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PROBLEM WITH NONLOCAL CONDITIONS FOR WEAKLY 
NONLINEAR HYPERBOLIC EQUATIONS 

T. P. Goi and B. I. Ptashnik UDC 517.956.35 

For weakly nonlinear hyperbolic equations of order n, n _> 3, with constant coefficients in the linear 
part of the operator, we study a problem with nonlocal two-point conditions in time and periodic condi- 
tions in the space variable. Generally speaking, the solvability of this problem is connected with the 
problem of small denominators whose estimation from below is based on the application of the metric 
approach. For almost all (with respect to the Lebesgue measure) coefficients of the equation and almost 
all parameters of the domain, we establish conditions for the existence of a unique classical solution of 
the problem. 

The investigation of  problems with nonlocal conditions in time (the simplest conditions of  this sort are periodic 
conditions) for hyperbolic equations (both linear and nonlinear) was originated relatively recently (see, e.g., [1-19]  
and the bibliography in [2, 3]). This can be explained, e.g., by the difficulties encountered in working with the small 
denominators that appear in constructing solutions of  these problems. As far as nonlinear hyperbolic equations are 
concerned, problems of  this sort were studied, as a rule, for equations and systems of  the first and second orders. 

In the present paper, we study a nonlocal boundary-value problem for weakly nonlinear hyperbolic equations o f  

order n, n > 3. Significant attention is given to the problem of small denominators. 

1. In a domain D = { ( t , x ) ~  ]R2: t ~  [0, T], x e  Q},  where Q is aunit  disk, we consider theproblem 

anu(t, x) 
L u  = 2~ as~t-~zT-_sa- ~ = e f ( t , x , u ( t , x ) )  + O( t , x ) ,  

s = 0  

(1) 

a2u(t, x) 3iu(t,  x) I 
t=O ] = O, j = O ,  1 . . . . .  n - l ,  Ot 7 - ~t ~t ~ t= r 

(2) 

where n > 3, a s e ]R, a 0 = 1, e, kt ~ ~ ,  B r 0, 1, the operator L is strictly hyperbolic in the sense of  Petrovskii, 

the function f ( t ,  x, u)  is defined continuous in t and sufficiently smooth in x and u in a domain D I = { (t, x, 

u):  ( t , x ) ~  D, u e S'(u 0, r ) } ,  where 

-S(u~ = { u ( t , x ) ~  Cn(D):  [[U-uollc.r <_r} 

and u ~ = uO(t, x)  is a solution of  the nonperturbed problem (1), (2) (with e = 0), and ~ ( t ,  x)  ~ C(~ where 

C(~ is a Banach space of  functions v (t, x) with norm 

q ~J'o(t, X) 
[Iv(t,x)llc(o,q~) = ~ ,  max ~ x  i . 

j=O 
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The shape of the domain D enables us to impose the conditions of 2x-periodicity in x on the functions 

�9 (t, x), and f ( t ,  x, u). 
The solution of  the problem under consideration is sought in the form of a series 

u(t, x), 

u(t ,x)  = ~ uk(t)exp(ikx). (3) 
Ikl>O 

To determine the coefficients uk(t ), k ~ 7Y, we insert series (3) in Eq. (1) and conditions (2) and arrive at the fol- 

lowing boundary-value problem for an infinite set of ordinary differential equations: 

~ as(ik)Su~n-s)(t) = Efk(t , {u,n(t)} ) + ~k(t), k ~ ~., 
s = 0  

(4) 

lj[u~(t)] - u~J)(o)-gu~J)(T) = O, j=O, 1 . . . . .  n - l ,  k ~  ~., (5) 

where 

fk(t ,  {urn(t)} ) = (2rt) -1 I f  t,x, Z U,n(t) exp(imx) exp(- ikx)dx ,  
0 \ lml >-0 

(6) 

~k(t) = (2~) -! I ~(t, x) exp(- ikx)dx.  
o 

(7) 

Let us show that problem (1), (2) is equivalent to a nonlinear integral equation. 

