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a b s t r a c t

We show that the spectrum of the algebra of bounded symmetric analytic functions on
ℓp, 1 ≤ p < +∞ with the symmetric convolution operation is a commutative semigroup
with the cancellation law for which we discuss the existence of inverses. For p = 1, a
representation of the spectrum in terms of entire functions of exponential type is obtained
which allows us to determine the invertible elements.
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0. Introduction and preliminaries

The question of the description of the invariants of a linear transformations group on Cn which naturally acts on the
algebra of polynomials is a typical problem of the classical Invariant Theory. Such invariants form algebras of symmetric
polynomialswith respect to given groups and have been investigated in the classical cases (see e.g. [1,2]). It is very important
for these studies to describe the spectra of the algebras of invariants. The cases when a group (or even a semigroup) of
symmetry acts on infinite-dimensional Banach spaces were considered in [3–6]. For the infinite-dimensional case we need
to work with a natural completion of the algebra of continuous polynomials, that is, the algebra of analytic functions of
bounded type. In this case, we can use some methods and ideas developed in [7,8].

Aron et al. introduced in [7] a convolution operation in the spectrumof the algebraHb(X) of analytic functions of bounded
type defined on a complex Banach space X . This convolution is defined relying on translations on X . Later Aron et al. [8]
discussed the commutativity of that convolution and proved that for X = ℓp, it is not commutative.

By a symmetric function on ℓp we mean a function which is invariant under any reordering of the sequence in ℓp. The
algebra of symmetric analytic functions of bounded typewith the topology of the uniform convergence on bounded sets will
be denoted by Hbs(ℓp). We denote by Mbs(ℓp) its spectrum, that is the set of all continuous scalar valued homomorphisms.

When dealing with symmetric analytic functions the translation operators are not well defined anymore. This is why
in [6] the authors introduced the so-called ‘‘intertwining’’ operators that lead them to define a ‘‘symmetric’’ convolution
operation as is described in the next section. We prove that an endomorphism of Hbs(ℓp) commutes with all intertwining
operators if and only if it is a convolution operator. The results in this paper show that, contrary to the non-symmetric
case, the symmetric convolution is indeed commutative. Also a representation of Mbs(ℓ1) in terms of entire functions
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of exponential type is obtained. Such representation allows us to determine the invertible elements in Mbs(ℓ1) for such
symmetric convolution. Finally we present a description of the elements in the spectrum through certain points in ℓ+

1 .
In [3] it is proved that, similarly to the classical finite dimensional case, the polynomials

Fk(x) =

∞
i=1

xki , k = ⌈p⌉, ⌈p⌉ + 1 · · · (0.1)

form an algebraic basis – named the power series basis – in the algebra of all symmetric polynomials on ℓp (here ⌈p⌉
is the smallest integer that is greater than or equal to p). This means that for every symmetric polynomial P of degree
⌈p⌉ + n − 1, n ≥ 1 there is a polynomial q on Cn such that P(x) = q(F⌈p⌉(x), . . . , F⌈p⌉+n−1(x)). Actually, q is unique as
pointed out in [5].

For background on analytic functions on infinite-dimensional spaces, we refer the reader to [9] or to [10].

1. The symmetric convolution

Remark 1.1. There is now ∈ ℓp, w ≠ 0, such that g(x) = f (x + w) is symmetric for every symmetric f ∈ Hbs(ℓp).

Proof. There is i0 ∈ N, such that |wn| <
1
3 ifn ≥ i0.Assume that f (·+w)belongs toHbs(ℓp) for every symmetric f ∈ Hbs(ℓp).

Then for every fixed permutation σ and each element in the basis of ℓp, f (eσ(i) + w) = g(eσ(i)) = g(ei) = f (ei + w),∀f ∈

Hbs(ℓp). Thus eσ(i) + w is a permutation of ei + w, that is, 1 + wσ(i) = wji for some index ji ∈ N.
Since σ is a bijection, the set {σ(i) > i0} is infinite, so there are infinite terms wji with absolute value greater that 2

3 .
Impossible. �

Next we recall some definitions.

