
ISSN 2075-9827 e-ISSN 2313-0210 https://journals.pnu.edu.ua/index.php/cmp

Carpathian Math. Publ. 2024, 16 (2), 461–468 Карпатськi матем. публ. 2024, Т.16, №2, С.461–468

doi:10.15330/cmp.16.2.461-468

Infinite distributive laws
for the lateral operations on a Riesz space

Kamińska A.1, Krasikova I.2, Popov M.1,3,

We prove analogues of the well known infinite distributive laws for the lateral infima and

suprema instead of order ones. The proofs are more involved than that for the original laws. We

show that one of the laws holds true whenever both sides of the equality are well defined. The other

one is false in general, even if both sides are well defined, but true for finite sets. The proofs of

two laws are completely different. The question of under what assumptions on the Riesz space and

objects involved in, the second distributive law is valid for infinite sets, remains unsolved.
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Introduction

We continue investigation of the lateral order on Riesz spaces started in [5] and then con-

tinued in a number of papers, see survey [8] and references therein. In particular, the interest

to the lateral order is due to its great importance in the investigation of linear operators [2] and

orthogonally additive operators on Riesz spaces [4, 6].

Let E be a Riesz space. An element x ∈ E is called a fragment1 of y ∈ E provided x ⊥ y − x.

In this case we write x ⊑ y. The set of all fragments of a given element e ∈ E will be denoted

by Fe. By x ⊔ y we denote the disjoint sum of elements x and y of E, that is, the usual sum x + y

under the assumption that x ⊥ y.

Obviously, if e = x + y, then the following three conditions are equivalent: x ⊑ e, y ⊑ e

and x ⊥ y. Hence if e =
⊔m

k=1 xk then (xk)
m
k=1 are disjoint fragments of e.

The binary relation ⊑ possesses the following elementary properties.

Proposition 1 ([5, Proposition 3.1]). Let E be a Riesz space and x, y ∈ E. Then

1) x ⊑ y if and only if x+ ⊑ y+ and x− ⊑ y−;

2) if x ⊑ y, then

(a) x+ ≤ y+, x− ≤ y− and |x| ≤ |y|;

(b) x− ⊥ y+ and x+ ⊥ y−;

(c) |x| ⊑ |y|.
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It is an easy exercise to show that ⊑ is a (non-strict) partial order on E (see [3] for the proof),

which is called the lateral order on E. Since 0 ⊑ x for all x ∈ E, every subset of E is laterally

bounded from below by zero. The lateral supremum and infimum with respect to the lateral

order ⊑ on E are denoted by the bold symbols
⋃⋃⋃⋃
⋃⋃⋃⋃⋃

,∪∪∪∪∪∪∪∪∪ and
⋂⋂⋂⋂
⋂⋂⋂⋂⋂

,∩∩∩∩∩∩∩∩∩ respectively, to distinguish them

from the set-theoretical operations.

Proposition 2 ([5, Proposition 3.4]). Let E be a Riesz space and e ∈ E. Then

1) the set Fe is a Boolean algebra with zero 0, unit e with respect to the operations∪∪∪∪∪∪∪∪∪ and∩∩∩∩∩∩∩∩∩.

Moreover, for every x, y ∈ Fe one has:

(a) x∪∪∪∪∪∪∪∪∪ y = (x+ ∨ y+)− (x− ∨ y−);

(b) x∩∩∩∩∩∩∩∩∩ y = (x+ ∧ y+)− (x− ∧ y−);

(c) x∩∩∩∩∩∩∩∩∩ y = 0 if and only if x ⊥ y;

2) if, moreover, e ≥ 0, then the lateral order ⊑ on Fe coincides with the lattice order ≤ .

Given any element e of a Riesz space E and a subset G ⊆ E, we use the following notations:

e∩∩∩∩∩∩∩∩∩G := {e∩∩∩∩∩∩∩∩∩ x : x ∈ G}, e∪∪∪∪∪∪∪∪∪G := {e∪∪∪∪∪∪∪∪∪ x : x ∈ G},

G+ := {x+ : x ∈ G}, G− := {x− : x ∈ G}, |G| := {|x| : x ∈ G}.

