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Kenmotsu 3-manifolds and gradient solitons

Mofarreh F.1, De U.C.2

The aim of this article is to characterize a Kenmotsu 3-manifold whose metric is either a gradient
Yamabe soliton or gradient Einstein soliton. It is proven that in both cases this manifold is reduced to
the manifold of constant sectional curvature. Finally, we verify the obtained results by an example.
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Introduction

Yamabe flow was introduced by R.S. Hamilton [9] in 1988 at the same time of Ricci flow.
Yamabe flow is a natural geometric deformation to metrics of constant scalar curvature. A
Yamabe soliton is a special solution of the Yamabe flow that moves by one parameter family of
diffeomorphism f; generated by a vector field X on N. According to R.S. Hamilton, a Yamabe
soliton is defined on a Riemannian manifold (N, g) by a vector field X satisfying

2xg = (0= Mg, 0

where £x denotes the Lie derivative along the vector field X, p is the scalar curvature of g and
A is a constant. The vector field X is called the soliton field of the Yamabe soliton. A Yamabe
soliton is said to be expanding, shrinking or steady if A > 0, A < 0 or A = 0, respectively.
If X = Df for some smooth function f and D is the gradient operator of g, then the Yamabe
soliton is said to be gradient Yamabe soliton and (1) takes the form

V2= (0 Mg 2)

where V2 is the Hessian operator of g. Gradient Yamabe solitons have been studied by several
authors (see [1-3,5, 8,14, 16] and many others).

Definition 1 ([6]). The metric g of the Riemannian manifold (N, g) is termed as gradient Ein-
stein soliton in case both the function f : N — R and constanta € R satisfies

1
S—2pg+Vif =ag, 3)

where S indicates the Ricci tensor. The soliton with constant function f is called trivial.
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On the other hand in [15], S. Tanno classified (2m + 1)-dimensional connected almost con-
tact metric manifolds N with almost contact metric structure (¢, ¢, 77, g), whose automorphism
groups have the maximum dimension (m + 1)2. For such a manifold, the sectional curvature
of plane sections containing ¢ is a constant, say c. If ¢ > 0, N is homogeneous Sasakian man-
ifold of constant ¢-sectional curvature. If ¢ > 0, N is global Riemannian product of a line or
a circle with a Kéhler manifold of constant holomorphic sectional curvature. If ¢ > 0, N is
a warped product space R x C®. In [11], K. Kenmotsu abstracted the differential geometric
properties of the third case. V.F. Kirichenko [12] obtained Kenmotsu structures from cosym-
plectic structures by the canonical transformations [17]. Thus, Kenmotsu manifolds represent
now a well known class of almost contact metric manifolds.

In [10], author proves that, if (N, ¢) with dimension m > 3 be a compact Yamabe gradient
soliton, then N is of constant scalar curvature.

In this paper, we replace compactness by considering Kenmotsu 3-manifolds and provide
the following result.

Theorem 1. A Kenmotsu 3-manifold with gradient Yamabe soliton is of constant sectional
curvature —1.

It is noticed that all compact gradient Einstein solitons are trivial [6].
Here we replace compactness by considering Kenmotsu 3-manifolds and prove the follow-
ing assertion.

Theorem 2. A Kenmotsu 3-manifold with gradient Einstein soliton is of constant sectional
curvature.

1 Preliminaries

An almost contact structure [4] on a (2m + 1)-dimensional smooth manifold N is a triplet
(¢, ¢, 1), where ¢ is a (1, 1)-type tensor, ¢ is a global vector field and 7 is a 1-form, such that

¢ =—id+y®¢ n(E) =1, (4)

where id denotes the identity mapping. The relation (4) implies that ¢(¢) = 0, yo¢p =0
and rank(¢) = 2m. The almost contact structure induces a natural almost complex structure
J on the product manifold N x R defined by J(U,Ad/dt) = (¢U — AZ,n(U)d/dt), where U
is tangent to N, t is the coordinate of R and A is a smooth function on N x R. The almost
contact structure is said to be normal [13] if the almost complex structure | is integrable or
equivalently [¢, ¢] + 2dy @ ¢ vanishes, where [¢, ¢] is the Nijenhuis torsion of ¢. Let g be a
compatible Riemannian metric with (¢, {, 7), that is,

g(pU,9V) =g(U, V) —n(U)n(V)

or equivalently, ®(U, V) = g(U, ¢V) along with g(U, &) = n(U) forallU, V € x(N). Then N is
an almost contact metric manifold equipped with an almost contact metric structure (¢, ¢, 1, g).
An almost contact metric manifold is called a Kenmotsu manifold if it satisfies

