
ISSN 2075-9827 http://www.journals.pu.if.ua/index.php/cmp

Carpathian Math. Publ. 2014, 6 (2), 181–190 Карпатськi матем. публ. 2014, Т.6, №2, С.181–190

doi:10.15330/cmp.6.2.181-190

ARTEMOVYCH O.D., LUKASHENKO M.P.

ON RIGID DERIVATIONS IN RINGS

We prove that in a ring R with an identity there exists an element a ∈ R and a nonzero derivation

d ∈ Der R such that ad(a) 6= 0. A ring R is said to be a d-rigid ring for some derivation d ∈ Der R

if d(a) = 0 or ad(a) 6= 0 for all a ∈ R. We study rings with rigid derivations and establish that a

commutative Artinian ring R either has a non-rigid derivation or R = R1 ⊕ · · · ⊕ Rn is a ring direct

sum of rings R1, . . . , Rn every of which is a field or a differentially trivial v-ring. The proof of this

result is based on the fact that in a local ring R with the nonzero Jacobson radical J(R), for any

derivation d ∈ Der R such that d(J(R)) = 0, it follows that d = 0R if and only if the quotient ring

R/J(R) is differentially trivial field.
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INTRODUCTION

Throughout, let R be an associative ring with 1 and Der R the set of all derivations of R.

Recall that a map δ : R → R is called a derivation of R if δ(x + y) = δ(x) + δ(y) and δ(xy) =

δ(x)y + xδ(y) for any x, y ∈ R. We prove the following

Proposition 1. Let R be a ring. Then the following conditions hold:

(1) if d is a nonzero derivation of a commutative ring R, then ad(a) 6= 0 for some a ∈ R,

(2) there exists an element a ∈ R and a nonzero derivation d ∈ Der R such that ad(a) 6= 0.

Different aspects of rigidity of derivations are studied in [4,6,15]. J. Krempa has introduced

the concept of a σ-rigid ring [12]. Namely, R is said to be a σ-rigid ring for some ring endomor-

phism σ ∈ End R if aσ(a) 6= 0 for all nonzero a ∈ R. By analogy with this and in view of

Proposition 1, we say that R is a d-rigid ring (or a derivation d is rigid), where d ∈ Der R, if for

any a ∈ R it holds d(a) = 0 or ad(a) 6= 0. Clearly, the zero derivation 0R of R is rigid. Every

derivation of an integral domain is rigid.

M. Brešar [5], T.-K. Lee and J.-S. Lin [13] have investigated when, for a semiprime ring R,

the condition ad(R)n = 0, where n is fixed integer, a ∈ R, d ∈ Der R, implies that ad(R) = 0.

By Proposition 1 and results from [13, p.1688] and [8], we obtain the next

Corollary 1. Let R be a semiprime ring with the derivation d and a ∈ R. If ad(R)n = 0, where

n is a fixed integer, then d = 0R.
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This corollary is an extension of some results from [11] and [8]. We prove the our next

Proposition 2. Let R be a 2-torsion-free semiprime ring. Then all derivations of R are rigid if

and only if R is reduced (that is without nonzero nilpotent elements).

Recall [2] that a ring R is called differentially trivial if Der R = {0R}. Commutative Artinian

rings with derivations to be rigid are characterized in the following

Theorem 1. Let R be a commutative Artinian ring. Then one of the following holds:

(1) R has a non-rigid derivation,

(2) R = R1 ⊕ · · · ⊕ Rn is a ring direct sum of rings R1, . . . , Rn every of which is a field or a

differentially trivial v-ring.

For any ring R, ∂x : R → R is its inner derivation generated by x ∈ R that is ∂x(r) = xr − rx

for every r ∈ R, [R, R] = {∂x(r) | x, r ∈ R}, C(R) is the commutator ideal of R that is the ideal

generated by ∂x(r) for all x, r ∈ R, J(R) is its Jacobson radical, N(R) is the set of all nilpotent

elements of R, U(R) is the unit group of R, Z(R) is the center of R, annr a = {x ∈ R | ax = 0}

is the right annihilator of a ∈ R, annl X = {a ∈ R | aX = 0} is the right annihilator of X ⊆ R.

