PHYSICS AND CHEMISTRY OF SOLID STATE

V. 20, № 4 (2019) P. 376-383

DOI: 10.15330/pcss.20.4.376-383

ФІЗИКА І ХІМІЯ ТВЕРДОГО ТІЛА Т. 20, № 4 (2019) С.376-383

УДК 546.882

ISSN 1729-4428

М. Коник¹, Л. Ромака¹, Ю. Стадник¹, В.В. Ромака², Р. Серкіз³, А. Горинь¹ **Потрійна система Ег-Сг-Ge**

¹Львівський національний університет ім. І.Франка, Львів, Україна, <u>mariya.konyk@lnu.edu.ua</u>, ²Національний університет "Львівська політехніка", Львів, Україна, <u>vromaka@gmail.com</u> ³Науково-технічний і навчальний центр низькотемпературних досліджень, Львівський національний університет імені І. Франка, Львів, Україна, e-mail: <u>rserkiz@gmail.com</u>

Ізотермічний переріз діаграми стану потрійної системи Ег–Сг–Ge побудований за температури 1070 К в повному концентраційному інтервалі методами рентгенофазового, рентгеноструктурного і мікроструктурного аналізів. Взаємодія компонентів у системі Ег–Сг–Ge за температури дослідження характеризується утворенням двох тернарних сполук ErCr₆Ge₆ (структурний тип MgFe₆Ge₆, просторова група *P6/mmm*, символ Пірсона *hP*13; a = 5,15149(3), c = 8,26250(7) Å; $R_{\text{Bragg}} = 0,0493$, $R_{\text{F}} = 0,0574$) і ErCr_{1-x}Ge₂ (структурний тип CeNiSi₂, просторова група *Cmcm*, символ Пірсона *oS*16, a = 4,10271(5), b = 15,6652(1), c = 3,99017(4) Å; $R_{\text{Bragg}} = 0,0473$, $R_{\text{F}} = 0,0433$). Для сполуки ErCr_{1-x}Ge₂ визначена область гомогенності (ErCr_{0.28-0.38}Ge₂; a = 4,10271(5)-4,1418(9), b = 15,6652(1)-15,7581(4), c = 3,99017(4)-3,9291(1) Å).

Ключові слова: інтерметаліди, потрійна система, фазові рівноваги, кристалічна структура.

Стаття поступила до редакції 15.08.2019; прийнята до друку 15.12.2019.

Вступ

Фундаментальні дослідження взаємодії компонентів у металевих системах на основі рідкісноземельних металів (R) за участю перехідних металів (M) і *р*-елементів, зокрема германію, дозволяють отримати важливу інформацію стосовно утворення, температурної і концентраційної стабільності сполук для пошуку нових матеріалів із цінними властивостями.

Проведений огляд літературних відомостей показав, що системи R-M-Ge за участі хрому у порівнянні з іншими 3*d*-елемантами IV періоду (манганом, ферумом, кобальтом, нікелем, купрумом) вивчені недостатньо. Ізотермічний переріз діаграми стану, побудований для системи Y-Cr-Ge при 870 К, засвідчив, що за температури дослідження тернарних сполук не виявлено [1]. У наступних працях наведено результати дослідження кристалічної структури і магнітних властивостей двох серій ізоструктурних германідів: RCr_6Ge_6 (R = Y, Tb-Er) [2, 3] та RCr_xGe_2 (R = Sm, Y, Gd-Er) [4, 5]. Зразки відповідних складів для обох серій сполук відпалювались при

температурі 1070 К. При дослідженні системи Y-Cr-Ge за температури 1070 К підтверджено утворення двох тернарних сполук: YCr₆Ge₆ MgFe₆Ge₆) i (структурний тип $YCr_{0.23}Ge_2$ (структурний тип CeNiSi₂), для яких рентгенівським методом порошку проведено дифракційним уточнення кристалічної структури [6].

В цій праці ми подаємо результати дослідження потрійної системи Er-Cr-Ge (1070 K), а також аналіз впливу *d*-елемента на взаємодію компонентів у системах R-M-Ge.

