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We present a new evolutionary algorithm on the basis of quantum computations technology for solving optimization problems.
The algorithm is built using many-valued quantum logic concept, which is more prospective from the computing power’s point of
view. We compare the suggested algorithm to the traditional quantum genetic algorithm to demonstrate its high effectiveness on
the example of test function global optimization problems. The advantages can be observed in the running time, the convergence
speed, and the solution precision.The proposed implementation for the algorithm of quantum gate operator has an adaptive nature
and does not require a lookup table. The role and the influence mechanism of the quantum disaster operator on the proposed
algorithm effectiveness are also analyzed.

1. Introduction

Quantum genetic algorithm (QGA) is a relatively new evolu-
tionary algorithm, which combines the ideas of the quantum
computations with the classical quantum genetic algorithms
technology [1, 2]. The probabilistic mechanism of the quan-
tum computations in conjunction with the evolutionary
algorithm provides a global search for the solution with
fast convergence and small population size. This algorithm
is successfully applied to different science and engineering
problems, which require approximate, close to the optimum,
solutions after a minimum computation time [3–6].

The main QGA concepts were proposed by Narayanan
andMoore [7].The basic unit of information in the quantum
computations is a qubit, a quantum system, which may be in
the |0⟩ basis state or the |1⟩ basis state. Quantum nature of
the qubit lies in the superposition principle, under which the
qubit generally is in a state, which is a linear combination of
basis states: 󵄨󵄨󵄨󵄨q⟩ = 𝛼0 |0⟩ + 𝛼1 |1⟩ (1)

with a normalization condition:𝛼02 + 𝛼12 = 1 (2)

Ameasurement can be applied to the quantum bit, as well
as to the classical bit, and the outcome of such measurement
is a qubit in a single basis state.

An ordered set of 𝑁 qubits constitutes a quantum
chromosome. A state vector of such chromosome is a
superposition of 2𝑁 basis states of the register |𝑖1, 𝑖2, . . . , 𝑖N⟩,𝑖1, 𝑖2, . . . , 𝑖N = {0, 1}:

󵄨󵄨󵄨󵄨𝜓⟩ = 𝑁∑
𝑘=0

𝛼𝑖1 ,𝑖2,...𝑖N 󵄨󵄨󵄨󵄨𝑖1, 𝑖2, . . . , 𝑖N⟩ (3)

All information about the system of qubits is determined
by the state vector |𝜓⟩. The key issue in the QGA is the
transformation of the initial state vector |𝜓⟩ to a certain new
state |𝜓󸀠⟩ using a quantum gate operator. The information
about the problem solution lies solely in the final state vector
of the system |𝜓󸀠⟩.

Taking into consideration the small size of the population,
in order to expand the search area QGA should be addition-
ally complemented with operations, inherent in the classical
genetic algorithm, such as quantum mutation operation or
disaster operation [2].
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2. Quantum Genetic Algorithm Based on
Qudits (QGA_n)

In general case number of states of a quantum system is
equal to n, the number of level in the multilevel quantum
system. Recently much attention has been devoted to studies
of possibility of using of the quantum systems for realization
of quantum algorithms [8–10].

In contradiction to qubit, qudit is a quantum unit of
information, which may be in any of 𝑛 basis states |0⟩, |1⟩,|2⟩, . . . |𝑛 − 1⟩ or in any superposition of those. The state of
the qudit can be generally represented as follows:󵄨󵄨󵄨󵄨𝑞⟩ = 𝛼1 |0⟩ + 𝛼2 |1⟩ + 𝛼3 |2⟩ + . . . + 𝛼𝑛 |𝑛 − 1⟩ (4)

with a normalization constraint:𝛼21 + 𝛼22 + 𝛼23 + . . . + 𝛼2𝑛 = 1 (5)

Let us use the matrix representation for QGA n imple-
mentation:

|0⟩ = (((
(

100...0
)))
)

,

|1⟩ = (((
(

010...0
)))
)

,

|2⟩ = (((
(

001...0
)))
)

,
. . . ,

|𝑛 − 1⟩ = (((
(

000...1
)))
)

(6)

Taking into consideration (6), the state of the qudit can
be presented in the following way:

󵄨󵄨󵄨󵄨𝑞⟩ = (((
(

𝛼1𝛼2𝛼3...𝛼𝑛
)))
)

(7)

2.1. Qudit Encoding. To realize QGA n quantum chromo-
some is considered as a set of independent qudits. For N=16,
it can be represented as follows:

