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The generalized dynamical theory of X-ray diffraction by
imperfect single crystals is extended to characterize
structure imperfections of real single crystals with complex
basis and similar crystalline films with inhomogeneous
strain fields. The influence of various defects (intrinsic and
extrinsic point defects, nanoclusters, and microdefects),
simultaneously presented in such structures, on changing
both average and fluctuating strain fields as well as structure
factors are taken into account. The analytical expressions
connecting immediately the coherent and diffuse compo-
nents of the scattering intensity with statistical character-
istics of these defects are obtained. Thus, the self-consistent
description of the coherent and diffuse dynamical diffrac-
tion intensity components is provided. Some examples of
the application of the developed theoretical model to treat
rocking curves measured from various garnet structures by
using high-resolution double-crystal X-ray diffractometer
are reviewed. Possibilities for the quantitative characteriza-
tion of structural defects and strain profiles in the as-grown
and ion-implanted garnet single crystals and yttrium iron
garnet films are demonstrated.

The self-consistent dynamical description of coherent and
diffuse scattering intensities from imperfect crystal structures
with inhomogeneous strain fields and randomly distributed
defects make it possible to determine the parameters of strain
profiles and statistical characteristics of defects by analytical
treating the coherent and diffuse components of rocking curves
measured by the high-resolution double-crystal X-ray diffrac-
tometer with widely open detector window.

� 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction The nondestructive X-ray diffraction
techniques are widely used to determine characteristics of

structural defects and strains in the as-grown and modified
crystals, multilayer systems, superlattices, and film

Phys. Status Solidi B, 1600689 (2017) / DOI 10.1002/pssb.201600689

basic solid state physics

st
a
tu

s

so
li

d
i

www.pss-b.comp
h

y
si

ca

� 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



structures [1–4]. In particular, the measurement of rocking
curves by the high-resolution double-crystal diffractometer
(DCD) in Bragg diffraction geometry is one of the most used
experimental methods. Effectiveness of this X-ray diffrac-
tion method to large extent is determined by its high
sensitivity to defects with very small radii down to point
defects. This advantage arises due to the integration of
diffuse scattering intensity over the horizontal and vertical
divergences, on the one hand, and by the availability of the
analytical expressions, which give an adequate description
of the measured rocking curves, on the other hand.

The various theoretical models of X-ray diffraction,
which are based on both kinematical and dynamical
scattering theories [5, 6], have been proposed to analyze
the rocking curves and reciprocal space maps measured
from perfect or imperfect crystalline structures with
inhomogeneous strain distributions [1–4, 7–9]. In particular,
the generalized dynamical theory of X-ray diffraction by
imperfect single crystals with randomly distributed
Coulomb-type defects has been developed [10, 11]. This
theory is based on the Ewald–Bethe-Laue approach [6] and
makes use of the Krivoglaz’s method of fluctuating waves of
defect concentration which enables for establishing the
direct analytical relationships between Fourier components
of fluctuating part of crystal polarizability and defect
characteristics [5]. The solution of wave equation in a
tmomentum space provides the explicit analytical expres-
sions for coherent and diffuse scattering amplitudes directly
connected with defect characteristics. Thus, the self-
consistent description of the coherent and diffuse compo-
nents of diffraction patterns measured from imperfect
crystal structures can be achieved, particularly, those of the
rocking curves measured by the high-resolution DCD with
widely open detector window [12].

The choice of the as-grown and ion-implanted synthetic
garnet crystals and films as our investigation objects was
caused by the circumstance that many functional materials
used in modern devices have a complicated multicomponent
structure including also the structural imperfections and
inhomogeneous strain distributions, which can substantially
influence their physical properties (see, e.g., Refs. [13–16]).
On the other hand, the synthetic garnet systems themselves
are of great interest for both basic scientific research [17–23]
as well as various practical applications in magnetic, optical,
and magneto-optical devices, etc. [24–27] due to the wide
range of variations of their nearly perfect crystalline
structure and related physical properties.

The synthetic garnet single crystals have general
chemical formula C3A2(DО4)3, where C, A, and D denote
cations placed in dodecahedral {c}, octahedral [a], and
tetrahedral (d) sites, respectively, and O are oxygen anions
located at the corners of corresponding polyhedra. The
garnet structure belongs to the space group Ia3d (O10

h ), its
body-centered unit cell is one of the most complicated
among known crystal structures with cubic symmetry and
contains eight formula units, i.e., 160 atoms (see, e.g., Ref.
[28] and references therein). Such structure provides the

possibility to form during growth the solid solutions with
other chemical elements by substituting C, A, and D cations
in a wide range of their compositions and thus to modify the
physical properties connected with garnet crystal structure
[29–32].

Another way to control the physical properties of
garnets is the use of ion implantation for purposeful
modifying the structure of crystal volume or subsurface
layers [33–39]. This effective technique provides, due to use
of proper ion species and ion energies, the possibility to
tailor the optical, magneto-optical, magnetic, and electrical
properties of multilayer semiconductor structures, magnetic
films, etc. Besides the effect of doping, the influence of
defect creation and diffusion, amorphization and intermix-
ing, which occur during ion irradiation, is of significant
importance for the formation of crystalline microstructure
and strain fields.

The purpose of the present paper is to describe the
extension of the generalized dynamical theory of X-ray
diffraction in imperfect crystals with Coulomb-type
defects to the case of real crystals and crystalline films
with inhomogeneous strain fields and complex structure
basis. The corresponding method proposed for the
determination of structural characteristics of such inho-
mogeneous crystal structures containing randomly dis-
tributed point defects and microdefects makes use of the
rocking curves measured by means of the high-resolution
DCD in Bragg diffraction geometry. The application of
this method will be reviewed on several examples of the
characterization of structural defects and strain profiles in
the as-grown and ion-implanted gadolinium gallium
garnet (GGG), neodymium gallium garnet (NdGG) single
crystals, and yttrium iron garnet (YIG) film grown on
GGG substrate.

The article has the following structure. In Section 2, the
experimental details of performed X-ray diffraction
measurements are described. In Section 3, a short historical
review on the characterization of ion-implanted crystals by
X-ray diffraction methods is presented.

In Section 4, the basic analytical expressions of the
generalized dynamical theory for the coherent and diffuse
reflection coefficients are described with respect to
imperfect garnet single crystals (Section 4.1), films (Section
4.2), and ion-implanted garnet crystals and films (Section
4.3). In particular, the generalized expressions are repre-
sented for the diffraction parameters of imperfect multi-
component garnet crystals with taking the influence of
defects into account.

The examples of the characterization of microdefects,
point defects, and strains in the investigated as-grown and
ion-implanted GGG and NdGG single crystals, and single-
crystalline YIG film on GGG substrate by using the
formulas of the developed dynamical X-ray diffraction
model for the analysis of the measured rocking curves are
described in Section 5.

The obtained results are discussed in Section 6 and short
resume and general conclusions are given in Section 7.
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2 Experimental
2.1 Samples The investigated single crystalline GGG

and NdGG samples were prepared by using wafers cut from
the central part of Czochralski-grown ingots with [111]
growth axis.

Epitaxial single crystalline (111) YIG films of 5.33mm
thickness were grown on both sides of 500mm thick GGG
substrate by using liquid phase epitaxy. The Pb impurity
content in YIG film was measured to be nearly 0.31 at.%.
After lapping, the samples were polished mechanically,
chemo-dynamically, and chemically.

The set of the investigated GGG and YIG film samples,
which were identical with the as-grown samples described
above, has been implanted with 90 keV Fþ and Siþ ions at
various doses between 8� 1012 and 2� 1014 cm�2. The
angle between the direction of the ion beam and the film
surface was kept at 78 to avoid channeling effects. The
implantation current was 2� 10�5A.

2.2 Experimental setup Rocking curves of the
investigated samples were measured by using the high-
resolution four-circle X-ray DCD with Cu tube (25 kV
� 25mА). Two flat germanium monochromator crystals
with symmetrical 333 reflections in the antiparallel setting
were used to prepare an incident X-ray beam with
suppressed s component of polarization.

The symmetrical 444 and 888 reflections were used at
the samples under investigation, which were in the parallel
setting relatively to the last reflection of the monochromator.
Rocking curves of the samples were measured by using a
step motor controlled by computer in steps of 1.0 arcsec.
The statistics of data collection provided the relative
measurement errors varied between 3 and 5%.

2.3 Instrumental function The X-ray intensity
reflected by the investigated sample in the high-resolution
DCD with parallel setting of the investigated sample with
respect to the last reflection in the monochromator system
can be approximately represented as the onefold convolu-
tion of the instrumental resolution function with reflection
coefficient of the sample [12]:

RðDuÞ ¼ PðsÞðDuÞ þ PðpÞðDuÞ
PðsÞ
0 þ P

ðpÞ
0

;

Pðs;pÞðDuÞ ¼
Z

duVðs;pÞðuÞR s;pð Þ
S ðuþ DuÞ;

P s;pð Þ
0 ¼

Z1
�1

duVðs;pÞðuÞ;

where R s;pð Þ
S is the reflectivity of the sample for s and p

polarizations, respectively, and the instrumental function

Vðs;pÞ of DCD is calculated for each reflection by the
integration the product of first and second monochromator
crystal reflectivities with the function describing the line
shape of characteristic X-ray radiation over wavelength and
vertical divergence [12]. This simplified relationship is used
in fitting procedure to decrease the calculation time.

2.4 Data treatment To estimate the fit quality when
considering the treatment of measured rocking curves by
using the trial-and-error method, both ordinary and
weighted agreement factors were used:

R ¼
X
j

Rcalc
j � Rmeas

j

��� ���=X
j

Rmeas
j ;

Rw ¼ N � pð Þ�1
X
j

Rcalc
j � Rmeas

j

��� ���=Rmeas
j ;

where j ¼ 1;N , Rmeas
j and Rcalc

j are the measured and
calculated reflectivities at the angular positions Duj of the
sample, respectively, N and р are the numbers of
measurement points and fit parameters, respectively. These
factors have been found for best fits to vary between 5 and
10% at all the data treatments described below in Section 5.
Consequently, the corresponding relative errors of the fit
parameters given in Tables 2–8 should be estimated as not
worse as 10%.

