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1. Introduction

The Catalan numbers Cn can be expressed directly in terms of the central binomial coef-
ficients as

Cn = 1

n + 1

(
2n

n

)
= (2n)!

(n + 1)!n! , n ≥ 0,

or recursively as follows:

C0 = 1, Cn = 4n − 2

n + 1
Cn−1, n ≥ 1.

They may also be computed using the recurrence

C0 = 1, Cn+1 =
n∑

i=0

Ci Cn−i , n ≥ 0.

The first several terms of the Catalan sequence (see entry A000108 in [11]) are

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4869, 16796, 58786, . . . .

The generating function (g.f.) C(x) for the sequence {Cn}n≥0 is given by

C(x) =
∑
n≥0

Cn xn = 1 − √
1 − 4x

2x
= 2

1 + √
1 − 4x

, |x | ≤ 1/4,
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and satisfies the functional equation C(x) = 1 + xC(x)2.
The Catalan numbers have a rich history and many unique properties. They count many

types of combinatorial objects, among them, certain lattice paths, permutations, binary
trees, polygon triangulations and finite set partitions, and occur as entries in a variety
of continued fraction expansions and special matrices (see, among others, [5,10,12] and
related references therein).

The purpose of the present paper is to investigate the determinants of some families of
Toeplitz–Hessenberg matrices whose entries are Catalan numbers with successive, odd or
even subscripts. As a consequence, we obtain for these numbers new identities involving
multinomial coefficients. Some of the results of this paper were announced without proof
in [2]. To establish our main results, we primarily make use of generating functions and
combinatorial proofs are provided for some of the special cases.

Recall that a lower Toeplitz–Hessenberg matrix is an n × n matrix of the form

Mn(a0; a1, . . . , an) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a1 a0 0 · · · 0 0
a2 a1 a0 · · · 0 0
a3 a2 a1 · · · 0 0

· · · · · · · · · . . . · · · · · ·
an−1 an−2 an−3 · · · a1 a0
an an−1 an−2 · · · a2 a1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (1.1)

where a0 �= 0 and ak �= 0 for at least one k > 0.
The Toeplitz–Hessenberg matrices have been encountered in various scientific and engi-

neering applications (see, for example, [7] and the references therein). It is known that the
Toeplitz–Hessenberg matrix determinant det(Mn) can be evaluated using the Trudi formula
[9] as follows:

det(Mn) =
∑

s1+2s2+···+nsn=n

(−a0)
n−(s1+···+sn) pn(s)as1

1 as2
2 · · · asn

n , (1.2)

where the summation is over integers si ≥ 0 satisfying s1 + 2s2 + · · · + nsn = n and
pn(s) = (s1+···+sn)!

s1!···sn ! is the multinomial coefficient.
For the sake of brevity, throughout, we will use the notation

det(a0; a1, . . . , an) = det(Mn(a0; a1, . . . , an)).

2. Catalan determinants

There is the following formula for the g.f. of the translated Catalan number in terms of
C(x).

Lemma 2.1. Let i ≥ 1 be a fixed integer. Then we have

Ci (x) :=
∑
n≥0

Cn+i xn = C(x)i+1

+
i−1∑
r=1

r−1∑
j=0

(r − j)(2i − r − j − 3)!
(i − r − 1)!(i − j − 1)!

(
r

j

)
C(x) j+2. (2.1)
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Proof. Multiplying both sides of the recurrence

Cn+i =
n+i−1∑

j=0

C j Cn+i−1− j , i ≥ 1,

by xn , and summing over n ≥ 0, gives

Ci (x) =
∑
n≥0

xn
n+i−1∑

j=0

C j Cn+i−1− j

=
∑

j≥i−1

C j

∑
n≥ j−i+1

Cn+i−1− j xn +
i−2∑
j=0

C j

∑
n≥0

Cn+i−1− j xn

=
∑

j≥i−1

C j x j−i+1C(x) +
i−2∑
j=0

C j Ci−1− j (x)

= C(x)Ci−1(x) +
i−1∑
j=1

Ci−1− j C j (x), i ≥ 1, (2.2)

with C0(x) = C(x). To determine Ci (x), we introduce a second variable and consider
C(x, y) := ∑

i≥0 Ci (x)yi . Then multiplying both sides of (2.2) by yi , and summing over
i ≥ 1, implies

C(x, y) − C(x) = yC(x)C(x, y) +
∑
j≥1

C j (x)
∑

i≥ j+1

Ci−1− j yi

= yC(x)C(x, y) +
∑
j≥1

C j (x)y j+1C(y)

= yC(x)C(x, y) + yC(y)(C(x, y) − C(x)).

