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ON OPERATORS OF STOCHASTIC DIFFERENTIATION ON SPACES OF REGULAR

TEST AND GENERALIZED FUNCTIONS OF LÉVY WHITE NOISE ANALYSIS

The operators of stochastic differentiation, which are closely related with the extended Skorohod

stochastic integral and with the Hida stochastic derivative, play an important role in the classical

(Gaussian) white noise analysis. In particular, these operators can be used in order to study pro-

perties of the extended stochastic integral and of solutions of stochastic equations with Wick-type

nonlinearities.

In this paper we introduce and study bounded and unbounded operators of stochastic differen-

tiation in the Lévy white noise analysis. More exactly, we consider these operators on spaces from

parametrized regular rigging of the space of square integrable with respect to the measure of a Lévy

white noise functions, using the Lytvynov’s generalization of the chaotic representation property.

This gives a possibility to extend to the Lévy white noise analysis and to deepen the corresponding

results of the classical white noise analysis.
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INTRODUCTION

Let L = (Lt)t∈[0,+∞) be a Lévy process, i.e., a random process on [0,+∞) with stationary

independent increments and such that L0 = 0 (see, e.g., [4, 25, 26] for detailed information

about Lévy processes). In particular cases, when L is a Wiener or Poisson process, any square

integrable random variable can be decomposed in a series of repeated stochastic integrals from

nonrandom functions with respect to L. This property of L is called the chaotic representation

property (CRP), see, e.g., [23] for detailed information. The CRP plays a very important role in

the stochastic analysis (in particular, it can be used in order to construct extended stochastic

integrals [14, 29, 13], stochastic derivatives and operators of stochastic differentiation, e.g., [32,

1]), but, unfortunately, for a general Lévy process this property does not hold (e.g., [31]).

There are different generalizations of the CRP for Lévy processes: one can use the Itô’s

approach [12], the Nualart-Schoutens’ approach [24, 27], the Lytvynov’s approach [22], the

Oksendal’s approach [6, 5] etc. The interconnection between these generalizations of the CRP

is described in, e.g., [22, 2, 6, 30, 5, 21].

Let from now L be a Lévy process without Gaussian part and drift (it is comparatively sim-

ply to consider such processes from technical point of view). In the paper [21] the extended
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Skorohod stochastic integral with respect to L and the corresponding Hida stochastic deriva-

tive, in terms of the Lytvynov’s generalization of the CRP, on the space of square integrable

random variables (L2) were constructed; some properties of these operators were established;

and it was shown that the extended stochastic integrals constructed with use of the above-

mentioned generalizations of the CRP coincide. In the papers [19, 8] the stochastic integral and

derivative were extended to spaces of test and generalized functions from riggings of (L2), this

gives a possibility to extend an area of their possible applications (in particular, now it is possi-

ble to define the stochastic integral and derivative as linear continuous operators). But together

with the mentioned operators, it is natural to introduce and to study operators of stochastic dif-

ferentiation in the Lévy white noise analysis, by analogy with the Gaussian analysis [32, 1], the

Gamma-analysis [15, 16], and the Meixner analysis [17, 18]. These operators are closely re-

lated with the extended Skorohod stochastic integral with respect to a Lévy process and with

the corresponding Hida stochastic derivative and, by analogy with the "classical case", can be

used, in particular, in order to study properties of the extended stochastic integral and proper-

ties of solutions of normally ordered stochastic equations (stochastic equations with Wick-type

nonlinearities in another terminology). So, the aims of the present paper are to introduce the

operators of stochastic differentiation on spaces of the so-called regular parametrized rigging

of (L2) (e.g., [19, 8, 7]) and to study some properties of these operators. In the next papers we’ll

consider elements of the so-called Wick calculus in the Lévy white noise analysis, this will give

us the possibility to continue the study of properties and applications of the mentioned oper-

ators. Note that some results of the present paper were announced without detailed proofs in

the short paper [7].

The paper is organized in the following manner. In the first section we introduce a Lévy

process L and construct a convenient for our considerations probability triplet connected with

L; then, following [21, 19], we describe in details the Lytvynov’s generalization of the CRP, the

extended stochastic integral with respect to L, and the corresponding Hida stochastic deriva-

tive, on the spaces of the regular parametrized rigging of (L2). In the second section we deal

with the operators of stochastic differentiation.

1 PRELIMINARIES

1.1 Lévy processes

Denote R+ := [0,+∞). In this paper we deal with a real-valued locally square integrable

Lévy process L = (Lt)t∈R+ (a random process on R+ with stationary independent increments

and such that L0 = 0) without Gaussian part and drift. As is well known (e.g., [6]), the charac-

teristic function of L is

E[eiθLt ] = exp
[
t
∫

R

(eiθx − 1 − iθx)ν(dx)
]

, (1)

where ν is the Lévy measure of L, which is a measure on (R,B(R)), here and below B denotes

the Borel σ-algebra, E denotes the expectation. We assume that ν is a Radon measure whose

support contains an infinite number of points, ν({0}) = 0, there exists ε > 0 such that
∫

R

x2eε|x|ν(dx) < ∞,

and ∫

R

x2ν(dx) = 1. (2)
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Let us define a measure of the white noise of L. Let D denote the set of all real-valued

infinite-differentiable functions on R+ with compact supports. As is well known, D can be

endowed by the projective limit topology generated by a family of Sobolev spaces (e.g., [3]).

Let D′ be the set of linear continuous functionals on D. For ω ∈ D′ and ϕ ∈ D denote ω(ϕ) by

〈ω, ϕ〉; note that one can understand 〈·, ·〉 as the dual pairing generated by the scalar product

in the space L2(R+) of (classes of) square integrable with respect to the Lebesgue measure

real-valued functions on R+. The notation 〈·, ·〉 will be preserved for dual pairings in tensor

powers of spaces.

Definition 1. A probability measure µ on (D′, C(D′)), where C denotes the cylindrical

σ-algebra, with the Fourier transform
∫

D′
ei〈ω,ϕ〉µ(dω) = exp

[ ∫

R+×R

(eiϕ(u)x − 1 − iϕ(u)x)duν(dx)
]

, ϕ ∈ D, (3)

is called the measure of a Lévy white noise.

The existence of µ from the Bochner–Minlos theorem (e.g., [11]) follows. Below we will

reckon that the σ-algebra C(D′) is complete with respect to µ, i.e., C(D′) contains all subsets of all

measurable sets O such that µ(O) = 0.

Denote (L2) := L2(D′, C(D′), µ) the space of (classes of) real-valued square integrable with

respect to µ functions on D′; let also H := L2(R+). Substituting in (3) ϕ = tψ, t ∈ R, ψ ∈ D,

and using the Taylor decomposition by t and (2), one can show that
∫

D′
〈ω, ψ〉2µ(dω) =

∫

R+

(
ψ(u)

)2
du (4)

(this statement follows also from results of [22] and [6]). Let f ∈ H and D ∋ ϕk → f in H as

k → ∞. It follows from (4) that {〈◦, ϕk〉}k≥1 is a Cauchy sequence in (L2), therefore one can

define 〈◦, f 〉 := (L2)− limk→∞〈◦, ϕk〉. It is easy to show (by the method of "mixed sequences")

that 〈◦, f 〉 does not depend on a choice of an approximating sequence for f and therefore is

well defined in (L2).

