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ON OPERATORS OF STOCHASTIC DIFFERENTIATION ON SPACES OF REGULAR
TEST AND GENERALIZED FUNCTIONS OF LEVY WHITE NOISE ANALYSIS

The operators of stochastic differentiation, which are closely related with the extended Skorohod
stochastic integral and with the Hida stochastic derivative, play an important role in the classical
(Gaussian) white noise analysis. In particular, these operators can be used in order to study pro-
perties of the extended stochastic integral and of solutions of stochastic equations with Wick-type
nonlinearities.

In this paper we introduce and study bounded and unbounded operators of stochastic differen-
tiation in the Lévy white noise analysis. More exactly, we consider these operators on spaces from
parametrized regular rigging of the space of square integrable with respect to the measure of a Lévy
white noise functions, using the Lytvynov’s generalization of the chaotic representation property.
This gives a possibility to extend to the Lévy white noise analysis and to deepen the corresponding
results of the classical white noise analysis.
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INTRODUCTION

Let L = (Lt);e[o,+00) be a Lévy process, i.e., a random process on [0, +o00) with stationary
independent increments and such that Ly = 0 (see, e.g., [4, 25, 26] for detailed information
about Lévy processes). In particular cases, when L is a Wiener or Poisson process, any square
integrable random variable can be decomposed in a series of repeated stochastic integrals from
nonrandom functions with respect to L. This property of L is called the chaotic representation
property (CRP), see, e.g., [23] for detailed information. The CRP plays a very important role in
the stochastic analysis (in particular, it can be used in order to construct extended stochastic
integrals [14, 29, 13], stochastic derivatives and operators of stochastic differentiation, e.g., [32,
1]), but, unfortunately, for a general Lévy process this property does not hold (e.g., [31]).

There are different generalizations of the CRP for Lévy processes: one can use the It6’s
approach [12], the Nualart-Schoutens” approach [24, 27], the Lytvynov’s approach [22], the
Oksendal’s approach [6, 5] etc. The interconnection between these generalizations of the CRP
is described in, e.g., [22, 2, 6, 30, 5, 21].

Let from now L be a Lévy process without Gaussian part and drift (it is comparatively sim-
ply to consider such processes from technical point of view). In the paper [21] the extended
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Skorohod stochastic integral with respect to L and the corresponding Hida stochastic deriva-
tive, in terms of the Lytvynov’s generalization of the CRP, on the space of square integrable
random variables (L) were constructed; some properties of these operators were established;
and it was shown that the extended stochastic integrals constructed with use of the above-
mentioned generalizations of the CRP coincide. In the papers [19, 8] the stochastic integral and
derivative were extended to spaces of test and generalized functions from riggings of (L?), this
gives a possibility to extend an area of their possible applications (in particular, now it is possi-
ble to define the stochastic integral and derivative as linear continuous operators). But together
with the mentioned operators, it is natural to introduce and to study operators of stochastic dif-
ferentiation in the Lévy white noise analysis, by analogy with the Gaussian analysis [32, 1], the
Gamma-analysis [15, 16], and the Meixner analysis [17, 18]. These operators are closely re-
lated with the extended Skorohod stochastic integral with respect to a Lévy process and with
the corresponding Hida stochastic derivative and, by analogy with the "classical case", can be
used, in particular, in order to study properties of the extended stochastic integral and proper-
ties of solutions of normally ordered stochastic equations (stochastic equations with Wick-type
nonlinearities in another terminology). So, the aims of the present paper are to introduce the
operators of stochastic differentiation on spaces of the so-called regular parametrized rigging
of (L?) (e.g., [19, 8, 7]) and to study some properties of these operators. In the next papers we’ll
consider elements of the so-called Wick calculus in the Lévy white noise analysis, this will give
us the possibility to continue the study of properties and applications of the mentioned oper-
ators. Note that some results of the present paper were announced without detailed proofs in
the short paper [7].

The paper is organized in the following manner. In the first section we introduce a Lévy
process L and construct a convenient for our considerations probability triplet connected with
L; then, following [21, 19], we describe in details the Lytvynov’s generalization of the CRP, the
extended stochastic integral with respect to L, and the corresponding Hida stochastic deriva-
tive, on the spaces of the regular parametrized rigging of (L?). In the second section we deal
with the operators of stochastic differentiation.

1 PRELIMINARIES

1.1 Lévy processes

Denote R, := [0, +00). In this paper we deal with a real-valued locally square integrable
Lévy process L = (L;)ter, (a random process on R, with stationary independent increments
and such that Ly = 0) without Gaussian part and drift. As is well known (e.g., [6]), the charac-
teristic function of L is

E[e®H] = exp [t /IR (% — 1— i0x)v(dx)], (1)

where v is the Lévy measure of L, which is a measure on (R, B(IR)), here and below B denotes
the Borel o-algebra, E denotes the expectation. We assume that v is a Radon measure whose
support contains an infinite number of points, v({0}) = 0, there exists € > 0 such that

/ 22y (dx) < oo,
R
and

/ x*v(dx) = 1. 2)
R
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Let us define a measure of the white noise of L. Let D denote the set of all real-valued
infinite-differentiable functions on R with compact supports. As is well known, D can be
endowed by the projective limit topology generated by a family of Sobolev spaces (e.g., [3]).
Let D’ be the set of linear continuous functionals on D. For w € D’ and ¢ € D denote w(¢) by
(w, ¢); note that one can understand (-, -) as the dual pairing generated by the scalar product
in the space L?(R.) of (classes of) square integrable with respect to the Lebesgue measure
real-valued functions on R;. The notation (-, -) will be preserved for dual pairings in tensor
powers of spaces.

Definition 1. A probability measure u on (D',C(D’)), where C denotes the cylindrical
o-algebra, with the Fourier transform

i{w,p) — iplu)x _ 1 _
/D’e p(dw) = exp [/]MX]R(e 1 z(p(u)x)duv(dx)], peD, 3)

is called the measure of a Lévy white noise.