Solving for C(x, y) in the last equation yields

C(x, y) = C(x)(1 − yC(y))

1 − y(C(x)+C(y))
= C(x)+ yC(x)2

1 − y(C(x) + C(y))
.

Extracting the coefficient of y gives C1(x) = [y1]C(x, y) = C(x)2, which is in accordance
with the recurrence for Cn+1. If i ≥ 2, then we have

Ci (x) = [yi ]C(x, y)=C(x)i+1+C(x)2
i−1∑
r=1

r−1∑
j=0

(
r

j

)
C(x) j [yi−r−1](C(y)r− j )

= C(x)i+1 + C(x)2
i−1∑
r=1

r−1∑
j=0

(
r

j

)
C(x) j (r − j)(2i − r − j − 3)!

(i − r − 1)!(i − j − 1)! ,
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which implies (2.1), where we have used in the last equality the formula

C(x)k =
(

1 − √
1 − 4x

2x

)k

=
∑
n≥0

k(2n + k − 1)!
n!(n + k)! xn, k ≥ 1,

from [13, equation (2.5.16)]. �

Let fi (x) = ∑
n≥0 det(a; C1+i , . . . , Cn+i )xn , where i ≥ −1 is fixed and a �= 0 is

arbitrary.

Theorem 2.2. We have

fi (x) = a

a − Ci + Ci (−ax)
, i ≥ 0, (2.3)

where Ci (x) is given by (2.1). In particular,

f0(x) = 2a(a − 1)x − 1 − √
1 + 4ax

2(a − 1)2x − 2
(2.4)

and

f1(x) = 2a2(a − 1)x2 + 2ax + 1 + √
1 + 4ax

2a(a − 1)2x2 + 4(a − 1)x + 2
. (2.5)

Proof. Let Mn denote an n × n Toeplitz–Hessenberg matrix with a0 = a and ak = Ck+i .
Expanding the determinant repeatedly along the first row gives

det(Mn) =
n∑

k=1

(−a)k−1Ck+i det(Mn−k), n ≥ 1,

with det(M0) = 1. Multiplying both sides of this recurrence by xn , and summing over
n ≥ 1, implies

fi (x) − 1 =
∑
n≥1

det(Mn)xn =
∑
n≥1

xn
n∑

k=1

(−a)k−1Ck+i det(Mn−k)

=
∑
k≥1

(−a)k−1Ck+i

∑
n≥k

det(Mn−k)xn =
∑
k≥1

(−a)k−1Ck+i xk fi (x)

= − fi (x)

a

∑
k≥1

Ck+i · (−ax)k = − fi (x)

a
(Ci (−ax) − Ci ).

Solving for fi (x) in the last equation gives (2.3). Taking i = 0 and i = 1 in (2.3), and
noting C0(z) = C(z) and C1(z) = C(z)2, yields the formulas stated for f0(x) and f1(x),
respectively, after simplification. �

We observe the following special cases of the prior result.
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COROLLARY 2.3

We have

det(1; C1, . . . , Cn) = (−1)n−1Cn−1, n ≥ 1, (2.6)

det(−1; C1, . . . , Cn) = (2n − 1)Cn−1, n ≥ 1, (2.7)

det(2; C1, . . . , Cn) = 1 +
n−1∑
i=1

(−1)i 2i+1Ci , n ≥ 1, (2.8)

det(1; C2, . . . , Cn+1) = (−1)n−1Cn−1, n ≥ 2. (2.9)

Proof. Letting a = 1 in (2.4) gives

1 + √
1 + 4x

2
= 1 + x

(
1 − √

1 + 4x

−2x

)

= 1 + x
∑
n≥0

Cn · (−x)n = 1 +
∑
n≥1

(−1)n−1Cn−1xn,

which implies the first formula. Letting a = −1 in (2.4) gives

4x − 1 − √
1 − 4x

8x − 2
=1

2
−

√
1 − 4x

8x − 2
= 1

2
+ 1

2
√

1 − 4x
= 1 +

∑
n≥1

1

2

(
2n

n

)
xn,

from which (2.7) follows from the fact 1
2

(2n
n

) = (2n −1)Cn−1. Letting a = 2 in (2.4) gives

4x − 1 − √
1 + 8x

2x − 2

= 2 − 3

2(1 − x)
+ 1

2(1 − x)

∑
n≥0

(
1/2

n

)
(8x)n

= 2 − 3

2(1 − x)
+ 1

2(1 − x)

⎛
⎝1 + 4x +

∑
n≥2

(−1)n−1(2n − 3)!!(4x)n

n!

⎞
⎠

= 2 + 2x − 1

1 − x
+ 1

1 − x

∑
n≥2

(−1)n−1 1

n

(
2n − 2

n − 1

)
(2x)n

= 1

1 − x
+ 1

1 − x

∑
n≥2

(−1)n−12nCn−1xn .