3 Characterization of ion-implanted crystals by
X-ray diffraction methods In the early investigations
with using X-ray diffraction to study the structure
imperfections generated in the crystals, which were
irradiated with neutrons, electrons, or g-rays, the measure-
ments of only the one-dimensional diffuse scattering
intensity distributions were performed by using DCD with
conventional X-ray tube (see, e.g., Refs. [5, 40–43]). The
interpretation of the corresponding rocking curve tails
measured from irradiated metals and semiconductors was
based on the kinematical theory [5, 44–46]. The use of
relatively simple kinematical formulas was possible due to
the wide diffuse scattering intensity distributions from point
defects and small point defect agglomerates, dislocation
loops, or precipitates, which sizes ranged from the atomic
level up to hundreds of nanometers, i.e., were significantly
smaller as compared with the extinction length defining the
width of the Bragg peak. The relative changes of an average
crystal strain due to the radiation defects distributed
randomly in the crystal bulk were determined by lattice
parameter measurements.

The appearance of modern power X-ray sources,
namely, X-ray tubes with a rotating anode and synchrotron
radiation facilities, provided the possibility for the wide
use of triple crystal diffractometers to measure reciprocal
space maps and, consequently, in more details analyze
the complicated displacement fields caused by various
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configurations of radiation-induced defects. Such diffuse
scattering measurements, in combination with substantially
increased computing power, made it possible to perform the
investigations with using the atomistic simulation methods
by which the diffuse X-ray scattering can be calculated for
an arbitrary finite-sized defect in any material where reliable
interatomic force models exist [47–51].

The availability of high intensity X-ray sources has
opened an opportunity for the diffraction techniques with
grazing incidence and exit angles, extremely asymmetrical
X-ray diffraction, X-ray reflectivity, X-ray micro-
diffraction in Laue mode, etc., to be widely applied for
the study and characterization of strain, damage, and defects
in thin subsurface layers of ion-implanted crystals [52–59].
Moreover, there became possible such X-ray diffraction
experiments as mapping lattice distortions perpendicular to
the surface in patterned silicon samples after implantation of
low energy ions as a function of depth and lateral position
with sub-micrometer resolutions by using triple-crystal
X-ray diffractometry data [60]. Also, the unique depth-
resolved measurements by using the focused synchrotron
X-ray beam of sub-micrometer resolution have been
performed to study of size, type, and depth distribution
of defect clusters created in silicon after implantation of
high-energy Si ions [61].

Since the ion implantation became a routine tool for
purposeful modifying the structure of subsurface crystal
layers, the various theoretical models have been developed
to describe the X-ray diffraction patterns, in particular, the
rocking curves measured from such crystal structures with
inhomogeneous strain fields. In whole, the most of these
models could be subdivided into two groups, which make
use of the semi-kinematical [62–70] or dynamical approx-
imations [7, 71–74], respectively. The first group of so-
called semi-kinematical (or known also as kinematical [65])
models is characterized by the summation of kinematical
scattering amplitudes from thin ion-implanted layers and
dynamical scattering amplitude from a thick substrate. Thus,
their interference is taken into account when the reflected
intensity is calculated. In fully dynamical models, the
recurrence relations are used between analytical solutions of
dynamical theory for the wave amplitudes in imaginary thin
crystal layers (laminae) with constant strain in each lamina.
These analytical solutions have been obtained from both
Takagi–Taupin equations in real space and wave equation in
momentum space according to the Ewald–Bethe-Laue
approach, supposing the lamina are defect-free and diffuse
scattering is absent (except for Ref. [74]).

In general, the inverse scattering problem for the
determination of an arbitrary strain profile by using
measured rocking curves is too complicated to be solved
unambiguously in the simple analytical terms (cf., e.g., Ref.
[75]). For this reason, the numerical methods for the
solution of the inverse scattering problem are still improved.
For example, a novel least-squares fitting procedure was
presented that allows the retrieval of strain and damage
profiles in ion-implanted single crystals using rocking

curves from high-resolution X-ray diffraction measure-
ments [70, 76]. Besides, such numerical approaches have
been developed, as the recognition method using the
principle of neural network to treat high-resolution X-ray
diffraction data [77], and the optimization method known as
the genetic algorithm, which was adapted to fit experimental
data obtained for ion-implanted crystals to simulated
rocking curves [78].

It is important to remark that in most of the above-
mentioned approaches, the disorder created by radiation
defects in the implanted layer is taken into account only as
amorphization factor (static Krivoglaz–Debye–Waller fac-
tor) in coherent scattering amplitude. At the same time, the
existence of diffuse scattering effects from defects in both
the implanted layer and crystal bulk is ignored and,
consequently, their influence on the characterization results
is neglected.

Below, in Section 4, we describe shortly the main
features of the generalized dynamical theory of X-ray
diffraction in imperfect single crystals with randomly
distributed defects [10–12] and its extension to the case of
ion-implanted crystals including multicomponent com-
pounds. The proposed approach allows for the adequate
analytical description of both the coherent and diffuse
scattering intensities from such crystal structures.

4 Generalized theory of dynamical X-ray
diffraction for imperfect garnet crystals

4.1 Reflectivity of imperfect crystal
4.1.1 Coherent component of reflectivity Real

single crystals always contain growth defects as well as
intrinsic and extrinsic point defects. The complexity of their
influence on both coherent and diffuse components of the
scattering intensity is substantially increased in multicom-
ponent crystalline compounds like garnets due to the rising
diversity of various defect structures which modify the
diffraction parameters.

The dynamical coherent component of the reflectivity
of the imperfect thick crystal which contains randomly
distributed defects is described in the two-beam case
of Bragg diffraction geometry by the following expres-
sions [12]:

Rcoh yð Þ ¼ rB yð Þj j2;

rB yð Þ ¼ ffiffiffi
z

p
y� sgn yrð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � 1

ph i
; ð1Þ

y ¼ a� a0ð Þ
ffiffiffi
b

p
=s; a ¼ �Dusin 2uBð Þ; ð2Þ

a0 ¼ x0 þ DxHH þ x0 þ Dx00ð Þ=b½ �=2; ð3Þ

s2 ¼ CExH þ DxH0ð Þ CEx�H þ Dx0Hð Þ ; ð4Þ
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z ¼ CExH þ DxH0ð Þ CEx�H þ Dx0Hð Þ�1: ð5Þ

Here yr¼Re y, Du is an angular deviation of the
investigated crystal from its exact Bragg position, uB is the
Bragg angle, C is the polarization factor equal to 1 or cos
(2uB) for s and p polarization, respectively. Also, xG is
Fourier component of the perfect crystal polarizability
(G¼ 0, �H), b ¼ g0jgHj�1 is the parameter of diffraction
asymmetry, g0 and gH are direction cosines of the wave
vectors of incident and diffracted plane waves, respectively,
E¼ exp(�LH) is the static Krivoglaz–Debye–Waller factor,
andDxGG0 are complex dispersion corrections due to diffuse
scattering (G and G0 ¼ 0 or H, where H is the reciprocal
lattice vector).

The static Krivoglaz–Debye–Waller factor and disper-
sion corrections due to diffuse scattering can be calculated
for typical microdefects by using known relations. Namely,
the exponent of static Krivoglaz–Debye–Waller factor for
dislocation loops with randomly oriented Burgers vector b is
described by the following expression [5]:

LH ffi 0:5 nLR
3
LðHjbjÞ3=2; ð6Þ

where nL¼ cL/vc and cL are number density and concentra-
tion of dislocation loops, respectively, vc¼ a3 is the unit cell
volume, and RL is dislocation loop radius.

For spherical amorphous clusters or new phase particles,
the similar approximate formula has been obtained in the
approximation of elastically isotropic continuum [79]:

LH ffi 0:525nCvcn0h4; h � 1:9;

nCvcn0h3; h > 1:9;

(
ð7Þ

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G ej jHRC

p
; n0 ¼ 4pR3

C= 3vcð Þ;

G ¼ 1þ nð Þ 3 1� nð Þ½ ��1;

where nC¼ cC/vC is the number density of clusters, e is the
linear strain at cluster interface, n is the Poisson ratio, and RC

is the cluster radius.
The complex dispersion corrections due to diffuse

scattering can be calculated by using the approximate
relations with the coefficient of absorption due to diffuse
scattering [12]:

DxGG ¼ PGG � imGG=K; ð8Þ

PGG � �mGG=K; ð9Þ

m00 Duð Þ � bmHH Duð Þ � bmds Duð Þ; ð10Þ

where K ¼ 2p=l is the module of the wave vector K of an
incident plane wave, l is X-ray wavelength, and G ¼ 0;H.
The non-diagonal dispersion corrections to the wave vectors
of coherent waves can be neglected for typical microdefects
with the effective radii significantly smaller than extinction
length, i.e., for such microdefect sizes one can put:

P0H Duð Þ � PH0 Duð Þ � 0;

m0H Duð Þ � mH0 Duð Þ � 0:
ð11Þ

The coefficient of absorption due to diffuse scattering
mds Duð Þ is connected with the same defect characteristics
as the static Krivoglaz–Debye–Waller factor, on the one
hand, and diffuse component of the crystal reflectivity, on
the other hand (see below).