The existence of y from the Bochner-Minlos theorem (e.g., [11]) follows. Below we will
reckon that the o-algebra C(D") is complete with respect to y, i.e., C(D’) contains all subsets of all
measurable sets O such that u(O) = 0.

Denote (L?) := L?(D’,C(D'), 1) the space of (classes of) real-valued square integrable with
respect to y functions on D’; let also H := L?(IR). Substitutingin (3) ¢ = ti,t € R, ¢ € D,
and using the Taylor decomposition by t and (2), one can show that

2
(@ 9Putd0) = [ (p(w)*u @

+
(this statement follows also from results of [22] and [6]). Let f € Hand D > ¢ — fin H as
k — oo. It follows from (4) that {(o, gx) }x>1 is a Cauchy sequence in (L?), therefore one can
define (o, f) := (L?) — limy_,« (0, ¢ ). It is easy to show (by the method of "mixed sequences")
that (o, f) does not depend on a choice of an approximating sequence for f and therefore is
well defined in (L?).

Let us consider (o, 1}y ;) € (L?), t € Ry (here and below 14 denotes the indicator of a set
A). It follows from (1) and (3) that (<o, i) >) ter, CaN be identified with a Lévy process on the

probability space (D',C(D’), ), i.e., one can write Lt = (0,11 ;)) € (L?).

Remark 1. Note that one can understand the Lévy white noise as a generalized random process
(in the sense of [9]) with trajectories from D': formally Li(w) = (w,1)9y)) = (w,d) = w(t),
where §; is the Dirac delta-function concentrated at t. Therefore y is the measure of L in the
classical sense of this notion [10].

1.2 Lytvynov’s generalization of the CRP
Denote by ® a symmetric tensor product and set Z, := N U {0}. Let P = P(D’) be the

set of continuous polynomials on D/, i.e., P consists of zero and elements of the form

Ny -

flw) =Y (®, f"), weD, NyeZy, f e, fN) 20,

n=0
here Ny is called the power of a polynomial f; (w0, FO)) .= £(0) ¢ D0 .= RR. Since the measure
u of a Lévy white noise has a holomorphic at zero Laplace transform (this follows from (3)
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and properties of the measure v, see also [22]), P is a dense set in (Lz) [28]. Denote by P, the
set of continuous polynomials of power < 1, by P, the closure of P, in (L?). Let forn € N
P, := P, © P,_1 (the orthogonal difference in (L?)), Py := P,. It is clear that

%)= & P,

( ) n=0 !
Let f") ¢ D, 5 € Z.. Denote by : (o®", f(): the orthogonal projection of a monomial
<o®”,f(”)) onto P,,. Let us define scalar products (-,-)ext on D¥", n € Z., by setting for
f(ﬂ),g(") c pén

1

(f("),g(n))ext — i . <w®",f(”)> . <w®”,g(”)> u(dw),

and let | - |oxt be the corresponding norms, i.e., |f(”)|ext = 1/ (fm, f(0),. Denote by )

ext’

n € Z,, the completions of DE1 with respect to the norms | - |ext- For F\" (n) ¢ ngg define

a Wick monomial : (0®", F(")) aef (L?) — limy_,qp : (0% fk > where D" 5 f — F as
k — ooin Hext (well-posedness of this definition can be proved by the method of "mixed
sequences”). Since, as is easy to see, for each n € Z, the set {: (o®1, f():|f(") € DO} isa

(n)

dense one in P,,, F € (L?) if and only if there exists a unique sequence of kernels F(") € 7"/,

n € Z, such that

=} (o™ FM): (5)
n=0
and
IFIZz) = [ IF@)Pu(dew) = BIFE = Y- nllF®) R, < o
n=0

So, for F, G € (L?) the scalar product has the form
(F,G)(12) = /D F(w)G(w)p(dw) = E[FG] = ) n!(F, Gy,
n=0

where F("), G ¢ 7-[( t) are the kernels from decompositions (5) for F and G respectively. In
particular, for £ ¢ ngt) and G™) ¢ 7-[( ) n,meZy,

ext ’

(40, EO) (05, G)) oy = [ 5™, ) (@, GIM) ()
=FE [: <o®n,1:(n)> (0@ G(m)> :} — (5n’mn!(1:(n)’ G(n))ext-
Also we note that in the space (L2) : (020, FO)): = (0®0 F(0)) = F(0) and : (o, FV)): = (o, F))
[22].
In order to work with spaces ngg , it is necessary to know the explicit formulas for the

scalar products (-, -)ext. Let us write out these formulas. Denote by || - ||, the norm in the space
L%(R,v) of (classes of) square integrable with respect to v real-valued functions on R. Let

pn(x) := x" +ﬂn,n—1x"_1 +-tagax, a€R, je{l,...,n—1}, ne€N, (6)

be orthogonal in LZ(IR, v) polynomials, i.e., for natural numbers n, m such that n # m,



216 DYRIV M.M., KACHANOVSKY N.A.

[ Pn(x)pm (x)v(dx) = 0. Then for F"), G(") € 1" 1 € N, we have [22]

ext’
(F,G0Y = y n! <||P11Hv)251 o <lekHv)25k
7
KlsiEN: =10k, Iy >l> 1y, spl---st\ ! Ii!
lysy+-+lgsg=n
X /]RSﬁmﬂk F(ﬂ)(ul,...,ul,...,ysl,...,usll,...,usﬁ...Jrsk,...,usl+...+sk) (7)
+ ~

ll ll lk

xG(”)(ul e U, e Uy, e Uy, e Uy bebgyy e ey Uy poetg ) AU - - AU 4oogg,
s 7 ’ s sy s sy ! K’ s Hsq k 1 k

I b

—

1 li
In particular for n=1FD,GcD)p = ||p1||ZHED,GDY; if n = 2 then (F?,G?), =
Ipill4(F®, G MMW.N() 2) (), et

It follows from (7) that ngz H = L>(R4): by (6) p1(x) = x and therefore by (2) ||p1|, =
1; and for n € IN\{1} one can identify H®" with the proper subspace of %éﬁjﬁ that consists of
"vanishing on diagonals" elements (i.e., F") (uy,...,u,) = 0 if there existk,j € {1,...,n} such
that k # jbut uy = u;). In this sense the space 1" is an extension of HE" (this explains why we

ext

use the subscript ext in the designations ’ngt), (), )ext and | - |ext).

