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The paper contains a description of algebraic basis of algebra of block-symmetric polyno-
mials on the `1-sum of the copies of `1.
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В работе описан алгебраический базис алгебры блочно-симметрических полиномов на
`1-сумме копий пространства `1.

In resent years there is increasing interest to investigations of invariants of permutation
group S∞ of integer numbers. This group can be represented on a Banach space X with
a symmetric basis as a group of operators of perturbation of basis vectors. The action of this
group has a natural extension to the action on the algebra Hb(X) of analytic functions of
bounded type on X. Invariants of this representation of S∞ are so called symmetric analytic
functions of bounded type on X. The algebra of symmetric analytic functions Hbs(X) were
investigated by many authors ([3], [4], [6]). In particular, it is known that Hbs(`p) admits
an algebraic basis for 1 ≤ p <∞.

On the other hand, there are more representations of S∞ in Banach spaces. For example,
if X is a direct sum of infinitely many “blocks” which are copies of a Banach space X,
then S∞ acts permutating the “blocks” (see for the definition below). For this case we have
invariants — the algebra of block-symmetric analytic functions. Note that this algebra is
much more complicated and in the general case has no algebraic basis (see e. g. [1, 2]). Note
that if dimX <∞, then block-invariant polynomials are investigated in the classical theory
of invariants [5, 7].

Let
X =

(∑
X
)
`1
=
⊕
`1

X

be a finite
⊕m

`1
X or an infinite

⊕
`1
X `1-sum of copies of Banach space X. So any element

x ∈ X can be represented as a sequence x = (x1, . . . , xn, . . .), where xn ∈ X, with the norm

‖x‖ =
∞∑
k=1

‖xk‖.

2010 Mathematics Subject Classification: 46E30, 46J20.
The work is supported by Grant F35/531-2011 DFFD of Ukraine.
Keywords: algebraic basis, block-symmetric polynomials, polynomials on Banach spaces.

c©V. V. Kravtsiv, A. V. Zagorodnyuk, 2012



110 V. V. KRAVTSIV, A. V. ZAGORODNYUK

A polynomial P on the space X s
m =

⊕m
`1
Cs is called block-symmetric (or vector-symmet-

ric) if:

P
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, . . . ,


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...
wm
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m

 = P




u1
v1
...
w1
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σ(1)

, . . . ,


um
vm
...
wm


σ(m)

 ,

for every permutation σ on the set {1, 2, . . . ,m}, where


ui
vi
...
wi

 ∈ Cs. Let us denote by

Pvs(X ) the algebra of block-symmetric polynomials on X .
In paper [2] it was shown that the following vectors are generating elements of Pvs(X s

∞) :

Hk1,k2,...,ks
n (x1, x2, . . . , xs) =

∞∑
i=1

(x1i )
k1(x2i )

k2 . . . (xsi )
ks , k1 + k2 + . . .+ ks = n, (1)

where xi = (x1i , x
2
i , . . . , x

s
i ) ∈ Cs, i ≥ 1.

The aim of this paper is to describe an algebraic basis of the block-symmetric polynomial
algebra on the space X∞∞ =

⊕
`1
`1.

Lemma. Let P1, P2, . . . , Pn be algebraically independent polynomials on Cm. Then
{P1(x), P2(x), . . . , Pn(x) : x ∈ Cm} is a dense subset of Cm.

Proof. We know from the algebraic geometry that the closure of the range of polynomial
map x 7→ (P1(x), P2(x), . . . , Pn(x)) is an algebraic variety. So there exists a polynomial Q
on Cm, such that Q(P1(x), P2(x), . . . , Pn(x)) = 0 for any x ∈ Cm. Since P1, P2, . . . , Pn are
algebraically independent, Q ≡ 0. Hence, {P1(x), P2(x), . . . , Pn(x) : x ∈ Cm} is a dense set
in kerQ = Cm.

Let us denote by Pn+kvs (X s
∞) the subalgebra of Pvs(X s

∞) which is generated by the polyno-
mials

H1,0,...,0
1 (x1, x2, . . . , xs), . . . , Hk1,k2,...,ks

m (x1, x2, . . . , xs), (2)

where k1 + k2 + . . .+ ks = m and the number of these elements is equal to n+ k.

Theorem 1. The generating elements (2) are algebraically independent.

Proof. Let {v1, . . . , vk, ξ1, . . . , ξn} be the same subset of generating elements system of algebra
Pn+kvs (X∞s ), where v1, . . . , vk are symmetric polynomials, ξ1, . . . , ξn are not symmetric. We
will show that this system will be algebraically independent. The proof will be developed by
the method of the mathematical induction. If n = 0 this result is obvious.

Let {v1, . . . , vk, ξj1 , . . . , ξjn−1} be algebraically independent for all j1, . . . , jn−1 ∈ {1, . . . ,
n}. According to the lemma the set of ranges is dense in the prime Vi = {z : zi = 0},
i = 1, . . . , n.

