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A family A of non-empty subsets of a set X is called an upfamily if for each set A ∈ A any
set B ⊃ A belongs to A. An upfamily L of subsets of X is said to be linked if A ∩ B ̸= ∅ for
all A,B ∈ L. A linked upfamily M of subsets of X is maximal linked if M coincides with each
linked upfamily L on X that contains M. The superextension λ(X) consists of all maximal
linked upfamilies on X. Any associative binary operation ∗ : X×X → X can be extended to an
associative binary operation ∗ : λ(X) × λ(X) → λ(X). In the paper we study automorphisms
of superextensions of semigroups and describe the automorphism groups of superextensions of
null semigroups, almost null semigroups, right zero semigroups and left zero semigroups. Also
we find the automorphism groups of superextensions of all semigroups S of order |S| ≤ 3.

Introduction. In this paper we investigate the automorphism group of the superextension
λ(S) of a semigroup S. The thorough study of various extensions of semigroups was started in
[15] and continued in [1]–[10], [16]–[21]. The largest among these extensions is the semigroup
υ(S) of all upfamilies on S. A family A of non-empty subsets of a set X is called an upfamily
if for each set A ∈ A any subset B ⊃ A belongs to A. Each family B of non-empty subsets
of X generates the upfamily ⟨B⟩ = {A ⊂ X : ∃B ∈ B (B ⊂ A)}. An upfamily F a filter if it
is closed under taking finite intersections. A filter U is called an ultrafilter if U = F for any
filter F containing U . The family β(X) of all ultrafilters on a set X is called the Stone-Čech
compactification ofX, see [22], [25]. An ultrafilter ⟨{x}⟩, generated by a singleton {x}, x ∈ X,
is called principal. Identifying each point x ∈ X with the principal ultrafilter ⟨{x}⟩, we can
consider X ⊂ β(X) ⊂ υ(X). It was shown in [15] that any associative binary operation
∗ : S × S → S can be extended to an associative binary operation ∗ : υ(S) × υ(S) → υ(S),
defined by the formula

L ∗M =
⟨ ∪

a∈L

a ∗Ma : L ∈ L, {Ma}a∈L ⊂ M
⟩

for upfamilies L,M ∈ υ(S). In this case the Stone-Čech compactification β(S) is a subsemi-
group of the semigroup υ(S).

The semigroup υ(S) contains many other important extensions of S. In particular, it
contains the semigroup λ(S) of maximal linked upfamilies on S. The space λ(S) is well-
known in General and Categorial Topology as the superextension of S, see [24]– [26]. An
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upfamily L of subsets of S is linked if A ∩ B ̸= ∅ for all A,B ∈ L. The family of all linked
upfamilies on S is denoted by N2(S). It is a subsemigroup of υ(S). The superextension λ(S)
consists of all maximal elements of N2(S), see [14], [15].

For a finite set X the cardinality of the set λ(X) grows very quickly as |X| tends to
infinity. The calculation of the cardinality of λ(X) seems to be a difficult combinatorial
problem related to the still unsolved Dedekind’s problem of calculation of the number M(n)
of monotone upfamilies on an n-element set, see [12].

We were able to calculate the cardinalities of λ(X) only for sets X of cardinality |X| ≤ 6,
see [10]. The results of (computer) calculations are presented in Table 1.

|X| 1 2 3 4 5 6
|λ(X)| 1 2 4 12 81 2646

Table 1: The cardinality of λ(X) for a set X of cardinality |X| ≤ 6.

Each map f : X → Y induces the map (see [14])

λf : λ(X) → λ(Y ), λf : M 7→
⟨
f(M) ⊂ Y : M ∈ M

⟩
.

If φ : S → S ′ is a homomorphism of semigroups, then λφ : λ(S) → λ(S ′) is a homomo-
rphism as well, see [17].

A non-empty subset I of a semigroup S is called an ideal if IS ∪ SI ⊂ I. An ideal I of
a semigroup S is said to be proper if I ̸= S. A proper ideal M of S is maximal if M coincides
with each proper ideal I of S that contains M . It is easy to see that for every n ∈ N the
subset S·n = {x1 · . . . · xn : x1, . . . , xn ∈ S} is an ideal in S.