I. Методики дослідження

Сплави для дослідження виготовлені методом електродугового сплавлення шихти вихідних компонентів (вміст основного компонента не нижчий за 99,9 мас. %) в атмосфері очищеного аргону з титановим гетером на мідному водоохолоджуваному поді. Для кращої гомогенізації зразки переплавлялись двічі. Втрати вихідної шихти після плавки не перевищували 1 %. Термічна обробка сплавів полягала у гомогенізуючому відпалюванні при 1070 К у вакуумованих кварцових ампулах впродовж місяця. Після відпалу сплави гартували в холодній воді без розбивання ампули. Рентгенівський фазовий аналіз синтезованих зразків проводили за порошковому дифрактограмами, ЗНЯТИМИ на дифрактометрі ДРОН-4,0 (Fe Кα-випромінювання) методом порівняння теоретичними 3 дифрактограмами відомих тернарних, бінарних сполук і чистих компонентів. Хімічний і фазовий склад виготовлених зразків контролювали методом енергодисперсійної рентгенівської спектроскопії (ЕДРС) у поєднанні з растровим електронним мікроскопом-мікроаналізатором РЭММА-102-02 (використані К- і L-спектральні лінії). Для розрахунку кристалічної структури використані експериментальні масиви даних, отримані у кроковому режимі зйомки на автоматичному дифрактометрі STOE STADI P (Cu $K\alpha_{1-}$ випромінювання). Розрахунок кристалографічних параметрів і теоретичних дифрактограм проводився з використанням комплексу програм WinCSD [7]. Для розрахунку методом Рітвельда використовували комплекс програм Fullprof Suite [8].

Диференціальний термічний аналіз (ДТА) проведено на термоаналізаторі LINSEIS STA PT 1600 в атмосфері аргону при швидкості нагрівання 10 К/хв. Втрати ваги в процесі нагрівання практично відсутні (менше 0,3 %).

II. Результати

2.1. Діаграма фазових рівноваг системи Er-Cr-Ge.

Подвійні системи Er-Ge, Er-Cr і Cr-Ge, які обмежують досліджувану потрійну систему Er-Cr-Ge, вивчені в повній мірі, відомості про відповідні діаграми стану приведені в літературі [9, 10]. В подвійних системах Cr-Ge і Er-Ge за температури дослідження підтверджено існування 4 і 9 бінарних сполук відповідно: Cr₁₁Ge₁₉, CrGe, Cr₁₁Ge₈, Cr₃Ge, ErGe_{2.83}, Er₂Ge₅, ErGe_{1.83}, ErGe_{1.5}, $Er_{11}Ge_{10}$, Er₃Ge₄, ErGe, Er₅Ge₄, Er₅Ge₃, кристалографічні характеристики яких приведені в таблиці 1. Бінарний германід Cr5Ge3 (структурний W_5Si_3) за температури тип дослідження ідентифікувати не вдалося. Згідно рентгенофазового аналізу зразок відповідного складу містив дві бінарні фази у рівновазі: Cr₃Ge і Cr₁₁Ge₈. Відповідно до літературних відомостей фаза Cr₅Ge₃ стабільна лише при підвищених температурах; утворюється за перитектичною реакцією при 1262°С і розкладається евтектоїдно при 996°С. Нижче цієї температури Cr_3Ge знаходиться в рівновазі з $Cr_{11}Ge_8$ [21].