Extracting the coefficient of xn in the last expression yields (2.8) for n ≥ 2, which is also
seen to hold for n = 1. Finally, letting a = 1 in (2.5) gives

2x + 1 + √
1 + 4x

2
= 1 + x + x

(
1 − √

1 + 4x

−2x

)
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= 1 + x +
∑
n≥1

(−1)n−1Cn−1xn,

which implies (2.9). �

Remark 2.4. Equation (2.6) is previously known (see [8, Corollary 8]), where an algebraic
proof is given. In the last section, we provide combinatorial proofs of this formula and
several others.

Let

e(x) =
∑
n≥0

det(a; C2, . . . , C2n)xn

and

o(x) =
∑
n≥0

det(a; C1, . . . , C2n−1)xn .

A similar argument to the proof of Theorem 2.2 yields the following result.

Theorem 2.5. We have

f−1(x) = 2a + 1 + √
1 + 4ax

2(a + 1 − x)
, (2.10)

e(x) = a(
√

1 + 4y + √
1 − 4y)

(a − 1)(
√

1 + 4y + √
1 − 4y) + 2

, (2.11)

o(x) = 4a

4a + 2 − √
1 + 4y − √

1 − 4y
, (2.12)

where y = √−ax.

We note the following special cases of the prior formulas.

COROLLARY 2.6

If n ≥ 1, then

det(−1; C0, . . . , Cn−1) = Cn, (2.13)

det(2; C0, . . . , Cn−1) = 1

3n

(
1 + 2

n−1∑
i=0

(−6)i Ci

)
, (2.14)

det(1; C2, . . . , C2n) = 2(−1)n−1C2n−1. (2.15)

Proof. Taking a = −1 in (2.10) yields (2.13). A direct calculation shows that the g.f. of

the right side of (2.14) over n ≥ 1 is given by 2x−1+√
1+8x

2(3−x)
. Adding 1 to this expression

(to account for n = 0) yields 5+√
1+8x

2(3−x)
, which corresponds to the a = 2 case of (2.10).
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Finally, for (2.15), note that taking a = 1 in (2.11) gives

√
1 + 4

√−x +
√

1 − 4
√−x

2

= 1 + 2x

(
1

−2x
−

√
1 + 4

√−x +
√

1 − 4
√−x

−4x

)

= 1 + 2x
∑
n≥0

C2n+1 · (−x)n = 1 + 2
∑
n≥1

(−1)n−1C2n−1xn,

where the second equality is obtained by replacing x by
√

x (and then x by −x) in the odd
part of C(x) which is given by

∑
n≥0

C2n+1x2n+1 = 1

2x
−

√
1 + 4x + √

1 − 4x

4x
.

�

Remark 2.7. Formula (2.13) occurs as a special case of Proposition 6 in [4].

We have the following general formula for all a for the coefficients of f0(x) given
by (2.4).

Theorem 2.8. If n ≥ 1, then

det(−a; C1, . . . , Cn) = 1

n

n−1∑
i=0

(n − i)ai
(

2n

i

)
. (2.16)

Proof. We compute the g.f. of the right side of (2.16) for n ≥ 1. To do so, first note

n − i

n

(
2n

i

)
=

(
2n

i

)
− 2

(
2n − 1

i − 1

)
, i ≥ 1,

so that

1

n

n−1∑
i=0

(n − i)ai
(

2n

i

)
=

n−1∑
i=0

ai
(

2n

i

)
− 2

n−1∑
i=1

ai
(

2n − 1

i − 1

)

=
n−1∑
i=0

ai
(

2n

i

)
− 2a

n−2∑
i=0

ai
(

2n − 1

i

)
.

Let An = ∑n−1
i=0 ai

(2n
i

)
and Bn = ∑n−2

i=0 ai
(2n−1

i

)
for n ≥ 1. By the recurrence for the

binomial coefficients, we have

An+1 =
n∑

i=0

ai
(

2n + 2

i

)
= 1 +

n∑
i=1

ai
(

2n + 1

i

)
+

n∑
i=1

ai
(

2n + 1

i − 1

)
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=1 +
n∑

i=1

ai
(

2n

i

)
+

n∑
i=1

ai
(

2n

i − 1

)
+ a +

n−1∑
i=1

ai+1
(

2n + 1

i

)

= a + 1 +
n∑

i=1

ai
(

2n

i

)
+

n−1∑
i=0

ai+1
(

2n

i

)

+
n−1∑
i=1

ai+1
(

2n

i

)
+

n−2∑
i=0

ai+2
(

2n

i

)

=
n−1∑
i=0

ai
(

2n

i

)
+ an

(
2n

n

)