For every k ~ ~ ,  we consider a problem with conditions (5) for a linear equation 

n 
Z as(ik)Su~n-s)(t) = dPk(t ). 

s=O 

(8) 

According to the assumption that the operator L is hyperbolic, the roots of  the equation 

?l 
ask n-s = 0 

s=O 

denoted by 7~j, j = 1 . . . . .  n, are real and different. Hence, the homogeneous equation corresponding to Eq. (8) has 

the following fundamental  sys tem of  solutions: 

u k j ( t )  = 

�9 exp(i)~jkt), k ~ ~ \ {0}, 

t j-I, k = 0, 
j = l , . . . , n .  

Moreover, the characteristic determinant A(k) of problem (5), (8) is given by the formula 

f n (ik)n(n-l)/2 1-I (~ 'q- )~p)Z (1-~texp(i)~j kT))' k E ~ \  {0), 
A(k)  = ] l<.p<q<n j=l (9) 

[ (1 - It) n 1! 2!.. .(n - 1)!, k = O. 
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Relation (9) implies that the determinant A(k) is nonzero for all k e 7Y \ {0} 
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if and only if at least one of the 

T 

u~ = Z f Gk(t"c)~k(x)dzexp(ikx)" (11) 
Ikl- >0 0 

In the square K r =  {(t, x):  0_<t, "c < T }  without its sides "r = 0 and "r = T, the functions Gk(t, z), k ~ ~ ,  

are given by the formulas 

1 + gexp(i)~jkT) ] 
Gk(t,"c ) = 2-1(ik) 1-n ~ exp(i~.jk(t-g)) I-1 ( ~ . j _ ~ . q ) - I  s g n ( t - l : )  + 1 ~ -  r :~ "r~, k ~  ~ \ { 0 } ,  (12) 

j = 1 q = 1 g e x p  ~i,~jk_: A' 
q~aj 

{ n-2 ~-1 
Go(t,"c) = (2(n-1) , )  -1 sgn(t-~)(t-x)n-' + ( l - g ) - n l E q '  J 

• s ~_~(-1)n-jtp-lAjp 
j=l p=l 

where Ajp, p = 1 . . . . .  j ,  j --- 1 .. . . .  n, is the algebraic complement of the element located in the j th  row of the pth 

column in the determinant detllb_,tt -qll ,p= r The definition of each function Gk(t, x), k ~ ~, is extended to 

the side '~ = 0 (x = T) of the square K T by continuity from the right (left). 

By using the system of functions { Gk(t, x), k ~ ~ }, we reduce problem (4), (5) to the equivalent infinite sys- 

tem of nonlinear integral equations 

T 

uk(t) = uO(t) + ef Gk(t,x)fk(x,{um(zc)})dx, k,m~ ~, (14) 

0 

where the functions u~ k ~ ~ ,  are given by relation (10). 

x n-j + g(x - T) n-j ] 
(13) 

In this case, the solution 
series as 

following conditions is satisfied: 

(i) l~tl ~* t; 

(ii) ~ j k T + ~ 2 r c q ,  j = l  . . . . .  n, q ~ . ,  tp=argg.  

Let A(k) ~ 0 for all k ~ ~.  Then the nonperturbed problem (1), (2) cannot have two different solutions (see 

[3], Chap. 5, Sec. 4). Moreover, for any k ~ ~,  there exists a unique Green function G,(t, ~) of problem (5), (8), 

and the solution of the indicated problem can be represented in the form 

T 
uO (t) = ~ ak(t, z)~k('c)d~, k ~ ae. (lO) 

0 

u~ x) of the nonperturbed problem (1), (2) is formally represented in the form of a 
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We denote 

K(t,x,'~,~) = (2~:) -1 E Gk(t,'c)exp(ik(x-~)). (15) 
Ikl>0 

If series (15) converges uniformly in the domain D • D and the function uO(t, x) determined by relation (11) 

belongs to the space C n (D), then relations (3), (6), and (14) imply that problem (1), (2) is equivalent to the nonlin- 
ear integral equation 

u(t,x) = uO(t,x) + e I K(t,x,'c,~)f('c,~,u('c,~))d"cd~. (16) 
D 

2. The problem of convergence of series (1 1) and (15) is, generally speaking, connected with the problem of 

small denominators because the absolute values of nonzero expressions 1 - g exp (iXj k T), j = 1 . . . . .  n, appearing 

in relation (12) for functions Gk(t, z), k ~ 72, as denominators may be arbitrarily small for infinitely many integer 

numbers k. 

