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ARTEMOVYCH O.D., LUKASHENKO M.P.
ON RIGID DERIVATIONS IN RINGS

We prove that in a ring R with an identity there exists an elementa € R and a nonzero derivation
d € Der R such that ad(a) # 0. A ring R is said to be a d-rigid ring for some derivation d € Der R
ifd(a) = 0 orad(a) # 0 for all a € R. We study rings with rigid derivations and establish that a
commutative Artinian ring R either has a non-rigid derivation or R = R; @ - - - ® R, is a ring direct
sum of rings Ry, ..., R, every of which is a field or a differentially trivial v-ring. The proof of this
result is based on the fact that in a local ring R with the nonzero Jacobson radical J(R), for any
derivation d € Der R such that d(J(R)) = 0, it follows that d = Og if and only if the quotient ring
R/J(R) is differentially trivial field.

Key words and phrases: derivation, semiprime ring, Artinian ring.

Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine
E-mail: orest_artemovych@hotmail.com(Artemovych O.D.), bilochka.90@mail.ru (Lukashenko M.P)

INTRODUCTION

Throughout, let R be an associative ring with 1 and Der R the set of all derivations of R.
Recall that a map 6 : R — R is called a derivation of R if §(x +y) = d(x) + 6(y) and é(xy) =
0(x)y + x6(y) for any x,y € R. We prove the following

Proposition 1. Let R be a ring. Then the following conditions hold:
(1) ifd is a nonzero derivation of a commutative ring R, then ad(a) # 0 for somea € R,
(2) there exists an element a € R and a nonzero derivation d € Der R such that ad(a) # 0.

Different aspects of rigidity of derivations are studied in [4,6,15]. ]. Krempa has introduced
the concept of a o-rigid ring [12]. Namely, R is said to be a o-rigid ring for some ring endomor-
phism ¢ € EndR if ac(a) # 0 for all nonzero a € R. By analogy with this and in view of
Proposition 1, we say that R is a d-rigid ring (or a derivation d is rigid), where d € Der R, if for
any a € Ritholdsd(a) = 0 orad(a) # 0. Clearly, the zero derivation O of R is rigid. Every
derivation of an integral domain is rigid.

M. Bresar [5], T.-K. Lee and ].-S. Lin [13] have investigated when, for a semiprime ring R,
the condition ad(R)" = 0, where n is fixed integer, a € R, d € Der R, implies that ad(R) = 0.
By Proposition 1 and results from [13, p.1688] and [8], we obtain the next

Corollary 1. Let R be a semiprime ring with the derivationd and a € R. If ad(R)" = 0, where
n is a fixed integer, then d = Og.
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This corollary is an extension of some results from [11] and [8]. We prove the our next

Proposition 2. Let R be a 2-torsion-free semiprime ring. Then all derivations of R are rigid if
and only if R is reduced (that is without nonzero nilpotent elements).

Recall [2] that a ring R is called differentially trivial if Der R = {Or }. Commutative Artinian
rings with derivations to be rigid are characterized in the following

Theorem 1. Let R be a commutative Artinian ring. Then one of the following holds:
(1) R has a non-rigid derivation,

(2) R= Ry ®---® R, is a ring direct sum of rings Ry, ..., R, every of which is a field or a
differentially trivial v-ring.

For any ring R, 0 : R — Ris its inner derivation generated by x € R thatis dy(r) = xr —rx
forevery r € R, [R,R] = {9x(r) | x,r € R}, C(R) is the commutator ideal of R that is the ideal
generated by d.(r) for all x,r € R, J(R) is its Jacobson radical, N(R) is the set of all nilpotent
elements of R, U(R) is the unit group of R, Z(R) is the center of R, ann, a2 = {x € R | ax = 0}
is the right annihilator of 2 € R, ann; X = {a € R | aX = 0} is the right annihilator of X C R.
Any unexplained terminology is standard as in [3] and [10].

1 RINGS WITH PROPERTY ad(a) =0

For the proof of Proposition 1, we need some preliminary lemmas.
Lemma 1. Let R be a ring. Then the following properties hold:
(1) ifady(a) = 0 and xd,(x) = 0 for some a, x of R, then 9, (a)?> = 0,
(2) ifadyx(a) =0 foranya,x € R, then C(R) C N(R),
(3) d(C(R)) C C(R) foreachd € Der R.

2x

Proof. (1) From 0 = ady(a) = a(xa —ax) and 0 = xd,(x) = x(ax — xa) it follows that axa = a
and xax = x%a. This gives that

2

0y (a)? = (xa — ax)(xa — ax) = xaxa — xa*x — ax’a + axax = 0.