1.3 A regular rigging of (L?)
Denote Py = {f = ZnNiO'< on f(n)y;, £(n) ¢ DOn, Ny € Z1} C (L?). Accept on default

B €0,1],9 € Zinthecasep € (0,1] and g € Z, if B = 0. Define scalar products (-,-), s on
Pw by setting for

Ny Ny
Z o, fM):, g =Y (%", g): € Py
n=0 n=0
min(Ny,Ng)
(F8)gp= Y, (n)tHh2m (), gl .
n=0

Let || - |4, be the corresponding norms, i.e., || f|lg5 = \/(f, f)ap
p

Definition 2. We define parametrized Kondratiev-type spaces of test functions (L?)g as com-
pletions of Py, with respect to the norms || - || s; and set (L2)f := pr limq_>+oo(llz),§3 (the pro-

jective limit of spaces).

As is easy to see, F € (L?) 5 if and only if F can be presented in form (5) with F(") € 7-[( 2 and

IFI2p = IFIR g = X (0) 492 Oy < oo ®
n=0

i (n)1+B2am (F(W), G(M),.;, where
n=0

Fm, G ¢ ’H( t) are the kernels from decompositions (5) for F and G correspondingly. Further,
F € (LZ)/S if and only if F can be presented in form (5) and norm (8) is finite for each g € Z .

ForF,G € (Lz)g the scalar product has a form (F, G)(Lz)lg =

Proposition 1 ([19]). For any € (0,1] and q € Z (in the same way as for f = 0 and any
q € Z) the space (Lz)g is densely and continuously embedded into (L?).
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In view of this proposition, one can consider a chain

(L3P 5 (L2)~F 5 (12) 5 (13)f o (12)P, 9)

where (LZ):g ,(L?)7F =ind limq_>+oo(L2):g (the inductive limit of spaces) are the spaces dual
of (Lz)g , (L?)P correspondingly with respect to (L?).

Definition 3. The spaces (LZ):g, (L?)~F are called parametrized Kondratiev-type spaces of
regular generalized functions.

p

The next statement from the definition of the spaces (LZ)
follows.

and the general duality theory

—P
q
p

q’

Proposition 2. 1) Any regular generalized function F € (L?)_! can be presented as formal

series (5) (with coefficients F") € ext ) that converges in (L?)_" i.e.,

IEIZ g = I = 1o (o) P2 7 FO G < oo (10)
and, vice versa, any formal series (5) with finite norm (10) is a regular generalized function
from (L?)_ g,
2)forF,G € (Lz) P the scalar product has a form

(F, Z (n)'= Po— an jal )/G(n)>ext/

where F"), G ¢ ngt) are the kernels from decompositions (5) for F and G respectively;
3) the dual pairing between F € (Lz) and f € (L )[3 that is generated by the scalar

product in (L?), has a form

q

_ Z Vl!(F("),f("))ext, (11)
n=0

where F), f(") ¢ ’ngt) are the kernels from decompositions (5) for F and f respectively;
4)F € (L?)~F ifand only if F can be presented in form (5) and norm (10) is finite for some

q€Z+.

Remark 2. We use the term 'regular generalized functions" for elements of (LZ):g and of
(L?)~F because the kernels from decompositions (5) of these elements and the kernels from
decompositions (5) of test functions belong to the same spaces.

In what follows, it will be convenient to denote the spaces (Lz)g ,(L%) = (L%)8, (Lz) P from

chain (9) by (Lz)q, B € [—1,1], g € Z (we accept this on default). The norms in these spaces
are given, obviously, by formula (8).

1.4 Stochastic integrals and derivatives

Let F € (Lz)g ® H. It follows from representation (5) for elements of (Lz)g that F can be
presented in the form

F() =Y o F™y., F ey o, (12)
n=0
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Let us describe the construction of an extended stochastic integral that is based on this de-

composition and correlated with the structure of the spaces Hext (a detailed presentation is
given in [21, 19]; in the case when L is a process of Meixner type (e.g., [22]), such an integral is
constructed and studied in [20]).

Let F™ € #") @7, n € N. We select a representative (a function) f.(n) e F™ such that

ext
fé")(ul,...,un) = 0if forsomek € {1,...,n} u = uy. (13)

Accept on default t1,t, € [0,+00], t1 < tp. Let j?(n) be the symmetrization of a function

(n+1)
ext

f‘(n)l[h,tz)(') by n + 1 variables. Define 1?[(;22) € Hé:f U as the equivalence class in H
2(n) . n) #(n)
generated by f[f1,f2) (ie., f[tl,tz) € F[tl,tz))'
Lemma 1 ([19, 21]). For each F™ ¢ %§x2 ® H, n € IN, the element F[(t )t ) € ngt Y is well de-
7(n)

tined (in particular, F[ Ht) does not depend on a choice of a representative f.( " ¢ g satisfying
(13)) and

7(n) (n) (n)
iy lext < B Lty () g0 gy S TE 0 g (14)

Definition 4. We define the extended stochastic integral

t ~
/t So(udLy : (D) @ H — (12 (15)
1
by the formula
ty /\ o ~(n
/t F(u)dLy :=) :<o®n+1’F[(t1)t2)> : (16)
1 n=0

where 13(0) = F.(O
[tlr )

kernels F™ € #") @ H from decomposition (12) for F.

ext

)1[t1,t2)( ) EH = HY and B e ’H(Hl) n € N, are constructed by the

ext’ [flff ) ext

As it is shown in [19, 8], this integral is a linear continuous operator. Moreover, if F is
integrable by It6 (i.e., F € (L?) ® H and is adapted with respect to the flow of (T-algebras

generated by the Lévy process L) then F is integrable in the extended sense and ft d L, =
f i, F(u)dLy € (LZ) where ft u)dL, is the Ito stochastic integral [21] (this explams why the
integral ft d L, is called the extended one).

