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Infinite distributive laws
for the lateral operations on a Riesz space

Kamiriska A.!, Krasikova 1.2, Popov M. 13

We prove analogues of the well known infinite distributive laws for the lateral infima and
suprema instead of order ones. The proofs are more involved than that for the original laws. We
show that one of the laws holds true whenever both sides of the equality are well defined. The other
one is false in general, even if both sides are well defined, but true for finite sets. The proofs of
two laws are completely different. The question of under what assumptions on the Riesz space and
objects involved in, the second distributive law is valid for infinite sets, remains unsolved.
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Introduction

We continue investigation of the lateral order on Riesz spaces started in [5] and then con-
tinued in a number of papers, see survey [8] and references therein. In particular, the interest
to the lateral order is due to its great importance in the investigation of linear operators [2] and
orthogonally additive operators on Riesz spaces [4, 6].

Let E be a Riesz space. An element x € E is called a fragment! of y € E provided x 1 y — x.
In this case we write x C y. The set of all fragments of a given element e € E will be denoted
by .. By x LIy we denote the disjoint sum of elements x and y of E, that is, the usual sum x +y
under the assumption that x L y.

Obviously, if e = x + y, then the following three conditions are equivalent: x C e,y C ¢
and x L y. Hence if e = | J{L; x4 then (x4 )}, are disjoint fragments of e.

The binary relation T possesses the following elementary properties.

Proposition 1 ([5, Proposition 3.1]). Let E be a Riesz space and x,y € E. Then
1) x Cyifandonlyifx™ Cyt andx™ Cy~;
2) ifx C y, then
(@) x* <y*,x” <y~ and|x| < |y|;
(b) x~ Lyt andx™ Ly,
() |x[  [yl-
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It is an easy exercise to show that C is a (non-strict) partial order on E (see [3] for the proof),
which is called the lateral order on E. Since 0 C x for all x € E, every subset of E is laterally
bounded from below by zero. The lateral supremum and infimum with respect to the lateral
order C on E are denoted by the bold symbols |J, U and (), N respectively, to distinguish them
from the set-theoretical operations.

Proposition 2 ([5, Proposition 3.4]). Let E be a Riesz space and e € E. Then

1) the set §. is a Boolean algebra with zero 0, unit e with respect to the operationsU and N.
Moreover, for every x,y € §. one has:

(@) xUy = (x"Vvy")—(xVy);
(b) xNy = (x"Ay")—(x" Ay7);
(c) xNy =0ifandonlyifx 1 y;

2) if, moreover, e > 0, then the lateral order C on §, coincides with the lattice order < .
Given any element e of a Riesz space E and a subset G C E, we use the following notations:

eNG:={eNx: x € G}, eUG:={eUx: x € G},
Gt:={xt:x€G}, G :={x:x€G}, |G|:={|x]: xe G}

The lateral analogue of the Riesz decomposition property

There are known simple but useful lateral analogues of the decomposition property
[1, Theorem 1.13] and the Riesz decomposition property [1, Theorem 1.20], see also [7, Propo-
sition 3.11].

Below we provide short proofs of these results, showing that they are simple consequences
of Proposition 2.

Proposition 3 ([9, Lemma 1.8]). Let E be a Riesz space, x,Y1,...,yn € Eand x T y; U...Uyy.
Then there are x1,...,x, such thatx = x;U...Ux,andx; Cy; fori =1,...,n.

Proof. Set e = y; U...Uy,. Since x,y1,...,Y, are elements of the Boolean algebra §., the
elements x; := x N y; are well defined and possess the desired properties. O

Proposition 4 ([7, Proposition 3.11]). Let E be a Riesz space, uy,...,Upy, v1,...vy € E and
e := " u; = |J}_, v. Then there exists a (disjoint) double sequence (w; ). " _inE such

i=1k=1
that

n
1) uj= || wjy foranyi e {1,...,m};
k=1

2) v = ﬁ w;y forany k € {1,...,n}.
i=1

Proof. Since u;, vy are elements of the Boolean algebra §., the elements w; x := u; N vy are well
defined and possess the desired properties. O
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1 Further properties of the lateral operations

In this section, we prove some auxiliary statements for main results. We begin with an
example showing the lack of associativity of the lateral infimum in the full sense.

Recall that a Riesz space E is said to have the intersection property provided every two-point
subset {x, y} of E has a lateral infimum xN y. In particular, the principal projection property
implies the intersection property, however there exists an Archimedean Riesz space without
the intersection property [5]. For more information about the intersection property see [6].