Таблиця 1

Фаза	Просторова група	Структурний тип	Періоди ґратки, Å			
			а	b	С	Література
ErGe _{2,83}	Стст	DyGe ₃	3,997	2,0605	3,887	[11]
Er ₂ Ge ₅	Pmmn	Er ₂ Ge ₅	3,872	3,993	18,125	[11]
			3,879(4)	4,005(4)	18,128(5)	Дані праці
ErGe _{1,83}	Стст	DyGe _{1,85}	4,068	2,957	3,900	[12]
ErGe _{1,5}	D6/	AlB ₂	3,89		4,09	[14]
	10/11111		3,886(2)		4,088(3)	Дані праці
Er ₃ Ge ₄	Crussen	Er ₃ Ge ₄	4,005	10,542	14,137	[13]
	Cmcm		4,005(3)	10,541(5)	14,134(4)	Дані праці
FrGa	Cmam	CrB	4,2199	10,581	3,906	[17]
ErGe	Cmcm		4,220(2)	10,581(4)	3,896(3)	Дані праці
Er ₁₁ Ge ₁₀	I4/mmm	Ho ₁₁ Ge ₁₀	10,76		16,09	[16]
			10,763(3)		16,089(5)	Дані праці
Er ₅ Ge ₄	Pnma	Sm ₅ Ge ₄	7,54	14,49	7,57	[15]
			7,549(3)	14,496(6)	7,576(4)	Дані праці
Er ₅ Ge ₃	P6 ₃ /mcm	Mn ₅ Si ₃	8,35		6,27	[15]
			8,317(3)		6,297(3)	Дані праці
$Cr_{11}Ge_{19}$	<i>P</i> -4 <i>n</i> 2	$Mn_{11}Si_{19}$	5,79		51,87	[18]
CrGe	P2 ₁ 3	FeSi	4,797			[20]
			4,796(3)			Дані праці
$Cr_{11}Ge_8$	Pnam	Cr ₁₁ Ge ₈	1,315	4,94	15,75	[19]
			1,3079(5)	4,954(4)	15,721(5)	Дані праці
Cr ₃ Ge	Pm-3n	Cr ₃ Si	4,631			[18]
			4,6303(1)			Дані праці

Кристалографічні характеристики бінарних фаз систем Er-Ge і Cr-Ge при 1070 К

Рис. 1. Ізотермічний переріз діаграми стану системи Ег-Сг-Ge при 1070 К.

Фазовий склад окремих сплавів системи Er-Cr-Ge за результатами ЕДРС аналізу							
Фаза/Вміст компонента	Ег, ат.%	Сг, ат.%	Ge, at.%				
$Er_{10}Cr_{60}Ge_{30}$							
Cr ₃ Ge		75,34	24,66				
Er ₃ Ge ₄	43,18		56,82				
$Er_{20}Cr_{20}Ge_{60}$							
ErCr ₆ Ge ₆	8,74	45,52	45,74				
$\mathrm{Er}\mathrm{Cr}_{1-x}\mathrm{Ge}_2$	31,75	6,45	51,80				
(Ge)			99,96				
	$Er_{28}Cr_9Ge_{63}$						
$\mathrm{Er}\mathrm{Cr}_{1-x}\mathrm{Ge}_2$	30,28	9,12	60,60				
$ErGe_{2,83}$	28,30		71,70				
(Ge)			99,96				
	$Er_{50}Cr_{25}Ge_{25}$						
Er ₅ Ge ₃	62,50		37,50				
(Cr)		99,98					
(Er)			99,98				
$Er_{50}Cr_{13}Ge_{37}$							
Er ₅ Ge ₄	55,67		44,33				
Er ₅ Ge ₃	62,50		37,50				
Cr ₃ Ge		72,57	27,43				
$\mathrm{Er}_{14}\mathrm{Cr}_{44}\mathrm{Ge}_{42}$							
ErCr ₆ Ge ₆	8,91	45,23	45,86				
$\mathrm{Er}\mathrm{Cr}_{1-x}\mathrm{Ge}_2$	29,98	11,84	58,18				
Cr ₃ Ge		72,57	27,43				

Фазові рівноваги в потрійній системі Ег–Сг–Gе встановлені при 1070 К за результатами рентгенофазового і локального енергодисперсійного рентгенівського спектрального (ЕДРС) аналізів синтезованих 14 подвійних і 33 потрійних сплавів. Ізотермічний переріз діаграми стану системи Ег–Сг–Ge за відповідної температури показаний на рис. 1. Результати ЕДРС аналізу окремих потрійних сплавів приведені в таблиці 2. Фотографії мікроструктур окремих сплавів показані на рис. 2.