󵄨󵄨󵄨󵄨q1⟩ 󵄨󵄨󵄨󵄨q2⟩ 󵄨󵄨󵄨󵄨q3⟩ 󵄨󵄨󵄨󵄨q4⟩ 󵄨󵄨󵄨󵄨q5⟩ 󵄨󵄨󵄨󵄨q6⟩ 󵄨󵄨󵄨󵄨q7⟩ 󵄨󵄨󵄨󵄨q8⟩ 󵄨󵄨󵄨󵄨q9⟩ 󵄨󵄨󵄨󵄨q10⟩ 󵄨󵄨󵄨󵄨q11⟩ 󵄨󵄨󵄨󵄨q12⟩ 󵄨󵄨󵄨󵄨q13⟩ 󵄨󵄨󵄨󵄨q14⟩ 󵄨󵄨󵄨󵄨q15⟩ 󵄨󵄨󵄨󵄨q16⟩ (8)

The state of the i-th qudit is determined by the amplitudes
of probabilities {𝛼𝑖1, 𝛼𝑖2, 𝛼𝑖3, . . . , 𝛼𝑖𝑛}:|n − 1⟩ — 𝛼𝑖𝑛|n − 2⟩ — 𝛼𝑖𝑛−1... ... ...|1⟩ — 𝛼𝑖2|0⟩ — 𝛼𝑖1

(9)

For practical realization of QGA nwith the help of classi-
cal computer it is convenient to represent the quantum chro-
mosomewhich is composed byN qudits as shown in Table 1.

The initial state of the qudit holds no information about
the problem or its solution, so the easiest way to initialize it

is to set all probability state amplitudes 𝛼𝑖𝑛 to be equal to one
another [1]. This means that as a result of the initialization
each qudit is in the state:󵄨󵄨󵄨󵄨𝑞⟩ = 1√𝑛 |0⟩ + 1√𝑛 |1⟩ + 1√𝑛 |2⟩ + . . . + 1√𝑛 |𝑛 − 1⟩ (10)

The length of the quantum chromosome𝑁 is determined
by precision 𝜀, search area [𝑥𝑚𝑖𝑥, 𝑥𝑚𝑎𝑥], and number of
quantum system basis states 𝑛:

𝑁 = log𝑛 (𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛𝜀 + 1) (11)

For example, for 𝑛 = 2, precision 𝜀 = 10−6, and search
area [−1, 1], the length of the quantum chromosome has to
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Table 1󵄨󵄨󵄨󵄨𝑞1⟩ 󵄨󵄨󵄨󵄨𝑞2⟩ 󵄨󵄨󵄨󵄨𝑞3⟩ ⋅ ⋅ ⋅ 󵄨󵄨󵄨󵄨𝑞𝑖⟩ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ |𝑞𝑁⟩↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓𝛼11 𝛼21 𝛼31 ⋅ ⋅ ⋅ 𝛼𝑖1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝛼𝑁1𝛼12 𝛼22 𝛼32 ⋅ ⋅ ⋅ 𝛼𝑖2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝛼𝑁2𝛼13 𝛼23 𝛼33 ⋅ ⋅ ⋅ 𝛼𝑖3 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝛼𝑁3... ... ... ... ... ... ... ... ...𝛼1𝑛 𝛼2𝑛 𝛼3𝑛 ⋅ ⋅ ⋅ 𝛼𝑖𝑛 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝛼𝑁𝑛
(1) for 𝑖 ∈ 1, . . . , 𝑁 do
(2) r← random number in the area [0, 1]
(3) 𝑆𝑢𝑚 ←󳨀 0
(4) for 𝑗 ∈ 0, . . . , 𝑛 − 1 do
(5) 𝑆𝑢𝑚 ←󳨀 𝑆𝑢𝑚 + [𝛼𝑖𝑗]2
(6) if 𝑟 < 𝑆𝑢𝑚 then
(7) 𝑝 ←󳨀 𝑗
(8) end if
(9) end for
(10) end for

Algorithm 1: Qudit state measurement.
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Figure 1: Length of the quantum chromosome N as a function of
dimension of quantum system n.

be at least 21 qubits, for 𝑛 = 3 - 14 qutrits, and for 𝑛 = 4 only
11 qudits are enough (Figure 1).

It should be noted that as the size of the quantum
chromosome decreases alongwith the 𝑛 value growth, we also
observe an increase in the size of the matrix, which is needed
to represent a single individual or the whole population
(Figure 2).

4 6 8 10 12 14 16 18 202

n

40

50

60

70

80

90

100

110

M
at

rix
 si

ze

Figure 2: Influence of the dimension of quantum system n on the
size of thematrix, which is required for representing one population
individual.

2.2. Observation of Genes. The solution of the problem is
determined by the final state vector |𝜓󸀠⟩ and can be obtained
using the quantum measurement. The outcome of such
measurement is a qudit in one of the basis states. This is the
classical representation of the quantum chromosome in the
numeral system of base 𝑛.

