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Existence and stability of traveling waves in parabolic systems
of differential equations with weak diffusion

Klevchuk I.I.

The aim of the present paper is to investigate of some properties of periodic solutions of a non-

linear autonomous parabolic systems with a periodic condition. We investigate parabolic systems

of differential equations using an integral manifolds method of the theory of nonlinear oscillations.

We prove the existence of periodic solutions in an autonomous parabolic system of differential equa-

tions with weak diffusion on the circle. We study the existence and stability of an arbitrarily large fi-

nite number of cycles for a parabolic system with weak diffusion. The periodic solution of parabolic

equation is sought in the form of traveling wave. A representation of the integral manifold is ob-

tained. We seek a solution of parabolic system with the periodic condition in the form of a Fourier

series in the complex form and introduce a norm in the space of the coefficients in the Fourier ex-

pansion. We use the normal forms method in the general parabolic system of differential equations

with retarded argument and weak diffusion. We use bifurcation theory for delay differential equa-

tions and quasilinear parabolic equations. The existence of periodic solutions in an autonomous

parabolic system of differential equations on the circle with retarded argument and small diffusion

is proved. The problems of existence and stability of traveling waves in the parabolic system with

retarded argument and weak diffusion are investigated.
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Introduction

The approach used here follows the method of integral manifolds introduced by

N.N. Bogolyubov and Yu.A. Mitropol’skii [2]. Generalizations of the method of integral man-

ifolds and the averaging methods for functional differential equations the reader can find in

the book by J.K. Hale [6]. The book by S.D. Eidel’man [3] is devoted exclusively to the study of

parabolic systems. The books by D. Henry [8] and B.D. Hassard et al. [7] deal with the qual-

itative theory of quasilinear parabolic equations, and are devoted to searching answers to the

following questions: do there exist integral manifolds or special solutions (periodic solutions

etc.)? What about the stability and asymptotic behavior of these solutions? In [7], there are

chapters involving ordinary differential equations and delay differential equations. The main

subject of book [17] is the qualitative behavior of the solutions of semilinear partial differential

equations with time delay and its applications. Book [5] is unique by its focus on the funda-

mental mathematical aspects of bifurcation theory of functional differential equations. The

problems of stability and bifurcation of the solutions of functional-differential equations were
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considered, e.g., in [4,6,9,10,14]. The existence of countably many cycles in hyperbolic systems

of differential equations with transformed argument were considered in [12]. The existence

and stability of an arbitrarily large finite number of cycles for the equation of spin combustion

with delay were considered in [1, 13, 16].

In the present paper, we study the existence and stability of an arbitrarily large finite num-

ber of cycles for a parabolic system with delay and weak diffusion. The existence of periodic

solutions in this parabolic system is reduced to the similar problem for delay differential equa-

tions. We seek a solution of parabolic system with the periodic condition in the form of a

Fourier series in the complex form and introduce the norm in the space of the coefficients in

the Fourier expansion (see, e.g., [11]). Similar problems for partial differential equations were

studied in numerous works (see, e.g., [1, 13, 15–17]).

1 Traveling waves for parabolic equations with weak diffusion

Consider the following system

∂u1

∂t
= εγ

∂2u1

∂x2
− εδ

∂2u2

∂x2
− ω0u2 + ε(αu1 − βu2) + (d0u1 − c0u2)(u

2
1 + u2

2),

∂u2

∂t
= εγ

∂2u2

∂x2
+ εδ

∂2u1

∂x2
+ ω0u1 + ε(αu2 + βu1) + (d0u2 + c0u1)(u

2
1 + u2

2)

(1)

with the periodic condition

u1(t, x + 2π) = u1(t, x), u2(t, x + 2π) = u2(t, x), (2)

where ε is a small positive parameter, ω0 > 0, α > 0, γ > 0, d0 < 0.

Passing to the complex variables u = u1 + iu2 and ū = u1 − iu2, we arrive at the equation

∂u

∂t
= iω0u + ε

[

(γ + iδ)
∂2u

∂x2
+ (α + iβ)u

]

+ (d0 + ic0)u
2u. (3)

In the present paper, we investigate the existence and stability of the wave solutions of

problem (1), (2). The solution of equation (3) is sought in the form of traveling wave u = θ(y),

y = σt + x, where the function θ(y) is periodic with period 2π. We arrive at the equation

σ
dθ

dy
= iω0θ + ε

[

(γ + iδ)
d2θ

dy2
+ (α + iβ)θ

]

+ (d0 + ic0)θ
2θ.

