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Abstract. A new nonelementary real-valued function of the Dawson’s integral

type is studied. It is constructed as a power series with the help of rising factorial
powers. Its connection with the error function is determined. It is proved that the new
function is a solution of the Riccati equation.

AHHOTaI_[I/UI. HCCJIGI[OBaHa HOBasA HCIJICMCHTApPHAA Q)YHKHI/IH I[GﬁCTBHTGJ]LHOFO
IMEPEMCHHOI'0 THUIIA MHTCIrpajia I[OYCOHa, IMOCTPOCHHAA B BHUAC CTCIICHHOI'O psaAga C
MIOMOIIBIO BO3pACTAIONINX (PAKTOPUAIIBHBIX CTEIEeHEH. YCTaHOBJEHA €€ CBSI3b C
dbynknueln ommbok (dhynkmuen BepostHocTel). [lokazaHo, 4To HOBast PyHKIIUS €CTh
pemeHneM ypaBHeHus1 Pukkarn.
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Introduction. Duality of rising and falling factorial powers is a common feature
in the combinatorial analysis. In other words, if a problem leads to some
combinatorial identity constructed with the help of falling factorial powers, then often
there is a dual combinatorial problem, which leads to a dual combinatorial identity
involving rising factorial powers. One can find some examples of these dual
combinatorial identities in [1-3].

The classic exponential function €” is given by the corresponding power
series with factorials, which can be written as the falling factorial power n".
Replacing the falling factorial powers by the corresponding rising factorial powers
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n

" we get the function EXP(X) [4]. Now if in the Dawson’s integral

F(x) = exp(—x?) [ “exp(t?) dt
(0 =exp(-x") exp(t’) we replace the exponential function by EXP(X) then we get

_ BN 214
D(x) = (Exp(-x?)) .[o Exp(t) t, the basic properties of

a new nonelementary function
which are to be studied in this article.

The Dawson’s integral and its generalization are widely applied in theory of
electric oscillation, astrophysics, spectroscopy, processes of heat conduction,
viscosity mechanics, finance and applied mathematics.

Preliminaries and Notations.

Definition 1. For an arbitrary xR and meN the factorial power m with the
step of k€R s the expression

XM = x(x+K) - (X+2K) -...- (X + (M =D)K).
By definition, X =1 If k=0, then we have a simple power, i.e.
XMy

Most often, there are rising factorial powers with the step of 1 and falling

factorial powers with the step of (— 1), which we will denote by

X™ = XM = x(X+1)(X+2) .- (X+m—1) S X" = X(X=1)(X=2)-...-(Xx—m+1)

respectively. It is obvious that 1" =m® =m!

exp(x) =
In analogy to the known power series =1 , Which can be treated as the

series constructed with the help of falling factorial powers. The “dual” function
EXp(X) | constructed with the help of rising factorial powers, it is studied in [4].

Definition 2. By EXP(X) we will denote the function defined with the help of the
power series

n

z, X" X X X X
1 + + +..+ +
n—on" 1 2.3 3-4-5 n-(n+1-...-(2n-1)

It is obvious that

(n-1!

000 =1+ 3 (1)

and the series in (1) converges on the real axis.
In [4] it is proved that
Exp(x) =1+ \/n_xexp(x/4)(1)(\/;/2) )
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d(p)=erf p= %Iexp(—tz) dt

where Is the error function [5; p. 405]

Function of the Dawson’s integral type. Replacing in the Dawson’s integral
F(X) = exp(—xz)jexp(tz) dt
0 [5; p. 427] the exponentials by EXP(X) we obtain a
nonelementary real-valued function, which we will denote by P() | j.e. let
D(x) = (Exp(-x)) " [ Exp(t?)dt.
0 3)
(
From (2), (3) we obtain the formula

~ 2mexp(x2/4)®(x/2) - x

D)= Jrxexp(x?/4)®(x/2)+1

The graphs of the function ¥=PX) (solid graph) and the Dawson’s integral
y=F(X) (dotted graph) are shown in Figure 1.

Fig. 1. The graphs of the functions ¥ =DP(X) and ¥=FX)
Differential equation of the function D(x). The Dawson’s integral is a solution
of the linear nonhomogeneous equation ¥ *2¥ =1 [5 p. 429]. Let us prove that the
function P(X) is a solution of the Riccati equation.
Theorem. The function ¥ =P(X) is a solution of the Cauchy problem

,_ X =2, X(X*+6) B
Y=2x+2) 20¢+2)7 "t y(0)_o. )
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Proof. It follows from the formula (3) that the integral curve ¥ =DP(X) passes

through the origin. Let us prove that the function ¥ =P() is a solution of the Riccati
equation from (4). Indeed, since

y' :%<1+ \/Exexp(x2/4)cb(x/2)>f2 x

x(zﬁxexp(x2/4)q)(x/2)+exp(x2/4)x3q)(x/z)—4nxexp(x2/2)q>2(x/2)+ 2x% + 2)

\/Eexp(xz/4)q>(x/2)

excluding from this formula and from (3) the expression :
we obtain the relation

. X2=2 , xX(x*+6) N

= - 1.
y 2(x* +2) y 2(x* +2)
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