The following pseudocode for the chromosome state
measurement can be suggested based on [11] (Algorithm 1).
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Table 2󵄨󵄨󵄨󵄨𝑞1⟩ 󵄨󵄨󵄨󵄨𝑞2⟩ 󵄨󵄨󵄨󵄨𝑞3⟩ ⋅ ⋅ ⋅ 󵄨󵄨󵄨󵄨𝑞𝑖⟩ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 󵄨󵄨󵄨󵄨𝑞𝑁⟩
Measurement↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

0 7 3 . . . 1 . . . . . . . . . 0

The result of applying the algorithm is the basis state𝑝 (0, 1, 2, . . . , 𝑛 − 1) of the population individuals with
probability (𝛼𝑖1)2, (𝛼𝑖2)2, . . ., (𝛼𝑖𝑛)2 (𝑖 ∈ {1, 2, . . . , 𝑁}).

The algorithm’s concept can be illustrated using Table 2.
As a result of themeasurement each qudit of the chromosome
is transformed into its classical representation in the corre-
sponding numeral system, which is later used for calculating
the fitness function.

2.3. Quantum Rotating Gates. All the information about
the problem and the algorithm for solving it lies in the
quantumgate, so its algorithm is the key issue of any quantum
genetic algorithm construction. It manipulates the probabil-
ity amplitudes of the quantum states 𝛼𝑚𝑘 , while ensuring the
normalization constraint satisfaction.

The operator’s conduct of work can be divided into two
stages. The increase of the quantum state 𝑚 probability
amplitude, which is selected in accordance with the quantum
gate algorithm, takes place during the first stage:

(𝛼𝑚𝑘 )󸀠 = √[𝛼𝑚𝑘 ]2 + 𝜇 (1 − 𝛼𝑚𝑘 ) (12)

Here 𝜇 is an algorithm parameter, and its value lies in
the area [0, 1] and needs to be refined in the result of the
previous research.The state𝑚 is determined by the 𝑘- value of
the classical representation of the best population individual,
obtained during the previous iteration of the population
evolution.

Expression (12) also ensures that 𝛼𝑚𝑘 cannot be greater
than 1 and implements its adaptive behavior.This is illustrated
by Figure 3, which shows the dependency of the valueΔ𝛼(𝛼𝑚𝑘 ) = (𝛼𝑚𝑘 )󸀠 − 𝛼𝑚𝑘 .

On the second stage, all the other state probability
amplitudes need to be adjusted to satisfy the normalization
constraint (5). In general, the application of the operator to
one of the population individuals can be implemented in way
shown in Algorithm 2.

Therefore, each new generation ensures the increase of
the probability of generating individuals which are most
similar to the best.

The algorithm’s concept can be illustrated by the image
given below. The vertical lines set the state probability
amplitudes 𝛼𝑘1 , 𝛼𝑘2 , 𝛼𝑘3 , . . . , 𝛼𝑘𝑛 of 𝑘-th qudit of the population
individual. If the classical representation of the population
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Figure 3: Change of the probability amplitude of the quantum stateΔ𝛼 in dependency of 𝛼𝑚𝑘 with 𝜇 = 0.1.

best individual has, for example, a value𝑤 on the correspond-
ing position, this is the only amplitude which is increased
according to (11). So, only the probability amplitudes 𝛼𝑘𝑤,
which correspond to the population best individual on the
previous evolution stage, will increase. At the same time,
probability amplitudes of the other states will decrease to
satisfy the normalization constraint.
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· · ·

· · ·

}n − 1{

[ ]

(13)

It is important that the described logic behind the
quantum gate operator allows avoiding the need for the
lookup table, which is one of the fundamental disadvantages
of QGA.Therefore, quantum gate operator provides efficient
local convergence of the algorithm to the optimal value with
the smaller number of evaluations.

Transition to quantum system of higher dimension leads
to short in time transition from one state of quantum chro-
mosome to another during the evolution. For instance, for
transition from chromosome state corresponding to classical
state representing 7 to classical state representing 8 it is
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(1) for 𝑘 ∈ 1, . . . , 𝑁 do
(2) bestamp← 𝑘 – th value of the gene of best population individual
(3) 𝑠𝑢𝑚 ←󳨀 1 − [𝛼𝑏𝑒𝑠𝑡𝑎𝑚𝑝𝑘 ]2
(4) 𝛼𝑏𝑒𝑠𝑡𝑎𝑚𝑝𝑘 ←󳨀 √[𝛼𝑏𝑒𝑠𝑡𝑎𝑚𝑝𝑘 ]2 + 𝜇 ∗ (1 − 𝛼𝑏𝑒𝑠𝑡𝑎𝑚𝑝𝑘 )
(5) 𝑀 ←󳨀 √ 1 − [𝛼𝑏𝑒𝑠𝑡𝑎𝑚𝑝𝑘 ]2𝑠𝑢𝑚
(6) for 𝑎𝑚𝑝 ∈ 0, . . . , 𝑛 − 1 do
(7) if amp ̸= bestamp then
(8) 𝛼𝑎𝑚𝑝𝑘 ←󳨀 𝑀 ⋅ 𝛼𝑎𝑚𝑝𝑘
(9) end if
(10) end for
(11) end for

Algorithm 2: Quantum gate operator.