An element z of a semigroup S is called a zero (resp. a left zero, a right zero) in S if
az = za = z (resp. za = z, az = z) for any a ∈ S. An element e of a semigroup S is called
an idempotent if ee = e. By E(S) we denote the set of all idempotents of a semigroup S.

Recall that an isomorphism between S and S ′ is bijective function ψ : S → S ′ such
that ψ(xy) = ψ(x)ψ(y) for all x, y ∈ S. If there exists an isomorphism between S and S ′,
then S and S ′ are said to be isomorphic, denoted S ∼= S ′. An isomorphism ψ : S → S is
called an automorphism of a semigroup S. By Aut(S) we denote the automorphism group
of a semigroup S.

An antiisomorphism between S and S ′ is bijective function ψ : S → S ′ such that ψ(xy) =
ψ(y)ψ(x) for all x, y ∈ S. If there exist an antiisomorphism between S and S ′, then S and S ′
are said to be antiisomorphic, denoted S ∼=a S

′. If (S, ∗) is a semigroup, then (S, ⋆), where
x ⋆ y = y ∗ x, is a semigroup as well. The semigroups (S, ∗) and (S, ⋆) are called opposite. It
is easy to see that opposite semigroups are antiisomorphic.

A subset A of a semigroup S is called characteristic if ψ(A) = A for any automorphism
ψ of S. It is easy to see that the set E(S) is characteristic and so are the ideals S·n for all
n ∈ N.

Following the algebraic tradition, we take for a model of a cyclic group of order n the
multiplicative group Cn = {z ∈ C : zn = 1} of n-th roots of 1.

For a set X by SX we denote the group of all bijections of X.
A semigroup ⟨a⟩ = {an}n∈N generated by a single element a is called monogenic or cyclic.

If a monogenic semigroup is infinite, then it is isomorphic to the additive semigroup N.
A finite monogenic semigroup S = ⟨a⟩ also has the simple structure, see [11], [23]. There are
positive integer numbers r and m called the index and the period of S such that
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• S = {a, a2, . . . , am+r−1} and m+ r − 1 = |S|;

• for any i, j ∈ ω the equality ar+i = ar+j holds if and only if i ≡ j mod m;

• {ar, ar+1, . . . , am+r−1} is a cyclic and maximal subgroup of S.

By Mr,m we shall denote a finite monogenic semigroup of index r and period m. It is
well-known that Aut(Mr,m) ∼= C1 for r ≥ 2 and

Aut(M1,m) ∼= Aut(Cm) ∼= Cφ(m),

where φ(m) is the value of Euler’s function for m ∈ N.

1. Extending automorphisms from a semigroup to its superextension. In this sec-
tion we observe that each automorphism of a semigroup S can be extended to an automor-
phism of its superextension λ(S) and the automorphism group Aut(λ(S)) of the superexten-
sion of a semigroup S contains a subgroup, isomorphic to the automorphism group Aut(S)
of S. The following statements are corollaries of the functoriality of the superextension in
the category of semigroups.

Proposition 1. If ψ : S → T is an isomorphism, then λψ : λ(S) → λ(T ) is an isomorphism
as well.

Corollary 1. If ψ : S → S is an automorphism of a semigroup S, then λψ : λ(S) → λ(S) is
an automorphism of the superextension λ(S).

Corollary 2. The automorphism group Aut(λ(S)) of the superextension of a semigroup S
contains as a subgroup an isomorphic copy of the automorphism group Aut(S) of S.

Corollary 2 motivates a question: is the automorphism group Aut(S) of a semigroup
S normal in the automorphism group Aut(λ(S)) of its superextension λ(S)? In the next
sections we shall provide many counterexamples to this question.