Таблиця 2

Згідно літературних даних в системі Ег-Сг бінарні сполуки не утворюються [10]. В потрійній області Ег-Ег₅Ge₃-Сг системи Ег-Сг-Ge відповідні потрійні сплави містять в рівновазі Ег₅Ge₃, Ег і Сг. Отриманий результат підтверджений даними рентгеноспектрального аналізу (рис. 2, г).

Потрійна система Er-Cr-Ge

Рис. 2. Фотографії мікроструктур сплавів системи Er-Cr-Ge: a) Er₁₀Cr₆₀Ge₃₀ - Cr₃Ge (темна фаза); Er₃Ge₄ (світла фаза); б) Er₂₀Cr₂₀Ge₆₀ - ErCr₆Ge₆ (сіра фаза); ErCr_{1-x}Ge₂ (світло-сіра фаза); (Ge) (темна фаза); в) Er₂₈Cr₉Ge₆₃ - ErCr_{1-x}Ge₂ (сіра фаза); ErGe_{2,83} (світла фаза); (Ge) (темна фаза); r) Er₅₀Cr₂₅Ge₂₅ - Er₅Ge₃ (сіра фаза); (Cr) (світла фаза); (Er) (темна фаза); r) Er₅₀Cr₁₃Ge₃₇ - Er₅Ge₄ (сіра фаза); Er₅Ge₃ (світла фаза); Cr₃Ge (темна фаза); д) Er₁₄Cr₄₄Ge₄₂ - ErCr₆Ge₆ (сіра фаза); ErCr_{1-x}Ge₂ (світла фаза); Cr₃Ge (темна фаза); д) Er₁₄Cr₄₄Ge₄₂ - ErCr₆Ge₆ (сіра фаза); ErCr_{1-x}Ge₂ (світла фаза); Cr₃Ge (темна фаза).

Розчинність третього компонента в бінарних сполуках систем Cr-Ge і Er-Ge не перевищує 1-2 ат.% за умов дослідження.

2.2. Кристалічна структура

За результатами рентгенівського фазового аналізу у системі Ег-Сг-Ge при 1070 К утворюються дві тернарні сполуки. Розрахунок кристалічної структури тернарних сполук проведено за масивом порошкових дифракційних даних зразків складів $Er_{10}Cr_{45}Ge_{45}$ Er_{30,3}Cr_{9,1}Ge_{60,6} (рис. 3, 4). i умови Експериментальні одержання масиву дифракційних даних та результати розрахунку структур наведено в табл. 3, координати, коефіцієнти заповнення позицій та ізотропні параметри коливання атомів - в табл. 4.

Згідно результатів рентгенофазового аналізу сполука ErCr_{1-x}Ge₂ характеризується невеликою областю гомогенності, яка включає і склад ErCr_{0.3}Ge₂, приведений у працях [4, 5]. Періоди гратки змінюються в межах a = 4,10271(5)-4,1418(9), b = 15,6652(1)-15,7581(4), c = 3,99017(4)-3,9291(1) Å, а склад сполуки відповідає формулі $ErCr_{0,28-0,38}Ge_2$. Отримані результати узгоджуються з даними ЕДРС аналізу (табл. 2).

Як повідомлялося вище, при дослідженні системи Y-Cr-Ge за температури 870 К існування сполуки YCr₆Ge₆ авторами не встановлено [1]. Подальше дослідження системи Y-Cr-Ge при 1070 К [6] засвідчило утворення сполуки YCr₆Ge₆, а ДТА вказав на її існування в доволі широкому температурному інтервалі до 1120 К. В працях [2, 3] досліджено ряд германідів RCr₆Ge₆, отриманих за температурного інтервалу стабільності сполуки ErCr₆Ge₆ проведено диференціальний термічний аналіз (синхронний термоаналізатор LINSEIS STA

Рис. 3. Спостережувана, розрахована і різницева дифрактограми сплаву Er₁₀Cr₄₅Ge₄₅.