Somet1mes it can be convenient to define the extended stochastic integral by formula (16)
as a linear operator

/t2 o(u)dLy : (L)F @ H — (L2)P. (17)
t

1
If B = —1 then this operator is continuous [19], for B € (—1,1] this is not the case. But if we
accept the set

{FG(L2 QH: H/

as the domain of integral (17) then the last will be a closed operator [19, 8]. Also we note
that the extended stochastic integral can be defined by formula (16) as a linear continuous

qﬁﬂo(Lz)g ® H to (L?)P, or from (L2) P @ H =
ind limq_>+oo(L2):g ® H to (L?)~F, here B € [0,1].

5= L () IPACES B <o)
’ n=0

operator acting from (L2)f @ H := prlim
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At last, we recall briefly the notion of a Hida stochastic derivative in the Lévy white noise
analysis in terms of the Lytvynov’s CRP ([21, 19, 8]).

Definition 5. We define a Hida stochastic derivative 1}, ;,)(-)9. : (Lz)l—_ﬁq — (LZ):g ® H as a

linear continuous operator adjoint to extended stochastic integral (15), i.e., for all F € (Lz)g ®
Hand G € (L2);°,

(F (), Lty ) ()0-G)) 12y = <</t2 F(”)jLurG»(LZ)'

f1

here ((-, -)) (12)ex denotes the dual pairing generated by the scalar product in (L2) @ H.

If instead of integral (15) one uses integral (17), the corresponding Hida stochastic deriva-
tive will be a linear unbounded (except the case § = —1), but closed operator acting from
(LZ) P to (LZ) P % 74 [8]. It is clear also that the Hida stochastic derivative can be defined as
a lmear contmuous operator acting from (L?)P to (L?)P ® H (B € [—1,1]) that is adjoint to the
corresponding extended stochastic integral.

In order to write out an explicit formula for the Hida stochastic derivative in terms of de-

compositions by the Wick monomials, we need some preparation. Let G") ¢ ngt) ,n €N,

¢\ € G be a representative of G("). We consider ¢(")(-), i.e., separate one argument of ¢("),

and define G () € ’Hg Y ® 7 as the equivalence class in ’ngt Vo generated by ¢(")()
(e, M () € GM(.)).

Lemma 2 ([21]). For each G\") ¢ #'" 1w € N, the element GM(.) e 1" @ H s well

ext” ext
defined (in particular, G (-) does not depend on a choice of a representative ¢") € G(")) and

’G(n)(')’HEZ,’”@)H <16 e (18)

Note that, in spite of estimate (18), the space ngt) , n € N\{1}, can not be considered
(n=1) (n)

as a subspace of H,., ’ ® H because different elements of H,.; can coincide as elements of

1 @,
The next statement easily follows from results of [21, 19, 8].

Proposition 3. For a test or square integrable or generalized function G of form (5)

(e 9]

Lty 1) ( Zn oML, G (Vg 1y () = X::O(n+1):<O®n/G(n+1)(')1[t1,t2)(')>:'

Finally, we note that the extended stochastic integral and the Hida stochastic derivative are
mutually adjoint operators [21, 19, 8].

2 OPERATORS OF STOCHASTIC DIFFERENTIATION

2.1 The case of bounded operators

In order to define operators of stochastic differentiation on spaces (Lz)g , we need some

preparation. Let n,m € Z.. Consider a function H : R’.""” — R. Denote
ﬁ(ull cee Uns Uy, ey un—i—m)
. {H(ul,...,un+m), ifforalli € {1,...,n},je{n+1,...,n+m}u; #uj,

0, in other cases.
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Let F() e ") Glm) ¢ 34(m)

ext’ ext *

We select representatives (functions) f() € F("), ¢im) ¢ G(m)

from the equivalence classes F("), G("), and set f(")g(m) .= f(n).g(m) Tet f(n)g(m) be the

—_——

symmetrization of f(")¢g(m) by all variables, F(") o G(") ¢ 71" be the equivalence class in

ext
—_—

21 that is generated by f(Wg(m) (i.e., f("g(m) € F(") o G(M), The next statement in a sense

ext
is a generalization of Lemma 1.

Lemma 3. The element F") o G(") ¢ ’H(SZ:FM) is well defined (in particular, F") o G(™) does not

depend on a choice of representatives from F") and G("™)) and

|F(n) <>G(M)|ext S |F(n)|ext|G(m)|ext- (19)

Remark 3. Not strictly speaking, F") o G("™) is the symmetrization of a function

F(”)(ul,...,un)G(m)(unH,...,un+m), iftVie {1,...,n},je{n+1,... ,n+mju; # u,
0, in other cases

by all arguments.

Proof. For n = 0 or m = 0 the statement of the lemma is, obviously, true. Let n,m € I,
f(”) e F(n), g(m) e G Ttis clear that

—_— 1 —_—

f(n)g(m)(ull T un+m) = 1 Z f(n)g(m) (un(l)r sy un(n+m))f (20)

(7’1 + m) TTESy4m

where S;, 1, is a family of all permutations of numbers 1,. .., n + m. Without loss of generality
we can think that f(*), (") are symmetric functions and m > n. For each collection of argu-
ments (1), ..., Uy(y) We consider all summands from sum (20) with such a collection (it is
clear that there are m! such summands). Taking into consideration the symmetric property of
¢, one can conclude that all these summands are equal inter se, therefore one can replace the
mentioned summands by a representative multiplied by m!. After it one can use by analogy
the symmetric property of f(") and rewrite equality (20) in the form

f(n)g(m) (ull ey ul’l—H’Vl)
n'm! )
_ ) gm) (o gy g, U,
(1’1 + m)' 1<p1,m,pn<n,n+l<qu;...,qm<n+m,0<r<n f g & g " e (21)

