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AROUND P-SMALL SUBSETS OF GROUPS

A subset X of a group G is called P-small (almost P-small) if there exists an injective sequence
(¢n)new in G such that the subsets (g, X)ncw are pairwise disjoint (g, X N g X is finite for all distinct
n,m), and weakly P-small if, for every n € w, there exist go,...,g» € G such that the subsets
30X, ...,gnX are pairwise disjoint. We generalize these notions and say that X is near P-small if, for
every n € w, there exist o, ...,gn € G such that g;X N giXis finite for all distincti,j € {0,...,n}.
We study the relationships between near P-small subsets and known types of subsets of a group,
and the behavior of near P-small subsets under the action of the combinatorial derivation and its
inverse mapping.

Key words and phrases: P-small, almost P-small, weakly P-small, near P-small subsets of a group;
the combinatorial derivation.
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INTRODUCTION

Let G be a group with the identity e, [G]<“ denotes the family of all finite subsets of G.
A subset X of G is called

e largeif G = FX for some F € [G]<%;
e small if L\ X is large for each large subset L of G;

e P-small if there exists an injective sequence (g )ncw in G such that the subsets (¢, X)new
are pairwise disjoint;

o weakly P-small if, for every n € w, there exist go,...,gn € G such that the subsets
80X, ...,gnX are pairwise disjoint;

e almost P-small if there exists an injective sequence (¢y)ncw in G such that ¢,X,...,
gmX is finite for all distinct m, n;

e near P-small if, for every n € w, there exist go, ..., gn € G such that ¢;X N ¢; X is finite for
all distincti,j € {0,...,n};

e thin if gA N A is finite for for every ¢ € G\{e};

e sparse if, for every infinite subset Y of G, there exists a non-empty finite subset F C Y
such that N,cp ¢X is finite.
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The terms large and small subsets appeared in [2], P-small subsets were introduced unex-
plicitly by Prodanov [7] and explicitly in [3, § 2.1]. Every infinite group G can be generated by
some small and P-small subset [4] and contains weakly P-small not P-small subset [1]. Each
almost P-small subset of a group can be partitioned into two P-small subsets [6]. For thin
and sparse subsets see [6]. We recall that a subset X of an amenable group G is absolute zero
if u(X) = 0 for each left invariant Banach measure yu on G. It is easy to see that each near
P-small subset of an amenable group G is absolute zero. By [6, Corollary 5.1], each absolute
zero is small. Hence, each near P-small subset of an amenable group is small. By [6, Theorem
5.3], each countable amenable groups contains a small subset which is not absolute zero. On
the other hand, we take a free group F4 in the alphabet A, | A |> 1, choose a2 € A and consider
a subset X of all group words in A starting with a or a—!. Then X is P-small but X is large, so
X is not small.

In this note we introduce near P-small subsets generalizing weakly and almost P-small sub-
sets. All results are exposed in section 2. We study the relationships between modified P-small
subsets and thin subsets (Theorems 1 and 2), and the behavior of near P-small subsets under
the action of the combinatorial derivation and its inverse mapping (Theorems 3 and 4). The
combinatorial derivation, the main tool in this note, was introduced in [9] and studied in [5],
[10], [11]. Some necessary auxiliary statements on the combinatorial derivation are arranged in
section 1. In section 2 we also show that a near P-small subset needs not to be neither weakly
nor almost P-small (Theorem 5) and partition every infinite group G into N9 P-small subsets
(Theorem 6). For partition of a group into Xy small subsets see [8].

1 THE COMBINATORIAL DERIVATION

For a group G, P denotes the family of all subsets of G. A mapping A : Pg — P defined
by A(A) = {g € G: gAN A isinfinite} is called the combinatorial derivation. Clearly, A(A) =
g if A is finite and e € A(A), (A(A))~! = A(A) for each infinite subset A of G. An infinite
subset A is thin if and only if A(A) = {e}. We denote Symg = {X C G: X = X!, e € X}
and use the following auxiliary statement [10, Lemma 2.6].

Lemma 1. For every subset A € Symg there exist two thin subsets X, Y such that

A(XUY) = A.

Lemma 2. For every countable group G and every non-empty subset A € Sym, there exists a
subset X of G such that A(X) = A and G = XX~ 1.

Proof. We enumerate G = {g, : n € w}, put F, = {go,...,9n} and write the elements of A
in a sequence (a,)new (if A is finite, all but finitely many a, are equal to e¢). Then we choose
inductively a sequence (X, )ne. of finite subsets of G of the form

X = {Yn, &, Xn0, A0Xn0, X1, A1Xn1, - - -, X, An X }
such that, for each n € w,
(@) Fut1Xnt1 N Fps1(XoU - - UXn) = &5
(b) En{yn, §nyn} N Fud (xpisaixyi} = @,i € {0,...,n};
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(¢) Fu{xui, aixni} N Fud (xyj, ajxyj} = @, for all distinct i,j € {0,...,n}.

