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Abstract. Given a semilattice X we study the algebraic properties of the semigroup υ(X) of upfamilies on

X. The semigroup υ(X) contains the Stone-Čech extension β(X), the superextension λ(X), and the space of

filters ϕ(X) on X as closed subsemigroups. We prove that υ(X) is a semilattice iff λ(X) is a semilattice iff

ϕ(X) is a semilattice iff the semilattice X is finite and linearly ordered. We prove that the semigroup β(X) is

a band if and only if X has no infinite antichains, and the semigroup λ(X) is commutative if and only if X is

a bush with finite branches.

Introduction

One of powerful tools in the modern Combinatorics of Numbers is the method of ultrafilters based on the

fact that each (associative) binary operation ∗ : X ×X → X defined on a discrete topological space X extends

to a right-topological (associative) operation ∗ : β(X) × β(X) → β(X) on the Stone-Čech compactification

β(X) of X, see [HS], [P]. The Stone-Čech extension β(X) is the space of ultrafilters on X. The extension of

the operation from X to β(X) can be defined by the simple formula:

(1) U ∗ V =
〈 ⋃
x∈U

x∗Vx : U ∈ U , (Vx)x∈U ∈ VU
〉
,

where 〈B〉 = {A ⊂ X : ∃B ∈ B B ⊂ A} is the upper closure of a family B. In this case B is called a base of

〈B〉.
Endowed with the so-extended operation, the Stone-Čech compactification β(X) becomes a compact right-

topological semigroup. The algebraic properties of this semigroup (for example, the existence of idempotents

or minimal left ideals) have important consequences in combinatorics of numbers, see [HS], [P].

In [G2] it was observed that the binary operation ∗ extends not only to β(X) but also to the space υ(X) of

all upfamilies on X. By definition, a family F of non-empty subsets of a discrete space X is called an upfamily

if for any sets A ⊂ B ⊂ X the inclusion A ∈ F implies B ∈ F . The space υ(X) is a closed subspace of the

double power-set P(P(X)) endowed with the compact Hausdorff topology of the Tychonoff power {0, 1}P(X).

In the papers [G1], [G2], [BGN]–[BG4] the space υ(X) was denoted by G(X) and its elements were called

inclusion hyperspaces1. The extension of a binary operation ∗ from X to υ(X) can be defined in the same way

as for ultrafilters, i.e., by the formula (1) applied to any two upfamilies U ,V ∈ υ(X). If X is a semigroup,

then υ(X) is a compact Hausdorff right-topological semigroup containing β(X) as closed subsemigroups. The

algebraic properties of this semigroups were studied in details in [G2].

The space υ(X) of upfamilies over a discrete space X contains many interesting subspaces. First we recall

some definitions. An upfamily A ∈ υ(X) is defined to be

• a filter if A1 ∩A2 ∈ A for all sets A1, A2 ∈ A;

• an ultrafilter if A = A′ for any filter A′ ∈ υ(X) containing A;
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• linked if A ∩B 6= ∅ for any sets A,B ∈ A;

• maximal linked if A = A′ for any linked upfamily A′ ∈ υ(X) containing A.

By ϕ(X), β(X), N2(X), and λ(X) we denote the subspaces of υ(X) consisting of filter, ultrafilters, linked

upfamilies, and maximal linked upfamilies, respectively. The space λ(X) is called the superextension of X,

see [vM], [Ve]. In [G2] it was observed that for a discrete semigroup X the subspaces ϕ(X), β(X), N2(X),

λ(X) are closed subsemigroups of the semigroup υ(X). The following diagram describes the inclusion relations

between these subspaces of υ(X) (an arrow A→ B indicates that A is a subset of B).

β(X)

��

// λ(X)

��
ϕ(X) // N2(X) // υ(X)

In [G2], [BGN] — [BG4] we studied the properties of the compact right-topological semigroup υ(X) and

its subsemigroups for groups X. In this paper we shall study the algebraic structure of the semigroups λ(X),

ϕ(X), N2(X), and υ(X) for semilattices X.