+ 2a
n−1∑
i=0

ai
(

2n

i

)
+ a2

n−1∑
i=0

ai
(

2n

i

)
− an+1

(
2n

n − 1

)

= (a + 1)2 An + an
(

2n

n

)
− an+1

(
2n

n − 1

)

= (a + 1)2 An + an(1 − a)

(
2n

n

)
+ an+1Cn, n ≥ 1, (2.17)

where we have used the fact
( 2n

n−1

) = (2n
n

) − Cn in the last equality. Also, we have

Bn+1 =
n−1∑
i=0

ai
(

2n + 1

i

)
=

n−1∑
i=0

ai
(

2n

i

)
+

n−1∑
i=1

ai
(

2n

i − 1

)

=
n−1∑
i=0

ai
(

2n

i

)
+

n−1∑
i=0

ai+1
(

2n

i

)
− an

(
2n

n − 1

)

= (a + 1)An − an
(

2n

n − 1

)
, n ≥ 1. (2.18)

Let A(x) = ∑
n≥1 An xn and B(x) = ∑

n≥1 Bn xn . We seek the difference A(x) −
2aB(x). From (2.17), we get

A(x) − x = (a + 1)2x A(x) + (1 − a)x

(
1√

1 − 4ax
− 1

)

+ ax

(
1 − √

1 − 4ax

2ax
− 1

)
,

which implies

(1 − (a + 1)2x)A(x) = (1 − a)x√
1 − 4ax

+ 1 − √
1 − 4ax

2

= (2a + 2)x − 1 + √
1 − 4ax

2
√

1 − 4ax
,
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or

A(x) = (2a + 2)x − 1 + √
1 − 4ax

2(1 − (a + 1)2x)
√

1 − 4ax
.

From (2.18), we get

B(x) = (a + 1)x A(x) − x
∑
n≥1

((
2n

n

)
− Cn

)
(ax)n

= (a + 1)x A(x) − x

(
1√

1 − 4ax
− 1 − √

1 − 4ax

2ax

)

= (a + 1)x A(x) − 1 − 2ax − √
1 − 4ax

2a
√

1 − 4ax
.

Thus,

A(x) − 2aB(x) = (1 − 2a(a + 1)x)A(x) + 1 − 2ax − √
1 − 4ax√

1 − 4ax

= (1−2a(a+1)x)(2(a+1)x−1+√
1 − 4ax)+2(1−(a+1)2x)(1 − 2ax − √

1 − 4ax)

2(1 − (a + 1)2x)
√

1 − 4ax

= 1 − 4ax − (1 − 2(a + 1)x)
√

1 − 4ax

2(1 − (a + 1)2x)
√

1 − 4ax
=

√
1 − 4ax + 2(a + 1)x − 1

2(1 − (a + 1)2x)
.

Therefore, we have A(x)−2aB(x)+1 = 1−2a(a+1)x+√
1−4ax

2(1−(a+1)2x)
, which is the same expression

as that given for f0(x) in (2.4) with a replaced by −a. Identity (2.16) now follows from
the various definitions. �

Remark 2.9. Comparing the a = −1 and a = 1 cases of (2.16) with (2.6) and (2.7),
respectively, yields the following pair of Catalan number formulas:

Cn = (−1)n

n + 1

n∑
i=0

(−1)i (n + 1 − i)

(
2n + 2

i

)
, n ≥ 0, (2.19)

Cn = 1

(n + 1)(2n + 1)

n∑
i=0

(n + 1 − i)

(
2n + 2

i

)
, n ≥ 0. (2.20)

Note that (2.19) may be rewritten as

(−1)n
(

2n

n

)
=

n∑
i=0

(−1)i
(

n + 1 − i

1

)(
2n + 2

i

)
,

and thus corresponds to a particular case of [3, equation (5.25)]. Further identities may be
obtained by comparing other expressions from Corollaries 2.3 and 2.6 above with specific
cases of (2.16) (and of (2.21) below).

Analogous to Theorem 2.8, we have the following expression for the coefficients of
f j (x) when j = −1.



