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Two non-elementary integral functions
defined using central factorial powers

We study two new real-valued non-elementary functions generated by central factorial
powers. Graphs of such functions are plotted and some of their properties are proved.
It is also shown that new integral functions are solutions of fourth order linear ordinary
differential equations with variable coefficients.
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Hocimigkeno nBi HOBI HeeslemeHTapHi yHKIT agificHoi 3MiHHOT THMHy iHTerpaJiB
®penens, mobyaoBaHi i3 3acTOCyBaHHSAM MEHTPAJIbHUX (paKTOpiajJbHUX crerneHiB. Bcra-
HOBJIEHO JesiKi BjacTtuBocTi mux QyHKIIN, HaBeseHO Tx rpadiku. BuBemeno 3Buuaiini
nudepeHIiiajgbHi piBHIHHSI, PO3B’d3KaMU AKUX € HOBi PyHKITIl.

Karwuosi caosa: daxmopiarvrull cmenino, uenmparvHutl GaxmopiarvHull cmeniny, Y3a2aibHeHa
2inepzeomempuira PyrKuis, inmeepasy Operes.

WccnemoBaHbl nBe HOBbIE HedJIEMEHTapHbIe (PYHKIMMN JIeHCTBUTEJILHON IepeMeHHO’
TUuna uHTErpajioB @peHesisi, IOCTPOEHHBbIE NIPU MOMOINA IEHTPAJIBHBIX (PAKTOPUATBHBIX
cremneHeili. YCTAaHOBJIEHbI HEKOTOPbIE CBOUCTBA 3TUX (QYHKIHMI, IPpUBEAEeHbI UX rpadukKu.
BriBesienbl 00ObIKHOBeHHbIe auddepeHIIUAIbHbIE yPaBHEHUsI, PEIIEHUsIMU KOTOPbBIX
SIBJIAIOTCH HOBbIe (DYyHKIIUU.

Kmouesnie crosa: gaxmopuarvhan cmenensp, UeHMpParbHas GaxmopuasvbHas cmenets, 0600uweH-

HAA 2UNEPSEOMEMPUYECKAA gﬁyv—mu,wz, UuHmMmEeEPaANDBL (PpeHe./m.

1. Introduction

Mathematical models of many natural processes and phenomena lead to problems,
exact solutions of which can not be obtained by well-known classical methods. This
is a main reason for further development of numerical analysis, applied mathematics,
and function theory. Extension of the “library” of non-elementary functions leads to
extension the class of the problems that can be solved in closed form. Main attention
is paid to the study of new non-elementary functions for further use in solving new
theoretical and practical problems.

In [6] we defined new non-elementary functions Sincz, Coscz constructed by
replacing in a power series of trigonometric functions sin x, cos x falling factorial powers
n” (i.e. usual factorials) by corresponding central powers nl". Replacing in the Fresnel

X X
integrals [sin¢?dt, [ cost*dt trigonometric functions by the functions Sincz, Coscx
0 0

we get new real-valued functions

~

S(x) :/ Sinc t*dt, (7(3;):/ Cosc t*dt.
0 0
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TWO NON-ELEMENTARY INTEGRAL FUNCTIONS

In [8] we studied similar functions constructed using rising factorial powers.

It is known that Fresnel integrals and their various generalizations appears in
diffraction theory, vibration theory, design of highways and railroad tracks, robot
trajectory planning, computer-aided design, technology of oil-well drilling (see, for
example, [2, 4, 11, 12, 13, 16| and the references given there).

The aim of this paper is to study the functions S(z) and C(x).

2. Preliminaries and Notations

Definition 1. [10]| For arbitrary € R and m € N the expression
e = g(x 4+ k) (@ +2k) ... (z 4+ (m — 1)k)

is called the factorial power m with the step k € R.
Factorial power ™*} is called rising if k > 0 and is called falling if k < 0.

Definition 2. [15] For arbitrary = € R and m € N the expression

k k k
xmm:x<x+m7_k>(x+m7_2k).....(x+m7+k)

is called the central factorial power m with the step k£ > 0.