4.1.2 Generalized diffraction parameters
According to the generalized dynamical theory of X-ray
diffraction in imperfect crystals with randomly distributed
defects the conventional diffraction parameters for perfect
crystals, as can be seen from Eqs. (1)–(5), are modified by
introducing the static Krivoglaz–Debye–Waller factor and
dispersion corrections due to diffuse scattering [10, 12].
Thus, the generalized diffraction parameters can be defined
instead of the Fourier components of perfect crystal
polarizability as follows:

~x0 ¼ x0 þ b�1 þ 1
� ��1

b�1Dx00 þ DxHH

� �
;

~xH ¼ ExH þ C�1DxH0;

~x�H ¼ Ex�H þ C�1Dx0H; ð12Þ

The transformation of the diffraction parameters
into the generalized ones due to microdefects is realized,
as can be seen from Eq. (12), via static Krivoglaz–
Debye–Waller factor E¼ exp(�LH) and dispersion
corrections due to diffuse scattering DxGG0. At the same
time, it is important to note that Fourier components of the
multicomponent garnet crystal polarizability xG in Eq.
(12) are not referred to the perfect crystal structure
but should also be additionally modified to account
for point defect configurations like substitutional or
antisite defects, and thus will depend on point defect
characteristics. At the same time, the static Krivoglaz–
Debye–Waller factor and dispersion corrections due to
diffuse scattering depend on both microdefect and point
defect characteristics.

Besides, Fourier components of the crystal polarizabil-
ity are dependent not only on the crystal structure factors
but on the unit cell volume as well. This volume is changed
with concentrations of point defects and is expressed
through the corresponding cubic lattice parameter of rare-
earth garnets. The later can be found in accordance with
crystal-chemical calculations by using the empiric analyti-
cal expression [80, 81]:
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a ¼ b1 þ b2rc þ b3ra þ b4rd þ b5rcra

þ b6rcrd Å
� �

; ð13Þ

ri ¼
X
j

gijrj; ð14Þ

b1 ¼ 7:02954; b2 ¼ 3:31277; b3 ¼ 2:49398;

b4 ¼ 3:34124; b5 ¼ �0:87758; b6 ¼ 1:38777;

where rc, ra, and rd are weighted effective ionic radii of
cations (in Å), that occupy accordingly dodecahedral {c},
octahedral [a], and tetrahedral (d) positions in the garnet
crystal structure, gij is a portion of sort j ions with a radius rj
in crystallographic ith position.

Dependencies of the Fourier components of polariz-
ability on concentrations of point defects calculated for YIG
000, 444, and 888 reflections of CuKa1 radiation are shown
in Fig. 1 [82]. It is remarkable that these dependencies have
different, in some cases opposite, behavior for different
reflections what can be important at the diffractometric
refinement of point defect characteristics.

To provide the self-consistency of the proposed
diffraction model, the change of crystal lattice parameters
and, consequently, Fourier components of crystal polariz-
ability not only due to point defects but also due to
microdefects should be taken into account. For the most
simple models of spherical clusters or new phase particles
and randomly oriented prismatic dislocation loops the
change of crystal lattice parameter Da/a0 and the
corresponding changes of cubic unit cell volume Dvc/vc,
i.e., the additional volume strains eC and eL, respectively, are
described by following expressions [5]:

eC ¼ 3G enCR3
C; ð15Þ

eL ¼ �p bj jnLR2
L; ð16Þ

where the sign in Eq. (16) is chosen in dependence on the
interstitial or vacancy nature of dislocation loops.

The use of reliable diffraction parameters related to
perfect single-crystalline garnet structure plays a crucible
role for the correct quantitative characterization of structural
defects by means of the high-resolution double-crystal
X-ray diffractometer measurements. The comparison of
the theoretical rocking curves calculated according to Eqs.
(1)–(5) for perfect YIG and GGG crystals with using the
thermal Debye–Waller factors in Fourier components of
corresponding crystal polarizabilities determined by powder
diffractometry [83] showed very significant discrepancies
with the experimental rocking curve measured from YIG

film on GGG substrate for the higher order 888 reflection of
characteristic CuKa1 radiation (see Fig. 2). These discrep-
ancies between theory and experiment occur too large to be
overcome by using any model of crystal imperfections
including the thermal atom vibrations and various combi-
nations of point defects and microdefects [82].

Similar difficulties arose also for GGG [84, 85] and
NdGG single crystals [86] with respect to 888 reflection of
characteristic CuKa1 radiation. For this reason, it was
supposed that the most probable cause for the significantly
low intensity of calculated rocking curves, as compared with
measured ones for the higher order 888 reflection of all the
investigated garnet crystals, are the overestimated values of
the exponents of thermal Debye–Waller factors. The latter
have been found by means of the powder neutron
diffractometry and lead to strong decreasing the calculated
crystal reflectivities.

Indeed, after using the data for thermal Debye–Waller
factor, which have been found in the diffraction experiment
with YIG single crystal [87], namely, when the parameter B
for Y3þ, Fe3þ, and O2� ions was taken equal to 0.16, 0.63,

Figure 1 Dependencies of real (left) and imaginary (right) parts of
Fourier components of crystal polarizability for YIG 000, 444, and
888 reflections of CuKa1 radiation versus concentrations of Fe2þ

cations in octahedral positions (x), antisite Fe3þ defects (y) and
impurity Pb2þ cations in dodecahedral positions (z): 1 – y¼ z¼ 0,
2 – x¼ z¼ 0, 3 – x¼ y¼ 0 [82].
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and 2.05 Å2, respectively, the theoretical rocking curves for
the 888 reflection of perfect YIG crystal become higher and
approached to experimental ones [82]. The similar behavior
was observed also for the rocking curves measured from the
investigated GGG and NdGG single crystals [84–86].

The calculated values of diffraction parameters, namely,
Fourier components of the perfect GGG, YIG, and NdGG
crystal polarizabilities are given in Table 1. Only with using
these values, it was possible to perform the self-consistent
treatment of the measured rocking curves for both 444 and
888 reflections (see Fig. 2). Thus, the determination of the
characteristics of defects in the investigated YIG film [43] as

well as GGG and NdGG single crystals [84–86] was
performed by fitting these curves in the whole angular range
of measurements (see Section 3).

4.1.3 Diffuse component of the reflectivity of
imperfect crystal The “integral” diffuse component of
the crystal reflectivity, which is measured by DCD with
widely open detector window and represents the differential
diffuse scattering intensity integrated over Ewald sphere
(over exit angles), can be written for the case of Bragg
diffraction geometry in the approximation of semi-infinite
crystal as follows [11, 12]:

Rdiff Duð Þ ¼ Fdyn Duð ÞmHH Duð Þ= 2g0mð Þ: ð17Þ

Here, the factor Fdyn	 1 describes the angular
modulation of diffuse scattering intensity, which is caused
by the dynamical interference of strong Bragg waves. The
interference absorption coefficient m in denominator of Eq.
(17) describes the extinction effect for diffusely scattered
waves and can be estimated as m Duð Þ 	 p=L within the
total reflection range andm Duð Þ � 1þ bð Þm0= 2g0ð Þ outside
this range.

The imaginary part of dispersion correction due to
diffuse scattering mHH Duð Þ=K, which is involved in Eq.
(17), can be represented, if the defect concentrations are
sufficiently small to satisfy the superposition low for static
displacement fields of atoms, as the sum of the coefficients
of the absorption due to diffuse scattering for defects of a
type with ith size mai

ds k0ð Þ:

mHH Duð Þ ¼ mds k0ð Þ ¼
X
a

X
i

mai
ds k0ð Þ; ð18Þ

where k0¼KDu sin 2uB. The expressions (17) and (18)
provide the description of diffuse scattering intensity
contributions from several defect types to the measured
rocking curves, on the one hand, and the absorption of
coherent scattering component due to diffuse scattering, on
the other hand (details see in Ref. [12]).

The absorption coefficient due to diffuse scattering from
microdefects of only one type, i.e., randomly oriented
dislocation loops or spherical amorphous clusters or new
phase particles, in Eq. (18) is described by the expression:

mdsðk0Þ ¼ cC2E2m0Jðk0Þ; ð19Þ

Jðk0Þ ¼
JHðk0Þ þ JH�SWðk0Þ þ ~JHðk0Þ at k0j j � km;

JSWðk0Þ at k0j j 
 km:

(

ð20Þ

The angular dependence of the “integral” diffuse
scattering intensity in the Huang scattering region is
described by symmetric (JH, JH�SW) and antisymmetric
(~JH) components in Eq. (20) as follows:

Table 1 Fourier components of the polarizability of perfect
Gd3Ga5O12 (GGG), Y3Fe5O12 (YIG), and Nd3Ga5O12 (NdGG)
garnet crystals for characteristic CuKa1 radiation [82, 84–86].

|xrH|� 106

hkl GGG YIG NdGG

000 36.342 25.991 36.828
444 12.529 4.710 12.991
888 10.973 1.649 11.768

xs
iH

�� ��� 106

hkl GGG YIG NdGG

000 3.602 5.448 3.33
444 3.266 1.424 2.995
888 3.424 0.468 3.154

xp
iH

�� ��� 106

hkl GGG YIG NdGG

000 3.602 5.448 3.33
444 2.052 0.894 1.881
888 1.669 0.228 1.538

Figure 2 Experimental rocking curves (markers) for 444 and 888
reflections of CuKa1 radiation from YIG film on GGG substrate
and theoretical rocking curves calculated for perfect YIG and GGG
crystal structures with thermal Debye–Waller factors determined
for YIG by using X-ray single crystal [87] and neutron powder [83]
diffractometry (solid and dashed lines, respectively). Central parts
of peaks from YIG film are shown in insertions; the immediate
contribution of thermal diffuse scattering is shown by dash-dotted
line [82].
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JHðk0Þ ¼ b2ln
k2m þ m2

k20 þ m2
þ b3k

2
0 þ b4m

2
� �

� 1

k2m þ m2
� 1

k20 þ m2

 !
; ð21Þ

JH�SWðk0Þ ¼ b2 � 1
2
b3k

2
0 þ b4m2

k2m þ m2
; ð22Þ

JSWðk0Þ ¼
k2m þ m2

k20 þ m2
b2 � 1

2
b3k

2
0 þ b4m2

k20 þ m2

 !
; ð23Þ

~JHðk0Þ ¼ b1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2m þ m2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 þ m2

q� 	
; ð24Þ

where c is the defect concentration, km is the radius of the
boundary between Huang and Stokes-Wilson scattering
regions, and

m0 ¼ 0:25 pvc H xrHj j=lð Þ2:

The coefficients bi i ¼ 1; 4Þ�
in Eqs. (21)–(24) are

connected with characteristics of microdefects by following
relationships:

b1 ¼ 4LH
ffiffiffiffiffi
B2

p
=ðcHÞ;

b2 ¼ B1 þ 0:5B2 cos2 uB;

b3 ¼ B2 0:5 cos2 uB � sin2 uB
� �

;

b4 ¼ B2 0:5 cos2 uB � cos2 c
� �

; ð25Þ

where c is the angle between the crystal surface and
reflecting planes.

