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We consider special Hilbert spaces of analytic functions of many infinite variables and examine composition operators on these
spaces. In particular, we prove that under some conditions a translation operator is bounded and hypercyclic.

1. Introduction

Let 𝑋 be a Fréchet linear space. An operator 𝑇 : 𝑋 → 𝑋 is
called hypercyclic if there is a vector 𝑥 ∈ 𝑋 whose orbit under
𝑇,

Orb (𝑇, 𝑥) = {𝑥, 𝑇𝑥, 𝑇
2
𝑥, . . .} , (1)

is dense in 𝑋. Every such vector 𝑥 is called hypercyclic for 𝑇.
It is well known that a hypercyclic operator can exist only in
separable infinite-dimensional spaces (see [1]).

As for first results related to hypercyclic operators there
are classical works of Birkhoff [2] and MacLane [3] showing
that the operators of translation and differentiation, acting
on the space of entire functions of one complex variable,
are hypercyclic. There are many results related to hypercyclic
operators on spaces of analytic functions on finite and
infinite-dimensional spaces (see, e.g., [1, 4, 5]). Motivated
by these results, we examine the hypercyclic behavior of
composition operators on Hilbert spaces of entire functions
of many infinite variables.

Let us recall that an operator 𝐶
Φ
on the space of entire

functions on C𝑛; 𝐻(C𝑛
) is said to be a composition operator

if 𝐶
Φ
𝑓(𝑥) = 𝑓(Φ(𝑥)) for some analytic map Φ : C𝑛

→

C𝑛. According to the Birkhoff result [2] the operator of
composition with translation 𝑥 󳨃→ 𝑥 + 𝑎, 𝑎 ̸= 0, and 𝑇

𝑎
:

𝑓(𝑥) 󳨃→ 𝑓(𝑥+𝑎) is hypercyclic in the space of entire functions
𝐻(C) on the complex plane C. Godefroy and Shapiro in [6]

generalized this result for the translation operator on𝐻(C𝑛
),

endowed with the topology of uniform convergence on
compact subsets. Aron and Bès in [7] proved that the
operator of composition with translation 𝑇

𝑎
is hypercyclic

in the space of weakly continuous analytic functions on
all bounded subsets of a separable Banach space 𝑋 which
are bounded on bounded subsets. Hypercyclic composition
operators on spaces of analytic functions of finite and infinite
many variables were studied also in [8]. In [9] Chan and
Shapiro show that 𝑇

𝑎
is hypercyclic in various Hilbert spaces

of entire functions on C. More detailed, they considered
Hilbert spaces of entire functions of one complex variable
𝑓(𝑧) = ∑

∞

𝑛=1 𝑓𝑛𝑧
𝑛 with norms ‖𝑓‖

2

2,𝛾 = ∑
∞

𝑛=1 𝛾
−2
𝑛

|𝑓
𝑛
|
2 for

appropriated sequence of positive numbers and showed that
if 𝑛𝛾

𝑛
/𝛾
𝑛−1 is monotonically decreasing, then 𝑇

𝑎
is hypercy-

clic.
The purpose of this paper is to prove a generalization

of the Chan and Shapiro’s result for Hilbert spaces of entire
functions of infinite many variables. In order to do it we
consider in Section 1 a general construction of analytic
functions on a Hilbert space which is related to generalized
Fock space. In Section 2 we study special cases of Hilbert
spaces of entire functions on a separable Hilbert space. In
Section 3 we establish some conditions under which the
translation operator is bounded and hypercyclic on these
special spaces.
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There is a general sufficient condition for hypercyclicity.
This condition is inspired in the so-called Hypercyclicity
Criterion given by Kitai [10] in her unpublished Ph.D. thesis
and rediscovered by Gethner and Shapiro [11]. We use the
general form of this Criterion as given in [7]. It may be stated
as follows.

Theorem 1 (Hypercyclicity Criterion). Let 𝑋 be separable
complete linear metric space and let 𝑇 : 𝑋 → 𝑋 be
linear continuous operator. Suppose there exist 𝑋0, 𝑌0 of 𝑋, a
sequence (𝑛

𝑘
) of positive integers, and a sequence of mappings

(possibly nonlinear, possibly not continuous) 𝑆
𝑛𝑘

: 𝑌0 → 𝑋 so
that

(i) 𝑇
𝑛𝑘 → 0 for 𝑘 → ∞ pointwise on 𝑋0,

(ii) 𝑆
𝑛𝑘

→ 0 for 𝑘 → ∞ pointwise on 𝑌0,
(iii) 𝑇

𝑛𝑘𝑆
𝑛𝑘

= 𝐼 on 𝑌0 (𝐼 is identity operator);

then 𝑇 is hypercyclic.

For background on analytic functions on Banach spaces
we refer the reader to [12, 13].

2. Symmetric Fock Spaces and
Analytic Functions

Let 𝐸 be a complex separable Hilbert space with an orthonor-
mal basis (𝑒

𝑖
)
∞

𝑖=1 endowedwith the scalar product (𝑥 | 𝑦)
𝐸
and

the norm ‖𝑥‖
𝐸

= (𝑥 | 𝑥)
1/2
𝐸

, 𝑥, 𝑦 ∈ 𝐸. Clearly, for every 𝑛 ∈ N

the 𝑛th tensor power ⊗𝑛𝐸 is defined to be complex linear span
of elements

{𝑥1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑥
𝑛
: 𝑥1, . . . , 𝑥𝑛 ∈𝐸} . (2)

It is well-known that it is possible to define a norm ‖ ⋅ ‖
⊗
𝑛

ℎ
𝐸
on

the vector space ⊗
𝑛
𝐸 such that the corresponding completion

⊗
𝑛

ℎ
𝐸 is a Hilbert space. More exactly, the scalar product on

⊗
𝑛

ℎ
𝐸 is defined by the equality

⟨𝑥1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑥
𝑛
| 𝑦1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑦

𝑛
⟩
⊗
𝑛

ℎ
𝐸

= (𝑥1 | 𝑦1)𝐸 ⋅ ⋅ ⋅ (𝑥
𝑛
| 𝑦

𝑛
)
𝐸

(3)

for all 𝑥
𝑖
, 𝑦

𝑖
∈ 𝐸, 𝑖 = 1, . . . , 𝑛. Let [𝑖] denote a multi-index

(𝑖1, . . . , 𝑖𝑛) ∈ N𝑛. Since the system

{𝑒
𝑖1
⊗ ⋅ ⋅ ⋅ ⊗ 𝑒

𝑖𝑛
∈⊗

𝑛
𝐸 : [𝑖] ∈N

𝑛
} (4)

forms an orthonormal basis in ⊗
𝑛

ℎ
𝐸, every such vector 𝑤 ∈

⊗
𝑛

ℎ
𝐸 can be represented by the Fourier series expansion

𝜔 = ∑

[𝑖]∈N𝑛

𝛼
[𝑖]
𝑒
𝑖1
⊗ ⋅ ⋅ ⋅ ⊗ 𝑒

𝑖𝑛
, (5)

and we put

‖𝜔‖⊗𝑛
ℎ
𝐸
= ⟨𝜔 | 𝜔⟩

1/2
⊗
𝑛

ℎ
𝐸
= ( ∑

[𝑖]∈N𝑛

󵄨󵄨󵄨󵄨𝛼[𝑖]
󵄨󵄨󵄨󵄨

2
)

1/2

. (6)

It is clear that the above norm, generated by the scalar
product, is a cross-norm on ⊗

𝑛

ℎ
𝐸; that is,

󵄩󵄩󵄩󵄩𝑥1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑥
𝑛

󵄩󵄩󵄩󵄩⊗𝑛
ℎ
𝐸
=

󵄩󵄩󵄩󵄩𝑥1
󵄩󵄩󵄩󵄩𝐸

⋅ ⋅ ⋅
󵄩󵄩󵄩󵄩𝑥𝑛

󵄩󵄩󵄩󵄩𝐸
. (7)

We denote by ⊗
𝑛

𝑠
𝐸 the 𝑛-fold symmetric algebraic tensor

product of space 𝐸. Every element from ⊗
𝑛

𝑠
𝐸 can be defined

by formula

𝑥1⊗𝑠 ⋅ ⋅ ⋅ ⊗𝑠𝑥𝑛 :=
1
𝑛!

∑

𝜎∈𝑆𝑛

𝑥
𝜎(1) ⊗ ⋅ ⋅ ⋅ ⊗ 𝑥

𝜎(𝑛)
, (8)

where 𝑥1, . . . , 𝑥𝑛 ∈ 𝐸 and 𝑆
𝑛
is the group of permutations on

the set {1, . . . , 𝑛}.
We will use the following notations 𝑒

⊗𝑘

𝑖
= 𝑒

𝑖
⊗ ⋅ ⋅ ⋅ ⊗ 𝑒

𝑖⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘

for any 𝑘, 𝑖 ∈ N. We denote by (𝑘) an arbitrary multi-index
(𝑘1, . . . , 𝑘𝑛) ∈ Z𝑛

+
, |(𝑘)| = ∑

𝑖
𝑘
𝑖
, and (𝑘)! = ∏

𝑖
𝑘
𝑖
!. The vectors

{𝑒
⊗(𝑘)

[𝑖]
:= 𝑒

⊗𝑘1
𝑖1

⊗
𝑠
⋅ ⋅ ⋅ ⊗

𝑠
𝑒
⊗𝑘𝑛

𝑖𝑛
: [𝑖] ∈N

𝑛
, (𝑘) ∈Z

𝑛

+
, |(𝑘)|

= 𝑛}

(9)

form an orthogonal basis in the closure ⊗
𝑛

𝑠,ℎ
𝐸 of ⊗𝑛

𝑠
𝐸 in ⊗

𝑛

ℎ
𝐸

and

󵄩󵄩󵄩󵄩󵄩
𝑒
⊗(𝑘)

[𝑖]

󵄩󵄩󵄩󵄩󵄩⊗𝑛
ℎ
𝐸
= √

(𝑘)!

𝑛!
, 𝑛 = |(𝑘)| . (10)

By Hermitian duality of a Hilbert space 𝐸 we can define the
relation

𝐸
∗
= {𝑦

∗
:= ⟨⋅ | 𝑦⟩

𝐸
: 𝑦 ∈ 𝐸} . (11)

Note that the classical symmetric Fock space F is the
Hilbert direct sum of ⊗𝑛

𝑠,ℎ
𝐸, 𝑛 = 0, 1, . . ., where ⊗

0
𝑠,ℎ

𝐸 = C.
This space is predual to a space of analytic functions on the
unit ball of 𝐸 [14].

We say that a Hilbert spaceF
𝜂
with an arbitrary Hilbert

norm ‖ ⋅ ‖
𝜂
is (generalized) symmetric Fock space over a given

Hilbert space 𝐸 if vectors 1, 𝑒(𝑘)
[𝑖]

= 𝑒
⊗𝑘1
𝑖1

⊗
𝑠
⋅ ⋅ ⋅ ⊗

𝑠
𝑒
⊗𝑘𝑛

𝑖𝑛
, (𝑘 ∈ N,

𝑘1 + ⋅ ⋅ ⋅ + 𝑘
𝑛

= 𝑛, 𝑖1 < ⋅ ⋅ ⋅ < 𝑖
𝑛
) form an orthogonal basis in

F
𝜂
. ThusF

𝜂
can be represented by the Hilbert direct sum of

symmetric tensor powers:

F
𝜂
= C⊕𝐸⊕⊗

2
𝑠
𝐸⊕ ⋅ ⋅ ⋅ ⊕ ⊗

𝑛

𝑠
𝐸⊕ ⋅ ⋅ ⋅ . (12)

Evidently, the norm ‖ ⋅ ‖
𝜂
is completely defined by its

value on the basis vectors. Hence, setting ‖𝑒
⊗(𝑘)

[𝑖]
‖
𝜂
by arbitrary

positive numbers, we can get various symmetric Fock spaces
over 𝐸. Let ⟨⋅ | ⋅⟩

𝜂
be the scalar product inF

𝜂
.

