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BAKSA V. P.

ANALYTIC VECTOR-FUNCTIONS IN THE UNIT BALL HAVING BOUNDED
L-INDEX IN JOINT VARIABLES

In this paper, we consider a class of vector-functions, which are analytic in the unit ball. For
this class of functions there is introduced a concept of boundedness of L-index in joint variables,
where L = (I1,1) : B2 — RZ is a positive continuous vector-function, B = {z € C? : |z| =
V12112 + |z2]% < 1}. We present necessary and sufficient conditions of boundedness of L-index in
joint variables. They describe the local behavior of the maximum modulus of every component of
the vector-function or its partial derivatives.

Key words and phrases: bounded index, bounded L-index in joint variables, analytic function,
unit ball, local behavior, maximum modulus, sup-norm, vector-valued function.
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1 INTRODUCTION

A concept of bounded index for entire function [19] draws attention of many mathematician
(see a full bibliography in [5, 24, 26]) to investigations of these function class and its possible
applications. Itis interesting with its connections with value distribution theory, because every
entire function has a bounded value distribution if and only if its derivative has a bounded
index [15]. Also, there are many papers devoted to index boundedness of analytic solutions of
differential equations [12,13,18]. It is important because any function of bounded index have
its growth estimates, local behavior of derivatives and some uniform distribution of zeros.
Moreover, some authors [26-33] study connection between p-valence and I-index boundedness
of analytic functions, the existence of solutions of the second order linear differential equations
with polynomial coefficients which are starlike, convex, close-to-convex and of bounded I-
index (I : C — R4 is a continuous function). In other words, they combine analytic and
geometric properties of functions of complex variable. Let us give a main definition introduced
by B. Lepson [19]. An entire function f is said to be of bounded I-index if there exists an integer
m, independent of z, such that for all pand all z € C W < max{%: 0<s<m}If
we replace p! by p!lP(z) and s! by s!I°(z) in the definition, respectively, then we obtain the
definition of entire function of bounded I-index [17]. The generalization was proposed by
A.D. Kuzyk and M.M. Sheremeta to go beyond class of entire functions of exponential type
because every entire function of bounded index is of exponential type [15].

Of course, there are papers on analytic curves of bounded /-index. This function class
naturally appears if we consider systems of differential equations and investigate properties

YAK 517.55
2010 Mathematics Subject Classification: 32A10, 32A17, 32A37.

@ Baksa V. P, 2019



214 BAKSA V. P.

of their analytic solutions. A concept of bounded index for entire curves was introduced with
the sup-norm [16] and with the Euclidean norm [23]. In these papers the authors replaced the
modulus of function by the appropriate norm in the definition. Later there was proposed a
definition of bounded v-index [22] for entire curves with these norms. In this definition, R. Roy
and S.M. Shah replaced p! by p!|z|’ and so on. Also M.T. Bordulyak and M.M. Sheremeta
[14, 25] studied curves of bounded /-index which are analytic in arbitrary bounded domain
on the complex plane. These mathematicians found sufficient conditions providing /-index
boundedness of every analytic solutions for some system of differential equations.

Recently, there was published paper [21] about entire vector-valued bivariate functions hav-
ing bounded index. The authors considered a concept of bounded index with the sup-norm.
We will develop their approach and will investigate vector-valued functions which are analytic
in the unit ball.

Our present investigation has used methods of A.I. Bandura and O.B. Skaskiv developed
them for analytic functions in the unit ball [2—4, 10]. It is known that analytic function with
unbounded multiplicities of zeros is of unbounded /-index for any positive continuous func-
tion /. The similar statement is valid for functions analytic in the unit ball [1]. In other words,
functions with unbounded multiplicities of zero points are not still objects of investigations in
theory of bounded index. But we can replace studying of properties of the function f with
unbounded multiplicities of zero points by studying of properties of the map (f,1). Such
approach allows to investigate any analytic functions in theory of bounded index.

2 NOTATIONS AND DEFINITIONS

Here we use some standard notations (see [3—5]) Let Ry = [0;+), 0 = (0,0) € R?,

1= (L1 € lRi, R = (ry,mn) € lRi, = /|z2+|w]2. For A = (ay,a2) € R?
B = (b,by) € R?, we will use formal notatlons without assumption of the existence of

these expressions: AB = (aiby,azby), A/B = (a1/by,a2/by), AB = (all)l,agz), and the nota-
tion A < B means that a; < bj, j € {1,2}; the relation A < B is defined in the similar way.
For K = (k1,kp) € Z%r let us denote K! = kq! - ky!. Addition, multiplication by scalar and con-
jugation in C? is defined componentwise. For a = (ay,a3) € C?, b = (b1, by) € C? we define
(a,b) = a1by + aby, where by, by is the complex conjugate of by, bs.

