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Existence and stability of traveling waves in parabolic systems
of differential equations with weak diffusion

Klevchuk I.1.

The aim of the present paper is to investigate of some properties of periodic solutions of a non-
linear autonomous parabolic systems with a periodic condition. We investigate parabolic systems
of differential equations using an integral manifolds method of the theory of nonlinear oscillations.
We prove the existence of periodic solutions in an autonomous parabolic system of differential equa-
tions with weak diffusion on the circle. We study the existence and stability of an arbitrarily large fi-
nite number of cycles for a parabolic system with weak diffusion. The periodic solution of parabolic
equation is sought in the form of traveling wave. A representation of the integral manifold is ob-
tained. We seek a solution of parabolic system with the periodic condition in the form of a Fourier
series in the complex form and introduce a norm in the space of the coefficients in the Fourier ex-
pansion. We use the normal forms method in the general parabolic system of differential equations
with retarded argument and weak diffusion. We use bifurcation theory for delay differential equa-
tions and quasilinear parabolic equations. The existence of periodic solutions in an autonomous
parabolic system of differential equations on the circle with retarded argument and small diffusion
is proved. The problems of existence and stability of traveling waves in the parabolic system with
retarded argument and weak diffusion are investigated.

Key words and phrases: bifurcation, stability, functional differential equation, integral manifold,
traveling wave.
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Introduction

The approach used here follows the method of integral manifolds introduced by
N.N. Bogolyubov and Yu.A. Mitropol’skii [2]. Generalizations of the method of integral man-
ifolds and the averaging methods for functional differential equations the reader can find in
the book by J.K. Hale [6]. The book by S.D. Eidel’'man [3] is devoted exclusively to the study of
parabolic systems. The books by D. Henry [8] and B.D. Hassard et al. [7] deal with the qual-
itative theory of quasilinear parabolic equations, and are devoted to searching answers to the
following questions: do there exist integral manifolds or special solutions (periodic solutions
etc.)? What about the stability and asymptotic behavior of these solutions? In [7], there are
chapters involving ordinary differential equations and delay differential equations. The main
subject of book [17] is the qualitative behavior of the solutions of semilinear partial differential
equations with time delay and its applications. Book [5] is unique by its focus on the funda-
mental mathematical aspects of bifurcation theory of functional differential equations. The
problems of stability and bifurcation of the solutions of functional-differential equations were
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considered, e.g., in [4,6,9,10,14]. The existence of countably many cycles in hyperbolic systems
of differential equations with transformed argument were considered in [12]. The existence
and stability of an arbitrarily large finite number of cycles for the equation of spin combustion
with delay were considered in [1,13,16].

In the present paper, we study the existence and stability of an arbitrarily large finite num-
ber of cycles for a parabolic system with delay and weak diffusion. The existence of periodic
solutions in this parabolic system is reduced to the similar problem for delay differential equa-
tions. We seek a solution of parabolic system with the periodic condition in the form of a
Fourier series in the complex form and introduce the norm in the space of the coefficients in
the Fourier expansion (see, e.g., [11]). Similar problems for partial differential equations were
studied in numerous works (see, e.g., [1,13,15-17]).

1 Traveling waves for parabolic equations with weak diffusion

Consider the following system

ou %u 82

atl _ S’le — s 2 o 2 — wotly + e(auy — Buy) + (douty — couz) (u? + u3), )
1

ou d%u az

—at2 - 78—2 +eboy b+ wou + e + Buy) + (douz + o) (43 + u3)

with the periodic condition
uy(t, x4+ 2m) = uy(t,x), us(t, x +2m) = up(t, x), (2)

where ¢ is a small positive parameter, wy > 0,« > 0,y > 0, dy < 0.
Passing to the complex variables u = 11 + iup and @ = 1y — iup, we arrive at the equation

ou 2

Yl iwou + € {(’y + 1(5)3 th + (a+ iﬁ)u] + (do + ico)u?1. (3)

In the present paper, we investigate the existence and stability of the wave solutions of

problem (1), (2). The solution of equation (3) is sought in the form of traveling wave u = 6(y),
y = ot + x, where the function 6(y) is periodic with period 27r. We arrive at the equation

