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The through study of various extensions of semigroups was started in [12] and
continued in [1]-[10], [13]-[19]. The largest among these extensions is the semigroup
υ(S) of all upfamilies on a semigroup S. A family M of non-empty subsets of
a set X is called an upfamily if for each set A ∈ M any subset B ⊃ A of X
belongs to M. Each family B of non-empty subsets of X generates the upfamily
{A ⊂ X : ∃B ∈ B (B ⊂ A)} which we denote by ⟨B ⊂ X : B ∈ B⟩. An upfamily F
that is closed under taking finite intersections is called a filter. A filter U is called an
ultrafilter if U = F for any filter F containing U . The family β(X) of all ultrafilters
on a set X is called the Stone-Čech compactification of X, see [20]. An ultrafilter
⟨{x}⟩, generated by a singleton {x}, x ∈ X, is called principal. Each point x ∈ X
is identified with the principal ultrafilter ⟨{x}⟩ generated by the singleton {x}, and
hence we can consider X ⊂ β(X) ⊂ υ(X). It was shown in [12] that any associative
binary operation ∗ : S × S → S can be extended to an associative binary operation
∗ : υ(S)× υ(S) → υ(S) by the formula

L ∗M =
〈 ⋃

a∈L
a ∗Ma : L ∈ L, {Ma}a∈L ⊂ M

〉

for upfamilies L,M ∈ υ(S). In this case the Stone-Čech compactification β(S) is a
subsemigroup of the semigroup υ(S). The semigroup υ(S) contains as subsemigroups
many other important extensions of S. In particular, it contains the semigroup λ(S)
of maximal linked upfamilies, see [11, 12]. An upfamily L of subsets of S is said to
be linked if A ∩ B ̸= ∅ for all A,B ∈ L. A linked upfamily M of subsets of S is
maximal linked if M coincides with each linked upfamily L on S that contains M.
It follows that β(S) is a subsemigroup of λ(S). The space λ(S) is well-known in
General and Categorial Topology as the superextension of S, see [21, 22].

Given a semigroup S we shall discuss the algebraic structure of the automorphism
group Aut(λ(S)) of the superextension λ(S) of S. We show that any automorphism
of a semigroup S can be extended to an automorphism of its superextension λ(S),
and the automorphism group Aut(λ(S)) of the superextension λ(S) of a semigroup
S contains a subgroup, isomorphic to the group Aut(S). We describe automorphism
groups of superextensions of groups, finite monogenic semigroups, null semigroups,
almost null semigroups, right zero semigroups, left zero semigroups and all three-
element semigroups.
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