Any unexplained terminology is standard as in [3] and [10].

1 RINGS WITH PROPERTY ad(a) = 0

For the proof of Proposition 1, we need some preliminary lemmas.

Lemma 1. Let R be a ring. Then the following properties hold:

(1) if a∂x(a) = 0 and x∂a(x) = 0 for some a, x of R, then ∂x(a)2 = 0,

(2) if a∂x(a) = 0 for any a, x ∈ R, then C(R) ⊆ N(R),

(3) d(C(R)) ⊆ C(R) for each d ∈ Der R.

Proof. (1) From 0 = a∂x(a) = a(xa− ax) and 0 = x∂a(x) = x(ax− xa) it follows that axa = a2x

and xax = x2a. This gives that

∂x(a)
2 = (xa − ax)(xa − ax) = xaxa − xa2x − ax2a + axax = 0.

(2) In view of (1), we see that ∂x(a)2 = 0, and therefore C(R) ⊆ N(R).

(3) Since d(r[a, x]t) = d(r)[a, x]t + r[d(a), x]t + r[a, d(x)]t + r[a, x]d(t) for any a, x, r, t ∈ R,

we have d(C(R)) ⊆ C(R).

Lemma 2. Let d be a nonzero derivation of R such that ad(a) = 0 for any a ∈ R. Then:

(1) R is non-commutative,

(2) d(U(R)) = 0 (in particular d(J(R)) = 0).

(3) if I is an ideal of a commutative ring R, then d(R) ⊆ I.
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Proof. (1) Indeed, if R is commutative, then 0 = (a + b)d(a + b) = ad(b) + bd(a) = d(ab) for

any a, b ∈ R, and so d(R2) = 0. But this means that d = 0R, a contradiction.

(2) Let u ∈ U(R). Then ud(u) = 0 and u ∈ Ker d. Since 1 + J(R) ⊆ U(R), we see that

d(J(R)) = 0.

(3) Let a, b ∈ R. Inasmuch as ad(a) ∈ I for all a ∈ R and

d(ab) = (a + b)d(a + b)− ad(a) − bd(b),

we deduce that d(R) ⊆ I.

Proof of Proposition 1. (1) It follows from Lemma 2 (1).

(2) By contrary, assume that ad(a) = 0 for any a ∈ R and d ∈ Der R. By Lemma 1 (2) and

Lemma 2 (2), C(R) ⊆ Z(R). Let R denote R/C(R) and, for a ∈ R, a denote the coset a + C(R).

The rule D(a) = d(a) + C(R) determines a derivation D of the quotient ring R such that

aD(a) = 0R.

By (1), D = 0, and so d(a) ∈ Z(R). Then 0 = (a + b)d(a + b) = d(ab) and consequently

d(R2) = 0. This shows that d = 0R. �

Now we establish some properties of rigid derivations.

Lemma 3. Let R be a reduced ring, a ∈ R and d ∈ Der R. Then:

(1) ad(a) = 0 if and only if d(a)a = 0,

(2) d is a rigid derivation.

Proof. (1) Straightforward.

(2) Assume, by contrary, that there is a ∈ R such that d(a) 6= 0 and ad(a) = 0. Then, by

item (1), we have that d(a)a = 0. Moreover, 0 = d(ad(a)) = d(a)d(a) + ad2(a) and from this,

by multiplication from the left by d(a), we obtain that

0 = (d(a))3 + d(a)ad2(a) = (d(a))3 .

This yields that d(a) = 0, a contradiction.

Let p be a prime and

Fp(R) = {x ∈ R | pkx = 0 for some positive integer k}.

Recall that a ring R is called 2-torsion-free if the implication

2x = 0 =⇒ x = 0

is true for any x ∈ R. A ring R is 2-torsion-free if and only if F2(R) = 0.