By definition, put 2°%*} = 1 and 2°% = 1. If k = 0, we obtain the power function,
ie. ™0 = gm0 = gm

Rising factorial powers with the step 1 (or the Pochhammer symbol) and falling
factorial powers with the step (—1) we will denote, respectively, by

g™ =g =g+ D)@ +2) .. (z+m—1),
MY =g = p(r— 1) (2 —2) ... (. —m+1).
Relation between a factorial function m! and rising (falling) factorials is expressed

by the formula m! = 1" = m™.
Central factorial powers with the step 1 we will denote by z™. For example,

o =i (5= ) (o= 3o (o D)o+ ).

71 = 260 .= (z — 2)(z — 1) 2%(2 + 1)(z + 2).

As functions of z, the rising, falling and central factorials powers are special cases
of the polynomial sequences of binomial type studied mainly in combinatorics and
calculus of finite differences (see, in particular, [5], [14]).

In general, duality of factorial powers (rising, falling and central) is a common
feature in the combinatorics. In other words, if a problem leads to some combinatorial
identity constructed, for example, using factorial powers then often there is a dual
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combinatorial problem, which leads to a dual combinatorial identity involving rising or

central factorial powers (see [9], [17])

3. Functions Sincz, Cosc x defined by the central

factorial powers

The well-known power series
: o - (_1)” 2n+1 __ S (_1)” 2n+1
S nzzo en+1)l" T ; 2n+ )z’
_ = (_1)71 on __ - (_l)n 2n
cose = 32 o e = 3

n=0
can be treated as the series constructed using the rising factorial powers. In analogy

to these series in [6] we investigate new non-elementary functions Sincz, Coscx

constructed using the central factorial powers
, = (—1)" 5 x 23 x°
Sincz = e + —
R PIcTEs T R T FET A £ SR
e (_1)n ) xQ 124 x6
C ot n g 1 R —
oser ;(271)[2”}35 223445 45606738
Clearly
1)"4"™(2n — 1)
S _ 2n+1 1
incr=ux+ Z G+ 1] x , (1)
(n—1" o,
’ (2)

Cosc:vzl—i—z ]
n_

Absolute convergence on the real axis of the series (1) and (2) can easily be shown
by; z) be a generalized hypergeometric function defined by

Let pFy(ar,...,ap;b1,. ... b,
generalized hypergeometric series, i.e. [3|
. afal-...-al Zm
: Do) — P
qu(a,l,...7(lp,b1,...,bq,2)— m m, (3)
= brby .. by nl

where a” is a rising factorial power with the step 1

Proposition 1. For all real x the equalities
57 x2>

. —r- (12 =
Sincrx =x -4 2(,6,6, o

are valid.
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(2s+1)!

Proof. First we prove formula (4). With (1) given that (2s + 1)!! = =7+~ we obtain

= (=1)"16™(2n + 1)!(3n + 3)!
Sincx:$—32x32< ) (n+ )(n+ ):BQ”

— n!l(6n + 7)!
=z |1+ — - ( =
( 2T mnrn m\ )
> 1™ 22\" 57 x?
:[L’Z = = (——) =x 1FQ(1,—,—,——)
()T (D) T\ 27 6'6° 27

Similarly, with (2) we obtain that the function Coscx can be written as

4

2
Coscx = 1_x_<1

[SVIEN

n=1

8
3
- 1" z2\" x? 45
21——2 ﬁ<__) 21——'1F2(1;—7—3——)~
4 (&7 (E) I\ 27 4 373 27

Figures 1, 2 shows the graphs of the functions y = Sincx and y = Cosc x.

Fig. 1. Graph of the function y = Sinczx

S T (_2_7)) )
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| | N

Fig. 2. Graph of the function y = Coscz

~

4. Integral functions C(z), S(z)

We will denote by S(z) and C(xz) the integral functions defined by the formulae

§(x):/ Sinc ¢? dt,
0

:/ Cosc t2 dt.
0

(6)

(7)

Using (1), (2), (6) and (7) we obtain the following series expansion of functions

S(z), C(x):

PO Yo UCTICD e

‘6n+1 N(4n + 3) ’

n=0

—1
Y=a 4 - Z "(n )! pAntl

3n—1 )(4n + 1)

Proposition 2. For all real x the equalities

~ x3 3 577 gt
= — . F — 1— —_— — ., —
S() =752 3(4’ 6674’ 27)’

are valid.
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Proof. Using (3), from (8) we obtain
)16 (2n)!(3n)! .