   46 Page 10 of 17 Proc. Indian Acad. Sci. (Math. Sci.)          (2019) 129:46 

Theorem 2.10. If n ≥ 1, then

det(−a; C0, . . . , Cn−1) = 1

n

n−1∑
i=0

(n − i)ai
(

n − 1 + i

i

)
. (2.21)

Proof. We compute the g.f. of the right side of (2.21) for n ≥ 1. First, note

n − i

n

(
n − 1 + i

i

)
=

(
n + i

n

)
− 2

(
n − 1 + i

n

)

so that

1

n

n−1∑
i=0

(n − i)ai
(

n − 1 + i

i

)
=

n−1∑
i=0

ai
(

n + i

n

)
− 2

n−1∑
i=1

ai
(

n − 1 + i

n

)

=
n−1∑
i=0

ai
(

n + i

n

)
− 2

n−2∑
i=0

ai+1
(

n + i

n

)

= an−1
(

2n − 1

n − 1

)
− (2a − 1)An,

where An = ∑n−2
i=0 ai

(n+i
n

)
for n ≥ 2, with A1 = 0. Now observe

An+1 − An =an−1
(

2n

n − 1

)
+

n−2∑
i=0

ai
[(

n + 1 + i

i

)
−

(
n + i

i

)]

= an−1
(

2n

n − 1

)
+

n−2∑
i=1

ai
(

n + i

i − 1

)

= an−1
(

2n

n − 1

)
+

n−3∑
i=0

ai+1
(

n + 1 + i

i

)

= an−1
(

2n

n − 1

)
+ a An+1 − an

(
2n

n − 1

)

− an−1
(

2n − 1

n − 2

)
, n ≥ 2,

which may be rewritten as

(a − 1)An+1 + An = an−1(a − 1)

(
2n

n − 1

)
+ an−1

(
2n − 1

n + 1

)

= an−1(a − 1)

((
2n

n

)
− Cn

)
+ an−1

(
1

2

(
2n

n

)
− Cn

)

=
(

an − 1

2
an−1

) (
2n

n

)
− anCn, n ≥ 1. (2.22)
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Let A(x) = ∑
n≥1 An xn . Then (2.22) implies

(
a − 1

x
+ 1

)
A(x) =

(
1 − 1

2a

) (
1√

1 − 4ax
− 1

)
− 1 − √

1 − 4ax

2ax
+ 1

= 2a − 1

2a

(
1 − √

1 − 4ax√
1 − 4ax

)
+ 2ax − 1 + √

1 − 4ax

2ax

= 1 − (2a + 1)x + (x − 1)
√

1 − 4ax

2ax
√

1 − 4ax

so that

A(x) = 1 − (2a + 1)x + (x − 1)
√

1 − 4ax

2a(a − 1 + x)
√

1 − 4ax
.

Thus, the desired g.f. is given by

∑
n≥1

an−1
(

2n − 1

n − 1

)
xn − (2a − 1)A(x) = 1

2a

∑
n≥1

(
2n

n

)
(ax)n − (4a − 1)A(x)

= 1

2a

(
1√

1 − 4ax
− 1

)
− (2a − 1)A(x)

= (a − 1 + x)(1 − √
1 − 4ax) − (2a − 1) + (4a2 − 1)x − (2a − 1)(x − 1)

√
1 − 4ax

2a(a − 1 + x)
√

1 − 4ax

= 4a2x − a + a(1 − 2x)
√

1 − 4ax

2a(a − 1 + x)
√

1 − 4ax
= 4ax − 1 + (1 − 2x)

√
1 − 4ax

2(a − 1 + x)
√

1 − 4ax

= 1 − 2x − √
1 − 4ax

2(a − 1 + x)
.

Adding 1 to this last expression yields 2a−1−√
1−4ax

2(a−1+x)
, which is the same as that given for

f−1(x) in (2.10) with a replaced by −a, and thus implies (2.21). �

We obtain the following binomial identity as a consequence of the prior results.

COROLLARY 2.11

We have

det(2; C1, . . . , Cn) = 1

n

n−1∑
i=0

(n − i)(−2)i
(

2n

i

)

= (−1)n−1

n

n−1∑
i=0

(n − i)2i
(

n − 1 + i

i

)
, n ≥ 1,

(2.23)
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det(2; C3, . . . , Cn+2) = (−1)n−1

n

n−1∑
i=0

(n − i)2i
(

n − 1 + i

i

)
, n ≥ 2.

(2.24)

Proof. To show formula (2.23), note that by Theorem 2.10, the g.f. of the quantity
(−1)n−1

n

∑n−1
i=0 (n − i)2i

(n−1+i
i

)
for n ≥ 1 can be obtained by replacing x by −x in the

a = −2 case of f−1(x) − 1 and then multiplying the expression that results by −1. Doing

so gives 2x+1−√
1+8x

2(x−1)
, which corresponds to the a = 2 case of f0(x) − 1.

By i = a = 2 case of Theorem 2.2, we have

∑
n≥0

det(2; C3, . . . , Cn+2)xn = 2

C2(−2x)
= 2

C(−2x)2 + C(−2x)3 .

By (2.23) and the formula for f0(x) when a = 2, to establish (2.24), it suffices to show
that

2

C(−2x)2 + C(−2x)3 − 1 − 5x = 4x − 1 − √
1 + 8x

2(x − 1)
− 1 − x .

