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Typical approaches to designing quantum genetic algorithms are based on a concept of a qubit, a two-level quantum system.
But many-valued quantum logic is more perspective from the point of view of the computational power. This paper proposes a
quantum genetic algorithm based on a three-level quantum system in order to accelerate evolutionary process. Simulation using a
set of standard test functions proves that the given algorithm is more effective and precise than the conventional quantum genetic
algorithm.

1. Introduction

Evolutionary algorithms are one of the most widely used
methods for solving the global optimization or search prob-
lem [1]. In its classical implementation, the smallest unit of
information is a bit, a structure which may be in one of the
following states: 0 and 1. It is important that a classical bit does
not allow any intermediate states.

Quantum genetic algorithm (QGA) is a new evolutionary
algorithm based on a combination of quantum computation
and conventional genetic algorithms technology [2, 3]. This
algorithm can be applied to the same set of problems the
conventional genetic algorithm is used for, but it allows
significantly accelerating the evolutionary process through
quantum parallelization and entanglement of the quantum
state. Probabilistic mechanism of the quantum computations
combined with the evolutionary algorithm provides a global
search for a solution with a rapid convergence and a small
value of population. These algorithms have demonstrated
their effectiveness for solving combinatorial and functional
optimization problems, mechanical engineering optimiza-
tion problems, image processing, and many others [4–8].

QGA main concepts were first proposed by Narayanan
and Moore [9]. The basic unit of information used in a
quantum computations is a qubit, a quantum system, which
may be in the |0⟩ basis state or the |1⟩ basis state. Quantum

nature of the qubit lies in the superposition principle, under
which the qubit may be in any state which is a linear
combination of basis states:󵄨󵄨󵄨󵄨𝑞⟩ = 𝛼0 |0⟩ + 𝛼1 |1⟩ (1)

with a normalization constraint:𝛼02 + 𝛼12 = 1. (2)

As a consequence of the superposition principle, qubit
state space is incomparably greater than state space of a
classical bit. Information, stored in 𝛼02 and 𝛼12 amplitudes, is
the quantum part of the information. Practically, 𝛼02 g1 𝛼12
are numbers that specify the probability amplitudes of a qubit
being in the states |0⟩ and |1⟩, respectively.

The outcome of quantum measurement is a qubit in one
of the basis states. However, it is important that the result of
the measurement is not deterministic, like it is in the classical
calculation, but probabilistic.

QGA uses a matrix representation for practical imple-
mentation:

|0⟩ = (10) ,
|1⟩ = (01) . (3)
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Qubit (1) state in this representation can be defined as

󵄨󵄨󵄨󵄨𝑞⟩ = (𝛼0𝛼1) . (4)

A structured set containing 𝑁 qubits represents a quan-
tum chromosome. State vector of such chromosome is
a superposition state of 2𝑁 basis states of the register|𝑖1, 𝑖2, . . . , 𝑖𝑁⟩, 𝑖1, 𝑖2, . . . , 𝑖𝑁 = {0, 1}:

󵄨󵄨󵄨󵄨𝜓⟩ = 𝑁∑
𝑘=0

𝛼𝑖1 ,𝑖2 ,...,𝑖N 󵄨󵄨󵄨󵄨𝑖1, 𝑖2, . . . , 𝑖𝑁⟩ . (5)

All the information about a qubits system is represented
by state vector |𝜓⟩. The only thing that can be done to such a
system is transforming the initial state vector |𝜓⟩ into a new
state |𝜓󸀠⟩ by applying a quantum gate. So quantum genetic
algorithm is a state transition process from some starting
state to an ending state using a quantum gate algorithm. The
information about the problem solution is only contained by
the vector of the system ending state |𝜓󸀠⟩.

The main disadvantage appearing during quantum state
rotation is the need to use a table to look up the rotating angle,
which limits the universality of the search. Fixed rotating
angle has a negative impact on the search speed, which
is the reason for QGA sometimes being implemented as
an adaptive process for determining the rotating angle. To
enhance the local searching ability and to get out of the local
optimal solutions, GDA can be extended with conventional
operators traditionally used in the classical genetic algorithm,
such as quantum mutation operation and quantum disaster
operation [10].

2. Quantum Genetic Algorithm
Based on Qutrits (QGA_3)

Qudit is a structure with several, more than two, states, which
can also be used to encode a chromosome. A qudit is basically
a unit of quantum information, which may be in any of 𝑛
states or in any superposition of those.