Remark 1. In contrast to the preservation homomorphisms by the functor of superextension,
antiisomorphisms are not preserved by this functor. Indeed, consider the symmetric group
S3 = {(1), (12), (13), (23), (123), (132)} with operation ◦ of composition of permutations.
Let (S3)

op be its opposite group with operation ∗ defined by x ∗ y = y ◦ x for x, y ∈ S3.
Observe that the identity map ψ : S3 → (S3)

op, ψ(x) = x, is an antiisomorphism, inducing
the identity map λψ : λ(S3) → λ((S3)

op). Consider the maximal linked upfamilies

L = ⟨{(12), (23)}, {(12), (123)}, {(23), (123)}⟩,
M = ⟨{(12), (23)}, {(12), (13)}, {(13), (23)}⟩,

and observe that

{(1), (123)} = (12) ◦ {(12), (23)} ∪ (23) ◦ {(13), (23)} ∈ L ◦M

but {(1), (123)} /∈ M ∗ L. Therefore,

λψ(L ◦M) = L ◦M ≠ M∗L = λψ(M) ∗ λψ(L).
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2. The automorphism groups of the semigroups λ(LOX), λ(ROX), λ(OX), λ(AOX),
λ((OX)

+1) and λ((OX)
+0).

2.1. The semigroups λ(LOX) and λ(ROX). A semigroup S is said to be a left (right)
zero semigroup if ab = a (ab = b) for any a, b ∈ S. By LOX and ROX we denote the left zero
semigroup and the right zero semigroup on a set X, respectively. If X is finite of cardinality
|X| = n, then instead of LOX and ROX we write LOn and ROn, respectively.

Proposition 2. If X is a left zero semigroup or a right zero semigroup, then Aut(λ(X)) is
isomorphic to the symmetric group Sλ(X).

Proof. In [21, Theorem 3] it was shown that the superextension of a right (left) zero semi-
group is a right (left) zero semigroup as well. Each permutation on a right (left) zero semi-
group is an automorphism. Indeed,

ψ(xy) = ψ(y) = ψ(x)ψ(y), ψ(xy) = ψ(x) = ψ(x)ψ(y)

for any elements x and y of the right zero semigroup and the left zero semigroup, respectively.
Therefore, Aut(λ(X)) ∼= Sλ(X).

Using Proposition 2 and the values of |λ(X)| from Table 1, we list in Table 2 present the
automorphism groups of the semigroups λ(LOn) and λ(ROn) for n ≤ 6.

n 1 2 3 4 5 6

Aut(LOn), Aut(ROn) C1 C2 S3 S4 S5 S6

Aut(λ(LOn)), Aut(λ(ROn)) C1 C2 S4 S12 S81 S2646

Table 2: The automorphism groups of superextensions of semigroups LOn and ROn for n ≤ 6.

2.2. The semigroups λ(OX). A semigroup S is called a null semigroup if there exists an
element z ∈ S such that xy = z for any x, y ∈ S. In this case the element z is the zero of S.
All null semigroups on the same set are isomorphic. By OX we denote a null semigroup on
a set X. If X is finite of cardinality |X| = n, then instead of OX we write On.

Proposition 3. Let z be the zero of the null semigroup OX on a set X of cardinality
|X| ≥ 2. The automorphism group of the semigroup λ(OX) is isomorphic to the symmetric
group Sλ(OX)\{z}.

Proof. In [21, Theorem 1] it was proved that the superextension of a null semigroup is a null
semigroup with the same zero z. Taking into account that z is the zero of the semigroup
λ(OX), we conclude that ψ(z) = z for any ψ ∈ Aut(λ(OX)). Each permutation on the set
λ(OX) \ {z} determines an automorphism of λ(OX). Indeed, ψ(xy) = z = ψ(x)ψ(y) for any
elements x, y ∈ λ(OX). Therefore, Aut(λ(OX)) ∼= Sλ(OX)\{z}.

Using Proposition 3 and values of |λ(X)| from Table 1 we list in Table 3 the automorphism
groups of the semigroups λ(On) for n ≤ 6.
2.3. The semigroups λ(AOX). A semigroup S is said to be an almost null semigroup if there
exist distinct elements a, z ∈ S such that aa = a and xy = z for any (x, y) ∈ S×S \{(a, a)}.
In this case the element z is the zero of S and a is the unique idempotent in S \ {z}. All
almost null semigroups on the same set are isomorphic. By AOX we denote an almost null



ON THE AUTOMORPHISM GROUP OF THE SUPEREXTENSION OF A SEMIGROUP 7

n 1 2 3 4 5 6

Aut(On) C1 C1 C2 S3 S4 S5

Aut(λ(On)) C1 C1 S3 S11 S80 S2645

Table 3: The automorphism groups of superextensions of semigroups On for n ≤ 6.

semigroup on a set X. If X is finite of cardinality |X| = n, then instead of AOX we write
AOn.