After w steps, we denote X = J,c., X»- By the choice of (X;,),ecw, we have G = XX~ ! and
A C A(X). The conditions (a), (b), (c) guarantee A(X) C A. O

2 RESULTS

Theorem 1. For every infinite group G, the following statements hold
(i) every thin subset of G is almost P-small;
(ii) there exists a thin but not weakly P-small subset of G.

Proof. The statement (i) follows directly from corresponding definitions. To prove (ii), we
consider two cases: | G |= Rpand | G |> Yy . If G is countable, we enumerate G = {gy :
n € w}, put F, = {Qon, ..., ¢n} and choose inductively a sequence (X )ncw in G such that, for
eachn € w, Ky 1{xn+1, gn+1Xn+1} N Ku{xi, gix; 1 < n} = &. Then the subset X = {x,,, gnxy :
n € w} is thin but gX N X # @ for each ¢ € G so X is not weakly P-small. If | G |> N,
we denote k =| G |, enumerate G\{e} = {g» : @ € «}, put Xo = {e}, choose xp € G such
that xg, goxo ¢ Xo and construct inductively a k-sequence {x, : « € x} in G and a k-sequence
{Xy : « € k} of subgroups of G such that, for each « € x,

(a) xa, aXa & Xu;

(b) Xy41 is a subgroup generating by X, and {ga, X1 };

(¢) Xa = Up<q Xp for each limit ordinal « € x.

After x steps, we denote X = {x,, gaXa : & € x}. By (b), XN X # @ for each ¢ € G, so
G is not weakly P-small. To verify that X is thin, we take an arbitrary ¢ € G\ {e} and use
(b), (c) to choose y € x such that g € X1\ X,. Since g(X N X,) C X,41\X,, by (a) and (b),
we have [¢(X N X,)NX| < 2. Ify € g(X\Xy41) N X theny € {x),gxp, Xy, g 'x,} for some
Au > v+1 Thus, | g(X\ X,)NX [< 4 By (a)and (b), | XN (X,4+1\ X,) |= 2. Hence,
| gX N X |<8and X is thin. O

Theorem 2. For every infinite group G, there exist two thin subsets X,Y of G such that X, Y is
not near P-small.

Proof. We use Lemma 1 to find thin subsets X, Y of G such that A(XUY) = G, so X U Y is not
near P-small. O

By [6, Lemma 2], the family of all sparse subsets of G is closed under finite unions. Since
each thin subset is sparse, Theorem 2 gives a sparse but not near P-small subset X UY of G.

Theorem 3. There exists a P-small subset X of the group G = Q? such that A(X) is not near
P-small.

Proof. We use the Cartesian coordinates in G, put X = {(x,y) € G:| x |[<y <| x | +1} and
note that (0,2z) + XN (0,2z') + X = @ for all distinct z,z’ € Z. Hence, X is P-small.

We observe that A(X) contains the subset Y = {(x,y) € G: — | x |[< y <| x |} and
A(Y) = G, so A(X) is not near P-small. O
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We recall [10] that a family F of subsets of a group G is A-complete (V-complete) if A(X) € F
for each X € F (A(X) € F implies X € F). By Theorem 3, the family of all near P-small
subsets of a group G need not to be A-complete.

Theorem 4. For every infinite amenable group G, the family of all near P-small subsets of G is
V-complete.

Proof. We assume the contrary and choose a subset X of G such that A(X) is near P-small
but X is not near P-small. Then there exists the minimal natural number 7 such that, for any
F C G, | F |= n, there exist distinct x,y € F such that xX " yX is infinite. By the minimality
of n, thereis H C G, | H |= n — 1 such that xX N yX is finite for all distinct x,y € H. Given
any ¢ € G\ H, there is hy € H such that gX (N hoX is infinite. If follows that hglg € A(X),
G\ H C HA(X) and A(X) is large. Hence, A(X) is not absolute zero and A(X) could not be
near P-small. O

We do not know whether Theorem 4 holds for non-amenable groups.

Theorem 5. For every countable Abelian group G, there exists a near P-small subset X which
is neither weakly nor almost P-small.

Proof. Suppose we have a sequence (S, )neq Of finite subsets from Symg such that | S, |> n
and

(a) SkNS;S; = {e} forany i,j,k € w, k & {i,j}.

We apply Lemma 2 to find a subset X of G such that A(X) = G\ Upee Snand G = XX 1.
We note that, for any distinct g1, > € G

(b) if g, 'g2 € Sy then g1 X N g» X is finite;

(c) if g7'82 & Unew Sn then g1X N g2X is infinite.

