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measures. For such analytic functions we establish a Cauchy type integral formula and
describe natural domains. Also we show some relations between constructed spaces of
analytic functions and the symmetric Fock space.
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1. Introduction

Let Ω be a domain in a complex Banach Space X . The Hardy space H∞(Ω) which is the uniform algebra of bounded
analytic functions onΩ is a standard object of Infinite-Dimensional Complex Analysis andwas investigated bymany authors
(see for example [1–6] and others). However, it is not so clear what are infinite-dimensional analogues of Hp(Ω) spaces if
1 ≤ p < ∞. In this work we concentrate in an important partial case when p = 2 andΩ is a special domain.

Consider the Hardy space H2(Bn) of analytic functions on the open unit Hilbertian ball Bn ⊂ Cn with the unit sphere Sn
and the scalar product ⟨· | ·⟩Cn . The classical Cauchy integral formula

f (x) =

∫
Sn

f (a)da
(1 − ⟨x | a⟩Cn)n

, x = (x1, . . . , xn) ∈ Bn (1)

applied for a function f ∈ H2(Bn) actually describes the following representation

f (x) =


f (·)

 1
(1 − ⟨x | ·⟩Cn)n


H2(Bn)

, x ∈ Bn.

In other words, the Cauchy integral kernel is a partial case of abstract reproducing kernels and H2(Bn) is a reproducing
kernel space (see [7]).
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A natural question arise: What is an analogue of formula (1) for infinite-dimensional Banach spaces? Unfortunately, there
is no ‘‘canonical’’ Cauchy formula for the unit ball of infinite-dimensional Hilbert space. Indeed, it is well known in Complex
Analysis (see [8]), that polynomials

p(k)n (x) = xk11 · · · xknn with (k) = (k1, . . . , kn) ∈ Zn
+

form an orthogonal basis in H2(Bn) andp(k)n

2
H2(Bn)

=
(n − 1)!k1! · · · kn!

(k1 + · · · + kn + n − 1)!
.

Thus,
p(k)n


H2(Bn)

→ 0 if the dimension n approaches infinity.

Consider now the Hardy space H2(B∞
n ) of analytic functions on the open unit polydisk

B∞

n =


x = (x1, . . . , xn) ∈ Cn: |xj| < 1, j = 1, . . . , n


that is the unit ball in the n-dimensional ℓ∞-space. The corresponding Cauchy formula

f (x) =

∫
S∞
n

f (a)
n∏

i=1

1
1 − xiai

da1 · · · dan, x ∈ B∞

n

with S∞
n =


z ∈ C: |z| = 1


can be extended to infinite dimensions. In this case polynomials p(k)n still form an orthogonal

basis in H2(B∞
n ) but

p(k)n


H2(B∞

n )
= 1 for every (k) ∈ Zn

+
. Since B∞

n is the unit ball of the n-dimensional space ℓ∞, we can

take the unit ball

B∞
=


x = (xj) ∈ ℓ∞: |xj| < 1, j ∈ N


as an infinite-dimensional analogue of the polydisk. The condition that polynomials

p(k)n : n ∈ N, (k) ∈ Zn
+


form an orthonormal basis uniquely defines a Hilbertian normon the linear span of this polynomials. However, if we consider
the completion of this linear span, we get some analytic functions which are well-defined on a dense subset

ℓ1


B∞

of the unit ball of ℓ∞. We can still see (cf. [4]) that an appropriated domain for analytic functions belonging to H2(B∞) is
also

ℓ2


B∞,

where the space ℓ2 is naturally embedded into ℓ∞.
These examples suggest us to consider infinite Cartesian products of finite-dimensional balls in a Hilbert space as natural

domains for Hardy type classes of analytic functions. Each of these domains has a compact group of unitary operators and
we can consider the Haar measure for this group and get an integral representation for analytic functions.

Notice that an another approach to Hilbertian Hardy type classes, being reproducing kernel spaces on infinite-
dimensional balls, which generally do not have the form of a polydisk, using the Bishop–De Leeuw theorem about
representing measures, has been proposed in [7].

In the given work the case of topological compact groups G, which look like the countable Cartesian products of full
finite-dimensional unitary groups with arbitrary dimensions, acting on a corresponding Hilbert space

E = ℓ2G,

is considered, where ℓ2G denotes a Hilbert space naturally associated with all irreducible representations of G.
In the space L2(dς) of quadratically integrable functions with respect to a G-invariant probability measure ς a

complex closed subspace H2(dς) generated by the orthogonal basis of homogeneous Hilbert–Schmidt polynomials on E
is researched.

We prove that H2(dς) have a structure of Hardy type space of analytic functions on the open domain

ℓ2√nr


B∞

G

of the appropriate weighted infinite-dimensional Hilbert space ℓ2√nr
, densely embedded in the initial Hilbert space E. A

Cauchy type integral formula for analytic extensions on the open domain

ℓ2√nr


B∞

G

of all function, belonging to H2(dς), is established in Theorem 7.1.



558 O. Lopushansky, A. Zagorodnyuk / Nonlinear Analysis 74 (2011) 556–572

It is observed also that the Hardy type space H2(dς) in some sense has the same orthogonal basis, as a Hermitian dual
symmetric Fock space F∗, associated with the Hilbert space E. As a consequence, in the case of the infinite-dimensional
polydisk group G, having only 1-dimensional irreducible unitary representations, we obtain that the Hardy type space
H2(dς) is continuously and densely embedded in the dual symmetric Fock space F∗. In the general case we have proved
that functions in H2(dς) agree with functions in F∗ on common domains.

2. Preliminaries

Denote by Ur = U(nr) the group of all linear unitary operators in an nr -dimensional complex Hilbert space Cnr with the
scalar product ⟨· | ·⟩Cnr and an orthonormal basis

Er :=

ejr (1), . . . , ejr (nr )


.