Let us recall that a semilattice is a commutative idempotent semigroup. Idempotent semigroups are called

bands. So, in a band each element x is an idempotent, which means that xx = x. A semigroup S is linear

if xy ∈ {x, y} for any elements x, y ∈ X. It follows that each linear semigroup S is a band. Each (linear)

semilattice is partially (linearly) ordered by the relation ≤ defined by x ≤ y iff xy = x.

A semigroup S is called a regular semigroup if a ∈ aSa for any a ∈ S. Such a semigroup S is called an

inverse semigroup if ab = ba for any idempotents a, b ∈ S. A semigroup which is an union of groups is called

a Clifford semigroup. Every band is a Clifford semigroup and every Clifford semigroup is a regular semigroup.

An inverse semigroup with a unique idempotent is a group.

These algebraic properties relate as follows:

semilattice //

��

band // Clifford semigroup // regular semigroup

commutative inverse semigroup // Clifford inverse semigroup //

OO

inverse semigroup

OO

commutative group //

OO

group

OO

In this paper we shall characterize semigroups X whose extensions υ(X), λ(X), ϕ(X) or N2(X) are bands,

linear semigroups, commutative semigroups, or semilattices. In Section 5 we shall characterize lattices X whose

extensions υ(X), λ(X), ϕ(X) are lattices.

1. Semigroups whose extensions are bands

In this section we shall characterize semigroups X whose extensions υ(X), λ(X) or ϕ(X) are bands. Let us

recall that a semigroup S is a (linear) band if xx = x for all x ∈ X (and xy ∈ {x, y} for all x, y ∈ X).

Let us recall that an element a of a semigroup S is regular in S if a ∈ aSa. It is clear that each idempotent

is a regular element.

Theorem 1.1. For a semigroup X the following conditions are equivalent:

(1) X is linear;

(2) υ(X) is a band;

(3) ϕ(X) is a band;
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(4) λ(X) is a band.

Proof. (1)⇒ (2) Assume that the semigroup X is linear. To show that υ(X) is a band, we should check that

A ∗A = A for any upfamily A ∈ υ(X). Since X is linear, for any A ∈ A we get A = A ∗A ∈ A ∗A and hence

A ⊂ A ∗ A.

To show that A ⊃ A∗A, fix any basic subset B =
⋃

x∈A
x∗Ax ∈ A∗A where A ∈ A and Ax ∈ A for all x ∈ A.

Now we consider two cases.

(i) There is x ∈ A such that xa = a for all a ∈ Ax. In this case A 3 Ax = x∗Ax ⊂ B and thus B ∈ A.

(ii) For every x ∈ A there is a ∈ Ax such that xa 6= a and hence xa = x (as X is linear). In this case

A 3 A ⊂
⋃

x∈A x ∗Ax = B and hence B ∈ A.

The implications (2)⇒ (3, 4) are trivial.

(3)⇒ (1) Assume that ϕ(X) is a band. Then X, being a subsemigroup of ϕ(X), also is a band. To show that

X is linear, take any two points x, y ∈ X and consider the filter F = 〈{x, y}〉 ∈ ϕ(X). Being an idempotent,

the filter F is regular in υ(X). Consequently, we can find an upfamily A ∈ υ(X) such that F ∗ A ∗ F = F . It

follows that there are sets Ax, Ay ∈ A such that (xAx ∪ yAy) · {x, y} ⊂ {x, y}. In particular, for every ax ∈ Ax

we get xaxy ∈ {x, y}. If xaxy = x, then xy = xaxyy = xaxy = x. If xaxy = y, then xy = xxaxy = xaxy = y,

witnessing that the band X is linear.