Proposition 5. Let E be a Riesz space without the intersection property. Then there are ele-
ments x,y,z of E such that:

1) xN (yNz) exists and (xN y) N z does not exist;
2) N{x,y,z} exists and N{x,y} does not exist.

Proof. Let x,y be any elements of E such that xN y does not exist and set z = 2y. Then we have
xN(yNz)=xN0=0and N{x,y,z} =0. O

However, the associativity holds whenever both sides are well defined.
Proposition 6. Let x,y, z be elements of a Riesz space E.
(i) If xN (yN z) exists, then N{x,y,z} existsand xN (yNz) =N{x,y,z}.
(ii) If both xN (yN z) and (xN y) N z exist, then

xN(yNz)=(xNy)Nz :n{x,y,z}.

Proof. (i) We show that i := xN (yN z) is the lateral infimum of the set {x,y,z}. Indeed, h C x
and i C yNz. Hence, h C y and h C z, and so & is a lower lateral bound of {x,y,z}. Assume
that w is any lower lateral bound of {x,y,z} and show that w C h. By the assumption, we
have

w e FxN (Sy mgz) = Bx ﬁSyﬁz = an(ynz)/

which yields w T h.
Item (ii) easily follows from (i). O

The next statement is “almost” known, being a slight strengthening of items (2) and (3) of
[5, Corollary 3.6]. However, [5] contains no proof of it. Later it was stated in [6, Proposition 3.4]
in another weaker form, but its proof actually covers the following version.

Proposition 7 ([6, Proposition 3.4 (3)]). Let G be a subset of a Riesz space E.
1. If UG exists, then UG™,UG™ and U|G| exist and moreover
(@) UG)T =UGT =supG™, (UG)” =UG™ =supG~,
(b) UG| =UIG| = sup|G|.
2. If NG exists, then NG', NG~ and N|G| exist and, moreover,

Nc =(Ns)". N =(Ns) ", Nicl=|Na|.



464 Kaminska A., Krasikova I., Popov M.

Now we point out an important consequence of Proposition 7, which was implicitly used
without a proof in [10] in the definition of a horizontally convergent net, where the lateral
supremum of a laterally increasing net was used in place of its order convergence.

Corollary 1. Let (x,) be a net in a Riesz space E such that x, € xg asa < B and x € E. Then
the following assertions are equivalent.

(j) X :U“ x“.
(ii) |x — x4| J O.
Proof. By Proposition 7, we have
x:Uxa & xT=supx) and x~ =supx, & |x—x|=x"—x+x —x, |0,
« o o
O

2 Distributive laws and related properties

Since the set §¢ of all fragments of an element f of a Riesz space is a Boolean algebra with
respect to the lateral operations, the finite distributive laws for elements and subsets of §r are
beyond doubt. So for every e, x,y,z € § fone has

(eNx)U(eNy) =eN (xUy) (1)

and
(eUx)N (eUy) =eU (xNy). (2)
There were no investigation of whether the above two equalities are true if the terms are

not laterally bounded.

2.1 The first infinite distributive law for lateral operations

Theorem 1. Let G be a nonempty subset of a Riesz space E and e € E. Suppose that |JG and
eN (UG) exist. Then U(eN G) exists and

Utenc) =en (Uc). 3)

For the proof, we need some statements which may be of interest by themselves. The first
one asserts that (1) holds under a weaker assumption.

Lemma 1. Assume thate, x,y, f are elements of a Riesz space E, x C f, y C f, and the lateral
infimaeN x and eNy exist. Then eN (xUy) exists and (1) holds.

Proof. SinceeNx C fand eNy C f, the following vector w := (eN x)U (eNy) is well defined.
Show that w is the maximal common fragment of e and xU y. Indeed, eNx C e witheNy C e
implywCe,andeNx E x C xUywitheNyCyCE xUyimplyw E xUy.

Now suppose that u is any common fragment of e and xU y and prove that u C w. Since
u, eN x, eNy, w are elements of f, by (1) and Proposition 6 we obtain

uNw = (uN(eNx))U (uN(eNy))
- () (ne)
= wNx)U(uNy)=un(xNy) =u,
which yields u C w. =
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Using induction, we obtain the following consequence, which is a version of Theorem 1 for
finite G (it is stated separately to point out that the lateral boundedness of a finite subset G
guarantees the existence of |J G).

Corollary 2. Assume that e is an element of a Riesz space E, G is a finite laterally bounded
subset of E, and for every g € G the lateral infimum e g exists. Then eN (U G) exists and (3)
holds.