The polydisc {(z,w) € C?: |z —z9| < r1, |w — wg| < 12} is denoted by ID?((zg, wp), R), its
skeleton {(z,w) € C? : |z — zo| = r1, |w — wo| = r2} is denoted by T?((zg, wp), R), the closed
polydisc {(z,w) € C? : |z —zp| < ry,|w —wo| < rp} is denoted by ID?[(zg, wp), R], D? =
D?(0;1), D = {z € C : |z| < 1}. The openball {(z,w) € C%: \/|z — zo|? + |[w — wp|? < r} is
denoted by B?((zp, wp), ), the sphere {(z,w) € C? : \/|z — z0|? + |w — wp|? = r} is denoted
by S%((zo,wp), r), and the closed ball {(z,w) € C?: \/|z — zo|> + |w — wp|? < r} is denoted by
B?[(zo, wp), 7], B> =B?*(0,1), D=B! ={z€C:|z| < 1}.

Let F(z,w) = (fi(z,w), f2(z,w)) be an analytic vector-function in B2. Then at a point
(a,b) € B? the function F(z,w) has a bivariate vector-valued Taylor expansion:

=Y Y Culz —a)(w—b)",
k=0m=0

where
1

 klm!

k,
~ klm! ozkdw™m 7 9zkdwm Fl m)(ﬂ; b)-

Cop = 1 <ak+mf1(z,w) ak+mf2(z,w)>

z=a,w=>b
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Let L(z,w) = (li(z,w),2(z,w)), where [j(z,w) : B> — R? are positive continuous func-
tions such that

V(z,w) € B?: li(z,w) > P je{1,2}, (1)

1= /]2 + [wl
where B > /2 is a some constant.
Remark 1. Note that from R € R?%, |R| = /r3+715 < B, (zo,wp) € B? and (z,w) €

D?[(z0, wo), R/L(z0, wp)] it follows, that (z, w) € B2.
Indeed,

2
7
< — < 2
’(Z’ ZU)‘ — ‘(Z,ZU) (ZO,WO)‘ + ’(ZO’WOM — \/l%(ZO, wO) + l%(ZO,ZUO)

1—|(zp, w 1—|(zo,w
<—|(50 O)|\/r%+r§~l—|(zo,w0)|gwlﬂﬂzo,uﬂ:l-

The norm for the vector-function F : B> — C? is defined as the sup-norm

IF(z,w)|| = max{|fi(z,w), | fa(z, w)][}.

2
"

+ ‘(ZOrWOM

We write

Fd (2, ) = I"E(zw) _ (a”r]f‘l (z,w) alﬂflz(z,‘w)) _
oz'ow/ oz'ow/ dziow!

An analytic vector-function F : B2 — C2 is said to be of bounded L-index (in joint variables),
if there exists ng € Z such that V(z,w) € B> V(i,j) € Z2 :

(i.j) (k,m)
EDEl el L
il (z,w) (z, w) kim!ly (z, w)ly' (z, w)

The least such integer ny is called the L-index in joint variables of the vector-function F and is
denoted by N(F,L, IBZ). The concept of boundedness of L-index in joint variables was consid-
ered for other classes of analytic functions. They have differed domains of analyticity: the unit
ball [1,3,4,10], the polydisc [7,9], the Cartesian product of the unit disc and complex plane [8],
n-dimensional complex space [1,6,11,12].
1

(1/v2-2)(1/vV2-w)
variables N(F,L,1D?>((0,0),R)) = 0 in the bidisk ID?>((0,0), R) with R = (1/+/2,1/+/2) and

Example 1. The function f(z,w) = exp{ } has a bounded L-index in joint

— 1 1 et _ _
L(z,w) = <(1/ﬁ7‘2|)2(1/ﬂ7‘w‘), (1/\@7“2')(1/\&7@')2) (see details in [9]). But |R| = 1, there
fore, it is easy to see, that the vector-function F(z,w) = (f(z,w),1) has the same bounded

L-index in joint variables N (F, L, B?) = 0 in the unit ball B.

