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2Landesbank Baden-Württemberg, Stuttgart, GERMANY

3Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, UKRAINE

ABSTRACT. We derive recurrence relations for the squares of the Horadam
numbers w2

n, where the Horadam sequence wn is such that the numbers wn,
for n ∈ Z, are defined recursively by w0 = a, w1 = b, wn = pwn−1 − qwn−2

(n ≥ 2), where a, b, p and q are arbitrary complex numbers with p �= 0 and q �= 0.
Some related results emanating from the recurrence relations such as reciprocal
sums, partial sums, and sums with double binomial coefficients are also presented.

1. Introduction

The Horadam sequence wn = wn(a, b; p, q) is defined, for all integers, by the
recurrence relation [8]

w0 = a, w1 = b, wn = pwn−1 − qwn−2, n ≥ 2,
with

w−n =
1

q
(pw−n+1 − w−n+2) ,

where a, b, p and q are arbitrary complex numbers with non-zero p and q.

The sequence wn generalizes many important number and polynomial sequen-
ces, for instance, the Fibonacci sequence Fn = wn(0, 1; 1,−1), the Lucas
sequence Ln = wn(2, 1; 1,−1), the Pell sequence Pn = wn(0; 1; 2;−1), the
Chebyshev polynomials of the first and second kind given by

Tn(x) = wn(1, x; 2x, 1) and Un(x) = wn(1, 2x; 2x, 1), respectively.
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The sequences Fn and Ln are special cases of the gibonacci sequence (gen-
eralized Fibonacci sequence) Gn(a, b) = wn(a, b; 1,−1). The sequence Gn was
studied by A. Horadam [7] in 1961 under the notation Hn. Sequences

un(p, q) = wn(0, 1; p, q) and vn(p, q) = wn(2, p; p, q)

are called the Lucas sequences of the first kind and of the second kind, respec-
tively.

The Binet formulas for sequences un, vn and wn in the non-degenerated case,
p2 − 4q > 0, are

un =
αn − βn

α− β
, vn = αn + βn, wn =

b− aβ

α− β
αn +

aα− b

α− β
βn ,

where

α =
p+

√
p2 − 4q

2
and β =

p−
√
p2 − 4q

2

are the distinct zeros of the characteristic polynomial x2 − px+ q.

More recent results on Horadam numbers can be found in [1,3–6,17], among
others. Also, we refer the reader to the survey papers [13,14]. Properties of Lucas
sequences can be found in [16]. The books [11, 12, 21] are excellent reference
materials on Fibonacci and Lucas numbers.

Our purpose in this paper is to derive recurrence relations for the squares
of the Horadam numbers. Based on these relations, we will present some related
results, such as reciprocal summation identities, partial sum formulas and sum-
mation identities involving double binomial coefficients and the squares of the
Horadam numbers.

2. Recurrence relations
for the squares of Horadam numbers

The following identities were derived by Horadam [8]:

wm+r = ur+1wm − qurwm−1 , (1)

vrwm = wm+r + qrwm−r (2)
and

wn−rwm+n+r = wnwm+n + qn−reurum+r ,

where e = pab− qa2 − b2.

In our first theorem we state the recurrence relations for squares of Horadam
numbers, which will be the key identities in the subsequent parts of the paper.

������� 2.1� Let m and r be integers. Then

pw2
m+r − urur+1w

2
m+1 = − pqur+1ur−1w

2
m + q3urur−1w

2
m−1 (3)

and
w2

m+r − q3rw2
m−2r =

(
v2r − qr

) (
w2

m − qrw2
m−r

)
. (4)
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P r o o f. Squaring identity (1) and the recurrence relation wm+1 = pwm−qwm−1

and eliminating the cross-term wmwm−1 between the results gives identity (3).

To derive (4), replace m by m− r in the identity (2) and rearrange to obtain

qrwm−2r = vrwm−r − wm . (5)

Now identity (2) can be rearranged as

wm+r = vrwm − qrwm−r . (6)

Squaring both (5) and (6) and eliminating the cross-term wmwm−r between the
resulting expressions yields identity (4). �

Choosing p = 1 and q = −1 in relation (3) gives

G2
m+r = FrFr+1G

2
m+1 + Fr+1Fr−1G

2
m − FrFr−1G

2
m−1

of which the familiar identity

G2
m+2 = 2G2

m+1 + 2G2
m −G2

m−1

is a particular case (see [9]).