Ternary quantum logic is the simplest type of the many-
valued logic. The basic unit of memory is called a qutrit. It
has three basis states, |0⟩, |1⟩, and |2⟩. The state of the qutrit
can be represented as a superposition in the form of a linear
combination: 󵄨󵄨󵄨󵄨𝑞⟩ = 𝛼 |0⟩ + 𝛽 |1⟩ + 𝛾 |2⟩ (6)

with a normalization constraint:

𝛼2 + 𝛽2 + 𝛾2 = 1. (7)

Matrix representation:

|0⟩ = (100) ,

|1⟩ = (010) ,

|2⟩ = (001) .
(8)

For the practical implementation, qutrit (6) state can be
represented as

󵄨󵄨󵄨󵄨𝑞⟩ = (𝛼𝛽𝛾) . (9)

A system containing 𝑁 qutrits has 3𝑁 basis states (as
opposed to 2𝑁 states for binary logic). When switching from
binary to many-valued logic, we get an exponential increase
in the number of basis states, which leads to an increase in the
algorithm performance for the same search accuracy.

Quantum chromosome length is determined by the
desired search accuracy 𝜀, search area [𝑥min, 𝑥max], and the
number of quantum system basis states:

𝑁 = log𝑛 (𝑥max − 𝑥min𝜀 + 1) , (10)

where 𝑛 is a number of quantum system basis states.
With 𝑛 = 2, search accuracy 𝜀 = 10−6, and search area[−1, 1], the length of the quantum chromosome has to be at

least 21 qubits, while with 𝑛 = 3 only 14 qutrits are required.
2.1. Qutrit Encoding. Matrix representation of a quantum
chromosome is a structure which consists of 𝑁 qutrits.𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝛼𝑁𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝛽𝑁𝛾1 𝛾2 𝛾3 𝛾4 𝛾5 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝛾𝑁

Here {𝛼𝑖, 𝛽𝑖, 𝛾𝑖} determine the state of 𝑖th qutrit, 1nd 𝑁
qutrits determine one individual in the population.The initial
state of the qutrits holds no information about the system
state, so the easiest way to initialize the base population is
by setting all probability state amplitudes to be equal to one
another [2]. This means that at the end of the initialization
each qutrit is in the state󵄨󵄨󵄨󵄨𝑞⟩ = 1√3 |0⟩ + 1√3 |1⟩ + 1√3 |2⟩ . (11)

2.2. Observation of Genes. Classical information about the
problem’s solution is located in the ending state vector|𝜓⟩󸀠and can be retrieved as a result of quantum observation.
Qutrit in one of the basis states, which is obtained as a result
of quantum observation, is a classical representation of a
quantum chromosome.

Based on the approach described in [11], the following
pseudocode for quantum 𝑁-qutrit chromosome state obser-
vation can be suggested (Algorithm 1). The product of its
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(1) for 𝑖 in 1, . . . , 𝑁 do(2) 𝑟 ← random number in range [0, 1](3) if 𝑟 < ⌈𝑎𝑖⌉2 then(4) 𝑝 ← 0(5) else if 𝑟 < ⌈𝑎𝑖⌉2 + ⌈𝛽𝑖⌉2 then(6) 𝑝 ← 1(7) else(8) 𝑝 ← 2(9) end if(10) end for

Algorithm 1: Qutrit state observation.

work provides the ground state 𝑝 (0, 1 or 2) with a probability
of 𝛼𝑖2, 𝛽2𝑖 and 𝛾𝑖2, respectively.

The algorithm leads to the quantum chromosome being
transformed into its classical representation in the ternary
numbering system.𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝛼𝑁𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝛽𝑁𝛾1 𝛾2 𝛾3 𝛾4 𝛾5 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝛾𝑁

Observation↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
0 2 0 1 1 2 1 0 0

2.3. Quantum Rotating Gates. All information about the
problem and the algorithm for solving it is contained in the
quantumgate, so its algorithm is the key issue of any quantum
genetic algorithm construction.

The pseudocode for the genetic operator updating the
qutrit state (quantum gate of the system evolution) as a
result of probability amplitudes 𝛼𝑖, 𝛽𝑖, and 𝛾𝑖 modification is
presented in Algorithm 2.

The algorithm’s concept can be illustrated by the image
given below. The vertical lines set the probability amplitudes𝛼, 𝛽, and 𝛾. If the classical representation of the population
best individual has, for example, a 2 on the position 𝑖, all
the amplitudes, except for 𝛾, are multiplied by the factor 𝜇.
Its value lies in a range between 0 and 1 and is determined
empirically. As a result, only the probability amplitude 𝛾,
which corresponds to the population best individual on the
previous evolution stage, will increase. At the same time,
probability amplitudes 𝛼 and 𝛽 will decrease.

b ∈ {0 1 2}

 q⟩= [  ]

It is important, that the described quantum gate algo-
rithm eliminates the necessity to use a lookup table, which
exists in the traditional QGA.