Рис. 4. Спостережувана, розрахована і різницева дифрактограми сполуки ErCr_{0,28}Ge_{2.}

Таблиця 3

Експериментальні умови одержання масиву дифракційних даних та результати уточнення структури сполук ErCr₆Ge₆ і ErCr_{0.28}Ge₂

15 51	, , , , , , , , , , , , , , , , , , , ,			
Склад зразка	$Er_{10}Cr_{45}Ge_{45}$	Er _{30,3} Cr _{9,1} Ge _{60,6}		
Уточнений склад сполуки	ErCr ₆ Ge ₆	$\text{ErCr}_{0,28(1)}\text{Ge}_2$		
Склад за ЕДРС	$Er_{8,74}Cr_{45,52}Ge_{45,74}$	Er _{30,28} Cr _{9,12} Ge _{60,60}		
Структурний тип	MgFe ₆ Ge ₆	CeNiSi ₂		
Символ Пірсона	hP13	oS16		
Просторова група, Z	<i>P6/mmm</i> ; 2	Cmcm, 4		
Параметр комірки: <i>а, b, c,</i> Å	5,15149(3); 8,26250(7)	4,10271(5); 15,6652(1);		
		3,99017(4)		
Об'єм комірки V , $Å^3$	189,892	256,448		
Густина D_x , г·см ⁻³	8,000	8,474		
Дифрактометр порошковий	STOE STADI P			
Випромінювання, λ	Cu K_{α} , 1,54056			
Метод сканування	θ/2θ			
Інтервал 2θ , $^{\circ}$ / крок, $^{\circ}$ / час витримки в точці, с	6,000-110,625 / 0,015 / 220	6,000-110,625 / 0,015 / 250		
Спосіб уточнення	Повно профільний			
Параметр змішування, <i>η</i>	-0,33(1)	0,428(8)		
Параметри профілю: U, V, W	0,003(1), -0,006(2), 0,006(2)	0,081(4), -0.028(4), 0.0152(8)		
Параметри асиметрії піків	0,0076(0), 0,0154(0)	0.043(3), 0.014(1)		
Фактори достовірності: R_{Bragg} ; R_{F}	0,0493; 0,0574	0,0473; 0,0433		
Вміст фаз ErCr ₆ Ge ₆ / ErCr _{0,38} Ge ₂ / Ge (мас. %)	93,48 / 2,55 / 3,97			

Таблиця 4

-						
Атом	ПСТ	x	у	Z	КЗП	B_{iso} , Å ²
ErCr ₆ Ge ₆						
Er	1 <i>a</i>	0	0	0	1	1,21(7)
Cr	6 <i>i</i>	1/2	0	0,2510(2)	1	0,51(5)
Ge1	2e	0	0	0,3503(3)	1	1,12(7)
Ge2	2d	1/3	2/3	1/2	1	0,28(7)
Ge3	2c	1/3	2/3	0	1	0,11(7)
ErCr _{0.28} Ge ₂						
Er	4c	0	0.3969(8)	1/4	1	0.24(4)
Cr	4c	0	0,2034(7)	1/4	0.28(1)	0,51(0)
Ge1	4c	0	0.0534(1)	1/4	1	0,56(2)
Ge2	4c	0	0,7518(1)	1/4	1	1,72(5)
1					1	

Рис. 5. Крива ДТА сполуки ErCr₆Ge₆ (плавлення (вставка) і кристалізації).

РТ 1600), згідно результатів якого сполука ErCr_6Ge_6 існує до температури 1126 К, вище якої розпадається (рис. 5).

Висновки

Проведене експериментальне дослідження взаємодії компонентів у потрійній системі Er-Cr-Ge за температури 1070 К підтвердило утворення тернарних германідів ErCr₆Ge₆ і ErCr_{1-x}Ge₂, про які повідомлялось раніше. Сполука ErCr₆Ge₆ характеризується точковим складом, а для сполуки зі структурою CeNiSi2 властива невелика область гомогенності. Автори праці [4] уточнили структуру германіду при складі ErCr_{0.30}Ge₂, який вкладається у область гомогенності, визначену нами. Досліджена система за характером фазових рівноваг, кількістю тернарних сполук та їхньою кристалічною структурою подібна до системи Y-Cr-Ge (1070 K) [6]. Аналогічну взаємодію компонентів можна

передбачити для систем із іншими рідкісноземельними металами, зокрема гадолінієм, тербієм, диспрозієм, для яких відомі сполуки RCr_6Ge_6 і $RCr_{1-x}Ge_2$. Не виключено утворення ізоструктурних сполук RCr_6Ge_6 і $RCr_{1-x}Ge_2$ також з Tm, Yb, Lu.