(1) for 𝑖 ∈ 1, . . . , 𝑠 do
(2) if the chromosome is not the best then
(3) if disaster condition then
(4) for 𝑘 ∈ 1, . . . , 𝑛 do
(5) 𝛼𝑘𝑖 ←󳨀 1√𝑛
(6) end for
(8) end if
(9) end if
(11) end for

Algorithm 3: Quantum disaster.

necessary to change the amplitudes of probabilities for 4
qubits:

7 󳨀→
8 󳨀→

󵄨󵄨󵄨󵄨q1⟩ 󵄨󵄨󵄨󵄨q2⟩ 󵄨󵄨󵄨󵄨q3⟩ 󵄨󵄨󵄨󵄨q4⟩0 1 1 1↓ ↓ ↓ ↓1 0 0 0 (14)

For n = 8 the reorientation of quantum states is going
in frame of one qudits and as a result of the superposition
principle is very effective:

7 8↓ ↓0 → 00 → 00 → 00 → 00 → 00 → 01 → 00 → 1
(15)

2.4. Quantum Disaster Operation. If the search space is
considerably large, the small size of the population can cause
its premature convergence and high probability of falling into
one of the local minimums. This issue is especially relevant
during the optimization of functionswith a complex topology
and a big number of local minimums.

The easiest mechanism for maintaining the population
diversity is the quantum disaster operation [12]. It can be
summarized as initialization of some of the population
individuals, except for the best one, with initial state (10).
The operation “virtually” increases the size of the population
but influences the local convergence speed of the algorithm,
which will be demonstrated later.

In the simplest case, the quantum disaster operation can
be implemented by the way shown in Algorithm 3.

Quantum chromosome is considered as a set of indepen-
dent qudits (entanglement of quantum states is not consid-
ered). Namely, the result of the quantum disaster operation is
transition of the state of quantum chromosome to the initial
state (t=0) in which the probability amplitudes are equal to
each other.

3. Simulation Test

QGA n based on qudits system is implemented using C++
programming language, and the simulations are performed
on the Intel Celeron CPU G1840 2.80GHz, 4.0 GB RAM.
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The set of functions used for QGA testing in the paper
is conventional for the analyzed class of algorithms [12, 13].
The paper only includes the optimization results of functions,
which are considered difficult for the algorithm and allow
estimating the influence of the dimension of quantum system
n on the algorithm efficiency, which is the main subject of the
paper.

If we utilize test functions of smaller number of variables
(less than 3), we obtain almost exact results. It does not give
the possibility of estimating the influence of the dimension of
quantum system on the QGA efficiency (that is the reason for
such results not being included in the paper).

A number of numerical optimization problems with a
fundamentally different topology in the optimum area were
analyzed to illustrate the algorithm design. The following
test functions, taken from virtual library of Simulation
Experiments in Simon Fraser University, were used.

Trid Function

𝐹1 (𝑥1, 𝑥2, . . . , 𝑥𝑑) = 𝑑∑
𝑖=1

(𝑥𝑖 − 1)2 − 𝑑∑
𝑖=2

𝑥𝑖𝑥𝑖−1
−𝑑2 ≤ 𝑥𝑖 ≤ 𝑑2, 𝑖 = 1, 2, . . . 𝑑 (16)

The function has no localminimums except for the global
one

𝐹1 (𝑥∗) = −𝑑 (𝑑 + 4) (𝑑 − 1)6 (17)

at 𝑥∗ = 𝑖 (𝑑 + 1 − 𝑖) , 𝑖 = 1, 2, . . . 𝑑 (18)

Levy Function𝐹2 (𝑥1, 𝑥2, . . . , 𝑥𝑑)= sin2 (𝜋𝜔1) + (𝜔𝑑 − 1)2 [1 + sin2 (2𝜋𝜔𝑑)]
+ 𝑑∑
𝑖=1

(𝜔𝑖 − 1)2 [1 + 10 sin2 (𝜋𝜔𝑖 + 1)] (19)

where

𝜔𝑖 = 1 + 𝑥𝑖 − 14 , −36 ≤ 𝑥𝑖 ≤ 36, 𝑖 = 1, 2, . . . , 𝑑 (20)