(2) In view of (1), we see that 9, (a)? = 0, and therefore C(R) C N(R).
(3) Since d(r[a, x]t) = d(r)[a, x|t +r[d(a),x]t + r[a,d(x)]t + r[a,x]d(t) for any a,x,7,t € R,
we have d(C(R)) C C(R). O

Lemma 2. Letd be a nonzero derivation of R such that ad(a) = 0 for any a € R. Then:
(1) R is non-commutative,
(2) d(U(R)) = 0 (in particular d(J(R)) = 0).

(3) ifI is an ideal of a commutative ring R, then d(R) C I.
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Proof. (1) Indeed, if R is commutative, then 0 = (a + b)d(a + b) = ad(b) + bd(a) = d(ab) for
any a,b € R, and so d(R?) = 0. But this means that d = O, a contradiction.
(2) Letu € U(R). Then ud(u) = 0 and u € Kerd. Since 1+ J(R) C U(R), we see that

d(J(R)) = 0.
(3) Leta,b € R. Inasmuch as ad(a) € [ foralla € R and

d(ab) = (a +b)d(a+0b) —ad(a) — bd(b),
we deduce that d(R) C I. O

Proof of Proposition 1. (1) It follows from Lemma 2 (1).

(2) By contrary, assume that ad(a) = 0 for any 2 € R and d € Der R. By Lemma 1 (2) and
Lemma 2 (2), C(R) C Z(R). Let R denote R/C(R) and, for a € R, @ denote the coset a + C(R).
The rule D(@) = d(a) + C(R) determines a derivation D of the quotient ring R such that

aD(a) = 0.

By (1), D = 0, and so d(a) € Z(R). Then 0 = (a+ b)d(a + b) = d(ab) and consequently
d(R?) = 0. This shows that d = Og. O

Now we establish some properties of rigid derivations.
Lemma 3. Let R be a reduced ring,a € R and d € Der R. Then:
(1) ad(a) = 0ifand only ifd(a)a =0,
(2) d is a rigid derivation.

Proof. (1) Straightforward.

(2) Assume, by contrary, that there is 2 € R such that d(a) # 0 and ad(a) = 0. Then, by
item (1), we have that d(a)a = 0. Moreover, 0 = d(ad(a)) = d(a)d(a) + ad?(a) and from this,
by multiplication from the left by d(a), we obtain that

0= (d(a))® +d(a)ad*(a) = (d(a)).
This yields that d(a) = 0, a contradiction. O
Let p be a prime and
Fy(R) = {x € R | p*x = 0 for some positive integer k}.
Recall that a ring R is called 2-torsion-free if the implication
2x=0=x=0

is true for any x € R. A ring R is 2-torsion-free if and only if F,(R) = 0.
Lemma 4. If all derivations in R are rigid and exp F(R) is finite, then in R/F,(R) also.
Proof. If, by contrary,

5:R/E(R) 5 r+F(R) — t + B(R) € R/E(R) (1)

is a derivation such that

ty & F2(R) and  ut, € F>(R)
for some u € R, thend : R 3 r — 2°,, with exp F,(R) = 2° and t, as in (1), is a derivation
which is not rigid. O
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Lemma 5. Let R be a 2-torsion-free ring and d € Der R. If R is d-rigid and dy(,)-rigid for any
a € N(R), thend(N(R)) = 0.

Proof. We prove by induction on the nilpotency index n of nil-elements in R. Leta € N(R) and
a> = 0. Left multiplying of 0 = d(a®) = ad(a) + d(a)a by a, we obtain that ad(a)a = 0. Since
d4(y) is rigid and
ady(,)(a) = ad(a)a — a*d(a) =0,

we deduce that 9, (a) = 0 that is ad(a) = d(a)a. Hence 0 = d(a*) = 2ad(a). In view of the
rigidity of d and the condition F,(R) = 0, we have d(a) = 0.