P1<<Prprgp1 < <pnA1<<dn—rdpy_r+1<<qm
Upiare oo s Upus gy s Ugy)

(here for r = n the argument in the right hand side of (21) is (u1, ..., Un; Uy11, ..., Untm); fOr
r = 0 this argument is (ug,, ..., Ug,; U1, ..., Uy, Ug, ..., Ug,)). To put it in another way, the

arguments of f(”)g(m) in sum (21) are uj,j € {1,...,n+ m}, where the indexes of n first and
m last arguments (before and after ’;") are (independently) ordered in ascending. (Note that
we selected arrangement in ascending when we used the symmetric property of f(*) and ¢(")
because this is convenient for a consequent calculation.)
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L —

Let us estimate | f(") ¢(")| ;. Substituting (21) in the expression for | - |,y (see (7)) we obtain

_— (n+m)! (pnllv %1 lp1llv 2
|f(n)g(m) gxt —= Z lll! L

y s1!...s;! Ii!
kljsiEN=1,. kil > Iy > >, 1 k k
lysy+-+lpsp=n+m

— )
n) o(m
X /]Rs+1+”'+sk ’f( )g( )(ul,...,ul,...,1/[51+‘.‘+5k,...,Msﬁ_.‘._._sk)‘ dul...dusﬁ.‘.ﬂk

I b

Iy

y (n+m)! <lele>251 <|!sz||v>25k < n'm! )2 (n+m)!
5N Lol >yl 511+ + - SK! I! Ii! (n+m)! n'm!

177
Iysy+-+lgsp=n+m

IN

(22)

—_ — 2
X /q |F U (1, . g, Uy sy g Usytontsy ) [ AU o AUy gops, o
‘1+m+5k N 1 k’ 4 1 ]E 1 k
R ~————

ll lk

2 2
_ y nlm! <HP11||V> . <lekHV> k
Kl €N =1, kg >l > >, spl...s¢! I! Ii!

Iysq+-+lgsp=n+m

—_——

2
A{SI+"'+sk |fmg(m) (uq, ..., uy,.. N 7P 7RSS | | T [V PSR R
" ~—

ll lk

(here we used the inequality | Y &> < p¥)_, |a;|* and the fact that the sum in the right

hand side of (21) contains (”nfm"?! summands). We say that a collection of equal inter se ar-

guments (e.g., (u1,...,u1)) is called a procession. It follows from the ordering in ascending of
hy

indexes in (21) and in the statement for | - |.xt (see (22)) that in summands in interior sums [- - - |

from (22) processions can "tear" only so that different parts of a "torn" procession will be for

different parties from ’;’; processions being for one side from ’;" do not switch places; and ele-

ments in processions do not switch places. Further, it follows from a construction of f(")g()
that summands in interior sums [- - -] from (22), in which a procession is divided by ’
equal to zero. Another summands (if there exist for a collection k, [}, s;) disintegrate on groups
of equal inter se integrals. These groups arise by means of transpositions of processions with
equal quantity of members, which are placed before ’;” and after ’;". It is clear that if there are
s’ processions of length I before ’;” and s” processions of length I after ’;’ then by means of
mutual transpositions of these processions one can obtain (SS/,!JZS,:/!)! equal inter se summands.
So, nonzero summands in the last sum from (22) are "connected" with the expressions

lhisi+---+hsy=n+m (23)

;) are

that can be presented in the form

Bsi+ - +1lusy =mn, s) + -+ 1siy =m,

/11 q/ / !/ / 1 1 1 1/
k,k ,ll,...,lk/,sl,...,sk/, 1""’lk”’slf""sk”GN’ (24)
Bo>>I, 1 > > 1

—_——

(the first sum in (24) corresponds to first n arguments of f(")¢("), the second one corresponds
to last m arguments). Now for each s; from (23) either there exists st = S (Il = I;) or there exists
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S/./ g

i = s; (I’ = I;) or there exist s; and s}, such that s; + sy, = s; (Ij = Ij; = I;). Inequalities for
I!,1” in (24) follow from inequalities Iy > - -- > I} and ordering of indexes in (21) (more long
processions have smaller indexes of arguments).

We will replace each group of equal inter se summands in the last expression from (22) by
a representative multiplied by a quantity of summands in the group. Now, taking into account

that w*' ™" = w'w”, one can rewrite the last expression from (22) in the form

nlm!
I 171 !
L R R e S o Spltsy sl
li> >ll,<’ li’> >ll,<,”
1]+ +1k,sk,—n s+t sty =m
2s!, 2s 28",
oyl \? Py o= (g 1\ (Mg, I\ ™
X i S
! ’ / " \ T
! I I !

X 1 U, ooy U1, e e ey Ugr oyt yee o Uiy ot
/sl+ +sk,+sl+ +sk,, ’f 8 ( / s 1y 7 s+ Jrsk,l 7 s+ +Sk,/

h

ll’(,

u u " / )I°
ntlseesWndlye ey n+sl+ A8 Untsl/+-. +sk//

l//
T 1,

X du1 .. .dus/1+.‘.+s;(/dun+1 dun+s//+ +s;(’,,'

—_——

Since the Lebesgue measure is a non—atomic one, we can replace f(") g(™) in this expression by

) g(m) therefore (25) is equal to | f(|2,|¢(™) |2, whence
|f(n)g(m)|ext <A Lot |81 et (26)
It follows from this inequality that f(1)g(m) generates an element F(") o G(™) of H g;’f ") and

estimate (19) is fulfilled.