На відміну від германідів RCr₆Ge₆ і RCr_{1-x}Ge₂, які утворюються з рідкісноземельними елементами підгрупи Ітрію, для РЗМ церієвої підгрупи реалізується ізоструктурна серія сполук RCrGe₃ $(R = La-Nd, Sm, структурний тип BaNiO_3, просторова$ група Р6₃/ттс) [31]. Аналогічні сполуки - i3 структурою перовскіту утворюються також за участі ванадію RVGe₃ (R = La-Nd, Sm) [32]. Цей тип кристалічної структури не притаманний лля германідів інших перехідних металів. Сполуки $R_{117}Cr_{52}Ge_{112}$ кубічною структурою 3 типу Tb₁₁₇Fe₅₂Ge₁₁₂ утворюються з Nd i Sm [33, 34].

Тернарні сполуки $RM_{1-x}Ge_2$, які належать до структурного типу CeNiSi₂ найчастіше реалізуються у системах R-M-Ge, на що вказують ізоструктурні серії RCr_{1-x}Ge₂ (R = Y, Sm, Gd-Er), RMn_{1-x}Ge₂ (R = Y,

Nd, Sm, Gd-Tm, Lu), $RFe_{1-x}Ge_2$ (R=Y, La-Sm, Gd-Lu), RCo_{1-x}Ge₂ (R = Y, La-Sm, Gd-Lu), $RNi_{1-x}Ge_2$ (R = Y, La-Lu), $RCu_{1-x}Ge_2$ (R = La-Sm, Gd-Tm, Lu) [25-28].

Порівняння дослідженої системи Er-Cr-Ge із системами Er-M-Ge (M = Mn, Fe, Co, Ni, Cu) [22-24]. вказує, що характер фазових рівноваг, кількість тернарних сполук і тип їхньої кристалічної структури перебуває в залежності від М-компоненту. При переході від хрому до металів тріади феруму ускладнюється взаємодія компонентів, зростає число тернарних сполук. У системі Er-Mn-Ge (870 K) утворюються 4 тернарні сполуки, у системах Er-{Fe, Co, Ni}-Ge (1070 K) за температури відпалювання реалізуються 8, 16, 14 тернарних германідів, відповідно. Заміна перехідного металу на Си приводить до зменшення кількості тернарних сполук і в системі Er-Cu-Ge за температури 870 К утворюється 6 тернарних сполук [23]. Подібна закономірність спостерігається і для систем R-M-Ge. Наприклад. для ітрію досліджено взаємодію компонентів у повному концентраційному інтервалі у системах $Y = \{V, Cr, Mn, Fe, Ni\} = Ge [6, 24, 29, 30].$ Системи $Y = \{Co, Cu\} = Ge$ досліджувались на предмет існування ізоструктурних сполук [24]. При заміні V на Cr, Mn, Fe, Co і Ni число тернарних германідів значно зростає $1 \rightarrow 2 \rightarrow 4 \rightarrow 5 \rightarrow 7 \rightarrow 10$, а при переході до купруму – зменшується до 6.

Робота виконана в рамках гранту Міністерства освіти і науки України № 0118U003609.

Коник М.Б. - к.х.н., доцент; Ромака Л.П. - к.х.н., провідний науковий співробітник; Стадник Ю.В. - к.х.н., провідний науковий співробітник; Ромака В.В. - д.т.н., к.х.н., доцент; Серкіз Р.Я. – інженер; Горинь А.М. - к.х.н., старший науковий співробітник.