Q(B?) stands for the function class of L : B> — IR%, which obey inequality (1) and for any
j€{1,2} and some R = (r1,12), |R| < B:

{ lj(zllwl) r1

L1Z1 — Z < N ’
li(z2, w2) 21— 2| < min{l1 (z1, w1), 11 (z2, w2) }

sup
(z1,w1),(z0,wy ) €B2
Y]

Wy —wp| < — < 0.
on —wa| < mln{12(21/w1)112(22!w2>}}
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The function class Q(IB?) also can be defined as follows: for all R € ]R%r, |IR| < B, and for
j € {1,2} the inequality 0 < Ay ;(R) < A;(R) < co holds, where

lj(z,
Ai(R) = (zo,i?)fegz inf {% :(z,w) € Dz[(zo,wo),R/L(zo,wo)]}, 3)
l:
A2j(R) = sup sup {lé(zl : (z,w) € D*[(zo, wo),R/L(zo,wo)]} ' ()
(zo,wp) €B? j 2o, Wo)

3 LOCAL BEHAVIOR OF PARTIAL DERIVATIVES OF VECTOR-VALUED BIVARIATE ANALYTIC
FUNCTIONS HAVING BOUNDED L-INDEX IN JOINT VARIABLES

The following theorem is basic in the theory of functions of bounded index. Our proof is
similar to proof of the corresponding theorem [2] for analytic functions from B" onto C. For
other classes of analytic functions it is proved in [5,8,9,20,24].

Theorem 1. Let L € Q(IB?). An analytic vector-function F : B> — C? has a bounded L-index
in joint variables if and only if for every R € R?, |R| < B there exist ny € Z, p > 0 such that
for all (zg, wy) € B? there exists 2-tuple (ko, mg) € Z2, ko + mo < ny, satisfying inequality

k,m)
max{ IE™(z )] :k+m§noz(zzw)G]DZ[(ZOIWO)zR/L(ZO'wO)]}
Ktm!I (z, w)15 (z, w) )

[IEFom0) (zo, o )|

ko!ﬂlo!llfo (Zo, wO)l?O (Zo, ZU()) ‘

< Po

Proof. Below we repeat considerations from [2], replacing modulus of function by the norm of
vector-function.

Let F be an analytic vector-function of bounded L-index in joint variables with
N = N(F,L,B?) < . Forany R € RZ, |R| < B, we define

2
q=q(R) = [2(N+1)(r1 +r2) [ [(A1,j(R)) "N (A, (R))N*] +1,
j=1

where [x] stands for the entire part of the real number x. For p € {0,...,q} and (zg, wy) € B?
we denote:

|FEm (2, w)| 2 PR
— : < aL(za. wa)
Sp((z0,wo), R) max{k!m!llf(Z,zU)l’zﬂ(Z, @) rmENGEweD (200, qL(Zo/wo)] }
IE%™) (2, w) |

:k+m <N, (z,w) €ID? [(zo, wp), L}}

5;((20, wp), R) :max{ gL (zo, wo)

ktm!IK (zo, wo) 13" (zo, wo)

Using equality (3) and ID?[(zg, wp), qL(Z%O)] C D?[(zg, wy), M], we have
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_ [F®m) (z,w)| 2 pR
S o), ) =y SN <02 o
_ { | E®m™) (2, w)]| ‘ 1¥(zo, wo) 13" (20, wo) kbm <N,
Kim!I¥ (2o, wo) I8 (zo, wo) 1§ (z, w)I¥(z, w)
2 PR
(z,w) €D [(Zo,wo),m]}
. 1%(zo, wo), 15 (20, w0, ) (6)
< 5, ((z0, wo), R) max{ Fa o)) k+m<N,
2 PR
(z,w) € D[(z0, wo), m]}
< 5,((z0, wo), R) max{(A1,1(R)) *(A12(R)) ™™ :k+m < N}
2
<S5 ((z0,w0), R) (A1 (R)) N (A12(R)) N <S5 ((z0,wo), R) [ (A1, (R)) ™
j=1
Taking into account (4), we obtain
. _ [FE™ (z,w)||  1(z )l (z,w)
Sp((z0,wo), R) = max { il )5 (2, @) Tz, ) (20, 00) k+m<N,
> (pr1, pr2)
(z,w) € D[(z0, wo), m]}
[F®) (2, w)]| k m.
< max { Kt (z, ) 21z, ) (A21(R))*(A22(R))™ : k+m <N, (7)
> (pr1, pr2)
(z,w) € D[(z0, wo), m]}
2
< SP((Z(), wO),R)(Azll(R))N(Azlz(R» < Sp Z0, wo H Al]
j=1

Let (kp,mp) € Zi, kp +my < Nand (zp, wp) € D? [(zo, wp), ] be such that

ﬂL(Zo wo)
|Fkem) (2, 0,)]|

S;((Zo,wO>,R) = (8)

- .
kp!mp!llp(zo,wo)l';” (zo, wp)
. . L 2 PR
Since by the maximum modulus principle we have (z,,w,) € T <(zo, wy), m)
therefore (z,, w,) # (zo, wo). We choose

(zp —20), @p:wo—l—pT(wp—wo).