By the fact zC(z)2 = C(z) − 1, the last equality is equivalent to

−4x

C(−2x)2 − 1
= −4x

C(−2x) − 1 + C(−2x)(C(−2x) − 1)

= 4x − 1 − √
1 + 8x

2(x − 1)
+ 4x,

or

8x2

2x + C(−2x) − 1
= 8x2 − 4x − 1 − √

1 + 8x

2(x − 1)
.

Substituting C(−2x) = 1−√
1+8x

−4x , one may verify the validity of the last equation, which
completes the proof of (2.24). �

Remark 2.12. Comparing the generating functions, one sees that only when a = 2 is there
an identity of the form

1

n

n−1∑
i=0

(n − i)(−a)i
(

2n

i

)
= (−1)n−1

n

n−1∑
i=0

(n − i)ai
(

n − 1 + i

i

)
, n ≥ 1.

3. Multinomial extension of the Catalan determinants

The Trudi formula (1.2), taken together with Corollaries 2.3, 2.6, 2.11 and Theorems 2.8
and 2.10, yields the following result.
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Theorem 3.1. Let n ≥ 1, except when noted otherwise, and a �= 0. Then

∑
σn=n

(−1)|s| pn(s)Cs1
1 Cs2

2 · · · Csn
n = −Cn−1,

∑
σn=n

pn(s)C
s1
1 Cs2

2 · · · Csn
n = (2n − 1)Cn−1,

∑
σn=n

(−1)|s| pn(s)

(
C1

2

)s1
(

C2

2

)s2

· · ·
(

Cn

2

)sn

= 1

(−2)n

(
1 +

n−1∑
i=1

(−1)i 2i+1Ci

)
,

∑
σn=n

(−1)|s| pn(s)Cs1
2 Cs2

3 · · · Csn
n+1 = −Cn−1, n ≥ 2,

∑
σn=n

pn(s)C
s1
0 Cs2

1 · · · Csn
n−1 = Cn,

∑
σn=n

(−1)|s| pn(s)

(
C0

2

)s1
(

C1

2

)s2

· · ·
(

Cn−1

2

)sn

= 1

(−6)n

(
1 + 2

n−1∑
i=0

(−6)i Ci

)
,

∑
σn=n

(−1)|s| pn(s)Cs1
2 Cs2

4 · · · Csn
2n = −2C2n−1,

∑
σn=n

(−1)|s| pn(s)

(
C1

2

)s1
(

C2

2

)s2

· · ·
(

Cn

2

)sn

= 1

n

n−1∑
i=0

(n − i)(−2)i−n
(

2n

i

)

= −1

n

n−1∑
i=0

(n − i)2i−n
(

n − 1 + i

i

)
,

∑
σn=n

(−1)|s| pn(s)

(
C3

2

)s1
(

C4

2

)s2

· · ·
(

Cn+2

2

)sn

= −1

n

n−1∑
i=0

(n − i)2i−n
(

n − 1 + i

i

)
, n ≥ 2,

∑
σn=n

pn(s)

(
C1

a

)s1
(

C2

a

)s2

· · ·
(

Cn

a

)sn

= 1

n

n−1∑
i=0

(n − i)ai−n
(

2n

i

)
,

∑
σn=n

pn(s)

(
C0

a

)s1
(

C1

a

)s2

· · ·
(

Cn−1

a

)sn

= 1

n

n−1∑
i=0

(n − i)ai−n
(

n − 1 + i

i

)
,

where |s| = s1 + · · · + sn, σn = s1 + 2s2 + · · · + nsn and pn(s) = |s|!
s1!···sn ! .
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4. Combinatorial proofs

Recall that the determinant of an n × n matrix A = (ai, j ) is given by

det(A) =
∑
σ∈Sn

(−1)sgn(σ )a1,σ (1)a2,σ (2) · · · an,σ (n),

where sgn(σ ) denotes the sign of the permutation σ . Assume that the permutations are
expressed in the standard cycle form, i.e., within each cycle, the smallest element is first,
with cycles arranged from left to right in increasing order of smallest elements. Suppose A
is a Toeplitz–Hessenberg matrix of size n. Then the only permutations α that contribute to
the determinant sum are those in which each cycle comprises a set of consecutive integers
in increasing order. Such α may clearly be regarded as compositions of n, upon identifying
the cycle lengths as parts. So if α is such a permutation, then each part of size i in the
corresponding composition (which we will also denote by α) is weighted by ai−1

0 ai .
Furthermore, observe that the sign of the composition α is the same as that of the

associated permutation and is given by (−1)n−μ(α), where μ(α) denotes the number of
parts of α. Thus, in the case when A is Toeplitz–Hessenberg of size n, the determinant
is a signed sum over weighted compositions α of n, where the sign of α is as stated,
and the weight of α is the product of the weights of its individual parts with a part of
size i having weight ai−1

0 ai for i ≥ 1. Note that in the case when a0 = −1, the sign of
α is the same as the product of the factors ai−1

0 taken over all of the parts of α. Thus,
det(−1; a1, . . . , an) is a positive sum of weighted compositions of n where the weight of
a composition (x1, . . . , xr ) is given by

∏r
i=1 axi .