The lateral analogue of the Riesz decomposition property

There are known simple but useful lateral analogues of the decomposition property

[1, Theorem 1.13] and the Riesz decomposition property [1, Theorem 1.20], see also [7, Propo-

sition 3.11].

Below we provide short proofs of these results, showing that they are simple consequences

of Proposition 2.

Proposition 3 ([9, Lemma 1.8]). Let E be a Riesz space, x, y1, . . . , yn ∈ E and x ⊑ y1 ⊔ . . . ⊔ yn.

Then there are x1, . . . , xn such that x = x1 ⊔ . . . ⊔ xn and xi ⊑ yi for i = 1, . . . , n.

Proof. Set e = y1 ⊔ . . . ⊔ yn. Since x, y1, . . . , yn are elements of the Boolean algebra Fe, the

elements xi := x ∩∩∩∩∩∩∩∩∩ yi are well defined and possess the desired properties.

Proposition 4 ([7, Proposition 3.11]). Let E be a Riesz space, u1, . . . , um, v1, . . . vn ∈ E and

e :=
⊔m

i=1 ui =
⊔n

k=1 vk. Then there exists a (disjoint) double sequence (wi,k)
m
i=1

n

k=1
in E such

that

1) ui =
n
⊔

k=1
wi,k for any i ∈ {1, . . . , m};

2) vk =
m
⊔

i=1
wi,k for any k ∈ {1, . . . , n}.

Proof. Since ui, vk are elements of the Boolean algebra Fe, the elements wi,k := ui∩∩∩∩∩∩∩∩∩ vk are well

defined and possess the desired properties.
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1 Further properties of the lateral operations

In this section, we prove some auxiliary statements for main results. We begin with an

example showing the lack of associativity of the lateral infimum in the full sense.

Recall that a Riesz space E is said to have the intersection property provided every two-point

subset {x, y} of E has a lateral infimum x∩∩∩∩∩∩∩∩∩ y. In particular, the principal projection property

implies the intersection property, however there exists an Archimedean Riesz space without

the intersection property [5]. For more information about the intersection property see [6].

Proposition 5. Let E be a Riesz space without the intersection property. Then there are ele-

ments x, y, z of E such that:

1) x∩∩∩∩∩∩∩∩∩ (y∩∩∩∩∩∩∩∩∩ z) exists and (x∩∩∩∩∩∩∩∩∩ y)∩∩∩∩∩∩∩∩∩ z does not exist;

2)
⋂⋂⋂⋂
⋂⋂⋂⋂⋂

{x, y, z} exists and
⋂⋂⋂⋂
⋂⋂⋂⋂⋂

{x, y} does not exist.

Proof. Let x, y be any elements of E such that x∩∩∩∩∩∩∩∩∩ y does not exist and set z = 2y. Then we have

x∩∩∩∩∩∩∩∩∩ (y∩∩∩∩∩∩∩∩∩ z) = x∩∩∩∩∩∩∩∩∩ 0 = 0 and
⋂⋂⋂⋂
⋂⋂⋂⋂⋂

{x, y, z} = 0.

However, the associativity holds whenever both sides are well defined.

Proposition 6. Let x, y, z be elements of a Riesz space E.

(i) If x∩∩∩∩∩∩∩∩∩ (y∩∩∩∩∩∩∩∩∩ z) exists, then
⋂⋂⋂⋂
⋂⋂⋂⋂⋂

{x, y, z} exists and x∩∩∩∩∩∩∩∩∩ (y∩∩∩∩∩∩∩∩∩ z) =
⋂⋂⋂⋂
⋂⋂⋂⋂⋂

{x, y, z}.

(ii) If both x∩∩∩∩∩∩∩∩∩ (y∩∩∩∩∩∩∩∩∩ z) and (x∩∩∩∩∩∩∩∩∩ y)∩∩∩∩∩∩∩∩∩ z exist, then

x∩∩∩∩∩∩∩∩∩ (y∩∩∩∩∩∩∩∩∩ z) = (x∩∩∩∩∩∩∩∩∩ y)∩∩∩∩∩∩∩∩∩ z =
⋂⋂⋂⋂
⋂⋂⋂⋂⋂

{x, y, z}.