Now suppose that 2 € N(R) and a®> = 0. Then (a?)?> = 0 and, by the above, d(a*) = 0.
Since

0=d(a®) =d(a)a® +ad(a®) = d(a)a®* and 0 =d(a®) = d(a*)a+ a*d(a) = a*d(a),
the assertion holds by using the same argument as for n = 2.
Assume that assertion is true for all positive integer k < n that is if b* = 0 with b € N(R),
then d(b) = 0. Letusa € N(R) and a" = 0. Then there exist positive integer ki, kp such

that ki, k; < nbut 2k; > n and 3k, > n and (a?)% = 0 and (%)% = 0 and, by assumption,
d(a?) = d(a®) = 0 and the result follows by using the same argument. O

Proof of Proposition 2. (<) It follows from Lemma 3.
(=) By Lemma 5, we have N(R) C Z(R) and hence N(R) = 0. O

Corollary 2. If a derivation d of a 2-torsion-free commutative ring R is rigid, then d(N(R)) = 0
and N(R)d(R) = 0.
Proof. Indeed, ifa € Rand b € N(R), then ab € N(R) and therefore, By Lemma 5,

0 = d(ab) = d(a)b.

Example 1. The condition F,(R) = 0 is essential in Corollary 2.

In fact, the quotient ring R = Z[X]/(X? + 1) of the polynomial ring Z,[X] by the ideal
(X% +1) contains elements 0,1, x, x + 1, where x(x + 1) = x + 1. Then a mapping d : R — R
such that d(0) = d(1) =0and d(x) = d(x + 1) = 1 is a derivation of R. But then R is a d-rigid
ring with (x +1)?2 = 0and d(x + 1) # 0.

Corollary 3. Ifd is a rigid derivation of a ring R, then d(ann; d(R)) = 0.
Proof. Since ann; d(R) - d(ann; d(R)) = 0, we deduce that d(ann; d(R)) = 0. O

2 CONSTANTS IN LEFT PERFECT RINGS

D. F. Anderson and P. S. Livingston [1] (see also S. B. Mulay [14]) have shown that any
automorphism f of a commutative finite ring R that is not a field such that f(x) = x for all
zero divisors x € R, is the identity automorphism. Since any commutative finite ring is a finite
ring direct sum of local rings, it is clear that the statement needs a proof only when a ring is
local. In view of this, P. K. Sharma [16] proved that if a commutative finite local ring R which
is not a field, then for any f € AutR with f(x) = x forall x € J(R), f = idg if and only if the
residue field is differentially trivial. We extended this result in the next
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Proposition 3. Let R be a local ring with the nonzero Jacobson radical ] (R). Then the following
statements are equivalent.

(1) For any derivationd € Der R such thatd(J(R)) = 0 it follows that d = Og.
(2) The quotient ring R/ J(R) is a differentially trivial field.

(3) Every automorphism f € AutR such that f(x) = x for any x € J(R) is trivial, i.e.
f = idg.

Lemma 6. Let R be a ring with an ideal I and d € DerR. Ifd(I) =0, thend(R) C ann .
Proof. Indeed, forany r € R, j €  we observe that0 = d(jr) = jd(r) and 0 = d(rj) = d(r)j. O
Corollary 4. Let R be a ring with anideal I,d € DerR, f € AutR andannI C [.

(i) Ifd(I) = 0, then d?*(R) = 0 and (d(R))?> = 0.

(ii) If f(x) = x forany x € I, then f — idg € Der R.
Proof. (i) By Lemma 6, d(R) C ann I and therefore

d*>(R) Cd(annI) Cd(I)=0 and  (d(R))?> C (annI)I = 0.
(ii) Letx € Tand a,b,r € R. Then xr,rx € I,

xf(r) = f(x)f(r) = flxr) = xr,  f(r)x = f(r)f(x) = f(rx) = rx
and so x(f(r) —r) = 0= (f(r) —r)x. Hence f(r) —r € ann I. In view of this, we see that
(f —idr)(a+b) = f(a+b) —idg(a +b)
= (f(a) —idr(a)) + (f(b) —idgr (b)) = (f —idr)(a) + (f —idr)(b)

and
(f —idg) (@)b +a(f — idr)(b) = f(a)b — ab -+ af (b) — ab
= f(a)f(b) + (f(a) —a)(b = f(b)) —ab = f(ab) —ab = (f —idg)(ab).
This means that f —idg € Der R. O

Corollary 5. Let R be a local ring that is not a skew field, I its ideal and Or # d € DerR. If the
left annihilatorann; I = {a € R | al = 0} (respectively the right annihilatorann, I = {a € R |
Ia = 0}) is zero, then d(I) # 0.

Proof. 1f d(I) = 0, then, by Lemma 6, d(R) C annI C ann; [ = 0, a contradiction. O

Lemma 7. Let R be a ring, I an ideal with annI C I. Then the following statements are
equivalent.

(i) Forevery f € AutR such that f(x) = x for any x € I it follows that f = idg.

