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We investigate some families of Toeplitz-Hessenberg determinants the entries of
which are Narayana’s cows numbers with successive, even, and odd subscripts.
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1. Narayana’s cows sequence. The Fibonacci sequence {Fn}nZO Is defined by
the initial values F, = 0, F; = 1 and the recurrence relation
F=F +F , n>2.

Among the many generalizations of the Fibonacci sequence, one of the most
known is the Narayana’s cows sequence (or Fibonacci-Narayana sequence) {b, }

which defined by the following third-order recurrence relation
b, =b,y +b,5 0, =0, b =b =1

for n > 3 (sequence A000930 in On-Line Encyclopedia of Integer Sequences). The
first few Narayana’s cows numbersare 0,1, 1, 1, 2, 3,4, 6, 9, 13, 19, 28, 41, 60,....

Narayana’s cows sequence was introduced by the Indian mathematician Nara-
yana in the 14th century, while studying the following problem: A cow produces one
calf every year. Beginning in its fourth year, each calf produces one calf at the begin-
ning of each year. How many cows are there altogether after n years?

Many authors studied the Narayana’s cows sequence and its generalizations
(see, for example, Bilgici, 2016; Didkivska & St’opochkina, 2013; Flaut &
Shpakivskyi, 2013; Ramirez & Sirvent, 2015; Zatorsky & Goy, 2016 and the refer-
ences given therein).

We study some families of Toeplitz-Hessenberg determinants whose entries are
Narayana’s cows numbers. This leads to discover new identities for these numbers.

Our approach is similar to Goy, 2017a; Goy, 2017b; Goy, 2017c; Goy, 2017d.

2. Toeplitz-Hessenberg matrices and determinants. A Toeplitz-Hessenberg
matrix is an n x n matrix of the form

n>0"

a ay 0 0
Gy ay ag, 0
M (ag;agycsa, ) = | o e e e ]
@, 1 Qo Oy 3 a; a
a’n a’n—l an—2 0’2 0’1

where a, = 0 and a, = 0 for at leastone k > 1.
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The following result gives the multinomial extension for det A/, .
Lemma 1 (Muir, 1960). Let n be a positive integer. Then
det Mn _ Z (_ao)n—(SH— —|—Sn)pn(3)a151a;2 ...afL’”, (1)
(81545,,)
where the summation is over integers s, > 0 satisfying s, +2s, +--- +ns, = n,

(5 + - +s,)!
s!les !
For brevity and clarity, we will denote
D(a,,a,,...,a,) = det M (1;a,a,,...,q, ).
3. Toeplitz-Hessenberg determinants with Narayana’s cows numbers en-
tries. Now we evaluate D(a,,as,...,a,) With special entries a,.
Theorem 2. Let n > 1, except when noted otherwise. Then
D(b,,bs,....0,, ) =1—(=1)"F ,

D(by, by, by, ) = (—1)”*1F

and p, (s) = is the multinomial coefficient.

_|_ 1{(n+1/2J
D(bo,bl,...,bn_l):( D" é ) ,
n—1 n/3
Dbyt ob,) = D
1+ (—=1)"
D(by,byyesb ) = ———— :
(b, by 12) 2(_1)n/2
D(by,bsy.ensby, ) = 0, 1> 4,
_1[(n—1)/3j 4 _1[n/3J
D(b4,b5,...,bn+3):( ) 2 =0
D(by,bgsesbyy0) =1, n >3,

D(bsboyosby, ) =n 4+ 1, n>2
where | o | is the floor function of o, F, is the n™ Fibonacci number.

3. Multinomial extension of Toeplitz-Hessenberg determinants. In this sec-
tion, we focus on multinomial extension of Theorems 2, using Lemma 1.

Theorem 3. Let n > 1, except when noted otherwise. Then

_\Br/2]
> (=1)p ()bslbs“~bn"'1:( - 2 1
(51""7371,)

Y

> (DT ()bgby by, = —F,,

(8)5--48,)



2o (1, () by = ,

(8)5-45,)

> GV, ()b by = (1) — F,
(8)5-45,)
Z (—l)c’npn(5)(72sll)§2 ---bZ"_H =0, n>4,
(8)5-48,)
> (=1)7p, ()b -byr =0, n >4,
(8)5-45,)

] . . (_1)[(4n—1)/3j T (_1)[4n/3j
<_1) ern(s)b 1b 2 bn” — ,
(5172;”) 475 +3 2

D (1 ()bt by = (=1, m >3,

(8)5-45,)

Z (=1)%p, ($)b32b52 by o = (=1)"(n +1), n>2,
(517...,5’”)

where the summation is over integers s, > 0 satisfying s, + 2s, +--- +ns, = n,
o, =s +--+s ,and F isthe n" Fibonacci number.

n
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