(Vup)V = g(oU, V)¢ —n(V)pU (5)
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forallU,V € x(N), where V is Levi-Civita connection of the Riemannian metric. A Kenmotsu
manifold is normal but not Sasakian. Moreover, it is also not compact since from the formula
(5) we get
Vug =U—-n(U)g,
which gives div¢ = 2m. A conformal change ¢* of a Riemannian metric g is called a concircu-
lar transformation [17] if geodesic circles of g are transformed into geodesic circles of ¢*. Here
a geodesic circle means a curve whose first curvature is constant and whose second curvature
is identically zero. A cosymplectic structure is defined to be a normal almost contact metric
structure (¢, ¢, 77, ¢) with both the fundamental 2-form @ and the 1-form 7 is closed. An al-
most contact metric structure is cosymplectic if and only if V¢ = 0. In [12], V.F. Kirichenko
obtained the class of Kenmotsu manifolds from cosymplectic manifolds by the canonical con-
circular transformations. A Kenmotsu manifold is of constant curvature —1 if and only if it is
canonically concircular to C" x IR (see [12]).
For a (2m + 1)-dimensional Kenmotsu manifold, the following formulas hold:

K(U, V)¢ =nU)V —n(V)U, (6)
(Vun)vV =g, V) —n(U)n(Vv),
S(¢,¢) = 8(Qg,¢) = —2m

forany U,V € x(N), where S is the Ricci tensor, Q is the Ricci operator and K is the curvature
tensor. We know [7], that for a Kenmotsu 3-manifold we have

KU, VYW = P22 10 v, Wit — g(u, w)v]
R (v, Wy (W) — gL, Wyn(V)E + 1 (V)n(W)L — g(W(W)V],
QU = 3[(p+2)U ~ (o +6)y(L)E], 7)
S(U,V) = 2 [(p+2)3(U, V)~ (p + &)y (V)]. ®

An almost contact metric manifold is said to be #-Einstein if the Ricci tensor S satisfies
S(V,W) = ag(V, W) + by (V) (W)

for any vector field V, W on N and 4, b are arbitrary functions on N. An 7-Einstein manifold
with b vanishing and a a constant is obviously an Einstein manifold. An #-Einstein manifold
is said to be proper 77-Einstein if b # 0.

Kenmotsu 3-manifolds also have been studied in [7,18,19] and many others.

Lemma 1 ([18]). On any Kenmotsu 3-manifold (N, ¢,¢,1,g) we have
¢ = —2(p+6). )

Lemma 2 ([7]). A 3-dimensional Riemannian manifold is a manifold of constant sectional cur-
vature —1 if and only if the scalar curvature p is equal to —6.

Lemma 3 ([11, Proposition 8]). Let N be an 5-Einstein Kenmotsu manifold S = ag + by ® 1,
and a, b be scalar functions. If either a or b is constant then the manifold becomes an Einstein
manifold.
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2 Proof of the main results

Proof of Theorem 1. Let a Kenmotsu 3-manifold N admits a gradient Yamabe soliton. Then from
the equation (2), we have
VvDf =(p—A)V, (10)

from which we get
K(U,V)Df = (Up)V — (Vp)U. (11)

Contracting the above equation, we infer
S(V,Df) = =2(Vp). (12)

Replacing U by Df in (8) and using (12) entails that

—2(vp) = (§+1) (v = (5+3) €Hmw). (13)
Putting V' = ¢ in the above equation, we obtain
o = &f. (14)
In view of (9) and (14), we get
¢f =¢p=—2(0+6). (15)
Taking inner product of (11) with ¢ and using (6), we infer
Uf)n(V) = (VHnU) = Upe)p(V) = (Vo)n(U). (16)

Putting V = ¢ in (16) and using (14), we get
uf = Up. (17)

Using (17) and (15) in (13), we obtain

(5+3) (Vo) +2(0 +6)n(v)] =0,

which implies either p = —6 or p # —6.
Case p = —6. Using Lemma 2 we conclude that the manifold is of constant sectional curva-
ture —1.
Case p # —6. We have Vp = —2(p + 6)1(V). Using (17), we get Df = —2(p + 6)¢. The
equation (15) entails that
&(Ep) = 4(p +6). (18)

We know ¢f = ¢(&, Df). Then using (10), we obtain &(¢f) = (p — A). Since {f = ¢p, we have
from the above equation

c(6p) = (p = A). (19)

Equation (18) and (19) together give p = —%()\ + 24) = constant. Since Vf = Vp and
p= constant, therefore we get f= constant.

Thus using f = constant in (15) implies that p = —6 which is a contradiction. This completes

the proof. O
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Remark. Since the manifold N is of constant sectional curvature —1, therefore N is locally
isometric to the hyperbolic space H3(1).