Initialized population (𝑡 = 0) includes all the possible
solutions with the same probability. This means that the

t = 0

t = 100
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Figure 1: Average distribution of the population individuals 𝑛 over
the search area on different stages of the evolution using an example
of 𝐹4 function optimization for 100 runs.
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Figure 2: Possible outcomes of applying a quantum gate operator.
Here (b) is the best individual of the population; (a) current
individual of the population.

QGA process starts with a random search. As the evolu-
tion progresses in time, the distribution undergoes changes
(Figure 1).

The mechanisms for the local search with 𝑡 > 100
are illustrated in Figure 2. They demonstrate the role of 𝜇
parameter. Its fixed value has a bad impact on the conver-
gence speed. So, it is desirable to use an adaptive quantum
gate operator. The listed data shows that it can influence the
individual 𝑎 in three possible ways:

(1) The fitness of the individual is improved, but it does
not become the best;
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(1) for 𝑖 in 1, . . . , 𝑁 do(2) 𝑏𝑒𝑠𝑡𝑎𝑚𝑝 ← 𝑖th gene of the population’s best individual(3) 𝑠𝑢𝑚 ← 0(4) for amp in {0, 1, 2} do(5) if 𝑎𝑚𝑝 ̸= 𝑏𝑒𝑠𝑡𝑎𝑚𝑝 then(6) 𝑞󸀠[𝑎𝑚𝑝] = 𝜇 ⋅ 𝑞(7) 𝑠𝑢𝑚 ← 𝑠𝑢𝑚 + 𝑞󸀠[𝑎𝑚𝑝]2(8) end if(9) end for(10) 𝑞󸀠[𝑏𝑒𝑠𝑡𝑎𝑚𝑝] ← √1 − 𝑠𝑢𝑚(11) end for

Algorithm 2: Update of quantum states.

(1) for 𝑖 in 1, . . . , 𝑠 do(2) if the chromosome is not the best then(3) if disaster condition then(4) for 𝑖 in 1, . . . , 𝑁 do(5) 𝛼𝑖 = 𝛽𝑖 = 𝛾𝑖 = 1√3(6) end for(7) end if(8) end if(9) end for

Algorithm 3: Quantum disaster.

(2) The fitness of the individual is improved, and it
becomes the best;

(3) The fitness of the individual is worsened.

This means that the bigger the number of individuals
located in the area of the best individual 𝑏, the more effective
the process of the local convergence.

To sum up, QGA starts with the global search and
switches to the local search automatically due to the change
in the structural characteristics of the population individuals’
distribution.

2.4. QuantumDisaster Operation. Quantum population evo-
lution may cause its falling into local optimal solution. This
question is particularly important when the search area is
large (big number of parameters) or when the fitness function
has a complex topology around the global optimum.

Taking into consideration the small number of the quan-
tum population, which is usually not bigger than 𝑠 = 10
individuals, getting out of the local optimal solution can be
achieved by a quantum disaster operation [12]. It can be
summarized as initialization of some population individuals,
except for the best, with an initial state. Such operation
“virtually” enlarges the size of the population and extends the
area for optimal value search.

In the simplest case, quantum disaster operation can be
implemented as Algorithm 3.

3. Simulation Test

QGA 3 based on a qutrits system is implemented using
C++ programming language. The tests have been performed
on the Intel Celeron CPU G1840 2.80GHz, 4.0GB RAM,
Windows 7 Professional environment.

The majority of the quantum algorithms use similar
primary ideas and approaches, which are based on the
qubit representation of the population. For example, some
algorithms based on the quantum computation ideas are
presented in [13]. The studies of the quantum algorithms and
the possibilities of their modification and improvement are
carried out in [14, 15].Other potential approaches also include
the option of the transition to qutrits representation of the
population and can be considered as directions for further
research. Considering this, the only algorithms compared by
effectiveness and performance were QGA and the suggested
QGA 3.