Lemma 4. If all derivations in R are rigid and exp F2(R) is finite, then in R/F2(R) also.

Proof. If, by contrary,

δ : R/F2(R) ∋ r + F2(R) 7→ tr + F2(R) ∈ R/F2(R) (1)

is a derivation such that

tu /∈ F2(R) and utu ∈ F2(R)

for some u ∈ R, then d : R ∋ r 7→ 2str, with exp F2(R) = 2s and tr as in (1), is a derivation

which is not rigid.
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Lemma 5. Let R be a 2-torsion-free ring and d ∈ Der R. If R is d-rigid and ∂d(a)-rigid for any

a ∈ N(R), then d(N(R)) = 0.

Proof. We prove by induction on the nilpotency index n of nil-elements in R. Let a ∈ N(R) and

a2 = 0. Left multiplying of 0 = d(a2) = ad(a) + d(a)a by a, we obtain that ad(a)a = 0. Since

∂d(a) is rigid and

a∂d(a)(a) = ad(a)a − a2d(a) = 0,

we deduce that ∂d(a)(a) = 0 that is ad(a) = d(a)a. Hence 0 = d(a2) = 2ad(a). In view of the

rigidity of d and the condition F2(R) = 0, we have d(a) = 0.

Now suppose that a ∈ N(R) and a3 = 0. Then (a2)2 = 0 and, by the above, d(a2) = 0.

Since

0 = d(a3) = d(a)a2 + ad(a2) = d(a)a2 and 0 = d(a3) = d(a2)a + a2d(a) = a2d(a),

the assertion holds by using the same argument as for n = 2.

Assume that assertion is true for all positive integer k < n that is if bk = 0 with b ∈ N(R),

then d(b) = 0. Let us a ∈ N(R) and an = 0. Then there exist positive integer k1, k2 such

that k1, k2 < n but 2k1 > n and 3k2 > n and (a2)k1 = 0 and (a3)k2 = 0 and, by assumption,

d(a2) = d(a3) = 0 and the result follows by using the same argument.

Proof of Proposition 2. (⇐) It follows from Lemma 3.

(⇒) By Lemma 5, we have N(R) ⊆ Z(R) and hence N(R) = 0. �

Corollary 2. If a derivation d of a 2-torsion-free commutative ring R is rigid, then d(N(R)) = 0

and N(R)d(R) = 0.

Proof. Indeed, if a ∈ R and b ∈ N(R), then ab ∈ N(R) and therefore, By Lemma 5,

0 = d(ab) = d(a)b.

Example 1. The condition F2(R) = 0 is essential in Corollary 2.

In fact, the quotient ring R = Z2[X]/(X2 + 1) of the polynomial ring Z2[X] by the ideal

(X2 + 1) contains elements 0, 1, x, x + 1, where x(x + 1) = x + 1. Then a mapping d : R → R

such that d(0) = d(1) = 0 and d(x) = d(x + 1) = 1 is a derivation of R. But then R is a d-rigid

ring with (x + 1)2 = 0 and d(x + 1) 6= 0.

Corollary 3. If d is a rigid derivation of a ring R, then d(annl d(R)) = 0.

Proof. Since annl d(R) · d(annl d(R)) = 0, we deduce that d(annl d(R)) = 0.

2 CONSTANTS IN LEFT PERFECT RINGS

D. F. Anderson and P. S. Livingston [1] (see also S. B. Mulay [14]) have shown that any

automorphism f of a commutative finite ring R that is not a field such that f (x) = x for all

zero divisors x ∈ R, is the identity automorphism. Since any commutative finite ring is a finite

ring direct sum of local rings, it is clear that the statement needs a proof only when a ring is

local. In view of this, P. K. Sharma [16] proved that if a commutative finite local ring R which

is not a field, then for any f ∈ Aut R with f (x) = x for all x ∈ J(R), f = idR if and only if the

residue field is differentially trivial. We extended this result in the next
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Proposition 3. Let R be a local ring with the nonzero Jacobson radical J(R). Then the following

statements are equivalent.