Definition 1.2 ([6]). Let x, y ∈ ℓp , x = (x1, x2, . . . , ) and y = (y1, y2, . . . , ). We define the intertwining x • y ∈ ℓp
according to

x • y = (x1, y1, x2, y2, . . . , ).

The mapping f → T s
y(f ) where T s

y(f )(x) = f (x • y) will be referred as to the intertwining operator. Observe that
T s
x ◦ T s

y = T s
x•y = T s

y ◦ T s
x : Indeed, [T

s
x ◦ T s

y](f )(z) = T s
x [T

s
y(f )](z) = T s

y(f )(z • x) = f ((z • x) • y) = f (z • (x • y)),
since f is symmetric.

The above remark explains why we are led to use the intertwining operators to define the convolution in Mbs(ℓp).

Definition 1.3 ([6]). Given f ∈ Hbs(ℓp) and θ ∈ Hbs(ℓp)
′, its symmetric convolution θ ⋆ f is defined by (θ ⋆ f )(x) = θ [T s

x (f )].

As pointed out in [6], it turns out that θ ⋆ f ∈ Hbs(ℓp).

Definition 1.4 ([6]). For any φ and θ in Hbs(ℓp)
′, its symmetric convolution is defined according to

(φ ⋆ θ)(f ) = φ(θ ⋆ f ) = φ(y → θ(T s
y f )).

Corollary 1.5 ([6]). If φ, θ ∈ Mbs(ℓp), then φ ⋆ θ ∈ Mbs(ℓp).

Theorem 1.6. (a) For every ϕ, θ ∈ Mbs(ℓp) the following holds:

(ϕ ⋆ θ)(Fk) = ϕ(Fk)+ θ(Fk). (1.1)

(b) The semigroup (Mbs(ℓp), ⋆) is commutative, the evaluation at 0, δ0, is its identity and the cancellation law holds.

Proof. Observe that for each element Fk in the algebraic basis of polynomials, {Fk}, we have

(θ ⋆ Fk)(x) = θ(T s
x (Fk)) = θ(Fk(x)+ Fk) = Fk(x)+ θ(Fk).

Therefore,

(ϕ ⋆ θ)(Fk) = ϕ(Fk + θ(Fk)) = ϕ(Fk)+ θ(Fk).

To check that the convolution is commutative, that is, φ ⋆ θ = θ ⋆ φ, it suffices to prove it for symmetric polynomials,
hence for the basis {Fk}. Bearing in mind (1.1) and also by exchanging parameters (θ ⋆ ϕ)(Fk) = θ(Fk)+ϕ(Fk) = (ϕ ⋆ θ)(Fk)
as we wanted.

It also follows from (1.1) that the cancellation rule is valid for this convolution: If ϕ ⋆ θ = ψ ⋆ θ, then ϕ(Fk) + θ(Fk) =

ψ(Fk)+ θ(Fk), hence ϕ(Fk) = ψ(Fk), and thus, ϕ = ψ. �
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Example 1.7. There exist nontrivial invertible elements in the semigroup (Mbs(ℓp), ⋆):
In [5, Example 3.1] it was constructed a continuous homomorphism ϕ = Ψ1 on the uniform algebra Aus(Bℓp) such that

ϕ(Fp) = 1 and ϕ(Fi) = 0 for all i > p. In a similar way, given λ ∈ C we can construct a continuous homomorphism
Ψλ on the uniform algebra Aus(|λ|Bℓp) such that Ψλ(Fp) = λ and Ψλ(Fi) = 0 for all i > p: It suffices to consider for

each n ∈ N, the element vn =

λ
n

1/p
(e1 + · · · + en) for which Fp(vn) = λ, and limn Fj(vn) = 0. Now, the sequence

{δvn} has an accumulation point Ψλ in the spectrum of Aus(|λ|Bℓp). We use the notation ψλ for the restriction of Ψλ to
the subalgebra Hbs(ℓp) of Aus(|λ|Bℓp). It turns out that ψλ ⋆ ψ−λ = δ0 since for all elements Fj in the algebraic basis,
(ψλ ⋆ ψ−λ)(Fj) = ψλ(Fj)+ ψ−λ(Fj) = 0 = δ0(Fj).

Therefore, we obtain a complex line of invertible elements {ψλ: λ ∈ C}.