Let us consider 〈◦, 1[0,t)〉 ∈ (L2), t ∈ R+ (here and below 1A denotes the indicator of a set

A). It follows from (1) and (3) that
(
〈◦, 1[0,t)〉

)
t∈R+

can be identified with a Lévy process on the

probability space (D′, C(D′), µ), i.e., one can write Lt = 〈◦, 1[0,t)〉 ∈ (L2).

Remark 1. Note that one can understand the Lévy white noise as a generalized random process

(in the sense of [9]) with trajectories from D′: formally L′
t(ω) = 〈ω, 1[0,t)〉

′ = 〈ω, δt〉 = ω(t),

where δt is the Dirac delta-function concentrated at t. Therefore µ is the measure of L′ in the

classical sense of this notion [10].

1.2 Lytvynov’s generalization of the CRP

Denote by ⊗̂ a symmetric tensor product and set Z+ := N ∪ {0}. Let P ≡ P(D′) be the

set of continuous polynomials on D′, i.e., P consists of zero and elements of the form

f (ω) =

N f

∑
n=0

〈ω⊗n, f (n)〉, ω ∈ D′, N f ∈ Z+, f (n) ∈ D⊗̂n, f (N f ) 6= 0,

here N f is called the power of a polynomial f ; 〈ω⊗0, f (0)〉 := f (0) ∈ D⊗̂0 := R. Since the measure

µ of a Lévy white noise has a holomorphic at zero Laplace transform (this follows from (3)
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and properties of the measure ν, see also [22]), P is a dense set in (L2) [28]. Denote by Pn the

set of continuous polynomials of power ≤ n, by Pn the closure of Pn in (L2). Let for n ∈ N

Pn := Pn ⊖Pn−1 (the orthogonal difference in (L2)), P0 := P0. It is clear that

(L2) =
∞
⊕

n=0
Pn.

Let f (n) ∈ D⊗̂n, n ∈ Z+. Denote by : 〈◦⊗n, f (n)〉 : the orthogonal projection of a monomial

〈◦⊗n, f (n)〉 onto Pn. Let us define scalar products (·, ·)ext on D⊗̂n, n ∈ Z+, by setting for

f (n), g(n) ∈ D⊗̂n

( f (n) , g(n))ext :=
1

n!

∫

D′
: 〈ω⊗n, f (n)〉 :: 〈ω⊗n, g(n)〉 :µ(dω),

and let | · |ext be the corresponding norms, i.e., | f (n)|ext =
√
( f (n) , f (n))ext. Denote by H

(n)
ext ,

n ∈ Z+, the completions of D⊗̂n with respect to the norms | · |ext. For F(n) ∈ H
(n)
ext define

a Wick monomial : 〈◦⊗n, F(n)〉 :
def
= (L2)− limk→∞ : 〈◦⊗n, f

(n)
k 〉 :, where D⊗̂n ∋ f

(n)
k → F(n) as

k → ∞ in H
(n)
ext (well-posedness of this definition can be proved by the method of "mixed

sequences"). Since, as is easy to see, for each n ∈ Z+ the set {: 〈◦⊗n, f (n)〉 :| f (n) ∈ D⊗̂n} is a

dense one in Pn, F ∈ (L2) if and only if there exists a unique sequence of kernels F(n) ∈ H
(n)
ext ,

n ∈ Z+, such that

F =
∞

∑
n=0

: 〈◦⊗n, F(n)〉 : (5)

and

‖F‖2
(L2) =

∫

D′
|F(ω)|2µ(dω) = E|F|2 =

∞

∑
n=0

n!|F(n)|2ext < ∞.

So, for F, G ∈ (L2) the scalar product has the form

(F, G)(L2) =
∫

D′
F(ω)G(ω)µ(dω) = E[FG] =

∞

∑
n=0

n!(F(n), G(n))ext,

where F(n), G(n) ∈ H
(n)
ext are the kernels from decompositions (5) for F and G respectively. In

particular, for F(n) ∈ H
(n)
ext and G(m) ∈ H

(m)
ext , n, m ∈ Z+,

(
: 〈◦⊗n, F(n)〉 :, : 〈◦⊗m, G(m)〉 :

)
(L2)

=
∫

D′
: 〈ω⊗n, F(n)〉 :: 〈ω⊗m, G(m)〉 :µ(dω)

= E
[
: 〈◦⊗n, F(n)〉 :: 〈◦⊗m, G(m)〉 :

]
= δn,mn!(F(n), G(n))ext.

Also we note that in the space (L2) : 〈◦⊗0, F(0)〉 : = 〈◦⊗0, F(0)〉 = F(0) and : 〈◦, F(1)〉 : = 〈◦, F(1)〉

[22].

In order to work with spaces H
(n)
ext , it is necessary to know the explicit formulas for the

scalar products (·, ·)ext. Let us write out these formulas. Denote by ‖ · ‖ν the norm in the space

L2(R, ν) of (classes of) square integrable with respect to ν real-valued functions on R. Let

pn(x) := xn + an,n−1xn−1 + · · ·+ an,1x, an,j ∈ R, j ∈ {1, . . . , n − 1}, n ∈ N, (6)

be orthogonal in L2(R, ν) polynomials, i.e., for natural numbers n, m such that n 6= m,
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∫
R

pn(x)pm(x)ν(dx) = 0. Then for F(n), G(n) ∈ H
(n)
ext , n ∈ N, we have [22]

(F(n),G(n))ext = ∑
k,lj,sj∈N: j=1,...,k, l1>l2>···>lk,

l1s1+···+lksk=n

n!

s1! · · · sk!

(‖pl1‖ν

l1!

)2s1
· · ·
(‖plk

‖ν

lk!

)2sk

×
∫

R
s1+···+sk
+

F(n)(u1, . . . , u1︸ ︷︷ ︸
l1

, . . . , us1, . . . , us1︸ ︷︷ ︸
l1

, . . . , us1+···+sk
, . . . , us1+···+sk︸ ︷︷ ︸

lk

)

× G(n)(u1, . . . , u1︸ ︷︷ ︸
l1

, . . . , us1, . . . , us1︸ ︷︷ ︸
l1

, . . . , us1+···+sk
, . . . , us1+···+sk︸ ︷︷ ︸

lk

)du1 · · · dus1+···+sk
.

(7)

In particular, for n = 1 (F(1), G(1))ext = ‖p1‖
2
ν〈F(1), G(1)〉; if n = 2 then (F(2), G(2))ext =

‖p1‖
4
ν〈F(2), G(2)〉+ ‖p2‖

2
ν

2

∫
R+

f (2)(u, u)g(2)(u, u)du, etc.

It follows from (7) that H
(1)
ext = H ≡ L2(R+): by (6) p1(x) = x and therefore by (2) ‖p1‖ν =

1; and for n ∈ N\{1} one can identify H⊗̂n with the proper subspace of H
(n)
ext that consists of

"vanishing on diagonals" elements (i.e., F(n)(u1, . . . , un) = 0 if there exist k, j ∈ {1, . . . , n} such

that k 6= j but uk = uj). In this sense the space H
(n)
ext is an extension of H⊗̂n (this explains why we

use the subscript ext in the designations H
(n)
ext , (·, ·)ext and | · |ext).