The gibonacci version of identity (4) is

G2
m+r − (−1)rG2

m−2r =
(
L2
r − (−1)r

)(
G2

m − (−1)rG2
m−r

)
or, using F3r =

(
Lr − (−1)r

)
Fr (see [11, p. 112, Formula 108]), equivalently,

G2
m+r − (−1)rG2

m−2r

G2
m − (−1)rG2

m−r

=
F3r

Fr
.

Since un(2x, 1) = Un−1(x) and vn(2x, 1) = 2Tn(x), the Chebyshev versions
of (3) and (4), respectively, are

2xT 2
m+r(x) = Ur−1(x)Ur(x)T

2
m+1(x)

− 2xUr−2(x)Ur(x)T
2
m(x) + Ur−2(x)Ur−1(x)T

2
m−1(x),

2xU 2
m+r(x) = Ur−1(x)Ur(x)U

2
m+1(x)

− 2xUr−2(x)Ur(x)U
2
m(x) + Ur−2(x)Ur−1(x)U

2
m−1(x)

and

T 2
m+r(x)− T 2

m−2r(x) =
(
4T 2

r (x)− 1
)(
T 2
m(x)− T 2

m−r(x)
)
,

U 2
m+r(x)− U 2

m−2r(x) =
(
4T 2

r (x)− 1
)(
U 2
m(x)− U 2

m−r(x)
)
.
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For the last identities we obtain

T 2
m+r(x)− T 2

m−2r(x)

T 2
m(x)− T 2

m−r(x)
=

U 2
m+r(x)− U 2

m−2r(x)

U 2
m(x)− U 2

m−r(x)
.

Also, these relations yield as a special case

T 2
m+1(x)− T 2

m−2(x) =
(
4x2 − 1

)(
T 2
m(x)− T 2

m−1(x)
)

and

U 2
m+1(x)− U 2

m−2(x) =
(
4x2 − 1

)(
U 2
m(x)− U 2

m−1(x)
)
.

3. Some reciprocal series

In this section, we will use the following companion sequences:

hn = wn(a, b; p,−1), sn = un(p,−1), rn = wn(a, b; p, 1), tn = un(p, 1).

From (3) the following result is an immediate consequence.

������� 3.1� For n ≥ 1, we have
n∑

m=2

h2
2m − sm−1h

2
msm+1

sm−1h2
m−1s

2
mh2

msm+1h2
m+1

=
1

p

(
1

pb2(pb+ a)2
− 1

snh2
nsn+1h2

n+1

)
, (7)

∞∑
m=2

h2
2m − sm−1h

2
msm+1

sm−1h2
m−1s

2
mh2

msm+1h2
m+1

=
1

p2b2(pb + a)2

and
n∑

m=2

(−1)m
(
r22m + tm−1r

2
mtm+1

)
tm−1r2m−1t

2
mr2mtm+1r2m+1

=
1

p

(
1

pb2(pb− a)2
+

(−1)n

tnr2ntn+1r2n+1

)
, (8)

∞∑
m=2

(−1)m
(
r22m + tm−1r

2
mtm+1

)
tm−1r2m−1t

2
mr2mtm+1r2m+1

=
1

p2b2(pb − a)2
.

P r o o f. Write (3) as

pw2
m+r + pqur+1ur−1w

2
m = urur+1w

2
m+1 + q3urur−1w

2
m−1

and divide both sides by ur−1u
2
rur+1w

2
m−1w

2
mw2

m+1 to get

pw2
m+r

ur−1u2
rur+1w2

m−1w
2
mw2

m+1

+
pq

u2
rw

2
m−1w

2
m+1

=

1

ur−1urw2
m−1w

2
m

+
q3

urur+1w2
mw2

m+1

.

Now, setting q = −1 and r = m, and summing over m we recognize that the
right-hand side telescopes. This completes the proof of the first part.

Similarly, with q = 1 and r = m we identify the telescoping behavior of the
alternating sum. �
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If we put in (7) a = 0, b = 1 and p = 1, then hm = sm = Fm and using
F2m = FmLm we have

n∑
m=2

L2
m − Fm−1Fm+1

F 3
m−1F

2
mF 3

m+1

= 1− 1

F 3
nF

3
n+1

.

Similarly, putting in (7) a = 2, b = 1 and p = 1 yields hm = Lm, sm = Fm and,
therefore,

n∑
m=2

L2
2m − Fm−1L

2
mFm+1

Fm−1L2
m−1F

2
mL2

mFm+1L2
m+1

=
1

9
− 1

FnL2
nFn+1L2

n+1

.