As in the non-symmetric case [7, Theorem 5.5], the following holds:

Proposition 1.8. Every ϕ ∈ Mbs(ℓp) lies in a schlicht complex line through δ0.

Proof. For every z ∈ C, consider the composition operator Lz :Hbs(ℓp) → Hbs(ℓp) defined according to Lz(f )((xn)) :=

f ((zxn)), and then, the restriction L∗
z to Mbs(ℓp) of its transpose map. Now put ϕz

:= L∗
z (ϕ) = ϕ ◦ Lz . Observe that

ϕz(Fk) = ϕ ◦ Lz(Fk) = ϕ((Fk(z·))) = zkϕ(Fk). Also, ϕ0
= δ0.

For each f ∈ Hbs(ℓp) the self-map ofC defined according to z  ϕz(f ) is entire by Aron et al. [7, Lemma 5.4(i)]. Therefore,
the mapping z ∈ C  ϕz

∈ Mbs(ℓp) is analytic.
Since ϕ ≠ δ0, the setΣ := {k ∈ N:ϕ(Fk) ≠ 0} is non-empty. Let m be the first element ofΣ , so that ϕ(Fm) ≠ 0. Then if

ϕz
= ϕw , one has zmϕ(Fm) = wmϕ(Fm), hence zm = wm. Taking the principal branch of the mth root, the map ξ  ϕ

m√ξ is
one-to-one. �

Recall that a linear operator T :Hbs(ℓp) → Hbs(ℓp) is said to be a convolution operator if there is θ ∈ Mbs(ℓp) such that
Tf = θ ⋆ f . Let us denote Hconv(ℓp) := {T ∈ L(Hbs(ℓp)): T is a convolution operator}.

Proposition 1.9. A continuous homomorphism T :Hbs(ℓp) → Hbs(ℓp) is a convolution operator if and only if it commutes with
all intertwining operators T s

y, y ∈ ℓp.

Proof. Assume there is θ ∈ Mbs(ℓp) such that Tf = θ ⋆ f . Fix y ∈ ℓp. Then [T ◦ T s
y](f )(x) = [T (T s

y(f ))](x) = [θ ⋆ T s
y(f )](x) =

θ [T s
x (T

s
y(f ))] = θ [T s

x•y(f )]. On the other hand, [T s
y ◦ T ](f )(x) = [T s

y(Tf )](x) = Tf (x • y) = (θ ⋆ f )(x • y) = θ [T s
x•y(f )].

Conversely, set θ = δ0 ◦ T . Clearly, θ ∈ Mbs(ℓp). Let us check that Tf = θ ⋆ f : Indeed, (θ ⋆ f )(x) = θ [T s
x (f )] =

[T (T s
x (f ))](0) = [T s

x (T (f ))](0) = Tf (0 • x) = Tf (x). �

Consider the mappingΛ defined byΛ(θ)(f ) = θ ⋆ f , that is,

Λ:Mbs(ℓp) → Hconv(ℓp)

θ → f  θ ⋆ f ≡ Λ(θ)(f ).

It is, clearly, bijective. Moreover we obtain a representation of the convolution semigroup

Proposition 1.10. The mapping Λ is an isomorphism from (Mbs(ℓp), ⋆) into (Hconv(ℓp), ◦) where ◦ denotes the usual
composition operation.

Proof. First, notice that using the above proposition,

Λ(ϕ ⋆ θ)(f )(x) = [(ϕ ⋆ θ) ⋆ f ](x) = (ϕ ⋆ θ)(T s
x f ) = ϕ(θ ⋆ T s

x f )
= ϕ[Λ(θ)(T s

x f )] = ϕ[(Λ(θ) ◦ T s
x )(f )] = ϕ[(T s

x ◦Λ(θ))(f )].

On the other hand,

[Λ(ϕ) ◦Λ(θ)](f )(x) = Λ(ϕ)[Λ(θ)(f )](x) = [ϕ ⋆Λ(θ)(f )](x) = ϕ[T s
x (Λ(θ)(f ))].