(ii) Every derivation d € Der R such that d(I) = 0 is zero.
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Proof. (i) = (ii) Suppose thatd € Der R and d(I) = 0. Then, for any 4,b € R, we see that

(d+idg)(a+b) =d(a+b)+idgr(a+ D)
= (d(a) +idg(a)) + (d(b) +ir (b)) = (d +idr)(a) + (d +idR)(b)

and, in view of Corollary 4,

(d+idg) (@) - (d +idr)(b) = (d(a) +a)(d(b) + ) = d(a)d(b) +d(a)b +ad(b) + ab
=d(a)b+ad(b) + ab = (d +1idg)(ab) and (d +idg)(1) = 1.

So d + idpg is a ring endomorphism of R. Moreover,
(d + idR)(idR — d) =idg = (idR — d) (d + idR)

and therefore d + idgr € AutR. Since (d +idgr)(x) = d(x) + x = x = idg(x) for any x € I, we
conclude that d = 0g.

(ii) = (i) Let f € AutR and f(x) = x for all x € I. Then, in view of Corollary 4, we have
that f —idr € Der R. Inasmuch as (f —idg)(I) = 0, we conclude f = idg. O

Lemma 8. Let R be a local ring, d € Der R. Then the following hold:
(1) ifd(J(R)) =0, thend = Og orann J(R) # 0,
(2) ifann J(R) = 0, thend = Og ord(J(R)) # 0.

Lemma 9. Let R be a ring and let I be a nonzero ideal such that, ford € DerR, d(I) = 0
impliesd = Ogr. Then

ann C Cg(I) C Z(R),
where the centralizer Cr(I) = {z € R | zj = jz for allj € I}.

Proof. Clearly, annl C Cg(I). If a € Cr(I), then 9,(I) = 0 and therefore d,(R) = 0. Hence
a € Z(R). 0

Corollary 6. Let R be a ring and let I be a nonzero ideal withann C I. If I C Z(R), then R/
is commutative.

Proof. For any element x € R we have that d(I) = 0, and so, by Lemma 6, we deduce that
dx(R) C ann C I. This yields that R/I is commutative. O

Proof of Proposition 3. (1) = (2) Since R is local, ann J(R) C J(R). Suppose that 0 :
R/J(R) — R/J(R) is a nonzero derivation and, for every element f € R, there exists such
w; € R that
0(t + J(R)) = w; + J(R)

with wy, ¢ J(R) for some typ € R. The left T-nilpotent ideal J(R) has a nonzero annihilator. If
0 # u € ann J(R), then the rule y, () = uw; (t € R) determines a nonzero derivation y,, of R
for some u. Indeed, if uw; = 0 (t € R) for all u € ann J(R), then wy, € J(R), a contradiction.
Thus yuy is nonzero. Inasmuch y,(J(R)) = 0, we conclude that y,(R) = 0, which gives a
contradiction. Hence the quotient ring R/J(R) is differentially trivial.

(2) = (1) Suppose that R/J(R) is a differentially trivial ring. Then every inner derivation
of R is zero and so R is commutative. As a consequence,

R/J(R) =F
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is a differentially trivial field. Assume that d is a nonzero derivation of R such thatd(J(R)) = 0.
Then the rule

D:R>7+—d(r) € ANJ(R) (r €R)
determines a nonzero map D. Since A N J(R) is a left F-linear space, there exists such field
F =F, (1 <iy<n)thatamap

0:F>a~—d(a) € ANJ(R)

is nonzero. If char F = p is a prime, then, by Proposition 1.3 of [2], we have @ = b" for some
b € F and therefore

0(@) = 0(8") = pb’'d(b) = 0.
Assume that char F = 0. By Proposition 1.2 of [2], F is algebraic over the rational number field
Q and so for every a € F there exists its minimal polynomial

my; = X" + ClX”_l 4+ o4y X+ € Q[X]

Then
0=0(mz(a)) = (na" 4 (n — 1)@ 2+ - +c,_11)d(a)
and, consequently, d(a) = 0. Hence 6 is zero, a contradiction.
(1) and (3) are equivalent in view of Lemma 7. O

3 ARTINIAN d-RIGID RINGS

Recall that in a commutative local ring R can be introduced a topology by taking ideals
J(R), TR, .., J(R)", ...
to be neighborhoods of zero. This generate the J(R)-adic topology. If, for any natural m,
ar —a; € J(R)",

with k, [ sufficiently large, then the sequence {a,} is called reqular. A commutative local ring
R is called complete if every regular sequence of R has a limit in R. Each commutative Ar-
tinian ring is complete. A v-ring is unramified complete regular local Noetherian domain of
dimension one whose characteristic is different from that of its residue field [7, p.88].