Focusing on Chebyshev polynomials, from (8) at p = 2x, a = 1, b = x
and p = 2x, a = 1, b = 2x we have, respectively, the following examples (the
argument x in Chebyshev polynomials is dropped to simplify notation):

n∑
m=2

(−1)m(T 2
2m + Um−2T

2
mUm)

Um−2T 2
m−1U

2
m−1T

2
mUmT 2

m+1

=
1

2x

(
1

2x3(2x2 − 1)2
+

(−1)n

Un−1T 2
nUnT 2

n+1

)
,

n∑
m=2

(−1)m(U 2
2m + Um−2U

3
m)

Um−2U 4
m−1U

3
mU 2

m+1

=
1

2x

(
1

8x3(4x2 − 1)2
+

(−1)n

Un−1U 3
nU

2
n+1

)
.

From (4) we can deduce the following reciprocal sum identities.

������� 3.2� For n ≥ 0, we have
n∑

m=1

(−1)m
h2
m+2 + h2

m−1

h2
mh2

m+1

= (p2 + 1)

(
(−1)n

h2
n+1

− 1

b2

)
, (9)

∞∑
m=1

(−1)m−1h
2
m+2 + h2

m−1

h2
mh2

m+1

=
p2 + 1

b2
(10)

and
n∑

m=1

r2m+2 − r2m−1

r2mr2m+1

= (p2 − 1)

(
1

b2
− 1

r2n+1

)
, (11)

∞∑
m=1

r2m+2 − r2m−1

r2mr2m+1

=
p2 − 1

b2
.

P r o o f. We will prove only identities (9) and (10). The proof of the second part
of the theorem, which we omit, is similar.

Replace m by m+ r in (4) to get

w2
m+2r − q3rw2

m−r =
(
v2r − qr

)(
w2

m+r − qrw2
m

)
,

which has an equivalent form as

(v2r − qr)

(
1

w2
m

− qr

w2
m+r

)
=

w2
m+2r − q3rw2

m−r

w2
mw2

m+r

.
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Now, setting r = 1 the telescoping nature of the left-hand side can be deduced.
This completes the proof of (9). Upon letting n → +∞ in (9) yields (10). �

We conclude this section with the gibonacci version of (9) and the Chebyshev
version of (11). The first is

n∑
m=1

(−1)m
G2

m+2 +G2
m−1

G2
mG2

m+1

=
2(−1)n

G2
n+1

− 2

b2

or, equivalently,
n∑

m=1

(−1)m
G2

m + G2
m+1

G2
mG2

m+1

=
(−1)n

G2
n+1

− 1

b2
.

The Chebyshev identities are stated as
n∑

m=1

T 2
m+2(x)− T 2

m−1(x)

T 2
m(x)T 2

m+1(x)
= (4x2 − 1)

(
1

x2
− 1

T 2
n+1(x)

)

and
n∑

m=1

U 2
m+2(x)− U 2

m−1(x)

U 2
m(x)U 2

m+1(x)
= (4x2 − 1)

(
1

4x2
− 1

U 2
n+1(x)

)
.

4. Partial sum of the squares of Horadam numbers

����	 4.1 ([2, Lemma 2.3])� Let Xj be any arbitrary sequence defined by the
recurrence relation

Xj = f1Xj−c1 + f2Xj−c2 + · · ·+ fnXj−cn ,

where f1, f2, . . . , fn are arbitrary non-vanishing complex functions, not depen-
dent on j, and c1, c2, . . . , cn are fixed integers. Then the following identity holds
for arbitrary x and k ≥ 0:

k∑
j=0

Xjz
j =

n∑
m=1

zcmfm

(
cm∑
j=1

X−jz
−j −

k∑
j=k−cm+1

Xjz
j

)

1−
n∑

m=1
zcmfm

.

������� 4.2� For k ≥ 0, we have
k∑

j=0

w2
jx

j =
Ek(x) + Fk(x) +Gk(x) +Hk(x)

(1− qx)
(
1 + (2q − p2)x+ q2x2

) ,

where

Ek(x) =
(
p2 − q

)(
xk+2w2

k+1 − a2x
)
, Fk(x) = −q3x2

(
xk+1w2

k − w2
−1

)
,

Gk(x) = −xk+1w2
k+1 + a2, Hk(x) = −xk+2w2

k+2 + b2x ,

with w−1 = ap−b
q

.
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P r o o f. Set r = 2 in identity (3) and rearrange to obtain

q
(
p2 − q

)
w2

m =
(
p2 − q

)
w2

m+1 + q3w2
m−1 − w2

m+2 .