It should be remarked that in the case of several
randomly distributed defect types, the superposition law is
supposed to be valid also for the exponent of static
Krivoglaz–Debye–Waller factor in Eqs. (6) and (7),
similarly to that for the absorption coefficients due to
diffuse scattering in Eq. (18).

4.2 Reflectivity of thin film
4.2.1 Coherent component of the reflectivity of

imperfect film structures Epitaxial films are character-
ized from the structural point of view by the presence of
growth defects and inhomogeneous strains in both subsur-
face and transition layer between film and substrate. These
structural peculiarities together with intentional modifica-
tions of surfaces and interfaces can significantly influence
their physical properties. For example, the surface treatment
of the YIG film in Pt/YIG-based devices results in an

extraordinary increase in the efficiency of the spin-
to-magnon conversion at room temperature [88]. The
influence of the substrate induces strong changing of
various statical and dynamical properties of the ferroelectric
thin film [89]. Both doping ions and the presence of
substrate induce a strong changing of the polarization and
lead to a shift of the phase transition temperature in
antiferroelectric thin films [90], etc.

If the total film thickness is of the order of the extinction
length, the fully dynamical consideration is required for the
correct interpretation of observed diffraction patterns. The
relatively simple analytical description of the dynamical X-
ray diffraction in such imperfect inhomogeneous single-
crystalline systems can be achieved due to their subdivision
into imaginary laminae with randomly distributed defects
and constant average strain in each lamina, i.e., by using
the so-called layer approximation. Then the recurrence
relation between coherent amplitude reflection coefficients
of two such imperfect multilayer systems consisting of any
number of M and (M� 1) layers can be derived from the
generalized statistical dynamical theory of X-ray diffraction
by imperfect single crystals for the case of arbitrary
asymmetrical Bragg diffraction geometry [82]:

Rj ¼ rj þ Rj�1 ej
�1tj

2 � zj
�1rj

2
� �
 �

= 1� zj
�1rjRj�1

� �
:

ð26Þ

Here rj and tj are amplitudes reflectivity and transmis-
sivity of jth layer, respectively ( zj

�� �� � 1):

rj ¼
ffiffiffiffi
zj

p
yj þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yj2 � 1

q
cot Aj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yj2 � 1

q� �h i�1
; ð27Þ

tj ¼ ffiffiffiffi
ej

p
cos Aj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yj2 � 1

q� �h
�i yj=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yj2 � 1

q� �
sin Aj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yj2 � 1

q� �i�1
: ð28Þ

The following notation was used: Aj ¼ pdj=Lj and

Lj ¼ lðg0jgHjÞ1=2=sj with dj being the thickness of jth layer
and the index j denoting the relation of corresponding
quantities to jth layer.

The amplitude absorption and phase factor in Eq. (28)
can be represented as follows:

ej ¼ exp½�iKðx0j þ Dx00jÞdj=g0 � 2iAjyj�: ð29Þ

The normalized angular deviation yj in Eqs. (27)–(29) is
defined by deviations DH of the reciprocal lattice vector of
substrate H � H0 (j¼ 0) due to sample rotation and DHj of
the reciprocal lattice vector Hj ¼ H0 þ DHj due to strain in
jth layer (j¼ 1 to M), respectively:

yj ¼ aj � a0j
� � ffiffiffi

b
p

=sj; ð30Þ
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aj ¼ Kj þHj
� �ðDHþ DHjÞ=Kj

2

� �ðDu þ DujÞ sinð2uBÞ; ð31Þ

a0j ¼ 1
2

x0j þ DxHHj þ
1
b

x0j þ Dx00j

� �� 

;

Duj ¼ ej?cos
2cþ ejjjsin

2c
� �

tg uB

þ sgnð1� bÞ ej? � ejjj
� �

sin c cos c; ð32Þ

where Du�DH/H (with DH ? H) is the angular deviation
of the substrate from the exact Bragg position due to sample
rotation, Duj is the angular deviation of jth layer from the
substrate orientation due to strain, ej? and ejk are normal and
parallel strain components in jth layer, and c is the angle
between the crystal surface and reflecting planes. It should
be remarked here yet once that the additional average strain
in jth layer can be caused not only by differences in chemical
compositions but also due to randomly distributed defects of
various types.

Thus, the coherent component of reflectivity for the
multilayered crystal system which consists ofM layers with
randomly distributed defects can be represented in the two-
wave approximation at Bragg diffraction geometry as
follows:

RcohðDuÞ ¼ RMðDuÞj j2: ð33Þ

Here, the amplitude reflectivity of upper Мth layer
RM Duð Þ is determined by using the recurrence relation (26)
and by starting the recurrence procedure from the thick
substrate reflectivity (see Eq. (1)).

4.2.2 Diffuse component of the reflectivity of
imperfect film structures The diffuse component of the
rocking curve, which is measured from the multilayer
system with randomly distributed defects by using DCD
with widely open detector window, can be represented as
follows [82]:

RdiffðDuÞ ¼
XM
j¼0

Fext
j Fabs

j Rj
diffðDuÞ; ð34Þ

where the effects of extinction and absorption are described
by corresponding factors Fext

j and Fabs
j . The extinction factor

in Eq. (34) describes the X-ray intensity redistribution
between transmitted and diffracted coherent waves in jth
layer:

Fext
0 ¼ 1� cd0

�� ��2; Fext
j � 1;

cdj ¼ zjb
� �1=2

yj þ �1ð Þd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yj2 � 1

qh i
;j ¼ 1;M; ð35Þ

where the index d is equal to 1 or 2 in dependence on the sign
of yjr ¼ Reyj and designates the number of the wave field
existing in the substrate or layers. The absorption of
transmitted and scattered waves in the layers lying above jth
layer is described in Eq. (35) at j¼ 0 to (M� 1) by the
factor:

Fabs
j ¼

XM
i¼jþ1

exp �midið Þ; Fabs
M ¼ 1: ð36Þ

The diffuse component of the rocking curve (34) is the
sum consisted of modulated diffuse components of
reflectivities of the substrate (j¼ 0) and layers (j ¼ 1;M):

Rj
diffðDuÞ ¼ m

j
dsðDuÞpjðdjÞ=g0; ð37Þ

pj dj
� � ¼ 1� exp �2mjdj

� �
2mj

: ð38Þ

The normal absorption coefficient in Eqs. (36) and (38)
includes both linear photoelectric absorption coefficient mj

0
and absorption coefficient due to diffuse scattering in jth
layer:

mj ¼
1
2

m
j
0 þ m

j
ds

� � 1
g0

þ 1
jgHj

� 	
: ð39Þ

If the substrate is thick (m0d0 � 1) and layers are thin
(mjdj 
 1, dj 
 Lj

�� ��), the diffuse reflectivities in Eq. (37)
can be represented, respectively, as follows:

R0
diffðDuÞ ¼

m0
dsðDuÞ

1þ bð Þm0
0

; Rj
diffðDuÞ ¼

m
j
dsðDuÞdj
g0

: ð40Þ

It should be remarked here also that the absorption
coefficients due to diffuse scattering in the above equations
are the sums of corresponding coefficients in the case of
several defect types distributed randomly in each layer.
Similar superposition law is supposed for the exponent of
static Krivoglaz–Debye–Waller factor in each layer as well.

4.3 Reflectivity of ion-implanted garnet crystals
and films After ion implantation, the subsurface layer of
garnet crystal or film is additionally saturated by primary
and secondary radiation defects, which are distributed
randomly and inhomogeneously in depth [91]. These defects
create the corresponding strain fields, which can be
represented as sums of smooth “in average” – inhomoge-
neous and random components. The depth profiles of these
strain fields can be calculated through concentrations of the
amorphous clusters formed by displaced matrix atoms in
consequence of energy losses of the implanted ions [82].

Phys. Status Solidi B (2017) (9 of 22) 1600689

www.pss-b.com � 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Original

Paper



The existence of two channels of energy losses for the
implanted ions should be taken into account in such
calculations, namely, one channel created through the
excitation of electronic subsystem and second due to elastic
nuclear collisions [82, 92–94]. For the electronic channel,
the depth profile of cluster concentration can be set as a
decreasing tail of Gaussian (tel0 � 0; z 
 0):

nelC zð Þ ¼ nel;max
C f el zð Þ; f el zð Þ ¼ exp½�ðz� tel0 Þ2=s2

el�: ð41Þ

For the nuclear channel, the depth profile of cluster
concentration can be represented as an asymmetric Gaussian
f nucl zð Þ ¼ exp½�ðz� tnucl0 Þ2=s2

nucl� tnucl0 > 0; z 
 0
� �

:

nnuclC zð Þ ¼ nnucl;max
C f nucl zð Þ; ð42Þ

where snucl ¼ s1 at z � tnucl0 , and snucl ¼ s2 at z 
 tnucl0 .
Resulting strain profile in the implanted layer can be

calculated as the sum of depth-depended strain profiles
created by the two distributions of cluster concentrations
along the normal to crystal surface:

e? zð Þ ¼ eel? zð Þ þ enucl? zð Þ; ð43Þ

where the average strain components from the clusters
distributed randomly at the depth z in a lamina of dz
thickness are calculated by using Eqs. (15), (41), and (42):

eel? zð Þ ¼ 3GenelC zð ÞR3
C;

enucl? zð Þ ¼ 3GennuclC zð ÞR3
C:

It should be emphasized that radius and strength of
spherical clusters were supposed to be channel- and depth-
independent for reducing the number of fit parameters.