The function has several local minimums and one global
minimum 𝐹2 (𝑥∗) = 0 (21)

at 𝑥∗ = (1, 1, . . . , 1) (22)

Schwefel Function

𝐹3 (𝑥1, 𝑥2, . . . , 𝑥𝑑) = 418.9829 ⋅ 𝑑 − 𝑑∑
𝑖=1

𝑥𝑖
⋅ sin(√󵄨󵄨󵄨󵄨𝑥𝑖󵄨󵄨󵄨󵄨)−500 ≤ 𝑥𝑖 ≤ 500, 𝑖 = 1, 2, . . . , 𝑑

(23)

The function is complex and has many local minimums
and one global minimum𝐹3 (𝑥∗) = 0 (24)

at 𝑥∗ = (420.9687, 420.9687, . . . , 420.9687) (25)

Ackley Function

𝐹4 (𝑥1 , 𝑥2, . . . .𝑥𝑑 = −20𝑒−0.2√(1/𝑑)∑𝑑𝑖=1 𝑥2𝑖− 𝑒(1/𝑑)∑𝑑𝑖=1 cos(2𝜋𝑥𝑖) + 22.71828−32.768 ≤ 𝑥𝑖 ≤ 32.768, 𝑖 = 1, 2, . . . 𝑑 (26)

The function is complex and has many local minimums
surrounding the global minimum𝐹4 (𝑥∗) = 0 (27)

at 𝑥∗ = (0, 0, . . . , 0) (28)

Rastrigin Function

𝐹5 = 10𝑑 + 𝑑∑
𝑖=1

[𝑥21 − 10 cos (2𝜋𝑥𝑖)]
−5.12 ≤ 𝑥𝑖 ≤ 5.12, 𝑖 = 1, 2, . . . 𝑑 (29)

The function is complex and has many periodically
located minimums, which are proportional to the single
global minimum 𝐹5 (𝑥∗) = 0 (30)

at 𝑥∗ = (0, 0, . . . , 0) (31)

The choice of the listed functions is prompted by the
following considerations:

(i) 𝐹1 is monotonic and has a single global minimum, so
it makes it possible to assess the efficiency of the local
convergence of the algorithm and the influence of the
quantum disaster operation
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Table 3: Optimal values of the 𝜇 parameter.

Function QGA n QGA n+Disaster
F1 0.010 0.020
F2 0.013 0.056
F3 0.015 0.102
F4 0.026 0.13
F5 0.019 0.11

(ii) 𝐹2 has a global minimum within a context of several
local minimums, whichmakes it possible to assess the
efficiency of the local convergence of the algorithm
combined with the quantum disaster operation

(iii) 𝐹3, 𝐹4, and 𝐹5 have many local minimums surround-
ing the single global minimum, so they make it
possible to assess the capacity of the algorithm’s global
search. The differences in the functions topology and
the local minimums distribution make it possible to
assess the influence of the dimension of quantum
system n on the abilities of the population getting
out of the local minimums, because the population
inevitably falls into the local optimal solution during
the evolutionary process.

4. Optimization and Results

The following simulation parameters were used for QGA n
practical implementation: number of variables in the test
functions 𝑑 = 6; size of the population 𝑠 = 50; number of
iterations over time 𝑡 = 500; precision 𝜀 = 1 ⋅ 10−6. For 𝑑 = 2
and the standard population size 𝑠 = 10 the global optimum
values are close to the exact solution, and in the context of
statistical distribution of the obtained results because of the
quantum disaster operation it is not possible to evaluate the
search capacity of QGA n.

4.1. The Choice of 𝜇 Parameter. The value of parameter 𝜇
determines the evolution of the quantum system and has
a key role in the algorithm. It also determines the balance
between the global (quantum observation operation) and
local (quantum gate) search for the solution specification.

To choose the optimal 𝜇 value we need to estimate
its influence on the average fitness of the best population
individual. The evaluation of the parameters is listed as
the average result over 1000 QGA n runs, if not specified
otherwise. Its characteristic behavior in dependency of 𝜇
parameter is presented in Figure 4 for the example of 𝐹1
function optimization. It is typical, and the position of the
minimum depends on the function topology. It is important
that the dimension of quantum system has practically no
influence on the optimal 𝜇 value.

Optimal values of the 𝜇 parameter, obtained for the test
functions, are listed in Table 3.

It can be observed that without the quantum disaster
operation the optimal value of 𝜇 parameter for all the test
functions lies in a quite narrow range of values. Taking into
account the weak dependency of 𝐹𝑎V𝑟 on 𝜇, value 𝜇 ≈ 0.015
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Figure 4: Average fitness of the best population individual Favr as a
function of 𝜇 parameter. Quantum disaster operation not applied.

can be considered completely acceptable for all functions.
In case of applying the quantum disaster operation a single
optimal value cannot be offered, and the parameter has to be
chosen separately for each of the functions.