Put 𝑐(𝑘)
[𝑖]

:= ‖𝑒
(𝑘)

[𝑖]
‖
−2
𝜂

and 𝑐0 = 1. Let us consider a power
series

𝜂 (𝑥) =

∞

∑

𝑘1+⋅⋅⋅+𝑘𝑛=0
∑

𝑖1<⋅⋅⋅<𝑖𝑛

𝑐
𝑘1 ⋅⋅⋅𝑘𝑛
𝑖1 ⋅⋅⋅𝑖𝑛

𝑥
𝑘1
𝑖1

⋅ ⋅ ⋅ 𝑥
𝑘𝑛

𝑖𝑛
𝑒
⊗𝑘1
𝑖1

⋅ ⋅ ⋅ 𝑒
⊗𝑘𝑛

𝑖𝑛

=

∞

∑

|(𝑘)|=0
∑

[𝑖]∈N𝑛

𝑐
(𝑘)

[𝑖]
𝑥
(𝑘)

[𝑖]
𝑒
⊗(𝑘)

[𝑖]

(13)

for any 𝑥 = ∑
∞

𝑖=1 𝑥𝑖𝑒𝑖 ∈ 𝐸.
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Theorem 2. Suppose that there are constants 𝑐 > 0 and𝑀 > 0
such that for all multi-indexes [𝑖] ∈ N𝑛, (𝑘) ∈ Z𝑛

+
, and 𝑛 =

𝑘1 + ⋅ ⋅ ⋅ + 𝑘
𝑛
inequalities

0 < 𝑐
(𝑘)

[𝑖]
= 𝑐

𝑘1 ⋅⋅⋅𝑘𝑛
𝑖1 ⋅⋅⋅𝑖𝑛

≤ 𝑐𝑀
2𝑛 (𝑘1 + ⋅ ⋅ ⋅ + 𝑘

𝑛
)!

𝑘1! ⋅ ⋅ ⋅ 𝑘𝑛!

= 𝑐𝑀
2𝑛 𝑛!

𝑘1! ⋅ ⋅ ⋅ 𝑘𝑛!

(14)

hold. Then there exists an open subset 𝑈 ⊂ 𝐸, 𝑈 ∋ 0 such that

(i) the series (13) is convergent for every 𝑥 ∈ 𝑈 and 𝜂 is an
analytic map from 𝑈 intoF

𝜂
,

(ii) for every 𝜑 ∈ F
𝜂
the map 𝑓

𝜑
(𝑥) = ⟨𝜂(𝑥) | 𝜑⟩

𝜂
is an

analytic function on 𝑈,
(iii) the function ⟨𝜂(𝑥) | 𝑒

⊗(𝑘)

[𝑖]
⟩
𝜂
is an 𝑛-homogeneous

polynomial and

⟨𝜂 (𝑥) | 𝑒
⊗(𝑘)

[𝑖]
⟩
𝜂
= 𝑥

𝑘1
𝑖1

⋅ ⋅ ⋅ 𝑥
𝑘𝑛

𝑖𝑛
. (15)

We can find the proof in [15, Proposition 4.22].
Let us denote byH

𝜂
theHilbert space of analytic function

𝑓
𝜙

= ⟨𝜂(⋅) | 𝜙⟩
𝜂
that is Hermitian duality toF

𝜂
. We will use

the same symbol ⟨⋅ | ⋅⟩
𝜂
for the scalar product inH

𝜂
.

For any vector 𝑓 ∈ H
𝜂
denote 𝑓 ∈ F

𝜂
such that 𝑓 = ⟨⋅ |

𝑓⟩
𝜂
. In particular, 𝑓(𝑥) = ⟨𝜂(𝑥) | 𝑓⟩

𝜂
. Also by 𝑔, 𝑔 ∈ F

𝜂
we

mean a vector fromH
𝜂
such that 𝑔 = ⟨⋅ | 𝑔⟩

𝜂
.

We recall definition of reproducing kernel.

Definition 3. Let 𝑍 be an abstract set and letH be an Hilbert
space of complex valued functions 𝑓 on 𝑍 with the scalar
product ⟨⋅ | ⋅⟩H. A function𝐾(𝑥, 𝑧) defined on𝑍×𝑍 is called
reproducing kernel of closed subspaceH

𝐾
⊂ H if

(i) for any fixed 𝑧 ∈ 𝑍, the kernel𝐾(𝑥, 𝑧) belongs toH
𝐾

as a function of 𝑥 ∈ 𝑍;
(ii) for any 𝑓 ∈ H

𝐾
and for any 𝑧 ∈ 𝑍

𝑓 (𝑧) = ⟨𝑓 (⋅) | 𝐾 (⋅, 𝑧)⟩
H

. (16)

Hilbert spaceH
𝐾
is called space with reproducing kernel or

functional Hilbert space.

Let ℎ : 𝑍 → H be a function on 𝑍 such that for every
𝑓 ∈ H

𝐾
and 𝑥 ∈ 𝑍

𝑓 (𝑥) = ⟨𝑓 (⋅) | ℎ (𝑥)⟩
H

. (17)

Theorem 4. The function 𝐾(𝑥, 𝑧) = ⟨ℎ(𝑧) | ℎ(𝑥)⟩H is
reproducing kernel forH

𝐾
.

Wemay see the proof in [16, p. 21].

Proposition 5. A map 𝐾 : 𝐸 × 𝐸 → C defined by

𝐾 (𝑥, 𝑧) = ⟨𝜂 (𝑥) | 𝜂 (𝑧)⟩
𝜂
= ⟨𝜂 (𝑧) | 𝜂 (𝑥)⟩

𝜂 (18)

is a reproducing kernel forH
𝜂
.

The proof immediately follows from Theorem 4 for
ℎ(𝑥) := 𝜂(𝑥).

Since 𝜂 generates the reproducing kernel of H
𝜂
we say

that 𝜂 is a reproducing function ofH
𝜂
.

Example 6. For an arbitrary positive integer 𝑚 set

𝜂
(𝑚)

(𝑥)

=

∞

∑

𝑘=0

(𝑚 − 1 + 𝑘)!

(𝑚 − 1)!𝑘!
𝑥
𝑘

=

∞

∑

𝑘=0

(𝑚 − 1 + 𝑘)!

(𝑚 − 1)!𝑘!
(

∞

∑

𝑖=1
𝑥
𝑖
𝑒
𝑖
)

𝑘

=

∞

∑

|(𝑘)|=0
∑

[𝑖]∈N𝑛

(𝑘1 + ⋅ ⋅ ⋅ + 𝑘
𝑛
+ 𝑚 − 1)!

(𝑚 − 1)!𝑘1! ⋅ ⋅ ⋅ 𝑘𝑛!
𝑒
⊗(𝑘)

[𝑖]
𝑥
(𝑘)

[𝑖]
,

(19)

where (𝑘) = (𝑘1, . . . , 𝑘𝑛), 𝑛 ∈ Z
+
. Thus

𝑐
(𝑘)

[𝑖]
=

(𝑘1 + ⋅ ⋅ ⋅ + 𝑘
𝑛
+ 𝑚 − 1)!