Remark 1. If the residue field W /pW of av-ring W has a nonzero derivation d, then, by Propo-
sition 2 of [9], there exists a nonzero derivation D : W — W such that

D(a+ pW) =d(a) + pW
for every a € W and D(W) ¢ pW. Consequently,
D(p*~'W) ¢ p'W
for any positive integer k.
Below we study the structure of a commutative Artinian ring with rigid derivations.

Lemma 10. Let R be a local left Artinian ring. If in R all derivations are rigid, then in
R/ ann J(R) also.
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Proof. If, by contrary,

:R/annJ(R) > r+annJ(R) — v, +ann J(R) € R/ ann J(R) (2)
is a derivation such that v, ¢ ann J(R) and uv,, € ann J(R) for some 0 # u € R, then the rule
d:R>r— jou, (r €R),
with jyv, # 0 and v, as in (2), determines a derivation ¢ of R which is not rigid. O

If R is a ring of prime power characteristic p" (n > 2), then
O = G(R) = {x € R | p'x =0} (1 <k <n).
Obviously, () is an ideal of R.
Remark 2. Let R be a local ring and d € Der R. If [(R) = 0 ord(J(R)) = 0, then a derivation d
is rigid.
In fact, R = J(R) UU(R). If u € U(R) (respectively j € J(R)), then d(u) = 0 or ud(u) # 0
(respectively d(j) = 0). Hence R is d-rigid.

Lemma 11. Let R be a local left Artinian ring. If in R all derivations are rigid and J(R)? = 0,
then one of the following holds:

(1) R is a commutative ring,
(2) d(J(R)) =0and d(R)J(R) = 0 forany d € Der R,
(3) C(R) = R and J(R) N Z(R) = 0.

If R is a 2-torsion-free, then R is a skew field or C(R) # R.

Proof. Suppose that R is non-commutative (that is C(R) # 0) and d € Der R. Then d(C(R)) C
C(R).If0 # c € J(R)NZ(R), then c¢d € Der R and

J(R) - cd(J(R))

and so cd(J(R)) = 0. This gives that d(J(R)) C J(R). Since J(R)d(J(R)) = 0, we conclude that
d(J(R)) = 0. Then

0,

d(RJ(R)) = d(R)J(R).
Assume that J(R) N Z(R) = 0. If C( ) C J(R), then

C(R)A(C(R)) =0

and consequently C(R) C Z(R) N J(R), a contradiction with the assumption. Hence C(R) ¢
J(R) and and therefore C(R) = R. O

Proof of Theorem 1. By Lemma 10 we can assume that J(R)? = 0. We have two cases.
1) Let char(R) = char(R/J(R)). By Theorem 9 of [7], the ring

=J(R)+T

is a group direct sum, where T is a subfield of R. Then, for every element r € R, there exist
unique elements j € J(R) and t € T such that

r=j+t. (3)
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The rule
o(r) =j (r € R),
with j as in (3), determines a derivation ¢ of R which is not rigid. Hence J(R) = 0.
2) Let char(R) = p?. By Theorem 11 of [7], the ring

R=J(R)+C

is a group sum, where C is a coefficient ring such that C = W/p?W for some v-ring W and
J(R)NC = pC. Clearly, Oy < J(R). If

y:R/019r+Qll—>ar+Q1€R/Ql (4)

is a non-rigid derivation, then there exists an element v € R such that a, € ()1 and va, € ().
Then the rule
o(r) = pa, (r € R),

with 4, as in (4), determines a nonzero derivation d of R, where 6(v) # 0 and vé(v) = vpa, =
0, a contradiction. Hence in the quotient ring R = R/(); all derivations are rigid. From the
part 1) it follows that R is a field and J(R) = Q. Since (01d(Q)1) = 0 for all d € Der R, we
see that d(J(R)) = d(Q;) = 0. Obviously that J(R) = J; @ pC is a group direct sum, where
J1 < J(R) is some subgroup. Then

Ji€ = J1® (pC() hC)

is a group direct sum. If

0 # peo € 1C(\pC
for some ¢y € C, then ¢y € U(R) and Ccy = C. Then pcy € J1Ccp and pcy = jicicp for some
j1 € J1and ¢; € C. From this it holds that