(1) For any derivation d ∈ Der R such that d(J(R)) = 0 it follows that d = 0R.

(2) The quotient ring R/J(R) is a differentially trivial field.

(3) Every automorphism f ∈ Aut R such that f (x) = x for any x ∈ J(R) is trivial, i.e.

f = idR.

Lemma 6. Let R be a ring with an ideal I and d ∈ DerR. If d(I) = 0, then d(R) ⊆ ann I.

Proof. Indeed, for any r ∈ R, j ∈ I we observe that 0 = d(jr) = jd(r) and 0 = d(rj) = d(r)j.

Corollary 4. Let R be a ring with an ideal I, d ∈ Der R, f ∈ Aut R and ann I ⊆ I.

(i) If d(I) = 0, then d2(R) = 0 and (d(R))2 = 0.

(ii) If f (x) = x for any x ∈ I, then f − idR ∈ Der R.

Proof. (i) By Lemma 6, d(R) ⊆ ann I and therefore

d2(R) ⊆ d(ann I) ⊆ d(I) = 0 and (d(R))2 ⊆ (ann I)I = 0.

(ii) Let x ∈ I and a, b, r ∈ R. Then xr, rx ∈ I,

x f (r) = f (x) f (r) = f (xr) = xr, f (r)x = f (r) f (x) = f (rx) = rx

and so x( f (r) − r) = 0 = ( f (r) − r)x. Hence f (r)− r ∈ ann I. In view of this, we see that

( f − idR)(a + b) = f (a + b)− idR(a + b)

= ( f (a) − idR(a)) + ( f (b) − idR(b)) = ( f − idR)(a) + ( f − idR)(b)

and

( f − idR)(a)b + a( f − idR)(b) = f (a)b − ab + a f (b) − ab

= f (a) f (b) + ( f (a) − a)(b − f (b)) − ab = f (ab) − ab = ( f − idR)(ab).

This means that f − idR ∈ Der R.

Corollary 5. Let R be a local ring that is not a skew field, I its ideal and 0R 6= d ∈ DerR. If the

left annihilator annl I = {a ∈ R | aI = 0} (respectively the right annihilator annr I = {a ∈ R |

Ia = 0}) is zero, then d(I) 6= 0.

Proof. If d(I) = 0, then, by Lemma 6, d(R) ⊆ ann I ⊆ annl I = 0, a contradiction.

Lemma 7. Let R be a ring, I an ideal with ann I ⊆ I. Then the following statements are

equivalent.

(i) For every f ∈ Aut R such that f (x) = x for any x ∈ I it follows that f = idR.

(ii) Every derivation d ∈ Der R such that d(I) = 0 is zero.
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Proof. (i) ⇒ (ii) Suppose that d ∈ Der R and d(I) = 0. Then, for any a, b ∈ R, we see that

(d + idR)(a + b) = d(a + b) + idR(a + b)

= (d(a) + idR(a)) + (d(b) + iR(b)) = (d + idR)(a) + (d + idR)(b)

and, in view of Corollary 4,

(d + idR)(a) · (d + idR)(b) = (d(a) + a)(d(b) + b) = d(a)d(b) + d(a)b + ad(b) + ab

= d(a)b + ad(b) + ab = (d + idR)(ab) and (d + idR)(1) = 1.

So d + idR is a ring endomorphism of R. Moreover,

(d + idR)(idR − d) = idR = (idR − d)(d + idR)

and therefore d + idR ∈ Aut R. Since (d + idR)(x) = d(x) + x = x = idR(x) for any x ∈ I, we

conclude that d = 0R.

(ii) ⇒ (i) Let f ∈ Aut R and f (x) = x for all x ∈ I. Then, in view of Corollary 4, we have

that f − idR ∈ Der R. Inasmuch as ( f − idR)(I) = 0, we conclude f = idR.

Lemma 8. Let R be a local ring, d ∈ Der R. Then the following hold:

(1) if d(J(R)) = 0, then d = 0R or ann J(R) 6= 0,

(2) if ann J(R) = 0, then d = 0R or d(J(R)) 6= 0.