(𝑚 − 1)!𝑘1! ⋅ ⋅ ⋅ 𝑘𝑛!
. (20)

We denote by 𝐵 := {𝑥 ∈ 𝐸 : ‖𝑥‖
𝐸
< 1} unit ball on 𝐸. It is easy

to see that 𝜂(𝑚) is an analytic map from the unit ball 𝐵 ⊂ 𝐸 to
F

𝜂
(𝑚) for every 𝑚 and

󵄩󵄩󵄩󵄩󵄩
𝜂
(𝑚)

(𝑥)
󵄩󵄩󵄩󵄩󵄩𝜂

= (

∞

∑

𝑘=0

(𝑚 − 1 + 𝑘)!

(𝑚 − 1)!𝑘!
‖𝑥‖

2𝑘
𝐸
)

1/2

= (
1

(1 − ‖𝑥‖
2
𝐸
)
𝑚
)

1/2

.

(21)

If 𝑚 = 1 and 𝑋 = C𝑛, then this space is called Drury-
Arveson Hardy space [17]. As well the space coincides with
Besov-Sobolev space 𝐵

1/2
2 of analytic functions on open unit

ball in C𝑛. Note thatH
𝜂
(𝑚) coincides with the classical Hardy

space on the unit ball if (and only if) dim𝐸 = 𝑚.
Note that various Hilbert spaces of analytic functions of

infinite many variables are studied in [18–22].

3. Hilbert Spaces of Entire Functions

In this section we consider the case whenH
𝜂
= F∗

𝜂
consists

with entire functions on 𝐸.

Proposition 7. Suppose that there exists a constant 𝑐 > 0 and
a sequence of positive numbers (𝑀

𝑛
), 𝑀

𝑛
→ 0 as 𝑛 → ∞,

such that

𝑐
(𝑘)

[𝑖]
≤ 𝑐𝑀

2𝑛
𝑛

𝑛!

𝑘1! ⋅ ⋅ ⋅ 𝑘𝑛!
, (22)
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where 𝑐
(𝑘)

[𝑖]
= ‖𝑒

⊗(𝑘)

[𝑖]
‖
−2
𝜂

and 𝑒
⊗(𝑘)

[𝑖]
is an orthogonal basis in F

𝜂
.

ThenH
𝜂
= F∗

𝜂
is aHilbert space of entire functions of bounded

type that is bounded on bounded subsets on 𝐸.

The proof is in [15, Proposition 4.25].
The next proposition gives another test for H

𝜂
to be a

space of entire functions.

Proposition 8. Suppose that ‖𝜂
𝑛+1‖𝜂/‖𝜂𝑛‖𝜂 decreases to zero

as 𝑛 increases to infinity. ThenH
𝜂
consists with bounded-type

entire functions, where

𝜂
𝑛 (𝑥) = ∑

|(𝑘)|=𝑛

∑

[𝑖]∈N𝑛

𝑐
(𝑘)

[𝑖]
𝑥
(𝑘)

[𝑖]
𝑒
⊗(𝑘)

[𝑖]
,

󵄩󵄩󵄩󵄩𝜂𝑛
󵄩󵄩󵄩󵄩𝜂

= sup
‖𝑥‖≤1

󵄩󵄩󵄩󵄩𝜂𝑛 (𝑥)
󵄩󵄩󵄩󵄩𝜂

.

(23)

Proof. By the ratio test the power series ∑
∞

𝑛=0 ‖𝜂𝑛‖𝜂𝑡
𝑛 is

absolutely convergent for every 𝑡 ∈ C. Thus, by the Cauchy-
Hadamard formula,

lim sup
𝑛→∞

(
󵄩󵄩󵄩󵄩𝜂𝑛

󵄩󵄩󵄩󵄩

1/𝑛
𝜂

)

−1
= ∞ (24)

and 𝜂 is hence an entire mapping.

Example 9. Let

𝜂 (𝑥) =

∞

∑

𝑛=0

𝑥
⊗𝑛

𝑛!
, (25)

where 𝑥 ∈ 𝐸. Denote by 𝐻
2
(𝐸) the corresponding spaceH

𝜂
.

It is easy to see that 𝐻
2
(𝐸) consists of bounded-type entire

functions on 𝐸 and

󵄩󵄩󵄩󵄩󵄩
𝑒
⊗(𝑘)

[𝑖]

󵄩󵄩󵄩󵄩󵄩

2

𝜂
= 𝑘1! ⋅ ⋅ ⋅ 𝑘𝑛!. (26)

The reproducing kernel of this space is

𝑘 (𝑧, 𝑥) = ⟨𝜂 (𝑥) | 𝜂 (𝑧)⟩
𝜂
=

∞

∑

𝑛=0

⟨𝑥
⊗𝑛

| 𝑧
⊗𝑛

⟩
𝜂

(𝑛!)
2

=

∞

∑

𝑛=0
∑

(𝑘)∈Z𝑛
+

∑

[𝑖]∈N𝑛

1
(𝑛!)

2 (
𝑛!

𝑘1! ⋅ ⋅ ⋅ 𝑘𝑛!
)

2

⋅
󵄩󵄩󵄩󵄩󵄩
𝑒
⊗𝑘1
𝑖1

⋅ ⋅ ⋅ 𝑒
⊗𝑘𝑛

𝑖𝑛

󵄩󵄩󵄩󵄩󵄩

2

𝜂
𝑥
𝑘1
𝑖1

⋅ ⋅ ⋅ 𝑥
𝑘𝑛

𝑖𝑛
𝑧
𝑘1
𝑖1

⋅ ⋅ ⋅ 𝑧
𝑘𝑛

𝑖𝑛

=

∞

∑

𝑛=0
∑

(𝑘)∈Z𝑛
+

∑

[𝑖]∈N𝑛

1
𝑘1! ⋅ ⋅ ⋅ 𝑘𝑛!

𝑥
(𝑘)

[𝑖]
𝑧
(𝑘)

[𝑖]
=

∞

∑

𝑛=0

(𝑥 | 𝑧)
𝑛

𝐸

𝑛!

= 𝑒
(𝑥|𝑧)𝐸

(27)

and for every function from 𝐻
2
(𝐸) there exists 𝑤 ∈ F

𝜂
such

that

𝑓
𝑤 (𝑥) = ⟨𝜂 (𝑥) | 𝑤⟩

𝜂 (28)

for any vector𝑤 ∈ F
𝜂
. According to [22]𝐻2

(𝐸) is an infinite
tensor product of

𝐻
2
(C) = {𝑓 ∈𝐻 (C) : ∫

C

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨

2
𝑒
−|𝑧|

2
𝑑𝑧<∞} , (29)

where 𝑑𝑧 is the Lebesgue measure on C.

