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Kenmotsu 3-manifolds and gradient solitons

Mofarreh F.1, De U.C.2

The aim of this article is to characterize a Kenmotsu 3-manifold whose metric is either a gradient

Yamabe soliton or gradient Einstein soliton. It is proven that in both cases this manifold is reduced to

the manifold of constant sectional curvature. Finally, we verify the obtained results by an example.
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Introduction

Yamabe flow was introduced by R.S. Hamilton [9] in 1988 at the same time of Ricci flow.

Yamabe flow is a natural geometric deformation to metrics of constant scalar curvature. A

Yamabe soliton is a special solution of the Yamabe flow that moves by one parameter family of

diffeomorphism ft generated by a vector field X on N. According to R.S. Hamilton, a Yamabe

soliton is defined on a Riemannian manifold (N, g) by a vector field X satisfying

1

2
£Xg = (ρ − λ)g, (1)

where £X denotes the Lie derivative along the vector field X, ρ is the scalar curvature of g and

λ is a constant. The vector field X is called the soliton field of the Yamabe soliton. A Yamabe

soliton is said to be expanding, shrinking or steady if λ > 0, λ < 0 or λ = 0, respectively.

If X = D f for some smooth function f and D is the gradient operator of g, then the Yamabe

soliton is said to be gradient Yamabe soliton and (1) takes the form

∇2 f = (ρ − λ)g, (2)

where ∇2 is the Hessian operator of g. Gradient Yamabe solitons have been studied by several

authors (see [1–3, 5, 8, 14, 16] and many others).

Definition 1 ([6]). The metric g of the Riemannian manifold (N, g) is termed as gradient Ein-

stein soliton in case both the function f : N → R and constant a ∈ R satisfies

S −
1

2
ρg +∇2 f = ag, (3)

where S indicates the Ricci tensor. The soliton with constant function f is called trivial.
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On the other hand in [15], S. Tanno classified (2m + 1)-dimensional connected almost con-

tact metric manifolds N with almost contact metric structure (φ, ξ, η, g), whose automorphism

groups have the maximum dimension (m + 1)2. For such a manifold, the sectional curvature

of plane sections containing ξ is a constant, say c. If c > 0, N is homogeneous Sasakian man-

ifold of constant φ-sectional curvature. If c > 0, N is global Riemannian product of a line or

a circle with a Kähler manifold of constant holomorphic sectional curvature. If c > 0, N is

a warped product space R × C∞. In [11], K. Kenmotsu abstracted the differential geometric

properties of the third case. V.F. Kirichenko [12] obtained Kenmotsu structures from cosym-

plectic structures by the canonical transformations [17]. Thus, Kenmotsu manifolds represent

now a well known class of almost contact metric manifolds.

In [10], author proves that, if (N, g) with dimension m > 3 be a compact Yamabe gradient

soliton, then N is of constant scalar curvature.

In this paper, we replace compactness by considering Kenmotsu 3-manifolds and provide

the following result.

Theorem 1. A Kenmotsu 3-manifold with gradient Yamabe soliton is of constant sectional

curvature −1.

It is noticed that all compact gradient Einstein solitons are trivial [6].

Here we replace compactness by considering Kenmotsu 3-manifolds and prove the follow-

ing assertion.

Theorem 2. A Kenmotsu 3-manifold with gradient Einstein soliton is of constant sectional

curvature.

1 Preliminaries

An almost contact structure [4] on a (2m + 1)-dimensional smooth manifold N is a triplet

(φ, ξ, η), where φ is a (1, 1)-type tensor, ξ is a global vector field and η is a 1-form, such that

φ2 = −id + η ⊗ ξ, η(ξ) = 1, (4)

where id denotes the identity mapping. The relation (4) implies that φ(ξ) = 0, η ◦ φ = 0

and rank(φ) = 2m. The almost contact structure induces a natural almost complex structure

J on the product manifold N × R defined by J(U, λd/dt) =
(

φU − λξ, η(U)d/dt
)