It easy to check that the automorphism groups of the semigroup λ(AO2) is trivial. In the
following proposition we describe the automorphism groups of the semigroups λ(AOX) on
a set X of cardinality |X| ≥ 3.

Proposition 4. Let z be the zero of the almost null semigroup AOX on a setX of cardinality
|X| ≥ 3. The group Aut(λ(AOX)) is isomorphic to the symmetric group Sλ(AOX)\{a,z}, where
a is the idempotent in AOX \ {z}.

Proof. In [21, Theorem 2] it was shown that the superextension of an almost null semigroup
is an almost null semigroup as well. Taking into account that z is the zero of the semigroup
λ(OAX) and a is the unique idempotent in λ(OAX) \ {z}, we conclude that ψ(z) = z and
ψ(a) = a for any ψ ∈ Aut(λ(AOX)). Each permutation on the set λ(AOX) \ {a, z} defines
an automorphism. Indeed, ψ(aa) = ψ(a) = a = aa = ψ(a)ψ(a) and ψ(xy) = z = ψ(x)ψ(y)
for any (x, y) ∈ λ(OAX)× λ(OAX) \ {(a, a)}. Therefore, Aut(λ(OAX)) ∼= Sλ(AOX)\{a,z}.

Using Proposition 4 and the values of |λ(X)| from Table 1 we list in Table 4 the
automorphism groups of the semigroups λ(AOn) for n ∈ {2, 3, 4, 5, 6}.

n 2 3 4 5 6

Aut(AOn) C1 C1 C2 S3 S4

Aut(λ(AOn)) C1 C2 S10 S79 S2644

Table 4: The automorphism groups of superextensions of semigroups AOn for n ≤ 6.

2.4. The semigroups λ((OX)
+1) and λ((OX)

+0). Let S be a semigroup and e /∈ S. The
binary operation defined on S can be extended to S ∪ {e} putting es = se = s for all
s ∈ S ∪ {e}. By S+1 we denote the monoid S ∪ {e} obtained from S by adjoining the
extra identity e (regardless of whether S is or is not a monoid). If ψ is an automorphism of
the semigroup S+1, then ψ(e) = e. Consequently, each automorphism of S can be uniquely
extended to an automorphism of the semigroup S+1, and hence Aut(S+1) ∼= Aut(S).

Proposition 5. Let z be the zero of the null semigroup OX on a set X of cardinality |X| ≥ 2.
Then λ((OX)

+1) ∼= (Oλ((OX)+1)\{e})
+1 and Aut(λ((OX)

+1)) ∼= Sλ((OX)+1)\{z,e}, where e is the
extra identity adjointed to OX .

Proof. It is easy to see that the principal ultrafilter generated by e is the identity of
λ((OX)

+1). Let L,M ∈ λ((OX)
+1) \ {e}. Then there exist L ∈ L and M ∈ M such that

e /∈ L and e /∈ M . Consequently, LM = {z} and the linkedness of L ∗ M implies that
L ∗M = ⟨{z}⟩. This proves the isomorphism λ((OX)

+1) ∼= (Oλ((OX)+1)\{e})
+1.
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Therefore,

Aut(λ((OX)
+1)) ∼= Aut(Oλ((OX)+1)\{e})

+1) ∼= Aut(Oλ((OX)+1)\{e})) ∼= Sλ((OX)+1)\{e,z}

according to Proposition 3.

Let S be a semigroup and 0 /∈ S. The binary operation defined on S can be extended to
S ∪ {0} putting 0s = s0 = 0 for all s ∈ S ∪ {0}. By S+0 we denote the semigroup S ∪ {0}
obtained from S by adjoining the extra zero 0 (regardless of whether S has or has not the
zero). If ψ is an automorphism of the semigroup S+0, then ψ(0) = 0. Consequently, each
automorphism of S can be uniquely extended to an automorphism of the semigroup S+0.
Therefore, Aut(S+0) ∼= Aut(S).