Let𝐷 be the open unit disk inC. Denote by Γ
𝑟
, 0 < 𝑟 ≤ ∞,

the set of all analytic functions on 𝑟𝐷 if 𝑟 < ∞ and on C if
𝑟 = ∞, 𝛾(𝑡) = ∑

∞

𝑘=0 𝛾𝑘𝑡
𝑘 such that 𝛾

𝑘
> 0, 𝑘 ∈ Z

+
. Let Ω

be a stand for both 𝑟𝐷 and C. Evidently, Γ
𝑟
is an open convex

subset of the Fréchet space of all analytic functions 𝐻(Ω) on
Ω.

Proposition 10. For a given 𝛾(𝑡) = ∑
∞

𝑘=0 𝛾𝑘𝑡
𝑘

∈ Γ
𝑟
and a

Hilbert space 𝐸 the function

𝜂
(𝛾)

(𝑥) =

∞

∑

𝑘=0
𝛾
𝑘
𝑥
𝑘 (30)

is analytic on the ball 𝑟𝐵 ⊂ 𝐸 (where 𝑟𝐵 = 𝐸 if 𝑟 = ∞) toF
𝜂
(𝛾)

and

󵄩󵄩󵄩󵄩󵄩
𝜂
(𝛾)

(𝑥)
󵄩󵄩󵄩󵄩󵄩

2
𝜂
= ⟨𝜂

(𝛾)
(𝑥) | 𝜂

(𝛾)
(𝑥)⟩

𝜂
= 𝛾 (‖𝑥‖

2
𝐸
) (31)

for every 𝑥 ∈ 𝑟𝐵.

The proof is in [15, Proposition 4.28].
We say that 𝜂

(𝛾) is generated by 𝛾. Note that the repro-
ducing function 𝜂

(𝑚) in Example 6 is generated by 𝛾(𝑡) =

1/(1 − 𝑡)
𝑚 and the reproducing function 𝜂 in Example 9 is

generated by 𝛾(𝑡) = 𝑒
𝑡.

Corollary 11. Let 𝛾(𝑡) = ∑
∞

𝑘=0 𝛾𝑘𝑡
𝑘, 𝛾

𝑘
> 0, be an entire

function of one complex variable such that 𝛾
𝑛+1/𝛾𝑛 decreases

to zero as n increases to∞. Then 𝜂
(𝛾) is a reproducing function

of a Hilbert spaceH
𝜂
(𝛾) of entire functions on the Hilbert space

𝐸.

Let 𝑔(𝑡) = ∑
∞

𝑛=0 𝑔𝑛𝑡
𝑛 be an entire function of one complex

variable. We are interested to know the following: Under
which conditions does 𝑔 ∘ 𝜑(𝑥) = 𝑔(𝜑(𝑥)) belong to H

𝜂
for

a given 𝜑 ∈ 𝐸
∗? Let 𝜑 = ∑

∞

𝑛=1 𝜑𝑛(⋅ | 𝑒𝑛)𝐸. It is easy to see that
if 𝑤 = ∑

∞

𝑛=0 𝑤𝑛
∈ F

𝜂
where 𝑤0 = 𝑔0 and

𝑤
𝑛
= 𝑔

𝑛

∞

∑

𝑖=1
(𝜑

𝑖
𝑒
𝑖
)
⊗𝑛

= 𝑔
𝑛

∑

|(𝑘)|=𝑛

∑

[𝑖]∈N𝑛

𝑛!

(𝑘)!
𝜑
(𝑘)

[𝑖]
𝑒
⊗(𝑘)

[𝑖]
, (32)

then 𝑔 ∘ 𝜑(𝑥) = ⟨𝜂(𝑥) | 𝑤⟩
𝜂
. So

‖𝑤‖
2
𝜂
=

∞

∑

𝑛=0

󵄨󵄨󵄨󵄨𝑔𝑛
󵄨󵄨󵄨󵄨

2
∑

|(𝑘)|=𝑛

∑

[𝑖]∈N𝑛

𝑛!

(𝑘)!

󵄨󵄨󵄨󵄨󵄨
𝜑
(𝑘)

[𝑖]

󵄨󵄨󵄨󵄨󵄨

2 󵄩󵄩󵄩󵄩󵄩𝑒
⊗(𝑘)

[𝑖]

󵄩󵄩󵄩󵄩󵄩

2

=

∞

∑

𝑛=0

󵄨󵄨󵄨󵄨𝑔𝑛
󵄨󵄨󵄨󵄨

2
∑

|(𝑘)|=𝑛

∑

[𝑖]∈N𝑛

𝑛!
󵄨󵄨󵄨󵄨󵄨
𝜑
(𝑘)

[𝑖]

󵄨󵄨󵄨󵄨󵄨

2

(𝑘)!𝑐
(𝑘)

[𝑖]

.

(33)
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If 𝜂 is generated by an analytic function 𝛾(𝑡) in the means
of (30), then (33) can be rewritten by

‖𝑤‖
2
𝜂
=

∞

∑

𝑛=0

󵄨󵄨󵄨󵄨𝑔𝑛
󵄨󵄨󵄨󵄨

2

𝛾
𝑛

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩

2𝑛
. (34)

So we have proved the following proposition.

Proposition 12. Let 𝑔(𝑡) = ∑
∞

𝑛=0 𝑔𝑛𝑡
𝑛 be an entire function of

one complex variable. Then 𝑔 ∘ 𝜑(𝑥) = 𝑔(𝜑(𝑥)) belongs toH
𝜂

for a given 𝜑 ∈ 𝐸
∗ if and only if

∞

∑

𝑛=0

󵄨󵄨󵄨󵄨𝑔𝑛
󵄨󵄨󵄨󵄨

2
∑

|(𝑘)|=𝑛

∑

[𝑖]∈N𝑛

𝑛!
󵄨󵄨󵄨󵄨󵄨
𝜑
(𝑘)

[𝑖]

󵄨󵄨󵄨󵄨󵄨

2

(𝑘)!𝑐
(𝑘)

[𝑖]

< ∞. (35)

And if 𝜂 is generated by an analytic function 𝛾(𝑡) in the means
of (30), then the condition may be written by

∞

∑

𝑛=0

󵄨󵄨󵄨󵄨𝑔𝑛
󵄨󵄨󵄨󵄨

2

𝛾
𝑛

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩

2𝑛
< ∞. (36)

In the case when 𝑔(𝑡) = 𝑒
𝑡 we can write

∞

∑

𝑛=0
∑

|(𝑘)|=𝑛

∑

[𝑖]∈N𝑛

󵄨󵄨󵄨󵄨󵄨
𝜑
(𝑘)

[𝑖]

󵄨󵄨󵄨󵄨󵄨

2

𝑛! (𝑘)!𝑐
(𝑘)

[𝑖]

< ∞,

∞

∑

𝑛=0

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩

2𝑛

(𝑛!)
2
𝛾
𝑛

< ∞,

(37)

respectively.