Proof. (i) We show that h := x∩∩∩∩∩∩∩∩∩ (y∩∩∩∩∩∩∩∩∩ z) is the lateral infimum of the set {x, y, z}. Indeed, h ⊑ x

and h ⊑ y∩∩∩∩∩∩∩∩∩ z. Hence, h ⊑ y and h ⊑ z, and so h is a lower lateral bound of {x, y, z}. Assume

that w is any lower lateral bound of {x, y, z} and show that w ⊑ h. By the assumption, we

have

w ∈ Fx ∩ (Fy ∩ Fz) = Fx ∩ Fy∩∩∩∩∩∩∩∩∩z = Fx∩∩∩∩∩∩∩∩∩(y∩∩∩∩∩∩∩∩∩z),

which yields w ⊑ h.

Item (ii) easily follows from (i).

The next statement is “almost” known, being a slight strengthening of items (2) and (3) of

[5, Corollary 3.6]. However, [5] contains no proof of it. Later it was stated in [6, Proposition 3.4]

in another weaker form, but its proof actually covers the following version.

Proposition 7 ([6, Proposition 3.4 (3)]). Let G be a subset of a Riesz space E.

1. If
⋃⋃⋃⋃
⋃⋃⋃⋃⋃

G exists, then
⋃⋃⋃⋃
⋃⋃⋃⋃⋃

G+,
⋃⋃⋃⋃
⋃⋃⋃⋃⋃

G− and
⋃⋃⋃⋃
⋃⋃⋃⋃⋃

|G| exist and moreover

(a) (
⋃⋃⋃⋃
⋃⋃⋃⋃⋃

G)+ =
⋃⋃⋃⋃
⋃⋃⋃⋃⋃

G+ = sup G+, (
⋃⋃⋃⋃
⋃⋃⋃⋃⋃

G)− =
⋃⋃⋃⋃
⋃⋃⋃⋃⋃

G− = sup G−,

(b) |
⋃⋃⋃⋃
⋃⋃⋃⋃⋃

G| =
⋃⋃⋃⋃
⋃⋃⋃⋃⋃

|G| = sup |G|.

2. If
⋂⋂⋂⋂
⋂⋂⋂⋂⋂

G exists, then
⋂⋂⋂⋂
⋂⋂⋂⋂⋂

G+,
⋂⋂⋂⋂
⋂⋂⋂⋂⋂

G− and
⋂⋂⋂⋂
⋂⋂⋂⋂⋂

|G| exist and, moreover,

⋂⋂⋂⋂
⋂⋂⋂⋂⋂

G+ =
(

⋂⋂⋂⋂
⋂⋂⋂⋂⋂

G
)+

,
⋂⋂⋂⋂
⋂⋂⋂⋂⋂

G− =
(

⋂⋂⋂⋂
⋂⋂⋂⋂⋂

G
)−

,
⋂⋂⋂⋂
⋂⋂⋂⋂⋂

|G| =
∣

∣

∣

⋂⋂⋂⋂
⋂⋂⋂⋂⋂

G
∣

∣

∣
.
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Now we point out an important consequence of Proposition 7, which was implicitly used

without a proof in [10] in the definition of a horizontally convergent net, where the lateral

supremum of a laterally increasing net was used in place of its order convergence.

Corollary 1. Let (xα) be a net in a Riesz space E such that xα ⊑ xβ as α < β and x ∈ E. Then

the following assertions are equivalent.

(i) x =
⋃⋃⋃⋃
⋃⋃⋃⋃⋃

α xα.

(ii) |x − xα| ↓ 0.

Proof. By Proposition 7, we have

x =
⋃⋃⋃⋃
⋃⋃⋃⋃⋃

α

xα ⇔ x+ = sup
α

x+α and x− = sup
α

x−α ⇔ |x − xα| = x+ − x+α + x− − x−α ↓ 0.