1.3 A regular rigging of (L2)

Denote PW :=
{

f = ∑
N f

n=0 : 〈◦⊗n, f (n)〉 :, f (n) ∈ D⊗̂n, N f ∈ Z+
}
⊂ (L2). Accept on default

β ∈ [0, 1], q ∈ Z in the case β ∈ (0, 1] and q ∈ Z+ if β = 0. Define scalar products (·, ·)q,β on

PW by setting for

f =

N f

∑
n=0

: 〈◦⊗n, f (n)〉 :, g =
Ng

∑
n=0

: 〈◦⊗n, g(n)〉 : ∈ PW

( f , g)q,β :=

min(N f ,Ng)

∑
n=0

(n!)1+β2qn( f (n) , g(n))ext.

Let ‖ · ‖q,β be the corresponding norms, i.e., ‖ f‖q,β =
√
( f , f )q,β .

Definition 2. We define parametrized Kondratiev-type spaces of test functions (L2)
β
q as com-

pletions of PW with respect to the norms ‖ · ‖q,β; and set (L2)β := pr limq→+∞(L2)
β
q (the pro-

jective limit of spaces).

As is easy to see, F ∈ (L2)
β
q if and only if F can be presented in form (5) with F(n) ∈ H

(n)
ext and

‖F‖2
q,β := ‖F‖2

(L2)
β
q
=

∞

∑
n=0

(n!)1+β2qn|F(n)|2ext < ∞. (8)

For F, G ∈ (L2)
β
q the scalar product has a form (F, G)

(L2)
β
q
=

∞

∑
n=0

(n!)1+β2qn(F(n), G(n))ext, where

F(n), G(n)∈H
(n)
ext are the kernels from decompositions (5) for F and G correspondingly. Further,

F ∈ (L2)β if and only if F can be presented in form (5) and norm (8) is finite for each q ∈ Z+.

Proposition 1 ([19]). For any β ∈ (0, 1] and q ∈ Z (in the same way as for β = 0 and any

q ∈ Z+) the space (L2)
β
q is densely and continuously embedded into (L2).
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In view of this proposition, one can consider a chain

(L2)−β ⊃ (L2)
−β
−q ⊃ (L2) ⊃ (L2)

β
q ⊃ (L2)β, (9)

where (L2)
−β
−q , (L2)−β = ind limq→+∞(L2)

−β
−q (the inductive limit of spaces) are the spaces dual

of (L2)
β
q , (L2)β correspondingly with respect to (L2).

Definition 3. The spaces (L2)
−β
−q , (L2)−β are called parametrized Kondratiev-type spaces of

regular generalized functions.

The next statement from the definition of the spaces (L2)
−β
−q and the general duality theory

follows.

Proposition 2. 1) Any regular generalized function F ∈ (L2)
−β
−q can be presented as formal

series (5) (with coefficients F(n) ∈ H
(n)
ext ) that converges in (L2)

−β
−q , i.e.,

‖F‖2
−q,−β := ‖F‖2

(L2)
−β
−q

=
∞

∑
n=0

(n!)1−β2−qn|F(n)|2ext < ∞, (10)

and, vice versa, any formal series (5) with finite norm (10) is a regular generalized function

from (L2)
−β
−q ;

2) for F, G ∈ (L2)
−β
−q the scalar product has a form

(F, G)
(L2)

−β
−q

=
∞

∑
n=0

(n!)1−β2−qn(F(n), G(n))ext,

where F(n), G(n) ∈ H
(n)
ext are the kernels from decompositions (5) for F and G respectively;

3) the dual pairing between F ∈ (L2)
−β
−q and f ∈ (L2)

β
q that is generated by the scalar

product in (L2), has a form

〈〈F, f 〉〉(L2) =
∞

∑
n=0

n!(F(n), f (n))ext, (11)

where F(n), f (n) ∈ H
(n)
ext are the kernels from decompositions (5) for F and f respectively;

4) F ∈ (L2)−β if and only if F can be presented in form (5) and norm (10) is finite for some

q ∈ Z+.

Remark 2. We use the term "regular generalized functions" for elements of (L2)
−β
−q and of

(L2)−β because the kernels from decompositions (5) of these elements and the kernels from

decompositions (5) of test functions belong to the same spaces.

In what follows, it will be convenient to denote the spaces (L2)
β
q , (L2) = (L2)0

0, (L2)
−β
−q from

chain (9) by (L2)
β
q , β ∈ [−1, 1], q ∈ Z (we accept this on default). The norms in these spaces

are given, obviously, by formula (8).

1.4 Stochastic integrals and derivatives

Let F ∈ (L2)
β
q ⊗H. It follows from representation (5) for elements of (L2)

β
q that F can be

presented in the form

F(·) =
∞

∑
n=0

: 〈◦⊗n, F
(n)
· 〉 :, F

(n)
· ∈ H

(n)
ext ⊗H. (12)
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Let us describe the construction of an extended stochastic integral that is based on this de-

composition and correlated with the structure of the spaces H
(n)
ext (a detailed presentation is

given in [21, 19]; in the case when L is a process of Meixner type (e.g., [22]), such an integral is

constructed and studied in [20]).

Let F
(n)
· ∈ H

(n)
ext ⊗H, n ∈ N. We select a representative (a function) ḟ

(n)
· ∈ F

(n)
· such that

ḟ
(n)
u (u1, . . . , un) = 0 if for some k ∈ {1, . . . , n} u = uk. (13)

Accept on default t1, t2 ∈ [0,+∞], t1 < t2. Let f̂
(n)
[t1,t2)

be the symmetrization of a function

ḟ
(n)
· 1[t1,t2)(·) by n + 1 variables. Define F̂

(n)
[t1,t2)

∈ H
(n+1)
ext as the equivalence class in H

(n+1)
ext

generated by f̂
(n)
[t1,t2)

(i.e., f̂
(n)
[t1,t2)

∈ F̂
(n)
[t1,t2)

).

Lemma 1 ([19, 21]). For each F
(n)
· ∈ H

(n)
ext ⊗H, n ∈ N, the element F̂

(n)
[t1,t2)

∈ H
(n+1)
ext is well de-

fined (in particular, F̂
(n)
[t1,t2)

does not depend on a choice of a representative ḟ
(n)
· ∈ F

(n)
· satisfying

(13)) and

|F̂
(n)
[t1,t2)

|ext ≤ |F
(n)
· 1[t1,t2)(·)|H(n)

ext ⊗H
≤ |F

(n)
· |

H
(n)
ext⊗H

. (14)

Definition 4. We define the extended stochastic integral
∫ t2

t1

◦(u)d̂Lu : (L2)
β
q ⊗H → (L2)

β
q−1 (15)

by the formula ∫ t2

t1

F(u)d̂Lu :=
∞

∑
n=0

: 〈◦⊗n+1, F̂
(n)
[t1,t2)

〉 :, (16)

where F̂
(0)
[t1,t2)

:= F
(0)
· 1[t1,t2)(·) ∈ H = H

(1)
ext , and F̂

(n)
[t1,t2)

∈ H
(n+1)
ext , n ∈ N, are constructed by the

kernels F
(n)
· ∈ H

(n)
ext ⊗H from decomposition (12) for F.