The depth profile of the so-called amorphization factor
can be described by the static Krivoglaz–Debye–Waller
factor. Namely, the exponent of this factor should be
calculated according to Eq. (7) through characteristics of
clusters in implanted layer and its dependence on depth will
be described by the sum of two distributions of cluster
concentrations:

nC zð Þ ¼ nelC zð Þ þ nnuclC zð Þ:

The depth dependence of the attenuation of coherent
component of diffraction intensity from the implanted layer
is described along similar lines. Namely, the coefficient of
absorption due to diffuse scattering, mds, is calculated
through characteristics of clusters in implanted layer by
using Eqs. (19)–(24), where c ¼ nC zð Þ=vc should be put.

Thus, for the realization of quantitative X-ray diffrac-
tion characterization of the ion-implanted garnet single
crystal or garnet film by using the above-described
theoretical approach, these imperfect structures can be
considered as an inhomogeneous multilayer system in each

layer of which the strain consist of average (constant) and
fluctuating components. This diffraction model provides
physically clear connections between defect characteristics
of imperfect structure and diffraction parameters sensitive to
crystal structure imperfections. In addition, the self-
consistent character of calculation of these parameters
should be emphasized, what complements the self-
consistency between coherent and diffuse components of
diffraction intensity in this model.

5 Defects and strains in imperfect garnets
5.1 Characterization of as-grown garnets
5.1.1 As-grown GGG crystal The most typical

point defects in garnet crystals are extrinsic substitutional
point defects, intrinsic antisite defects, and vacancies (see,
e.g., Refs. [95, 96]). Particularly, the creation of antisite
defects in GGG crystals grown by Czochralski method from
the melt-solution (3Gd2O3þ 5Ga2O3) occurs due to the
gallium evaporation, which causes the change of stoichio-
metric ratio 3:5 toward the increase of gadolinium cations
Gd3þ. Then the formation of vacancies of gallium cations
Ga3þ in octahedral positions and vacancies of oxygen
anions О2� is possible from the thermodynamic point of
view.

Additionally, as follows from the observations bymeans
of M€ossbauer spectroscopy for a number of garnet single
crystals, including GGG and YIG crystals, the possibility of
an exchange between approximately 10% of the cations
placed in dodecahedral and octahedral positions can be
regarded as their immanent property [97].

Thus, the general structural formula of the as-grown
GGG single crystal with intrinsic substitutional point
defects can be written in accordance with the published
data as follows:

fGd3�yGayg½Ga2�x�y�zGdxþy V
Ga
z �ðGa3ÞO12�d V

O
d ;

ð44Þ

where d ¼ 3z=2, x and y are concentrations of Gd3þ antisite
defects in octahedral and Ga3þ antisite defects in
dodecahedral positions, respectively, the letter V denotes
vacancies, z and d are concentrations of vacancies of Ga3þ

cations in octahedral positions and vacancies of О2– anions,
respectively.

The presence of point defects causes the changes of both
structure factors and lattice parameters and, consequently,
Fourier components of crystal polarizability. Later influence
on the form of coherent component of rocking curve, which
changes at typical point defect concentrations, however, are
too small to describe completely the measured rocking
curves even in their central parts.

The analysis of the immediate contribution of diffuse
scattering intensity from various antisite defects and
vacancies was performed with using their typical concen-
trations determined experimentally for GGG crystals
namely, x � 0:2; y � 0:3; and z � 0:1 [95, 97]. The
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performed calculations have shown that in the measured
angular ranges for both 444 and 888 reflections these
contributions cannot provide the acceptable fit of the
observed rocking curves because of their smallness and
wide angular intensity distribution [84, 85]. The analysis of
the immediate contribution of thermal diffuse scattering
intensity to the measured rocking curves, which was
performed with using elastic constants known for GGG
single crystals from acoustic measurements [98] and explicit
analytical expressions for this intensity [12], has given the
results similar to those obtained for point defects.

Consequently, the diffuse scattering intensity contribu-
tions from microdefects should be taken into account
additionally to both contributions from point defects and
thermal atom vibrations. At the same time, the contributions
from point defects to the exponent LH of static Krivoglaz–
Debye–Waller factor can be comparable with those from
thermal vibrations and, consequently, can substantially
influence both coherent and diffuse components of
diffraction intensities and cannot be neglected.

Thus, to achieve the good fit being uniform in the whole
angular range of rocking curve measurements, including the
total reflection range, simultaneously for two reflections (see
Fig. 3), it was necessary to suppose, that two microdefect
types are present in the as-grown GGG crystal. Namely,
both dislocation loops of (1/2)h111i type [99–102] and
spherical clusters of unknown nature (e.g., new phase
particles like Gd2O3), cf. Refs. [103, 104]) were considered.

The characteristics of spherical clusters and circular
dislocation loops, namely, average radius and concentration
(see Table 2) were determined independently for two
reflections and then matched to achieve sufficiently good
mutual agreement. When fitting, the fixed value e¼ 0.03 of
the misfit strain at the boundary between the cluster and
GGG matrix was accepted.

Thus, the good fit quality for both reflections in the
whole measured angular range including the total
reflection range and far rocking curve tails should be
emphasized. This result has been provided due to the self-
consistent description of coherent and diffuse X-ray
scattering in the imperfect GGG crystal. It should be

especially emphasized the unique character of the
obtained information on statistical characteristics of
small microdefects in nearly perfect GGG crystal, which
practically cannot be assessed by direct observation
methods for such materials.

5.1.2 As-grown NdGG crystal The most typical
point defects in NdGG single crystals are similar to those in
GGG crystals. Thus, the general structural formula of the as-
grown NdGG single crystal with intrinsic point defects can
be written in accordance with the published data as follows:

fNd3�yGayg½Ga2�x�y�zNdxþy V
Ga
z �ðGa3ÞO12�d V

O
d;

ð45Þ

where d ¼ 3z=2, x and y are concentrations of Nd3þ antisite
defects in octahedral and Ga3þ antisite defects in
dodecahedral positions, respectively, the letter V denotes
vacancies, z and d are concentrations of vacancies of Ga3þ

cations in octahedral positions and vacancies of О2– anions,
respectively.

As was observed for the GGG crystal investigated
earlier, the presence of point defects in the NdGG single
crystal causes similarly too small changes of Fourier
components of the crystal polarizability to describe
completely the form of central peaks observed on the
rocking curves measured for 444 and 888 reflections. In
addition, the calculated immediate contributions of the
thermal diffuse scattering intensity as well as diffuse
scattering intensity from various antisite defects and
vacancies, which were determined with using their typical
concentrations, cannot provide fitting the observed rocking
curves because of their smallness and wide angular intensity
distribution.

Thus, again the diffuse scattering intensity contributions
from microdefects, namely, dislocation loops of (1/2)
h111itype and spherical clusters of unknown nature (e.g.,
new phase particles like Nd2O3), have been taken into
account additionally to both contributions from point
defects and thermal atom vibrations. Then the good uniform
fit has been achieved simultaneously for two reflections in
the whole angular range of rocking curve measurements
including the total reflection range (see Fig. 4).

Figure 3 Experimental and theoretical rocking curves (markers
and thick solid lines, respectively) for GGG 444 and 888
reflections of CuKa1 radiation, the thin solid and dashed lines
describe coherent component and diffuse scattering intensity
contributions from microdefects, respectively [84].

Table 2 Average characteristics of microdefects in as-grown
GGG crystal [84].

type of
microdefects

characteristics of microdefects in GGG

dislocation loops radius RL, nm 100
concentration nL,

cm�3
8.0� 1011

clusters radius RC, nm 50 10
concentration nC,

cm�3
5.0� 1011 1.0� 1014
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The characteristics of spherical clusters and circular
dislocation loops in the investigated NdGG single crystal
(see Table 3) were determined independently by analyzing
the measured rocking curves for two reflections and then
matched to achieve sufficiently good mutual agreement.
When fitting, the fixed value e¼ 0.03 of the misfit strain at
the boundary between the cluster and NdGG matrix was
supposed.

It is remarkable that the values of microdefect
characteristics determined for as-grown NdGG crystal are
very close to those obtained for as-grown GGG single
crystal (cf. Tables 2 and 3). This result can be explained by
the similar growth conditions of both GGG and NdGG
single crystals, which have identical crystallographic
structure, as well as the similar thermodynamic and
mechanical properties of these two garnet structures, which
predetermine the type and formation character of growing
nanoclusters and microdefects.

5.2 Characterization of defects in as-grown thin
YIG film In YIG films, similarly to GGG and NdGG
crystals, the presence of various antisite defects and
vacancies has been established by spectroscopic and
chemical methods [105–108]. The creation of О2– anion
vacancies has been shown to be energetically favorable at
the charge compensation due to partial recharging from
Fe3þ to Fe2þ cations in octahedral positions [109–111]. In
addition, the possibility of exchanging between the cations
placed in dodecahedral and octahedral positions of YIG

structure should be taken into account [97]. Among impurity
point defects, the most essential influence on structure
characteristics and physical properties of YIG films have
Pb2þ cations which can substitute Y3þ cations in
dodecahedral positions with corresponding charge compen-
sation at the cost of О2– anion vacancies [112, 113].

Thus, the general structural formula of the as-grown
YIG film with intrinsic and impurity point defects can be
written in accordance with the published data as follows:

fY3þ
3�y�zFe

3þ
y Pb2þz g½Fe3þ2�x�yFe

2þ
x Y3þ

y �ðFe3þ3 ÞO12�d V
O
d;

ð46Þ

where d¼ (xþ z)/2, x is the concentration of partially
dissociated Fe2þ cations in octahedral positions, y is the
concentration of Y3þ antisite defects in octahedral and Fe3þ

antisite defects in dodecahedral positions, respectively, z is
the concentration of Pb2þ impurity cations in dodecahedral
positions.

Similarly to GGG and NdGG crystals, the various
growth microdefects, including new phase particles like
Fe2O3, Y2O3, or YFeO3, and dislocation loops of (1/2)
h111itype are expected to be always present in YIG films
additionally to point defects [114–118]. Besides, the
inhomogeneous strained transition layer between film
and substrate due to lattice mismatch as well as near
the film surface due to uncontrollable entering impurity
atoms at initial and final stages of the film growth can be
formed [119].