4. Differentiation and Translation
Operators on H

𝜂

Let us consider a differentiation operator 𝐷
𝑎
: H

𝜂
→ H

𝜂
:

𝐷
𝑎
(𝑓 (𝑥)) =

∞

∑

𝑖=1
𝑎
𝑖

𝜕

𝜕𝑥
𝑖

𝑓, (38)

where 𝑎 = (𝑎
𝑖
) ∈ ℓ2, 𝑥 ∈ 𝐸.

𝐷
𝑎
is well defined on an appropriated dense subspace in

H
𝜂
containing linear functionals. It is clear that𝐷

𝑎
is defined

on functions 𝑒𝜑, 𝜑 ∈ 𝐸
∗, if 𝑒𝜑 ∈ H

𝜂
.

We will make use of the following two lemmas (cf. [7]).

Lemma 13. B = {𝑒
𝜑

: 𝜑 ∈ 𝐸
∗, 𝑒𝜑 ∈ H

𝜂
} is a linearly

independent subset ofH
𝜂
.

Proof. Let {𝑒𝜑𝑖}
𝑖∈𝐼

be a maximal linearly independent subset
ofB, where 𝐼 is a set of indexes. Fix 𝜑 ∈ 𝐸

∗, and assume that
there exist nonzero constants 𝑐

𝑖1
, . . . , 𝑐

𝑖𝑟
∈ C so that

𝑐
𝑖1
𝑒
𝜑𝑖1 + ⋅ ⋅ ⋅ + 𝑐

𝑖𝑟
𝑒
𝜑𝑖𝑟 = 𝑒

𝜑
. (39)

Let 𝑎 ∈ 𝐸 be arbitrary. Applying the differentiation operator
𝑓 󳨃→ 𝐷

𝑎
𝑓(⋅) in (39), it follows that

𝑐
𝑖1
𝜑
𝑖1
(𝑎) 𝑒

𝜑𝑖1 + ⋅ ⋅ ⋅ + 𝑐
𝑖𝑟
𝜑
𝑖𝑟
(𝑎) 𝑒

𝜑𝑖𝑟 = 𝜑 (𝑎) 𝑒
𝜑
. (40)

Since {𝑒
𝜑𝑖}

𝑖∈𝐼
is linearly independent and 𝑐

𝑖1
, . . . , 𝑐

𝑖𝑟
are

nonzero, by (39) and (40) we have

𝜑
𝑖1
(𝑎) = ⋅ ⋅ ⋅ = 𝜑

𝑖𝑟
(𝑎) = 𝜑 (𝑎) . (41)

Hence the set {𝜑
𝑖
}
𝑖∈𝐼

such that {𝑒
𝜑𝑖}

𝑖∈𝐼
is maximal linearly

independent subset which coincides with 𝐸
∗ and so {𝑒

𝜑𝑖}
𝑖∈𝐼

=

B.

Lemma 14. Let 𝑈 be a nonempty open subset of a ball in 𝐸
∗

with radius 𝛿 and center in 0. Suppose that 𝑒𝜑 ∈ H
𝜂
for every

𝜑 ∈ 𝑈. Then 𝑆 = span{𝑒𝜑 : 𝜑 ∈ 𝑈} is dense inH
𝜂
.

Proof. It is sufficient to establish that 𝜑
𝑛

∈ 𝑆 for all 𝜑 ∈

𝑈 and 𝑛 ≥ 1. To test this assertion we use the method
of mathematical induction. When 𝑛 = 1 the statement is
obvious.

Suppose the claim is true for 𝑛 ≤ 𝑘 − 1. We prove this for
𝑛 = 𝑘. Since 𝑡𝜑 ∈ 𝑈, then for each 0 < 𝑡 < 1 we have

𝑔
𝑡
=

1
𝑡𝑘

(𝑒
𝑡𝜑

− 1− 𝑡𝜑 −
[𝑡𝜑]

2

2!
− ⋅ ⋅ ⋅ −

[𝑡𝜑]
𝑘−1

(𝑘 − 1)!
) ∈ 𝑆. (42)

So given 𝑥 ∈ 𝐸,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝑔
𝑡
−

𝜑
𝑘

𝑘!
) (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1
𝑡𝑘

[𝑒
𝑡𝜑

− 1− 𝑡𝜑 −
[𝑡𝜑]

2

2!
− ⋅ ⋅ ⋅ −

[𝑡𝜑]
𝑘

𝑘!
] (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1
𝑡𝑘

∑

𝑛≥𝑘+1

[𝑡𝜑]
𝑛

𝑛!
(𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑡 ∑

𝑛≥𝑘+1
𝑡
𝑛−𝑘−1

󵄨󵄨󵄨󵄨𝜑 (𝑥)
󵄨󵄨󵄨󵄨

𝑛

𝑛!

≤ 𝑡𝑒
𝛿‖𝑥‖𝐸 .

(43)

Thus, 𝑔
𝑡

→ 𝜑
𝑘
/𝑘! for 𝑡 → 0 in H

𝜂
and 𝜑

𝑘
/𝑘! ∈ 𝑆. So the

claim holds.

We will be interested in the operators of differentiation
and translation on the Hilbert spaceH

𝜂
.

Theorem 15. The operator 𝐷
𝑎
is bounded on H

𝜂
if and only

if the set {𝑘
𝑗
√𝑐

(𝑘)

[𝑖]
/√𝑐

(𝑘
𝑗
󸀠
)

[𝑖]
} is bounded, where coefficients 𝑐

(𝑘)

[𝑖]

are defined in (13), 𝑛 ∈ N, [𝑖] ∈ N𝑛, (𝑘) ∈ Z𝑛

+
, 𝑛 = |(𝑘)|, and

(𝑘
𝑗
󸀠

) = (𝑘1, 𝑘2, . . . , 𝑘𝑗 − 1, . . . , 𝑘
𝑛
).