By the substitution
dθ

dy
= θ1, this equation is reduced to the following system

dθ

dy
= θ1, σθ1 = iω0θ + ε

[

(γ + iδ)
dθ1

dy
+ (α + iβ)θ

]

+ (d0 + ic0)θ
2θ. (4)

The integral manifold of system (4) can be represented in the form

θ1 =
iω0

σ
θ + ε

[

α + iβ

σ
θ − ω2

0

σ3
(γ + iδ)θ

]

+
d0 + ic0

σ
θ2θ̄ + . . . .
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Here, we keep the terms of order O(ε) in the linear terms and the terms of order O(1) in the

nonlinear terms. The equation on this manifold takes the form

dθ

dy
=

iω0

σ
θ + ε

[

α + iβ

σ
θ − ω2

0

σ3
(γ + iδ)θ

]

+
d0 + ic0

σ
θ2θ̄ + . . . . (5)

Passing to the polar coordinates θ = r exp(iϕ) in equation (5), we get

dr

dy
= ε

(α

σ
− γ

σ3
ω2

0

)

r +
d0

σ
r3. (6)

Let d0 < 0 and let the inequality α >
γ

σ2
ω2

0 be true. Then equation (6) possesses the

stationary solution

r =
√

εR0, R0 =

√

(

α − γ

σ2
ω2

0

)

|d0|−1,

hence, the periodic solution of equation (5) takes the form

θ =
√

εR0 exp

(

iω0

σ
y

)

+ O(ε).

Since the function θ is periodic with period 2π, we obtain

σ =
ω0

n
+ O(ε), n ∈ Z\{0}.

Thus, the periodic solution of equation (3) takes the form

un = un(t, x) =
√

εrn exp(i(χn(ε)t + nx)) + O(ε), (7)

where

rn =
√

(α − n2γ) |d0|−1, χn(ε) = ω0 + εβ + εc0r2
n − εδn2, n ∈ Z.

Thus, the periodic solution of problem (1), (2) takes the form

u1 =
√

εrn cos(χn(ε)t + nx), u2 =
√

εrn sin(χn(ε)t + nx), n ∈ Z. (8)

The following statement is true.

Theorem 1. Let ω0 > 0, α > 0, γ > 0, d0 < 0 and let the inequality

α > γn2

be true for some integer n. Then there exists ε0 > 0 such that, for 0 < ε < ε0, problem (1), (2)

has solutions (8) periodic in t.

2 Stability of periodic solutions

The equation in variations in the vicinity of solution (7) of equation (3) takes the form

∂v

∂t
= iω0v + ε

[

(γ + iδ)
∂2v

∂x2
+ (α + iβ)v

]

+ ε(d0 + ic0)(2r2
nv + w2

nv̄), (9)
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where wn = rn exp(i(χn(ε)t + nx)), χn(ε) = ω0 + εβ + εc0r2
n − εδn2.

By the substitution v = w exp(iχn(ε)t) in equation (9), we find

∂w

∂t
= ε

[

(γ + iδ)
∂2w

∂x2
+ (α + iδn2 + d0r2

n)w + (d0 + ic0)r
2
n(w + w exp(2inx))

]

. (10)

We seek the solution of equation (10) in the form of Fourier series in the complex form

w(t, x) =
∞

∑
k=−∞

yk(t) exp(ikx), w(t, x) =
∞

∑
k=−∞

vk(t) exp(ikx). (11)

Substituting (11) in (10) and equating the coefficients of exp(ikx), we obtain the equations for

the coefficients of the Fourier series

dyk+n

dt
= ε[(α + iδn2 + d0r2

n)yk+n − (γ + iδ)(k + n)2yk+n + (d0 + ic0)r
2
n(yk+n + vk−n)]. (12)

Similarly, substituting (11) in the equation adjoint to (10), we get

dvk−n

dt
= ε[(α − iδn2 + d0r2

n)vk−n − (γ − iδ)(k − n)2vk−n + (d0 − ic0)r
2
n(vk−n + yk+n)]. (13)

The stability of the wave solutions of problem (1), (2) is determined by the stability of

system (12), (13) with the parameter k ∈ Z. By the substitution

yk+n = zk+n exp(−2iεδkn) and vk−n = wk−n exp(−2iεδkn)

in system (12), (13), we get a linear system with the matrix

εA =

(

εa11 εa12

εa21 εa22

)

.