As it is shown in [19, 8], this integral is a linear continuous operator. Moreover, if F is

integrable by Itô (i.e., F ∈ (L2) ⊗ H and is adapted with respect to the flow of σ-algebras

generated by the Lévy process L) then F is integrable in the extended sense and
∫ t2

t1
F(u)d̂Lu =

∫ t2

t1
F(u)dLu ∈ (L2), where

∫ t2

t1
F(u)dLu is the Itô stochastic integral [21] (this explains why the

integral
∫ t2

t1
◦(u)d̂Lu is called the extended one).

Sometimes it can be convenient to define the extended stochastic integral by formula (16)

as a linear operator ∫ t2

t1

◦(u)d̂Lu : (L2)
β
q ⊗H → (L2)

β
q . (17)

If β = −1 then this operator is continuous [19], for β ∈ (−1, 1] this is not the case. But if we

accept the set

{
F ∈ (L2)

β
q ⊗H :

∥∥∥
∫ t2

t1

F(u)d̂Lu

∥∥∥
2

q,β
=

∞

∑
n=0

((n + 1)!)1+β2q(n+1)|F̂
(n)
[t1,t2)

|2ext < ∞
}

as the domain of integral (17) then the last will be a closed operator [19, 8]. Also we note

that the extended stochastic integral can be defined by formula (16) as a linear continuous

operator acting from (L2)β ⊗ H := pr limq→+∞(L2)
β
q ⊗ H to (L2)β, or from (L2)−β ⊗ H :=

ind limq→+∞(L2)
−β
−q ⊗H to (L2)−β, here β ∈ [0, 1].
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At last, we recall briefly the notion of a Hida stochastic derivative in the Lévy white noise

analysis in terms of the Lytvynov’s CRP ([21, 19, 8]).

Definition 5. We define a Hida stochastic derivative 1[t1,t2)(·)∂· : (L2)
−β
1−q → (L2)

−β
−q ⊗H as a

linear continuous operator adjoint to extended stochastic integral (15), i.e., for all F ∈ (L2)
β
q ⊗

H and G ∈ (L2)
−β
1−q

〈〈F(·), 1[t1 ,t2)(·)∂·G〉〉(L2)⊗H = 〈〈
∫ t2

t1

F(u)d̂Lu, G〉〉(L2),

here 〈〈·, ·〉〉(L2)⊗H denotes the dual pairing generated by the scalar product in (L2)⊗H.

If instead of integral (15) one uses integral (17), the corresponding Hida stochastic deriva-

tive will be a linear unbounded (except the case β = −1), but closed operator acting from

(L2)
−β
−q to (L2)

−β
−q ⊗H [8]. It is clear also that the Hida stochastic derivative can be defined as

a linear continuous operator acting from (L2)β to (L2)β ⊗H (β ∈ [−1, 1]) that is adjoint to the

corresponding extended stochastic integral.

In order to write out an explicit formula for the Hida stochastic derivative in terms of de-

compositions by the Wick monomials, we need some preparation. Let G(n) ∈ H
(n)
ext , n ∈ N,

ġ(n) ∈ G(n) be a representative of G(n). We consider ġ(n)(·), i.e., separate one argument of ġ(n),

and define G(n)(·) ∈ H
(n−1)
ext ⊗H as the equivalence class in H

(n−1)
ext ⊗H generated by ġ(n)(·)

(i.e., ġ(n)(·) ∈ G(n)(·)).

Lemma 2 ([21]). For each G(n) ∈ H
(n)
ext , n ∈ N, the element G(n)(·) ∈ H

(n−1)
ext ⊗ H is well

defined (in particular, G(n)(·) does not depend on a choice of a representative ġ(n) ∈ G(n)) and

|G(n)(·)|
H

(n−1)
ext ⊗H

≤ |G(n)|ext. (18)

Note that, in spite of estimate (18), the space H
(n)
ext , n ∈ N\{1}, can not be considered

as a subspace of H
(n−1)
ext ⊗H because different elements of H

(n)
ext can coincide as elements of

H
(n−1)
ext ⊗H.

The next statement easily follows from results of [21, 19, 8].

Proposition 3. For a test or square integrable or generalized function G of form (5)

1[t1,t2)(·)∂·G =
∞

∑
n=1

n: 〈◦⊗n−1, G(n)(·)1[t1,t2)(·)〉 : ≡
∞

∑
n=0

(n + 1): 〈◦⊗n, G(n+1)(·)1[t1 ,t2)(·)〉 :.

Finally, we note that the extended stochastic integral and the Hida stochastic derivative are

mutually adjoint operators [21, 19, 8].

2 OPERATORS OF STOCHASTIC DIFFERENTIATION

2.1 The case of bounded operators

In order to define operators of stochastic differentiation on spaces (L2)
β
q , we need some

preparation. Let n, m ∈ Z+. Consider a function H : R
n+m
+ → R. Denote

H̃(u1, . . . , un; un+1, . . . , un+m)

:=

{
H(u1, . . . , un+m), if for all i ∈ {1, . . . , n}, j ∈ {n + 1, . . . , n + m} ui 6= uj,

0, in other cases.
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Let F(n) ∈ H
(n)
ext , G(m) ∈ H

(m)
ext . We select representatives (functions) ḟ (n) ∈ F(n), ġ(m) ∈ G(m)

from the equivalence classes F(n), G(m), and set ˜f (n)g(m) := ˜ḟ (n) · ġ(m). Let ̂f (n)g(m) be the

symmetrization of ˜f (n)g(m) by all variables, F(n) ⋄ G(m) ∈ H
(n+m)
ext be the equivalence class in

H
(n+m)
ext that is generated by ̂f (n)g(m) (i.e., ̂f (n)g(m) ∈ F(n) ⋄ G(m)). The next statement in a sense

is a generalization of Lemma 1.

Lemma 3. The element F(n) ⋄ G(m) ∈ H
(n+m)
ext is well defined (in particular, F(n) ⋄ G(m) does not

depend on a choice of representatives from F(n) and G(m)) and

|F(n) ⋄ G(m)|ext ≤ |F(n)|ext|G
(m)|ext. (19)

Remark 3. Not strictly speaking, F(n) ⋄ G(m) is the symmetrization of a function

{
F(n)(u1, . . . , un)G(m)(un+1, . . . , un+m), if ∀i ∈ {1, . . . , n}, j ∈ {n + 1, . . . , n + m}ui 6= uj,

0, in other cases

by all arguments.

Proof. For n = 0 or m = 0 the statement of the lemma is, obviously, true. Let n, m ∈ N,

ḟ (n) ∈ F(n), ġ(m) ∈ G(m). It is clear that

̂f (n)g(m)(u1, . . . , un+m) =
1

(n + m)! ∑
π∈Sn+m

˜f (n)g(m)(uπ(1), . . . , uπ(n+m)), (20)

where Sn+m is a family of all permutations of numbers 1, . . . , n + m. Without loss of generality

we can think that ḟ (n), ġ(m) are symmetric functions and m ≥ n. For each collection of argu-

ments uπ(1), . . . , uπ(n) we consider all summands from sum (20) with such a collection (it is

clear that there are m! such summands). Taking into consideration the symmetric property of

ġ(m), one can conclude that all these summands are equal inter se, therefore one can replace the

mentioned summands by a representative multiplied by m!. After it one can use by analogy

the symmetric property of ḟ (n) and rewrite equality (20) in the form

̂f (n)g(m)(u1, . . . , un+m)

=
n!m!