(4)⇒ (1) Assume that λ(X) is a band. Then X, being a subsemigroup of λ(X), is a band as well. Assuming

that the band X is not linear, we can find two points x, y ∈ X such that xy /∈ {x, y}. It can be shown that

the maximal linked system L = 〈{x, y}, {x, xy}, {y, xy}〉 ∈ λ(X) is not an idempotent and even is not regular

in υ(X). �

Observe that the proof of Theorem 4.1 yields a bit more, namely:

Proposition 1.2. For a band X the following conditions are equivalent:

(1) X is linear;

(2) each element of ϕ(X) is regular in υ(X);

(3) each element of λ(X) is regular in υ(X).

Next we characterize semigroups X whose Stone-Čech extension β(X) is a band.

Theorem 1.3. For a semigroup X the semigroup β(X) is a band if and only if for each sequence (xn)n∈ω in

X there are numbers n < m such that xnxm ∈ {xn, xm}.

Proof. If there exists a sequence (xn)n∈ω such that xnxm /∈ {xn, xm} for all n < m, then we can take any free

ultrafilter A that contains the set A = {xn}n∈ω and observe that A ∩
⋃

n∈ω xn ∗ {xm}m>n = ∅, which implies

that A 6= A ∗ A and hence the ultrafilter A is not an idempotent in β(X).

Now assume that β(X) is not a band and find an ultrafilter F ∈ β(X) with F ∗ F 6= F . In particular,

F ∗ F * F . This implies that for some A ∈ F and {Ax}x∈A ⊂ F the set
⋃

x∈A x∗Ax /∈ F .

Consider the set X↑F = {x ∈ X : ↑x ∈ F} where ↑x = {y ∈ X : xy = x}. We claim that X↑F /∈ F . Assuming

that X↑F ∈ F , we conclude that A ∩X↑F ∈ F . This implies that ↑a ∈ F and ↑a ∩Aa ∈ F for any a ∈ A ∩X↑F .

Therefore a ∗ (↑a ∩Aa) = {a} and hence⋃
x∈A

x ∗Ax ⊃
⋃

x∈A∩X↑
F

x ∗ (↑x ∩Ax) =
⋃

x∈A∩X↑
F

{x} = A ∩X↑F ∈ F .

Thus
⋃

x∈A x∗Ax ∈ F . This contradiction shows that X↑F /∈ F .
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Next, consider the set X↓F = {x ∈ X : ↓x ∈ F} where ↓x = {y ∈ X : xy = y}. We claim that X↓F /∈ F .

Assume that X↓F ∈ F , then A ∩ X↓F ∈ F . This implies that ↓a ∈ F and ↓a ∩ Aa ∈ F for any a ∈ A ∩ X↓F .

Therefore

↓a ∩Aa ⊂ a ∗ (↓a ∩Aa) ⊂ a ∗Aa ⊂
⋃
x∈A

x ∗Ax.

Thus
⋃

x∈A x∗Ax ∈ F . This contradiction shows that X↓F /∈ F .

Since F is an ultrafilter, X↑F ∪X
↓
F /∈ F and ZF = X \ (X↑F ∪X

↓
F ) ∈ F . Let x0 ∈ ZF be arbitrary and by

induction, for every n ∈ ω choose a point xn+1 ∈ ZF \
⋃

i≤n(↑xi ∪ ↓xi) ∈ F . Then the sequence (xn)n∈ω has

the required property: xnxm /∈ {xn, xm} for n < m (which follows from xm /∈ ↓xn ∪ ↑xn). �

A subset A of a semigroup X is called an antichain if ab /∈ {a, b} for any distinct points a, b ∈ A. Theorem

implies the following characterization:

Corollary 1.4. For a commutative semigroup X the semigroup β(X) is a band if and only if each antichain

in X is finite.

2. Semilattices whose extensions are commutative

In this section we recognize the structure of semilattices X whose extensions υ(X), N2(X) or λ(X) are

commutative.