Thus the statement follows. �

As a consequence, the homomorphism θ is invertible in (Mbs(ℓp), ⋆), if and only if the convolution operator Λ(θ) is an
algebraic isomorphism. Observe also that for ψ ∈ Mbs(ℓp), one has

ψ ◦Λ(θ) = ψ ⋆ θ,

because [ψ ◦Λ(θ)](f ) = ψ[Λ(θ)(f )] = ψ(θ ⋆ f ) = (ψ ⋆ θ)(f ).
Next we address the question of solving the equation ϕ = ψ ⋆ θ for given ϕ, θ ∈ Mbs(ℓp). We begin with a general

lemma.

Lemma 1.11. Let A, B be Fréchet algebras and T : A → B an onto homomorphism. Then T maps (closed) maximal ideals onto
(closed) maximal ideals.
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Proof. Since T is onto, it maps ideals in A onto ideals in B. Let J ⊂ A be a maximal ideal. We prove that T (J) is a maximal
ideal in B: If I is another ideal with T (J) ⊂ I ⊂ B, it turns out that for the ideal T−1(I),J ⊂ T−1(T (J)) ⊂ T−1(I), hence
either J = T−1(I), or A = T−1(I). That is, either T (J) = I, or B = I.

Let now ϕ ∈ M(A) and J = Ker(ϕ), be a closed maximal ideal. Then T (J) is a maximal ideal in B, so there is a character
ψ on B such that Ker(ψ) = T (J). Then Ker(ϕ) ⊂ Ker(ψ ◦ T ), because if ϕ(a) = 0, that is, a ∈ J, we have T (a) ∈ Ker(ψ).
By the maximality, either ϕ = ψ ◦ T , or ψ ◦ T = 0, hence ψ = 0. In the former case, ψ is also continuous since
being T an open mapping, if (bn) is a null sequence in B, there is a null sequence (an) ⊂ A such that T (an) = bn; thus
limn ψ(bn) = limn ψ ◦ T (an) = limn ϕ(an) = 0. �

Remark 1.12. Let A, B be Fréchet algebras and T : A → B be an onto homomorphism. If T (Ker(ϕ)) is a proper ideal, then
there is a unique ψ ∈ M(B) such that ϕ = ψ ◦ T .

Corollary 1.13. Let θ ∈ Mbs(ℓp). Assume that Λ(θ) is onto. If Λ(θ)(Kerϕ) is a proper ideal, then the equation ϕ = ψ ⋆ θ has
a unique solution. In caseΛ(θ)(Kerϕ) = Hbs(ℓp), then the equation ϕ = ψ ⋆ θ has no solution.

Proof. The first statement is just an application of the remark, since ψ ⋆ θ = ψ ◦ Λ(θ) = ϕ. For the second statement, if
some solutionψ exists, then againψ ◦Λ(θ) = ψ ⋆θ = ϕ, soψ(Hbs(ℓp)) = (ψ ◦Λ(θ))((Kerϕ)) = ϕ(Kerϕ) = 0. Therefore,
then also ϕ = 0. �

2. A weak polynomial topology on Mbs(ℓp)

Let us denote bywp the topology in Mbs(ℓp) generated by the following neighborhood basis:

Uε,k1,...,kn(ψ) = {ψ ⋆ ϕ:ϕ ∈ Mbs(ℓp) and |ϕ(Fkj)| < ε, j = 1, . . . , n}.

It is easy to check that the convolution operation is continuous for thewp topology, since thanks to (1.1),

Uε/2,k1,...,kn(θ) ⋆ Uε/2,k1,...,kn(ψ) ⊂ Uε,k1,...,kn(θ ⋆ ψ).

We say that a function f ∈ Hbs(ℓp) is finitely generated if there are a finite number of the basis functions {Fk} and an
entire function q such that f = q(F1, . . . , Fj).

Theorem 2.1. A function f ∈ Hbs(ℓp) iswp-continuous if and only if it is finitely generated.