The matrix A has an eigenvalue equal to zero for k = 0. Since the sum of diagonal elements

of the matrix A is negative, a = a11 + a22 < 0, for the orbital exponential stability of the

periodic solution un(t, x), it is necessary and sufficient that the condition a2c > f 2, where

c = Re(det(A)), f = Im(det(A)), and f = 4γkn(c0r2
n − δk2),

be satisfied for k 6= 0, i.e.

(d0r2
n − γk2)2(γ2k2 + δ2k2 − 2γd0r2

n − 4γ2n2 − 2δc0r2
n) > 4γ2n2(c0r2

n − δk2)2, (14)

where r2
n = (γn2 − α)/d0.

Theorem 2. The traveling waves un(t, x) of problem (1), (2) are exponentially orbitally stable

if and only if condition (14) is satisfied for all k ∈ Z\{0}.

Example 1. We consider system (1), where δ = 0, c0 = 0. Hence, Theorem 1 implies that the

periodic solution

un =
√

ε(α − γn2)|d0|−1

(

cos((ω0 + εβ)t + nx)

sin((ω0 + εβ)t + nx)

)

exists for d0 < 0 and γn2
< α. By Theorem 2, the traveling waves un(t, x) are exponentially

orbitally stable if and only if

n2
<

1

6γ
(γ + 2α).
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3 Bifurcation of self-excited vibrations for parabolic systems with retarded

argument and weak diffusion

Let Rn be the n-dimensional space with the norm |u| =
√

u2
1 + ... + u2

n, C = C[−∆, 0]

be the space of functions, continuous on [−∆, 0] with values in Rn with the norm

‖ϕ‖ = sup
−∆≤θ≤0

|ϕ(θ)|. We denote by ut the element of the space C defined by the function

ut(θ, x) = u(t + θ, x)− ∆ ≤ θ ≤ 0.

We consider the following parabolic system with delay and weak diffusion

∂u

∂t
= εD

∂2u

∂x2
+ L(ε)ut + f (ut , ε) (15)

with periodic condition

u(t, x + 2π) = u(t, x), (16)

where ε is a small positive parameter, u ∈ Rn, L(ε) : C → Rn is a continuous linear operator,

f : C × [0, ε0) → Rn, f (ϕ, ε) = O(‖ϕ‖2) as ‖ϕ‖ → 0, the operator f (ϕ, ε) is continuous in ε

and four times continuously differentiable in ϕ. Let us assume that the zero solution of (15)

for ε = 0 is asymptotically stable.

Along with (15) we consider the linear equations

∂ũ

∂t
= L(ε)ũt, (17)

∂ũ

∂t
= L(0)ũt. (18)

According to Riesz theorem, the operator L(ε) can be represented in the form of a Stieltjes

integral

L(ε)ϕ =

0
∫

−∆

[dη(θ, ε)]ϕ(θ),

where the matrix η(θ, ε) has bounded variation in θ. Let η(θ, ε) be twice continuously differ-

entiable in ε. The characteristic equation for (17) has the form

det Λε(λ) = 0, Λε(λ) = λI −
0

∫

−∆

eλθdη(θ, ε), (19)

where I denotes the identity matrix. Let us assume that (19) has one pair of roots of the

form ξ(ε) ± iζ(ε), ξ(0) = 0, ξ′(0) > 0, ζ(0) > 0, and the other roots lie in the half-plane

Re λ ≤ λ0 < 0.

One can represent (15) in the form

∂u

∂t
= L(0)ut + F(ut, ε), (20)
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where F(ut, ε) = εD
∂2u

∂x2
+ L(ε)ut − L(0)ut + f (ut , ε). We denote by ũt(ϕ) the solution of

(18) with initial function ϕ ∈ C. We define a translation operator with respect to the so-

lution of (18) by T(t)ϕ = ũt(ϕ). The family {T(t), t ≥ 0} forms a strongly continuous semi-

group. A generating operator of this semigroup is the differentiation operator Aϕ(θ) =
dϕ(θ)

dθ
,

−∆ ≤ θ ≤ 0, with domain defined as follows

D(A) =

{

ϕ ∈ C,
dϕ

dθ
∈ C,

dϕ(0)

dθ
= L(0)ϕ

}

.