2 Distributive laws and related properties

Since the set F f of all fragments of an element f of a Riesz space is a Boolean algebra with

respect to the lateral operations, the finite distributive laws for elements and subsets of F f are

beyond doubt. So for every e, x, y, z ∈ F f one has

(e∩∩∩∩∩∩∩∩∩ x)∪∪∪∪∪∪∪∪∪ (e∩∩∩∩∩∩∩∩∩ y) = e∩∩∩∩∩∩∩∩∩ (x∪∪∪∪∪∪∪∪∪ y) (1)

and

(e∪∪∪∪∪∪∪∪∪ x)∩∩∩∩∩∩∩∩∩ (e∪∪∪∪∪∪∪∪∪ y) = e∪∪∪∪∪∪∪∪∪ (x∩∩∩∩∩∩∩∩∩ y). (2)

There were no investigation of whether the above two equalities are true if the terms are

not laterally bounded.

2.1 The first infinite distributive law for lateral operations

Theorem 1. Let G be a nonempty subset of a Riesz space E and e ∈ E. Suppose that
⋃⋃⋃⋃
⋃⋃⋃⋃⋃

G and

e∩∩∩∩∩∩∩∩∩ (
⋃⋃⋃⋃
⋃⋃⋃⋃⋃

G) exist. Then
⋃⋃⋃⋃
⋃⋃⋃⋃⋃

(e∩∩∩∩∩∩∩∩∩ G) exists and
⋃⋃⋃⋃
⋃⋃⋃⋃⋃

(e∩∩∩∩∩∩∩∩∩ G) = e∩∩∩∩∩∩∩∩∩
(

⋃⋃⋃⋃
⋃⋃⋃⋃⋃

G
)

. (3)

For the proof, we need some statements which may be of interest by themselves. The first

one asserts that (1) holds under a weaker assumption.

Lemma 1. Assume that e, x, y, f are elements of a Riesz space E, x ⊑ f , y ⊑ f , and the lateral

infima e∩∩∩∩∩∩∩∩∩ x and e∩∩∩∩∩∩∩∩∩ y exist. Then e∩∩∩∩∩∩∩∩∩ (x∪∪∪∪∪∪∪∪∪ y) exists and (1) holds.

Proof. Since e∩∩∩∩∩∩∩∩∩ x ⊑ f and e∩∩∩∩∩∩∩∩∩ y ⊑ f , the following vector w := (e∩∩∩∩∩∩∩∩∩ x)∪∪∪∪∪∪∪∪∪ (e∩∩∩∩∩∩∩∩∩ y) is well defined.

Show that w is the maximal common fragment of e and x∪∪∪∪∪∪∪∪∪ y. Indeed, e∩∩∩∩∩∩∩∩∩ x ⊑ e with e∩∩∩∩∩∩∩∩∩ y ⊑ e

imply w ⊑ e, and e∩∩∩∩∩∩∩∩∩ x ⊑ x ⊑ x∪∪∪∪∪∪∪∪∪ y with e∩∩∩∩∩∩∩∩∩ y ⊑ y ⊑ x∪∪∪∪∪∪∪∪∪ y imply w ⊑ x∪∪∪∪∪∪∪∪∪ y.

Now suppose that u is any common fragment of e and x∪∪∪∪∪∪∪∪∪ y and prove that u ⊑ w. Since

u, e∩∩∩∩∩∩∩∩∩ x, e∩∩∩∩∩∩∩∩∩ y, w are elements of f , by (1) and Proposition 6 we obtain

u∩∩∩∩∩∩∩∩∩ w = (u∩∩∩∩∩∩∩∩∩ (e∩∩∩∩∩∩∩∩∩ x))∪∪∪∪∪∪∪∪∪ (u∩∩∩∩∩∩∩∩∩ (e∩∩∩∩∩∩∩∩∩ y))

=
(

⋂⋂⋂⋂
⋂⋂⋂⋂⋂

{u, e, x}
)

∪∪∪∪∪∪∪∪∪
(

⋂⋂⋂⋂
⋂⋂⋂⋂⋂

{u, e, y}
)

= (u∩∩∩∩∩∩∩∩∩ x)∪∪∪∪∪∪∪∪∪ (u∩∩∩∩∩∩∩∩∩ y) = u∩∩∩∩∩∩∩∩∩ (x∩∩∩∩∩∩∩∩∩ y) = u,

which yields u ⊑ w.
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Using induction, we obtain the following consequence, which is a version of Theorem 1 for

finite G (it is stated separately to point out that the lateral boundedness of a finite subset G

guarantees the existence of
⋃⋃⋃⋃
⋃⋃⋃⋃⋃

G).