- [1] О.И. Бодак, Е.И. Гладышевский, Тройные системы, содержащие редкоземельные металлы (Вища школа, Львов, 1985).
- [2] J.H.V.J. Brabers, K.H.J. Buschow, F.R. de Boer, J. Alloys Compd. 77, 205 (1994) (DOI: 10.1016/0925-8388(94)90769-2).
- [3] P. Schobinger-Papamantellisa, J. Rodriguez-Carvajalb, K.H.J. Buschow, J. Alloys Compd. 92, 256 (1997) (doi.org/S0925-8388(96)03109-X).
- [4] H. Bie, A. Tkachuk, A. Mar, J. Solid State Chemistry. 122, 182 (2009) (doi.org/10.1016/j.jssc.2008.10.013).
- [5] A. Gil, D. Kaczorowski, B. Penc, A. Hoser, A. Szytula, J. Solid State Chem. 227, 184(2) (2011) (doi.org/10.1016/j.jssc.2010.10.026/).
- [6] М. Коник, Л. Ромака, L. Orovčik, В.В. Ромака, Ю. Стадник, Вісн. Львів. унів. Сер. хім. 38, 60(1) (2019) (doi.org/10.30970/vch.6001.038).
- [7] L. Akselrud, Yu. Grin. WinCSD: software package for crystallographic calculations (Version 4). J. Appl. Cryst. 47, 803 (2014) (doi.org/10.1107/S1600576714001058).
- [8] T. Roisnel, J. Rodriguez-Carvajal, WinPLOTR: a Windows tool for powder diffraction patterns analysis. Mater. Sci. Forum. 378, 118 (2001).
- [9] T.B. Massalski, in: Binary Alloy Phase Diagrams (ASM, Metals Park, Ohio, 1990).
- [10] Okamoto H. Desk Handbook: Phase Diagrams for Binary Alloys, Materials Park (OH): American Society for Metals (2000).
- [11] G. Venturini, I. Ijjaali, B. Malaman, J. Alloys Compd. 183, 288 (1999) (doi.org/10.1016/S0925-8388(99)00088-2).
- [12] O. Oleksyn, P. Schobinger-Papamantellos, C. Ritter, C. H. Groot, K.H.J. Buschow, J. Alloys Compd. 53, 252 (1997) (doi.org/10.1016/S0925-8388(96)02714-4).
- [13] O.Ya. Oleksyn, O.I. Bodak, J. Alloys Compd. 19, 210 (1994) (doi.org/10.1016/0925-8388(94)90108-2).
- [14] G. Venturini, I. Ijjaali, B. Malaman, J. Alloys Compd. 262, 284 (1999) (doi.org/10.1016/S0925-8388(98)00958-X).
- [15] G.S. Smith, A.G. Tharp, Q. Johnson, J. Acta Crystallogr. 940, 22 (1967). (doi.org/10.1107/S0363110X67001902).
- [16] V.N. Eremenko, I. M. Obuschenko, Sov. Non-Ferrous Met. Res. 216, 9 (1981).
- [17] P. Schobinger-Papamantellos, K.H.J. Buschow, J. Less Common Met. 117, 111 (1985) (doi.org/10.1016/0022-5088(85)90177-8).
- [18] M. Kolenda, J. Stoch, A. Szytula, J. Magn. Magn. Mater. 99, 20 (1980) (doi.org/10.1016/0304-8853(80)90532-6)
- [19] B. Rawal, K.P. Gupta, J. Less Common Met. 65, 27 (1972) (doi.org/10.1016/0022-5088(72)90105-1).
- [20] T. Sato, E. Ohta, M. Sakata, J. Magn. Magn. Mater. 205, 61 (1986) (doi.org/10.1016/0304-8853(86)90085-5).
- [21] I. Jandl, K.W. Richter, J. Alloys Compd. L6, 500 (2010) (DOI: 10.1016/j.jallcom.2010.03.200).
- [22] М.Б. Коник, Л.П. Ромака, В.В. Ромака, Р.Я. Серкіз, Фізика і хімія твердого тіла 956, 13(4) (2012).
- [23] М. Коник, А. Горинь, Р. Серкіз, Вісник Львів. ун-ту. Сер. хім. 42, 53 (2012).