4.2. QGA n Effectiveness Evaluation. The majority of
the quantum algorithms use similar primary ideas and
approaches, which are based on the qubit representation
of the population [14]. Therefore the proposed algorithm
is compared to the traditional quantum genetic algorithm:
it corresponds to the case with the dimension of quantum
system 𝑛 = 2.

The effectiveness evaluation of the proposed algorithm is
performed by two main criteria. The first is running time for
a standard set of input parameters. For illustrative purposes,
we will limit the quantum systems with 𝑛 = 20 inclusive.
There are no principal restrictions for the transition to many-
valued quantum logic with 𝑛 > 20. The results of such
research on the example of 𝐹1 function are given in Figures
5 and 6. In general, the average running time is essentially
independent of the test function and the existence or absence
of the quantum disaster operation and is determined by the
size of the search areawith all the other parameters remaining
unchanged.
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Figure 6: Average fitness of the best individual of the population
Favr in dependency of the dimension of quantum system n.

Figure 7 illustrates the convergence speed of QGA n for𝐹1 functionwith andwithout the quantumdisaster operation.
Here and throughout the probability of the quantum disaster
is assumed to be equal to 1 for the whole population except
for the best individual. Taking into account the considerable
range of the outcomes in different algorithm runs, in this case
the fitness of the best individual 𝐹𝑎V𝑟 is listed as the average
result over 100 QGA n runs.

As can be seen from Figure 7, on the early stages of
the evolution, up to the 200-th generation, quantum disaster
operation accelerates the evolution of the population to the
optimal value. However, on the final stages, it has a negative
impact. Simulation studies show that a simple removal of
one individual from the evolutionary process through the
quantum disaster operation cannot explain the deterioration
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Figure 7: Average population evolution over time for function F1
with n=6.
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Figure 8:Average fitness of the best individual of the population Favr
in dependency of the dimension of quantum system n for function
F2.

of the local convergence of the algorithm. For example,
population size reduction of one individual, to 𝑠 = 49, causes
a change in the obtained results, which is not bigger than 5-10
percent. The rest 90 percent of the deterioration are caused
by the influence of the quantum disaster operation during
the whole previous development history of the population in
general.

The presence of local minimums significantly changes
the overall picture of the dimension of quantum system
influence on the search efficiency.This is proven by the results
of 𝐹2 function optimization results, listed on Figure 8. The
positive role of the quantum disaster operation should be
acknowledged in this case. Periodical peaks can be observed
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Table 4: Test functions F3 optimization results.

QGA n QGA n+Disaster
n 𝐹𝑎V𝑟 𝐹𝑠𝑑 Best Worst n 𝐹𝑎V𝑟 𝐹𝑠𝑑 Best Worst

𝐹3

2 38.56 57.7 0.039 283.8 2 17.55 37.4 7.3 ⋅ 10−4 240.1
3 60.1 62.7 0.016 374.9 3 89.2 100.0 8.4 ⋅ 10−5 410.3
4 12.9 11.9 0.011 124.5 4 5.19 13.1 9.2 ⋅ 10−5 68.9
5 16.88 29.60 8.0 ⋅ 10−3 138.7 5 16.04 50.7 9.5 ⋅ 10−5 156.7
6 15.77 17.69 0.015 142.8 6 10.94 24.2 7.6 ⋅ 10−5 126.8
7 1.63 1.15 0.001 97.6 7 1.44 0.98 9.5 ⋅ 10−5 5.12
8 0.64 6.73 9.0 ⋅ 10−3 81.7 8 0.44 1.07 8.7 ⋅ 10−5 98.2
9 5.97 26.1 2.4 ⋅ 10−3 106.7 9 3.93 12.9 7.6 ⋅ 10−5 105.4
10 14.66 27.6 1.0 ⋅ 10−3 143.1 10 11.46 24.11 2.0 ⋅ 10−4 121.0
11 14.07 14.98 5.8 ⋅ 10−3 95.5 11 13.24 15.27 7.6 ⋅ 10−5 72.0
12 6.01 3.51 0.027 30.18 12 4.47 2.66 7.8 ⋅ 10−5 12.53
13 2.58 5.68 7.6 ⋅ 10−3 83.4 13 1.48 1.19 8.3 ⋅ 10−5 32.56
14 9.56 7.72 1.3 ⋅ 10−3 38.9 14 8.35 7.36 7.7 ⋅ 10−5 36.47
15 11.51 14.74 2.7 ⋅ 10−4 80.7 15 9.76 13.63 7.9 ⋅ 10−5 77.01
16 9.00 17.30 2.3 ⋅ 10−3 108.2 16 7.35 15.92 7.4 ⋅ 10−5 103.2
17 2.49 10.54 2.7 ⋅ 10−3 103.3 17 1.34 7.91 7.7 ⋅ 10−5 68.9
18 1.19 7.81 5.6 ⋅ 10−4 57.9 18 0.69 6.08 7.6 ⋅ 10−5 68.7
19 0.44 0.38 2.9 ⋅ 10−4 3.98 19 0.075 0.125 7.6 ⋅ 10−5 0.643
20 2.03 9.72 1.5 ⋅ 10−3 87.4 20 1.56 8.72 7.6 ⋅ 10−5 54.04

Table 5: Test functions F4 optimization results.

