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ON COMBINATORIAL IDENTITIES FOR JACOBSTHAL
POLYNOMIALS

TARAS GOY

Abstract. In this paper, we consider determinants for some fami-
lies of Toeplitz–Hessenberg matrices whose entries are the Jacobsthal
polynomials. These formulas may also be rewritten as identities in-
volving sums of products of Jacobsthal polynomials (with sequential,
odd or even subscripts) and multinomial coefficients.

Introduction

Many numbers and polynomial sequences can be defined by second-
order recurrence relations, such as Fibonacci numbers, Lucas numbers,
Pell numbers, Jacobsthal numbers, Chebyshev polynomials, among oth-
ers. These numbers and polynomials play a fundamental role in mathe-
matics and have numerous important applications in combinatorics, num-
ber theory, numerical analysis (see, for example, [3, 10, 11] and the ref-
erences given there).
In particular, for n ≥ 2, the Jacobsthal sequence {Jn}n≥0 is defined by

the recurrence Jn = Jn−1 + 2Jn−2, with initial conditions J0 = 0, J1 = 1
(sequence A001045 in On-Line Encyclopedia of Integer Sequences [15]).
A natural extension of the Jacobsthal numbers is given by the Jacob-

sthal polynomials {jn(x)}n≥0, which are introduced by Horadam in [9]
and defined as follows

jn(x) = jn−1(x) + 2jn−2(x), n ≥ 2, (1)

with j0(x) = 0, j1(x) = 1. Explicit closed form expression for jn(x) is

jn(x) =

⌊(n−1)/2⌋∑
i=0

(
n− 1− i

i

)
(2x)i, n ≥ 0,

where ⌊α⌋ is the floor function.
Note that jn(1) = Jn and jn(1/2) = Fn is the nth Fibonacci numbers

(sequence A000045 in [15]).
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The first few Jacobsthal polynomials are j0(x) = 0, j1(x) = j2(x) = 1,
j3(x) = 2x+1, j4(x) = 4x+1, j5(x) = 4x2+6x+1, j6(x) = 12x2+8x+1,
j7(x) = 8x3 + 24x2 + 10x+ 1, j8(x) = 32x3 + 40x2 + 12x+ 1.

The Jacobsthal polynomials have many applications (see, for example,
[1, 4, 14]). Many interesting properties of Jacobsthal polynomials and
their generalizations are studied in [2, 3, 9, 16].

The purpose of this paper is to study the Jacobsthal polynomials. We
investigate some families of Toeplitz-Hessenberg matrices the entries of
which are Jacobsthal polynomials with successive, odd or even subscripts.
As result, we obtain some new identities with multinomial coefficients for
these polynomials.

1. Toeplitz–Hessenberg matrices and determinants

A lower Toeplitz–Hessenberg matrix is a square matrix of the form

Mn(a0; a1, . . . , an) =


a1 a0 0 · · · 0 0
a2 a1 a0 · · · 0 0

· · · · · · · · · . . . · · · · · ·
an−1 an−2 an−3 · · · a1 a0
an an−1 an−2 · · · a2 a1

 ,

where a0 ̸= 0 and ai ̸= 0 for at least one i > 0.
Expanding the determinant det(Mn) repeatedly along the last row, we

obtain the recurrence

det(Mn) =
n∑

i=1

(−a0)
i−1ai det(Mn−i), (2)

where, by definition, det(M0) = 1.
It is known that the determinant det(Mn) can be evaluated using the

Trudi formula as follows

det(Mn) =
∑

s1+2s2+···+nsn=n

pn(s)(−a0)
n−|s|as11 · · · asnn , (3)

where |s| = s1 + · · · + s, pn(s) =
( |s|
s1,...,sn

)
is the multinomial coefficient,

and n = s1+2s2+ · · ·+nsn is partitions of the positive integer n, where
each positive integer i appear si times [12, 13].

Many combinatorial identities involving sums over integers partitions
can be generated in this way. Some of these identities presented in [5, 6, 7]
and Section 3 of this paper.
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2. Toeplitz–Hessenberg determinants whose entries are
Jacobsthal polynomials

In this section, we provide determinant formulas for Toeplitz–Hessen-
berg matrices whose triangular entries are Jacobsthal polynomials with
successive, odd or even subscripts.
We investigate particular cases of Toeplitz–Hessenberg matrices, where

a0 = ±1. For simplicity of notation, we write det(±1; a1, . . . , an) in place
of det

(
Mn(±1; a1, . . . , an)

)
.