2

d=6
o— =iweb +¢ [(’y +i6)—

i + (a+ iﬁ)e} + (do + ic)6%6.

ae
By the substitution dy = 6, this equation is reduced to the following system

de . .., a0 . . =
ay =01, 06 =iweb+¢ [(’y + Z(S)d—y1 + (o + 15)9} + (dg + icy)6%6. 4)

The integral manifold of system (4) can be represented in the form

x+ip w2

0 — 3 (v +i0)p T+ i

+ =927+
ag

o, = g4
(2
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Here, we keep the terms of order O(e) in the linear terms and the terms of order O(1) in the
nonlinear terms. The equation on this manifold takes the form

do +ico

: 2
atip, @ + 20020 +.... (5)
(2

6 — U—gw +6)6

Passing to the polar coordinates 6 = rexp(i@) in equation (5), we get

dr &y doy
3y~ (G med) r+ 5 ©)
Let dg < 0 and let the inequality a > %w% be true. Then equation (6) possesses the

stationary solution

r= \/ERO/ Ro = \/(“ - %w(%> |d0|_1/

hence, the periodic solution of equation (5) takes the form

0 = VeRpexp <iw70y> + O(e).
Since the function 6 is periodic with period 27, we obtain

o= % +0(e), nezZ\{0}.
Thus, the periodic solution of equation (3) takes the form

Uy = un(t,x) = Vernexp(i(xn(e)t +nx)) + O(e), (7)

where

tn = \/(oc —n29) |do|=Y, xu(e) = wo + €B +ecors —edn®, n € Z.
Thus, the periodic solution of problem (1), (2) takes the form
up = Verycos(xn(e)t +nx), up = \erpsin(xu(e)t +nx), ne€Z. (8)
The following statement is true.
Theorem 1. Letwy > 0,0 > 0,y > 0,dy < 0 and let the inequality
a > yn?

be true for some integer n. Then there exists ¢y > 0 such that, for 0 < & < g, problem (1), (2)
has solutions (8) periodic in t.

2 Stability of periodic solutions

The equation in variations in the vicinity of solution (7) of equation (3) takes the form

d , . 02 : .
a_zt) = iwgv+e |(y+ 15)8—;2] + (& +iB)v| + e(dy + ico) (2r3v 4+ w?d), )
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where w;, = 1, exp(i(xn(e)t + 1x)), xu(€) = wo + €B + ecor? — eon>.
By the substitution v = wexp(ix(¢)t) in equation (9), we find

ow *w o
T (’)/4-1(5)8 5 + (@ +idn +dor?)w + (do + ico)r’ (w + W exp(2inx)) | . (10)

We seek the solution of equation (10) in the form of Fourier series in the complex form

Z Vi (t) exp(ikx), Z vy (t) exp(ikx). (11)

k=—o0 k=—o00
Substituting (11) in (10) and equating the coefficients of exp(ikx), we obtain the equations for

the coefficients of the Fourier series

d , ‘ |
yﬁf t — e[(a 4 i6n® + dor2)yisn — (7 +16) (k 4+ 1)y + (do + ico) 7% (Vign + Vk—n)].  (12)

Similarly, substituting (11) in the equation adjoint to (10), we get
dvg_y
dt

The stability of the wave solutions of problem (1), (2) is determined by the stability of
system (12), (13) with the parameter k € Z. By the substitution

= e[(a — i6n* + dorg)vg_n — (v —i6) (k — n)*vx_, + (do — ico) 75 (Vk—n + Yicyn)]-  (13)

Yirn = Zkrn exp(—2iedkn) and vg_, = wy_, exp(—2iedkn)
in system (12), (13), we get a linear system with the matrix
SA:<€a11 86112>.
€dp1 €&dpo
The matrix A has an eigenvalue equal to zero for k = 0. Since the sum of diagonal elements

of the matrix A is negative, 2 = a1 +ax < 0, for the orbital exponential stability of the
periodic solution u,(t, x), it is necessary and sufficient that the condition a’c > fz, where

¢ =Re(det(A)), f=Im(det(A)), and f = 4dykn(cor? —5k?),
be satisfied for k # 0, i.e.
(dor? — Yk?)?(y?K2 4 62Kk% — 2ydor? — dvy*n? — 25cor?) > 49°n®(cor? — 6k%)?, (14)
where 72 = (yn? — ) /dy.