Proof. Clearly, every finitely generated function iswp-continuous. Let us denote by Vn the finite dimensional subspace in ℓp
spanned by the basis vectors {e1, . . . , en}. First we observe that if there is a positive integer m such that the restriction f|Vn
of f to Vn is generated by the restrictions of F1, . . . , Fm to Vn for every n ≥ m, then f is finitely generated. Indeed, for given
n ≥ k ≥ m we can write

f|Vk (x) = q1(F1(x), . . . , Fm(x)) and f|Vn (x) = q2(F1(x), . . . , Fm(x))

for some entire functions q1 and q2 on Cn. Since

{(F1(x), . . . , Fm(x)): x ∈ Vk} = Cm

(see e.g. [5]) and f |Vn is an extension of f |Vk we have q1(t1, . . . , tn) = q2(t1, . . . , tn). Hence f (x) = q1(F1(x), . . . , Fm(x)) on
ℓp because f (x) coincides with q1(F1(x), . . . , Fm(x)) on the dense subset


n Vn.

Let f be a wp-continuous function in Hbs(ℓp). Then f is bounded on a neighborhood Uε,1,...,m = {x ∈ ℓp: |F1(x)| <
ε, . . . , |Fm(x)| < ε}. For a given n ≥ m let

f |Vn(x) = q(F1(x), . . . , Fm(x))

be the representation of f |Vn(x) for some entire function q on Cn. Since {(F1(x), . . . , Fm(x)): x ∈ Vn} = Cm, q(t1, . . . , tn)
must be bounded on the set {|t1| < ε, . . . , |tm| < ε}. The Liouville Theorem implies q(t1, . . . , tn) = q(t1, . . . , tm, 0 . . . , 0),
that is, f |Vn is generated by F1, . . . , Fm. Since it is true for every n, f is finitely generated. �

For example f (x) =


∞

n=1
Fn(x)
n! is notwp-continuous.

Proposition 2.2. The topologywp is Hausdorff.

Proof. If ϕ ≠ ψ , then there is a number k such that

|ϕ(Fk)− ψ(Fk)| = ρ > 0.

Let ε = ρ/3. Then for every θ1 and θ2 in Uε,k(0),

|(ϕ ⋆ θ1)(Fk)− (ϕ ⋆ θ2)(Fk)| = |(ϕ(Fk)− ψ(Fk))− (θ2(Fk))− θ1(Fk)| ≥ ρ/3. �
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Proposition 2.3. On bounded sets of Mbs(ℓp) the topologywp is finer than the weak-star topologyw(Mbs(ℓp),Hbs(ℓp)).

Proof. Since (Mbs(ℓp), wp) is a first-countable space, it suffices to verify that for a bounded sequence (ϕi)i which is wp
convergent to some ψ , we have limi ϕi(f ) = ψ(f ) for each f ∈ Hbs(ℓp): Indeed, by the Banach–Steinhaus theorem, it
is enough to see that limi ϕi(P) = ψ(P) for each symmetric polynomial P . Being {Fk} an algebraic basis for the symmetric
polynomials, thiswill followoncewe check that limi ϕi(Fk) = ψ(Fk) for each Fk. To see this, notice that given ε > 0, ϕi ∈ Uε,k
for i large enough, that is, there is θi such that ϕi = ψ ⋆ θi with |θi(Fk)| < ε. Then, |ϕi(Fk)−ψ(Fk)| = |θi(FK )| < ε for i large
enough. �

Proposition 2.4. If (Mbs(ℓp), ⋆) is a group, then wp coincides with the weakest topology on Mbs(ℓp) such that for every
polynomial P ∈ Hbs(ℓp) the Gelfand extensionP is continuous on Mbs(ℓp).

Proof. The sets F−1
k (B(Fk(ψ), ε)) generate the weakest topology such that allP are continuous. Let θ ∈ Mbs(ℓp) be such

that |Fk(θ)− Fk(ψ)| < ε. Set ϕ = θ ⋆ ψ−1. Then |Fk(ϕ)| = |Fk(θ)− Fk(ψ)| < ε and θ = ψ ⋆ ϕ. �

3. Representations of the convolution semigroup (Mbs(ℓ1), ⋆)

In this section we consider the case Hbs(ℓ1). This algebra admits besides the power series basis {Fn}, another natural
basis that is useful for us: It is given by the sequence {Gn} defined by G0 = 1, and

Gn(x) =

∞
k1<···<kn

xk1 · · · xkn ,

and we refer to it as the basis of elementary symmetric polynomials.