A given subsequence {nr : r ∈ N} of natural numbers corresponds to the Cartesian product

G := "
r∈N

Ur =


U = (Ur):Ur ∈ Ur


,

endowed with the product’s topology, which is an infinite-dimensional compact topological group. As it is well known (see
e.g. [9]), the compact group G can be unitary represented on the countable orthogonal Hilbertian sum

E := ℓ2G,

ℓ2G =


r∈N

Er =


x = (xr): xr ∈ Cnr , ‖x‖ :=

−
r∈N

‖xr‖2
Cnr

1/2
< ∞


with the scalar product ⟨x | y⟩ :=

∑
r ⟨xr | yr⟩Cnr , where


Er : r ∈ N


is a sequence of G-irreducible subspaces such that

Er


Es = {0} for all r ≠ s

and each
Er is unitary equivalent to Cnr

for the corresponding r ∈ N. For simplicity we identify any element xr ∈ Cnr with its range (0, . . . , 0, xr , 0, . . .) ∈ E under
the canonical embedding Cnr # E. So, we can consider in E the orthonormal basis

E :=


r∈N

Er =

ej

j∈N

indexed such that j < i for all ej ∈ Er and ei ∈ Er+1. Let

B :=

x ∈ E: ‖x‖ < 1


denote the open Hilbertian ball in E. We use

E∗
=

x∗

:= ⟨· | x⟩ : x ∈ E


to denote of the Hermitian dual space.
Let ⊗

n E be the algebraic tensor product of n copies of E endowed with the scalar product
x1 ⊗ · · · ⊗ xn | y1 ⊗ · · · ⊗ yn


= ⟨x1 | y1⟩ · · · ⟨xn | yn⟩

and ⊗
n
h E denotes a completion of ⊗n E by the Hilbertian norm

‖u‖⊗
n
h E =

−
(j)

|c(j)|2
1/2

, u =

−
(j)

c(j) ej1 ⊗ · · · ⊗ ejn ∈ ⊗
n E

with c(j) ∈ C and (j) := (j1, . . . , jn) ∈ Nn. It is easy to see that the system
ej1 ⊗ · · · ⊗ ejn : ej1 , . . . , ejn ∈ E, (j) ∈ Nn


forms an orthonormal basis in ⊗

n
h E. For Hermitian dual Hilbert spaces the natural unitary isometry

⊗
n
h E
∗

= ⊗
n
h E

∗

is true. Thus every element u ∈ ⊗
n
h E uniquely generates a continuous linear form

u∗
:= ⟨· | u⟩ ∈ ⊗

n
h E

∗.

IfS(n) ∋ s: {1, . . . , n} −→ {s(1), . . . , s(n)} denotes the group of permutations, then the corresponding symmetrization
operator

sn:⊗n
h E ∋ x1 ⊗ · · · ⊗ xn −→ x1 ⊙ · · · ⊙ xn ∈ ⊙

n
h E

x1 ⊙ · · · ⊙ xn :=
1
n!

−
s∈S(n)

xs(1) ⊗ · · · ⊗ xs(n)
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is a continuous orthogonal projection onto ⊙
n
h E. Hence

⊗
n
h E =


⊙

n
h E


Ker sn,

where Ker sn is the kernel of sn. Denote

x⊗n
:= x ⊗ · · · ⊗ x ∈ ⊙

n
h E, x ∈ E.

So, for every element fn ∈ ⊗
n
h E there exists a function

f ∗

n (x) :=

x⊗n

| fn

, x ∈ E,

which is usually called an n-homogeneous Hilbert–Schmidt polynomial on E. The set of all such polynomials we denote by
P n

h (E).
Let [j] denote a multi-index

(j1, . . . , jn) ∈ Nn such that j1 ≤ · · · ≤ jn,

and (k) denotes an arbitrary multi-index (k1, . . . , kn) ∈ Zn
+
. Use the standard notations

|(k)| := k1 + · · · + kn and (k)! := k1! · · · kn!.

It is well known (see e.g. [10]) that the elements

En :=


e⊗(k)
[j] := e⊗k1

j1
⊙ · · · ⊙ e⊗kn

jn : [j] ∈ Nn, (k) ∈ Zn
+
, |(k)| = n


form an orthogonal basis in ⊙

n
h E. If n = |(k)| = 0, we set e⊗(k)

[j] = 1. So,
E0 = {1} and E1 = E .

Proposition 2.1. The system of elements
ω⊗n

[j](k)(ε1, . . . , εn) ∈ ⊙
n
h E: |(k)| = n, ε1, . . . , εn ∈ {−1, 1}


with [j] = (j1, . . . , jn) ∈ Nn and (k) = (k1, . . . , kn) ∈ Zn

+
, where each element

ω[j](k)(ε1, . . . , εn) :=
ε1ej1 + · · · + εnejn

√
n

∈ E

with the unit norm is such that any addend ejm occurs km times in the set

ej1 , . . . , ejn


, is total in the space ⊙

n
h E for all n ∈ N.

As a consequence, the one-to-one adjoint-linear corresponding to

⊙
n
h E ∋ fn � f ∗

n ∈ P n
h (E)

holds.

Proof. By the well-known polarization formula (see e.g. [11]) we obtain

e⊗(k)
[j] =

(
√
n)n

2nn!

n−
l=1

−
εl=±1

ε1 · · · εn ω
⊗n
[j](k)(ε1, . . . , εn), |(k)| = n.

Therefore, if there exists an element fn ∈ ⊙
n
h E such that for every multi-index [j] ∈ Nn, (k) ∈ Zn

+
ω⊗n

[j](k)(ε1, . . . , εn) | fn

⊗

n
h E

= 0, then

e⊗(k)
[j] | fn


⊗

n
h E

= 0.

The elements

e⊗(k)
[j]


form a basis in En

h, hence fn = 0. So, the set
ω⊗n

[j](k)(ε1, . . . , εn)


is total in the space ⊙
n
h E. �

Remark 2.2. Using Proposition 2.1 we identify algebraically and topologically the space of Hilbert–Schmidt polynomials
P n

h (E)with the Hermitian dual Hilbert space
⊙

n
h E
∗

= ⊙
n
h E

∗.

In the symmetric Fock space, generated by the Hilbert space E,

F :=


n∈Z+


⊙

n
hE

, ⊙

0
h E = C,
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the system

EF :=


En: n ∈ Z+


forms an orthogonal basis (see e.g. [10, 2.2.2]). We also consider the corresponding basis of Hilbert–Schmidt homogeneous
polynomials

E ∗

F :=


E ∗

n : n ∈ Z+


,

E ∗

n :=


e∗(k)
[j] = e∗k1

j1
· · · e∗kn

jn ∈ P n
h (E): e

⊗(k)
[j] ∈ En, |(k)| = n


,

generated by the Riesz involution x −→ x∗ on E. Clearly such polynomials form an orthogonal basis in the Hermitian dual
symmetric Fock space F∗.