We denote by P the eigensubspace of C, generated by solutions of (18), corresponding to

the roots ±iζ(0). We decompose the space C into a direct sum: C = P ⊕ Q. Let Φ = Φ(θ)

be a basis in P. Considering the adjoint equation to (18), one can define a function Ψ = Ψ(θ),

0 ≤ θ ≤ ∆ analogously. Then each element ut ∈ C can be represented in the form

ut = Φy(t) + zt, where y(t) = (Ψ, ut), zt = ut − Φy(t), y(t) ∈ R2, zt ∈ Q, (Ψ, ut) is some

bilinear functional. Equation (15) is equivalent to the system of equations [4, 6]:

∂y

∂t
= By + Ψ(0)F(Φy + zt, ε), zt = T(t − σ)zσ +

t
∫

σ

T(t − s)XQ
0 F(Φy(s) + zs, ε)ds.

Here XQ
0 is the projection onto the subspace Q of the function X0(θ) = 0, −∆ ≤ θ < 0,

X0(0) = I,

B =

(

0 ζ(0)

−ζ(0) 0

)

.

Analogously to [4], one can prove the existence of a function g : R2 × [0, ε0) → Q satisfying

the conditions g(0, ε) = 0, ‖g(y, ε)− g(y′, ε)‖ ≤ 1

2
|y − y′| and such that the set

Sε = {(ϕ, ε)|ε ∈ [0, ε0), ϕ = Φy + ϑ, y ∈ R2, ϑ = g(y, ε), ϑ ∈ Q}

is a local integral manifold of (20). The function g(y, ε) will be four times continuously differ-

entiable in y. The behavior of the solutions of (20) on the integral manifold Sε is described by

the equation
∂v

∂t
= Bv + Ψ(0)F(Φv + g(v, ε), ε), (21)

where v =

(

v1

v2

)

. For any solution ut = Φy(t) + zt of (20) there exists a solution

χt = Φv(t) + g(v(t), ε) belonging to Sε and such that

‖ut − χt‖ ≤ Ke−νt, K > 0, ν > 0.

In equation (21), we keep the terms of order O(ε) in the linear terms. We arrive at the

equation

∂v

∂t
= Bv + εΨ(0)DΦ(0)

∂2v

∂x2
+ εΨ(0)L′(0)Φv + Ψ(0) f (Φv + g(v, ε), ε).

Passing to the complex variables w = v1 + iv2, w = v1 − iv2, we arrive at the equation

∂w

∂t
= ε(γ+ iδ)

∂2w

∂x2
+ ε(γ1 + iδ1)

∂2w

∂x2
− iζ(0)w+ ε(α+ iβ)w+ ε(α1 + iβ1)w+W(w, w, ε), (22)
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where

(γ + iδ)w + (γ1 + iδ1)w = (1, i)Ψ(0)DΦ(0)v, (α + iβ)w + (α1 + iβ1)w = (1, i)Ψ(0)L′(0)Φv,

α = ξ′(0), β = ζ′(0), W(w, w, ε) = (1, i)Ψ(0) f (Φv + g(v, ε), ε).

We transform (22) with the help of the substitution

w = s + V2(s, s) + V3(s, s), (23)

where V2 and V3 are forms of strictly second and third order. One can choose a transformation

(23) so that the equation for s assumes the form

∂s

∂t
= ε(γ + iδ)

∂2s

∂x2
+ ε(γ1 + iδ1)

∂2s

∂x2
− iζ(0)s + ε(α + iβ)s + ε(α1 + iβ1)s + (d0 + ic0)s

2s + . . . .

(24)

Here, we keep the terms of order O(ε) in the linear terms and the terms of order O(1) in the

nonlinear terms.

We investigate the existence and stability of the wave solutions of problem (15), (16). A

solution of equation (24) is sought in the form of traveling wave s = θ(y), y = σt + x, where

the function θ(y) is periodic with period 2π. We arrive at the equation

σ
dθ

dy
= ε(γ+ iδ)

d2θ

dy2
+ ε(γ1 + iδ1)

d2θ

dy2
− iζ(0)θ + ε(α+ iβ)θ + ε(α1 + iβ1)θ + (d0 + ic0)θ

2θ + . . . .

By the substitution
dθ

dy
= θ1, this equation is reduced to the following system

dθ

dy
= θ1, σθ1 = ε(γ + iδ)

dθ1

dy
+ ε(γ1 + iδ1)

dθ1

dy
− iζ(0)θ

+ ε(α + iβ)θ + ε(α1 + iβ1)θ + (d0 + ic0)θ
2θ + . . . .

