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In this paper, we evaluate several families of Toeplitz–Hessenberg determinants whose entries are the Boubaker polynomials.
Equivalently, these determinant formulas may be also rewritten as combinatorial identities involving sum of products of Boubaker
polynomials and multinomial coefficients. We also present new formulas for Boubaker polynomials via recurrent three-
diagonal determinants.

1. Introduction

*e Boubaker polynomials of order n, denoted by Bn(x),
constitute a nonorthogonal polynomial sequence defined
by

B0(x) � 1,

Bn(x) � 􏽘

⌊n/2⌋

k�0
(− 1)

k n − 4k

n − k

n − k

k

⎛⎝ ⎞⎠x
n− 2k

,

(1)

where n≥ 1, ⌊s⌋ is the floor of s, and n − k

k
􏼠 􏼡 the binomial

coefficient.
*e Boubaker polynomials can be expressed also by the

recurrence:

Bn(x) � xBn− 1(x) − Bn− 2(x), n≥ 3, (2)

with B0(x) � 1, B1(x) � x, and B2(x) � x2 + 2.
*e first few terms of this polynomial sequence starting

from B3(x) are

B3(x) � x
3

+ x,

B4(x) � x
4

− 2,

B5(x) � x
5

− x
3

− 3x,

B6(x) � x
6

− 2x
4

− 3x
2

+ 2,

B7(x) � x
7

− 3x
5

− 2x
3

+ 5x,

B8(x) � x
8

− 4x
6

+ 8x
2

− 2,

B9(x) � x
9

− 5x
7

+ 3x
5

+ 10x
3

− 7x,

B10(x) � x
10

− 6x
8

+ 7x
6

+ 10x
4

− 15x
2

+ 2.

(3)

*e ordinary generating function of the Boubaker
polynomials is

􏽘

∞

n�0
Bn(x)t

n
�

1 + 3t2

1 − tx + t2
. (4)

Polynomials (2) can be expressed in terms of Chebyshev
polynomials of the first and second kind, Tn(x) and Un(x),
respectively, as follows:
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Bn(x) � 2Tn

x

2
􏼒 􏼓 + 4Un− 2

x

2
􏼒 􏼓,

Bn(x) � Un

x

2
􏼒 􏼓 + 3Un− 2

x

2
􏼒 􏼓,

(5)

where U− 1(x) ≔ 0; see [1].
*e Boubaker polynomials play an important role in

different scientific and engineering fields, such as thermo-
dynamics, mechanics, cryptography, biology and biophysics,
heat transfer, nonlinear dynamics, approximation theory,
hydrology, electrical engineering, and nuclear engineering
physics (see, among others, [2–11] and related references
therein).

Solutions of many applied problems are based on the
Boubaker Polynomials Expansion Scheme (BPES), using the
subsequence B4k(x)􏼈 􏼉k≥0. Such polynomials satisfy the
recurrence

B4k(x) � x
2

− 4x
2

+ 2􏼐 􏼑B4(k− 1)(x) − βkB4(k− 2)(x), k≥ 0,

(6)

with B0(x) � 1 and B4(x) � x4 − 2, where β0 � 0, β1 � − 2,
and β2 � β3 � · · · � 1.

For example, few boundary value problems of ordinary
differential equations and many physical models involving
ordinary differential equations systems were solved more
efficiently by the BPES compared to other methods [3].
Physical models in terms of partial differential equations
were reliably addressed through the BPES [6]. Davaeifar
and Rashidinia [4] and Milovanović and Joksimović [1]
used the BPES to solve certain integral equations. In [12],
Barry and Hennesy outlined the role of the Boubaker
polynomials and their associated integer sequences in
array analysis and approximation theory (see also related
work [13]). Dubey et al. [5] provided analytical solution to
the Lotka–Volterra Predator-Prey equations in the case of
quickly satiable predators. In [9], Vazquez-Leal et al.
presented the BPES to construct semianalytical solutions
for the transient of a nonlinear circuit. In [14, 15], Rabiei
et al. focused on Boubaker polynomials in fractional
calculus.

*e purpose of the present paper is to investigate some
families of Toeplitz–Hessenberg determinants whose entries
are Boubaker polynomials with successive, odd, or even
subscripts. As a consequence, we obtain for these polyno-
mials new identities involving multinomial coefficients.

Some of the results of this paper were announced
without proof in [16].