3. Representing invariant measures

Consider the Banach space

ℓ∞

G =


x = (xr) ∈ "

r∈N
Cnr : ‖x‖ℓ∞G = sup

r∈N
‖xr‖Cnr < ∞


and the compact metric spaces

S∞

G := "
r∈N

Sr , Sr :=

xr ∈ Cnr : ‖xr‖Cnr = 1


,

K∞

G := "
r∈N

Kr , Kr :=

xr ∈ Cnr : ‖xr‖Cnr ≤ 1


,

endowed with the product topologies. It is easy to see that K∞
G coincides with a norm closed unit ball of ℓ∞

G endowed with
the weak-star topology. The contractive embedding

E # ℓ∞

G , ‖x‖ℓ∞G ≤ ‖x‖, x ∈ E

holds. A norm open unit ball in ℓ∞
G we denote by

B∞

G :=


x ∈ ℓ∞

G : ‖x‖ℓ∞G < 1

.

As well we consider the uniform algebra of all continuous complex functions ψ on K∞
G ,

C

K∞

G


endowed with the norm ‖ψ‖

C

K∞

G

 = sup
x∈K∞

G

|ψ(x)|.

Clearly C

K∞

G


contains the unity function 1K∞

G
.

Remark 3.1. Note that each linear functional e∗

j ∈ E ∗
F can be uniquely extended to a weakly-star continuous linear

functional on ℓ∞
G which we denote by the same symbol. Up to this extension we can write

E ∗

F ⊂ C

K∞

G


.

Let A

K∞

G


be a closure in C


K∞

G


of the complex linear span of extended Hilbert–Schmidt polynomials E ∗

F . Clearly, A

K∞

G


is a uniform subalgebra in the algebra C


K∞

G


.

Recall that an element x ∈ K∞
G is a peak point if there is a function f ∈ A


K∞

G


such that f (x) = 1 and |f (y)| < 1 for all

y ∈ K∞
G if y ≠ x.

Proposition 3.2. Let P be the set of peak points and ∂A denotes the Choquet boundary of A(K∞
G ). Then

S∞

G = P = ∂A.

For the uniform algebra

A(S∞

G ) := A

K∞

G


|S∞

G

endowed with the uniform norm supx∈S∞
G

|f (x)| the isometry

A

K∞

G


= A(S∞

G ) (2)

holds.
Proof. From [1] (see also [6]) it follows that the algebra A(K∞

G ), as a uniform closure of the linear span of finite type
continuous polynomials, consists of complex analytic functions in the norm open unit ball B∞

G having the form

B∞

G = "
r∈N

Br , Br := {xr ∈ Cnr : ‖xr‖Cnr < 1}.

Hence if a ∈ P, then a ∈ S∞
G via the Maximum Principle for analytic functions. Therefore, P ⊂ S∞

G .
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In the other hand, for every fixed ar ∈ Sr there exists an analytic in Br and continuous on Br function fr such that

fr(ar) = 1, and |fr(xr)| < 1 for all xr ∈ Kr \ {ar}

(see e.g. [12]). Then for each a ∈ S∞
G such that the natural projection of a onto the subspace Er ≃ Cnr is equal to a fixed ar ,

the analytic function

f = fr ·

∏
j∈N\{r}

1j ∈ A

K∞

G


satisfies the conditions

f (a) = 1, and |f (x)| < 1 for all x ∈ K∞

G \ {a},

where 1j denotes the identically unit function on Kj. Hence a ∈ P and the embedding S∞
G ⊂ P are proved. Therefore,

P = S∞
G and so we have the isometrical isomorphism (2).

Finally, since Kℓ∞G is a compact metric separable space, the sets of peak points P of A

K∞

G


are a Gδ-subset in K∞

G . Hence
the equality ∂A = P is also true [12, II.11.2]. �

As is well-known there exists a probability Haar measure χ on the group G (respectively, there exists a probability Haar
measure on Ur , χr ) for which

χ(φ) :=

∫
G

φ(U)dχ(U) =

∫
G

φ(VU)dχ(U) =

∫
G

φ(UV )dχ(U)

with all U, V ∈ G and φ ∈ C(G) such that χ(G) = ‖χ‖, where C(G) stands for the uniform algebra of continuous complex
functions on G (similarly for the measure χr and the uniform algebra C(Ur)).

The unitary group G on the compact set S∞
G acts continuously. This group generates a group of linear operators on the

algebra C(S∞
G ):

C(S∞

G ) ∋ ϕ −→ ϕ ◦ U .

For a fixed a ∈ S∞
G the mapping G ∋ U −→ Ua ∈ S∞

G is continuous and surjective. Hence, the function U −→ (ϕ ◦ U)(a)
belongs to C(G) for all ϕ ∈ C(S∞

G ). Therefore,

sup
U∈G

|(ϕ ◦ U)(a)| = sup
x∈S∞

G

|ϕ(x)|.

The Riesz representation theorem implies that the Haar measure χ uniquely defines a probability G-invariant measure ς
on the G-orbit S∞

G = {Ua:U ∈ G} by the formula

ς(ϕ) :=

∫
S∞

G

ϕdς =

∫
G

ϕ(Ua)dχ(U), ϕ ∈ C(S∞

G ), (3)

where ς does not depend on a via the transitivity of G on the G-orbit. Recall that a probability measure ς on S∞
G is

G-invariant, if ς satisfies the relation ς = ς ◦ U for all U ∈ G.
For a given Er let

E⊥

r := {x = (xm) ∈ ℓ∞

G : xr = 0}.

Then

E⊥

r ⊕ Er = ℓ∞

G

and for every a ∈ ℓ∞
G we have a = a⊥

r + ar , where ar ∈ Er , a⊥
r ∈ E⊥

r and a −→ ar is a continuous projection.
For a given nr -dimensional subgroup Ur the mappings

a −→ Ur(ar)+ a⊥

r with Ur ∈ Ur

generate linear operators

Trϕ(a) := ϕ(Ur(ar)+ a⊥

r ), ϕ ∈ C

S∞

G


acting in C


S∞

G


. We will use the following useful formulas.

Proposition 3.3. For any r1, . . . , rm ∈ N the equality∫
S∞

G

ϕdς =

∫
S∞
G

dς(a)
m∏
i=1

∫
Uri

Triϕ(a)dχri(Uri), ϕ ∈ C

S∞

G


(4)
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holds. Thereto, for any compact subgroup G0 ⊂ G with the probability Haar measure ς0 the equality∫
S∞

G

ϕdς =

∫
S∞
G

dς(a)
∫

G0

ϕ(Ua)dς0(U), ϕ ∈ C

S∞

G


(5)

holds.