(p—jic1)co =0,

and, hence, j1 = pc; L'¢ nnpC = 0, a contradiction. This yields that ] = J;C @ pC and
R = J;C @ C is a group direct sum. Then, for very element r € R, there are unique elements
j € Ji€Cand ¢ € C such that

r=j+ec. (5)
The rule y(r) = j (r € R), with j as in (5), determines a nonzero derivation of R, where
¥(J(R)) # 0, a contradiction. Thus R = C. If the residue field C/pC has a nonzero derivation
d, then, in view of Remark 1, the ring C has a nonzero derivation D such that

D(C) € pC,

a contradiction. Hence, C/pC (and, by Proposition 3, the ring R) is differentially trivial.
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AoBeaeHO, IO B KiAbIi R 3 oaAMHMIIEIO icHye eaneMeHT a € R Ta HeHyAbOBe AMcpepeHIIiIoBaHHS
d € Der R taxi, mo ad(a) # 0. KaxyTs, 1m0 R — d-)XopcTKe KiAbIe AASI AeSIKOTO AVidpepeHITI0BaHHS
d € DerR, sxmo d(a) = 0 abo ad(a) # 0 aas ycix @ € R. AOCAIAXEHO KiABLIS i3 XXOPCTKMMM
AVidpepeHIIIoBaHHSIMM Ta BCTAaHOBAEHO, III0 KOMyTaTMBHe apTiHOBe Kiablle R abo Mae HeXOpCTKe
AudpepernitoBagHs, abo R = R; @ --- @ R, — mpsiMa cyMa Kirens Ry, ..., Ry, KOXHe 3 SIKUX €
moAeM abo AMdpepeHITiaAbHO TPMBiaABHMM U-KiAbIleM. AOBeAEHHS IIbOTO pe3yAbTaTy b6a3yeThcs Ha
TOMy paKTi, 110 B AIBOMY AOCKOHAAOMY KiAbIIi R 3 HEHYABOBMM paamKkaroM Axexobcona J(R) anst
6yab-sikoro amdpepenuitoBansst d € Der R Taxoro, mwo d(J(R)) = 0, sunausae, mwo d = Or Toai i
TIABKY TOAL, KOAM dpakTOp-Kinbiie R/ J(R) — AndpepeHItiarbHO TpUBiaAbHE TIOAE.

Kntouosi cnosa i ppasu: amdpepeHNiOBaHHS, HalliBIIEpPBUHHE KiAbIle, apTiHOBE Kinblle, AOCKOHAAE
KiABIIE.

Apremosnu O.A,, Aykatrenko M.IT. O ocecmkux dugpgpeperyuposarusx koney // Kapnarckme MaTem.
my6a. — 2014. — T.6, Ne2. — C. 181-190.

AoxazaHoO, 4TO B KOAbIle R ¢ eAMHMIIEN CYIIECTBYeT SAeMeHT 4 € R u HeHyAeBoe A dpepen-
umposarue d € Der R Takwme, uro ad(a) # 0. Koablio R Ha3bIBaeTcst d-KECTKMM KOABLIOM AAST
andppepermmposarmst d € DerR, ecan d(a) = 0 mam ad(a) # 0 aast Bcex a € R. Hccaeayior-
CsT KOABIIA C XeCTKUMM AMcpdpepeHIMpPOBaHISIMI ¥ YCTaHOBAEHO, UTO KOMMYTAaTVUBHOE apTHMHOBO
KOABIIO R AMbo mmeer HexecTkoe Audpdeperumposanme, an6o R = R; @ --- @ R, — npsmas
cyMMa Koaell Ry, ..., R, KaXXA0e M3 KOTOPBIX SIBASIETCS TIOAEM MAY AVidpdpepeHIMaABHO TPUBIAAD-
HBIM U-KOABIIOM. AOKa3aTeABCTBO STOTO pe3yAbTaTa OCHOBAHO Ha TOM, UTO B AOKAABHOM KOAbIle R
C HEeHYAeBbIM paamKaroM AxexobcoHa J(R) aast atoboro audpdepenumposanns d € Der R Takoro,
uro d(J(R)) = 0, caeayer, uro d = Or TOrAa ¥ TOABKO TOrAa, Koraa ¢pakrop-koasto R/J(R) —
AVidppepeHIaAbHO TPUBJMAABHOE TIOAE.

Krwouesvie cnosa u ppasvr: audpdpepeHIMpOBaHMe, TTOAYTIEPBUYHOE KOABIIO, apTMHOBO KOABIIO.