Commutative semigroups of ultrafilters were characterized in [HS, 4.27] as follows:

Theorem 2.1. The Stone-Čech extension β(X) of a semigroup S is not commutative if and only if there are

sequences (xn)n∈ω and (yn)n∈ω in X such that {xkyn : k < n} ∩ {ykxn : k < n} = ∅.

This characterization implies the following (well-known) fact:

Corollary 2.2. If the Stone-Čech extension β(X) of a semilattice X is commutative, then each linear sub-

semigroup in X in finite.

Proof. Assume conversely that X contains an infinite linear subsemilattice L. Being linear, L is linearly ordered

by the order ≤ defined by x ≤ y iff xy = x. Since L is infinite, we can apply Ramsey Theorem in order to

find an injective sequence (zn)n∈ω in L, which is either strictly increasing or strictly decreasing. Put xn = z2n

and yn = z2n+1 for n ∈ ω. Applying Theorem 2.1 to the sequences (xn)n∈ω and (yn)n∈ω we conclude that the

semigroup β(L) is not commutative. Then β(X) is not commutative neither. �

In spite of Theorem 2.1 the following problem seems to be open.

Problem 2.3. Describe the structure of semilattice X whose Stone-Čech extension β(X) is commutative.

A similar problem on commutativity of semigroups υ(X) also is open:

Problem 2.4. Characterize semigroups X whose extension υ(X) is commutative.

(It can be shown that if υ(X) is commutative, then X is a commutative semigroup with finite linear idempotent

band E = {x ∈ X : xx = x} and x3 = x4 for all x ∈ X).

We shall resolve this problem for bands. First we prove a useful result on multiplication of upfamilies on

linear semigroups.

For a semigroup X denote by υ•(X) the subsemigroup of υ(X) consisting of all upfamilies A ∈ υ(X) such

that for each set A ∈ A there is a finite subset F ∈ A with F ⊂ A.
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For a semigroup X and two upfamilies A,B ∈ υ(X) let

A⊗ B = 〈A ∗B : A ∈ A, B ∈ B〉.

It is clear that A⊗B ⊂ A∗B. In the following theorem we show that for finite linear semigroups the converse

inclusion also holds.

Theorem 2.5. If X is a linear semigroup, then A ∗ B = A⊗B for any upfamilies A ∈ υ•(X) and B ∈ υ(X).

Proof. On the semigroup X consider the relation ≤ defined by: x ≤ y iff yx = x. This relation is reflexive and

transitive. For a subsets A ⊂ X and a point x ∈ X we write A ≤ x if a ≤ x for all a ∈ A. It follows from the

definition of the semigroup operation ∗ on υ(X) that A ⊗ B ⊂ A ∗ B. To prove the reverse inclusion, fix any

basic set C =
⋃

a∈A a∗Ba ∈ A ∗ B where A ∈ A and Ba ∈ B for all a ∈ A. Since A ∈ υ•(X), we can assume

that the set A is finite and hence can be enumerated as A = {a1, . . . , an} so that ai ≤ ai+1 for all i < n. Now

let us consider two cases.

1. For some i ≤ n we get Bai ≤ ai, which means that aib = b for all b ∈ Bai and hence ai ∗Bai = Bai . For

every j ≥ i the inequality Bai ≤ ai ≤ aj implies aj ∗Bai = Bai . Consequently, A ∗Bai ⊂ {a1, . . . , ai−1} ∪Bai .

The minimality of i implies that Baj 6≤ aj for all j < i. This means bj 6≤ aj for some bj ∈ Baj and hence

ajbj = aj (as ajbj ∈ {aj , bj} and ajbj 6= bj). Then aj∗Baj 3 ajbj = aj and thus A∗Bai ⊂ {a1, . . . , ai−1}∪Bai ⊂⋃n
j=1 ajBaj , which implies that C ∈ A⊗ B.