Proposition 6. Let z be the zero of the null semigroup OX on a set X of cardinality |X| ≥ 2.
Then λ((OX)

+0) ∼= (Oλ((OX)+0)\{0})
+0 and Aut(λ((OX)

+0)) ∼= Sλ((OX)+0)\{z,0}, where 0 is the
extra zero adjointed to OX .

Proof. It is easy to see that the principal ultrafilter generated by 0 is the zero of λ((OX)
+0).

Let L,M ∈ λ((OX)
+0) \ {0}. Then there exist L ∈ L and M ∈ M such that 0 /∈ L and

0 /∈M . Consequently, LM = {z} and the linkedness of L ∗M implies that L ∗M = ⟨{z}⟩.
This proves the isomorphism λ((OX)

+0) ∼= (Oλ((OX)+0)\{0})
+0.

Therefore,

Aut(λ((OX)
+0)) ∼= Aut(Oλ((OX)+0)\{0})

+0) ∼= Aut(Oλ((OX)+0)\{0})) ∼= Sλ((OX)+0)\{0,z}

according to Proposition 3.

Using Propositions 5-6 and the values of |λ(X)| from Table 1 we list in Table 5 the
automorphism groups of the semigroups λ((On)

+1)) and λ((On)
+0)) for n ≤ 5.

n 1 2 3 4 5

Aut((On)
+1), Aut((On)

+0) C1 C1 C2 S3 S4

Aut(λ((On)
+1)), Aut(λ((On)

+0)) C1 C2 S10 S79 S2644

Table 5: The automorphism groups of superextensions of semigroups (On)
+1 and (On)

+0 for
n ≤ 5.

3. The automorphism groups of superextensions of semigroups S of order
|S| ≤ 3. It is well-known that there are exactly five pairwise non-isomorphic semigroups
having two elements: C2, L2, O2, LO2, RO2, where L2 is the semilattice {0, 1} indowed with
the operation of minimum. Superextensions λ(S) of semigroups S of order |S| ≤ 2 consist
only of principal ultrafilters, and hence λ(S) ∼= S. Therefore,

Aut(λ(C1)) ∼= Aut(C1) ∼= C1, Aut(λ(C2)) ∼= Aut(C2) ∼= C1,

Aut(λ(L2)) ∼= Aut(L2) ∼= C1, Aut(λ(O2)) ∼= Aut(O2) ∼= C1,

Aut(λ(LO2)) ∼= Aut(LO2) ∼= S2
∼= C2, Aut(λ(RO2)) ∼= Aut(RO2) ∼= S2

∼= C2.

In the remaining part of the paper we concentrate on describing the structure of the
automorphism groups of superextensions λ(S) of three-element semigroups S. Among 19683
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different binary operations on a three-element set S = {a, b, c} there are exactly 113 operati-
ons which are associative, see [13]. In other words, there exist exactly 113 three-element
semigroups, and many of these are isomorphic so that there are essentially only 24 pairwise
non-isomorphic semigroups of order 3.

For a three-element semigroup S the semigroup λ(S) contains the three principal ultrafi-
lters and the maximal linked upfamily △ = {A ⊂ S : |A| ≥ 2}. Therefore, we can write
λ(S) = S ∪ {△}.

3.1. The automorphism groups of superextensions of commutative semigroups
of order 3. In this subsection we describe the structure of the automorphism groups of
superextensions of commutative three-element semigroups. Among 24 pairwise non-isomor-
phic semigroups of order 3 there are 12 commutative semigroups. Superextensions of all
commutative semigroups of order 3 are commutative as well, see [21].

Up to isomorphism, the cyclic group C3 is a unique group of order 3. There are three
pairwise non-isomorphic monogenic semigroups of order 3: M1,3, M2,2 and M3,1. Also the
monogenic semigroup M3,2 contains the 3-element characteristic ideal M·23,2. The monogenic
semigroup M1,3 of index 1 is isomorphic to the cyclic group C3. The automorphism groups of
superextensions of groups and finite monogenic semigroups and their ideals were described
in [8] and [9]:

Aut(λ(C3)) ∼= Aut(λ(M1,3)) ∼= C2, Aut(λ(M2,2)) ∼= C2,

Aut(λ(M·23,2)
∼= C2, Aut(λ(M3,1)) ∼= C1.