(n + m)! ∑
1≤p1,...,pn≤n,n+1≤q1,...,qm≤n+m,0≤r≤n

p1<···<pr,pr+1<···<pn,q1<···<qn−r,qn−r+1<···<qm

˜f (n)g(m)(up1 , . . . , upr , uq1 , . . . , uqn−r;

upr+1 , . . . , upn , uqn−r+1, . . . , uqm)

(21)

(here for r = n the argument in the right hand side of (21) is (u1, . . . , un; un+1, . . . , un+m); for

r = 0 this argument is (uq1 , . . . , uqn ; u1, . . . , un, uqn+1, . . . , uqm)). To put it in another way, the

arguments of ˜f (n)g(m) in sum (21) are uj, j ∈ {1, . . . , n + m}, where the indexes of n first and

m last arguments (before and after ’;’) are (independently) ordered in ascending. (Note that

we selected arrangement in ascending when we used the symmetric property of ḟ (n) and ġ(m)

because this is convenient for a consequent calculation.)
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Let us estimate | ̂f (n)g(m)|ext. Substituting (21) in the expression for | · |ext (see (7)) we obtain

| ̂f (n)g(m)|2ext = ∑
k,lj,sj∈N:j=1,...,k,l1>l2>···>lk,

l1s1+···+lksk=n+m

(n + m)!

s1! . . . sk!

(
‖pl1‖ν

l1!

)2s1

. . .

(
‖plk

‖ν

lk!

)2sk

×
∫

R
s1+···+sk
+

| ̂f (n)g(m)(u1, . . . , u1︸ ︷︷ ︸
l1

, . . . , us1+···+sk
, . . . , us1+···+sk︸ ︷︷ ︸

lk

)|2du1 . . . dus1+···+sk

≤ ∑
k,lj,sj∈N:j=1,...,k,l1>l2>···>lk,

l1s1+···+lksk=n+m

(n + m)!

s1! . . . sk!

(
‖pl1‖ν

l1!

)2s1

. . .

(
‖plk

‖ν

lk!

)2sk
(

n!m!

(n + m)!

)2 (n + m)!

n!m!

×



∫

R
s1+···+sk
+

| ˜f (n)g(m)(u1, . . . , u1︸ ︷︷ ︸
l1

, . . . , us1+···+sk
, . . . , us1+···+sk︸ ︷︷ ︸

lk

)|2du1 . . . dus1+···+sk
+ · · ·




= ∑
k,lj,sj∈N:j=1,...,k,l1>l2>···>lk,

l1s1+···+lksk=n+m

n!m!

s1! . . . sk!

(
‖pl1‖ν

l1!

)2s1

. . .

(
‖plk

‖ν

lk!

)2sk

×



∫

R
s1+···+sk
+

| ˜f (n)g(m)(u1, . . . , u1︸ ︷︷ ︸
l1

, . . . , us1+···+sk
, . . . , us1+···+sk︸ ︷︷ ︸

lk

)|2du1 . . . dus1+···+sk
+ · · ·




(22)

(here we used the inequality |∑
p
l=1 al |

2 ≤ p ∑
p
l=1 |al |

2 and the fact that the sum in the right

hand side of (21) contains (n+m)!
n!m! summands). We say that a collection of equal inter se ar-

guments (e.g., (u1, . . . , u1︸ ︷︷ ︸
l1

)) is called a procession. It follows from the ordering in ascending of

indexes in (21) and in the statement for | · |ext (see (22)) that in summands in interior sums [· · · ]

from (22) processions can "tear" only so that different parts of a "torn" procession will be for

different parties from ’;’; processions being for one side from ’;’ do not switch places; and ele-

ments in processions do not switch places. Further, it follows from a construction of ˜f (n)g(m)

that summands in interior sums [· · · ] from (22), in which a procession is divided by ’;’, are

equal to zero. Another summands (if there exist for a collection k, lj, sj) disintegrate on groups

of equal inter se integrals. These groups arise by means of transpositions of processions with

equal quantity of members, which are placed before ’;’ and after ’;’. It is clear that if there are

s′ processions of length l before ’;’ and s′′ processions of length l after ’;’ then by means of

mutual transpositions of these processions one can obtain (s′+s′′)!
s′!s′′! equal inter se summands.

So, nonzero summands in the last sum from (22) are "connected" with the expressions

l1s1 + · · ·+ lksk = n + m (23)

that can be presented in the form

l′1s′1 + · · ·+ l′k′s
′
k′ = n, l′′1 s′′1 + · · ·+ l′′k′′s

′′
k′′ = m,

k′, k′′, l′1, . . . , l′k′ , s′1, . . . , s′k′ , l′′1 , . . . , l′′k′′ , s′′1 , . . . , s′′k′′ ∈ N,

l′1 > · · · > l′k′ , l′′1 > · · · > l′′k′′

(24)

(the first sum in (24) corresponds to first n arguments of ˜f (n)g(m), the second one corresponds

to last m arguments). Now for each sj from (23) either there exists s′i = sj (l′i = lj) or there exists
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s′′i = sj (l′′i = lj) or there exist s′i and s′′w such that s′i + s′′w = sj (l′i = l′′w = lj). Inequalities for

l′· , l′′· in (24) follow from inequalities l1 > · · · > lk and ordering of indexes in (21) (more long

processions have smaller indexes of arguments).

We will replace each group of equal inter se summands in the last expression from (22) by

a representative multiplied by a quantity of summands in the group. Now, taking into account

that ws′+s′′ = ws′ws′′ , one can rewrite the last expression from (22) in the form

∑
k′ ,k′′,l′1,...,l′

k′
,s′1,...,s′

k′
,l′′1 ,...,l′′

k′′
,s′′1 ,...,s′′

k′′
∈N,

l′
1
>···>l′

k′
, l′′

1
>···>l′′

k′′
,

l′1s′1+···+l′
k′

s′
k′
=n, l′′1 s′′1 +···+l′′

k′′
s′′
k′′

=m

n!m!

s′1! . . . s′k′ !s
′′
1 ! . . . s′′k′′ !

×

(
‖pl′1

‖ν

l′1!

)2s′1

. . .

(
‖pl′

k′
‖ν

l′k′ !

)2s′
k′
(
‖pl′′1

‖ν

l′′1 !

)2s′′1

. . .

(
‖pl′′

k′′
‖ν

l′′k′′ !

)2s′′
k′′

×
∫

R
s′1+···+s′

k′
+s′′1 +···+s′′

k′′
+

| ˜f (n)g(m)(u1, . . . , u1︸ ︷︷ ︸
l′1

, . . . , us′1+···+s′
k′

, . . . , us′1+···+s′
k′︸ ︷︷ ︸

l′
k′

;

un+1, . . . , un+1︸ ︷︷ ︸
l′′1

, . . . , un+s′′1+···+s′′
k′′

, . . . , un+s′′1+···+s′′
k′′︸ ︷︷ ︸

l′′
k′′

)|2

× du1 . . . dus′1+···+s′
k′

dun+1 . . . dun+s′′1+···+s′′
k′′

.