Note that there are no small denominators for [ g ] :# 1. This follows from the estimates 

1 1 - g e x p ( i X j k T ) ]  = [ 1 - l g l ( c o s ( k j k T + c p ) + i s i n ( % j k T + ~ p ) ) l  

-- ~]l+lN e -  21Ncos0~jkZ+cp) >-- II-I ll, j= 1 . . . . .  n, (17) 

Relations (I 2), (13) and estimates (I 7) imply that 

I n -1 
2Tlk[ l-"+q E A  (q) 1-gexp(i)~jkT) + ~nq, [gl =1, 

oq T~ ak(t, T.)d~ j j= l  max atqj ~ <- q = O ,  1 . . . . .  n, (18) 
o<_t<_r Tlbll_n+ q l+[g[  ' ~  A(q) + ~ [ g [ ~ l ,  

/ "v~l I l - - lu l l  Z_, ""j nq, 
I I ~ Iw',l j= l  

max a q ~  atq'G~ < c~ (19) 
O<t<T 

where 

k ~  ~. \ {o),  

8nq is the Kronecker symbol, q = 0, 1 . . . . .  n, 

c o = 

and 

n . 

m=l 
m~j 

1/1+1+  ) 
j= l  p=l 

M = m a x { 1 , 1 g J } .  
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If I ~tl = 1, then series (11) and (15) are, generally speaking, divergent. At the same time, in what follows, we 

prove that, in this case, for almost all (with respect to the Lebesgue measure in ]R) numbers ~j = ~j T~ (2~), j = 

1 . . . . .  n, small denominators insignificantly affect the convergence of these series. 

Then, fo r  almost all (with respect to the Lebesgue measure in ~ ) numbers ~ = Lemma 1. Let  I bt l = 1. 
~.T/(2rQ, ~,~ JR, theseries  

converges whenever n > 3. 

Proof. By using the inequality 

lowing estimate holds for all real ~.: 

S = ~ Ikll-"ll-rtexp(i~kZ)1-1 (20) 
Ikl>0 

sin x > 2x/rc, 

I 1 - gexp  (i~.kT) l 

which is true for all x ~ [0, r t /2] ,  we conclude that the fol- 

= 2 l s i n ( ( X k T + ( p ) / 2 ) l  

= 2lsin 1�89 q0sgnk)- d(k)=ll 

>_ 1 2 ~ ( ~ l k l T + ~ s g n k ) -  d(k)l 

1 X. l k l T l k T l k l + ~ s g n k  2re d(k) 
= 2---~ ~.Tlkl T~. k ' 

where k ~ ~ \{0} and d(k )  is an integer number such that 

~.Tlkl+cpsgnk < 1 
- d ( k )  _ ~ .  

By using inequalities (21) and (22), we obtain the following estimate for series (20): 

S <  Ikl~-"l~lkl + -~-= q ) s g n k  - d(k)1-1 = $I + $2, 
Ikl>0 

sj ~ k'-"lf~k ~-'J - ajck)l -~ = - ~ t p -  , j =  1 , 2 ,  

k=l  

-1 1 dj(k) < _ - - ,  

2 

where 

and dj(k), j = 1, 2, is an integer number such that 

13k (-1)Jq)2= 

(21) 

(22) 

(23) 

(24) 

To prove that series (24) are convergent, we use the idea of the proof of Lemma 2 in [20]. We consider the se- 

ries S l and construct the series S[ p) of the same form as Sj : 
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S~ p, = Z (k(P)) 1-n ~Jk~ p) -k ~ - d1(k~ p)) -I, p E l~, 
k(P) E~ q P 

where ~ p  C_ 1~ is the set of  all k = k~ p), q = 1, 2, . . - ,  '~q+lV(P) > k~ p), satisfying the inequality 

2 - p - 1  < + • - )) _< p c  l~I. 
2~ 

Clearly, 

209 

(25) 

(26) 

It is clear that, for all k (p) • ~p, we have 

k(q p) > ( q -  1)Mp + k~ p). (30) 

It follows f rom L e m m a  2.4 in [3] (Chap. 1) that, for almost all [5 (with respect to the Lebesgue measure in JR), 

there exists a constant c 2 = c2(~)  > 0 such that 

f3k(qP) + 9__ _ dl(k~p)) >_ c2(k~p)) -I-~ 0 <  o <  1, (31) 
2~ 

for all k~ p) ~ ~Zp. Therefore, it follows from estimates (26) and (31) that 

for almost all [5. 