Proof. The functions

E
(𝑘)

[𝑖]
(𝑥) =

(𝑥 | 𝑒
⊗(𝑘)

[𝑖]
)

󵄩󵄩󵄩󵄩󵄩
𝑒
⊗(𝑘)

[𝑖]

󵄩󵄩󵄩󵄩󵄩𝜂

= (𝑥 | 𝑒
⊗(𝑘)

[𝑖]
)√𝑐

(𝑘)

[𝑖]
= √𝑐

(𝑘)

[𝑖]
𝑥
(𝑘)

[𝑖]

= √𝑐
𝑘1
𝑖1

⋅ ⋅ ⋅ 𝑐
𝑘𝑛

𝑖𝑛
𝑥
𝑘1
𝑖1

⋅ ⋅ ⋅ 𝑥
𝑘𝑛

𝑖𝑛

(44)
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form an orthonormal basis forH
𝜂
. Define the 1th-derivative

of E(𝑘)

[𝑖]
:

𝜕

𝜕𝑥
𝑖1

E
(𝑘)

[𝑖]
(𝑥) 𝑘1√𝑐

(𝑘)

[𝑖]
𝑥
𝑘1−1
𝑖1

⋅ ⋅ ⋅ 𝑥
𝑘𝑛

𝑖𝑛

= 𝑘1

√𝑐
(𝑘)

[𝑖]

√𝑐
(𝑘

1󸀠
)

[𝑖]

⋅ √𝑐
(𝑘

1󸀠
)

[𝑖]
𝑥
𝑘1−1
𝑖1

⋅ ⋅ ⋅ 𝑥
𝑘𝑛

𝑖𝑛

= 𝑘1

√𝑐
(𝑘)

[𝑖]

√𝑐
(𝑘

1󸀠
)

[𝑖]

E
(𝑘

1󸀠
)

[𝑖]
(𝑥) ,

(45)

where (𝑘
1󸀠
) = (𝑘1 − 1, 𝑘2, . . . , 𝑘𝑛).

We denote 𝛾
𝑘𝑗

= 𝑘
𝑗
√𝑐

(𝑘)

[𝑖]
/√𝑐

(𝑘
𝑗
󸀠
)

[𝑖]
, (𝑘𝑗

󸀠

) = (𝑘1, 𝑘2, . . . , 𝑘𝑗 −

1, . . . , 𝑘
𝑛
), (𝑗 = 1, . . . , 𝑛).

Let 𝑅 = sup{𝛾
𝑘𝑗

: 𝑘
𝑗
≥ 1}. If 𝐷

𝑎
is bounded, then for each

positive integer 𝑘
𝑗

𝛾
𝑘𝑗

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕

𝜕𝑥
𝑖𝑗

E
(𝑘)

[𝑖]
(𝑥)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜂

≤
󵄩󵄩󵄩󵄩𝐷𝑎

󵄩󵄩󵄩󵄩 ⋅
󵄩󵄩󵄩󵄩󵄩
E
(𝑘)

[𝑖]

󵄩󵄩󵄩󵄩󵄩𝜂
=

󵄩󵄩󵄩󵄩𝐷𝑎

󵄩󵄩󵄩󵄩 . (46)

So 𝑅 < ∞.
Conversely, if 𝑅 < ∞, then for every holomorphic

polynomial 𝑓, we have

𝐷
𝑎
𝑓 = ∑

𝑡,𝑘𝑗

∑

(𝑘),[𝑖]

𝑎
𝑡
⋅ 𝛾
𝑘𝑗

⟨𝑓 | E
(𝑘)

[𝑖]
⟩
𝜂
E
(𝑘
𝑗
󸀠

)

[𝑖]
,

󵄩󵄩󵄩󵄩𝐷𝑎
𝑓
󵄩󵄩󵄩󵄩

2
= ∑

𝑡,𝑘𝑗

∑

(𝑘),[𝑖]

𝑎
2
𝑡
⋅ 𝛾

2
𝑘𝑗

󵄨󵄨󵄨󵄨󵄨󵄨
⟨𝑓 | E

(𝑘)

[𝑖]
⟩
𝜂

󵄨󵄨󵄨󵄨󵄨󵄨

2
≤ 𝑅

2 󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2
.

(47)

Since the polynomials are dense inH
𝜂
, it follows immediately

that 𝐷
𝑎
is bounded onH

𝜂
, with norm ≤ 𝑅.

For a given 𝑎 ∈ 𝐸 let an operator 𝑇
𝑎

: H
𝜂

→ H
𝜂
be

defined as

𝑇
𝑎
(𝑓) (𝑥) = 𝑓 (𝑥 + 𝑎) =

∞

∑

𝑛=0

1
𝑛!

𝐷
𝑛

𝑎
𝑓 (𝑥) , (48)

where 𝐷
𝑛

𝑎
𝑓(𝑥) is the 𝑛th-Fréchet derivative of 𝑓 at the point

𝑥 ∈ 𝐸 towards 𝑎.

Corollary 16. Suppose the set {𝑘
𝑗
√𝑐

(𝑘)

[𝑖]
/√𝑐

(𝑘
𝑗
󸀠
)

[𝑖]
} is bounded.

Then each translation operator 𝑇
𝑎
is bounded onH

𝜂
, and

𝑇
𝑎
=

∞

∑

𝑛=0

1
𝑛!

𝐷
𝑛

𝑎
, (49)

where the series on the right converges in the norm operator
topology.

Proof. It is well known, and not difficult to show, that 𝑇
𝑎

=

∑
∞

𝑛=0(1/𝑛!)𝐷
𝑛

𝑎
holds for the full spaceH

𝜂
of entire functions,

in the sense that when each term of the series on the right is
applied to a function 𝑓 ∈ H

𝜂
, the result converges uniformly

on bounded subsets of 𝐸 to the function 𝑓(𝑥 + 𝑎) (see, e.g.,
[7]).

Once we know this, it only remains to note that since
𝐷
𝑎
is bounded (Theorem 15), the series on the right side of

𝑇
𝑎
= ∑

∞

𝑛=0(1/𝑛!)𝐷
𝑛

𝑎
converges in operator norm to a bounded

operator onH
𝜂
, and this bounded operator must be 𝑇

𝑎
.

It is relevant to remark that this result can be represented
in the form 𝑇

𝑎
= 𝑒

𝐷𝑎 whenever 𝐷
𝑎
is bounded onH

𝜂
.