Proof of Theorem 2. The equation (3) implies

QU — %pu +VuDf = AU. (20)
In view of (7) and (20), we get
vuDf = (A=1u+ (£ +3) (e, 1)
from which we get
1 1
KU, V)Df = Z(Up)p(V)E = 5(Vo)y(W)g + (E+3)[p(Viu —n()v]. (@22
Contracting the above equation and using (9), we infer
S(v,Df) = —5(Vp) 3)
Replacing U by Df in (8) and using (23), we obtain
1
— o) = (§+1) (vH = (5+3) €Hmw). (24)
Putting V' = ¢ in the above equation and using (9), we get
&f = —5(p+6). 25)
Taking inner product of (22) with ¢ and using (6), we infer
1
Ufn(v) = (vVAnU) = 5 [(Ue)y(V) — (Ve)y(U)]. (26)
Putting V = ¢ in (26) and using (9) and (25), we get
1 1
—5(Up) = 3o+ )y (W) - (). @)

Using (25) and (27) in (24), we obtain

1
(§+2) |vn)+ 50+ 6mm)] =0
which implies either p = —4 or p # —4.
Case p = —4. Then the scalar curvature is constant. Using p = —4 in equation (8) gives
S(U, V) = —g(U, V) =n(U)n(V),

which implies that the manifold is an #-Einstein manifold.
Case p # —4. Then Vf = —1(p + 6)5(V). This implies

1
Df = —5(p+6)¢. (28)
From (9) and the above equation, we get
VeDf = (p+6)C. (29)

Using (29) in (21), we get p = 2A — 8 = constant. Hence from (28) we can say that Df is a
constant multiple of ¢, say Df = c¢, c being a constant. Hence from (20), we obtain

QU= 02A—c—4)U+cn(U)E, (30)
which implies that the manifold is an #-Einstein manifold.
Now, using Lemma 3, from the equation (30), we infer that N is an Einstein manifold. Since

N is a Kenmotsu 3-manifold, therefore, N is of constant sectional curvature. This completes
the proof. O
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3 Example

We consider N = {(x,y,z) € R3,z # 0}, where (x,y, z) are the standard coordinates of R3.
Let {ej, €2, €3} be a linearly independent global frame on N given by

0 0 0

€1 = Z=— €) = Z— €3 = —Z—.

Let ¢ be the Riemannian metric defined by

g(er,e1) = glea, e2) = gles,e3) =1,

gle1,e2) = g(e1,e3) = glex, e3) = 0.

Let 7 be the 1-form defined by #(W) = g(W, e3) forall W € x(N) and ¢ be the (1, 1)-tensor
defined by

pe; = —ez, Pex =e1, ¢ez =0.

Then using the linearity of ¢ and g, we get
(PZW =-W + ﬂ(W)Eg,i](eg) = 1,

8@V, ¢W) = g(V, W) =5 (V)n(W)
forany V,W € x(N).
Then for e3 = ¢, the structure (¢, &, 17, ) defines an almost contact metric structure on N.
Let V be the Levi-Civita connection with respect to the metric g. Then we have
le1,e2] =0, [ez €3] = €2, [e1,e5] = en.
The Riemannian connection V of the metric ¢ and using Koszul’s formula, we have

Velel = —ées3, Velez = Or Vele3 = €1,

v6261 = Or VEZEZ = —é3, v6263 = €y,
Ve361 == O, Ve3ez - O, Vg3e3 - O

From the above we see that Viy¢ = W — (W)¢ for all W € x(N). Hence the manifold is a
Kenmotsu manifold.
Now, we have

KU, V)W =VyVyW —VyVyW — Vg inW. (31)
With the help of the previous results and using (31), we obtain

K(61,32>63 = O, K(el,ez)ez = —eq, K(elr62>el = ey,
K(EZI 63)63 = —éy, K(eg, 62)62 = —e3,
K(e3lel)el = —és3, K(€3,€1)63 = e1.

From the foregoing equation, we can easily calculate the non-vanishing components of the
Ricci tensor S as follows

S(e1,e1) = S(ez, e2) = S(ez, e3) = —2.
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Hence, we get

p = S(ey,e1) + S(ez, e2) + S(es, e3) = —6,

where p is the scalar curvature.
Let

V = bieq + boex + bzes, U = ajeq + azer + azes,

where b;,a;,i = 1,2,3, are constants. Let f = logz, z > 0, be a smooth function.

Now (V) = by(e1f) + ba(eaf) + bs(esf) = —bs is a constant. This implies V2f = 0. Thus
g defines the gradient Yamabe soliton with f = logz and A = —6. Therefore Theorem 1 is
verified. Also, ¢ defines the gradient Einstein soliton with f = logz and A = 1. Therefore
Theorem 2 is verified.
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Mertoro wi€i cTaTTi € oxapakTepusyBaTu 3-MHOroBMA KeHMOTCY, MeTpumKa sIKOTo € abo IrpaaieH-
THVM COAITOHOM SIMabe abo IparieHTHMM COAITOHOM AlfHINTalfHa. AOBEAEHO, IIIO0 B 060X BUITaAKaX
Lielf MHOTOBUA PEAYKY€EThCSI AO MHOTOBMAQA CTaAOI cexIiltHOI kpyuBu3HN. HacamxiHelrs My niepeBipsi-
€MO OTPMMaHi pe3yAbTaTi 3a AOIIOMOTOK IIPUKAAAY.

Kntouosi cnosa i ¢ppasu: 3-mHOrOoBUA KeHMOTCY, IparieHTHIIT COAiTOH SIMabe, I'paAieHTHMIT COAl-
TOH AVHIIITalHa.