o o  

p=l  

and, therefore, to prove  the convergence of the series S 1 , it suffices to show that 

~_~ S~P ) < oo. 
p=l  

It follows from estimates (26) that 

t~/t.(p) (p) (p) (p) lal,~.q+l_kq )_(dl(kq+l)_dl(k q ))1 < g-p,  p~E I~. (27) 

According to L e m m a  1 in [20], for almost all ~, there exists a constant c 1 = c I ([3) > 0 such that the inequality 

(P) {P) (P) ~ [b(P) k(p)'~ - 1 - 8 , q  ] fS(k~P+] -kq ) - (dl (kq+l)-dl (k  q )) _> t. ltr~q+ 1 - 0 < 5 < 1 ,  (28) 

holds for all k (p) f~p, E 
i 

Estimates (27) and (28) imply that 

Mp =- min/ / ' (p)  k (p)) (2Pcl) 11(1+5), Czp VD+I - > P ~ I~I, (29) 
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k~ p) >_ (2Pc2) 11(1+~), k~P) ~ ap (32) 

for almost all [3. 
Without loss of generality, in (32), we set ~ = 8. 

write 

In view of estimates (29), (30), and (32), this enables us to 

k~ p) > (q-  1)(2PCl)11(1+8)+ (2Pc2) 1/(1+5) > 2PI(I+g)Cq, (33) 

where k~e) ~ f2p and C = (min{qc2}) 1/0+~) 
By using relation (25) and estimates (26), (33), we conclude that 

SI = Z S(p) < 2 c l - n  2P(2+8-n)/(l*8) Z q l -n  

p=l p=l q=l 

= 2(3+28-n)/(l+8)cl-n(l_2(2+8-n)/(l+8))-I s ql-n < 

q=l 

for almost all 13 (with respect to the Lebesgue measure in ~) .  
The convergence of the series S 2 is established in a similar way. Lemma 1 is proved. 

Estimates (18) and Lemma I imply that, for all I.t e (I: \{0 ,  1 } and almost all (with respect to the Lebesgue 

measure in IR) numbers 13j = ~j Z/ (2g) ,  j = 1 . . . . .  n, series (15) uniformly converges in the domain D x D for 

all n > 3. 

Let us now show that u~ x)~ Cn(D). Denote 

T - n - I  O~q = y ,  Ikl  -q, q = 2 , 3 ,  
g =  Co T - l _ l '  

Ikl>0 

n 

v , =  E A T  ), ; = o .  1 . . . . .  ,. 
j = l  

It follows from (7) that 

(34) 

For [I.t[ = 1, by using estimates (18), (19), and (35) and relation (11), we obtain 

max Olsl T 
11 u0(t, x)l lc .(o)  <- Z I Gk(t' "c)r exp(ikx) 

isl< n D OtSl~xS:lkl->O0 

< y '  ~ ]k] s2 max 
O<t<T Ikl>-O lsl<_n 

Os I T~ 
Ots-'---'( I Gk(t' ~)r 

0 

max  lk1-3, -- maxla'* /'x)l' ' (35) 
O<t<T O ~ 3 " 
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r n_,) _< ~ 2T ~ ~ ~A(] '~ Ikll'I-~-211-gexp(iX/~T)l -I + 0)3 + Co ~ T - ' l  

\ Ikl>Olsl<_nj=l Sl=0  

/ n / 
_< ~ 2T  ~ ~ ~ A ( ;  ~ ) l k l - 2 t l - g e x p ( i ) v j k r ) r l +  0) 3 + "~ . 

\ Isl<nlkl>Oj=l 

Note that, according to L e m m a  1, the series 

rl 

Be = E ~-~A(f ) ikl-21t-btexp(iLjkT)[ -I, 
Ikl>0 j=l 

are convergent  for almost all [~j, j = 1 . . . . .  n. 

Hence,  it follows f rom (36) and (37) that 

Ilu~ <- IIo(t,x)llc~o.3,(m 2T (n+l-p)Bp+O3+ 7 

for I g l = 1 and almost all (with respect to the Lebesgue measure) I~j, J = 1 . . . . .  n. 