Corollary 2. Assume that e is an element of a Riesz space E, G is a finite laterally bounded

subset of E, and for every g ∈ G the lateral infimum e∩∩∩∩∩∩∩∩∩ g exists. Then e∩∩∩∩∩∩∩∩∩ (
⋃⋃⋃⋃
⋃⋃⋃⋃⋃

G) exists and (3)

holds.

Lemma 2. Let E be a Riesz space and e, g ∈ E. If w := e∩∩∩∩∩∩∩∩∩ g exists, then e∩∩∩∩∩∩∩∩∩ g′ and w∩∩∩∩∩∩∩∩∩ g′ exist

for every g′ ⊑ g and, moreover, e∩∩∩∩∩∩∩∩∩ g′ = w∩∩∩∩∩∩∩∩∩ g′.

Proof. Since w, g′ ∈ Fg, by Proposition 2, w∩∩∩∩∩∩∩∩∩ g′ exists. Then the conditions w∩∩∩∩∩∩∩∩∩ g′ ⊑ w ⊑ e

imply w∩∩∩∩∩∩∩∩∩ g′ ∈ Fe ∩∩∩ Fg′ , that is, w∩∩∩∩∩∩∩∩∩ g′ is a ⊑-lower bound of {e, g′}. Let z be any ⊑-lower

bound of {e, g′}, that is, z ∈ Fe ∩∩∩ Fg′ . Then z ∈ Fe ∩ Fg and hence z ⊑ e∩∩∩∩∩∩∩∩∩ g = w. Now since

z ∈ Fw ∩ Fg′ , we obtain that z ⊑ w∩∩∩∩∩∩∩∩∩ g′ and therefore w∩∩∩∩∩∩∩∩∩ g′ is the maximal ⊑-lower bound

of {e, g′}.

By Lemma 2 and [9, Lemma 1.10], we obtain the following assertion, which strengthens

item (v) of [5, Proposition 3.21].

Corollary 3. Let E be a Riesz space, x, y, e ∈ E and x ⊥ y. Then the following conditions are

equivalent:

1) (x ⊔ y)∩∩∩ e exists;

2) x∩∩∩ e and y∩∩∩ e exist.

Moreover, (x ⊔ y)∩∩∩ e = (x∩∩∩ e) ⊔ (y∩∩∩ e) whenever the conditions hold.

Proof of Theorem 1. Set g =
⋃⋃⋃⋃
⋃⋃⋃⋃⋃

G and w := e∩∩∩∩∩∩∩∩∩ g, and prove that w =
⋃⋃⋃⋃
⋃⋃⋃⋃⋃

(e∩∩∩∩∩∩∩∩∩ G). Obviously, w

is an upper lateral bound of e ∩∩∩∩∩∩∩∩∩ G. Now let z be any upper lateral bound of e ∩∩∩∩∩∩∩∩∩ G and show

that w ⊑ z. Since G is laterally bounded, every finite subset of G has a lateral supremum

by [5, Corollary 3.7]. So, let G<ω be the set of all finite subsets of G, which is directed by

inclusion: α ≤ β if and only if α ⊆ β, α, β ∈ G<ω. For every α ∈ G<ω we set gα :=
⋃⋃⋃⋃
⋃⋃⋃⋃⋃

α.

Then (gα)α∈G<ω is a laterally increasing net in E with
⋃⋃⋃⋃
⋃⋃⋃⋃⋃

αgα = g. By Corollary 1, gα
o

−→ g.

Since gα ⊑ g, by Lemma 2, e∩∩∩∩∩∩∩∩∩ gα is well defined for all α. Then for every α ∈ G<ω one has

g = gα ⊔ (g − gα) and hence, by Corollary 3,

e∩∩∩∩∩∩∩∩∩ g = (e∩∩∩∩∩∩∩∩∩ gα) ⊔ (e∩∩∩∩∩∩∩∩∩ (g − gα)).

Therefore,

(e∩∩∩∩∩∩∩∩∩ g)− (e∩∩∩∩∩∩∩∩∩ gα) = e∩∩∩∩∩∩∩∩∩ (g − gα) ⊑ g − gα.