In this section, we provide combinatorial proofs of some of the prior explicit formulas
for the determinant using a lattice path interpretation. For combinatorial proofs of other
Catalan determinant formulas, see, e.g., [1,6]. Recall that a Dyck path of semilength n
where n > 0 is a lattice path starting at the origin and ending at (2n, 0) that never dips
below the x-axis and contains two types of steps – an upstep U = (1, 1) and a downstep
D = (1,−1). Let Cn denote the set of Dyck paths of semilength n. It is well-known that
the cardinality of Cn is given by Cn (see [12] for a complete list of structures enumerated
by the Catalan numbers).

Recall that ρ ∈ Cn for n ≥ 1 can be decomposed as ρ = ρ1ρ2 · · · ρs for some s ≥ 1
where each ρi , 1 ≤ i ≤ s, is of the form ρi = Uρ′

i D with ρ′
i a (possibly empty) Dyck

path. The ρi are often referred to as the components or units of ρ. A return of ρ refers to
a downstep ending at (2m, 0) for some 1 ≤ m ≤ n, with an internal return one in which
m < n. Note that a component is a section of ρ lying between two successive returns
(counting the starting point as a return).

Combinatorial proofs of (2.6), (2.7) and (2.13). We first show (2.13). To do so, first
observe that the expansion of det(−1; C0, . . . , Cn) in terms of permutations contains only
positive terms. Thus, det(−1; C0, . . . , Cn−1) gives the cardinality of the set of sequences
of ordered pairs (a1, λ1), (a2, λ2), . . . such that a1 + a2 + · · · = n, ai > 0 and λi ∈ Cai −1
for all i . We map such a sequence of ordered pairs to Uλ1 DUλ2 D · · · , which is seen to
be the decomposition of some member of Cn according to its units. Thus, the mapping is
reversible and hence a bijection, which implies (2.13).

To show (2.7), let An consist of sequences of ordered pairs (ai , λi ) as in the prior proof
except that λi ∈ Cai for all i . Note that det(−1; C1, . . . , Cn) gives the cardinality ofAn . Let
Bn consist of lattice paths from (0, 0) to (2n, 0) using (1, 1) and (1,−1) steps such that the
last step is (1,−1). By symmetry, |Bn | = 1

2

(2n
n

)
. Note that 1

2

(2n
n

) = (2n−1
n

) = (2n−1)Cn−1,
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so to complete the proof of (2.7), it suffices to define a bijection between An and Bn .
Let λ = (a1, λ1), . . . , (ar , λr ) ∈ An . For each 1 ≤ i ≤ r , let λ′

i be obtained from λi

by reflecting all of λi except its last component in the x-axis. Note that the first step
of λ′

i is (1, 1) if and only if λi has only one component, in which case λ′
i = λi . Let

λ′ = λ′
i ∪ λ′

2 ∪ · · · ∪ λ′
r , where ∪ denotes concatenation (of lattice paths). One may verify

that λ′ ∈ Bn and that the mapping λ 
→ λ′ is reversible, upon considering the number of
components of λ′ lying above the x-axis.

Finally, to show (2.6), let An be as before but now with the sign of λ ∈ An given by
(−1)n−r , where r denotes the number of pairs. Then det(1; C1, . . . , Cn) gives the sum of
the signs of all members of An , by definition. We apply the mapping λ 
→ λ′ from above
to members of An . Note that the sign of ρ ∈ Bn equals (−1)n−μ(ρ), where μ(ρ) denotes
the number of components of ρ lying above the x-axis. Define an involution on Bn by
considering the penultimate component of ρ, if it exists, and reflecting it in the x-axis.
Note that this operation reverses the sign (since the μ value changes by one) and fails to be
defined for those members of Bn containing a single (positive) component. Such members
of Bn clearly number Cn−1 with each having sign (−1)n−1, which implies (2.6). �
Proof of (2.9). Let Dn denote the set of sequences of ordered pairs λ = (a1, λ1), . . . ,