Thus, to analyze the measured rocking curves, the
investigated single-crystalline YIG film on GGG substrate
was considered as an imperfect multilayer system. This
system was supposed to consist, in both film and substrate,
of a number of laminae with constant strain in each of them
and with additional fluctuating strain fields from randomly
distributed defects.

First of all, the immediate contributions to the measured
rocking curves, which are given by diffuse scattering
intensity from various antisite defects and vacancies, were
analyzed with using their typical concentrations determined
experimentally for YIG crystals [97, 105] (see Fig. 2). In
addition, the contribution of the thermal diffuse scattering
intensity was calculated according to the diffraction model
proposed in Ref. [12] and with using the elastic constants
known for YIG single crystals from acoustic measurements
[120]. The performed calculations have shown that in the
measured angular ranges for both 444 and 888 reflections
these contributions cannot provide the acceptable fit of the
observed rocking curves because of their smallness and
wide distribution. Nevertheless, at this stage it was possible
to refine the concentrations of intrinsic and extrinsic point
defects due to matching the positions of diffraction peaks
observed from film and substrate, which are very sensitive to
these characteristics (cf. Figs. 2 and 5).

As consequence, it was established that the additional
angular shifts of diffraction peaks by nearly 2 and 6 arcsec

Figure 4 Experimental and theoretical rocking curves (markers
and thick solid lines, respectively) for NdGG 444 and 888
reflections of CuKa1 radiation, the thin solid and dashed lines
describe coherent component and diffuse scattering intensity
contributions from microdefects, respectively [86].

Table 3 Average characteristics of microdefects in as-grown
NdGG crystal [86].

type of
microdefects

characteristics of microdefects in NdGG

dislocation loops radius RL, nm 100
concentration nL,

cm�3
8.0� 1011

clusters radius RC, nm 50 10
concentration nC,

cm�3
5.0� 1011 5.0� 1013
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for 444 and 888 reflections, respectively, were caused by the
concentration of Pb2þ impurity cations in dodecahedral
positions, which was estimated to be z� 0.001. It should be
remarked also that the concentrations of intrinsic point
defects (x� 0.001, y� 0.001) were refined at next fit stages
due to account for their contributions to the exponent of
static Krivoglaz–Debye–Waller factor with the simulta-
neous conservation of the distance between diffraction peak
positions.

At the next step, the measured rocking curves were
fitted under the supposition that also dislocation loops of
(1/2)h111itype are present in the YIG film additionally to
point defects. Again, this fit step was not sufficiently
satisfactory because of the “saturation effect.” Namely, at
the proper choice of dislocation loop radii (see Table 4),
which provides the correct description for observed
halfwidth of rocking curve and decrease law at far tails
for both 444 and 888 reflections, the required increase of the
dislocation loop concentration led to significant rising the
exponent of the static Krivoglaz–Debye–Waller factor. The
correspondingly decreased factor strongly suppressed both
coherent and diffuse intensity components.

For this reason, the characteristics of randomly
distributed spherical clusters (e.g., inclusions of YFeO3,
Fe2O3, or Fe3O4 new phase particles [114, 115]) were
additionally included into the fit procedure. The strain at the
boundary between inclusions and YIG matrix was held at
the fixed value e¼ 0.03. Then inclusion and dislocation loop
characteristics were determined independently for each of
two reflections and subsequently matched to achieve
sufficiently good mutual agreement (see Table 4). Addi-
tionally, also the characteristics of Gd2O3 inclusions and

dislocation loops in GGG substrate were refined with using
their values determined previously [84, 85] as starting ones
to achieve an overall good fit quality in the whole measured
angular ranges for both 444 and 888 reflections (see Fig. 5).

Up to this point, the misfit strain profile at the boundary
between film and substrate was supposed to be sharp.
Probably because of this simplification the clearly visible
discrepancies remained between the forms of theoretical and
experimental rocking curves at the both peak tops for two
reflections. After choosing the strain profile at both sides of
the boundary between film and substrate as shown in Fig. 6
these discrepancies have been removed.

Moreover, it was possible to improve additionally the fit
quality at the right tail of rocking curve for the 444 reflection
(see Fig. 7) due to setting the small strain in the thin film
surface layer with nearly 20 nm thickness (see insertion in
Fig. 6). It should be remarked that the formation of such
surface layers in YIG films due to cation redistribution was
observed in spectroscopic and Rutherford backscattering
measurements [119].

Thus, the careful accounting for both existing sets of
randomly distributed point defects and microdefects as well
as inhomogeneous strain fields has provided the good fit
quality of the measured rocking curves simultaneously for
both 444 and 888 reflections in the whole angular range
including the total reflection ranges of both YIG film and
GGG substrate. Yet once it should be emphasized that this
result been achieved due to the self-consistent description of
coherent and diffuse scattering connected with defect
characteristics via mutually consistent explicit analytical
relations.

5.3 Characterization of defects in ion-implanted
garnet crystals and films

5.3.1 GGG crystal implanted with Fþ ions The
model of defect structure in the implanted GGG crystals
included two types of randomly distributed grown-in
microdefects, namely, spherical clusters and circular
prismatic dislocation loops as well as secondary radiation
defects in form of spherical amorphous clusters distributed
inhomogeneously in depth [121]. The implanted GGG
crystals in whole were considered as multilayer systems in
each layer of which the strain was consisted of average and
fluctuating components.

The depth profiles of the average strain caused by ion
implantation were calculated through concentrations of the
spherical amorphous clusters formed by displaced matrix

Figure 5 Experimental and theoretical rocking curves (markers
and thick solid lines, respectively) for YIG 444 and 888 reflections
of CuKa1 radiation, the thin solid and numbered dashed lines
describe coherent component and diffuse scattering intensity
contributions from small (1) and large (2) dislocation loops, and
clusters (3), respectively [82].

Table 4 Average characteristics of microdefects in the YIG film grown on GGG substrate [82].

type of microdefects characteristics of microdefects GGG substrate YIG film

dislocation loops radius RL, nm 90 5 5
concentration nL, cm

�3 1.2� 1012 1.0� 1015 1.0� 1015

spherical clusters radius RC, nm 8 10
concentration nC, cm

�3 1.0� 1014 1.0� 1014
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atoms in consequence of energy losses of the implanted ions
through excitation of electronic subsystem and elastic
nuclear collisions. Resulting strain profile in implanted layer
was calculated as the sum of depth-depended strain profiles
created by the two distributions of cluster concentrations
along the normal to crystal surface.

The fit of the measured rocking curves (Fig. 8) was
performed by using the theoretical approach described
above in Section 3 and with carrying out the convolution of
theoretical rocking curves with DCD resolution function.
The existence of two channels of energy losses for the
implanted light ions, namely, through elastic nuclear
collisions and inelastic electronic excitations, was taken
into account (Fig. 9). Both these channels were supposed to
be the origin of formation of spherical amorphous clusters in
the implanted layer. Such characteristics of clusters in
implanted layer as radius and strain at the boundary with
crystal matrix were supposed to be equal for both channels.
The cluster radii have been determined to be approximately
1.7 nm at the value of volume strain between cluster
and crystal matrix supposed to be equal e¼ 0.03. The

corresponding maximal values of cluster concentrations and
strains found at various implantation doses are given in
Table 5.

It should be remarked that the strain profile parameters
connected with nuclear and electronic energy loss channels
have been determined to be the same at all the applied
implantation doses and equal to tnucl0 ¼ 85 nm, s1¼ 80 nm,
s2¼ 25 nm, and tel0 ¼�75 nm, respectively. Some variations
have been found only for one of two parameters
characterizing the strain profile due to electronic energy
loss channel, namely, sel, which values were found to be
between 120 and 210 nm at various implantation doses.

The simulation calculations of depth distributions of
displaced atoms and implanted Fþ ions, which have been
performed by using the SRIM-2008 software based on a
Monte Carlo method [122], have showed that the
penetration depth of displaced atoms (Fig. 9b) practically
coincides with the occurrence depth for clusters in
implanted layer determined in the diffraction measurements
(Fig. 9a). Also, the form of strain profiles for GGG crystals

Figure 6 Strain profiles in YIG film and GGG substrate [82].

Figure 7 Experimental (markers) and theoretical rocking curve
with and without account of the strain in surface layer (solid and
dashed lines, respectively) [82].

Figure 8 Measured and calculated (solid line) rocking curves for
444 reflection of CuKa1 radiation from GGG crystals implanted
with Fþ ions of energy E¼ 90 keV at dosesD¼ 1013 (top row) and
40� 1013 cm�2 (bottom row). Coherent and diffuse rocking curve
components are shown by dashed and dot-dashed lines,
respectively [121].

Figure 9 (a) Determined strain profiles in GGG crystal due to
electronic (1), nuclear (2), and total (3) energy losses of implanted
90 keV Fþ ions at dose 8� 1012 cm�2 [121]. (b) Simulated depth
distributions of displaced atoms and implanted Fþ ions, normal-
ized to implantation dose.
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implanted with 90 keV Fþ ions is close to that of the
simulated depth distributions of displaced atoms.

It should be noted the role played by the account for the
influence, which is caused by diffuse scattering effects from
dislocation loops and clusters in crystal bulk, on both the
form of diffraction peaks and rocking curve tails. Namely,
this account has allowed for the correct description of X-ray
intensity diffracted from the implanted layer and, as
consequence, for the quantitative determination of charac-
teristics of both as-grown and secondary radiation defects
(see Tables 5 and 6).

In addition, the possibility was provided to avoid
systematical errors when determining strain distribution
parameters in the implanted layer and elastically relaxed
transition layer between crystal bulk and implanted layer
(see Fig. 10).

Thus, the quantitative X-ray diffraction characterization
of the ion-implanted garnet single crystal has been
performed owing to the use of the dynamical diffraction
model, which provides physically clear and explicit
connections between defect characteristics of imperfect
crystal structures and structurally sensitive diffraction
parameters. Also, the importance of the self-consistent
character of connections between these parameters and
defect characteristics, on the one hand, and coherent and
diffuse components of diffraction intensity, on the other
hand, should be emphasized.