(25)

Since the Lebesgue measure is a non-atomic one, we can replace ˜f (n)g(m) in this expression by

ḟ (n) ġ(m), therefore (25) is equal to | ḟ (n)|2ext|ġ
(m)|2ext, whence

| ̂f (n)g(m)|ext ≤ | ḟ (n)|ext|ġ
(m)|ext. (26)

It follows from this inequality that ̂f (n)g(m) generates an element F(n) ⋄ G(m) of H
(n+m)
ext and

estimate (19) is fulfilled.

Let ḟ
(n)
1 ∈ F(n) and ġ

(m)
1 ∈ G(m) be another representatives of F(n) and G(m), F

(n)
1 ⋄ G

(m)
1

be the corresponding element of H
(n+m)
ext . Using obvious properties of the operation ◦̂ and

estimate (26) we obtain

|F(n) ⋄ G(m) − F
(n)
1 ⋄ G

(m)
1 |ext = | ̂f (n)g(m) −

̂
f
(n)
1 g

(m)
1 |ext

≤ | ̂f (n)g(m) −
̂

f (n)g
(m)
1 |ext + |

̂
f (n)g

(m)
1 −

̂
f
(n)
1 g

(m)
1 |ext

= |
̂

f (n)(g(m) − g
(m)
1 )|ext + |

̂
( f (n) − f

(n)
1 )g

(m)
1 |ext

≤ | ḟ (n) |ext|ġ
(m) − ġ

(m)
1 |ext + | ḟ (n) − ḟ

(n)
1 |ext|ġ

(m)
1 |ext = 0,

therefore F(n) ⋄ G(m) does not depend on a choice of representatives from F(n) and G(m).

Let F(m) ∈ H
(m)
ext , f (n) ∈ H

(n)
ext , m > n. We define a "product" (F(m), f (n))ext ∈ H

(m−n)
ext by

setting for each g(m−n) ∈ H
(m−n)
ext

((F(m), f (n))ext, g(m−n))ext = (F(m), g(m−n) ⋄ f (n))ext. (27)

Since (see (19))

|(F(m), g(m−n) ⋄ f (n))ext| ≤ |F(m)|ext|g
(m−n) ⋄ f (n)|ext ≤ |F(m)|ext|g

(m−n)|ext| f
(n) |ext,
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this definition is correct and

|(F(m), f (n))ext|ext ≤ |F(m)|ext| f
(n) |ext. (28)

Definition 6. Let n ∈ N, f (n) ∈ H
(n)
ext . We define an operator of stochastic differentiation

(Dn◦)( f (n)) : (L2)
β
q → (L2)

β
q−1 (29)

by setting

(DnF)( f (n)) :=
∞

∑
m=n

m!

(m − n)!
: 〈◦⊗m−n, (F(m), f (n))ext〉 :

≡
∞

∑
m=0

(m + n)!

m!
: 〈◦⊗m, (F(m+n), f (n))ext〉 :,

(30)

where F(m) ∈ H
(m)
ext are the kernels from decomposition (5) for F. Also we denote D := D1.

Since (see (8), (28))

‖(DnF)( f (n))‖2
q−1,β =

∞

∑
m=0

(m!)1+β2(q−1)m
( (m + n)!

m!

)2
|(F(m+n), f (n))ext|

2
ext

= 2−qn
∞

∑
m=0

((m + n)!)1+β2q(m+n)
[
2−m

( (m + n)!

m!

)1−β]
|(F(m+n), f (n))ext|

2
ext

≤ 2−qn| f (n)|2extc
∞

∑
m=0

((m + n)!)1+β2q(m+n)|F(m+n)|2ext ≤ 2−qn| f (n) |2extc‖F‖2
q,β,

(31)

where c = maxm∈Z+

[
2−m

(
(m+n)!

m!

)1−β]
, this definition is correct and operator (29) is a lin-

ear continuous one. Moreover, for each F ∈ (L2)
β
q one can understand (DnF)(◦) as a linear

continuous operator acting from H
(n)
ext to (L2)

β
q−1.

Remark 4. As is easily seen, for each f (n) ∈ H
(n)
ext , n ∈ N, (Dn◦)( f (n)) can be defined by

formula (30) as a linear continuous operator on (L2)β, β ∈ [−1, 1]. In the case β = 1 formula

(30) defines a linear continuous operator (Dn◦)( f (n)) on (L2)1
q, q ∈ Z, this can be proved by

analogy with calculation (31).

Let us consider main properties of the operators Dn.

Theorem 1. 1) For k1, . . . , km ∈ N, f
(k j)

j ∈ H
(k j)
ext , j ∈ {1, . . . , m},

(Dkm(· · · (Dk2((Dk1◦)( f
(k1)
1 )))( f

(k2)
2 ) · · · ))( f

(km)
m ) = (Dk1+···+km◦)( f

(k1)
1 ⋄ · · · ⋄ f

(km)
m ).

2) For each F ∈ (L2)
β
q the kernels F(n) ∈ H

(n)
ext , n ∈ N, from decomposition (5) can be

presented in the form

F(n) =
1

n!
E(DnF),

i.e., for each f (n) ∈ H
(n)
ext (F(n), f (n))ext =

1
n! E((DnF)( f (n))), here E◦ := 〈〈◦, 1〉〉(L2) is a general-

ized expectation.

3) The adjoint to Dn operator has the form

(DnG)( f (n))∗ =
∞

∑
m=0

: 〈◦m+n, G(m) ⋄ f (n)〉 :∈ (L2)
−β
−q , (32)

where G ∈ (L2)
−β
1−q, f (n) ∈ H

(n)
ext , G(m) ∈ H

(m)
ext are the kernels from decomposition (5) for G.
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Proof. 1) The proof consists in the application of the mathematical induction method.

2) Using (30) and (11), for each f (n) ∈ H
(n)
ext we obtain

E((DnF)( f (n))) = 〈〈(DnF)( f (n)), 1〉〉(L2) = n!(F(n), f (n))ext.

3) Let F ∈ (L2)
β
q , f (n) ∈ H

(n)
ext , G ∈ (L2)

−β
1−q. Using (30), (5), (11) and (27), we obtain

〈〈(DnF)( f (n)), G〉〉(L2) = 〈〈
∞

∑
m=0

(m + n)!

m!
: 〈◦⊗m, (F(m+n), f (n))ext〉 :,

∞

∑
k=0

: 〈◦⊗k, G(k)〉 :〉〉(L2)

=
∞

∑
m=0

(m + n)!((F(m+n), f (n))ext, G(m))ext =
∞

∑
m=0

(m + n)!(F(m+n), G(m) ⋄ f (n))ext

= 〈〈
∞

∑
k=0

: 〈◦⊗k, F(k)〉 :,
∞

∑
m=0

: 〈◦⊗m+n, G(m) ⋄ f (n)〉 :〉〉(L2) = 〈〈F, (DnG)( f (n))∗〉〉(L2),

whence the result follows.

Now we consider in more detail the case n = 1. Denote ∂· := 1[0,+∞)(·)∂· (see Subsec-

tion 1.4).

Theorem 2. 1) For all G ∈ (L2)
−β
1−q and f (1) ∈ H

(1)
ext = H

(DG)( f (1))∗ =
∫

R+

G · f (1)(u)d̂Lu ∈ (L2)
−β
−q . (33)

2) For all F ∈ (L2)
β
q and f (1) ∈ H

(1)
ext

(DF)( f (1)) =
∫

R+

∂uF · f (1)(u)du ∈ (L2)
β
q−1, (34)

here the integral in the right hand side is a Pettis one (the weak integral).