, where U

is tangent to N, t is the coordinate of R and λ is a smooth function on N × R. The almost

contact structure is said to be normal [13] if the almost complex structure J is integrable or

equivalently [φ, φ] + 2dη ⊗ ξ vanishes, where [φ, φ] is the Nijenhuis torsion of φ. Let g be a

compatible Riemannian metric with (φ, ξ, η), that is,

g(φU, φV) = g(U, V)− η(U)η(V)

or equivalently, Φ(U, V) = g(U, φV) along with g(U, ξ) = η(U) for all U, V ∈ χ(N). Then N is

an almost contact metric manifold equipped with an almost contact metric structure (φ, ξ, η, g).

An almost contact metric manifold is called a Kenmotsu manifold if it satisfies

(∇Uφ)V = g(φU, V)ξ − η(V)φU (5)
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for all U, V ∈ χ(N), where ∇ is Levi-Civita connection of the Riemannian metric. A Kenmotsu

manifold is normal but not Sasakian. Moreover, it is also not compact since from the formula

(5) we get

∇Uξ = U − η(U)ξ,

which gives divξ = 2m. A conformal change g∗ of a Riemannian metric g is called a concircu-

lar transformation [17] if geodesic circles of g are transformed into geodesic circles of g∗. Here

a geodesic circle means a curve whose first curvature is constant and whose second curvature

is identically zero. A cosymplectic structure is defined to be a normal almost contact metric

structure (φ, ξ, η, g) with both the fundamental 2-form Φ and the 1-form η is closed. An al-

most contact metric structure is cosymplectic if and only if ∇φ = 0. In [12], V.F. Kirichenko

obtained the class of Kenmotsu manifolds from cosymplectic manifolds by the canonical con-

circular transformations. A Kenmotsu manifold is of constant curvature −1 if and only if it is

canonically concircular to Cm × R (see [12]).

For a (2m + 1)-dimensional Kenmotsu manifold, the following formulas hold:

K(U, V)ξ = η(U)V − η(V)U, (6)

(∇Uη)V = g(U, V)− η(U)η(V),

S(ξ, ξ) = g(Qξ, ξ) = −2m

for any U, V ∈ χ(N), where S is the Ricci tensor, Q is the Ricci operator and K is the curvature

tensor. We know [7], that for a Kenmotsu 3-manifold we have

K(U, V)W =
ρ + 4

2

[

g(V, W)U − g(U, W)V
]

−
ρ + 6

2

[

g(V, W)η(U)ξ − g(U, W)η(V)ξ + η(V)η(W)U − η(U)η(W)V
]

,

QU =
1

2

[

(ρ + 2)U − (ρ + 6)η(U)ξ
]

, (7)

S(U, V) =
1

2

[

(ρ + 2)g(U, V) − (ρ + 6)η(U)η(V)
]

. (8)

An almost contact metric manifold is said to be η-Einstein if the Ricci tensor S satisfies

S(V, W) = ag(V, W) + bη(V)η(W)

for any vector field V, W on N and a, b are arbitrary functions on N. An η-Einstein manifold

with b vanishing and a a constant is obviously an Einstein manifold. An η-Einstein manifold

is said to be proper η-Einstein if b 6= 0.

Kenmotsu 3-manifolds also have been studied in [7, 18, 19] and many others.

Lemma 1 ([18]). On any Kenmotsu 3-manifold (N, φ, ξ, η, g) we have

ξρ = −2(ρ + 6). (9)

Lemma 2 ([7]). A 3-dimensional Riemannian manifold is a manifold of constant sectional cur-

vature −1 if and only if the scalar curvature ρ is equal to −6.