The structure of the automorphism groups of superextensions of semigroups O3, AO3,
(O2)

+1 and (O2)
+0 was described in Section 2. According to Propositions 3–6 we have the

following isomorphisms.

Aut(λ(O3)) ∼= S3, Aut(λ(AO3)) ∼= S2
∼= C2, Aut(λ((O2)

+1)) ∼= C2, Aut(λ((O2)
+0) ∼= C2.

Consider the three-element semigroups (C2)
+0 and (C2)

+1. In [21] it was shown that

λ((C2)
+0) ∼= ((C2)

+0)+0 and λ((C2)
+1) ∼= ((C2)

+1)+1.

Therefore,

Aut(λ((C2)
+0)) ∼= Aut(((C2)

+0)+0) ∼= Aut((C2)
+0) ∼= Aut(C2) ∼= C1,

Aut(λ((C2)
+1)) ∼= Aut(((C2)

+1)+1) ∼= Aut((C2)
+1) ∼= Aut(C2) ∼= C1.

Let us recall that a semilattice is a commutative semigroup of idempotents. By Ln we
denote the linear semilattice {0, 1, . . . , n} of order n, endowed with the operation of mini-
mum. There are two non-isomorphic semilattices of order 3: the linear semilattice L3 and
non-linear semilattice V = {0, a, b}, where 0 is the zero of V and ab = ba = 0.

The superextensions of semilattices were studied in [4]. In particular, it was shown that
λ(L3) ∼= L4, and hence

Aut(λ(L3)) ∼= Aut(L4) ∼= C1.

Consider the non-linear semilattice V = {0, a, b}. Taking into account that

△ ∗△ ∋ a{0, b} ∪ b{0, a} = {0},
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we conclude that △2 = 0. Consequently, △ is a unique non-idempotent element in λ(V ),
and hence ψ(△) = △ for any ψ ∈ Aut(λ(V )). Therefore, each automorphism of V can be
uniquely extended to an automorphism of λ(V ) and

Aut(λ(V )) ∼= Aut(V ) ∼= C2.

We summarize the obtained results on the automorphism groups Aut(λ(S)) of super-
extensions of commutative three-element semigroups S in Table 6.

S C3 M2,2 M3,1 M·23,2 O3 AO3 O+1
2 O+0

2 C+1
2 C+0

2 L3 V

Aut(S) C2 C1 C1 C1 C2 C1 C1 C1 C1 C1 C1 C2

Aut(λ(S)) C2 C2 C1 C2 S3 C2 C2 C2 C1 C1 C1 C2

Table 6: The automorphism groups of the superextensions of commutative semigroups S of
order 3.

Remark 2. Analyzing Table 6 one can see that in general case for semigroups S and T the
isomorphism Aut(S) ∼= Aut(T ) does not imply Aut(λ(S)) ∼= Aut(λ(T )) and the isomorphi-
sm Aut(λ(S)) ∼= Aut(λ(T )) does not imply Aut(S) ∼= Aut(T ).

3.2. The automorphism groups of superextensions of non-commutative semi-
groups of order 3. There are 12 pairwise non-isomorphic non-commutative three-element
semigroups. Non-commutative semigroups are divided into the pairs of opposite semigroups
that are antiisomorphic. The automorphism groups of opposite semigroups are isomorphic.

The structure of the automorphism group of superextensions of a left zero semigroup and
a right zero semigroup was described in Proposition 2:

Aut(λ(LO3)) ∼= S4 and Aut(λ(RO3)) ∼= S4.

Consider the semigroups (LO2)
+0, (RO2)

+0, (LO2)
+1 and (RO2)

+1. In [21] it was proved
that

λ((LO2)
+0) ∼= (LO3)

+0, λ((RO2)
+0) ∼= (RO3)

+0,

λ((LO2)
+1) ∼= ((LO2)

+1)+1, λ((RO2)
+1) ∼= ((RO2)

+1)+1.