Lemma 9. Let R be a ring and let I be a nonzero ideal such that, for d ∈ Der R, d(I) = 0

implies d = 0R. Then

ann I ⊆ CR(I) ⊆ Z(R),

where the centralizer CR(I) = {z ∈ R | zj = jz for all j ∈ I}.

Proof. Clearly, annI ⊆ CR(I). If a ∈ CR(I), then ∂a(I) = 0 and therefore ∂a(R) = 0. Hence

a ∈ Z(R).

Corollary 6. Let R be a ring and let I be a nonzero ideal with ann I ⊆ I. If I ⊆ Z(R), then R/I

is commutative.

Proof. For any element x ∈ R we have that ∂x(I) = 0, and so, by Lemma 6, we deduce that

∂x(R) ⊆ ann I ⊆ I. This yields that R/I is commutative.

Proof of Proposition 3. (1) ⇒ (2) Since R is local, ann J(R) ⊆ J(R). Suppose that θ :

R/J(R) → R/J(R) is a nonzero derivation and, for every element t ∈ R, there exists such

wt ∈ R that

θ(t + J(R)) = wt + J(R)

with wt0 /∈ J(R) for some t0 ∈ R. The left T-nilpotent ideal J(R) has a nonzero annihilator. If

0 6= u ∈ ann J(R), then the rule µu(t) = uwt (t ∈ R) determines a nonzero derivation µu of R

for some u. Indeed, if uwt = 0 (t ∈ R) for all u ∈ ann J(R), then wt0 ∈ J(R), a contradiction.

Thus µu is nonzero. Inasmuch µu(J(R)) = 0, we conclude that µu(R) = 0, which gives a

contradiction. Hence the quotient ring R/J(R) is differentially trivial.

(2) ⇒ (1) Suppose that R/J(R) is a differentially trivial ring. Then every inner derivation

of R is zero and so R is commutative. As a consequence,

R/J(R) = F
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is a differentially trivial field. Assume that d is a nonzero derivation of R such that d(J(R)) = 0.

Then the rule

D : R ∋ r 7→ d(r) ∈ A ∩ J(R) (r ∈ R)

determines a nonzero map D. Since A ∩ J(R) is a left F-linear space, there exists such field

F = Fi0 (1 ≤ i0 ≤ n) that a map

θ : F ∋ a 7→ d(a) ∈ A ∩ J(R)

is nonzero. If char F = p is a prime, then, by Proposition 1.3 of [2], we have a = b
p

for some

b ∈ F and therefore

θ(a) = θ(b
p
) = pb

p−1
d(b) = 0.

Assume that char F = 0. By Proposition 1.2 of [2], F is algebraic over the rational number field

Q and so for every a ∈ F there exists its minimal polynomial

ma = Xn + c1Xn−1 + · · ·+ cn−1X + cn ∈ Q[X].

Then

0 = θ(ma(a)) = (nan−1 + (n − 1)c1an−2 + · · ·+ cn−11)d(a)

and, consequently, d(a) = 0. Hence θ is zero, a contradiction.

(1) and (3) are equivalent in view of Lemma 7. �

3 ARTINIAN d-RIGID RINGS

Recall that in a commutative local ring R can be introduced a topology by taking ideals

J(R), J(R)2, . . . , J(R)n, . . .

to be neighborhoods of zero. This generate the J(R)-adic topology. If, for any natural m,

ak − al ∈ J(R)m,

with k, l sufficiently large, then the sequence {an} is called regular. A commutative local ring

R is called complete if every regular sequence of R has a limit in R. Each commutative Ar-

tinian ring is complete. A v-ring is unramified complete regular local Noetherian domain of

dimension one whose characteristic is different from that of its residue field [7, p.88].

Remark 1. If the residue field W/pW of a v-ring W has a nonzero derivation d, then, by Propo-

sition 2 of [9], there exists a nonzero derivation D : W → W such that

D(a + pW) = d(a) + pW

for every a ∈ W and D(W) * pW. Consequently,

D(pk−1W) * pkW

for any positive integer k.