By Proposition 1,

|(e∩∩∩∩∩∩∩∩∩ g)− (e∩∩∩∩∩∩∩∩∩ gα)| ≤ |g − gα|,

which yields e∩∩∩∩∩∩∩∩∩ gα
o

−→ e∩∩∩∩∩∩∩∩∩ g = w. By Corollary 2,

e∩∩∩∩∩∩∩∩∩ gα =
⋃⋃⋃⋃
⋃⋃⋃⋃⋃

f∈α

(e∩∩∩∩∩∩∩∩∩ f ) ⊑ z.

By the order closedness of Fz [6, Proposition 2.2], w ⊑ z and so (3) is proved.

Remark 1. The existence of the left-hand side of (3) does not guarantee the existence of the

right-hand side. For instance, if e is any nonzero element of a Riesz space E and G = {2e, 3e}

then e∩∩∩∩∩∩∩∩∩ G = {0} and
⋃⋃⋃⋃
⋃⋃⋃⋃⋃

(e∩∩∩∩∩∩∩∩∩ G) = 0, however,
⋃⋃⋃⋃
⋃⋃⋃⋃⋃

G does not exist.
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2.2 The second infinite distributive law for lateral operations

Now we consider the second distributive law for the lateral order, namely

⋂⋂⋂⋂
⋂⋂⋂⋂⋂

(e∪∪∪∪∪∪∪∪∪ G) = e∪∪∪∪∪∪∪∪∪
(

⋂⋂⋂⋂
⋂⋂⋂⋂⋂

G
)

. (4)

Below we show that (4) does not hold in general.

Proposition 8.

(i) For every nontrivial Riesz space E, there are e ∈ E and a two-point subset G of E such

that the right-hand side of (4) exists, and the left-hand side does not.

(ii) There are a Riesz space E, e ∈ E and G ⊆ E such that the left-hand side of (4) exists, and
⋂⋂⋂⋂
⋂⋂⋂⋂⋂

G does not exist.

(iii) There are a Riesz space E, e ∈ E and G ⊆ E such that both sides of (4) are well defined,

however (4) is false.

Proof. (i) If e is any nonzero element of a Riesz space E and G = {e, 2e}, then
⋂⋂⋂⋂
⋂⋂⋂⋂⋂

G = 0 and

e∪∪∪∪∪∪∪∪∪ (
⋂⋂⋂⋂
⋂⋂⋂⋂⋂

G) = e, however, e∪∪∪∪∪∪∪∪∪ G does not exist.

(ii) Consider the Riesz space C1
0 [1/2, 1] of all functions x : [0, 1] → R, that are continuous

on [1/2, 1], with the pointwise order. We set e := 1[0,1] and G := {1[t,1] : 0 ≤ t < 1/2},

where 1A denotes the characteristic function of a subset A ⊆ [0, 1]. Then e∪∪∪∪∪∪∪∪∪ G = {e} and
⋂⋂⋂⋂
⋂⋂⋂⋂⋂

(e∪∪∪∪∪∪∪∪∪ G) = e, however
⋂⋂⋂⋂
⋂⋂⋂⋂⋂

G does not exist.

(iii) Let E be the Riesz space of all functions x : [0, 1] → R, that are continuous

on (1/2, 1] and left-continuous at 1/2, with the pointwise order. Set e := 1[0,1/2] and

G := {1[t,1] : 0 ≤ t < 1/2}. Then
⋂⋂⋂⋂
⋂⋂⋂⋂⋂

G = 0 and hence the right-hand side of (4) equals e.

On the other hand, e∪∪∪∪∪∪∪∪∪ G = {1[0,1]} and hence,
⋂⋂⋂⋂
⋂⋂⋂⋂⋂

(e∪∪∪∪∪∪∪∪∪ G) = 1[0,1].

However, (4) holds true for a finite G under some existence assumptions. First we prove (2)

under a weaker assumption than the lateral boundedness of all its terms.