2. Toeplitz–Hessenberg Determinants and
Related Formulas

A Toeplitz–Hessenberg determinant takes the form

Tn a0; a1, . . . , an( 􏼁 �

a1 a0 0 · · · 0 0

a2 a1 a0 · · · 0 0

a3 a2 a1 · · · 0 0

· · · · · · · · · ⋱ · · · · · ·

an− 1 an− 2 an− 3 · · · a1 a0

an an− 1 an− 2 · · · a2 a1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

, (7)

where a0 ≠ 0 and ak ≠ 0 for at least one k> 0.
*is class of determinants has been encountered in

various scientific and engineering applications (see, e.g.,
[17, 18] and related references contained therein).

Expanding the determinant Tn along the last row re-
peatedly, we obtain the recurrence:

Tn � 􏽘

n

k�1
− a0( 􏼁

k− 1
akTn− k, n≥ 1, (8)

where, by definition, T0 � 1.
*e following result, which provides a multinomial

expansion of Tn, is known as Trudi’s formula, the a0 � 1 case
of which is called Brioschi’s formula [19]:

Tn � − a0( 􏼁
n

· 􏽘
s1+2s2+···+nsn�n

(− 1)
|s|

mn(s)
a1

a0
􏼠 􏼡

s1 a2

a0
􏼠 􏼡

s2

. . .
an

a0
􏼠 􏼡

sn

,

(9)

where the summation is over all n-tuples s � (s1, . . . , sn) of
integers si ≥ 0 satisfying Diophantine equation s1 + 2s2 +

· · · + nsn � n, |s| � s1 + · · · + sn, and mn(s) � |s|!/s1! · · · sn!

denotes the multinomial coefficient.
Note that n � s1 + 2s2 + · · · + nsn is partition of the

positive integer n, where each positive integer i appears si

times. Many combinatorial identities for different polyno-
mials involving sums over integer partitions can be gener-
ated in this way. Some of these identities are presented in
[20, 21] and in Section 3 of this paper.

3. Determinant Formulas with Boubaker
Polynomials Entries

In this section, we find relations involving the Boubaker
polynomial, which arise as certain families of Toeplitz–
Hessenberg determinants.

In the interest of brevity and convenience, we omit the
argument in the functional notation, when there is no
ambiguity; so Bk will mean Bk(x).

Theorem 1. Let n≥ 2, except when noted otherwise. 2e
following formulas hold:
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Tn 1; B1, B2, . . . , Bn( 􏼁 � (− 1)
⌊n/2⌋2 (− 1)n− 1( )/23⌊(n− 1)/2⌋

x + 1 +(− 1)
n
(1 − x)( 􏼁, n≥ 1,

Tn 1; B2, B4, . . . , B2n( 􏼁 �
3n− 1 3x2 + 4( 􏼁 − x2

2
, n≥ 1,

(10)

Tn B1; B2, B3, . . . , Bn+1( 􏼁 � 2n− 2 3x
2

+ 4􏼐 􏼑, (11)

Tn B1; B3, B5, . . . , B2n+1( 􏼁 � 3n− 2 3x
2

+ 4􏼐 􏼑x
n
,

Tn B2; B3, B4, . . . , Bn+2( 􏼁 � (− x)
n− 2 3x

2
+ 4􏼐 􏼑,

Tn B2; B4, B6, . . . , B2n+2( 􏼁 � 2n− 2
x
2 3x

2
+ 4􏼐 􏼑,

Tn B3; B4, B5, . . . , Bn+3( 􏼁 � (− 1)
n 3x

2
+ 4􏼐 􏼑 x

2
+ 2􏼐 􏼑

n− 2
,

Tn B3; B5, B7, . . . , B2n+3( 􏼁 � (− x)
n 3x

2
+ 4􏼐 􏼑,

Tn − 2; B1, B2, . . . , Bn( 􏼁 � 3n− 2 3x
2

+ 4􏼐 􏼑x
n− 2

,

(12)

Tn − 2; B2, B4, . . . , B2n( 􏼁 � x
2 3x

2
+ 4􏼐 􏼑 3x

2
− 2􏼐 􏼑

n− 2
. (13)

Proof. Wewill prove formulas (11) and (13) by induction on
n; the other proofs, which we omit, are similar.