Let f(n) F() and g’%m) € GU™ be another representatives of F") and G(™), ( RS G( m)
(n+m)

be the corresponding element of ’Hext

estimate (26) we obtain

. Using obvious properties of the opera’uon o and

—

F) 6 GOm) — FM 6 GIM| = |Fglm) — (0 glm))
< |f(n)g(m) _f(n)ggm)|ext + |f n) ( f( )gl |ext

= (g0 — " ews + (£ fl > |m
< ‘f(n)‘ext’g(m) _ggm”ext + ‘f - 1 ’ext‘gl ‘ext = 0/

therefore F(") o G(™) does not depend on a choice of representatives from F") and G("). O

Let F(") ¢ ngt), e H(Ext), m > n. We define a "product" (F"™), f(1),; € Hﬁ;’?") by
setting for each g(m ") ¢ Héxt ")

((F(m);f(n))extzg(m_n))ext - (p(m),g(m—n) Of(”))ext- (27)

Since (see (19))
!(F(m),g(mfn) <>f(n))ext‘ < ’F(m) ’ext’g(min) <>f(n) lext < ‘P(m)‘ext‘g(min)’ext’f(n) lext,
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this definition is correct and
’(F(m)/f(n))ext‘ext S ’F(m) ’ext‘f(n) ‘ext~ (28)

Definition 6. Letn € N, f(") ¢ 1" We define an operator of stochastic ditferentiation

ext
(D"o)(f"): (12)] — (1M, (29)
by setting

(Dn o®m— n’ (F(m);f(n))ext> .
(30)

o®m (F(m+n)rf(n)>ext> :,

= L o
m=n
i m+n

where F(") ¢ ’ng) are the kernels from decomposition (5) for F. Also we denote D := D!.

Since (see (8), (28))

d _ m—+n)?2
[ FY (A2 5= 3 (mtyrplatm(WE IV o) gy, 2
m=0 '

P S 14+Boq(m+ (m +n)\1=F plmtn) g 2
=2 ‘f"mzoamm el [ () |0, () (31)
<27 f e Z m 4 )Pt Ut |2 <o f 2 e || P12,
m=0
o —m ( (m+n)! 1-p . .. . . .
where ¢ = max;,cz, {2 <T) ], this definition is correct and operator (29) is a lin-

p

ear continuous one. Moreover, for each F € (Lz)q one can understand (D"F)(o) as a linear

continuous operator acting from H §x2 to (Lz)ﬁ 4

Remark 4. As is easily seen, for each f(") & ngt)/ n € N, (D")(f") can be defined by
formula (30) as a linear continuous operator on (L?)P, B € [—1,1]. In the case B = 1 formula
(30) defines a linear continuous operator (D"o)(f")) on (LZ)%, q € Z, this can be proved by

analogy with calculation (31).

Let us consider main properties of the operators D".

Theorem 1. 1) Forky,...,k, € N, fj(kj) € Hii’t),] e{1,...,m},

(D (- (DR (DR (R -+ ) (fa™) = (DR o) (00 i),

2) For each F € (Lz)g the kernels F(") ¢ ’H( " on e N, from decomposition (5) can be

ext”
presented in the form
1

F") = —E(D"F),
n!
ie., foreach f") ¢ ngt) (F, 0oy = LE((D"F)(f)), here Eo := {(0,1))(12) is a general-
ized expectation.
3) The adjoint to D" operator has the form

<D”G><f<">>*=i0 (o, G o 0y e (12)7F, (32

) Gm ¢ H'™ are the kernels from decomposition (5) for G.

ext 4 ext

where G € (Lz) f
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Proof. 1) The proof consists in the application of the mathematical induction method.
2) Using (30) and (11), for each f (n) ¢ H(") we obtain

ext
E((D"F)(F™)) = ((D"F)(F™), W2y = nt(F™, )
3)Let F € (L?)f, f") € HY), G € (17), . Using (30), (5), (11) and (27), we obtain

qrs ext’

(e 9]

o®m, (Fmtm), £y, y: Y (0%, GI) ) 1o

m+n

((D"E)(F"), G i

= Y (mA+ ) (F", f) oy, Gy = Y (m+ n)1(F T, GU o fl0)),

m=0 =0
<<i ok, F1 f0<®m+"c o £ 12 = G, (D"G)(F™) N a2

whence the result follows. O

Now we consider in more detail the case n = 1. Denote 9. := 1[5 | «)(+)0. (see Subsec-
tion 1.4).

Theorem 2. 1) Forall G € (LZ) andf (Y

(DG)(F V)" = /R G- fV (WL, € (1)}, 3)

2) Forall F € (LZ) and f(1) i

ext
/ auF - fO (wydu € (L2}, (34)

here the integral in the right hand side is a Pettis one (the weak integral).
3) LetF € (Lz)g ® M. Then for all t1,t; € [0,40], t < t5, and fV) € Y

ext —

O [ FudL) () = [HOF@) L+ [ Ff e e (1), 69

here the last integral is a Pettis one.

Proof. 1) The result follows from representation (32) with n = 1: it is necessary to compare
the construction of kernels of the extended stochastic integral (see Subsection 1.4) with the
construction of a product ¢.

2) Taking into account (33) and the definition of 0. (see Subsection 1.4), for all G € (LZ); _ﬁ ¢
we obtain

(DD, Gy = (F, [ G- L) i)

Ry

= (0.F,G® fYONwoyen = (| 9uF - fV(w)du, G)) 2,

Ry
whence the result follows.
3) Using (16) and (30), we obtain
ty ~ o ~(m
(D/t F(”)dLu>(f(l)) = Z (m+1) :<O®mr (F[(tllgz)rf(l)>ext> Y (36)
1 m=0
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where F[(t 2 ) € Hg:;ﬂ) are the kernels from decomposition (16) (which is decomposition (5) for
the extended stochastic integral ft u)dLy), these kernels are constructed by F. () ¢ ’ngt)

H from decomposition (12) for F. On the other hand, by (30), (16) and (12)