The analysis and performance evaluation have been
performed on a number of test functions [16]:

De Jong Function

𝐹1 = 100 (𝑥21 − 𝑥22) + (1 − 𝑥1)2 ,−2.048 ≤ 𝑥𝑖 ≤ 2.048, 𝑖 = 1, 2. (12)

The function has one global minimum solution:𝐹1 (1, 1) = 0. (13)

Coldstein Price Function𝐹2 = [1 + (𝑥1 + 𝑥2 + 1)2
⋅ (19 − 14𝑥1 + 3𝑥21 − 14𝑥2 + 6𝑥1𝑥2 + 3𝑥22)] ⋅ [30
+ (2𝑥1 − 3𝑥2)2
⋅ (18 − 32𝑥1 + 12𝑥21 + 48𝑥2 − 36𝑥1𝑥2 + 27𝑥22)] ,

−2 ≤ 𝑥𝑖 ≤ 2, 𝑖 = 1, 2.
(14)

The function has one global minimum solution:𝐹2 (0, −1) = 3. (15)
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Schaffer Function

𝐹3 = 0.5 + sin2 (𝑥21 + 𝑥22) − 0.5[1.0 + 0.001 (𝑥21 + 𝑥22)]2 ,−100 ≤ 𝑥𝑖 ≤ 100, 𝑖 = 1, 2 (16)

The function has one global minimum solution:

𝐹3 (0, 0) = 0. (17)

Monopole and Six-Peak Camelback Function

𝐹4 = 10 + sin (1/𝑥)0.1 + (𝑥 − 0.16)2 , 0 ≤ 𝑥 ≤ 1. (18)

The function has one global maximum solution:

𝐹4 (0.1275) = 19.8949. (19)

Dual-Pole and Six-Peak Camelback Function

𝐹5 = (4 − 21𝑥21 + 13𝑥41)𝑥21 + 𝑥1𝑥2 + (−4 + 4𝑥22) 𝑥22,
−3 ≤ 𝑥𝑖 ≤ 3, 𝑖 = 1, 2. (20)

The function has two global minimum solutions:

𝐹5 (−0.0898, 0.7126) = 𝐹5 (0.0898, −0.7126)= −1.031628. (21)

Multipeak Positive Function

𝐹6 = 𝑒−0.001𝑥cos2 (0.8𝑥) , −2 ≤ 𝑥 ≤ 5. (22)

The function has one global maximum solution:

𝐹6 (0) = 1. (23)

Ackley Function

𝐹7 = −20𝑒−0.2√(1/𝑛)∑𝑛𝑖=1 𝑥2𝑖 − 𝑒(1/𝑛)∑𝑛𝑖=1 cos(2𝜋𝑥𝑖)+ 22.71828, − 5 ≤ 𝑥𝑖 ≤ 5, 𝑖 = 1, 2. (24)

The function has one global minimum solution:

𝐹7 (0, 0) = 0. (25)

Rastrigin Function

𝐹8 = 10𝑛 + 𝑛∑
𝑖=1

[𝑥21 − 10 cos (2𝜋𝑥𝑖)] ,
−5.12 ≤ 𝑥𝑖 ≤ 5.12, 𝑖 = 1, 2. (26)
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Figure 3: Average population fitness as a function of 𝜇 parameter.
Evolution time 𝑡 = 500.

The function has one global minimum solution:

𝐹8 (0, 0) = 0. (27)

Optimization and Results. For QGA and QGA 3 simulation
testing the following typical parameters were used: popula-
tion size 𝑠 = 10, total generations of iteration 𝑡 = 500, and
precision 𝜀 = 1 ⋅ 10−6.
The Choice of 𝜇 Parameter. The value of parameter 𝜇 deter-
mines the evolution of the quantum system and has a key role
in the algorithm. It determines the balance between the global
(quantum observation operation) and local (quantum gate)
search for the found solution specification.

To choose the optimal 𝜇 value we have investigated its
influence on the behavior of themain parameters which char-
acterize the quantum system evolution, such as the average
fitness of the best individual and the standard deviation of
function value over 1000 algorithm runs. Its characteristic
behavior for the example of 𝐹8 function optimization is
presented in Figures 3 and 4.The quantum disaster operation
was not applied in this case.

The research shows that if 𝜇 < 0.95, the determinative
operation in the population evolution is the quantum obser-
vation. Global search and the best individual’s approximation
to the optimal value take place because of its probabilistic
nature. At the same time, the quantum rotation angle is
greater than 15∘ and is too big to perform a local search.

As 𝜇 value increases, the rotation angle approaches its
optimal value ∼ 4∘. It corresponds to 𝜇 ∼ 0.996 ÷ 0.998:
with this parameter value the fitness function and standard
deviation reach the minimum value (see Figures 3 and 4).

Quantum system behavior for 𝜇 > 0.998 is critically
dependent on its evolution time (see Figure 5). Indeed, with𝑡 = 250 system simply does not have enough time to
relax to the ending state, which corresponds to the fitness
function optimal value. Enlarging the value of evolution
time parameter 𝑡 = 1000 practically simply causes the
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Table 1: Experimental results for 𝐹1–𝐹8 test functions optimization.