Proof of Identity (11). To make the notation simpler, we will
write Dn instead of Tn(B1; B2, B3, . . . , Bn+1). When n � 2

and n � 3 the formula is seen to hold. Suppose it is true for all
k≤ n − 1, where n≥ 4. Using recurrences (8) and (2), we then
have

Dn � 􏽘
n

i�1
(− x)

i− 1
Bi+1Dn− i

� B2Dn− 1 − xB3Dn− 2 + 􏽘
n

i�3
(− x)

i− 1
xBi − Bi− 1( 􏼁Dn− i

� x
2

+ 2􏼐 􏼑Dn− 1 − x x
3

+ x􏼐 􏼑Dn− 2 + x 􏽘
n

i�3
(− x)

i− 1
BiDn− i − 􏽘

n

i�3
(− x)

i− 1
Bi− 1Dn− i

� x
2

+ 2􏼐 􏼑Dn− 1 − x
2

x
2

+ 1􏼐 􏼑Dn− 2 + x 􏽘
n− 1

i�2
(− x)

i
Bi+1Dn− i− 1 − 􏽘

n− 2

i�1
(− x)

i+1
Bi+1Dn− i− 2

� x
2

+ 2􏼐 􏼑Dn− 1 − x
2

x
2

+ 1􏼐 􏼑Dn− 2 + x − x 􏽘
n− 1

i�1
(− x)

i− 1
Bi+1Dn− i− 1 + xB2Dn− 2

⎛⎝ ⎞⎠ − x
2

􏽘

n− 2

i�1
(− x)

i− 1
Bi+1Dn− i− 2

� x
2

+ 2􏼐 􏼑Dn− 1 − x
2

x
2

+ 1􏼐 􏼑Dn− 2 + x − xDn− 1 + x x
2

+ 2􏼐 􏼑Dn− 2􏼐 􏼑 − x
2
Dn− 2 � 2Dn− 1.

(14)

Now, using the induction hypothesis, we obtain

Dn � 2 · 2n− 3 3x
2

+ 4􏼐 􏼑 � 2n− 2 3x
2

+ 4􏼐 􏼑. (15)

Consequently, formula (11) is true in the case n and thus,
by induction, it holds for all positive integers.

Proof of Identity (13). Let Dn � Tn(− 2; B2, B4, . . . , B2n). One
may verify that formula (13) holds when n � 2 and n � 3.
Suppose it is true for all k≤ n − 1, where n≥ 4. Using (8), (2),
and formula

B2i− 1 � x 􏽘
i− 1

s�1
(− 1)

s
B2s − (− 1)

i
x, i≥ 2, (16)
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we then have

Dn � 􏽘
n

i�1
2i− 1

B2iDn− i

� B2Dn− 1 + 􏽘
n

i�2
2i− 1

xB2i− 1 − B2i− 2( 􏼁Dn− i

� x
2

+ 2􏼐 􏼑Dn− 1 + x 􏽘
n

i�2
2i− 1

B2i− 1Dn− i − 􏽘
n

i�2
2i− 1

B2i− 2Dn− i

� x
2

+ 2􏼐 􏼑Dn− 1 + x 􏽘
n

i�2
2i− 1

x 􏽘
i− 1

s�1
(− 1)

s
B2s − (− 1)

i
x⎛⎝ ⎞⎠Dn− i − 2 􏽘

n− 1

i�1
2i− 1

B2iDn− i− 1

� x
2

+ 2􏼐 􏼑Dn− 1 + x
2

􏽘

n

i�2
􏽘

i− 1

s�1
(− 1)

s2i− 1
B2sDn− i + x

2
􏽘

n

i�2
(− 2)

i− 1
Dn− i − 2Dn− 1

� x
2
Dn− 1 − x

2
􏽘

n− 1

s�1
(− 2)

s
􏽘

n− s

i�1
2i− 1

B2iDn− s− i + x
2

􏽘

n− 2

i�2
(− 2)

i− 1
Dn− i +(− 2)

n− 2
D1 +(− 2)

n− 1
D0

� x
2
Dn− 1 − x

2
􏽘

n− 1

s�1
(− 2)

s
Dn− s + x

2
􏽘

n− 2

i�2
(− 2)

i− 1
Dn− i +(− 2)

n− 2
x
2

+ 1􏼐 􏼑 +(− 2)
n− 1

� 3x
2
Dn− 1 + x

2
(− 2)

n− 2 3x
2

+ 4􏼐 􏼑 −
3x2

2
􏽘

n− 2

i�2
(− 2)

i
Dn− i

� x
2
(− 2)

n− 2 3x
2

+ 4􏼐 􏼑 −
3x2

2
􏽘

n− 2

i�1
(− 2)

i
Dn− i.