Lemma 3.1. We have that ∥Gn∥ = 1/n!

Proof. To calculate the norm, it is enough to deal with vectors in the unit ball of ℓ1 whose components are non-negative.
And we may restrict ourselves to calculate it on Lm the linear span of {e1, . . . , em} for m ≥ n. We do the calculation in an
inductive way overm.

Since Gn|Lm
is homogeneous, its norm is achieved at points of norm 1. If m = n, then Gn is the product x1 · · · xn. By

using the Lagrange multipliers rule, we deduce that the maximum is attained at points with equal coordinates, that is at
1
n (e1 + · · · + en). Thus |Gn(

1
n ,

n. . ., 1
n , 0, . . .)| = 1/nn

≤
1
n! .

Now form > n, and x ∈ Lm, we have Gn(x) =


k1<···<kn≤m xk1 · · · xkn . Again the Lagrange multipliers rule leads to either
some of the coordinates vanish or they are all equal, hence they have the same value 1

m . In the first case, we are led back
to some the previous inductive steps, with Lk with k < m, so the aimed inequality holds. While in the second one, we have
Gn(

1
m ,

m. . ., 1
m , 0, . . .) =


m
n


1
mn ≤

1
n! .

Moreover, ∥Gn∥ ≥ limm


m
n


1
mn =

1
n! . This completes the proof. �

Let C{t} be the space of all power series over C. We denote by F and G the following maps from Mbs(ℓ1) into C{t}

F (ϕ) =

∞
n=1

tn−1ϕ(Fn) and G(ϕ) =

∞
n=0

tnϕ(Gn).

Let us recall that every element ϕ ∈ Mbs(ℓ1) has a radius-function

R(ϕ) = lim sup
n→∞

∥ϕn∥
1
n < ∞,

where ϕn is the restriction of ϕ to the subspace of n-homogeneous polynomials [6].

Proposition 3.2. The mapping ϕ ∈ Mbs(ℓ1)
G

→ G(ϕ) ∈ H(C) is one-to-one and ranges into the subspace of entire functions on
C of exponential type. The type of G(ϕ) is less than or equal to R(ϕ).

Proof. Using Lemma 3.1,

lim sup
n→∞

n

n!|ϕn(Gn)| ≤ lim sup

n→∞

n

n!∥ϕn∥ ∥Gn∥ = lim sup

n→∞

n


∥ϕn∥ = R(ϕ) < ∞,

hence G(ϕ) is entire and of exponential type less than or equal to R(ϕ). That G is one-to-one follows from the fact {Gn} is a
basis. �
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Theorem 3.3. The following identities hold:

(1) F (ϕ ⋆ θ) = F (ϕ)+ F (θ).
(2) G(ϕ ⋆ θ) = G(ϕ)G(θ).

Proof. The first statement is a trivial corollary of the properties of the convolution. To prove the second we observe that

Gn(x • y) =

n
k=0

Gk(x)Gn−k(y).

Thus

(θ ⋆ Gn)(x) = θ(T s
x (Gn)) = θ


n

k=0

Gk(x)Gn−k


=

n
k=0

Gk(x)θ(Gn−k).

Therefore,

(ϕ ⋆ θ)(Gn) = ϕ


n

k=0

Gk(x)θ(Gn−k)


=

n
k=0

ϕ(Gk)θ(Gn−k).

Hence, being the series absolutely convergent,

G(ϕ)G(θ) =

∞
k=0

tkϕ(Gk)

∞
m=0

tmθ(Gm) =

∞
n=0


k+m=n

tnϕ(Gk)θ(Gm)

=

∞
n=0

tn


k+m=n

ϕ(Gk)θ(Gm) =

∞
n=0

tn(ϕ ⋆ θ)(Gn) = G(ϕ ⋆ θ). �

Example 3.4. Let ψλ be as defined in Example 1.7. We know that F (ψλ) = λ. To find G(ψλ) note that

Gk(vn) =


λ

n

k 
n
k


, hence ϕ(Gk) = lim

n
Gk(vn) =

λk

k!

and so

G(ψλ)(t) = lim
n→∞

n
k=0

(λt)kψλ(Gn) = lim
n→∞

n
k=0

(λt)k

k!
= eλt .