Lemma 3 ([11, Proposition 8]). Let N be an η-Einstein Kenmotsu manifold S = ag + bη ⊗ η,

and a, b be scalar functions. If either a or b is constant then the manifold becomes an Einstein

manifold.
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2 Proof of the main results

Proof of Theorem 1. Let a Kenmotsu 3-manifold N admits a gradient Yamabe soliton. Then from

the equation (2), we have

∇V D f = (ρ − λ)V, (10)

from which we get

K(U, V)D f = (Uρ)V − (Vρ)U. (11)

Contracting the above equation, we infer

S(V, D f ) = −2(Vρ). (12)

Replacing U by D f in (8) and using (12) entails that

−2(Vρ) =
(ρ

2
+ 1

)

(V f ) −
(ρ

2
+ 3

)

(ξ f )η(V). (13)

Putting V = ξ in the above equation, we obtain

ξρ = ξ f . (14)

In view of (9) and (14), we get

ξ f = ξρ = −2(ρ + 6). (15)

Taking inner product of (11) with ξ and using (6), we infer

(U f )η(V) − (V f )η(U) = (Uρ)η(V) − (Vρ)η(U). (16)

Putting V = ξ in (16) and using (14), we get

U f = Uρ. (17)

Using (17) and (15) in (13), we obtain

(ρ

2
+ 3

)

[

(Vρ) + 2(ρ + 6)η(V)
]

= 0,

which implies either ρ = −6 or ρ 6= −6.

Case ρ = −6. Using Lemma 2 we conclude that the manifold is of constant sectional curva-

ture −1.

Case ρ 6= −6. We have Vρ = −2(ρ + 6)η(V). Using (17), we get D f = −2(ρ + 6)ξ. The

equation (15) entails that

ξ(ξρ) = 4(ρ + 6). (18)

We know ξ f = g(ξ, D f ). Then using (10), we obtain ξ(ξ f ) = (ρ − λ). Since ξ f = ξρ, we have

from the above equation

ξ(ξρ) = (ρ − λ). (19)

Equation (18) and (19) together give ρ = −1
3(λ + 24) = constant. Since V f = Vρ and

ρ= constant, therefore we get f = constant.

Thus using f = constant in (15) implies that ρ = −6 which is a contradiction. This completes

the proof.
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Remark. Since the manifold N is of constant sectional curvature −1, therefore N is locally

isometric to the hyperbolic space H3(1).

Proof of Theorem 2. The equation (3) implies

QU −
1

2
ρU +∇U D f = λU. (20)

In view of (7) and (20), we get

∇UD f = (λ − 1)U +
(ρ

2
+ 3

)

η(U)ξ, (21)

from which we get

K(U, V)D f =
1

2
(Uρ)η(V)ξ −

1

2
(Vρ)η(U)ξ + (

ρ

2
+ 3)

[

η(V)U − η(U)V
]

. (22)

Contracting the above equation and using (9), we infer

S(V, D f ) = −
1

2
(Vρ). (23)

Replacing U by D f in (8) and using (23), we obtain

−
1

2
(Vρ) =

(ρ

2
+ 1

)

(V f ) −
(ρ

2
+ 3

)

(ξ f )η(V). (24)

Putting V = ξ in the above equation and using (9), we get

ξ f = −
1

2
(ρ + 6). (25)

Taking inner product of (22) with ξ and using (6), we infer

(U f )η(V) − (V f )η(U) =
1

2

[

(Uρ)η(V) − (Vρ)η(U)
]

. (26)

Putting V = ξ in (26) and using (9) and (25), we get

−
1

2
(Uρ) =

1

2
(ρ + 6)η(U)− (U f ). (27)

Using (25) and (27) in (24), we obtain
(ρ

2
+ 2

)

[

(V f ) +
1

2
(ρ + 6)η(V)

]

= 0,

which implies either ρ = −4 or ρ 6= −4.

Case ρ = −4. Then the scalar curvature is constant. Using ρ = −4 in equation (8) gives

S(U, V) = −g(U, V)− η(U)η(V),

which implies that the manifold is an η-Einstein manifold.

Case ρ 6= −4. Then V f = −1
2(ρ + 6)η(V). This implies

D f = −
1

2
(ρ + 6)ξ. (28)

From (9) and the above equation, we get

∇ξ D f = (ρ + 6)ξ. (29)

Using (29) in (21), we get ρ = 2λ − 8 = constant. Hence from (28) we can say that D f is a

constant multiple of ξ, say D f = cξ, c being a constant. Hence from (20), we obtain

QU = (2λ − c − 4)U + cη(U)ξ, (30)

which implies that the manifold is an η-Einstein manifold.