(17)

By the induction hypothesis, we obtain

Dn � x
2
(− 2)

n− 2 3x
2

+ 4􏼐 􏼑 −
3x2

2
􏽘

n− 2

i�1
(− 2)

i
x
2

3x
2

+ 4􏼐 􏼑 3x
2

− 2􏼐 􏼑
n− i− 2

� x
2
(− 2)

n− 2 3x
2

+ 4􏼐 􏼑 −
3x4 3x2 + 4( 􏼁 3x2 − 2( 􏼁

n− 2

2

􏽘

n− 2

i�1

2
2 − 3x2􏼒 􏼓

i

.

(18)

Using the geometric series, it can be seen that the fol-
lowing sums hold:

􏽘

n− 2

i�1

2
2 − 3x2􏼒 􏼓

i

�
2
3x2

2
2 − 3x2􏼒 􏼓

n− 2
− 1􏼠 􏼡. (19)

In view of the formula above, from (18) we find

Dn � x
2
(− 2)

n− 2 3x
2

+ 4􏼐 􏼑 − x
2 3x

2
+ 4􏼐 􏼑 3x

2
− 2􏼐 􏼑

n− 2

2
2 − 3x2􏼒 􏼓

n− 2
− 1􏼠 􏼡

� x
2 3x

2
+ 4􏼐 􏼑 3x

2
− 2􏼐 􏼑

n− 2
,

(20)

as desired. Since formula (13) holds for n, it follows by
induction that it is true for all positive integers. *e proof is
complete.

4. Multinomial Extension of
Toeplitz–Hessenberg Determinants

In this section, we focus on multinomial extensions of
*eorem 1. *e determinant formulas above may be re-
written in terms of Trudi’s formula (9).

Theorem 2. Let n≥ 2, except when noted otherwise. 2en,
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􏽘
σn�n

(− 1)
|s|

mn(s)B
s1
1 B

s2
2 . . . B

sn

n � (− 1)
⌊3n/2⌋2 (− 1)n− 1( )/23⌊(n− 1)/2⌋

x + 1 +(− 1)
n
(1 − x)( 􏼁, n≥ 1,

􏽘
σn�n

(− 1)
|s|

mn(s)B
s1
2 B

s2
4 . . . B

sn

2n � −
(− 3)n− 1 3x2 + 4( 􏼁 +(− 1)nx2

2
, n≥ 1,

􏽘
σn�n

(− 1)
|s|

mn(s)
B2

B1
􏼠 􏼡

s1 B3

B1
􏼠 􏼡

s2

. . .
Bn+1

B1
􏼠 􏼡

sn

�
(− 2)n− 2 3x2 + 4( 􏼁

xn
,

􏽘
σn�n

(− 1)
|s|

mn(s)
B3

B1
􏼠 􏼡

s1 B5

B1
􏼠 􏼡

s2

. . .
B2n+1

B1
􏼠 􏼡

sn

� 3n− 2 3x
2

+ 4􏼐 􏼑x
n
,

􏽘
σn�n

(− 1)
|s|

mn(s)
B3

B2
􏼠 􏼡

s1 B4

B2
􏼠 􏼡

s2

. . .
Bn+2

B2
􏼠 􏼡

sn

�
3x2 + 4( 􏼁xn− 2

x2 + 2( )
n ,

􏽘
σn�n

(− 1)
|s|

mn(s)
B4

B2
􏼠 􏼡

s1 B6

B2
􏼠 􏼡

s2

. . .
B2n+2

B2
􏼠 􏼡

sn

�
(− 2)n− 2x2 3x2 + 4( 􏼁

x2 + 2( )
n ,

􏽘
σn�n

(− 1)
|s|

mn(s)
B4

B3
􏼠 􏼡

s1 B5

B3
􏼠 􏼡

s2

· · ·
Bn+3

B3
􏼠 􏼡

sn

�
x2 + 2( 􏼁

n− 2 3x2 + 4( 􏼁

x3 + x( )
n ,

􏽘
σn�n

(− 1)
|s|

mn(s)
B5

B3
􏼠 􏼡

s1 B7

B3
􏼠 􏼡

s2

. . .
B2n+3

B3
􏼠 􏼡

sn

�
3x2 + 4
x2 + 1( )

n,

􏽘
σn�n

mn(s)
B1

2
􏼒 􏼓

s1 B2

2
􏼒 􏼓

s2

. . .
Bn

2
􏼒 􏼓

sn

�
(3x)n− 2 3x2 + 4( 􏼁

2n
,

􏽘
σn�n

mn(s)
B2

2
􏼒 􏼓

s1 B4

2
􏼒 􏼓

s2

. . .
B2n

2
􏼒 􏼓

sn

�
x2 3x2 + 4( 􏼁 3x2 − 2( 􏼁

n− 2

2n
,

(21)

where |s| � s1 + · · · + sn, σn � s1 + 2s2 + · · · + nsn, mn(s) �

|s|!/s1! · · · sn!, and the summations are over all n-tuples s �

(s1, . . . , sn) of integers si ≥ 0, satisfying σn � n.