Proof. For each ϕ ∈ C

S∞

G


the function

(a,Ur1 , . . . ,Urm) −→ Tr1 · · · Trmϕ(a)

is continuous on the Cartesian product S∞
G × Ur1 × · · · × Urm . By the Fubini theorem, we have∫

S∞
G

dς(a)
m∏
i=1

∫
Uri

Triϕ(a)dχri =

m∏
i=1

∫
Uri

dχri

∫
S∞

G

Triϕ(a)dς(a).

However, the internal integral on the right side does not depend on Tr1 , . . . , Trm . Therefore, taking into account that∫
Uri

dχri = 1,

we obtain (4). The formula (5) can be proved similarly. �

Proposition 3.4. The G-invariant measure ς represents the character δ0(f ) = f (0) of the algebra A

K∞

G


i.e. it satisfies the

following relation

δ0(f ) =

∫
S∞

G

f dς, f ∈ A

K∞

G


. (6)

Proof. By formula (5) for any e∗(k)
[j] ∈ E ∗

n we obtain∫
S∞

G

e∗(k)
[j] dς =

1
2π

∫
S∞

G

dς(a)
∫ π

−π

e∗(k)
[j] (exp(iϑ)a)dϑ

=
1
2π

∫
S∞

G

e∗(k)
[j] (a)dς(a)

∫ π

−π

exp(inϑ)adϑ

=


0 : n ≠ 0
1 : n = 0.

Uniformly approaching any function f ∈ A

K∞

G


by polynomials E ∗

F and using the linearity and continuity on A

K∞

G


of the

integral with the measure ς , we come to (6). �

4. A Hardy type space

Let the probability G-invariant measure ς , defined by the formula (3), be given. The functional

‖f ‖L2ς
=

∫
S∞

G

|f |2dς

1/2

, f ∈ C(S∞

G )

is a Hilbertian norm on the space C(S∞
G ). Indeed, let f be a nonzero function in C(S∞

G ) and ϕ := |f |2. If we suppose that
ς(ϕ) = 0 then (3) implies that for a fixed a ∈ S∞

G ,

(ϕ ◦ U)(a) a.e.
= 0, U ∈ G

with respect to the Haar measure χ defined on G. The function

U −→ (ϕ ◦ U)(a)

belongs to C(G), hence (ϕ ◦ U)(a) ≡ 0 as a function of U ∈ G. Since the mapping

G ∋ U −→ U(a) ∈ S∞

G

is surjective, we obtain ϕ ≡ 0 on S∞
G . Consequently f ≡ 0 on S∞

G which contradicts the assumption.
Consider the Hilbert space L2ς = L2(dς) of all quadratically ς-integrable complex functions with the scalar product

⟨f | g⟩L2ς =

∫
S∞

G

f ḡdς, f , g ∈ L2(dς).
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Definition 4.1. The Hardy type space H2(dς)we define as a closure of the algebra A(K∞
G ) (or A


S∞

G


, that is the same) in the

space L2(dς) endowed with the L2ς -norm.

Note that the embedding A

K∞

G


# H2(dς) is continuous, since

‖f ‖L2ς
≤ ‖f ‖

C

S∞

G

, f ∈ A

K∞

G


. (7)

For a fixed n ∈ Z+ let H2
n be a closure in the space L2(dς) of the complex linear span of homogenous Hilbert–Schmidt

polynomials E ∗
n (extended to K∞

G ) and H2
0 := C.

Theorem 4.2. The sequence of homogeneousHilbert–Schmidt polynomials E ∗
F forms an orthogonal basis inH2(dς). In particular,

the subsequence E ∗
n forms an orthogonal basis in H2

n for any n ∈ Z+ and H2
n ⊥ H2

m in H2(dς) whenever n ≠ m.

Proof. Every element a =
∑

i∈N e∗

i (a)ei ∈ ℓ∞
G can be written as

a = a⊥

s + e∗

s (a)es,

where a⊥
s denotes a projection of a onto the complementing subspace

e⊥

s :=

a ∈ ℓ∞

G : e∗

s (a) = 0

, s ∈ N.

Consider the 1-dimensional subgroups in G of linear transformations

Us(ϑ)a := exp(iϑ)e∗

s (a)es + a⊥

s , U0(ϑ)a := exp(iϑ)a

with a ∈ S∞
G and ϑ ∈ [−π, π]. We assign to these transformations 1-parameter groups of linear operators on C


S∞

G


ϑ −→ Ts(ϑ)f := f


Us(ϑ)a


, ϑ −→ T0(ϑ)f := f


U0(ϑ)a


with f ∈ C


S∞

G


and a ∈ S∞

G . Formulas (4) and (5) imply that∫
S∞

G

f dς =
1
2π

∫
S∞

G

dς(a)
∫ π

−π

T (ϑ)f (a)dϑ (8)

for any T ∈

T0, Ts: s ∈ N


. If |(k)| ≠ |(l)|, then from (8) it follows that∫

S∞
G

e∗(k)
[j] · ē∗(l)

[i] dς =

∫
S∞

G

e∗(k)
[j]


exp(iϑ)a


ē∗(l)
[i]


exp(iϑ)a


dς(a)

=
1
2π

∫
S∞

G

e∗(k)
[j] · ē∗(l)

[i] dς
∫ π

−π

exp

i(|(k)| − |(l)|)ϑ


dϑ = 0.

So, e∗(k)
[j] ⊥ e∗(l)

[i] in L2(dς) if |(k)| ≠ |(l)| for all [j], [i] ∈ Nn.

If |(k)| = |(l)| and the corresponding elements e∗(k)
[j] with [j] = (j1, . . . , jn) and e∗(l)

[i] with [i] = (i1, . . . , im) are different,
then there exists an index js ∈


j1, . . . , jn


such that js ∉


i1, . . . , im


. Now (8) implies that∫

S∞
G

e∗(k)
[j] · ē∗(l)

[i] dς =

∫
Tjs(ϑ)e

∗(k)
[j] · Tjs(ϑ)e

∗(l)
[i] dς

=
1
2π

∫
S∞

G

e∗(k)
[j] · ē∗(l)

[i] dς
∫ π

−π

exp

iksϑ


dϑ = 0,

hence, e∗(l)
[i] ⊥ e∗(k)

[j] in L2(dς) too. �

Further we use the following notations.
Let [j]r :=


jr(1), . . . , jr(nr )


∈ Nnr denote a sub-index of the multi-index [j] = (j1, . . . , jn) ∈ Nn such that jr(1) ≤ · · · ≤

jr(nr ).
Let (k)r :=


kr(1), . . . , kr(nr )


∈ Znr

+ stand for a sub-index of the index (k) = (k1, . . . , kn) ∈ Zn
+
with nr ≤ n.