Now use Lemma 4.1 with

(c1, c2, c3) = (−1, 1,−2)
and

(f1, f2, f3) =

(
1

q
,

q2

p2 − q
,

1

q(p2 − q)

)
.

This yields

k∑
j=0

w2
jx

j =
E∗(x; k) + F ∗(x; k) +G∗(x; k) +H∗(x; k)

1− 1
qx − q2x

p2−q + 1
qx2(p2−q)

,

where

E∗(x; k) =
xk+1w2

k+1−w2
0

qx , F ∗(x; k) = − q2(xk+1w2
k−w2

−1)

p2−q ,

G∗(x; k) = −xk+1w2
k+1−w2

0

qx2(p2−q) , H∗(x; k) = −xk+1w2
k+2−w2

1

qx(p2−q) .

Simplify and the proof is completed. �


�����	�� 4.3� For k ≥ 0,

k∑
j=0

G2
jx

j =
1

(1 + x)(1− 3x+ x2)
×

(−xk+2G2
k+2 + (2x− 1)xk+1G2

k+1+

xk+3G2
k + a2 + (b2 − 2a2)x− (b− a)2x2

)
. (12)

P r o o f. Insert w0=a, w1=b, p=1 and q=−1 in Theorem 4.2 and simplify. �

Three particular examples of (12) are

k∑
j=0

G2
j = GkGk+1 + a(a− b), (13)

k∑
j=0

G2
jLj =

1

2

(
Lk+1G

2
k+2 − 5FkG

2
k+1 − Lk+2G

2
k + 6a2 − 2ab− b2

)
,

k∑
j=0

G2
jFj =

1

2

(
Fk+1G

2
k+2 − LkG

2
k+1 − Fk+2G

2
k + b2 − 2ab

)
.

Note that formula (13) above is well-known (for example, see [11, p. 144]).
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Another interesting example is the evaluation of the alternating sum∑k
j=0(−1)jG2

j . Inserting x = −1 in (12), we see that the sum is expressed as
a fraction with denominator 0. For the numerator on the right-hand side we get

(−1)k+1(G2
k+2 − 3G2

k+1 +G2
k) + a2 − b2 + 2a2 − (b− a)2

= (−1)k+1
(
(Gk+1 +Gk)

2 − 3G2
k+1 +G2

k

)
+ a2 − b2 + 2a2 − (b− a)2

= 2(−1)k+2(Gk+1Gk−1 −G2
k) + 2a2 − 2b2 + 2ab.

Now, using the Catalan identity wm−rwm+r −w2
n = eqm−ru2

r [7], we see that

Gk+1Gk−1 −G2
k = (−1)k+1(a2 − b2 + ab)

and hence that the sum is an expression of the form 0
0
. Therefore, we apply

L’Hospital rule and get after several steps of manipulations the closed form

5

k∑
j=0

(−1)jG2
j = (−1)kGk(Gk+1 + 2Gk) + (2k + 3)(a2 + ab− b2) + 3b2 − 4ab.

5. Double binomial sums involving the squares
of Horadam numbers

In this section we present double sum identities with two binomial coefficients
and the squares of the Horadam numbers in the summand.

Double sums with one binomial coefficient, as well as with two binomial
coefficients, evaluating to Fibonacci and Lucas numbers, have been reported
in existing literature. Examples of the former are∑

0≤i,j≤n

(
n+ i

j − i

)
= F2n+3 − 2n,

∑
0≤i,j≤n

(−1)j
(
n+ i

j − i

)
= (−1)nF2n,

while examples of the latter include∑
0≤i,j≤n

(−1)i
(
n− i

j

)(
i+ j

j

)
= Fn+1,

∑
0≤i,j≤n

(
n+ i

2j

)(
j

i

)
2j = F3n+1.

The above results were obtained by Kiliç and Arıkan [10]. Recently, attention has
shifted to the study of double sums and triple sums with Fibonacci and Lucas
numbers in the summand. For example, Taşdemir and Toska [20] presented the
identity ∑

0≤i,j≤n

(
i

j

)
L(4t−2)i+j =

L2ntF2(n+1)t

F2t
, t �= 0,

while Ömür and Duran [15] studied triple sums with two binomial coefficients
of the form ∑

0≤i,j,k≤n

(
i

j

)(
j

k

)
Fri+j+k.
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Taşdemir [18,19] studied triple sums with two binomial coefficients, including
Lucas numbers in the summand, as well as triple sums involving three binomial
coefficients and Fibonacci numbers.