Example 1. From (21), we have

􏽘
s1+2s2+3s3+4s4�4

(− 1)
s1+s2+s3+s4

s1 + s2 + s3 + s4( 􏼁!

s1!s2!s3!s4!
B

s1
1 B

s2
2 B

s3
3 B

s4
4

� B
4
1 − 3B

2
1B2 + 2B1B3 + B

2
2 − B4 � 6.

(22)

5. Recurrent Three-Diagonal
Determinants with Boubaker Polynomials

In this section, we prove two formulas expressing the
Boubaker polynomials Bn(x) with even (odd) subscripts
via recurrent determinants of the three-diagonal matrix of
order n.

Let Pn(x) and Qn(x) denote the n × n three-diagonal
determinants having the form

Mathematical Problems in Engineering 5



Pn(x) �

x 1 0 0 · · · 0 0 0
xB2 1 − 1 0 · · · 0 0 0
0 xB4 B1 − B1 · · · 0 0 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱
0 0 0 0 · · · xB2n− 4 B2n− 7 − B2n− 7

0 0 0 0 · · · 0 xB2n− 2 B2n− 5

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

,

Qn(x) �

x2 + 2 1 0 0 · · · 0 0 0
xB3 B0 − B0 0 · · · 0 0 0
0 xB5 B2 − B2 · · · 0 0 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 0 0 0 · · · xB2n− 3 B2n− 6 − B2n− 6

0 0 0 0 · · · 0 xB2n− 1 B2n− 4

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

.

(23)

Theorem 3. For n≥ 1, the following formulas hold:

B2n− 1(x) �
(− 1)n− 1

􏽑
n− 2
i�1 B2i− 1(x)

Pn(x), (24)

B2n(x) �
(− 1)n− 1

􏽑
n− 2
i�1 B2i(x)

Qn(x). (25)

Proof. We only prove formula (24), and formula (25) can be
proved similarly. We use induction on n. Since P1(x) � x �

B1(x) and P2(x) � − (x3 + x) � − B3(x), the result is true
when n � 1 and n � 2. Assume it true for every positive
integer k< n. Expanding determinant Pn(x) by the last row,
from (24), we find

B2n− 1 �
(− 1)n− 1

􏽑
n− 2
i�1 B2i− 1

B2n− 5Pn− 1(x) + B2n− 7xB2n− 2Pn− 2(x)( 􏼁

�
(− 1)n− 1

􏽑
n− 2
i�1 B2i− 1

B2n− 5(− 1)
n− 2

B2n− 3 􏽙

n− 3

i�1
B2i− 1 + xB2n− 7B2n− 2(− 1)

n− 3
B2n− 5 􏽙

n− 4

i�1
B2i− 1

⎛⎝ ⎞⎠

�
− 1

􏽑
n− 2
i�1 B2i− 1

B2n− 5B2n− 3 􏽙

n− 3

i�1
B2i− 1 − xB2n− 7B2n− 2B2n− 5 􏽙

n− 4

i�1
B2i− 1

⎛⎝ ⎞⎠

� xB2n− 2 − B2n− 3,

(26)

i.e., we have the recurrent relation (2).*erefore, the result is
true for every n≥ 1. *e proof is complete.

Example 2. Formulas (24) and (25), respectively, yield

B7 �
− 1

B1B3

x 1 0 0

xB2 1 − 1 0

0 xB4 B1 − B1

0 0 xB6 B3

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

,

B10 �
1

B2B4B6

x2 + 2 1 0 0 0

xB3 B0 − B0 0 0

0 xB5 B2 − B2 0

0 0 xB7 B4 − B4

0 0 0 xB9 B6

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

.

(27)
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6. Conclusions

In this paper, we have found determinant formulas for
several families of Toeplitz–Hessenberg determinants having
various translates of the Boubaker polynomials for the
nonzero entries. In *eorem 1, we found determinant
formulas, where the entries were translates of the Boubaker
polynomial sequence or of just the even or odd subsequence.
*e determinant formulas in all of these results may also be
expressed (see *eorem 2) equivalently as multisum iden-
tities involving multinomial coefficients and a product of the
terms of the Boubaker polynomial sequence. In *eorem 3,
we present recurrent formulas for Boubaker polynomials
with even or odd subscripts via three-diagonal determinants.
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