A 28
Zn'6n+1 (4n +3) "

3 > _Z 4n—1 1;471
St I () )-
i Z<——><—><——> 5
sy
R RGN

e (_1)nn| 4n

116 e L
(

The graphs of functions y = S(z) and y = C(z) are plotted in the figures 3 and 4.

| |

~

Fig. 3. Graph of the function y = S(x)
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~

Fig. 4. Graph of the function y = C(x)

5. Differential equations for the functions S (x), C (x)

It is shown that both functions S(z), C(z) are solutions of Cauchy problems for
linear ordinary differential equations with polynomial coefficients.

Theorem 1. The functions §(m), 6(3;) are solutions, respectively, of the Cauchy
problems

2723y — 812y 4 (162° + 177x)y" + (322* — 192)y’ = 0,
y(0) ='(0) = y"(0) =0, ¥"(0) =2;
2723y — 1352%y" + (162° + 339)y" — 384y’ = —384,
y(0) =0, y'(0) =1, y(0) = y"(0) = 0.

Proof. Using (8), (9), we obtain that the functions S(z), C(z) satisfy the
corresponding initial conditions from (12) or (13). It remains to check that these
functions are solutions of the differential equations from (12), (13).

According to (10), function S(z) is expressed through a generalized hypergeometric

function of a form o F3 (ay, as; by, be, bs; 2); it satisfies ordinary differential equation of
the fourth order [3]

(12)

(13)

(c(c+bi—1)(c+by—1)(c+bs—1)—2z(0+ar) (0 +as))w(z) =0,
where o is differential operator zdiz. Thus, the function

3 5 7 7
w(z) = o} <z_l’ 1; 56 Z;Z) (14)
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is the solution of the ordinary differential equation

(U(U——)(J+ )(a—k%)—z(o—i—%) (a+1))w(z)=0. (15)
Since
d d d? d d? a3
1 _ 2 3 _ 2 3
g —Zd, o —Z@‘i‘ @, g 25—1—32 @—l—z F,
d d? d3 d4
4
g _Z%+72d2+62 F—I—Z W,

from (15) after simple transformations we obtain that function (14) satisfies the linear
differential equation

27 83 245 11 3
(4) 2 " .2 " =/ = I 2oy — 1
+57 +<—9z z)w +(144 4z>w 7Y 0. (16)

Substituting independent variable in (16) by z = —x1/27 we get

, 27 w', s 729 xw” — 3w, " 19683 x2w” — 9zw! + 21w,
T Ty T T o 0 T T 211 ’
o _ 531441 whw? — 180wl + 1wy — 231w,

: 256 EE !

and function w(z) = 2F3(§ ;2,15 %

equation

i

> is a solution of the linear homogeneous

2723w ™ + 2432%w" + (162° + 4202)w” + (128z* + 60)w’ + 1922w = 0. (17)
Since according to (10) w(z) = 3z73-S(z) then from (17) we obtain

(4) " 216" 200/ 1
27x3(3y 36y N 6y” 720y N O80y>+

x3 I’4 x5 xﬁ 1;7
3y 27y 108y 180 3y 18y 36
+243:v2< by =Y +(16x5+42093)< v +—5y)+
xXr xXr xr x X x X
3 9
(1282 + 60) <—y3 - —y> + 576y = 0
A

it follows that the function y = S (x) is a solution of the linear ordinary differential
equation from (12).

Now it is proved that the function é(x) is a solution of differential equation
from (13). Similarly for the function S(z) we sce that hypergeometric function

w(z) = 2F3(1, i, ‘31, g, ' ) from (11) is a solution of the equation
33 137 13 5!
(4)+ 4 2 m‘i‘(TZ—Z) (5—ZZ>UJ/—1U):07
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and the function w(z) = o F3 (1 3.4 5 3. —m—4> is a solution of the differential equation

2723w + 40522w" + (162° + 1554z)w” + (1602 + 1386)w’ + 3202w = 0. (18)

Substituting into (18) w(z) = 20z°(1 — é(x)) (according to (11)) we obtain that
the function y = C (x) is a solution of the equation from (13).
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