3) Let F ∈ (L2)
β
q ⊗H. Then for all t1, t2 ∈ [0,+∞], t1 < t2, and f (1) ∈ H

(1)
ext = H

(D
∫ t2

t1

F(u)d̂Lu)( f (1)) =
∫ t2

t1

(DF(u))( f (1))d̂Lu +
∫ t2

t1

F(u) f (1)(u)du ∈ (L2)
β
q−1, (35)

here the last integral is a Pettis one.

Proof. 1) The result follows from representation (32) with n = 1: it is necessary to compare

the construction of kernels of the extended stochastic integral (see Subsection 1.4) with the

construction of a product ⋄.

2) Taking into account (33) and the definition of ∂· (see Subsection 1.4), for all G ∈ (L2)
−β
1−q

we obtain

〈〈(DF)( f (1)), G〉〉(L2) = 〈〈F,
∫

R+

G · f (1)(u)d̂Lu〉〉(L2)

= 〈〈∂·F, G ⊗ f (1)(·)〉〉(L2)⊗H = 〈〈
∫

R+

∂uF · f (1)(u)du, G〉〉(L2),

whence the result follows.

3) Using (16) and (30), we obtain

(D
∫ t2

t1

F(u)d̂Lu)( f (1)) =
∞

∑
m=0

(m + 1) : 〈◦⊗m, (F̂
(m)
[t1,t2)

, f (1))ext〉 :, (36)
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where F̂
(m)
[t1,t2)

∈ H
(m+1)
ext are the kernels from decomposition (16) (which is decomposition (5) for

the extended stochastic integral
∫ t2

t1
F(u)d̂Lu), these kernels are constructed by F

(m)
· ∈ H

(m)
ext ⊗

H from decomposition (12) for F. On the other hand, by (30), (16) and (12)

∫ t2

t1

(DF(u))( f (1))d̂Lu =
∞

∑
m=1

m : 〈◦⊗m,
̂

(F
(m)
· , f (1))ext [t1,t2)

〉 :,

∫ t2

t1

F(u) f (1)(u)du =
∞

∑
m=0

: 〈◦⊗m,
∫ t2

t1

F
(m)
u f (1)(u)du〉 :,

where the integrals
∫ t2

t1
F
(m)
u f (1)(u)du ∈ H

(m)
ext are Pettis ones. Therefore, in order to prove

equality (35) it is sufficient to show that for each m ∈ Z+

(m + 1)(F̂
(m)
[t1,t2)

, f (1))ext = m
̂

(F
(m)
· , f (1))ext[t1,t2)

+
∫ t2

t1

F
(m)
u f (1)(u)du

in H
(m)
ext . In turn, in order to prove this equality, it is sufficient to show that for each g(m) ∈ H

(m)
ext

(m + 1)((F̂
(m)
[t1,t2)

, f (1))ext,g
(m))ext

= m(
̂

(F
(m)
· , f (1))ext [t1,t2)

, g(m))ext +
( ∫ t2

t1

F
(m)
u f (1)(u)du, g(m)

)
ext

.
(37)

Using (27), the equality (F̂
(m)
[t1,t2)

, h(m+1))ext =
∫ t2

t1
(F

(m)
u , h(m+1)(u))extdu, h(m+1) ∈ H

(m+1)
ext ,

h(m+1)(·) ∈ H
(m)
ext ⊗H (see Lemma 2), which is proved in [21], the symmetry of g(m), and the

non-atomicity of the Lebesgue measure, we obtain

(m + 1)((F̂
(m)
[t1,t2)

, f (1))ext, g(m))ext = (m + 1)(F̂
(m)
[t1,t2)

, g(m) ⋄ f (1))ext

= (m + 1)
∫ t2

t1

(
F
(m)
u , (g(m) ⋄ f (1))(u)

)
ext

du =
∫ t2

t1

(
F
(m)
u , ˜g(m)(·1, · · · , ·m) f (1)(u)

+ ˜g(m)(·2, · · · , u) f (1)(·1) + · · ·+ ˜g(m)(u, · · · , ·m−1) f (1)(·m)
)

ext
du

=
( ∫ t2

t1

F
(m)
u f (1)(u)du, g(m)

)
ext

+
∫ t2

t1

(
F
(m)
u , ˜g(m)(·2, · · · , u) f (1)(·1) + · · ·+ ˜g(m)(u, · · · , ·m−1) f (1)(·m)

)
ext

du.

(38)

On the other hand, by analogy with (38) we obtain

m(
̂

(F
(m)
· , f (1))ext[t1,t2)

, g(m))ext = m
∫ t2

t1

((F
(m)
u , f (1))ext, g(m)(u))extdu

= m
∫ t2

t1

(F
(m)
u , (g(m)(u)) ⋄ f (1))extdu =

∫ t2

t1

(
F
(m)
u , ˜g(m)(·2, · · · , u) f (1)(·1)

+ ˜g(m)(·3, · · · , u, ·1) f (1)(·2) + · · ·+ ˜g(m)(u, · · · , ·m−1) f (1)(·m)
)

ext
du.

(39)

Substituting (39) into (38), we obtain (37).

Now it remains to prove that (D
∫ t2

t1
F(u)d̂Lu)( f (1)) ∈ (L2)

β
q−1 if F ∈ (L2)

β
q ⊗H (it follows

directly from the definitions of the extended stochastic integral and of the operators of stochas-

tic differentiation that (D
∫ t2

t1
F(u)d̂Lu)( f (1)) ∈ (L2)

β
q−2, but this statement can be amplified).
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In fact, by (36), (8), (28) and (14)

∥∥∥(D
∫ t2

t1

F(u)d̂Lu)( f (1))
∥∥∥

2

q−1,β
=

∞

∑
m=0

(m!)1+β2(q−1)m(m + 1)2|(F̂
(m)
[t1,t2)

, f (1))ext|
2
ext

≤
∞

∑
m=0

(m!)1+β2qm[2−m(m + 1)2]|F̂
(m)
[t1,t2)

|2ext| f
(1) |2ext

≤ | f (1) |2extc
∞

∑
m=0

(m!)1+β2qm|F
(m)
· |2

H
(m)
ext ⊗H

= | f (1) |2extc‖F‖2

(L2)
β
q⊗H

< ∞,

where c = maxm∈Z+ [2
−m(m + 1)2].

Remark 5. Taking into account equality (34), one can write formally ∂·◦ = (D◦)(δ·), where δ· is

the Dirac delta-function concentrated at ·. In order to give a nonformal sense to this equality,

one can consider a stochastic differentiation on so-called spaces of nonregular generalized

functions, it will be done in another paper.

As is easily seen, the results of Theorems 1, 2 hold true (up to obvious modifications) if we

consider the operators of stochastic differentiation on the spaces (L2)β, β ∈ [−1, 1].

Remark 6. As is known ([17, 18]), in the Meixner white noise analysis the operator of stochastic

differentiation D is a differentiation with respect to a Wick product. In the Lévy white noise

analysis this result holds true, the detailed presentation will be given in another paper.