- [24] P.S. Salamakha, O.L. Sologub, O.I. Bodak, In: Gschneidner K. A. et al (Eds.), Ternary rare-earth germanium systems, Handbook on the Physics and Chemistry of Rare Earths, Vol. 27 (The Netherlands, Amsterdam, 1999).
- [25] V.K. Pecharsky, O.Ya. Mruz, M.B. Konyk, P.S. Salamakha, P.K. Starodub, M.F. Fedyna, O.I. Bodak, J. Struct. Chem. 96, 30(5) (1989) (in Russian).
- [26] M. Francois, G. Venturini, B. Malaman, B. Roques, J. Less-Common Met. 160, 197 (1990) (doi.org/10.1016/0022-5088(90)90381-S).
- [27] R. Duraj, M. Konyk, J. Przewoznik, L. Romaka, A. Szytula, Solid State Sci. 11, 25 (2013) (dx.doi.org/10.1016/j.solidstatesciences.2013.07.019)
- [28] Л. Ромака, М. Коник, Ю. Стадник, В.В. Ромака, Р. Серкіз, Фізика і хімія твердого тіла 64, 20(1) (2019). (DOI: 10.15330/pcss.20.1.69-76).
- [29] M. Konyk, L. Romaka, A. Horyn, N. German, R. Serkiz, Visnyk Lviv Univ. Ser. Chem. 25, 56 (2015).
- [30] M. Konyk, L. Romaka, Yu. Stadnyk, V.V. Romaka, R. Serkiz, Visnyk Lviv Univ. Ser. Chem. 11, 59(1) (2018) (doi.org/10/30970/vch.5901.011).
- [31] H. Bie, O.Ya. Zelinska, A.V. Tkachuk, A. Mar, J. Mater. Chem. 4613, 19(18) (2007) (doi.org/10.1021/cm0727+).
- [32] H. Bie, A. Mar, J. Mater. Chem. 6225, 19 (2009) (doi.org/10.1039/B908781H).
- [33] A.V. Morozkin, Y.D. Seropegin, V.K. Portnoy, I.A. Sviridov, A.V. Leonov, Mater. Res. Bull. 903, 33 (1998) (doi.org/10.1016/S0025-5408(98)00051-8).
- [34] P.S. Salamakha, Yu.M. Prots, O.L. Sologub, O.I. Bodak, J. Alloys Compd. 51, 215(1994) (doi.org/10.1016/0925-8388(94)908817-6).

M. Konyk¹, L. Romaka¹, Yu. Stadnyk¹, V. V. Romaka², R. Serkiz³, A. Horyn¹

Er-Cr-Ge Ternary System

¹Ivan Franko L'viv National University, L'viv, Ukraine, <u>mariya.konyk@lnu.edu.ua</u>

²Lviv Polytechnic National University, Lviv, Ukraine, <u>vromaka@gmail.com</u>

³Scientific-technical and Educational Centre of low Temperature Studies, Ivan Franko National University of Lviv, Lviv, Ukraine, <u>rserkiz@gmail.com</u>

The isothermal section of the phase diagram of the Er–Cr–Ge ternary system was constructed at 1070 K over the whole concentration range using X-ray diffractometry, metallography and electron microprobe (EPM) analysis. The interaction between the elements in the Er–Cr–Ge system results in the formation of two ternary compounds: ErCr₆Ge₆ (MgFe₆Ge₆-type, space group *P6/mmm*, Pearson symbol *hP*13; *a* = 5.15149(3), *c* = 8.26250(7) Å; $R_{\text{Bragg}} = 0.0493$, $R_{\text{F}} = 0.0574$) and ErCr_{1-x}Ge₂ (CeNiSi₂-type, space group *Cmcm*, Pearson symbol *oS*16, *a* = 4.10271(5), *b* = 15.66525(17), *c* = 3.99017(4) Å; $R_{\text{Bragg}} = 0.0473$, $R_{\text{F}} = 0.0433$) at investigated temperature. For the ErCr_{1-x}Ge₂ compound, the homogeneity region was determined (ErCr_{0.28-0.38}Ge₂; *a* = 4.10271(5)-4.1418(9), *b* = 15.6652(1)-15.7581(4), *c* = 3.99017(4)-3.9291(1) Å).

Keywords: intermetallics; ternary system; phase equilibria; crystal structure.