(25)

The integral manifold of system (25) can be represented in the form

θ1 = −ζ(0)

σ
iθ +

ε

σ

[

− ζ2(0)

σ2
(γ + iδ)θ − ζ2(0)

σ2
(γ1 + iδ1)θ + (α + iβ)θ + (α1 + iβ1)θ

]

+
d0 + ic0

σ
θ2θ + . . . .

Here, we keep the terms of order O(ε) in the linear terms and the terms of order O(1) in the

nonlinear terms. The equation on this manifold takes the form

dθ

dy
= −ζ(0)

σ
iθ +

ε

σ

[

− ζ2(0)

σ2
(γ + iδ)θ − ζ2(0)

σ2
(γ1 + iδ1)θ + (α + iβ)θ + (α1 + iβ1)θ

]

+
d0 + ic0

σ
θ2θ + . . . .

In this equation, we perform the substitution θ = p exp

(

−ζ(0)

σ
iy

)

and apply the averaging

method [2]. We arrive at the autonomous equation

dp

dy
=

ε

σ

[

−ζ2(0)

σ2
(γ + iδ)p + (α + iβ)p

]

+
d0 + ic0

σ
p2 p. (26)
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Passing to the polar coordinates p = r exp(iϕ) in equation (26), we get

dr

dy
= −ε

ζ2(0)γ

σ3
r + ε

α

σ
r +

d0

σ
r3. (27)

Let the inequalities γ > 0, d0 < 0, ασ2
> ζ2(0)γ be satisfied. Then equation (27) possesses

the stationary solution

r =
√

εR0, R0 =

√

(

α − ζ2(0)γ

σ2

)

|d0|−1,

hence, the periodic solution of system (25) takes the form

θ =
√

εR0 exp

(

−ζ(0)

σ
iy

)

+ O(ε), θ1 =
dθ

dy
.

Since the function θ is periodic with period 2π, we get

σ = −ζ(0)

n
+ O(ε), n ∈ Z\{0}.

Thus, the periodic solution of equation (24) takes the form

sn = sn(t, x) =
√

εrn exp(i(χn(ε)t + nx)), (28)

where rn =
√

(α − n2γ) |d0|−1, χn(ε) = −ζ(0)+ εβ+ εc0r2
n − εδn2. Thus, the periodic solution

of problem (15), (16) takes the form

ut =
√

εrnΦ

(

cos(χn(ε)t + nx)

sin(χn(ε)t + nx)

)

. (29)

The equation in variations in the vicinity of solution (28) of equation (24) takes the form

∂v

∂t
= −iζ(0)v + ε(γ + iδ)

∂2v

∂x2
+ ε(γ1 + iδ1)

∂2v

∂x2
+ ε(α + iβ)v + ε(α1 + iβ1)v

+ (d0 + ic0)(2εr2
nv + s2

nv).

In this equation, we perform the substitution v = w exp(iχn(ε)t) and apply the averaging

method [2]. We arrive at the equation

∂w

∂t
= ε

[

(γ + iδ)
∂2w

∂x2
+ (α + iδn2 + d0r2

n)w + (d0 + ic0)r
2
n(w + w exp(2inx))

]

. (30)

We seek the solution of equation (30) in the form of Fourier series in the complex form

w(t, x) =
∞

∑
k=−∞

yk(t) exp(ikx), w(t, x) =
∞

∑
k=−∞

vk(t) exp(ikx). (31)

Substituting (31) in (30) and equating the coefficients of exp(ikx), we obtain the equations for

the coefficients of the Fourier series

dyk+n

dt
= ε[(α + iδn2 + d0r2

n)yk+n − (γ + iδ)(k + n)2yk+n + (d0 + ic0)r
2
n(yk+n + vk−n)]. (32)
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Similarly, substituting (31) in the equation adjoint to (30), we get

dvk−n

dt
= ε[(α − iδn2 + d0r2

n)vk−n − (γ − iδ)(k − n)2vk−n + (d0 − ic0)r
2
n(vk−n + yk+n)]. (33)

The stability of the wave solutions of problem (15), (16) is determined by the stability of

system (32), (33) with a parameter k ∈ Z. By the substitution

yk+n = zk+n exp(−2iεδkn) and vk−n = wk−n exp(−2iεδkn)

in system (32), (33), we get a linear system with the matrix

εA =

(

εa11 εa12

εa21 εa22

)

.