For ] g I ~ 1, by the same reasoning, we arrive at the estimate 

p = 0 , 1  . . . . .  n, 

211 

(36) 

(37) 

T h e o r e m  1. Let ~ ( t ,  x ) ~  C(~ Then, for  I p .[= 1 and almost all (with respect to the Lebesgue mea- 
surein IR) numbers ) ~ j T / ( 2 x ) , j = I  . . . . .  n, andfor II.tl~l andaU T > 0  and a s, s = 0 ,  1 . . . . .  n, the 

nonperturbed problem (1), (2) possesses a unique solution u 0 ( t, x)  E C n (D ), which can be represented in the 
form of series (1,1) and continuously depends on the function ~ (  t, x ). 

3. Consider the problem of  solvability of the integral equation (16). Denote 

~ I ( Y ) =  f ( 2 T ( B  j~__lYJnn-3+j + 0)3Y 3 + 7 , 

~ 2 ( Y )  = 
I ,(n3 3 1 ) o~2r(l+lN)/li_lN E ( n - 2 - p ) D p + E / W n _ 3 +  j + C03y3 + ] t ,  

p=0 j= l  

where 

~lslf(t, X, U) n-3 
37 = max max , B = Z ( n - 2 - p ) B p ,  

0 <lsl-<4 D I ~xSlOu s~ p=0 

Thus, we have in fact proved the following theorem: 

IluO(t,x)llc,  w)  < I lO( t , x ) l l cco .3 ) (mIT~0)2p~=o(n+ l - p ) D e  +0)3 + ~,) = pz. (39) 

-- Pl < "~ (38) 
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q q 
H q =  Z B p ,  % =  y Dp, q = n - 2 ,  n - l , n ,  

p = 0  p = 0  

s = 

and the numbers T, COq, Dp, Bp, P l, 

r l ) 
rain (1 "" ' - ' 

+r+Pl)  ~1(2 + r + p l )  

r 1 ) 
E 2 = min - , 

(1 + r + P 2 )  W2(2 + r  + p2) 

and P2 are given by relations (34), (37)-(39). 

Theorem 2. Assume that ~ ( t ,  x )~  C(~ and that the function f ( t ,  x, u) is continuous in t and has 
bounded derivatives with respect to x and u up to the fourth order inclusively in the region D 1 . Then, for 

I~tl = 1, almost all (with respect to the Lebesgue measure in JR) numbers ~j = ~.j T/ ( 2~ ), j = 1 . . . . .  n, and all 

e, I E l < e l ,  and for I g l ~ l  and all T > 0 ,  a s, s = 0 ,  1 . . . . .  n, and e, lel<e2, Eq.(16) possesses a unique 

solution which belongs to the ball S ( u O, r) C Cn ( D ) and continuously depends on the function ap( t, x ). 

Proof We use the principle of contracting mappings. Consider the case [ g [ = 1. 
written in the form 

u( t ,x)  = Auo [u(t,x)],  

where A v is a nonlinear integral operator 

Equation (16) can be re- 

j~(l+r+pl) a, c z = 0 , 1 , 2 , 3 .  

(42) 

Av[u (t, x)] = v (t, x) + g l K(t, x, x, ~)f('c, ~, u (% ~)) dxd~ (40) 

D 

defined in the ball S(u  ~ r). 

By V we denote the collection of functions v (t, x) ~ C n (D) such that 

l l v ( t , x )  - u ~  <- ~ = r - IEl"ex(1 +r+p~), 

and prove that, for any function v(t,  x) from V, the operator A v maps the ball S (u  0, r) onto itself. 

Note that if the function u (t, x) represented in the form (3) belongs to the ball S (u  ~ r), then, in view of rela- 
tion (6), we obtain 

max ]fk(t,{Um(t)})] < [k[-C~max ] ~ f ( t , x , u ( t , x ) ) ]  c ~ = 0 , 1 , 2 , 3 .  (41) 
O<t<-T D ~X ~ ' 

According to the rule of differentiation of a composite function, we obtain 

Day(t, x, u(t, x)) I 
max I <_ ?(l+llu(t,x)llc.(o)) ~ 

D ~X ~ 

<_ y(l + I lu(t .x)-uO(t.x)L.,o + IluO(t.x)ll .,o,) ~ <_ 
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By using relations (40) and (15) and estimates (18), (19), (41), and (42), we now get 