The condition G = XX~! implies that X is not weakly P-small. Since | S, |> 1, by (b), X
is near P-small. We assume that X is almost P-small and choose an injective sequence (X )necw
in G such that ;XN x; X is finite for all distinct 7, j € w. Since xoX () x1X is finite, by (c), there
exists i € w such that x; Iy, € Si. Analogously, for n > 1, there exist k,j € w such that
xo_lxn € Sy, xl_lxn € S;. We note that xo_lxl = (xo_lxn)(x;lxl), xl_lxn = (xl_lxo)(xo_lxn),
Xg 'xn = (xg 'x1) (%] 'xn). Thus, we have got

xo_lxl € S; m SkS]-, xl_lxn € 5] ﬂSiSk, xo_lxn € Skm 51'5]‘,

and, in view of (a), i = j = k. Hence, (x; 'x,) € S; for any n > 2 that is impossible because S;
is finite, so X is not almost P-small. To conclude the proof, it remains to find (S, ),e satisfying
(a). Since each infinite Abelian group contains either infinite cyclic subgroup, or the Priiffer
p-subgroup, or the direct product of Ny finite groups, the late is a routine exercise. O

It should be mentioned that initially above construction appeared to find a weakly P-small
but not almost P-small subsets of G.

Theorem 6. Every infinite group G can be partitioned into Xy P-small subsets.

Proof. We take an arbitrary countable subgroup H of G, decompose G into right cosets by H
and choose some set R of representatives of cosets, so G = HR. Then {hR : h € H} is a desired
partition of G.
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ITiamuOXMHA X rpymm G HasmBaeTbcsi P-Manoro (Maiike P-Manolo), SIKILIO icHye iH eKTyBHa I10-
CAIAOBHICTB (g1 )new B G Taxa, o mAMHOXMEA (£ X ) e TTOMapHO He IepeTHHATHCS (g, X N gmX
CKiHYeHHi AAST BCIX pi3HUX 11, 1), 1 chabko P-Mani, SIKIIO AAS KOXKHOTO 1 € w), iCHYIOTb g, ..., 9n € G
Taki, 1m0 maMHOXMHEM goX, . .., gy X TOINAPHO He IepeTMHAIOThCS. Y3araAbHEeHO Li IOHSTTS: IiA-
MHOXMHa X Ha3MBa€TbCS OAM3BKO P-MaaoIo, SIKIIO AASI KOXHOIO 11 € w iCHYIOTb go,...,8n € G
Taki, mo g; X N g]-X CKiHUeHHi AAS BCIX pisHMX i,] € {O, R n}. AOCAIAXEHO CITiBBiAHOIIIEHHST MiX
OAM3BKO P-MaAMMM I AMHOXMHAMY i BIAOMMMM TUITAMU I AMHOXMWH TPYII, AOCAIAXKEHO IOBEAIHKY
6AM3BKO P-MaAMX IiAMHOXMH ITiA Al€fo KOMOIHATOPHOI MOXiAHOT Ta 1i 06epHEHOTO BiAOOpaKeHHSI.

Kntouosi cnosa i ¢ppasu: P-mani, mavoke P-manai, crabko P-mani, 6AM3bKO P-Mani IiAMHOXMHNI
rpymm; KoMbiHaTOpHa IOXiAHa.

ITpotacos HU.B., ITporacosa K.A. Bokpye P-manvix nodmuookcecms epynn // KapmnaTrckie maTeM. my6a.
—2014. — T.6, Ne2. — C. 337-341.

IToamuoxecTBo X rpymmbl G HasbIiBaeTcsl P-MaAbIM (IOYTU P-MaAbIM), €CAM CYILIECTBYeT MHDB-
eKTVBHasI TOCAEAOBATEABHOCTD (g )ncw B G Taxasi, uTo moAMHOXeCTBa (g, X)new MOMAPHO He Te-
pecexarorcst (X N g X KOHEUHBI AAS BCEX PA3AWUHBIX 11, 111), M CAab60 P-Manbl, eCAU AAST KaXKAOTO
n € w, CyImecTBYIOT go,...,¢n € G Taxue, 9YTO IOAMHOXecCTBa o X, ..., gnX IOMApPHO He Ilepece-
katorcst. O606IITeHbI ST TOHSITHUST: TIOAMHOXEeCTBO X Ha3bIBAe€TCSI OAM3KO P-MaAbIM, €CAVI AAST KaXK-
AOrO 1 € w CYIIECTBYIOT gy, ..., 8n € G Takue, uro ¢;X M ¢;X KOHEUHbIE AASL BCEX Pa3AMYHbIX
i,j € {0,...,n}. I3y4eHbI COOTHOIIEHMS MEXAY OAM3KO P-MaAbIMM TOAMHOXXECTBAMM U M3BECTHbI-
MU TUIIaMV IIOAMHO>KECTB I'PYTIII, M3y YeHO MOBeAeHMe DAMIKO P-MaAbIX IOAMHOXECTB IOA AVICTBU-
€M KOMOVMHATOPHOM IIPOM3BOAHOM U ee 0OPaTHOTO OTOOpaKeHMsI.

Kntouesvie cnosa u ¢ppaser: P-manast, moutn P-manast, caabo P-manast, 6An3ko P-maable MoAMHO-
KecTBa IPYMIIbl; KOMOMHATOPHAST IIPOU3BOAHASL.