Theorem 2. Let e be an element of a Riesz space E and G a finite subset of E such that
⋂⋂⋂⋂
⋂⋂⋂⋂⋂

(e∪∪∪∪∪∪∪∪∪ G) and
⋂⋂⋂⋂
⋂⋂⋂⋂⋂

G exist. Then e∪∪∪∪∪∪∪∪∪ (
⋂⋂⋂⋂
⋂⋂⋂⋂⋂

G) exists and (4) holds.

To prove Theorem 2, we need auxiliary lemmas. Following [5], if u∩∩∩∩∩∩∩∩∩ v exists for elements

u, v of a Riesz space E, then we denote u\\\\\\\\\ v := u − u∩∩∩∩∩∩∩∩∩ v.

Lemma 3 ([5, Proposition 3.21 (iii)]). Let u, v be elements of a Riesz space E such that u∩∩∩∩∩∩∩∩∩ v

exists. Then

(u\\\\\\\\\ v)∩∩∩∩∩∩∩∩∩ v = 0.

Next lemma is a consequence of Corollary 3.
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Lemma 4. Let e, e1, . . . , en, f , f1, . . . , em be elements of a Riesz space E with e = e1 ⊔ . . . ⊔ en and

f = f1 ⊔ . . . ⊔ fm, n, m ∈ N. Then the following assertions are equivalent:

1) e∩∩∩∩∩∩∩∩∩ f exists;

2) ei∩∩∩∩∩∩∩∩∩ fj exists for all i ∈ {1, . . . , n} and j ∈ {1, . . . , m}.

Moreover,

e∩∩∩∩∩∩∩∩∩ f =
n
⊔

i=1

m
⊔

j=1

(ei∩∩∩∩∩∩∩∩∩ fj)

in case of existence.

Proof. First we generalize Corollary 3 from two to an arbitrary finite number of summands.

Then we obtain that for every j ∈ {1, . . . , m}, the following assertions are equivalent:

1j) e∩∩∩∩∩∩∩∩∩ fj exists,

2j) ei∩∩∩∩∩∩∩∩∩ fj exists for all i ∈ {1, . . . , n},

and e∩∩∩∩∩∩∩∩∩ f =
⊔n

i=1(ei ∩∩∩∩∩∩∩∩∩ fj) in case of existence. Finally we use the same argument to get the

lemma.

The following lemma is a consequence of [5, Proposition 3.18].

Lemma 5. Let {x, y} be a laterally bounded subset of a Riesz space E. Then

x∪∪∪∪∪∪∪∪∪ y = (x\\\\\\\\\ y) ⊔ (x∩∩∩∩∩∩∩∩∩ y) ⊔ (y\\\\\\\\\ x).

Proof of Theorem 2. Observe that it is enough to prove the theorem for any two-point subset G of

E and then use the induction. So let e, x, y be elements of E such that e∪∪∪∪∪∪∪∪∪ x, e∪∪∪∪∪∪∪∪∪ y, (e∪∪∪∪∪∪∪∪∪ x)∩∩∩∩∩∩∩∩∩ (e∪∪∪∪∪∪∪∪∪ y)

and x∩∩∩∩∩∩∩∩∩ y exist. We prove that e∪∪∪∪∪∪∪∪∪ (x∩∩∩∩∩∩∩∩∩ y) exists and (2) holds, which is exactly (4) for G = {x, y}.

Since e and x∩∩∩∩∩∩∩∩∩ y are laterally bounded by e∪∪∪∪∪∪∪∪∪ x, the element e∪∪∪∪∪∪∪∪∪ (x∩∩∩∩∩∩∩∩∩ y) is well defined by

Proposition 2. The relation

e∪∪∪∪∪∪∪∪∪ (x∩∩∩∩∩∩∩∩∩ y) ⊑ (e∪∪∪∪∪∪∪∪∪ x)∩∩∩∩∩∩∩∩∩ (e∪∪∪∪∪∪∪∪∪ y)

is obvious. Our goal is to show that

(e∪∪∪∪∪∪∪∪∪ x)∩∩∩∩∩∩∩∩∩ (e∪∪∪∪∪∪∪∪∪ y) ⊑ e∪∪∪∪∪∪∪∪∪ (x∩∩∩∩∩∩∩∩∩ y). (5)

By Lemma 5,

e∪∪∪∪∪∪∪∪∪ x = (e\\\\\\\\\ x) ⊔ (e∩∩∩∩∩∩∩∩∩ x) ⊔ (x\\\\\\\\\ e), e∪∪∪∪∪∪∪∪∪ y = (e\\\\\\\\\ y) ⊔ (e∩∩∩∩∩∩∩∩∩ y) ⊔ (y\\\\\\\\\ e).