2.2 The case of unbounded operators

Sometimes it can be useful to consider (Dn◦)( f (n)), f (n) ∈ H
(n)
ext , n ∈ N, as an operator

acting in (L2)
β
q (we remind that, for example, (L2)0

0 = (L2)). If β = 1 then this operator can be

defined by formula (30) as a linear continuous one (see Remark 4), but for β ∈ [−1, 1) this is

not the case. Let us accept a corresponding definition.

Definition 7. Let n ∈ N, f (n) ∈ H
(n)
ext . We define an operator

(Dn◦)( f (n)) : (L2)
β
q → (L2)

β
q (40)

with the domain

dom
(
(Dn◦)( f (n))

)
=
{

F ∈ (L2)
β
q : ‖(DnF)( f (n))‖2

q,β

=
∞

∑
m=0

(m!)1+β2qm
( (m + n)!

m!

)2
|(F(m+n), f (n))ext|

2
ext < ∞

} (41)

(here F(m) ∈ H
(m)
ext are the kernels from decomposition (5) for F) by formula (30).

Proposition 4. Operator (40) with domain (41) is a closed one.

Proof. Let us show that there exists a second adjoint to (Dn◦)( f (n)) operator (Dn◦)( f (n))∗∗ =

(Dn◦)( f (n)) (it is well known that an adjoint operator is a closed one). Since, obviously, the

domain of operator (40) is a dense set in (L2)
β
q , the adjoint operator (Dn◦)( f (n))∗ : (L2)

−β
−q →

(L2)
−β
−q is well defined. By definition, G ∈ dom

(
(Dn◦)( f (n))∗

)
if and only if

(L2)
β
q ⊃ dom

(
(Dn◦)( f (n))

)
∋ F 7→ 〈〈(DnF)( f (n)), G〉〉(L2)



ON OPERATORS OF STOCHASTIC DIFFERENTIATION... 227

is a linear continuous functional. By properties of Hilbert equipments the last is possible if

and only if there exists K ∈ (L2)
−β
−q such that 〈〈(Dn F)( f (n)), G〉〉(L2) = 〈〈F, K〉〉(L2). But by the

calculation in the proof of statement 3) in Theorem 1 K has form (32), therefore

dom
(
(Dn◦)( f (n))∗

)
=
{

G ∈ (L2)
−β
−q : ‖(DnG)( f (n))∗‖2

−q,−β

=
∞

∑
m=0

((m + n)!)1−β2−q(m+n)|G(m) ⋄ f (n)|2ext < ∞
}

,

this set is a dense one in (L2)
−β
−q , hence (Dn◦)( f (n))∗∗ : (L2)

β
q → (L2)

β
q is well defined. Now it

remains to show that

dom
(
(Dn◦)( f (n))∗∗

)
= dom

(
(Dn◦)( f (n))

)
. (42)

By analogy with the consideration above, F ∈ dom
(
(Dn◦)( f (n))∗∗

)
if and only if

(L2)
−β
−q ⊃ dom

(
(Dn◦)( f (n))∗

)
∋ G 7→ 〈〈F, (DnG)( f (n))∗〉〉(L2)

is a linear continuous functional. The last is possible if and only if there exists H ∈ (L2)
β
q such

that 〈〈F, (DnG)( f (n))∗〉〉(L2) = 〈〈H, G〉〉(L2). It is clear that H has form (30), therefore equality

(42) follows from (41).

Remark 7. Let

An :=
{

F ∈ (L2)
β
q :

∞

∑
m=0

(m!)1+β2qm
( (m + n)!

m!

)2
|F(m+n)|2ext < ∞

}
, n ∈ N,

here F(m) ∈ H
(m)
ext are the kernels from decomposition (5) for F. For each f (n) ∈ H

(n)
ext we define

an operator (D̃n◦)( f (n)) : (L2)
β
q → (L2)

β
q with the domain An by formula (30). It follows

from Proposition 4 that this operator is closable (its closure is equal to (Dn◦)( f (n))). Moreover,

for each F ∈ An the operator (D̃nF)(◦) : H
(n)
ext → (L2)

β
q is a linear bounded (and, therefore,

continuous) one: by (30), (8) and (28)

‖(D̃nF)( f (n))‖2
q,β =

∞

∑
m=0

(m!)1+β2qm
( (m + n)!

m!

)2
|(F(m+n), f (n))ext|

2
ext

≤ | f (n) |2ext

∞

∑
m=0

(m!)1+β2qm
( (m + n)!

m!

)2
|F(m+n)|2ext.

It is clear that the results of Theorems 1, 2 hold true (up to obvious modifications) for

operators (40).
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Дирiв М.М., Качановський М.О. Про оператори стохастичного диференцiювання на просторах

регулярних основних та узагальнених функцiй аналiзу бiлого шуму Левi // Карпатськi матем. публ.

— 2014. — Т.6, №2. — C. 212–229.

Оператори стохастичного диференцiювання, якi є тiсно пов’язаними iз розширеним стоха-

стичним iнтегралом Скорохода та зi стохастичною похiдною Хiди, грають важливу роль у кла-

сичному (гауссiвському) аналiзi бiлого шуму. Зокрема, цi оператори можна використовувати

для вивчення властивостей розширеного стохастичного iнтеграла та розв’язкiв стохастичних

рiвнянь з нелiнiйностями вiкiвського типу.

У цiй статтi ми вводимо та вивчаємо обмеженi i необмеженi оператори стохастичного ди-

ференцiювання у аналiзi бiлого шуму Левi. Точнiше, ми розглядаємо цi оператори на просто-

рах параметризованого регулярного оснащення простору квадратично iнтегровних за мiрою

бiлого шуму Левi функцiй, використовуючи литвинiвське узагальнення властивостi хаотично-

го розкладу. Це дає можливiсть розширити на аналiз бiлого шуму Левi та поглибити вiдповiд-

нi результати класичного аналiзу бiлого шуму.

Ключовi слова i фрази: оператор стохастичного диференцiювання, стохастична похiдна,

розширений стохастичний iнтеграл, процес Левi.

Дырив М.Н., Качановский Н.А. Об операторах стохастического дифференцирования на простран-

ствах регулярных основных и обобщенных функций анализа белого шума Леви // Карпатские ма-

тем. публ. — 2014. — Т.6, №2. — C. 212–229.

Операторы стохастического дифференцирования, тесно связанные с расширенным сто-

хастическим интегралом Скорохода и со стохастической производной Хиды, играют важную

роль в классическом (гауссовском) анализе белого шума. В частности, эти операторы мож-

но использовать для изучения свойств расширенного стохастического интеграла и решений

стохастических уравнений с нелинейностями виковского типа.

В этой статье мы вводим и изучаем ограниченные и неограниченные операторы стохасти-

ческого дифференцирования в анализе белого шума Леви. Точнее, мы рассматриваем эти опе-

раторы на пространствах параметризованного регулярного оснащения пространства квадра-

тично интегрируемых по мере белого шума Леви функций, используя литвиновское обобще-

ние свойства хаотического разложения. Это дает возможность расширить на анализ белого

шума Леви и углубить соответствующие результаты классического анализа белого шума.

Ключевые слова и фразы: оператор стохастического дифференцирования, стохастическая

производная, расширенный стохастический интеграл, процесс Леви.