Theorem 1. Let n ≥ 1, except when noted otherwise. Then

det(1; j0(x), . . . , jn−1(x)) =

1√
8x− 3

((
−1−

√
8x− 3

2

)n−1

−
(
−1 +

√
8x− 3

2

)n−1
)
;

det(−1; j0(x), . . . , jn−1(x)) =

1√
8x+ 5

((
1 +

√
8x+ 5

2

)n−1

−
(
1−

√
8x+ 5

2

)n−1
)
;

det(1; j0(x), . . . , j2n−2(x)) =

1√
8x− 3

((
−4x− 1−

√
8x− 3

2

)n−1

−
(
−4x− 1 +

√
8x− 3

2

)n−1
)
;

det(1; j0(x), . . . , j2n−2(x)) =

1√
8x+ 5

((
4x+ 1 +

√
8x+ 5

2

)n−1

−
(
4x+ 1−

√
8x+ 5

2

)n−1
)
;

det(1; j1(x), . . . , jn(x)) = 2
n−3
2 x

n−1
2

(
1− (−1)n

)
; (4)

det(−1; j1(x), . . . , jn(x)) =

(
1 +

√
2x+ 1

)n − (1−√
2x+ 1

)n
2
√
2x+ 1

;

det(1; j1(x), . . . , j2n−1(x)) =

(
−2x−

√
2x
)n−1

+
(
−2x+

√
2x
)n−1

2
;

det(1; j2(x), . . . , jn+1(x)) = 0, n ≥ 3;

det(−1; j2(x), . . . , jn+1(x)) =

(
1 +

√
4x+ 1

)n+1 −
(
1−

√
4x+ 1

)n+1

4
√
4x+ 1

;

det(1; j2(x), . . . , j2n(x)) = n(−2x)n−1;
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det(−1; j2(x), . . . , j2n(x)) =

1

2
√
4x+ 1

((
2x+ 1 +

√
4x+ 1

)n − (2x+ 1−
√
4x+ 1

)n)
;

det(1; j3(x), . . . , jn+2(x)) = (2x)n, n ≥ 2;

det(−1; j3(x), . . . , j2n+1(x)) = 2n−1

n∑
k=0

n∑
i=0

(
n− i

k

)(
n+ k

i

)
xn−k;

det(1; j3(x), . . . , j2n+1(x)) = (−2x)n−1, n ≥ 2;

det(1; j4(x), . . . , jn+3(x)) = (2x)n−1
(
2x(n+ 1) + 1

)
;

det(1; j4(x), . . . , j2n+2(x)) = 0, n ≥ 3.

Proof. We will prove formula (4) using induction on n. The other proofs
follows similarly, so we omit them for the sake of brevity. Clearly, formula
(4) works when n = 1 and n = 2. Suppose it is true for all k ≤ n − 1,
where n ≥ 3.

Let Dn = det(1; j1(x), . . . , jn(x)). Using recurrences (2) and relation
(1), we then obtain

Dn =
n∑

s=1

(−1)s−1js(x)Dn−s

= j1(x)Dn−1 +
n∑

s=2

(−1)s−1
(
js−1(x) + 2xjs−2(x)

)
Dn−s

= Dn−1 +
n∑

s=2

(−1)s−1js−1(x)Dn−s + 2x
n∑

s=2

(−1)s−1js−2(x)Dn−s

= Dn−1 +
n−1∑
s=1

(−1)sjs(x)Dn−1−s + 2x
n−2∑
s=0

(−1)s+1js(x)Dn−2−s

= 2xDn−2.

Using the induction hypothesis we have

Dn = 2x · 2
n−5
2 x

n−3
2

(
1− (−1)n−2

)
= 2

n−3
2 x

n−1
2

(
1− (−1)n

)
.

Consequently, the formula (4) is true for n. Therefore, by induction,
the formula works for all integers n > 0. �
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3. New formulas with multinomial coefficients for
Jacobsthal polynomials

Next we focus on multinomial extension of Theorem 1. Trudi’s formula
(3), taken together with Theorem 1, yield the following result.