2. Bai 6≤ ai for all i ≤ n. In this case ai ∈ ai ∗Bai for all i, and hence A ∗Ban ⊂ {a1, . . . , an} ∪ an ∗Ban ⊂⋃n
i=1 ai ∗Bai = C, so C ∈ A⊗ B. �

Now we are able to characterize bands X with commutative extensions υ(X) and N2(X).

Theorem 2.6. For a band X the following conditions are equivalent:

(1) X is a finite linear semilattice;

(2) the semigroup υ(X) is commutative;

(3) the semigroup N2(X) is commutative.

Proof. The implication (1) ⇒ (2) follows from Theorem 2.5 as A ∗ B = A ⊗ B = B ⊗ A = B ∗ A for every

A,B ∈ υ•(X) = υ(X).

The implication (2)⇒ (3) is trivial.

(3) ⇒ (1) Assume that the semigroup N2(X) is commutative. Then so is the semigroup X. Being a

commutative band, the semigroup X is a semilattice. Assuming that X is not linear, we can find two points

x, y ∈ X with xy /∈ {x, y}. It can be shown that the linked upfamilies A = 〈{x, y}〉 and B = 〈{x, xy}, {y, xy}〉 ∈
Nk(X) do not commute because {xy} ∈ A∗B \ B∗A. Therefore, X is a linear semilattice. Since β(X) ⊂ υ(X)

is commutative, Corollary 2.2 implies that the linear semilattice X is finite. �

Now we shall characterize semilattices X with commutative superextension λ(X). A semilattice X is called a

bush if for any maximal linear subsemilattices A,B ⊂ X the product A∗B is the singleton {minX} containing

the smallest element minX of X. This definition implies that A ∩ B = A ∗ B = {minX}. By a branch of a

bush X we understand a maximal linear subsemilattice of X.

Theorem 2.7. A semilattice X has commutative superextension λ(X) if and only if X is a bush with finite

branches.

Proof. First assume that X is a bush with finite branches, and take any two maximal linked systems A,B ∈
λ(X). Since the products A ∗ B and B ∗ A are maximal linked upfamilies, the equality A ∗ B = B ∗ A will



6 TARAS BANAKH AND VOLODYMYR GAVRYLKIV

follow as soon as we check that any two basic sets CAB =
⋃

a∈A a∗Ba ∈ A ∗ B and CBA =
⋃

b∈B b∗Ab ∈ B ∗ A
have non-empty intersection. Here A ∈ A, (Ba)a∈A ∈ BA, B ∈ B, and (Ab)b∈B ∈ AB . Assume conversely that

CAB ∩ CBA = ∅. Then either minX /∈ CAB or minX /∈ CBA.

Without loss of generality, minX /∈ CAB . Then minX /∈ A and for each a ∈ A the set {a} ∪ Ba lies in

a branch of X. Since branches of X meet only at the point minX, all the sets {a} ∪ Ba, a ∈ A, lie in the

same (finite) branch. Repeating the argument of Theorem 2.5, we can show that CAB ⊃ AB′ for some set

B′ ∈ B. Since B is linked, there is a point b ∈ B ∩B′. By the same reason, there is a point a ∈ A ∩Ab. Then

ab = ba ∈ AB′ ∩ bAb ⊂ CAB ∩ CBA and we are done.

Now assume that X is a semilattice with commutative superextension λ(X). Corollary 2.2 implies that all

branches of X are finite. We claim that for every z ∈ X the lower set ↓z = {x ∈ X : xz = x} is linear.

Assuming the converse, find two points x, y ∈ ↓z such that xy /∈ {x, y}. It follows that the points x, y, z, xy

are pairwise distinct. It is easy to check that the maximal linked upfamilies A = 〈{x, y}, {x, z}, {y, z}〉 and

B = 〈{x, y}, {x, xy}, {y, xy}〉 do not commute because {x, y} ∈ B ∗A\A∗B. Thus ↓z is linear for every z ∈ X,

which means that X is a tree.