5.3.2 YIG film implanted with Fþ ions The
presence of two types of microdefects, namely, spherical
clusters and circular prismatic dislocation loops was
supposed in the model of defect structure of the implanted
epitaxial single-crystalline system of YIG films grown on
GGG substrate at fitting the measured rocking curves (Fig.
11) [123]. The influence of point defects (antisite defects
and anion vacancies) and thermal diffuse scattering was

taken into account as well. The implanted YIG film on GGG
substrate in whole was considered as a multilayer system in
each layer of which the strain was consisted of average and
fluctuating components. The change of YIG and GGG cubic
lattice constants due to point defects was calculated
according to empiric analytical expression through con-
centrations of these defects and effective radii of cations.

When modeling the strain distribution, the implanted
layer was subdivided into 2 nm thick laminae, whereas the
rest of film and substrate volume was subdivided into layers
with thicknesses of the order of few hundreds of nano-
meters. The depth profiles of the strain caused by ion
implantation were calculated through concentrations of the
amorphous clusters formed by displaced matrix atoms in
consequence of energy losses of the implanted ions.

The existence of two channels of energy losses for the
implanted light ions, namely, through excitation of
electronic subsystem and elastic nuclear collisions, was
taken into account. It was supposed that because of both
electronic and nuclear energy losses of implanted ions the
spherical amorphous clusters were formed in the implanted
layer. Their radii have been determined to be equal
approximately 1.7 nm at the fixed value of volume strain
between cluster and crystal matrix put to be equal e¼ 0.03.
The corresponding cluster concentrations found at various
implantation doses are given in Table 7.

Such characteristics of clusters in implanted layer as
radius and strain at the boundary between cluster and crystal
matrix were supposed to be equal for both channels.
Resulting strain profile in implanted layer was calculated as
the sum of depth-depended strain profiles created by the two
distributions of cluster concentrations along the normal to
crystal surface (see Fig. 12a).

The rest of strain profile parameters for YIG
films implanted with Fþ ions, which are not given in Table
7, have been determined to be equal at all the used

Table 5 Maximal values of cluster concentrations and strains in GGG crystals implanted with 90 keV Fþ ions at various implantation
doses [121].

D, cm�2 8� 1012 1013 2� 1013 4� 1013 6� 1013

nnucl;max
C , cm�3 1.0� 1019 1.1� 1019 2.6� 1019 5.2� 1019 16.0� 1019

nel;max
C , cm�3 1.0� 1019 1.0� 1019 1.0� 1019 1.0� 1019 5.5� 1019

enucl;max
? , % 0.09 0.10 0.23 0.46 0.63

eel;max
? , % 0.06 0.07 0.075 0.08 0.18

Table 6 Characteristics of grown-in microdefects in GGG crystal implanted with 90 keV Fþ ions [121].

type of microdefects characteristics of grown-in microdefects GGG bulk implanted layer

dislocation loops radius RL, nm 100 100
concentration nL, cm

�3 8� 1011 1� 1011

clusters radius RC, nm 50 50 10
concentration nC, cm

�3 3� 1011 1� 1011 1� 1014
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implantation doses, namely, tnucl0 ¼ 85 nm, s1¼ 80 nm,
s2¼ 35 nm, tel0 ¼�75 nm, and sel¼ 80 nm. Only the
difference in strain profile parameters for YIG and GGG
crystals was that the forward front of the strain profile in
GGG crystal was steeper than in YIG film (parameter
s2¼ 25 nm instead of 35 nm).

It is interesting that the determined depth of strain
maximum for Fþ ions implanted in these films occurred
unexpectedly the same as that for Fþ ions implanted in GGG
crystals (see Section 3.3.1) which mass density (7.094 g
cm�3) is remarkably larger than that of GGG crystals
(5.17 g cm�3) and for which the stopping range could
expected to be correspondingly shorter. This observation
may be explained by possible channeling effects for
knocked-out matrix atoms (see, e.g., Refs. [124, 125].

It should be noted also that for YIG film implanted with
Fþ ions also the relative contribution of the inelastic energy
loss channel due to electronic excitations versus the
contribution of the elastic energy loss channel due to
nuclear collisions was comparable with similar ratio
occurred for GGG crystals implanted with Fþ ions of the
same energy (cf. Figs. 9 and 12).

The strain profiles for YIG films implanted with 90 keV
Fþ ions have been also determined from the simulation
calculations using the SRIM-2008 software [126]. These
simulations have showed that both the form and depth of
strain profiles were close to those determined in the
described X-ray diffraction measurements (see also
simulated depth distributions of displaced atoms and
implanted Fþ ions in Fig. 12b). At the same time, the
observed discrepancies in some profile parameters, particu-
larly, in the values of strain profile maxima found in two
independent ways can be used to refine and improve the
various procedures for simulating the creation of primary
and secondary radiation defects (see, e.g., Refs. [127–130]).

The depth profile of the so-called amorphization factor
was described by only the static Krivoglaz–Debye–Waller
factor, which exponent was calculated by using character-
istics of clusters in implanted layer with depth-dependent
concentration (see Fig. 13):

LH zð Þ ¼ LelH zð Þ þ LnuclH zð Þ:

Additionally, the attenuation of coherent component of
diffraction intensity from the implanted layer was described
by the coefficient of absorption due to diffuse scattering,
m
j
ds, which was calculated similarly through characteristics

of clusters in implanted layer (Fig. 13):

mds Du; zð Þ ¼ mel
ds Du; zð Þ þ mnucl

ds Du; zð Þ:

Figure 10 Additional components of strain profiles in subsurface
GGG layer implanted with 90 keV Fþ ions at doses D¼ 8� 1012

(1), 1013 (2), 2� 1013 (3), 4� 1013 (4), 6� 1013 (5) cm�2 [121].

Figure 11 Measured and calculated (solid line) rocking curves for
444 and 888 reflections of CuKa1 radiation from YIG/GGG film
system implanted with Fþ ions of energy E¼ 90 keV at dose
D¼ 6�1013 cm�2. Coherent and diffuse components of rocking
curves are shown by dashed and dot-dashed lines,
respectively [123].

Table 7 Maximal values of cluster concentrations and strains in
YIG film implanted with 90 keV Fþ ions [123].

D, cm�2 1013 6� 1013 2� 1014

nnucl;max
C , cm�3 1.1� 1019 6.0� 1019 2.0� 1020

nel;max
C , cm�3 1.1� 1019 6.0� 1019 2.0� 1020

enucl;max
? , % 0.10 0.54 1.79

eel;max
? , % 0.04 0.22 0.73

Figure 12 (a) Determined strain profiles in YIG film due to
electronic (1), nuclear (2), and total (3) energy losses of implanted
90 keV Fþ ions at dose 6� 1013 cm�2 [123]. (b) Simulated depth
distributions of displaced atoms and implanted Fþ ions, normal-
ized to implantation dose.
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In this way, the physically clear connection between
defect characteristics of imperfect structure of the implanted
YIG film and structurally sensitive diffraction parameters
was provided with minimized number of fit parameters.

The rocking curves measured from an inhomogeneous
crystal system like the implanted YIG film on GGG
substrate are formed by a superposition of angular
distributions of coherent and diffuse scattering intensities
from substrate, film, and implanted layer. Such superposi-
tion complicates the analysis of the rocking curves for the
assessment of strain and amorphization parameters in the
implanted layer since the numerous additional fit parameters
arise, which characterize defect structure of film and
substrate. Nevertheless, the self-consistent character of
calculation of all the diffraction parameters simultaneously
for two reflections as well as the self-consistency between
expressions for coherent and diffuse components of
diffraction intensity in the present diffraction model make
it possible the determination of the complete set of defect
characteristics and strain parameters of the implanted layers
in YIG films on GGG substrates.

Moreover, the account for influence of diffuse
scattering effects from dislocation loops and clusters in
film and substrate on the form of diffraction peaks and tails
has allowed for the determination of as-grown defect
characteristics, which nearly coincide with those found for
as-grown YIG film on GGG substrate (see Section 5.2,
Table 4). Simultaneously, the correct description of X-ray
intensity diffracted from the implanted layer was possible
with avoiding systematical errors due to contributions from
diffuse scattering intensity distributions. Additionally, the
strain distribution in the transition layer between film and
substrate has been determined, which thickness approaches
some hundreds of nanometers. It should also be empha-
sized, that the values of the parameters, which define the
form of strain profile, have been determined to be the
same for all the implantation doses and both reflections
measured.

5.3.3 YIG film implanted with Siþ ions
The rocking curves measured from the investigated

ion-implanted YIG films (Fig. 14) were analyzed by using
the above-described dynamical method of high-resolution
X-ray diffraction characterization for imperfect compound
single crystals with complicated defect structures (Section
4). This method allows for the quantitative characterization
of several microdefect types present in the crystal
simultaneously and provides the self-consistent determina-
tion of statistical microdefect characteristics, i.e., not only
average microdefect sizes (from few of micrometers down
to tens of nanometers), but also their concentrations and
strengths.

At fitting the measured rocking curves, the two types of
microdefects, namely, spherical clusters and circular
prismatic dislocation loops, were supposed to be present
in both YIG film and GGG substrate. The contributions of
diffuse scattering from point defects and thermal diffuse
scattering were taken into account. The characteristics of
microdefects have been found to be the same as given in
Table 4 with only the distinction that the nature of spherical
clusters in YIG film was specified as presumably new phase
g-Fe2O3 particles with strain parameter e � �0:08 and
the radius of these particles was correspondingly increased
to 10 nm.