Lemma 2. Let E be a Riesz space and e, g € E. If w := eN g exists, theneN ¢’ and wN g’ exist
for every ¢’ C ¢ and, moreover,eN g =wN g’

Proof. Since w,g" € §gq, by Proposition 2, wN g’ exists. Then the conditions wNg' C w C e
imply wng' € §.N Jg, thatis, wN ¢’ is a C-lower bound of {e,¢'}. Let z be any C-lower
bound of {e, ¢'}, thatis, z € F.N J¢- Then z € §, N Ty and hence z C eN ¢ = w. Now since
z € SwNJy, we obtain that z C wN ¢’ and therefore wN ¢’ is the maximal C-lower bound

of {e,¢'}. O
By Lemma 2 and [9, Lemma 1.10], we obtain the following assertion, which strengthens

item (v) of [5, Proposition 3.21].

Corollary 3. Let E be a Riesz space, x,y,e € E and x L y. Then the following conditions are

equivalent:

1) (xUy)Ne exists;

2) xNeandyNe exist.
Moreover, (x Uy)Ne = (xNe) LI (yNe) whenever the conditions hold.

Proof of Theorem 1. Set ¢ = UG and w := eN g, and prove that w = UJ(eN G). Obviously, w
is an upper lateral bound of e N G. Now let z be any upper lateral bound of e N G and show
that w C z. Since G is laterally bounded, every finite subset of G has a lateral supremum
by [5, Corollary 3.7]. So, let G=“ be the set of all finite subsets of G, which is directed by
inclusion: « < Bifand only if &« C B, o, € G=“. For every a € G we set g, := Un.
Then (g4)acg<w is a laterally increasing net in E with U,gx = g. By Corollary 1, g» — g.
Since g4 C g, by Lemma 2, eN g, is well defined for all a. Then for every & € G<“ one has
¢ = ga U (g — g) and hence, by Corollary 3,

eNg = (eNga) U (eN (g —gu))-
Therefore,
(eng) —(eNga) =eN(g—ga) E g — g
By Proposition 1,
[(eNg) — (eNga)| < |8 — gul,
which yields eN g, — eN g = w. By Corollary 2,
eNg. = J(enf) Cz
feu

By the order closedness of §, [6, Proposition 2.2], w C z and so (3) is proved. O

Remark 1. The existence of the left-hand side of (3) does not guarantee the existence of the
right-hand side. For instance, if e is any nonzero element of a Riesz space E and G = {2¢,3e}
theneN G = {0} and U(eN G) = 0, however, UG does not exist.
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2.2 The second infinite distributive law for lateral operations

Now we consider the second distributive law for the lateral order, namely

N(euG) =eu (NG)- @)
Below we show that (4) does not hold in general.

Proposition 8.

(i) For every nontrivial Riesz space E, there are ¢ € E and a two-point subset G of E such
that the right-hand side of (4) exists, and the left-hand side does not.

(ii) There are a Riesz space E, ¢ € E and G C E such that the left-hand side of (4) exists, and
NG does not exist.

(iii) There are a Riesz space E, e € E and G C E such that both sides of (4) are well defined,
however (4) is false.

Proof. (i) If e is any nonzero element of a Riesz space E and G = {e¢,2¢}, then NG = 0 and
eU (NG) = e, however, eU G does not exist.

(ii) Consider the Riesz space C}[1/2,1] of all functions x: [0,1] — R, that are continuous
on [1/2,1], with the pointwise order. We set e := 1jgy and G := {19 : 0 < t < 1/2},
where 1, denotes the characteristic function of a subset A C [0,1]. Then eU G = {e} and
N(eU G) = ¢, however NG does not exist.

(iii) Let E be the Riesz space of all functions x: [0,1] — IR, that are continuous

on (1/2,1] and left-continuous at 1/2, with the pointwise order. Set e := 1jy;,5 and
G := {13 : 0 <t < 1/2}. Then NG = 0 and hence the right-hand side of (4) equals e.
On the other hand, eU G = {1)y¢;} and hence, N(eU G) = 1y} O

However, (4) holds true for a finite G under some existence assumptions. First we prove (2)
under a weaker assumption than the lateral boundedness of all its terms.

Theorem 2. Let e be an element of a Riesz space E and G a finite subset of E such that
N(eU G) and NG exist. Then eU (NG) exists and (4) holds.

To prove Theorem 2, we need auxiliary lemmas. Following [5], if # N v exists for elements
u, v of a Riesz space E, then we denote u \v:=u—unvo.

Lemma 3 ([5, Proposition 3.21 (iii)]). Let u,v be elements of a Riesz space E such that uNv
exists. Then

(u\v)Nv=0.