Theorem 2. The traveling waves uy(t, x) of problem (1), (2) are exponentially orbitally stable
if and only if condition (14) is satisfied for allk € Z\{0}.

Example 1. We consider system (1), where 6 = 0, co = 0. Hence, Theorem 1 implies that the
periodic solution

- —, ( cos((wp +ep)t + nx)
U, = \/e(oé — yn?)|do| ! ( Sin((w§+sﬁ)t+ﬂx) )

exists for dy < 0 and yn® < a. By Theorem 2, the traveling waves u,(t, x) are exponentially
orbitally stable if and only if

1
2

— (7 4 24).
< g (rt20)
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3 Bifurcation of self-excited vibrations for parabolic systems with retarded
argument and weak diffusion

Let R" be the n-dimensional space with the norm |u| = \/u?+..+u%, C = C[-A,0]
be the space of functions, continuous on [—A,0] with values in R"” with the norm

el = sup |¢@(0)]. We denote by u; the element of the space C defined by the function
—A<6<0

ur(0,x) =u(t+0,x) —A<0<0.

We consider the following parabolic system with delay and weak diffusion

ou 0’u
Yl SD@ + L(e)us + f(ug,€) (15)
with periodic condition
u(t,x+2m) = u(t, x), (16)

where ¢ is a small positive parameter, # € R", L(e) : C — R" is a continuous linear operator,
f:Cx[0,e0) — R, f(@,e) = O(]|l9]|?) as ||@|| — O, the operator f(g,e) is continuous in ¢
and four times continuously differentiable in ¢. Let us assume that the zero solution of (15)
for ¢ = 0 is asymptotically stable.

Along with (15) we consider the linear equations

% = L(S)ﬁh (17)
% = L(0)d. (18)

According to Riesz theorem, the operator L(e) can be represented in the form of a Stieltjes
integral
0
Le)g = [ [dn(,)]o @),

—A

where the matrix 7(6, ¢) has bounded variation in 6. Let (6, ¢) be twice continuously differ-
entiable in €. The characteristic equation for (17) has the form

0
det Ac(A) = 0, Ae(A) = AT — / M (6,¢), (19)
A

where [ denotes the identity matrix. Let us assume that (19) has one pair of roots of the
form ¢(e) £il(¢e), ¢(0) = 0, &'(0) > 0, ¢(0) > 0, and the other roots lie in the half-plane
ReA < Ap < 0.

One can represent (15) in the form

ou

i L(0)ut + F(uy,€), (20)
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2
where F(ug,e) = eDgTZ + L(e)uy — L(0)u¢ + f(ut,e). We denote by ii;(¢) the solution of
(18) with initial function ¢ € C. We define a translation operator with respect to the so-
lution of (18) by T(t)¢ = #i;(¢). The family {T(¢),t > 0} forms a strongly continuous semi-
dg(0)

group. A generating operator of this semigroup is the differentiation operator A¢(6) = 0

—A < 6 <0, with domain defined as follows

D(A) = {(pEC ‘;99” €C, d";é) —L(O)(p}.

We denote by IP the eigensubspace of C, generated by solutions of (18), corresponding to
the roots £if(0). We decompose the space C into a direct sum: C = P & Q. Let & = P(6)
be a basis in IP. Considering the adjoint equation to (18), one can define a function ¥ = ¥(6),
0 < 0 < A analogously. Then each element u; € C can be represented in the form
up = ®y(t) +z;, where y(t) = (Y, ur), z+ = ur — Oy(t), y(t) € R? z; € Q, (¥, uy) is some
bilinear functional. Equation (15) is equivalent to the system of equations [4, 6]:

% =By +Y(0)F(®y +zt,€), z=T(t—0)zs + / T(t— s)XégF(@y(s) + zg,€)ds.