Assuming that the tree X is not a bush, we can find two points x, y ∈ X such that xy /∈ {x, y, z} where z =

minX. Now consider the maximal linked systems A = 〈{x, y}, {x, z}, {y, z}〉 and B = 〈{x, y}, {x, xy}, {y, xy}〉
and observe that they do not commute as {xy} ∈ A ∗ B misses the set {x, y, z} ∈ B ∗ A. �

3. Semigroups whose extensions are semilattices

In this section we shall characterize semigroups X whose extensions υ(X), λ(X), ϕ(X), or N2(X) are

semilattices.

Theorem 3.1. For a semigroup X the following conditions are equivalent:

(1) X is finite linear semilattice;

(2) υ(X) is a semilattice;

(3) λ(X) is a semilattice;

(4) ϕ(X) is a semilattice.

Proof. (1) ⇒ (2) If X is a finite linear semilattice, then υ(X) is a semilattice (=commutative band) by

Theorems 1.1 and 2.6.

The implications (2)⇒ (3, 4) are trivial.

The implication (3)⇒ (1) follows from Theorems 1.1 and 2.7.

(4)⇒ (1) Assume that ϕ(X) is a semilattice. Then X, being a subsemigroup of the commutative semigroup

ϕ(X) is commutative. Since ϕ(X) is a band, X is a linear semigroup by Theorem 1.1. Thus X, being a

commutative linear semigroup, is a linear semilattice. Since the subsemigroup β(X) ⊂ λ(X) is commutative,

the linear semilattice X is finite by Corollary 2.2. �

4. Semigroups whose extensions are linear

In this section we characterize semigroups X whose extensions υ(X), λ(X) or ϕ(X) are linear semigroups.

A semigroup S is called a semigroup of left (right) zeros if xy = x (resp. xy = y).

Theorem 4.1. For a semigroup X the semigroup υ(X) is linear if and only if X is either a semigroup of right

zeros or a semigroup of left zeros.
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Proof. If X is a semigroup of left zeros, then for any upfamilies A,B ∈ υ(X) and any basic element
⋃

x∈A xBx ∈
A∗B we get

⋃
x∈A xBx =

⋃
x∈A{x} = A and thus A∗B ⊂ A. On the other hand, each A ∈ A belongs to A∗B

as A = A ∗B ∈ A ∗ B for any B ∈ B.

Assume that the semigroup υ(X) is linear. Then X, being a subsemigroup of υ(X), also is linear. Let x, y

be any two distinct elements of X. First we prove that xy 6= yx. Assume conversely that xy = yx. Then

xy = yx ∈ {x, y} and we lose no generality assuming that xy = x. Now consider two upfamilies A = 〈{x, y}〉
and B = 〈{x}, {y}〉 and observe that

B ∗ A = 〈{xx, xy}, {yx, yy}〉 = 〈{x}, {x, y}〉 = 〈{x}〉 /∈ {A,B},

so υ(X) is not linear and this is a required contradiction.

Thus xy 6= yx for all distinct points x, y ∈ X. We call a pair (x, y) ∈ X2 left if xy = x and yx = y and right

if xy = y and yx = x. Since X is linear, each pair (x, y) ∈ X2 is either left or right. We claim that either all

pairs (x, y) ∈ X2 are left or else all such pairs are right. Assuming the opposite, find pairs (x, y), (a, b) ∈ X2

such that (x, y) is not left and (a, b) is not right. Then x 6= y, a 6= b and the pair (x, y) is right while (a, b) is left.