According to well-known Newton’s formula we can write for x ∈ ℓ1,

nGn(x) = F1(x)Gn−1(x)− F2(x)Gn−2(x)+ · · · + (−1)n+1Fn(x). (3.1)

Moreover, if ξ is a complex homomorphism (not necessarily continuous) on the space of symmetric polynomials Ps(ℓ1),
then

nξ(Gn) = ξ(F1)ξ(Gn−1)− ξ(F2)ξ(Gn−2)+ · · · + (−1)n+1ξ(Fn). (3.2)

Next we point out the limitations of the construction’s technique described in 1.7.

Remark 3.5. Let ξ be a complex homomorphism on Ps(ℓ1) such that ξ(Fm) = c ≠ 0 for some m ≥ 2 and ξ(Fn) = 0 for
n ≠ m. Then ξ is not continuous.

Proof. Using formula (3.2) we can see that

ξ(Gkm) = (−1)m+1 ξ(Fm)ξ(G(k−1)m)

km
and ξ(Gn) = 0 if n ≠ km for some k ∈ N. By induction we have

ξ(Gkm) =


(−1)m+1c/m

k
k!

and so

G(ξ)(t) = 1 +

∞
k=1


(−1)m+1c/m

k
k!

tkm = 1 +

∞
k=1


(−1)m+1 ctm

m

k
k!

= e

(−1)m+1 ctm

m


.
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Hence G(ξ)(t) = e−
(−ct)m

m = e−
(−c)m

m tm . Since m ≥ 2,G(ξ) is not of exponential type. So if ξ were continuous, it could be
extended to an element in Mbs(ℓ1), leading to a contradiction with Proposition 3.2. �

According to the Hadamard Factorization Theorem (see [11, p. 27]) the function of exponential type G(ϕ)(t) is of the
form

G(ϕ)(t) = eλt
∞
k=1


1 −

t
ak


et/ak , (3.3)

where {ak} are the zeros of G(ϕ)(t). If


|ak|−1 < ∞, then this representation can be reduced to

G(ϕ)(t) = eλt
∞
k=1


1 −

t
ak


. (3.4)

Recall how ψλ was defined in Example 1.7.

Proposition 3.6. If ϕ ∈ (Mbs(ℓ1), ⋆) is invertible, then ϕ = ψλ for some λ. In particular, the semigroup (Mbs(ℓ1), ⋆) is not a
group.

Proof. If ϕ is invertible then G(ϕ)(t) is an invertible entire function of exponential type and so has no zeros. By Hadamard’s
factorization (3.3) we have that G(ϕ)(t) = eλt for some complex number λ. Hence ϕ = ψλ by Proposition 3.2.

The evaluation δ(1,0,...,0,...) does not coincide with any ψλ since, for instance, ψλ(F2) = 0 ≠ 1 = δ(1,0,...,0,...)(F2). �

Another consequence of our analysis is the following remark.

Corollary 3.7. Let Φ be a homomorphism of Ps(ℓ1) to itself such that Φ(Fk) = −Fk for every k. ThenΦ is discontinuous.

Proof. If Φ is continuous it may be extended to a continuous homomorphism Φ of Hbs(ℓ1). Then for x = (1,
0, . . . , 0, . . .),we have δx ⋆ (δx ◦ Φ) = δ0. However, this is impossible since δx is not invertible. �

We close this section by analyzing further the relationship established by the mapping G.
It is known from Combinatorics (see e.g. [12, pp. 3,4]) that

G(δx)(t) =

∞
k=1

(1 + xkt) and F (δx)(t) =

∞
k=1

xk
1 − xkt

(3.5)

for every x ∈ c00. Formula (3.5) for G(δx) is true for every x ∈ ℓ1: Indeed, for fixed t , both the infinite product and G(δx)(t)
are analytic functions on ℓ1.