Here Xég is the projection onto the subspace Q of the function Xp(f) = 0, —A < 0 < 0,

Xo(0) =1,
()

Analogously to [4], one can prove the existence of a function g : R? x [0,¢9) — Q satisfying

the conditions g(0,¢) =0, ||g(y,€) — g/, €| < %|y — /| and such that the set

Se ={(p,e)le € [0,e0), ¢ =Py + 0,y € Rz,l‘):g(y,s),l‘} € Q}

is a local integral manifold of (20). The function g(y, €) will be four times continuously differ-
entiable in y. The behavior of the solutions of (20) on the integral manifold S; is described by
the equation

3—7: = Bu+¥(0)F(®v + g(v,¢),¢), (21)
where v = < Zl > For any solution u; = ®y(t) + z; of (20) there exists a solution
2

xt = Po(t) + g(v(t), €) belonging to S, and such that
llur — xel| < Ke ™, K>0, v>0.

In equation (21), we keep the terms of order O(e) in the linear terms. We arrive at the
equation
dv 0%

= = Bo+ e¥(0)DP(0 )a—2 +e¥(0)L' (0)Pv + Y (0) f (Do + ¢(v,¢), ).

Passing to the complex variables w = vy + ivy, W = v1 — ivy, we arrive at the equation

2 82—

o S+ (71+151)——1C( Jw+e(a+ip)w+e(a +if1)w + W(w,@,¢), (22)
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where
(v +i8)w + (71 +i61)w = (1,1)¥(0)DD(0)v, (« + iB)w + (a1 +iB1)W = (1,i)¥(0)L'(0)Po,
=¢'(0), B=3'(0), W(w,w,e) = (1i)¥(0)f(Pv + g(v,¢),€).

We transform (22) with the help of the substitution
w =5+ V(s,5)+ V3(s,5), (23)

where V, and V3 are forms of strictly second and third order. One can choose a transformation
(23) so that the equation for s assumes the form
aS 82 82 . . _ . 2—
5; = ey H i)z el +i01) 55 —if(0)s +e(a +if)s +e(ar +if1)s + (do + ico)s™s + ...
(24)
Here, we keep the terms of order O(e) in the linear terms and the terms of order O(1) in the
nonlinear terms.

We investigate the existence and stability of the wave solutions of problem (15), (16). A
solution of equation (24) is sought in the form of traveling wave s = 0(y), y = ot + x, where
the function () is periodic with period 27r. We arrive at the equation

2 25
Ugi ey + us>jy‘j e+ iél)j—yg —i(0)0 +¢e(w +iB)0 +e(ay +iB1)0 + (do +ico)6?0 + . ...

ae
By the substitution dy = 6, this equation is reduced to the following system

do B . A6y o\doy
ay 61, 061 = e(y +i9) ay +e(y1+ zél)d—y —i¢(0)0 (25)

+e(a+iB)0 + e(ay +iB1)0 + (do +ico)0%0 + ... .

The integral manifold of system (25) can be represented in the form

o= Qg4 £ ﬁ(H7+®e ff%m+wn@+m+ww+0u+wné

d0+ZC0629+
(o

Here, we keep the terms of order O(e) in the linear terms and the terms of order O(1) in the
nonlinear terms. The equation on this manifold takes the form

49 _ _§0) ., ¢ CZ() CZ()

- o 0T

(y+1i6)0 — (y1+1i61)0 + (a +iB)0 + (ay +iB1)0

d0+lC0626+
g

In this equation, we perform the substitution 6 = pexp (—@iy) and apply the averaging

method [2]. We arrive at the autonomous equation

dp _ ¢ gz()('y+zc5)p+(tx+l.3) ]

d() + iCO o
o —p°P.

o

(26)
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Passing to the polar coordinates p = rexp(i¢@) in equation (26), we get

dr 20 do
@— 3 +e r+ (27)