Theorem 17. Let 𝐸 be a separable Hilbert space, 𝑥 ∈ 𝐸, 𝑎 ∈

𝐸, 𝑎 ̸= 0, and the norm ‖ ⋅ ‖
𝜂
is defined on F

𝜂
such that

the differentiation operator 𝐷
𝑎
is continuous, and 𝜂 satisfies

condition of Proposition 12 for 𝑔(𝑡) = 𝑒
𝑡 and every linear

functional 𝜑 ∈ 𝐸
∗, ‖𝜑‖ < 𝛿 for some 𝛿 > 0. That is, 𝑒𝜑 ∈ H

𝜂
,

‖𝜑‖ < 𝛿. Then the operator

𝑇
𝑎
: H

𝜂
󳨀→ H

𝜂
,

𝑓 (𝑥) 󳨃󳨀→ 𝑓 (𝑥+ 𝑎)

(50)

is hypercyclic.

Proof. Let 𝑎 be fixed element from 𝐸. Consider the function
ℎ : 𝛿𝐵

∗
→ C defined by

ℎ (𝜑) =

∞

∑

𝑛=1

1
𝑛!

𝜑
𝑛
(𝑎) , (51)

where 𝛿𝐵
∗

= {𝜑 ∈ 𝐸
∗

: ‖𝜑‖ < 𝛿}. It is clear that ℎ : 𝐸
∗

→ C

is continuous and nonconstant function. So the sets,

𝑈 := {𝜑 ∈ 𝛿𝐵
∗
:
󵄩󵄩󵄩󵄩ℎ (𝜑)

󵄩󵄩󵄩󵄩 < 1} ,

𝑉 := {𝜑 ∈ 𝛿𝐵
∗
:
󵄩󵄩󵄩󵄩ℎ (𝜑)

󵄩󵄩󵄩󵄩 > 1} ,
(52)

where ‖ℎ(𝜑)‖ = |∑
∞

𝑛=1(1/𝑛!)𝜑
𝑛
(𝑎)|, are both open and

nonempty. Hence, according to Lemma 14,

𝑋0 = span {𝑒
𝜑
: 𝜑 ∈𝑈} ,

𝑌0 = span {𝑒
𝜑
: 𝜑 ∈𝑉}

(53)

are both dense subspaces of H
𝜂
. Next, notice that if 𝑇 = 𝑇

𝑎
,

given 𝜑 ∈ 𝛿𝐵
∗,

𝑇 (𝑒
𝜑
) =

∞

∑

𝑛=0

1
𝑛!

𝐷
𝑛

𝑎
(𝑒
𝜑
) =

∞

∑

𝑛=0

1
𝑛!

𝜑
𝑛
(𝑎) 𝑒

𝜑
= ℎ (𝜑) 𝑒

𝜑
. (54)

By (53),

𝑇
𝑛
󳨀→ 0 for 𝑛 󳨀→ ∞ pointwise on 𝑋0. (55)

Also, by Lemma 13 there exists a linear map 𝑆 : 𝑌0 → 𝑌0
determined by

𝑆 (𝑒
𝜑
) = [ℎ (𝜑)]

−1
𝑒
𝜑
, (𝜑 ∈ 𝐸

∗
) (56)
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which by (53) and (56) satisfies

𝑆
𝑛
󳨀→ 0 for 𝑛 󳨀→ ∞ pointwise 𝑌0,

𝑇𝑆 = id
𝑌0

on 𝑌0.
(57)

By Theorem 1 (Hypercyclicity Criterion), 𝑇 = 𝑇
𝑎
is hy-

percyclic.

Note that the translation operator 𝑓(𝑥) 󳨃→ 𝑓(𝑥 + 𝑎)

is not hypercyclic in 𝐻
2
(𝐸) in Example 9, because it is

discontinuous (see [23]).
Now we consider an example of a special Hilbert space of

analytic functions satisfying conditions of Theorem 17.

Example 18. Let us denote byH
𝜂
(𝐸), where

𝜂 (𝑥) =

∞

∑

𝑛=0

𝑥
⊗𝑛

(𝑛!)
2 , (58)

a Hilbert space which consists of bounded-type entire func-
tions on 𝐸 and

󵄩󵄩󵄩󵄩󵄩
𝑒
⊗(𝑘)

[𝑖]

󵄩󵄩󵄩󵄩󵄩

2

𝜂
= 𝑛!𝑘1! ⋅ ⋅ ⋅ 𝑘𝑛!. (59)

The reproducing kernel of this space is

𝑘 (𝑧, 𝑥) = ⟨𝜂 (𝑥) | 𝜂 (𝑧)⟩
𝜂
=

∞

∑

𝑛=0

⟨𝑥
⊗𝑛

| 𝑧
⊗𝑛

⟩
𝜂

(𝑛!)
4

=

∞

∑

𝑛=0
∑

(𝑘)∈Z𝑛
+

∑

[𝑖]∈N𝑛

1
(𝑛!)

4 (
𝑛!

𝑘1! ⋅ ⋅ ⋅ 𝑘𝑛!
)

2
󵄩󵄩󵄩󵄩󵄩
𝑒
⊗𝑘1
𝑖1

⋅ ⋅ ⋅ 𝑒
⊗𝑘𝑛

𝑖𝑛

󵄩󵄩󵄩󵄩󵄩

2

𝜂
𝑥
𝑘1
𝑖1

⋅ ⋅ ⋅ 𝑥
𝑘𝑛

𝑖𝑛
𝑧
𝑘1
𝑖1

⋅ ⋅ ⋅ 𝑧
𝑘𝑛

𝑖𝑛
=

∞

∑

𝑛=0
∑

(𝑘)∈Z𝑛
+

∑

[𝑖]∈N𝑛

1
𝑛!

1
𝑘1! ⋅ ⋅ ⋅ 𝑘𝑛!

𝑥
(𝑘)

[𝑖]
𝑧
(𝑘)

[𝑖]

=

∞

∑

𝑛=0

(𝑥 | 𝑧)
𝑛

𝐸

(𝑛!)
2 .

(60)

Since the set {𝑛(1/𝑛!)/(1/(𝑛 − 1)!)} = {1} is bounded, the
translation operator 𝑇

𝑎
is bounded and since

∞

∑

𝑛=0

(𝑛!)
2 󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩

2𝑛

(𝑛!)
2 =

∞

∑

𝑛=0

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩

2𝑛
< ∞ (61)

for ‖𝜑‖ < 1, 𝜂 satisfies conditions of Proposition 12 and so 𝑇
𝑎

is hypercyclic onH
𝜂
(𝐸).
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