Since α − γn2 = −d0r2
n, the matrix A has an eigenvalue equal to zero for k = 0. Since

the sum of diagonal elements of the matrix A is negative, a = a11 + a22 < 0, for the orbital

exponential stability of the periodic solution ut, it is necessary and sufficient that the condition

a2c > f 2, where

c = Re(det(A)), f = Im(det(A)), and f = 4γkn(c0r2
n − δk2),

be satisfied for k 6= 0, i.e.

(d0r2
n − γk2)2(γ2k2 + δ2k2 − 2γd0r2

n − 4γ2n2 − 2δc0r2
n) > 4γ2n2(c0r2

n − δk2)2. (34)

Theorem 3. Let γ > 0, d0 < 0 and let the inequality

α > γn2

be true for some integer n. Then there exists ε0 > 0 such that, for 0 < ε < ε0, problem (15), (16)

has solutions (29) periodic in t. These solutions are exponentially orbitally stable if and only if

condition (34) is satisfied for all k ∈ Z\{0}.

To find periodic solutions of problem (15), (16), approximately, it suffices to restrict oneself

to terms of the second and third order in the expansion of the function Ψ(0) f (Φv + g(v, 0), 0)

in a power series in v. But for this, it suffices to know the second order terms in the expansion

of the function g(v, 0). The first approximation of the function g(v, 0) has the form

g1(v, 0) =

0
∫

−∞

T(−s)XQ
0 f (ΦeBs v, 0)ds.

We represent the function f (Φy, 0) in the form f (Φy, 0) = c1y2
1 + c2y1y2 + c3y2

2 + O(|y|3).
Then the determination of the function g1(v, 0) is reduced to the calculation of the integral

z =

0
∫

−∞

T(−s)XQ
0 eiωsds,

where ω ∈ {0, 2ζ(0),−2ζ(0)}. We note that the integral z converges and is uniformly bounded

in ω.
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Theorem 4. For any real ω the function z(θ) belongs to Q
⋂

D(A) and one has [14]

iωz − Az = XQ
0 . (35)

Thus, to find z it is necessary to solve (35) with respect to z. This equation is equivalent to

the following system:
dz(θ)

dθ
− iωz(θ) = −XQ

0 (θ), −∆ ≤ θ < 0, (36)

0
∫

−∆

[dη(θ, 0)]z(θ) − iωz(0) = −XQ
0 (0). (37)

Analogously to [14], there exists a unique solution of system of equations (36), (37).

4 Conclusions

The methods of this article can be used to study the existence and stability of traveling

waves in the Brusselator equations with weak diffusion.
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Клевчук I.I. Iснування та стiйкiсть бiжучих хвиль у параболiчних системах iз малою дифузiєю //

Карпатськi матем. публ. — 2022. — Т.14, №2. — C. 493–503.

Дослiджено деякi властивостi перiодичних розв’язкiв автономної параболiчної системи з

перiодичною умовою. Для дослiдження параболiчних систем диференцiальних рiвнянь вико-

ристовується метод iнтегральних многовидiв теорiї нелiнiйних коливань. Доведено iснування

перiодичних розв’язкiв автономної параболiчної системи диференцiальних рiв-нянь з малою

дифузiєю на колi. Вивчено питання iснування та стiйкостi як завгодно великого скiнченного

числа циклiв параболiчної системи iз малою дифузiєю. Перiодичнi розв’язки параболiчної си-

стеми шукаються у виглядi бiжучої хвилi. Одержано зображен-ня iнтегральних многовидiв.

Ми шукаємо розв’язок параболiчної системи з перiодичною умовою у виглядi ряду Фур’є в

комплекснiй формi i вводимо норму в просторi коефiцiєнтiв розкладу в ряд Фур’є. Викори-

стано метод нормальних форм для загальної параболiчної системи диференцiальних рiвнянь

iз запiзненням аргументу та малою дифузiєю. Також використовуються методи теорiї бiфур-

кацiй для диференцiальних рiвнянь iз запiзненням та квазiлiнiйних параболiчних рiвнянь. До-

ведено iснування перiодичних розв’язкiв авто-номної параболiчної системи диференцiальних

рiвнянь на колi iз запiзненням аргументу та малою дифузiєю. Дослiджено iснування та стiй-

кiсть хвильових розв’язкiв параболiчної системи iз запiзненням аргументу та малою дифузiєю.

Ключовi слова i фрази: бiфуркацiя, стiйкiсть, диференцiально-функцiональне рiвняння, iн-

тегральний многовид, бiжуча хвиля.