Let the inequalities v > 0, dy < 0, ao> > {%(0) be satisfied. Then equation (27) possesses

the stationary solution
2(0
r=+eRy, Ro= \/(0‘_ 5((772)’Y> |do|

hence, the periodic solution of system (25) takes the form

6 = veRpexp (—@iy) +0(e), 6, = Z_](j
Since the function 6 is periodic with period 27, we get
o= —@ +0(e), nezZ\{0}.
Thus, the periodic solution of equation (24) takes the form
sn = su(t, x) = Verpexp(i(xn ()t + nx)), (28)

where r, = \/(rx —n2y) |do|~1, xn(e) = —Z(0) + B + ecor? — edn®. Thus, the periodic solution
of problem (15), (16) takes the form

B cos(xn(e)t + nx)
= Vern® ( sin(xn(e)t +nx) ) @9)
The equation in variations in the vicinity of solution (28) of equation (24) takes the form
v . 0%v ... 0%T . N
%0 — ig(0)0 ey +i0) 22 + el +id) S0 + el + iB)o + e(ay +iB1)D

+ (do + ico) (2er2v + s279).

In this equation, we perform the substitution v = wexp(ix,(¢)t) and apply the averaging
method [2]. We arrive at the equation

ow 2

0 .
ot e|l(y+i0)=—= o (a4 i6n® + dor2)w + (do + ico)r2 (w + Wexp(2inx))|.  (30)

ox2

We seek the solution of equation (30) in the form of Fourier series in the complex form

Z yi(t) exp(ikx), Z v (t) exp(ikx). (31)
k=—c0 k=—o00
Substituting (31) in (30) and equating the coefficients of exp(ikx), we obtain the equations for
the coefficients of the Fourier series

dyk—i-n

T e[(a +i6n* + dora )Y — (7 +16) (k +1)?Yirp + (do +ico) 1 (Ysn + Vk—n)].  (32)
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Similarly, substituting (31) in the equation adjoint to (30), we get

Ak
dt

The stability of the wave solutions of problem (15), (16) is determined by the stability of
system (32), (33) with a parameter k € Z. By the substitution

= e[(a — ion* + dora)vg_n — (v — i6) (k — n)*v4_, + (do — ico)r5 (Vk—n + Yi4n)]-  (33)

Yirn = Zkrn exp(—2iedkn) and v, = wy_, exp(—2iedkn)

in system (32), (33), we get a linear system with the matrix

€y ea
cA — ( 11 €an2 > .
E€dp1 €&dp)
Since & — yn?> = —dyr2, the matrix A has an eigenvalue equal to zero for k = 0. Since
the sum of diagonal elements of the matrix A is negative, 2 = a7 + axp < 0, for the orbital

exponential stability of the periodic solution u, it is necessary and sufficient that the condition
a’c > f?, where

¢ =Re(det(A)), f=Im(det(A)), and f = 4ykn(cor? — ok?),
be satisfied for k # 0, i.e.
(dor? — Yk2)? (72K2 + 62K> — 2ydgr? — 4y*n® — 26cor?) > 4P n?(cor? — 6k2)2. (34)
Theorem 3. Lety > 0, dy < 0 and let the inequality
a > yn?

be true for some integer n. Then there exists ¢y > 0 such that, for0 < € < ¢, problem (15), (16)
has solutions (29) periodic in t. These solutions are exponentially orbitally stable if and only if
condition (34) is satisfied for all k € Z\{0}.

To find periodic solutions of problem (15), (16), approximately, it suffices to restrict oneself
to terms of the second and third order in the expansion of the function ¥ (0) f(Pv + g(v,0),0)
in a power series in v. But for this, it suffices to know the second order terms in the expansion
of the function g(v,0). The first approximation of the function g(v, 0) has the form

0
81(v,0) = / T(—s) X3 f(PeP5v,0)ds.