Therefore,
Aut(λ((LO2)

+0)) ∼= Aut((LO3)
+0) ∼= Aut(LO3) ∼= S3,

Aut(λ((RO2)
+0)) ∼= Aut((RO3)

+0) ∼= Aut(RO3) ∼= S3,

Aut(λ((LO2)
+1)) ∼= Aut(((LO2)

+1)+1) ∼= Aut((LO2)
+1) ∼= Aut(LO2) ∼= S2

∼= C2,

Aut(λ((RO2)
+1)) ∼= Aut(((RO2)

+1)+1) ∼= Aut((RO2)
+1) ∼= Aut(RO2) ∼= S2

∼= C2.

We have to consider the remaining three pairs of superextensions of opposite three-
element semigroups. In [21] it was shown that superextensions of opposite three-element
semigroups are opposite semigroups as well. Since the opposite semigroups have isomorphic
automorphism groups, we shall describe the automorphism group of superextensions defined
by the left Cayley tables in each pair of the following opposite superextensions.
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Let us show that the semigroups L←2 , (L←2 )op and their superextensions λ(L←2 ), λ((L←2 )op)
defined by the following Cayley tables have the trivial automorphism groups.

◦ a b c △
a a a a a

b a b a a

c c c c c

△ a △ a a

◦ a b c △
a a a c a

b a b c △
c a a c a

△ a a c a

Let ψ : λ(L←2 ) → λ(L←2 ) be an automorphism. Taking into account that b is the unique
right identity of λ(L←2 ) and △ is the unique element of λ(L←2 ) \E(λ(L←2 )), we conclude that
ψ(b) = b and ψ(△) = △. Then

ψ(a) = ψ(ba) = ψ(b)ψ(a) = bψ(a) ∈ b{a, c} = {a}.

Consequently, ψ(c) = c and hence ψ is the identity automorphism. Therefore, Aut(λ(L←2 )) ∼=
C1 and hence Aut(L←2 ) ∼= C1.

Consider the next pair of opposite three-element semigroups M←2,1 and (M←2,1)
op and their

opposite superextensions defined by the following Cayley tables.

◦ a b c △
a b b b b

b b b b b

c a b c △
△ b b b b

◦ a b c △
a b b a b

b b b b b

c b b c b

△ b b △ b

Let ψ : λ(M←2,1) → λ(M←2,1) be an automorphism. Taking into account that b is the zero
of λ(M←2,1) and c is the unique idempotent of λ(M←2,1) \ {b}, we conclude that ψ(b) = b and
ψ(c) = c. It is easy to check that the map φ : λ(M←2,1) → λ(M←2,1) defined by

φ : a 7→ △, φ : b 7→ b, φ : c 7→ c, φ : △ 7→ a,

is an automorphism. Therefore, Aut(λ(M←2,1))
∼= C2. It is easy to see that the identity

automorphism is the unique automorphism of the semigroup M←2,1 and hence Aut(M←2,1) ∼= C1.
The last two non-commutative opposite superextensions of three-element semigroups

LO←2 and (LO←2 )op are given by the following Cayley tables.

◦ a b c △
a a a a a

b b b b b

c a a a a

△ a a a a

◦ a b c △
a a b a a

b a b a a

c a b a a

△ a b a a

Let ψ : λ(LO←2 ) → λ(LO←2 ) be an automorphism of the semigroup λ(LO←2 ) given by the
left Cayley table. Since {a, b} is a subsemigroup of left zeros of λ(LO←2 ), then ψ({a, b}) =
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{a, b}, and hence ψ({c,△}) = {c,△}. One can check that each permutation of {a, b} and each
permutation of {c,△} determine an automorphism of λ(LO←2 ). Therefore, Aut(λ(LO←2 )) ∼=
C2 × C2. By the same arguments we can show that Aut(LO←2 ) ∼= C2.

The obtained results on the automorphism groups of superextensions of non-commutative
three-element semigroups are summed up in the Table 7.

S LO3, RO3 (LO2)
+0, (RO2)

+0 (LO2)
+1, (RO2)

+1 L←2 , (L←2 )op M←2,1, (M
←
2,1)

op LO←2 , (LO←2 )op

Aut(S) S3 C2 C2 C1 C1 C2

Aut(λ(S)) S4 S3 C2 C1 C2 C2 × C2

Table 7: The automorphism groups of superextensions of 3-element non-commutative semi-
groups.
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