����	 5.1 ([2, Lemma 4.1])� Let (Xn) be any arbitrary sequence, satisfying a
four-term recurrence relation

hXn = f1Xn−c1 + f2Xn−c2 + f3Xn−c3 ,

where h, f1, f2 and f3 are arbitrary non-vanishing functions and c1, c2 and c3
are integers. Then the following identities hold:

k∑
j=0

j∑
i=0

(
k

j

)(
j

i

)(
f1
f2

)i(
f2
f3

)j
Xn−c3k+(c3−c2)j+(c2−c1)i =

(
h

f3

)k
Xn,

k∑
j=0

j∑
i=0

(
k

j

)(
j

i

)(
f1
f3

)i(
f3
f2

)j
Xn−c2k+(c2−c3)j+(c3−c1)i =

(
h

f2

)k
Xn, (14)

k∑
j=0

j∑
i=0

(
k

j

)(
j

i

)(
f2
f3

)i(
f3
f1

)j
Xn−c1k+(c1−c3)j+(c3−c2)i =

(
h

f1

)k
Xn, (15)

k∑
j=0

j∑
i=0

(−1)k−i

(
k

j

)(
j

i

)(
h

f2

)i(
f2
f3

)j
Xn−(c3−c1)k+(c3−c2)j+c2i =

(
f1
f3

)k
Xn,

k∑
j=0

j∑
i=0

(−1)k−i

(
k

j

)(
j

i

)(
h

f1

)i(
f1
f3

)j
Xn−(c3−c2)k+(c3−c1)j+c1i =

(
f2
f3

)k
Xn,

k∑
j=0

j∑
i=0

(−1)k−i

(
k

j

)(
j

i

)(
h

f1

)i(
f1
f2

)j
Xn−(c2−c3)k+(c2−c1)j+c1i =

(
f3
f2

)k
Xn.

������� 5.2� Let r, n be integers and k be a non-negative integer. Then

k∑
j=0

j∑
i=0

(−1)k−j

(
k

j

)(
j

i

)(
ur+1

q3ur−1

)i(
q3ur−1ur

p

)j
w2

n+rk−(r+1)j+2i =(
qur−1ur+1

)k
w2

n, (16)

k∑
j=0

j∑
i=0

(−1)j−i

(
k

j

)(
j

i

)(
urur+1

p

)i(
p

q3ur−1ur

)j
w2

n−k+(r+1)j−(r−1)i =(
pur+1

q2ur

)k
w2

n , (17)

k∑
j=0

j∑
i=0

(−1)j−i

(
k

j

)(
j

i

)(
q3ur−1ur

p

)i(
p

urur+1

)j
w2

n+k+(r−1)j−(r+1)i =(
pqur−1

ur

)k
w2

n, (18)
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k∑
j=0

j∑
i=0

(−1)j−i

(
k

j

)(
j

i

)(
pur+1

q2ur

)i(
q3ur−1ur

p

)j
w2

n+(r−1)k−(r+1)j+i =(
urur+1

p

)k
w2

n,

k∑
j=0

j∑
i=0

(−1)j−i

(
k

j

)(
j

i

)(
pqur−1

ur

)i(
urur+1

p

)j
w2

n+(r+1)k−(r−1)j−i =(
q3ur−1ur

p

)k
w2

n,

k∑
j=0

j∑
i=0

(−1)i
(
k

j

)(
j

i

) (
pqur−1

ur

)i(
ur+1

q3ur−1

)j
w2

n−(r+1)k+2j−i =(
p

q3ur−1ur

)k
w2

n.

P r o o f. To prove (16), rearrange identity (3) as

pqur+1ur−1w
2
n = urur+1w

2
n+1 + q3urur−1w

2
n−1 − pw2

n+r.

Make the following identifications:

X = w2, f1 = urur+1, f2 = q3urur−1, f3 = −p,

c1 = −1, c2 = 1, c3 = −r, h = pqur−1ur+1,
(19)

and use these in Lemma 5.1.