Now, using Lemma 3, from the equation (30), we infer that N is an Einstein manifold. Since

N is a Kenmotsu 3-manifold, therefore, N is of constant sectional curvature. This completes

the proof.
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3 Example

We consider N = {(x, y, z) ∈ R
3, z 6= 0}, where (x, y, z) are the standard coordinates of R

3.

Let {e1, e2, e3} be a linearly independent global frame on N given by

e1 = z
∂

∂x
, e2 = z

∂

∂y
, e3 = −z

∂

∂z
.

Let g be the Riemannian metric defined by

g(e1, e1) = g(e2, e2) = g(e3, e3) = 1,

g(e1, e2) = g(e1, e3) = g(e2, e3) = 0.

Let η be the 1-form defined by η(W) = g(W, e3) for all W ∈ χ(N) and φ be the (1, 1)-tensor

defined by

φe1 = −e2, φe2 = e1, φe3 = 0.

Then using the linearity of φ and g, we get

φ2W = −W + η(W)e3, η(e3) = 1,

g(φV, φW) = g(V, W)− η(V)η(W)

for any V, W ∈ χ(N).

Then for e3 = ξ, the structure (φ, ξ, η, g) defines an almost contact metric structure on N.

Let ∇ be the Levi-Civita connection with respect to the metric g. Then we have

[e1, e2] = 0, [e2, e3] = e2, [e1, e3] = e1.

The Riemannian connection ∇ of the metric g and using Koszul’s formula, we have

∇e1e1 = −e3, ∇e1e2 = 0, ∇e1e3 = e1,

∇e2e1 = 0, ∇e2e2 = −e3, ∇e2e3 = e2,

∇e3e1 = 0, ∇e3 e2 = 0, ∇e3e3 = 0.

From the above we see that ∇Wξ = W − η(W)ξ for all W ∈ χ(N). Hence the manifold is a

Kenmotsu manifold.

Now, we have

K(U, V)W = ∇U∇VW −∇V∇UW −∇[U,V]W. (31)

With the help of the previous results and using (31), we obtain

K(e1, e2)e3 = 0, K(e1, e2)e2 = −e1, K(e1, e2)e1 = e2,

K(e2, e3)e3 = −e2, K(e3, e2)e2 = −e3,

K(e3, e1)e1 = −e3, K(e3, e1)e3 = e1.

From the foregoing equation, we can easily calculate the non-vanishing components of the

Ricci tensor S as follows

S(e1, e1) = S(e2, e2) = S(e3, e3) = −2.
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Hence, we get

ρ = S(e1, e1) + S(e2, e2) + S(e3, e3) = −6,

where ρ is the scalar curvature.

Let

V = b1e1 + b2e2 + b3e3, U = a1e1 + a2e2 + a3e3,

where bi, ai, i = 1, 2, 3, are constants. Let f = log z, z > 0, be a smooth function.

Now (V f ) = b1(e1 f ) + b2(e2 f ) + b3(e3 f ) = −b3 is a constant. This implies ∇2 f = 0. Thus

g defines the gradient Yamabe soliton with f = log z and λ = −6. Therefore Theorem 1 is

verified. Also, g defines the gradient Einstein soliton with f = log z and λ = 1. Therefore

Theorem 2 is verified.
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Метою цiєї статтi є охарактеризувати 3-многовид Кенмотсу, метрика якого є або ґрадiєн-

тним солiтоном Ямабе або ґрадiєнтним солiтоном Айнштайна. Доведено, що в обох випадках

цей многовид редукується до многовида сталої секцiйної кривизни. Насамкiнець ми перевiря-

ємо отриманi результати за допомогою прикладу.

Ключовi слова i фрази: 3-многовид Кенмотсу, ґрадiєнтний солiтон Ямабе, ґрадiєнтний солi-

тон Айнштайна.