(ar , λr ), where 1 ≤ r ≤ n such that a1 + · · · + ar = n, ai > 0 and λi ∈ Cai +1 for all i .
Define the sign of λ to be (−1)n−r . Then det(1; C2, . . . , Cn+1) gives the sum of the signs
of all members of Dn . One may regard members of Dn alternatively as follows. Given
π ∈ Cn , we mark r of the returns to the x-axis, including the final return, by a dot (•).
Also, put a dot just prior to the first step of π (so that there are r + 1 dots altogether).
Between any two dots, we place exactly one × and it either marks one of the internal
returns of the subpath or goes at the beginning or the end. If the × is put at the beginning
of the subpath, then it goes to the right of the initial dot, while if the × is put at the end,
then it goes to the left of the terminal dot. Thus, between any two • there is exactly one ×,
and hence it is possible for there to be an × both directly to the left and to the right of the
same • marking an internal return of π . Let En denote the set of such marked Dyck paths
of semilength n and define the sign as (−1)n−r , where r is the number of ×’s.

Note that a member α ∈ En may be expressed as α = α1 · · · αr , where αi is the subpath
of α lying between the i-th and (i + 1)-st • (recall that the initial and final positions of
α always correspond to the first and to the last •). The αi may be decomposed further as
αi = βiγi , where βi denotes the section of αi to the left of the return marked by × and
γi the remainder of αi . Note that it is possible for either βi or γi to be empty. Consider
replacing αi with βiUγi D for each i (that is, we raise the section γi vertically by one unit)
and then form the sequence of ordered pairs (|α1|, β1Uγ1 D), (|α2|, β2Uγ2 D), . . . . This
operation is seen to define a sign-preserving bijection between En and Dn which can be
reversed by considering the final unit within the lattice path component of each ordered
pair. Thus, the sum of the signs of all the members of En is given by det(1; C2, . . . , Cn+1).

To complete the proof, it suffices to identify a sign-changing involution on En , the set of
survivors of which has sum of signs equal to (−1)n−1Cn−1. Let E ′

n ⊆ En comprise those
members in which r = 1 with no internal returns or r = 2 with exactly one internal return,
where this return is marked only by •. Note that the sum of the signs of members of E ′

n

equals 2(−1)n−1Cn−1 + (−1)n−2Cn−1 = (−1)n−1Cn−1 as Cn−1 = ∑n−2
i=0 Ci Cn−2−i for

n ≥ 2 in the latter case (one can define a bijection between this case and part of the former
case, if desired). Within a member of En − E ′

n , consider the leftmost internal return R that
is not marked only by • (note that if r > 2, such an internal return always exists). Then
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R is either marked by •×, ×•, × • × or ×, or is unmarked altogether. If R is marked by
× • ×, then replace with ×, and vice versa, while if R is marked by •× or ×•, then delete
the designation and take R to be unmarked altogether, and vice versa. Note that in the latter
case when R is unmarked and one is adding back the designation, the choice of either •×
or ×• is dictated by where an × is needed. Combining the two operations is then seen to
define an involution on En − E ′

n . Since this involution always reverses the sign, the proof
of (2.9) is complete. �
Proof of (2.15). Let Fn denote the set of ‘marked’ Dyck paths of semilength 2n wherein
some subset of the even returns to the x-axis is marked including the beginning and the
end (by an even/odd return, we mean a downstep ending at a point (4i, 0)/(4i − 2, 0) for
some 1 ≤ i ≤ n). Note that if exactly s − 1 of the internal even returns are marked within
ρ ∈ Fn where 1 ≤ s ≤ n, then ρ is divided into s sections by the markings and we define
the sign of ρ to be (−1)n−s . Upon splitting the various ρ into sections (each of positive
even semilength) according to the markings, one sees that det(1; C2, . . . , C2n) gives the
sum of the signs of all members of Fn .

We now define an involution on Fn as follows. First, let F ′
n ⊆ Fn comprise those

members in which all internal returns are odd (with this condition holding vacuously for
paths having only one component). Note that the sign of each member of F ′

n is (−1)n−1.
Define an involution on F −F ′

n by considering the leftmost even internal return and either
marking it or removing the marking from it. To complete the proof of (2.15), we must show
that |F ′

n| = 2C2n−1. Since there are clearly C2n−1 paths with exactly one component, this
amounts to showing that there are C2n−1 members ρ ∈ Fn in which every internal return
is odd with at least one such return. These ρ may be decomposed as ρ = α1β1 · · · βrα2,
where α1 and α2 are components of ρ of odd semilength, r ≥ 0 and each βi is a component
of even semilength. Let α′

1 be obtained from α1 by removing the initial (1, 1) step as well
as the final (1,−1) step. Let ρ′ = α′

1α2β1 · · ·βr ∈ C2n−1. Then the mapping ρ 
→ ρ′ is
seen to define a bijection with C2n−1, as desired, which can be reversed upon considering
the rightmost component of odd semilength within a member of C2n−1. �
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