Again the implanted YIG film on GGG substrate in
whole was considered as a multilayer system in each layer of
which the strain was consisted of average and fluctuating
components. The existence of two channels of energy losses
due to of electronic excitations and nuclear collisions was
taken into account for the implanted ions as well. The depth
profiles of the strain caused by ion implantation were
calculated through concentrations of the spherical amor-
phous clusters formed by displaced matrix atoms in
consequence of energy losses of the implanted ions. The
cluster radii have been determined to be approximately
1.5 nm at the value of volume strain between cluster and
crystal matrix e¼ 0.03. The corresponding cluster concen-
trations found at various implantation doses are given in
Table 8.

The strain profiles determined for YIG film implanted
with Siþ ions are shown in Figs. 15 and 16. The parameters
tnucl0 ¼ 55 nm, s1¼ 45 nm, s2¼ 15 nm, tel0 ¼�75 nm, and

Figure 13 Thickness dependences of the normalized coefficient
of absorption due to diffuse scattering (a) and static Krivoglaz–
Debye–Waller factor E¼ exp(�LH) (b), which correspond to
electronic (1), nuclear (2), and total (3) energy loss channels of Fþ

ions implanted in YIG film (E¼ 90 keV, D¼ 2� 1014 cm�2) for
888 reflection of CuKa1 radiation.

Figure 14 Measured and calculated (solid line) rocking curves for
444 and 888 reflections of CuKa1 radiation from YIG/GGG film
system implanted with 90 keV Siþ ions at the implantation dose
D¼ 6� 1013 cm�2. Coherent and diffuse components of rocking
curves are shown by dashed and dot-dashed lines,
respectively [131].
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sel¼ 50 nm, which define the form of these strain profiles
were put equal at all the used implantation doses for both
reflections measured.

The comparison of the depth distributions of displaced
atoms (Fig. 15b), which have been calculated by using the
SRIM-2008 software, have showed that their form and
penetration depth are close to those for clusters in implanted
layer determined from the diffraction measurements (Fig.
15a).

It should be noted that for Siþ ions implanted in YIG
film the contribution of the inelastic energy loss channel due
to electronic excitations occurred expectedly smaller than
the contribution of the elastic energy loss channel due to
nuclear collisions as compared with similar ratio for
implanted light Fþ ions (cf. Figs. 12 and 15). This
observation is supported by the simulation calculations
using SRIM-2008 program [132], which showed that also
the form of simulated strain profiles is very close to that
determined in the diffraction measurements.

6 Discussion The above-described examples of the
characterization of structural defects and strain profiles in
the as-grown and ion-implanted garnet single crystals and
yttrium iron garnet films by using the rocking curves, which
have been measured by high-resolution double-crystal
X-ray diffractometer with widely open detector window,
show some remarkable features.

First of all, the higher sensitivity of this technique to
nanometer-sized defects should be emphasized as compared
with other ones, in particular, the high-resolution triple-
crystal X-ray diffractometer measurements, for which such

defects with relatively low concentration are almost
“invisible” because of small “in-average” distortions
created in crystal matrix (cf. Refs. [133–135]). This
advantage arises due to the integration of differential
diffuse X-ray scattering intensity over two exit angles, i.e.,
over vertical and horizontal divergences, which increases
the contribution of this intensity as compared with coherent
one. In consequence, it becomes possible to reveal low
concentrations of small growth defects such as clusters and
dislocation loops, which sizes are ranged from tens up to
hundreds of nanometers in various nearly perfect garnet
crystals.

It should be remarked here, that despite this integration,
the measured one-dimensional mix of the coherent and
diffuse scattering intensity depends on incidence angle and,
consequently, the sensitivity of diffuse intensity component
to size, strength, and concentration of defects is remained
due to different angular dependencies of coherent and
diffuse intensity components. That means that a loss of
information, as compared with reciprocal space mapping, is
only partial, mainly on the symmetry of displacement fields
from defects.

On the other hand, the self-consistent description of the
dynamical diffraction effects in coherent and partially
integrated diffuse scattering intensity distributions within
the whole angular range, including the total reflection range,
allows for increasing the sensitivity to defects and reliability
of defect characterization. Additional important feature of
the simultaneous description of the coherent and diffuse
intensity components is the possibility to determine the
absolute defect concentration values as they predetermine
the ratio of these components.

The peculiarity of the investigations described above in
Section 5 is that the diffraction pattern observed, e.g., for
ion-implanted YIG films, is formed by the superposition of
coherent waves scattered from substrate, film, and ion-
implanted layer, and consists of their interference with
addition of the diffuse scattering intensity from defects in
these three regions. As consequence, the dynamical effects
appear in both coherent and diffuse scattering intensities
since film and substrate are sufficiently thick to cause
multiple scattering effects. Moreover, because of the

Table 8 Maximal values of cluster concentrations and strains in
YIG films implanted with 90 keV Siþ ions at various implantation
doses [131].

D, cm�2 1013 6� 1013 2� 1014

nnucl;max
C , cm�3 2.0� 1019 7.0� 1019 20� 1019

nel;max
C , cm�3 2.0� 1019 7.0� 1019 20� 1019

enucl;max
? , % 0.12 0.43 1.23

eel;max
? , % 0.01 0.04 0.12

Figure 15 (a) Determined strain profiles in YIG film due to
electronic (1), nuclear (2), and total (3) energy losses of implanted
90 keV Siþ ions at dose 6� 1013 cm�2 [131]. (b) Simulated depth
distributions of displaced atoms and implanted Siþ ions,
normalized to implantation dose.

Figure 16 (a) Strain profiles in YIG film implanted with 90 keV
Siþ ions at dosesD¼ 1013 (1), 6� 1013 (2), and 2� 1014 cm�2 (3),
respectively. (b) Strain profile in transition layer between film and
substrate [131].

1600689 (18 of 22) S. I. Olikhovskii et al.: Dynamical XRD theory – characterization of defects in garnets

� 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.pss-b.com

p
h

ys
ic

a ssp st
at

u
s

so
lid

i b



summation of coherent and diffuse components, the separate
analysis of their superimposed contributions is impossible.

Thus, the main advantages of the dynamical theory
developed for X-ray diffraction by the ion-implanted
imperfect single crystal, multilayer, or film crystal structures
containing randomly and inhomogeneously distributed
defects are following:

(i) the account for dynamical effects in diffuse scattering
from defects in both the substrate and relatively thick
film;

(ii) the possibility to analytically treat, simultaneously and
self-consistently, both coherent and diffuse component
distributions within the whole measured angular range
including the total reflection ranges of both substrate
and film;

(iii) the absence of necessity to control criteria of the
applicability of the formulas from kinematical theory
to coherent and/or diffuse scattering intensity compo-
nents from different crystal regions.

As consequence, the proposed dynamical description of
coherent and diffuse scattering intensities provides the
significant increase of the accuracy and reliability of the
strain and defect characterization without any restrictions
imposed on distorted layer thickness or measured angular
ranges, which are required to perform the kinematical
consideration.

At the same time, for the full determination of the defect
characteristics and strain distributions in such kind crystal
structures always important are observations at both atomic
and micrometer levels. Whereas first ones with atomic
resolution provide highly valuable information on the nature
of defects and their individual characteristics, the second
ones allow for determining the statistical characteristics of
defects in the large crystal volumes as well as average strain
variations. Just such comprehensive knowledge is usually
necessary to assess and control the physical properties of
crystal structures of interest.

Of course, when crystal distortions due to defects are
sufficiently strong to cause observable diffuse scattering
intensities, the measurement of reciprocal space maps by
using the high-resolution triple-crystal X-ray diffractometer
is of exceptional importance for the assessment of more
details on defect structures in ion-implanted layers [136–-
138]. However, in general, to understand the mechanisms of
growth defects appearance and damage formation in
materials irradiated with energetic ions the various
additional analytical techniques are necessary, such as
transmission electron microscopy, ion and electron Ruth-
erford backscattering spectrometry, Raman spectroscopy,
X-ray photoelectron spectroscopy, small-angle X-ray
scattering, positron annihilation spectroscopy etc. [52–59,
75, 139–143]. Applications of these techniques provide the
unique possibilities to study radiation effects in wide range
of implantation depths and gain the information, comple-
mentary to X-ray diffraction investigations, on defect

configurations and their phase composition, as well as
amorphization and recrystallization processes in ion-
implanted layers.

Thus, we can conclude that the obtained results show the
new possibilities offered by the proposed theoretical method
for the treatment of high-resolution double-crystal X-ray
diffraction measurements, which allows for improving the
quantitative characterization of structural imperfections in
real crystal structures with a complicated base and
inhomogeneous strain fields.

7 Conclusions The generalized statistical dynam-
ical theory of X-ray diffraction by the imperfect single
crystals containing randomly distributed structural defects
has been extended to the case of real single crystals and
single-crystalline films with complex basis and inhomo-
geneous strain fields. The developed theoretical diffrac-
tion model accounts for the presence of randomly
distributed point defects and microdefects of various
types as well as the existence of arbitrary inhomogeneous
one-dimensional strain fields, in particular, with sharp
profiles, i.e., with large strain gradients. The proposed
model allows for the self-consistent description of
coherent and diffuse components of diffraction patterns
measured from such crystal structures due to using the
direct explicit analytical relationships between coherent
and diffuse scattering amplitudes and statistical character-
istics of defects.

Some examples of the application of the developed
theoretical model to characterize structural defects and
strain profiles in the as-grown and ion-implanted garnet
single crystals and YIG films by using the high-resolution
double-crystal X-ray diffractometer measurements have
been reviewed. The described quantitative characterization
of defects and strains has been performed by a combined
analysis of the measured rocking curves for two reflections
with using the explicit analytical formulas. It should be
especially emphasized the unique character of the obtained
information on statistical characteristics of point defect
clusters and small microdefects in nearly perfect garnet
crystals and films, both as-grown and ion-implanted ones,
which is not available by using any another of known
characterization methods.

The obtained results demonstrate the high information
possibilities of the proposed method of the high-resolution
double-crystal X-ray diffraction measurements for the
quantitative characterization of structural imperfections in
real single crystals and single-crystalline film structures
with a complicated base and inhomogeneous strain fields.
It is worth mentioning that the described method is
applicable also to imperfect multilayer crystal structures
with arbitrary layer compositions and total multilayer
thickness.
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