Next lemma is a consequence of Corollary 3.
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Lemma 4. Lete,eq,...,ey, f, f1,...,em be elements of a Riesz space E withe = e; U ... Ue, and
f=fil...Ufm, n,m e IN. Then the following assertions are equivalent:

1) eN f exists;
2) ¢;N fj exists foralli € {1,...,n} andj € {1,...,m}.
Moreover,
n m
eﬂf = |_| |_|(ez-ﬂf]-)
i=1j=1
in case of existence.

Proof. First we generalize Corollary 3 from two to an arbitrary finite number of summands.
Then we obtain that for every j € {1,..., m}, the following assertions are equivalent:

1;) eN f; exists,

2j) eiN fjexistsforalli € {1,...,n},
and eN f = []_;(e;N f;) in case of existence. Finally we use the same argument to get the
lemma. O

The following lemma is a consequence of [5, Proposition 3.18].

Lemma 5. Let {x,y} be a laterally bounded subset of a Riesz space E. Then

xUy = (x\y) U (xNy) U (y\ x).
Proof of Theorem 2. Observe that it is enough to prove the theorem for any two-point subset G of
E and then use the induction. So lete, x, y be elements of E such thateU x, eUy, (eUx)N (eUy)
and xNy exist. We prove that eU (xN y) exists and (2) holds, which is exactly (4) for G = {x, y}.
Since e and x N y are laterally bounded by eU x, the element eU (xN y) is well defined by

Proposition 2. The relation
eU(xNy)C (eUx)N (eUy)

is obvious. Our goal is to show that
(eUx)N (eUy) C eU (xNy). (5)
By Lemma 5,
eUx = (e\x)U(enx)U(x\e), eUy=(e\y)U(eny)U(y\e).
Hence, by Lemma 4,
(eUx)N(eVy) =ug U...Uug,
where
= ((e\x)N(e\y)), w=(le\x)N(eNy)), us=((c\x)N(y\e)),
ug=((enx)N(e\y)), us=(leNx)N(eNy)), us=(leNx)N(y\e)),
= ((x\e)N(e\y)), us=((x\e)N(eNy)), uo=((x\e)N(y\e)).
Now to prove (5), it is enough to show that Vi € {1,...,9}, u; C eU (xNy).
The relation is clear for i € {1,2,4,5}, because u; C e for that indices. Fori € {3,6} one

has u; C eN (y\ e) = 0 by Lemma 3. Analogously, fori € {7,8} one has u; C (x\ e)Ne = 0.
Hence, u; = 0 fori € {3,6,7,8}. Finally, u9 C xNy C eU (xNy). So (5) is proved. O
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By Proposition 8 (iii), the finiteness assumption on G is essential in Theorem 2. However,
we do not know any partial positive result in this direction.

Problem. Under what assumptions on a Riesz space E, element e of E and an infinite subset G
of E, the second distributive law (4) holds?
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Mm AOBOAMIMO aHAAOIM BiAOMMX HECKIHUEHHVX PO3MOAIABHUX 3aKOHIB AASI AaTepaAbHUX iHdi-
MyMiB Ta CyIpeMyMiB 3aMicTh IOPSAKOBMX. AOBEAEHHS € GiABII CKAQAHVIMIYL, HiXX AASI OpMUTiHAAB-
HIX 3aKOHIB. MM mokasyeMo, IO OAMH i3 3aKOHIB CITpaBeAAMBII, KOAM OOMABI CTOPOHM piBHOCTL
KOPEKTHO BM3HaUeHi. [HITIIT 3aKOH 3araAOM HEBipHIIA, HaBiTh SIKIIIO OOMABI CTOPOHM € KOPEKTHO
BU3HAUYEHVIMI, aA€ 3aBXAV BipHWIT AAST CKIHUEHHMX MHOXVH. AOBEAEHHS ABOX 3aKOHIB a6COAIOTHO
Ppi3Hi. 3aAMIIIa€ThCS HeBUPillIeHMM IIMTAHHS IIPO Te, 3a SKMX IPUIYIIeHb IIOAO BEKTOPHOI I'paTKM
Ta 06’€KTiB, IO 6€PYTh YIaCTh ¥ HBOMY, APYTUI PO3MOAIABHIIL 3aKOH Ma€ MicIle AAST HeCKiHUeHHIX
MHOXVH.

Kontouosi crosa i ppasu: BeKTOpHA I'paTKa, AaTepaAbHMI MOPSAOK, AaTepaAbHa CMyTa.