As is usual, |(k)r | := kr(1) + · · · + kr(nr ) and (k)r ! := kr(1)! · · · kr(nr )!.

Theorem 4.3. If a Hilbert–Schmidt polynomial

e∗(k)
[j] = e∗k1

j1
· · · e∗kn

jn ∈ E ∗

n , [j] ∈ Nn, (k) ∈ Zn
+
, |(k)| = n
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is of the form

e∗(k)
[j] = e

∗(k)r(1)
[j]r(1)

· · · e
∗(k)r(t)
[j]r(t)

with the block-indices [j] =

[j]r(1), . . . , [j]r(t)


and (k) =


(k)r(1), . . . , (k)r(t)


such that

nr(1) + · · · + nr(t) = n,

where

ejr(1) , . . . , ejr(nr )


=

ej1 , . . . , ejn


Er and t ∈ N stands for the number of all such sub-indices in [j], thene∗(k)

[j]

2
L2ς

=

∏
r∈{r1,...,rt }

(nr − 1)!(k)r !
(nr − 1 + |(k)r |)!

. (9)

Proof. Use that

Tr
e∗(k)r

[j]r

2 (a) =

e∗(k)r
[j]r

2 Ur(ar)


for any a = (ar) ∈ S∞
G with ar ∈ Sr . As is known [8, 1.4.9],∫

Ur

Tr
e∗(k)r

[j]r

2 (a)dχr =

∫
Ur

e∗(k)r
[j]r

2 Ur(ar)

dχr(Ur)

=
(nr − 1)!(k)r !

(nr − 1 + |(k)r |)!

with the Haar measure χr on Ur . Thus formula (4) immediately implies (9). �

5. A Cauchy type kernel

Let us define the following auxiliary Banach space, associated with G,

ℓ1nr :=


x = (xr) ∈ "

r∈N
Cnr : ‖x‖ℓ1nr :=

−
r∈N

nr‖xr‖Cnr < ∞


.

Note that ej ∈ ℓ∞
G


ℓ1nr for all j ∈ N and the group

G ∋ U −→ Ux =

Urxr


r∈N

acts isometrically in both ℓ∞
G and ℓ1nr . Since the embedding

ℓ1nr # ℓ∞

G

is continuous, the set B∞
G


ℓ1nr is open and the set K∞

G


ℓ1nr is closed in ℓ1nr .

Let us examine a Cauchy type kernel

C(x, a) :=

∏
r∈N

1
(1 − ⟨xr | ar⟩Cnr )

nr , a ∈ S∞

G (10)

which is a priori a Gâteaux analytic mapping of x running over the finitely open set


r∈N B1 × · · · × Br with values in the
uniform algebra A


S∞

G


.

Proposition 5.1. The Cauchy type kernel C is a well defined analytic A

S∞

G


-values mapping

B∞

G


ℓ1nr ∋ x −→ C(x, a), a ∈ S∞

G .

Proof. For every ϱ ∈ (0, 1) the series

ln(1 − ζ )−r
= −r

−
n∈N

ζ n

n
= −rζ

−
n∈N

ζ n−1

n
, r ∈ N

is convergent absolutely for all |ζ | ≤ ϱ. Therefore the estimationln(1 − ζ )−r
 ≤ cϱr|ζ | for all |ζ | ≤ ϱ (11)
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with

cϱ :=

−
n∈N

ϱn−1

n
< ∞

holds. Denote by B1
nr and K1

nr the open and the closed unit balls in the space ℓ1nr , respectively. Consider the following
1-parametric families of sets

Kε := εK∞

G

 1
1 − ε

K1
nr , Bε := εB∞

G

 1
1 − ε

B1
nr

with ε ∈ (0, 1). Clearly, Kε and Bε are closed and open sets in ℓ1nr respectively because the embedding ℓ1nr # ℓ∞
G is

continuous.
Let x = (xr) ∈ Kε and a = (ar) ∈ S∞

G . Then we obtain for instance

sup
‖ar‖=1

|⟨xr | ar⟩Cnr | ≤
ε

nr
< 1.

Hence, the inequality (11) implies−
r∈N

ln 1
(1 − ⟨xr | ar⟩Cnr )

nr

 ≤

−
r∈N

cϱ(r)nr |⟨xr | ar⟩Cnr |

with ϱ(r) :=
ε
nr
. Since cϱ(r) ≤ cε for any r ∈ N, it follows that

sup
‖a‖ℓ∞

G
=1

−
r∈N

ln 1
(1 − ⟨xr | ar⟩Cnr )

nr

 ≤ cε sup
‖a‖ℓ∞

G
=1

−
r∈N

nr |⟨xr | ar⟩Cnr |

≤ cε
−
r∈N

nr sup
‖ar‖Cnr =1

|⟨xr | ar⟩Cnr |

= cε
−
r∈N

nr‖xr‖Cnr = cε‖x‖ℓ1nr .

Consequently, the series of A

S∞

G


-values functions

Kε ∋ x −→

−
r∈N

ln
1

(1 − ⟨xr | ar⟩Cnr )
nr ∈ A


S∞

G


, a ∈ S∞

G , (12)

converges absolutely and uniformly on Kε . Hence, its sum represents a bounded continuous A

S∞

G


-values function on Kε

for any ε ∈ (0, 1). Moreover, one is Gâteaux-analytic in the open domain Bε since its restriction to any 1-dimensional affine
subspace is obviously analytic. Thus, the function (12) is analytic in Bε . By the analyticity of the exponential function, the
following map

Kε ∋ x −→ Cε(x, a) := exp
−
r∈N

ln
1

(1 − ⟨xr | ar⟩Cnr )
nr ∈ A


S∞

G


(13)

is a bounded continuous function, which is analytic on Bε . As it is easy to see, for any a ∈ S∞
G and x ∈ Bε we have

Cε(x, a) =

∏
r∈N

1
(1 − ⟨xr | ar⟩Cnr )

nr .