—

/tlt (DF(u))(f")dL, = Z m: m),f(l))ext[tbtz)>:,
[ PO = 5 oo /1 HP 0 i

5]

where the integrals ttlz PZE’”) O (u)du € ”HEZ) are Pettis ones. Therefore, in order to prove

equality (35) it is sufficient to show that for each m € Z

—

~ tr
(m 4 1) (E) L fD)ens = m(E™, Oy ) + /t E™ (1) (1) dy
1

(m)

inH™. In turn, in order to prove this equality, it is sufficient to show that for each ¢g(") € H,"}

ext -
(m + D)) FD)ext. 8 et
— (37)

= m((F‘(m)lf(l))eXt[fl ta)’ ext + / F du g( ))ext'
bt

Using (27), the equality (f(m)) h(’”H))ex = fttz F(m),h(m+1)(u))extdu p(m+1) ¢ ’H(mH),

[ ext

Rm+ (1) € ’H( ") & H (see Lemma 2), which is proved in [21], the symmetry of ¢("), and the
non-atomicity of the Lebesgue measure, we obtain

(m + D)) f D ext, 8 et = (m +1)(E") 8™ 0 f1))ers
_ 2 (m) ((m) gy = [ (EM oo V)
<m+1>/tl (E™, (g o £0 ><u>)mu /tl (F, 80 (1, o) (0 1)
(. /\,/u>f“)(-1> e g o) ) (o)) gl (39)
/ F du g(M))ext

—~——

1)
4 /t (FE™, 0 (g« ) D (1) o 4 8 (ot fD (o)) .
1

On the other hand, by analogy with (38) we obtain

L —

t
m((F‘(m)/f(l))ext[tl by 8 Jext = m/ 2 W ext, §) (1) )exeddt
t2 m 2 - —~—
:m/ (E{ ),(g(’“ (1)) o FD)prdu :/ (FLE ) e (o, u) fD () (39)
tp 51

800ty ) ) e gy 1)) (o)t
Substituting (39) into (38), we obtain (37).
Now it remains to prove that (D fttlz F(u)dL,)(fV) e (Lz)gf1 if F € (Lz)g ® H (it follows
directly from the definitions of the extended stochastic integral and of the operators of stochas-
tic differentiation that (D fttz u)dL,)(F) e (Lz)g,z, but this statement can be amplified).



226 DYRIV M.M., KACHANOVSKY N.A.

In fact, by (36), (8), (28) and (14)

[0 [* Pt ), = 3 myE2 0 n ¢ 1>2\<1§§’1i22),f“>>ex43xt
< ¥ (mt) R (m 4+ DRYE 2,1 FO2,
m=0
<1V e 3o () 2R = PO Rl FIR <
where ¢ = maxyez, 27" (m + 1)2]. O

Remark 5. Taking into account equality (34), one can write formally 0.0 = (Do)(9.), where d. is
the Dirac delta-function concentrated at -. In order to give a nonformal sense to this equality,
one can consider a stochastic differentiation on so-called spaces of nonregular generalized
functions, it will be done in another paper.

As is easily seen, the results of Theorems 1, 2 hold true (up to obvious modifications) if we
consider the operators of stochastic differentiation on the spaces (L?)#, 8 € [-1,1].

Remark 6. As is known ([17, 18]), in the Meixner white noise analysis the operator of stochastic
ditferentiation D is a ditferentiation with respect to a Wick product. In the Lévy white noise
analysis this result holds true, the detailed presentation will be given in another paper.

2.2 The case of unbounded operators

Sometimes it can be useful to consider (D"o)(f("), f* ¢ ngt) ,n € N, as an operator
acting in (Lz)g (we remind that, for example, (L?)J = (L?)). If B = 1 then this operator can be
defined by formula (30) as a linear continuous one (see Remark 4), but for § € [—1,1) this is

not the case. Let us accept a corresponding definition.

Definition 7. Letn € N, f(") ¢ | 1"). We define an operator

(Do) (fM) : (L2 — (L2)F (40)
with the domain
dom((D"o)(f™)) = {F € (L)} : [(D"F)(f")12 5

0 m m—l—Tl' 2 m-+n n
= L () (PR (gt 0012, < eo)

(41)

(here F(™) ¢ ng) are the kernels from decomposition (5) for F) by formula (30).
Proposition 4. Operator (40) with domain (41) is a closed one.

Proof. Let us show that there exists a second adjoint to (D"o)(f(")) operator (D"o)(f"))** =
(D"o)(f™)) (it is well known that an adjoint operator is a closed one). Since, obviously, the
domain of operator (40) is a dense set in (Lz)g , the adjoint operator (D"o)(f(")* : (Lz):[3 —

q
(L?)” g is well defined. By definition, G € dom ((D"o)(f ("))*) if and only if

(L) > dom((D"0)(f™)) 3 F = (D"F)(f"), G 12)
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is a linear continuous functional. By properties of Hilbert equipments the last is possible if
and only if there exists K € (L2)_ g such that ((D"F)(f™), G) 2y = (F,K))(12)- But by the
calculation in the proof of statement 3) in Theorem 1 K has form (32), therefore

dom((D"0)(f")*) = {G € (L*) 7§ : [(D"G)(f" >qu -
= i((m—i—n) N1-F2- q(m-+n) \G ‘ext < oo},

m=0

this set is a dense one in (LZ) ? hence (D"o) (fm))* (Lz)é3 — (Lz)g is well defined. Now it
remains to show that

dom((D"o)(f")**) = dom((D"o)(f")). (42)
By analogy with the consideration above, F € dom((D"o)(f (1) )**) if and only if

(1%)2F > dom((D"0)(f™)*) 3 G = (F,(D"G)(F") ) 12)

is a linear continuous functional. The last is possible if and only if there exists H € (Lz)g such

that ((F, (D"G)(f ("))*»( 12y = ((H,G))(12). It is clear that H has form (30), therefore equality
(42) follows from (41). O

Remark 7. Let

oo I\ 2
im0 () o, <, e

here F") ¢ ng? are the kernels from decomposition (5) for F. For each f(") € Hg;t) we define
an operator (D"o)(f") : (Lz)g — (Lz)é3 with the domain A, by formula (30). It follows
from Proposition 4 that this operator is closable (its closure is equal to (D"o)(f("))). Moreover,
for each F € A, the operator (D"F)(o) : n' (Lz)ﬁ is a linear bounded (and, therefore,

ext q
continuous) one: by (30), (8) and (28)

[(DF) ()2 = Y (mt) b2

m=0

m-4n)l\2 e "
%) [(EOEm), £00) 2y

n - m m+n ! 2 m-rn
< F02, 3 Gyt (PN pren
=0 m.