Hence, by Lemma 4,

(e∪∪∪∪∪∪∪∪∪ x)∩∩∩∩∩∩∩∩∩ (e∪∪∪∪∪∪∪∪∪ y) = u1 ⊔ . . . ⊔ u9,

where

u1 = ((e\\\\\\\\\ x)∩∩∩∩∩∩∩∩∩ (e\\\\\\\\\ y)), u2 = ((e\\\\\\\\\ x)∩∩∩∩∩∩∩∩∩ (e∩∩∩∩∩∩∩∩∩ y)), u3 = ((e\\\\\\\\\ x)∩∩∩∩∩∩∩∩∩ (y\\\\\\\\\ e)),

u4 = ((e∩∩∩∩∩∩∩∩∩ x)∩∩∩∩∩∩∩∩∩ (e\\\\\\\\\ y)), u5 = ((e∩∩∩∩∩∩∩∩∩ x)∩∩∩∩∩∩∩∩∩ (e∩∩∩∩∩∩∩∩∩ y)), u6 = ((e∩∩∩∩∩∩∩∩∩ x)∩∩∩∩∩∩∩∩∩ (y\\\\\\\\\ e)),

u7 = ((x\\\\\\\\\ e)∩∩∩∩∩∩∩∩∩ (e\\\\\\\\\ y)), u8 = ((x\\\\\\\\\ e)∩∩∩∩∩∩∩∩∩ (e∩∩∩∩∩∩∩∩∩ y)), u9 = ((x\\\\\\\\\ e)∩∩∩∩∩∩∩∩∩ (y\\\\\\\\\ e)).

Now to prove (5), it is enough to show that ∀i ∈ {1, . . . , 9}, ui ⊑ e∪∪∪∪∪∪∪∪∪ (x∩∩∩∩∩∩∩∩∩ y).

The relation is clear for i ∈ {1, 2, 4, 5}, because ui ⊑ e for that indices. For i ∈ {3, 6} one

has ui ⊑ e∩∩∩∩∩∩∩∩∩ (y\\\\\\\\\ e) = 0 by Lemma 3. Analogously, for i ∈ {7, 8} one has ui ⊑ (x\\\\\\\\\ e)∩∩∩∩∩∩∩∩∩ e = 0.

Hence, ui = 0 for i ∈ {3, 6, 7, 8}. Finally, u9 ⊑ x∩∩∩∩∩∩∩∩∩ y ⊑ e∪∪∪∪∪∪∪∪∪ (x∩∩∩∩∩∩∩∩∩ y). So (5) is proved.
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By Proposition 8 (iii), the finiteness assumption on G is essential in Theorem 2. However,

we do not know any partial positive result in this direction.

Problem. Under what assumptions on a Riesz space E, element e of E and an infinite subset G

of E, the second distributive law (4) holds?
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Камiньська А., Красiкова I., Попов М. Нескiнченнi розподiльнi закони для латеральних операцiй у

векторнiй ґратцi // Карпатськi матем. публ. — 2024. — Т.16, №2. — C. 461–468.

Ми доводимо аналоги вiдомих нескiнченних розподiльних законiв для латеральних iнфi-

мумiв та супремумiв замiсть порядкових. Доведення є бiльш складними, нiж для оригiналь-

них законiв. Ми показуємо, що один iз законiв справедливий, коли обидвi сторони рiвностi

коректно визначенi. Iнший закон загалом невiрний, навiть якщо обидвi сторони є коректно

визначеними, але завжди вiрний для скiнченних множин. Доведення двох законiв абсолютно

рiзнi. Залишається невирiшеним питання про те, за яких припущень щодо векторної ґратки

та об’єктiв, що беруть участь у ньому, другий розподiльний закон має мiсце для нескiнченних

множин.

Ключовi слова i фрази: векторна ґратка, латеральний порядок, латеральна смуга.