If ε1 < ε2 then Bε1 ⊂ Bε2 and the function Cε1 defined on Bε1 has a unique analytic extension Cε2 on Bε2 such that

Cε2 |Bε1
= Cε1 ,

by virtue of Uniqueness Principle for analytic functions. Therefore, the Cauchy kernel C defined by (10), has a unique A

S∞

G


-

value analytic extension on the open domain

B∞

G


ℓ1nr =


ε∈(0,1)

Bε,

which we also denote by C. �
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6. A Hilbertian extension of the Cauchy type kernel

Now we define a Hilbert space, associated with G,

ℓ2√nr :=


x = (xr) ∈ "

r∈N
Cnr : ‖x‖ℓ2√nr

:=

−
r∈N

nr‖xr‖2
Cnr

1/2

< ∞


,

where the group G acts isometrically. The inequality−
r∈N

nr‖xr‖2
Cnr ≤

−
r∈N

√
nr‖xr‖Cnr

2

≤

−
r∈N

nr‖xr‖Cnr

2

implies that the following continuous embedding is true
ℓ1nr # ℓ2√nr .

Proposition 6.1. The Cauchy kernel C possesses a unique analytic A

Sℓ∞G


-values extension

B∞

G


ℓ2√nr ∋ x −→ C(x, a), a ∈ S∞

G .

Proof. Let x = (xr) ∈ ℓ∞
G with xr ∈ Er and we denote

x̂ := (x̂r) with x̂r := υrxr , υr =
1

√
nr2r

.

Note that if x = (xr) ∈ S∞
G with xr ∈ Sr then x̂ ∈ ℓ2√nr

and

‖x̂‖2
ℓ2√nr

=

−
r∈N

1
2r

‖xr‖2
Cnr = 1.

Consider the linear mapping

υ̂: ℓ∞

G ∋ x −→ x̂ ∈ ℓ2√nr .

The mapping υ̂ is continuous, since

‖x̂‖2
ℓ2√nr

=

−
r∈N

1
2r

‖xr‖2
Cnr ≤ ‖x‖2

ℓ∞G
.

Moreover, from

‖x‖2
ℓ∞G

= sup
r∈N

‖xr‖2
Cnr ≤

−
r∈N

nr‖xr‖2
Cnr = ‖x‖2

ℓ2√nr

we come to the continuous embedding

ℓ2√nr # ℓ∞

G .

Note that the restriction υ̂ |ℓ2√nr
maps continuously from ℓ2√nr

into ℓ1nr . In fact, from the Cauchy–Schwartz Inequality it

follows that

‖x̂‖ℓ1nr =

−
r∈N

nr‖xr‖Cnr υr ≤ ‖x‖ℓ2√nr
,

since
∑

r∈N nrυ
2
r = 1 and ‖x̂‖ℓ∞G ≤ ‖x‖ℓ∞G . Hence, the mapping

υ̂: ℓ∞

G


ℓ2√nr ∋ x −→ x̂ ∈ ℓ∞

G


ℓ1nr ,

is continuous as well. By Proposition 5.1 the mapping

B∞

G


ℓ1nr ∋ z −→ C(z, a) with a ∈ S∞

G

is an analytic H2(dς)-values function. Hence, putting z = x̂with an element x ∈ B∞
G


ℓ2√nr

, we obtain that the mapping

B∞

G


ℓ2√nr ∋ x −→ C(x̂, a)

is also analytic. Note that

1
1 − ⟨x̂r | ar⟩Cnr

nr =
1

1 − ⟨xr | âr⟩Cnr
nr .
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Thus we have the following equalities

C(x̂, a) =

∏
r∈N

1
1 − ⟨x̂r | ar⟩Cnr

nr
=

∏
r∈N

1
1 − ⟨xr | âr⟩Cnr

nr = C(x, â), (14)

which are true for all x ∈ B∞
G


ℓ2√nr

and for a suitable vector a such that the right side product in (14) converges. Let
us check that it converges for every a ∈ S∞

G . Using notations from the proof of Proposition 5.1 and the Cauchy–Schwartz
Inequality we obtain

sup
‖a‖ℓ∞

G
=1

−
r∈N

ln 1
1 − ⟨xr | âr⟩Cnr

nr
 ≤ cε sup

‖a‖ℓ∞
G

=1

−
r∈N

nr
xr | âr


Cnr


≤ cε

−
r∈N

nr‖xr‖2
Cnr

1/2
= cε‖x‖ℓ2√nr

for all a = (ar) ∈ S∞
G and x = (xr) ∈ ℓ2√nr


εK∞

G with ε ∈ (0, 1).

From the density of υ̂

S∞

G


in S∞

G it follows that the previous inequality has a unique continuous extension to S∞
G i.e.

sup
‖a‖ℓ∞

G
=1

−
r∈N

ln 1
(1 − ⟨xr | ar⟩Cnr )

nr

 ≤ cε‖x‖ℓ2√nr

for all a = (ar) ∈ S∞
G and x = (xr) ∈ ℓ2√nr


εK∞

G with ε ∈ (0, 1). Consequently, the following product of A

S∞

G


-values

functions

ℓ2√nr


εK∞

G ∋ x −→ exp
−
r∈N

ln
1

(1 − ⟨xr | ar⟩Cnr )
nr

=

∏
r∈N

1
(1 − ⟨xr | ar⟩Cnr )

nr ∈ A

S∞

G


with a ∈ S∞

G converges absolutely and uniformly. Finally, this product represents a bounded continuous A

S∞

G


-values

function on ℓ2√nr


εK∞

G for all ε ∈ (0, 1) and therefore it has a unique analytic A

S∞

G


-values extension on the open domain

B∞
G


ℓ2√nr

=

ε∈(0,1) ℓ

2√
nr


εK∞

G . �

7. A Cauchy type integral formula

Now we can already formulate and prove the first main result.