It is clear that the results of Theorems 1, 2 hold true (up to obvious modifications) for
operators (40).
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Anpis M.M., Kauanoscokmit M.O. [Tpo onepamopu cmoxacmuuro2o oupeperyiloeants Ha npocopax
peaynSpHIX OCHOBHUX Ma Y3aeabHeHUuX GpyHKyill ananisy 6inoeo uiymy Aesi // KapmaTcbki MaTeM. Iy OA.
—2014. — T.6, N22. — C. 212-229.

Onepartopu cTOXaCTUYHOTO AMcpepeHIIiI0BaHHS, SIKi € TiICHO IOB’SI3aHMMM i3 PO3IIMPEHIM CTOXa-
CTUYHMM iHTerparoM CKOPOXOAQ Ta 3i CTOXaCTUMYHOIO IOXiAHOKO XiAM, TPalOTh BaXXAUBY POAD Y KAa-
CIHOMY (raycciBcbKOMY) aHaAi3i 6iaoro mrymy. 3oKpeMa, IIi ollepaTopy MOXKHA BUKOPWMCTOBYBaTH
AAST BUBYEHHsI BAAQCTMBOCTEN PO3IIMPEHOTO CTOXaCTMYHOTO iHTerpaaa Ta po3B’sI3KiB CTOXaCTUYHMX
PiBHSIHD 3 HeAIHITHOCTSIMM BiKiBCbKOTO TUITY.

V 11iif cTaTTi MM BBOAMMO Ta BUBYAEMO OOMeXeHi i HeoOMeXeHi OIepaTopy CTOXaCTUIHOTO AV-
depenmifoBaHHs y aHaAi3i 6iaoro mrymy Aesi. Tourilre, My po3rasiAaeMo Ii orlepaTOpy Ha ITPOCTO-
pax mapaMeTpM30BaHOIO PEryAsIPHOTO OCHAIIEHHS IIPOCTOPY KBaAPAaTUYHO iHTErpOBHMUX 3a MipOIO
6iroro mymy Aesi pyHKIIiM, BUKOPMCTOBYIOUNM AUTBMHIBChKe y3araAbHEHHS BAACTMBOCTI XaOTIIHO-
ro poskaaay. Le Aae MOXAMBICTE PO3IIMPUTH Ha aHaAi3 6iroro mymy Aesi Ta TOTAMOWUTH BiATIOBIA-
Hi pe3yAbTaTH KAACHYIHOTO aHaAi3y 6iroro mrymy.

Kontouosi croea i ¢ppasu: omeparop CTOXaCTUUIHOTO AMdpepeHIIFoBaHHS, CTOXaCTWYHA IMOXiAHa,
PO3LIIPeHNI CTOXaCTUYHVIL iHTerpaA, mporec Aesi.

Asrpus M.H., Kauanosckmit H.A. O6 onepamopax cmoxacmuuecko2o 0ugpdpepeHyuposanius Ha npocmpan-
CMeax pezynspHolX OCHOBHLIX 1 0000UjeHHb1X PyHKYUll ananusa 6eroeo wiyma Aesu // Kapmarckme ma-
TeM. my6A. — 2014. — T.6, Ne2. — C. 212-229.

Oneparops! cToxacTudeckoro audpdepeHIpoBaHusl, TeCHO CBsI3aHHbIE C PaCIIMPeHHbIM CTO-
XacTH4eckuM uHTerparoM CKOpoXoAa M CO CTOXaCTMIECKOM IIPOM3BOAHOM XVABI, UTPAIOT BaXKHYIO
POAD B KAACCHIECKOM (TayCCOBCKOM) aHaAM3e OeAOro IIyMa. B gacTHOCTM, 5TV OIepaTophl MOX-
HO MCIIOAB30BaTh AASI M3yUeHMsl CBOMCTB pacIIMPeHHOTO CTOXaCTUYeCKOTro MHTerpasa U pelleHui
CTOXaCTUYECKMX YPaBHEHII C HeAMHEHOCTSIMIM BMKOBCKOTO THUIIA.

B 5T011 cTaThe MBI BBOAMM 1 M3y4YaeM OrpaHMUYeHHble 1 HeorpaHdeHHbIe OIlepaTOphl CTOXaCcTH-
yeckoro anddpepermpopanms B aHaAm3e 6enoro myma Aesn. TouHee, MBI paccMaTpyBaeM STH OIle-
paTopbl Ha MPOCTPaHCTBaX NapaMeTPU30BaHHOIO PEryASIPHOTO OCHAILIeHNs TPOCTPaHCTBa KBaApa-
TUYHO MHTETPUPYEMBIX IO Mepe beaoro myma AeBr (OyHKINIA, MCIIOAB3Y I AMTBMHOBCKOe 0606111e-
HIfe CBOMCTBA XaOTWYIECKOTO Pa3sA0XeHMsI. DTO AaeT BO3MOXHOCTD pacIIMpUTh Ha aHaAM3 6eA0ro
ryMa AeBU ¥ yTAY6UTD COOTBETCTBYIOIINE Pe3yABTaThl KAACCMUECKOTO aHaAM3a H@AOTO IITyMa.

Kntouesvie cno6a u ¢ppasvi: omepaTrop CTOXaCTMIECKOTo AMdpdpepeHIMPOBaHNS, CTOXacTIIeckKast
MPOM3BOAHASI, PaCIIMPEHHBIN CTOXaCTUYeCKII MHTEeTpaA, mpouecc AeBu.