Below we study the structure of a commutative Artinian ring with rigid derivations.

Lemma 10. Let R be a local left Artinian ring. If in R all derivations are rigid, then in

R/ ann J(R) also.
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Proof. If, by contrary,

µ : R/ ann J(R) ∋ r + ann J(R) 7→ vr + ann J(R) ∈ R/ ann J(R) (2)

is a derivation such that vu /∈ ann J(R) and uvu ∈ ann J(R) for some 0 6= u ∈ R, then the rule

δ : R ∋ r 7→ j0vr (r ∈ R),

with j0vu 6= 0 and vr as in (2), determines a derivation δ of R which is not rigid.

If R is a ring of prime power characteristic pn (n ≥ 2), then

Ωk = Ωk(R) = {x ∈ R | pkx = 0} (1 ≤ k ≤ n).

Obviously, Ωk is an ideal of R.

Remark 2. Let R be a local ring and d ∈ Der R. If J(R) = 0 or d(J(R)) = 0, then a derivation d

is rigid.

In fact, R = J(R) ∪ U(R). If u ∈ U(R) (respectively j ∈ J(R)), then d(u) = 0 or ud(u) 6= 0

(respectively d(j) = 0). Hence R is d-rigid.

Lemma 11. Let R be a local left Artinian ring. If in R all derivations are rigid and J(R)2 = 0,

then one of the following holds:

(1) R is a commutative ring,

(2) d(J(R)) = 0 and d(R)J(R) = 0 for any d ∈ Der R,

(3) C(R) = R and J(R) ∩ Z(R) = 0.

If R is a 2-torsion-free, then R is a skew field or C(R) 6= R.

Proof. Suppose that R is non-commutative (that is C(R) 6= 0) and d ∈ Der R. Then d(C(R)) ⊆

C(R). If 0 6= c ∈ J(R) ∩ Z(R), then cd ∈ Der R and

J(R) · cd(J(R)) = 0,

and so cd(J(R)) = 0. This gives that d(J(R)) ⊆ J(R). Since J(R)d(J(R)) = 0, we conclude that

d(J(R)) = 0. Then

0 = d(RJ(R)) = d(R)J(R).

Assume that J(R) ∩ Z(R) = 0. If C(R) ⊆ J(R), then

C(R)d(C(R)) = 0

and consequently C(R) ⊆ Z(R) ∩ J(R), a contradiction with the assumption. Hence C(R) *
J(R) and and therefore C(R) = R.

Proof of Theorem 1. By Lemma 10 we can assume that J(R)2 = 0. We have two cases.

1) Let char(R) = char(R/J(R)). By Theorem 9 of [7], the ring

R = J(R) + T

is a group direct sum, where T is a subfield of R. Then, for every element r ∈ R, there exist

unique elements j ∈ J(R) and t ∈ T such that

r = j + t. (3)
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The rule

δ(r) = j (r ∈ R),

with j as in (3), determines a derivation δ of R which is not rigid. Hence J(R) = 0.

2) Let char(R) = p2. By Theorem 11 of [7], the ring

R = J(R) + C

is a group sum, where C is a coefficient ring such that C ∼= W/p2W for some v-ring W and

J(R) ∩ C = pC. Clearly, Ω1 ≤ J(R). If

µ : R/Ω1 ∋ r + Ω1 7→ ar + Ω1 ∈ R/Ω1 (4)

is a non-rigid derivation, then there exists an element v ∈ R such that av /∈ Ω1 and vav ∈ Ω1.