Consider the filters A = 〈{x, a}〉 and B = 〈{y, b}〉 and observe that A∗B = 〈{xy, xb, ay, ab}〉 = 〈{y, xb, ay, a}〉.
Since υ(X) is linear, either A∗B = A or A∗B = B. In the first case {x, a} ⊃ {y, xb, ay, a} ⊃ {y, a} and hence

y = a. In the second case, {y, a} ⊂ {y, b} and thus a = y. Now consider the filters C = 〈{x, b}〉 and D = 〈{a}〉
and observe that C ∗ D = 〈{xa, ba}〉 = 〈{xy, b}〉 = 〈{y, b}〉 = 〈{a, b}〉 /∈ {C,D}, which contradicts the linearity

of υ(X).

Therefore either each pair (x, y) ∈ X2 is left and then X is a semigroup of left zeros or else each pair

(x, y) ∈ X2 is right and then X is a semigroup of right zeros. �

Theorem 4.2. For a semigroup X the following conditions are equivalent:

(1) the semigroup ϕ(X) is linear;

(2) the semigroup N2(X) is linear;

(3) either X is a semigroup of left zeros or X is a semigroup of right zeros or else X is a semilattice of

order |X| ≤ 2.

Proof. (3) ⇒ (2) If |X| = 1, then N2(X) is a singleton and hence is a linear semigroup. If X is a semilattice

of order |X| = 2, then X = {0, 1} for some elements 0, 1 with 0 · 1 = 1 · 0 = 0. In this case N2(X) = ϕ(X) is a

3-element linear semilattice ordered as:

〈{0}〉 ≤ 〈{0, 1}〉 ≤ 〈{1}〉.

If X is a semigroup of left or right zeros, then the semigroup υ(X) is linear by Theorem 4.1 and so is its

subsemigroup N2(X).

(2)⇒ (1) Is the semigroup N2(X) is linear, then so is its subsemigroup ϕ(X).

(1) ⇒ (3) Assume that the semigroup ϕ(X) is linear. Then X, being a subsemigroup of ϕ(X), is linear as

well. If |X| ≤ 2, then either X is a linear semilattice or a semigroup or left or right zeros. So, we assume that

|X| ≥ 3. We claim that distinct elements x, y ∈ X do not commute. Assume conversely that xy = yx for some

distinct elements x, y ∈ X. Since xy = yx ∈ {x, y} we lose no generality assuming that xy = yx = x. Fix any

element z ∈ X \ {x, y}. Now consider 3 cases:

1. zx = z. In this case we can consider the filters A = 〈{z, y}〉 and B = 〈{x, y}〉 and observe that

A ∗ B = 〈{zx, yx, zy, yy}〉 = 〈{z, x, zy, y}〉 /∈ {A,B}, which contradicts the linearity of ϕ(X).

2. zx = x and zy = z. In this case we can consider the filters A = 〈{z, y}〉 and B = 〈{x, y}〉 and observe

that A ∗ B = 〈{zx, yx, zy, yy}〉 = 〈{x, x, z, y}〉 /∈ {A,B}, which contradicts the linearity of ϕ(X).
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3. zx = x and zy = y. In this case we can consider the filters A = 〈{x, z}〉 and B = 〈{y, z}〉 and observe

that A ∗ B = 〈{xy, xz, zy, zz}}〉 = 〈{x, xz, y, z}〉 /∈ {A,B}, which again contradicts the linearity of ϕ(X).

Those contradictions show that distinct elements of X do not commute. Continuing as in the proof of

Theorem 4.1, we can show that X is a semigroup of right or left zeros. �

Finally, we characterize commutative semigroups with linear superextensions.

Theorem 4.3. For a commutative semigroup X the semigroup λ(X) is linear if and only if X is a linear

semilattice of order |X| ≤ 3.

Proof. If X is a linear semilattice of order |X| ≤ 2, then the semigroup λ(X) = X is linear.

If X is a linear semilattice of order |X| = 3, then X can be identified with the set 3 = {0, 1, 2} endowed with

the operation xy = min{x, y}. The semigroup λ(X) contains 4 elements: 0, 1, 2 and ∆ = {A ⊂ 3 : |A| ≥ 2}.
One can check that λ(3) is a linear semilattice ordered as follows:

0 ≤ ∆ ≤ 1 ≤ 2.