If {v1, . . . , vk, ξ1, . . . , ξn} is an algebraically depending set, then there exists Q from
Ck+n, such that Q(v1, . . . , vk, ξ1, . . . , ξn) = 0 in the space of ranges. Without loss of the
generality, we can suppose that Q = radQ. Then kerQ ⊃

⋃
Vi, i = 1, . . . , n and so

kerQ ⊃ ker z1 . . . zn. Thus by the Hilbert Nullstellensatz, Q = Q1z1 . . . zn, where Q1 is
a constant. Hence ξ1(x1, x2, . . . , xs) . . . ξn(x1, x2, . . . , xs) ≡ 0, what is impossible.
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Since every polynomial from the algebra Pvs(X s
∞) is uniquely representable as an algebraic

combination of generating elements (1) Theorem 1 implies the following corollary.

Corollary. Algebra Pvs(X s
∞) has an algebraic basis which consists of polynomials (1).

Now we consider the algebra of block-symmetric polynomials Pvs(X∞∞ ) on the space
X∞∞ =

⊕
`1
`1.

Theorem 2. The algebraic basis of algebra Pvs(X s
∞) consists of polynomials

Hk1,...,km,...
n (x1, x2, . . . , xm, . . .) =

∞∑
i=1

∞∏
j=1

(xji )
kj ,

∞∑
j=1

kj = n, n = 1, 2, . . . . (3)

Proof. Let P (x1, x2, . . . , xs, . . .) be a block-symmetric m degree polynomial on X∞∞ . At first
we are going to prove that the norm of polynomials (3) is finite, that is the series

∞∑
i=1

∞∏
j=1

(xji )
kj ,

∞∑
j=1

kj = n, n = 1, 2, . . .

are convergent on the space X∞∞ with norm ‖x‖ =
∑∞

k,i=1 |xik|, where the vector x ∈ X∞∞ and
xi = (x1i , x

2
i , . . . , x

s
i , . . .) ∈ `1. Indeed,∣∣∣∣∣

∞∑
i=1

∞∏
j=1

(xji )
kj

∣∣∣∣∣ = lim
m→∞

∣∣∣∣∣
∞∑
i=1

m∏
j=1

(xji )
kj

∣∣∣∣∣ ≤ lim
m→∞

∞∑
i=1

m∏
j=1

|xji |kj ≤ lim
m→∞

m∏
j=1

(
∞∑
i=1

|xji |

)kj

≤ lim
m→∞

m∏
j=1

(
1 +

∞∑
i=1

|xji |

)kj

≤ lim
m→∞

m∏
j=1

(
1 +

∞∑
i=1

|xji |

)n

=

(
∞∏
j=1

(
1 +

∞∑
i=1

|xji |

))n

.

Note that the absolute convergence of the last product follows from the convergence of the
series

∞∑
j=1

∣∣∣∣∣
∞∑
i=1

|xji |

∣∣∣∣∣ =
∞∑

i,j=1

|xji |.

Let P s(x1, x2, . . . , xs) and P s+l(x1, x2, . . . , xs) be the restriction of m degree polynomial
P (x1, x2, . . . , xs, . . .) to the spaces X s

∞ and X s+l
∞ respectively. According to the corollary of

Theorem 1 we have that there exists a polynomials Qs and Qs+l on these spaces respectively
such that

P s(x1, x2, . . . , xs) = Qs(H
1,...,0,...
1 (x1, x2, . . . , xs), . . . , Hk1,...,km,...

m (x1, x2, . . . , xs)),

P s+l(x1, x2, . . . , xs, . . . , xs+l) =

= Qs+l(H
1,...,0,...
1 (x1, x2, . . . , xs, . . . , xs+l), . . . , Hk1,...,km,...

m (x1, x2, . . . , xs, . . . , xs+l)),

where
∞∑
j=1

kj = m. We remark that Hk1,...,km,...
m (x1, x2, . . . , xs) = Hk1,...,km,...

m (x1, x2, . . . , xs, . . .)

on the space X s
∞. Let us show that Qs+l = Qs for all l = 0, 1, . . . .

Since x = (x1, x2, . . . , xs), we have

P s+l(x1, x2, . . . , xs, . . . , xs+l) = P s(x1, x2, . . . , xs) =

= Qs+l(H
1,...,0,...
1 (x1, x2, . . . , xs), . . . , Hk1,...,km,...

m (x1, x2, . . . , xs)),

P s(x1, x2, . . . , xs) = Qs(H
1,...,0,...
1 (x1, x2, . . . , xs), . . . , Hk1,...,km,...

m (x1, x2, . . . , xs)).
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Since the polynomials (2) are algebraically independent on the space X s
∞, it follows that

Qs+l = Qs. This gives the equality

P (x1, x2, . . . , xs, . . .) = Qm(H
1,...,0,...
1 (x1, x2, . . . , xs, . . .), . . . , Hk1,...,km,...

m (x1, x2, . . . , xs, . . .)),

where
∞∑
j=1

kj = m on the space X∞∞ and this representing is unique.
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