Theorem 7.1. Every function

f =

−
n∈Z+

fn ∈ H2(dς) with fn ∈ H2
n

has an analytic extension into the open domain B∞
G


ℓ2√nr

, which can be represented by the Cauchy type integral formula

C[f ](x) :=

∫
S∞

G

f (a)C(x, a)dς(a), x ∈ B∞

G


ℓ2√nr . (15)

The corresponding Cauchy type kernel C can be represented, in turn, by the series

C(x, a) =

−
n∈Z+

Cn(x, a), a ∈ S∞

G with Cn(x, a) :=

−
|(k)|=n

−
[j]∈Nn

e∗(k)
[j] (x)ē

∗(k)
[j] (a)e∗(k)

[j]

2
L2ς

,

weakly convergent in H2(dς) for all x ∈ B∞
G


ℓ2√nr

. The Taylor coefficients at the origin are uniquely defined by the formula

dn
0C[f ](x)

n!
=

∫
S∞

G

fn(a)Cn(x, a)dς(a), x ∈ ℓ∞

G


ℓ2√nr . (16)
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Proof. For any f ∈ H2(dς) the linear functional

ςf : H2(dς) ∋ g −→

∫
S∞

G

fgdς

is continuous. Since C[f ](x) = ςf ◦ C(x, ·), the function C[f ] defined by formula (15) is analytic in B∞
G


ℓ2√nr

via
Proposition 6.1.

Let a = (ar) ∈ S∞
G with ar ∈ Sr and x = (xr) ∈ B∞

G


ℓ2√nr

with xr ∈ Cnr . Consider a polynomial e∗(k)
[j] ∈ E ∗

n of the form

e∗(k)
[j] = e

∗(k)r1
[j]r1

· · · e
∗(k)rt
[j]rt

,

cited in Theorem 4.3. Since

xr = e∗

jr(1)
(xr)ejr(1) + · · · + e∗

jr(nr )
(xr)ejr(nr ) ,

and ‖xr‖Cnr < 1, ‖ar‖Cnr = 1, we obtain

1
(1 − ⟨xr | ar⟩Cnr )

nr =

−
n∈Z+

(nr − 1 + n)!
(nr − 1)!n!

⟨xr | ar⟩nCnr

=

−
n∈Z+

(nr − 1 + n)!
(nr − 1)!n!

 nr−
i=1

e∗

jr(i)
(xr)ē∗

jr(i)
(ar)

n
=

−
n∈Z+

−
|(k)r |=n

(nr − 1 + n)!
(nr − 1)!(k)r !

e∗(k)r
[j]r (xr)ē

∗(k)r
[j]r (ar).

Taking into account Theorem 4.3, it follows that

C(x, a) =

∏
r∈N

1
(1 − ⟨xr | ar⟩Cnr )

nr =

−
n∈Z+

Cn(x, a)

with

Cn(x, a) =

−
[j]∈Nn

−
|(k)|=n

e∗(k)
[j] (x)ē

∗(k)
[j] (a)e∗(k)

[j]

2
L2ς

=

−
([j]r1 ,...,[j]rt )∈Nn

|(k)r1 |+···+|(k)rt |=n

t∏
i=1

(nri − 1 + n)!
(nri − 1)!(k)ri !

e
∗(k)ri
[j]ri

(xri)ē
∗(k)ri
[j]ri

(ari). (17)

On the other hand, the equality (17) implies that for any x ∈ ℓ∞
G


ℓ2√nr∫

S∞
G

e∗(k)
[j] (a)Cn(x, a)dς(a) = e∗(k)

[j] (x), e∗(k)
[j] ∈ E ∗

n .

Since E ∗
n forms an orthogonal basis in H2

n , the kernel Cn realizes the identity mapping in H2
n . It follows that for any fn ∈ H2

n

fn(x) =

∫
S∞

G

fn(a)Cn(x, a)dς(a), x ∈ ℓ∞

G


ℓ2√nr .

Using that fn ⊥ Cl(x, ·) at n ≠ l, we obtain

C[f ](x) =

∫
S∞

G

f (a)C(x, a)dς(a) =

−
n∈Z+

ϱnfn(y)

for all x = εy ∈ ℓ∞
G


ℓ2√nr

with ‖y‖
ℓ
2,∞
√
nr

= 1 and ε ∈ [0, 1). Now the equality

fn(y) =
1
n!

dn
0C[f ](εy)

dεn


ε=0

(18)

implies that fn is a Taylor coefficient of C[f ].
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Finally, the relationC[f ](x) = ςf ◦C(x, ·)with x ∈ B∞
G


ℓ2√nr

implies that for any f ∈ H2(dς) the series (15) is pointwise
by x ∈ B∞

G


ℓ2√nr

weakly convergent inH2(dς), as a function of the variable a ∈ S∞
G . Clearly, dn

0C[f ] in (18) can be extended
on ℓ∞

G


ℓ2√nr

, as a continuous polynomial. Thus, the formula (16) is true.

It remains to note that Taylor coefficients 1
n!d

n
0C[f ] = fn uniquely define the analytic function C[f ] in the open domain

B∞
G


ℓ2√nr

. �

Remark 7.2. In the finite dimensional case if E = Cn, n ∈ N, the Cauchy formula (15) obtains the classical form (see [8])

C[f ](x) =

∫
Sn

f (a)dς(a)
(1 − ⟨x | a⟩Cn)n

, x ∈ B.

Remark 7.3. In the partial case if nr = 1 for all r ∈ N, the ball K∞
G has a polydisk form. For this case the Cauchy type formula

has been earlier established in [13].

Corollary 7.4. For every x ∈ B∞
G


ℓ2√nr

the point-evaluation functional

δx(f ): f → f (x)

is continuous on H2(dς).

Proof. From Theorem 7.1 we have

δx(f ) = f (x) = ⟨C(x, ·) | f (·)⟩H2(dς)

and from Proposition 6.1 that C(x, ·) ∈ A

Sℓ∞G


⊂ H2(dς). �

8. Relations between Hardy type spaces and the symmetric Fock space

The Hermitian dual of symmetric Fock space F∗ and the Hardy class H2(dς) possess the same orthogonal basis E ∗
F

(see Remark 2.2 and Theorem 4.2). The following proposition is a specification of the statement from [14] (an another
interpretation of this statement was given in [15, Theorem 2.6]).

Proposition 8.1. Every element

f ∗
=

−
n∈Z+

f ∗

n ∈ F∗ with f ∗

n ∈ ⊙
n
h E

∗

generates an analytic function defined in the Hilbertian open ball B,

F[f ∗
](x) =

−
n∈Z+

f ∗

n (x), x ∈ B (19)

with the Taylor series expansion at the origin

f ∗

n (x) =

−
|(k)|=n

−
[j]∈Nn

n!
(k)!

e∗(k)
[j] (x)⟨e

(k)
[j] | fn⟩⊗n

hE

and the point-evaluation functional

δFx : f
∗

→ F[f ∗
](x)

is continuous for every x ∈ B.