We represent the function f(®y,0) in the form f(Py,0) = c1y3 + cayaya + cay3 + O(|y[?).
Then the determination of the function g3 (v, 0) is reduced to the calculation of the integral

0
z = / T(—s)Xégei“’sds,
where w € {0,27(0), —2(0)}. We note that the integral z converges and is uniformly bounded
inw.
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Theorem 4. For any real w the function z(6) belongs to Q (" D(A) and one has [14]
iwz — Az = XOQ. (35)

Thus, to find z it is necessary to solve (35) with respect to z. This equation is equivalent to

the following system:
dz(0)

—g —iwz(f) = ~X§(0), -A <6 <0, (36)
0

[ 1n(6,0)12(8) = iwz(0) = ~X§(0). 37)
—A

Analogously to [14], there exists a unique solution of system of equations (36), (37).

4 Conclusions

The methods of this article can be used to study the existence and stability of traveling
waves in the Brusselator equations with weak diffusion.
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Kaesuyk LI IcHysanns ma cmitixicmoe Giscyuux x6une iy napaboriuHux cucmemax is maiow ougysicio //
KapmaTceki MmaTeM. myba. — 2022. — T.14, Ne2. — C. 493-503.

AocAiaKeHO AesiKi BAACTMBOCTI epiOAMYIHIMX PO3B’SI3KiB aBTOHOMHOI ITapaboAiuHOI crcTeMn 3
TIepiOAMYHOIO YMOBO0. AAST AOCAIAKEHHS TapaboAiuHMX cucTeM AMidpepeHITiaAbHVIX PiBHSHD BUKO-
PMCTOBYETBCSI METOA iIHTETpaAbHMX MHOTOBMAIB TeOpil HeAiHIHMX KOAMBaHb. AOBEAEHO iCHYBaHHS
TIepiOAVYHMX PO3B’sI3KiB aBTOHOMHOI ITapaboAiuHOI crcTeMy AMdpepeHITiaAbHIX piB-HSHD 3 MaAOKO
Audysieto Ha KOAL. BuBueHO muTaHHS iCHYBaHHS Ta CTiIKOCTI SIK 3aBTOAHO BEAVIKOTO CKiHUEHHOTO
uycAa IMKAIB TapaboaidHoi crctemn i3 Maaoro Andysiero. Ilepioanari po3s’si3km mapaboaiuHoI cu-
CTeMM ITYKAIOThCST y BUTASIAL 6ikydoi xBuai. OpepXaHO 306paXkeH-Hsl iHTerpaAbHIX MHOTOBMAIB.
Mwm mrykaemo po3B’sI30K HMapaboAidHOI cucTeMM 3 IIEPIOAMYIHOIO YMOBOIO Y BUTASIAL psiay Dyp’e B
KOMIIAEKCHi dpopMi i BBOAMMO HOpMY B IpocTopi KoedilieHTiB po3kaaay B psia yp’e. Bukopn-
CTaHO METOA HOPMaAbHMX (POPM AAS 3araAbHOI MapaboAiuHoi cucTeMy AvidpepeHIiaAbHIIX PiBHSIHD
i3 3ami3HeHHSIM apTyMeHTY Ta MaAoko AMdy3ieio. TakoX BUKOPUCTOBYIOTBCSI METOAM Teopii 6idpyp-
Kalili AAsT AdpepeHITiaABHIX PiBHSTHB i3 3aIli3HEHHSIM Ta KBa3iAiHIHNX MapaboAidHMX piBHSHB. Ao-
BeAeHO iCHyBaHHSI IepiOAMYHMX PO3B’I3KiB aBTO-HOMHOI MapaboAiYHOI crcTeMu AndpepeHITiaAbHIX
PiBHSIHb Ha KOAi i3 3ami3HeHHSIM apryMeHTy Ta MaAOI0 AMdy3iero. AOCAIAXEHO icHyBaHHS Ta CTiii-
KiCTh XBMABOBMX PO3B’sI3KiB ITapaboAiUHOI CHCTeMN i3 3aITi3sHEHHSIM apTyMeHTY Ta MaAOIo AU Y3ieko.

Kntouosi cnosa i ppasu: 6idpypxarisi, cTiikicTs, AudpepeHITiaAbHO-PYHKIIIOHAABHE PiBHSIHHS, iH-
TerpaAbHIMIL MHOTOBMA, 61Kyda XBIASL.



