованих засобів та їх застосуванні у системах ЦОІ відмінних від проаналізованих.

JITTEPATYPA REFERENCES

- обработка сигналов: [1] Э. Айфичер, Б. Джервис. Цифровая практический подход, 2-е издание: Пер. с англ. - М.: Издательский
дом «Вильямс», 2004. - 992 с.
- [2] P.S. Addison, The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and Finance (Second Edition) / P.S. Addison, CRC Press, 2016, P. 446.
- [3] Д. Сэломон, Сжатие данных, изображений и звука / Д. Сэломон; пер. с англ. В.В. Чепыжова. - М.: Техносфера, 2004. - 368 с.
- [4] N. Ahmed, K.R. Rao, Orthogonal Transforms for Digital Signal Processing, Springer-Verlag, 1975.
- [5] И. Добеши, Десять лекций по вейвлетам: Пер. с англ. / И. Добеши. – Ижевск: НИЦ «Регулярная и хаотическая динамика», 2001. – 464 \mathbf{c} .
- [6] A. Thompson, The Cascading Haar Wavelet Algorithm for Computing the Walsh-Hadamard Transform / A. Thompson // IEEE Signal Processing Letters. - July 2017. - Vol. 24, No. $7. - P$. 1020-1023. doi: 10.1109/LSP.2017.2705247
- [7] S. Prasad, Information Fusion in the Redundant-Wavelet-Transform Domain for Noise-Robust Hyperspectral Classification / S. Prasad, W. Li, J.E. Fowler, L.M. Bruce // IEEE Transactions on Geoscience and Remote Sensing. $-$ September 2012. $-$ Vol. 50, No. 9. $-$ P. 3474-3486. doi: 10.1109/TGRS.2012.2185053
- [8] A. Izmailov, "Effectiveness analysis of bases and function systems used
in digital information processing," in Materialy 52 Konferencji Studenckich Kół Naukowych Pionu Hutniczego, Kraków, 2015.
- [9] B. Hayes, Computing science. Third base. A reprint from American Scientist, the magazine of Sigma Xi, the Scientific Research Society, vol. 89, Nr. 6. November December 2001, pp. 490-494
- [10] A. Izmailov, L. Petryshyn, "Symmetric ternary functions and their application in orthogonal transforms," 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON), Kiev, 2017, P. 836-841. doi: 10.1109/UKRCON.2017.8100364
- [11] А.В. Ізмайлов, Л.Б. Петришин, "Цифрова обробка інформації в розосереджених системах управління із застосуванням швидкого ортогонального перетворення на основі трійкових симетричних функцій," Системи обробки інформації, № 3 (154), сс. 79-89, 2018.
- [12] А.В. Ізмайлов, Л.Б. Петришин, "Дискретне трійкове симетричне вейвлет-перетворення та його застосування для цифрової обробки
інформації у розподілених системах управління." в Інформаційні технології та комп'ютерне моделювання: матеріали статей
Міжнародної науково-практичної конференції, Івано-Франківськ, $2018. - cc.$ 152-155.
- [13] "ТОВ СЛОТ Каталог продукції," ТОВ СЛОТ, 2018. [Online]. Available: [http://www.slot.if.ua/catalog/.](http://www.slot.if.ua/catalog/) [Accessed 11 October 2018].
- [14] "Івано-Франківське СКБ ЗА. Каталог продукції. СКУБ-М2.," Івано-[Online]. Available: **Франківське** CKE 2018 $3A$ [http://skbza.if.ua/cat_5ua.htm.](http://skbza.if.ua/cat_5ua.htm) [Accessed 11 October 2018].