QGA n QGA n+Disaster
n 𝐹𝑎V𝑟 𝐹𝑠𝑑 Best Worst n 𝐹𝑎V𝑟 𝐹𝑠𝑑 Best Worst

𝐹4

2 0.138 0.46 2.1 ⋅ 10−3 3.29 2 0.081 0.37 1.2 ⋅ 10−7 2.72
3 0.105 0.158 2.6 ⋅ 10−3 2.25 3 0.002 0.004 4.5 ⋅ 10−6 0.009
4 0.066 0.079 1.3 ⋅ 10−3 1.07 4 0.001 5.4 ⋅ 10−5 4.5 ⋅ 10−6 0.09
5 0.160 0.24 3.7 ⋅ 10−3 2.63 5 0.002 0.005 3.1 ⋅ 10−7 0.11
6 0.101 0.16 2.3 ⋅ 10−3 1.58 6 0.001 9.7 ⋅ 10−5 1.4 ⋅ 10−6 0.002
7 1.38 1.02 3.6 ⋅ 10−3 3.39 7 0.52 0.96 2.8 ⋅ 10−6 3.28
8 0.101 0.14 9.2 ⋅ 10−4 1.61 8 0.001 2.0 ⋅ 10−4 7.1 ⋅ 10−6 3.3 ⋅ 10−3
9 0.127 0.39 2.1 ⋅ 10−3 3.17 9 0.005 0.011 7.2 ⋅ 10−7 0.15
10 0.101 0.71 2.5 ⋅ 10−3 2.29 10 1.103 0.61 5.2 ⋅ 10−4 3.29
11 0.378 0.68 6.7 ⋅ 10−3 4.75 11 0.005 0.048 4.0 ⋅ 10−6 0.51
12 0.410 0.644 6.2 ⋅ 10−3 2.66 12 0.109 0.445 1.5 ⋅ 10−6 1.65
13 0.362 0.392 3.5 ⋅ 10−3 2.46 13 0.005 0.021 9.4 ⋅ 10−6 0.59
14 0.265 0.482 3.2 ⋅ 10−3 3.29 14 0.014 0.184 5.8 ⋅ 10−7 2.95
15 0.389 0.487 3.6 ⋅ 10−3 3.99 15 0.005 0.019 5.9 ⋅ 10−6 0.41
16 0.222 0.37 3.8 ⋅ 10−3 2.27 16 1.0 ⋅ 10−4 0.002 1.3 ⋅ 10−8 0.028
17 0.93 1.28 5.9 ⋅ 10−3 5.66 17 0.207 0.816 3.4 ⋅ 10−5 4.88
18 0.252 0.354 2.2 ⋅ 10−3 2.45 18 2.9 ⋅ 10−4 1.6 ⋅ 10−3 1.5 ⋅ 10−6 0.019
19 1.42 1.57 8.9 ⋅ 10−3 5.62 19 0.64 1.33 2.3 ⋅ 10−5 4.56
20 0.274 0.324 4.1 ⋅ 10−3 2.13 20 3.4 ⋅ 10−4 1.5 ⋅ 10−3 1.7 ⋅ 10−6 0.014

in the functional dependency. They are most likely caused
by “interference” of the periodical typology of the reviewed
function and the discreet nature of the dimension of quantum
system. This issue is not a subject of this paper and will be
studies separately.

Statistical results, including the best result Best, the
average result 𝐹𝑎V𝑟, the worst result Worst, and the standard
deviation𝐹𝑠𝑑, retrieved during𝐹3−𝐹5 test functions optimiza-
tion, are listed in Tables 4-6. All dates are obtained averaging
over 100 QGA n runs.
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Table 6: Test functions F5 optimization results.