Taking into account formula (3.5) we can see that the zeros of G(δx)(t) are ak = −1/xk for xk ≠ 0. Conversely, if f (t) is an
entire function of exponential type which is equal to the right hand side of (3.4) with


|ak|−1 < ∞, then for ϕ ∈ Mbs(ℓ1)

given by ϕ = ψλ ⋆ δx, where x ∈ ℓ1, xk = −1/ak and ψλ as defined in Example 1.7, it turns out that G(ϕ)(t) = f (t). So we
just have to examine entire functions of exponential type with Hadamard canonical product

f (t) =

∞
k=1


1 −

t
ak


et/ak (3.6)

with


|ak|−1
= ∞. Note first that the growth order of f (t) is not greater than 1. According to Borel’s theorem [11, p. 30]

the series
∞
k=1

1
|ak|1+d

converges for every d > 0. Let

∆f = lim sup
n→∞

n
|an|

, ηf = lim sup
r→∞


|an|<r

1
an


and γf = max(∆f , ηf ). Due to Lindelöf’s theorem [11, p. 33] the type σf of f and γf simultaneously are equal either to zero,
or to infinity, or to positive numbers. Hence f (t) of the form (3.6) is a function of exponential type if and only if


|ak|−1−d

converges for every d > 0 and γf is finite.

Corollary 3.8. If a sequence (xn) ∉ ℓp for some p > 1, then there is no ϕ ∈ Mbs(ℓ1) such that

ϕ(Fk) =

∞
n=1

xkn

for all k.
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Let x = (x1, . . . , xn, . . .) be a sequence of complex numbers such that x ∈ ℓ1+d for every d > 0,

lim sup
n→∞

n|xn| < ∞, lim sup
r→1



1

|xn |
<r

xn

 < ∞ (3.7)

and λ ∈ C. Let us denote by δ(x,λ) a homomorphism on the algebra of symmetric polynomials Ps(ℓ1) of the form

δ(x,λ)(F1) = λ, δ(x,λ)(Fk) =

∞
n=1

xkn, k > 1.

Proposition 3.9. Let ϕ ∈ Mbs(ℓ1). Then the restriction of ϕ toPs(ℓ1) coincides with δ(x,λ) for some λ ∈ C and x satisfying (3.7).

Proof. Consider the exponential type function G(ϕ) given by (3.3) and the corresponding sequence x = (−1
an
).

If x ∈ ℓ1, then according to (3.4), ϕ = ψλ ⋆ δx. If x ∉ ℓ1, then G(ϕ)(t) = eλt


∞

n=1


1 + txn


e−txn and, on the other hand,

G(ϕ)(t) =


∞

n=0 ϕ(Gn)tn.

We have
eλt

∞
n=1

(1 + txn) e−txn

′

t

= λeλt
∞
n=1

(1 + txn) e−txn

+ eλt


−tx21e
−tx1


n≠1

(1 + txn) e−txn − tx22e
−tx2


n≠2

(1 + txn) e−txn − · · ·



= λeλt
∞
n=1

(1 + txn) e−txn − teλt
∞
k=1

x2ke
−txk


n≠k

(1 + txn) e−txn

and 
eλt

∞
n=1

(1 + txn) e−txn

′ 
t=0

= λ.

So by the uniqueness of the Taylor coefficients, ϕ(G1) = ϕ(F1) = λ.
Now

eλt
∞
n=1

(1 + txn) e−txn

′′

t

=


λeλt

∞
n=1

(1 + txn) e−txn

′

t

−


teλt

∞
k=1

x2ke
−txk


n≠k

(1 + txn) e−txn

′

t

= λ2eλt
∞
n=1

(1 + txn) e−txn − λteλt
∞
k=1

x2ke
−txk


n≠k

(1 + txn) e−txn

− eλt
∞
k=1

x2ke
−txk


n≠k

(1 + txn) e−txn − t


eλt

∞
k=1

x2ke
−txk


n≠k

(1 + txn) e−txn

′

t

and 
eλt

∞
n=1

(1 + txn) e−txn

′′ 
t=0

= λ2 −

∞
k=1

x2k .

Then

ϕ(G2) =
λ2 − F2(x)

2
=
(ϕ(F1))2 − F2(x)

2
.

On the other hand,

ϕ(G2) =
ϕ(F 2

1 )− ϕ(F2)
2

and we have

ϕ(F2) = F2(x).

Now using induction we obtain the required result. �
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Question 3.10. Does the map G act onto the space of entire functions of exponential type?
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