II Av[ u (t, x)] - u0(t, x)II c" (o) 

<-ll~(t,x)-u~ 
D Ikl -> 0 C"(D) 

213 

[ alsl r 2= g))d,dg 
< ~ + iel(2rO -1 s ~ ,  max ~ I Gk(t' ~) f f{~' ~' u(,, ~ ) ) e x p ( i k ( x -  

i&l_>0 isl<_n D ~t t~X 2 0 0 

<-- ~: + lel _max. f ( t ,x ,u( t ,x ) ) .  • lkl '= max ~slGk(t,~)d~ 
I 0 \  Dl isl<n_3 O<-t<-T at ~a 0 

+ ~ Ikl "- ' ' -3 max - - [ ' G k ( t ,  Olsl-n+3f(t, x,u(t, x)) 
n_2<lsl<_n 0 <t<-T atSl d 0 mDalX axlSl-n+3 

"-' la" ! a~ ) ; - :  a7 + max[ f ( tx ,  u(t,x)) I ~_~ 
D1 s 0 

f _< ~: + lelo ~ 2T Z Z ' )  Ikll*l-'+lll-gexp(i~J kr)l-I 
k. Isl<n-31kl>O - 

+ ~ ( l + r + p l )  1'l-'+3 2T ~ ~ A ( ]  ' ) lk rz l l -p .exp( i%ikr) l  q + 8t,l,nm 3 +Co ~ T  - ' l  

n-2<lsl<n ' ,  Ikl>0 j = l  s l = 0  J 

-< ~: + [~l 2T B+Z(l+r+pl)JHn_3+j + (l+r+pl)3O)3 + "{ 
j=l  

= ~ : + l e l ~ l ( 1  + r + p l )  = r. 

Let us now show that A o is a contraction operator for any function v(t,  x ) ~  V. Assume that u I (t,x), 
u2(t, x) e S(u ~ r). We denote 

F(t,x)  ~ f ( t , x ,  Ul(t,x) ) - f ( t , x ,  u2(t,x)), 

fi( t ,x) - O U l ( t , X ) +  ( 1 - O ) u 2 ( t , X ) ,  0 < 0 < 1 .  

In view of Lemma 1, estimates (18), (19), and (42), and the Lagrange formula of finite increments, it follows 
from relation (40) that 
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II A u [u l  (t, x)]  - Av[u2( t ,  x)]  II c"(o) 

_< [cl(2rO -I J ~ G~(t, z)F(z, ~) exp(ik(x-~))dzd~ 
V ]kl >--0 Cn(V) 

<-I~tf l lu2(t ,x)-ul( t ,x) l lc .<z~) 

X 
Isl+3-n / 

2TB+ y + ~ y~ ClJl+3_n(l+r+llfi(t,x)llC,(o))J(2TBsl+~isl.nC03) 
n-2<lsl<n j = 0  

3 I 1 - lelY II U2(t, x ) -  u 1 (t, x)ll  C"(D) 2T  B + Z (2 + r + pl )  q Hn_3+ q + ~ + 033(2 + r + 131) 3 
k, \ q=l  

= l e lWl (2+r+p l ) l lu2 ( t , x ) -u l ( t , x ) l l c . (D)  

for almost all ~j, j = 1 . . . . .  n. 

Thus, if [ ~t [ = 1 and [ e I W1 (2 + r + p I ) < 1, then A v is a contraction operator for almost all 13j, j = 1 . . . . .  n. 

It is obvious that the operator A v is continuous in v. Therefore,  according to Theorems 1 and 3 in [21] 
(Chap. 16, Sec. 1), Eq. (16) [and, hence, problem (1), (2)] possesses a unique solution which continuously depends 

on the function ~ ( t ,  x). 

For ]/x [ ~ 1, the assertion of  the theorem is proved in a similar way. 
Theorem 2 is proved.  

Remark 1. The.solution of problem (1), (2) can be found as the limit of  the sequence { Us(t, x)} ,  where u 0 = 

u~ x), Us+ I = Auo [Us(t, x)] ,  s ~ I~I, and Auo is the integral operator determined by relation (40). 

Remark 2. The results of the present work can be generalized to the case of p > 2 spatial variables if the do- 

main Q is a p-dimensional toms. 
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