Theorem 2. Let n ≥ 1, except when noted otherwise. Then∑
σn=n

(−1)|s|pn(s)j
s1
0 (x) · · · jsnn−1(x) =

1√
8x− 3

((
1−

√
8x− 3

2

)n−1

−
(
1 +

√
8x− 3

2

)n−1
)
;∑

σn=n

pn(s)j
s1
0 (x) · · · jsnn−1(x) =

1√
8x+ 5

((
1 +

√
8x+ 5

2

)n−1

−
(
1−

√
8x+ 5

2

)n−1
)
;∑

σn=n

(−1)|s|pn(s)j
s1
0 (x) · · · jsn2n−2(x) =

1√
8x− 3

((
4x+ 1−

√
8x− 3

2

)n−1

−
(
4x+ 1 +

√
8x− 3

2

)n−1
)
;∑

σn=n

pn(s)j
s1
0 (x) · · · jsn2n−2(x) =

1√
8x+ 5

((
4x+ 1 +

√
8x+ 5

2

)n−1

−
(
4x+ 1−

√
8x+ 5

2

)n−1
)
;∑

σn=n

(−1)|s|pn(s)j
s1
1 (x) · · · jsnn (x) = (2x)

n−3
2 x
(
(−1)n − 1

)
;

∑
σn=n

pn(s)j
s1
1 (x) · · · jsnn (x) =

(
1 +

√
2x+ 1

)n − (1−√
2x+ 1

)n
2
√
2x+ 1

;

∑
σn=n

(−1)|s|pn(s)j
s1
1 (x) · · · jsn2n−1(x) =

(
2x+

√
2x
)n−1

+
(
2x−

√
2x
)n−1

−2
;∑

σn=n

(−1)|s|pn(s)j
s1
2 (x) · · · jsnn+1(x) = 0, n ≥ 3;

∑
σn=n

pn(s)j
s1
3 (x) · · · jsn2n+1(x) = 2n−1

n∑
k=0

n∑
i=0

(
n− i

k

)(
n+ k

i

)
xn−k;
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σn=n

pn(s)j
s1
2 (x) · · · jsnn+1(x) =(

1 +
√
4x+ 1

)n+1 −
(
1−

√
4x+ 1

)n+1

4
√
4x+ 1

;∑
σn=n

(−1)|s|pn(s)j
s1
2 (x) · · · jsn2n(x) = −n(2x)n−1;∑

σn=n

pn(s)j
s1
2 (x) · · · jsn2n(x) =(

2x+ 1 +
√
4x+ 1

)n − (2x+ 1−
√
4x+ 1

)n
2
√
4x+ 1

;∑
σn=n

(−1)|s|pn(s)j
s1
3 (x) · · · jsnn+2(x) = (−2x)n, n ≥ 2;∑

σn=n

(−1)|s|pn(s)j
s1
3 (x) · · · jsn2n+1(x) = −(2x)n−1, n ≥ 2;∑

σn=n

(−1)|s|pn(s)j
s1
4 (x) · · · jsnn+3(x) = −(−2x)n−1

(
2x(n+ 1) + 1

)
;∑

σn=n

(−1)|s|pn(s)j
s1
4 (x) · · · jsn2n+2(x) = 0, n ≥ 3,

where σn = s1 + 2s2 + · · ·+ nsn, |s| = s1 + · · ·+ sn, pn(s) =
|s|!

s1!···sn! , and
the summation is over integers si ≥ 0 satisfying σn = n.

Corollary. Since jn(1) = Jn and jn(1/2) = Fn, we can obtain multino-
mial identities for Jacobsthal and Fibonacci numbers. For example, for
n ≥ 1, the following formulas hold :∑

σn=n

(−1)|s|pn(s)F
s1
0 F s2

1 · · ·F sn
n−1 = −1;∑

σn=n

(−1)|s|pn(s)J
s1
0 Js2

1 · · · Jsn
n−1 = −Fn;

∑
σn=n

(−1)|s|pn(s)F
s1
1 F s2

2 · · ·F sn
n =

1− (−1)n

2
;∑

σn=n

(−1)|s|pn(s)J
s1
1 Js2

2 · · · Jsn
n = 2

n−3
2 ((−1)n − 1) ;∑

σn=n

(−1)|s|pn(s)F
s1
2 F s2

4 · · ·F sn
2n = −n;
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σn=n

(−1)|s|pn(s)J
s1
2 Js2

4 · · · Jsn
2n = −n2n−1;∑

σn=n

(−1)|s|pn(s)J
s1
4 Js2

5 · · · Jsn
n+3 = −(−2)n−1(2n+ 3).
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