QGA n QGA n+Disaster
n 𝐹𝑎V𝑟 𝐹𝑠𝑑 Best Worst n 𝐹𝑎V𝑟 𝐹𝑠𝑑 Best Worst

𝐹5

2 3.41 2.02 9.2 ⋅ 10−4 11.34 2 2.50 2.07 1.1 ⋅ 10−5 12.01
3 3.08 1.37 0.039 11.09 3 2.05 1.99 4.7 ⋅ 10−8 11.8
4 2.54 1.08 6.2 ⋅ 10−4 9.1 4 1.75 1.16 1.1 ⋅ 10−9 6.46
5 1.21 1.01 9.7 ⋅ 10−4 9.11 5 1.92 0.81 1.7 ⋅ 10−9 4.01
6 2.49 1.34 1.9 ⋅ 10−3 10.95 6 2.57 1.96 8.5 ⋅ 10−9 12.9
7 1.51 0.97 3.6 ⋅ 10−4 4.34 7 0.314 1.28 3.1 ⋅ 10−8 7.13
8 1.19 1.76 1.9 ⋅ 10−4 8.16 8 2.17 1.05 1.1 ⋅ 10−9 7.96
9 2.73 1.27 1.1 ⋅ 10−3 6.50 9 0.79 1.22 7.8 ⋅ 10−8 8.39
10 0.019 1.38 1.3 ⋅ 10−4 9.02 10 0.001 6.6 ⋅ 10−6 3.1 ⋅ 10−12 2.1 ⋅ 10−4
11 0.362 0.512 5.0 ⋅ 10−5 3.19 11 6.2 ⋅ 10−3 0.011 2.1 ⋅ 10−9 0.353
12 2.90 1.58 4.8 ⋅ 10−4 9.98 12 2.42 1.24 8.9 ⋅ 10−11 7.96
13 3.01 1.47 3.5 ⋅ 10−3 10.92 13 2.34 1.24 9.0 ⋅ 10−8 6.97
14 3.07 1.16 5.3 ⋅ 10−4 6.02 14 2.31 1.18 2.1 ⋅ 10−11 5.98
15 2.28 1.17 4.1 ⋅ 10−4 6.19 15 1.67 1.14 4.9 ⋅ 10−9 5.03
16 2.75 1.15 3.5 ⋅ 10−4 6.0 16 2.09 1.13 1.1 ⋅ 10−10 5.0
17 2.51 1.23 7.3 ⋅ 10−4 6.12 17 2.01 1.14 1.8 ⋅ 10−8 5.06
18 2.71 1.25 9.4 ⋅ 10−4 6.08 18 2.24 1.19 9.9 ⋅ 10−11 6.01
19 1.29 0.94 5.0 ⋅ 10−4 4.99 19 1.22 0.96 8.9 ⋅ 10−9 4.11
20 0.229 0.347 8.8 ⋅ 10−5 2.16 20 1.4 ⋅ 10−4 4.1 ⋅ 10−3 7.6 ⋅ 10−12 0.13
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Figure 9: Time-averaged population evolution for function F3 with
n=6.

Figures 9–11 illustrate the characteristic dynamics of
the evolutionary process of the population over time for
functions with a complex topology.

As we consider the presented results, two points can be
observed:
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Figure 10: Time-averaged population evolution for function F4 with
n=6.

(i) the chosen maximum time of the evolution 𝑡 = 500
is not always enough for the population to finish the
relaxation to the optimal value;

(ii) utilization of the quantum disaster operation in case
of a test function with complex topology causes a
significant acceleration of the evolutionary process on
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Figure 11: Time-averaged population evolution for function F5 with
n=6.

the early stages of the evolution, approximately within
the first 200 iterations over time.

5. Conclusions

In this paper, we proposed a new genetic algorithm based on
many-valued quantum logic QGA n.The quantum operators
suggested in the paper allow performing an effective search
for the optimum of multivariable functions operating with a
small population size. In cases when the function topology
is complex, quantum disaster operation is used to avoid the
population falling into the local optimums.

The concept of the algorithm is illustrated by the example
of the optimization problem for a set of test functions. The
obtained results lead to the following conclusions:

(i) representation of quantum chromosome by a system
of qudits with n>10 decreases time of performing
the algorithm approximately in three times with a
significant increasing of convergence on the early
stages of the evolution (t<150). Increasing of algo-
rithm efficiency is in the frame of the statistical error
of the results;

(ii) the suggested quantum gate operator does not require
a lookup table, and its adaptive nature provides a
muchbetter local search efficiency compared toQGA;

(iii) it is advisable to use the quantum disaster opera-
tion for providing the population diversity in small
quantum populations. If the studied function is
monotonous, the utilization of the quantum disaster
operation may cause a slight accuracy loss in the
obtained results;

(iv) suggested QGA n is especially effective in cases of
optimization ofmultivalued functionswith a complex

topology in the area of localminimumand sufficiently
large search area;

(v) the dynamics of the evolutionary process is deter-
mined by 𝜇 parameter, which has a key role in the
algorithm. Its value should be adapted individually
for the specific function, with the application or
nonapplication of the quantum disaster operation
taken into consideration.
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