Then the rule

δ(r) = par (r ∈ R),

with ar as in (4), determines a nonzero derivation δ of R, where δ(v) 6= 0 and vδ(v) = vpav =

0, a contradiction. Hence in the quotient ring R = R/Ω1 all derivations are rigid. From the

part 1) it follows that R is a field and J(R) = Ω1. Since Ω1d(Ω1) = 0 for all d ∈ Der R, we

see that d(J(R)) = d(Ω1) = 0. Obviously that J(R) = J1 ⊕ pC is a group direct sum, where

J1 ≤ J(R) is some subgroup. Then

J1C = J1 ⊕ (pC
⋂

J1C)

is a group direct sum. If

0 6= pc0 ∈ J1C
⋂

pC

for some c0 ∈ C, then c0 ∈ U(R) and Cc0 = C. Then pc0 ∈ J1Cc0 and pc0 = j1c1c0 for some

j1 ∈ J1 and c1 ∈ C. From this it holds that

(p − j1c1)c0 = 0,

and, hence, j1 = pc−1
1 ∈ J1 ∩ pC = 0, a contradiction. This yields that J = J1C ⊕ pC and

R = J1C ⊕ C is a group direct sum. Then, for very element r ∈ R, there are unique elements

j ∈ J1C and c ∈ C such that

r = j + c. (5)

The rule γ(r) = j (r ∈ R), with j as in (5), determines a nonzero derivation of R, where

γ(J(R)) 6= 0, a contradiction. Thus R = C. If the residue field C/pC has a nonzero derivation

d, then, in view of Remark 1, the ring C has a nonzero derivation D such that

D(C) * pC,

a contradiction. Hence, C/pC (and, by Proposition 3, the ring R) is differentially trivial.
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Артемович О.Д., Лукашенко М.П. Про жорсткi диференцiювання кiлець // Карпатськi матем.

публ. — 2014. — Т.6, №2. — C. 181–190.

Доведено, що в кiльцi R з одиницею iснує елемент a ∈ R та ненульове диференцiювання

d ∈ Der R такi, що ad(a) 6= 0. Кажуть, що R — d-жорстке кiльце для деякого диференцiювання

d ∈ Der R, якщо d(a) = 0 або ad(a) 6= 0 для усiх a ∈ R. Дослiджено кiльця iз жорсткими

диференцiюваннями та встановлено, що комутативне артiнове кiльце R або має нежорстке

диференцiювання, або R = R1 ⊕ · · · ⊕ Rn — пряма сума кiлець R1, . . . , Rn, кожне з яких є

полем або диференцiально тривiальним v-кiльцем. Доведення цього результату базується на

тому фактi, що в лiвому досконалому кiльцi R з ненульовим радикалом Джекобсона J(R) для

будь-якого диференцiювання d ∈ Der R такого, що d(J(R)) = 0, випливає, що d = 0R тодi i

тiльки тодi, коли фактор-кiльце R/J(R) — диференцiально тривiальне поле.

Ключовi слова i фрази: диференцiювання, напiвпервинне кiльце, артiнове кiльце, досконале

кiльце.

Артемович О.Д., Лукашенко М.П. О жестких дифференцированиях колец // Карпатские матем.

публ. — 2014. — Т.6, №2. — C. 181–190.

Доказано, что в кольце R с единицей существует элемент a ∈ R и ненулевое дифферен-

цирование d ∈ Der R такие, что ad(a) 6= 0. Кольцо R называется d-жестким кольцом для

дифференцирования d ∈ Der R, если d(a) = 0 или ad(a) 6= 0 для всех a ∈ R. Исследуют-

ся кольца с жесткими дифференцированиями и установлено, что коммутативное артиново

кольцо R либо имеет нежесткое дифференцирование, либо R = R1 ⊕ · · · ⊕ Rn — прямая

сумма колец R1, . . . , Rn каждое из которых является полем или дифференциально тривиаль-

ным v-кольцом. Доказательство этого результата основано на том, что в локальном кольце R

с ненулевым радикалом Джекобсона J(R) для любого дифференцирования d ∈ Der R такого,

что d(J(R)) = 0, следует, что d = 0R тогда и только тогда, когда фактор-кольцо R/J(R) —

дифференциально тривиальное поле.

Ключевые слова и фразы: дифференцирование, полупервичное кольцо, артиново кольцо.