This proves the “if” part of the theorem. To prove the “only if” part we first shall analyze the structure

of the superextension λ(4) of the semilattice 4 = {0, 1, 2, 3} endowed with the operation xy = min{x, y}. By

Theorem 3.1, λ(4) is a semilattice. It contains 12 elements:

〈k〉, ∆k = 〈{A ⊂ n : |A| = 2, k /∈ A} and �k = 〈{n \ {k}, A : A ⊂ n, |A| = 2, k ∈ A}〉 where k ∈ 4.

The order structure of the semilattice λ(4) is described in the following diagram:

〈3〉

�3

OO

∆1

==

∆2

OO

∆0

aa

�0

OO ==

�2

aa ==

�1

OOaa

〈2〉

OO

∆3

OO

XX FF

〈1〉

OO

〈0〉

OO

Looking at this diagram we see that the semilattice λ(4) is not linear.

Now assume that X is a commutative semigroup whose superextension λ(X) is linear. Then X is a linear

semilattice. If |X| ≥ 3, then λ(X) is not linear as it contains a subsemigroup isomorphic to the semilattice

λ(3), which is not linear. �
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5. Lattices whose extensions are lattices

In this section we characterize lattices whose extensions υ(X), λ(X) or ϕ(X) are lattices.

A lattice is a set X endowed with two semilattice operations ∧,∨ : X ×X → X such that (x ∧ y) ∨ y = y

and (x ∨ y) ∧ y = y for all x, y ∈ X.

Both operations ∧ and ∨ of a lattice X can be extended to right-topological operations ∧ and ∨ on the

compact Hausdorff space υ(X). Is it natural to ask if the triple (υ(X),∧,∨) is a lattice.

A lattice will be called linear if x ∧ y, x ∨ y ∈ {x, y} for all x, y ∈ X.

Theorem 5.1. For a lattice X the following conditions are equivalent:

(1) X is a linear lattice of order |X| ≤ 2.

(2) υ(X) is a lattice;

(3) λ(X) is a lattice;

(4) ϕ(X) is a lattice.

Proof. (1)⇒ (2) IfX is a linear lattice of order |X| = 1, then υ(X) = X is a trivial lattice. IfX is a linear lattice

of order 2, then X can be identified with the lattice 2 = {0, 1} endowed with the operations x∧ y = min{x, y}
and x ∨ y = max{x, y}. In this case λ(2) = β(2) coincides with the lattice 2, ϕ(2) = {〈{0}〉, 〈{0, 1}〉, 〈{1}〉}
is a 3-element lattice, isomorphic to the lattice 3 = {0, 1, 2} endowed with the operations min and max, and

υ(2) =
{
〈{0}〉, 〈{0, 1}〉, 〈{0}, {1}〉, 〈{1}〉

}
is a 4-element lattice isomorphic to the lattice {0, 1}2.

The implications (2)⇒ (3, 4) are trivial.

(3, 4)⇒ (1) Assume that λ(X) or ϕ(X) is a lattice. By Theorem 3.1, the lattice X is finite and linear. We

claim that |X| ≤ 2. Assuming the converse, we conclude that the lattice X contains a sublattice isomorphic

to the lattice (3,min,max).

Consider the maximal linked upfamily ∆ = {A ⊂ 3 : |A| ≥ 2} and observe that

max{∆, 〈1〉} = 〈1〉 = min{∆, 〈1〉},

which implies that λ(3) is not a lattice and then λ(X) also is not a lattice.

Next, consider the filters A = 〈{0, 1, 2}〉 and B = 〈{0, 2}〉 and observe that

max{A,B} = A = min{A,B}

implying that ϕ(3) is not a lattice and then ϕ(X) also cannot be a lattice. �
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