To prove (17), use (19) in (14). To prove (18), use (19) in (15), and so on. �

������� 5.3� Let r and n be integers. Let k be a non-negative integer. Then

k∑
j=0

j∑
i=0

(−1)j−i

(
k

j

)(
j

i

)
q(k+2j−3i)r

(v2r − qr)j
w2

n−r(k−3i+j) = w2
n, (20)

k∑
j=0

j∑
i=0

(−1)k−j

(
k

j

)(
j

i

)
q(3k−2j−i)r

(v2r − qr)k−j+i
w2

n−r(2k−j−2i) = w2
n,

k∑
j=0

j∑
i=0

(−1)i
(
k

j

)(
j

i

)
q(2i+j)r

(v2r − qr)k−j+i
w2

n+r(k−2j−i) = w2
n,

k∑
j=0

j∑
i=0

(−1)i
(
k

j

)(
j

i

)
q(3j−2i)r(v2r − qr)k−j+iw2

n−r(k+2j−i) = w2
n,

k∑
j=0

j∑
i=0

(−1)i
(
k

j

)(
j

i

)
(v2r − qr)k−j+i

q(j+2k)r
w2

n+r(k+2j−i) = w2
n,

k∑
j=0

j∑
i=0

(−1)j−i

(
k

j

)(
j

i

)
q(2k−3j)r

(v2r − qr)k−i
w2

n−r(k−3j+i) = w2
n.
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P r o o f. To prove (20), write identity (4) as(
v2r − qr

)
w2

n = w2
n+r − q3rw2

n−2r + qr
(
v2r − qr

)
w2

n−r ,

then make the identifications

(f1, f2, f3) =
(
1,−q3r, qr(v2r − qr)

)
, (c1, c2, c3) = (−r, 2r, r), h = v2r − qr

and use these in Lemma 5.1. �

The special case of Theorem 5.3 when wn = Fn, vn = Ln and r = 1 can be
stated as (n ≥ 0):

n∑
j=0

j∑
i=0

(
−1

2

)j
(
n

j

)(
j

i

)
F 2
3i−j = (−1)nF 2

n ,

n∑
j=0

j∑
i=0

(
−1

2

)n−j+i
(
n

j

)(
j

i

)
F 2
2i+j = (−1)nF 2

2n,

n∑
j=0

j∑
i=0

(
−1

2

)n−j+i
(
n

j

)(
j

i

)
F 2
2n−i−2j = (−1)nF 2

n ,

n∑
j=0

j∑
i=0

(−2)n−j+i

(
n

j

)(
j

i

)
F 2
i−2j = (−1)nF 2

n ,

n∑
j=0

j∑
i=0

(−2)n−j+i

(
n

j

)(
j

i

)
F 2
2n−i+2j = (−1)nF 2

n

and
n∑

j=0

j∑
i=0

(
−1

2

)n−i
(
n

j

)(
j

i

)
F 2
3j−i = (−1)nF 2

n .
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[10] KILIÇ, E.—ARIKAN, T.: Double binomial sums and double sums related with certain

linear recurrences of various order, Chiang Mai J. Sci. 45 (2018), no. 3, 1569–1577.
[11] KOSHY, T.: Fibonacci and Lucas Numbers with Applications, Vol. 1. Second edition

of [MR1855020]. In: Pure and Applied Mathematics (Hoboken). John Wiley & Sons, Inc.,
Hoboken, NJ, 2018.

[12] KOSHY, T.: Fibonacci and Lucas Numbers with Applications, Vol. 2, In: Pure and
Applied Mathematics (Hoboken). John Wiley & Sons, Inc., Hoboken, NJ, 2019.

[13] LARCOMBE, P. J.: Horadam sequences: a survey update and extension, Bull. Inst.
Combin. Appl. 80 (2017), 99–118.

[14] LARCOMBE, P. J.—BAGDASAR, O.D.—FENNESSEY, E. J.: Horadam sequences:
a survey, Bull. Inst. Combin. Appl. 67 (2013), 49–72.
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Am Hauptbahnhof 2
70173 Stuttgart
GERMANY

E-mail : robert.frontczak@lbbw.de

Taras Goy
Faculty of Mathematics and Computer Science
Vasyl Stefanyk Precarpathian National University

Shevchenko Str. 57
76018 Ivano-Frankivsk
UKRAINE

E-mail : taras.goy@pnu.edu.ua

28


	1. Introduction
	2. Recurrence relations for the squares of Horadam numbers
	3. Some reciprocal series
	4. Partial sum of the squares of Horadam numbers
	5. Double binomial sums involving the squares of Horadam numbers
	REFERENCES