Function QGA QGA 3𝑓opt 𝑓 sd 𝑡 (sec) 𝑓opt 𝑓 sd 𝑡 (sec)𝐹1 0.000 0.011 0.011 0.035 0.000 0.005 0.012 0.024𝐹2 3.000 3.050 0.132 0.034 3.000 3.000 0.001 0.022𝐹3 0.000 0.004 0.012 0.041 0.000 0.001 0.002 0.029𝐹4 19.895 19.894 0.001 0.014 19.895 19.895 0.000 0.011𝐹5 −1.031 −1.021 0.008 0.034 −1.031 −1.031 0.000 0.024𝐹6 1.000 1.000 0.000 0.018 1.000 1.000 0.000 0.012𝐹7 0.008 0.035 0.071 0.038 0.000 0.001 0.003 0.022𝐹8 0.013 0.051 0.152 0.037 0.000 0.002 0.032 0.024

Table 2: Experimental results for test functions 𝐹7 and 𝐹8, parameters count 𝑖 = 6.
Function QGA QGA 3𝑓opt 𝑓 sd 𝑡 (sec) 𝑓opt 𝑓 sd 𝑡 (sec)𝐹7 2.648 4.167 0.507 0.117 0.018 0.186 0.170 0.075𝐹8 12.117 23.171 5.050 0.107 0.408 6.872 3.621 0.073
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Figure 4: Standard deviation of the population fitness as a function
of 𝜇 parameter. Evolution time 𝑡 = 500.

algorithm running time to increase, with no optimal value
improvement.

The role of the quantum disaster operation can be
illustrated by Figure 6. The results of the 𝐹8 function opti-
mization are given for parameters count 𝑖 = 6. Taking into
consideration the 𝐹8 complex topology around the optimum,
the size of the population 𝑠 = 50.

Based on the given analysis it has been established that for
QGA 3 without the quantum disaster operation 𝜇 ≈ 0.998 is
the optimal value. Adding the quantum disaster operation to
the QGA 3 algorithm allows producing the best result with𝜇 ≈ 0.975.

The optimization results of the 𝐹1–𝐹8 test functions with
a standard set of input parameters are listed in Table 1.

t = 750

t = 500

t = 250
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Figure 5: Average fitness of the best individual as a function of 𝜇
parameter for different evolution time parameter values.

In Table 1, 𝑓opt denotes the function value of optimum; 𝑓
is the average value of the best individual fitness function; sd
is standard deviation of fitness function; 𝑡 is average elapsed
time need for the algorithm to run.

A search for 𝐹7 and 𝐹8 functions global minimum has
been carried out separately, using parameter count 𝑖 = 6 and a
standard set of other algorithm parameters (see Table 2). The
results reveal that QGA 3 is more, but not enough, effective,
especially in regard to function 𝐹8.

The result can be significantly improved by enlarging the
population size at least to 𝑠 = 50 and adding a quantum
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Table 3: The influence of the quantum disaster operation on QGA 3 efficacy.

Function QGA 3 QGA 3 added disaster operation𝑓opt 𝑓 sd 𝑡 (sec) 𝑓opt 𝑓 sd 𝑡 (sec)𝐹7 0.001 0.095 0.118 0.384 0.000 0.001 0.001 0.399𝐹8 0.019 3.135 2.353 0.369 0.000 2.025 1.889 0.375
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Figure 6: Quantum disaster operation influence on the average
population fitness as a function of 𝜇 parameter: 󳵻 –QGA 3 without
the disaster operation; × – QGA 3 with the disaster operation.

disaster operation, with the other parameters remaining
unchanged. The results of experiments after the described
improvements to the algorithm are listed in Table 3.

4. Conclusions

In this paper a new quantum genetic algorithm QGA 3 has
been proposed. The algorithm is based on the idea of using
qutrits for the representation of the population individuals.
A simple algorithm, which does not require a lookup table,
has been used for constructing the evolution operator which
is responsible for the quantum system state updates.

The experiments have been performed using a typical
set of test functions. On the basis of the experimental
results we have concluded that QGA 3 allows decreasing the
computational time while being more productive and having
better convergence, compared to the conventional QGA.

We have also obtained that, in a case with a lot of
parameters to be optimized, the QGA 3 efficacy can be
improved by adding a quantum disaster operation. In the
same time, the increase in algorithm operating time does not
exceed 4%.

Further promising investigations include the research
of 𝑛-valued quantum logic units, qudits and their possible
applications for representation of the population individuals.
This is expected to be a subject of separate studies.
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