Proof. Since

x =

−
t∈Z+

e∗

t (x)et , we have ‖x‖2
=

−
t∈Z+

e∗

t (x)
2 .

The Fourier decomposition of the element x⊗n is

x⊗n
=

−
n∈Z+

e∗

t (x)et
⊗n

=

−
|(k)|=n

−
[j]

n!
(k)!

e∗(k)
[j] (x)e

⊗(k)
[j] (20)
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and the series converges in ⊙
n
h E since

x⊗n
2

⊗
n
h E

=

−
|(k)|=n

−
[j]

n!2

(k)!2
|e∗(k)

[j] (x)|
2
e∗⊗(k)

[j]

2
⊗

n
hE

=

−
|(k)|=n

−
[j]

n!
(k)!

e∗(k)
[j] (x)

2 =

−
n∈Z+

e∗

t (x)
2n.

Using the orthogonal property x⊗n
⊥ x⊗m in F for n ≠ m, we obtain−n∈Z+

x⊗n


2

F

=

−
n∈Z+

x⊗n
2

⊗
n
h E

=

−
n∈Z+

‖x‖2n
=

1
1 − ‖x‖2

.

Thus, the series
∑

n∈Z+
x⊗n is absolutely and uniformly convergent in the Fock space F on any closed subball in B.

As is known [16, Proposition 2.4.2]
∑

n∈Z+
x⊗n is an analytic map from B into F. For any f ∗

=
∑

n∈Z+
f ∗
n ∈ F∗ with

f ∗
n ∈ ⊙

n
h E

∗ the orthogonality f ∗

l ⊥ x⊗n for n ≠ l implies

F[f ∗
](x) := f ∗

−
n∈Z+

x⊗n


=

−
n∈Z+

f ∗

n (x), x ∈ B.

Hence, the complex function F[f ∗
] is a composition of two analytic maps on B:f ∗

∈ F∗ and x →
∑

n∈Z+
x⊗n

∈ F and so must
be analytic on B (see [16, Proposition 3.1.2]). For any x = ra ∈ B with ‖a‖ = 1 and r ∈ [0, 1)we have

f ∗

n (a) =
1
n!

dn
0F[f ∗

](ra)
drn


r=0
.

Thus each polynomial f ∗
n is a Taylor coefficient of F[f ∗

], defined as an orthogonal projection of f ∗
∈ F∗ onto the subspace

⊙
n
h E

∗. Now it remains to substitute instead of x⊗n the orthogonal decomposition (20).
Since

F[f ∗
](x) =

−
n∈Z+

x⊗n
| f (·)


F

and
∑

n∈Z+
x⊗n

∈ F for every x ∈ B, the functional δFx is continuous on F∗. �

Proposition 8.2. In the case if

nr = 1 for all r ∈ N,

the following contractive dense embeddings

H2(dς) # F∗ and H2
n # E∗n

h for all n ∈ Z+ (21)

hold.

Proof. As is well known (see e.g. [10, 2.2.2]), the system EF forms orthogonal bases in the symmetric Fock space F ande⊗(k)
[j]

2
F

=

e⊗(k)
[j]

2
⊗

n
h E

=
(k)!
n!
, n = |(k)| for all [j] ∈ Nn.

From Theorem 4.3 it follows, thate⊗(k)
[j]

2
F

≤ 1 =

e∗(k)
[j]

2
L2ς
.

Via Theorem 4.2 for every function fn ∈ H2
n there exists a Fourier decomposition

fn =

−
|(k)|=n

−
[j]∈Nn

α
(k)
[j] e

∗(k)
[j] in H2

n
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with the coefficients α(k)
[j] ∈ C. It follows, that

‖fn‖2
⊗

n
h E =

−
|(k)|=n

−
[j]∈Nn

α(k)[j]

2 (k)!
n!

≤

−
|(k)|=n

−
[j]∈Nn

α(k)[j]

2 = ‖fn‖2
L2ς
.

Hence, the embedding H2
n # E∗n

h is contractive for all n. Therefore

‖f ‖2
F =

−
n∈Z+

‖fn‖2
⊗

n
h E

≤

−
n∈Z+

‖fn‖2
L2ς

= ‖f ‖2
L2ς

for all f =
∑

n∈Z+
fn ∈ H2(dς)with fn ∈ H2

n and the embeddings (21) are proved. Since the system E ∗
n forms an orthogonal

basis in H2
n for all n, the embeddings (21) are dense. �

For the general case of B∞
G we have the following theorem.

Theorem 8.3. Let x ∈ B


B∞
G and f ∈ F∗


H2(dς). Then

C[f ](x) = F[f ](x).

Proof. We observe that C[f ](x) = δx(f ), F[f ](x) = δFx (f ) and both δx and δFx are continuous if x ∈ B


B∞
G . So they coincide

on the common domain if they are equal each to other on basis functions. But

δx


e∗⊗(k)
[j]


= e∗⊗k1

j1
(x)e∗⊗k2

j2
(x) · · · e∗⊗kn

jn (x) = δFx


e∗⊗(k)
[j]


for all multi-indices (k) and [j]. So C[f ](x) = F[f ](x) for every f ∈ F∗


H2(dς) and x ∈ B


B∞

G . �

The following proposition gives a natural isomorphism between F∗ and H2(dς) for the general case of H2(dς).

Proposition 8.4. Let J be a linear operator from F∗ to H2(dς) defined on the basis functions by the following way

J

e∗⊗(k)
[j]


=


(k)!
n!

e∗⊗(k)
[j]

e∗⊗(k)
[j] | e∗⊗(k)

[j]


H2(dς)

, n = |(k)|.

Then J is an isometrical isomorphism.

Proof. From the definition of J we have that

J


e∗⊗(k)
[j]

‖e∗⊗(k)
[j] ‖F∗


=

e∗⊗(k)
[j]

‖e∗⊗(k)
[j] ‖H2(dς)

.

That is, J maps one-to-one the orthonormal basis of F∗ onto the orthonormal basis of H2(dς). So J is an isometrical
isomorphism. �

Note that if nr = 1 for all r ∈ N, then

J

e∗⊗(k)
[j]


=


(k)!
n!

e∗⊗(k)
[j] .
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