Then we have

L p—1 p—1  pn IO p—1 pr
z —Z — z — Z = 7 w —w — 7
Zp — 2o |zp — 2o v qh(zo, wo) [y — o P qla(zo, wo)
_ p—1 ! I
Zp — Zp| = |20 + Zp —20) —Zpl = 120 — Zpl = S ?
Zp — zp| = |20 (zp — 20) — 2| p’ 0~z ql1 (zo, wo) ®)
_ p—1 1 12
Wy — Wy| = Wy + ——(Wp —Wp) — Wy| = —|Wy — Wp| = —————. 10
[@p pl = |wo p (wp — wo) pl p| 0 pl ql2(zo, wo) 10
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(5 2 (p~1R ’ [FPe) (2, p)
We obtain (Z, @) € D {(ZO’ wo), Q(R)L(Zoﬂvo)] and Sﬁfl((zo’ww’ R) =z kptmp!l] p(ZO,wo)l;’p(ZO/wo).
From (8) by mean value theorem we have

|E¥m) (), wp)ll — [[F%em) (2, @p) |

0 < S,((z0,wo), R) — S;_l((zo,wo),R) A
kp’mp’l (Z()r w0>lz (ZOI wO)

1 14 o N
= | I Gt = 2, @ty — @)
pMpty (Zo,wo)z (z0, wo) 70
1 1 _ ~ o N
= ; | D =Bl [EE ) @, 4 1z — ), Ty + Hwp — @)

kptm 17 (zo, wo)l;n” (zo, wo)

+ [P — @, | | FERem (2, 4tz — ), Wy + Hwp — @) ||dt
1

kp!mp!lll(”(zo,wo)l;n” (zo, wo)
Fl?) — @[ FEm D (E, + £ (2 — 2), By + £ (w0, — B) ],
(11)

(120~ 2610 (5, + £ (2 — ), Ty + (w0 — )]

where 0 < t* < 1, and (2, + t"(zp — 2p), Wp + t*(wp — Wp)) € Dz[(zo,wo),qL(piR For

Zo,wo)]'
(z,w) € D?|[(z, wp), %] and (j1,j2) € Z%: j1 +j» < N+ 1, we have

IEU2) (2, ) | (G w) (Zz w)
I !jzll]f (zo, wo)lj2 (2o, wp) l]1 (z,w)I} (z,w)
i) l]l l]z
[FU2) (z,w) | BEw) Nt
T Al (2, w) I (z,w) I (z0,w0) 12 (20,wo)

[EE (z, )] PR\ \N+T PRy N4
<  k <N A (o (PR
< max {k!m!l’f(z,w)lg”(z,w +m < (A1 (— 7 ) (A22())

(k,m) Z,Ww
< (haa(R), Aaa(R))MH - ma { el
= (A21(R)A22(R)N* - S, ((20,wo), R)
< (A21(R)A22(R)NFT - 55 ((z0,w0), R) - (A1,1(R), A12(R)) M.
Then from (11), (9) and (10) we obtain
O S 5;((20,’(/00), R) — ;_1((20,’(/00), R)

2
(A2 (R)NTTA1(R)) NS5 ( (20, wo), R)

k+m§N}

~—.
—_

x ((k“’) +1) (1 (20, w0))|z}" — 27| + (mP) + 1) (L2 (20, o)) — @(PM)

(ha (R Ay ()~ 0L D

I
.:1N

((kp —+ 1)1’1 + (mp + 1)1’2)

2 Z0, W,
< H()\z,j(R))NHM,j(R))_NSp(( O(R;) ) (N+1)(r1+72) < %SZ((ZO,wo),R)~
i=1 1
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It follows that S} ((zo, wp), R) < 25;_1((20, wp), R) and in view of (6) and (7) one has

Sp((z0,wo), R) < 2] [(A1,/(R)) ™S} 1((z0,w0), R)

T

IN

2] (A1, (R) ™M (A2,i(R))NS,—1((z0, w0), R).

Il
—_

j
Then

Km!IX (z, w)I5 (z, w) qL(zo, wo)

2

= 54((z0,w0), R) < 2H()\1,j(R))N()tz,j(R))NSq1((ZorWO)rR)
=

2
< 21_{(()\1,]'(R))_N()\Z,j(R))N)qSO((ZOI wo), R)
=

:2ﬁ((/\l,j(R))_N(Az,j(R))N)qmaX{ ||F(k'm)(ZOIWO)H :k+m§N}.

i1 k!m!l’l‘(zo,wo)l’zﬂ (zo, o)

(k,m)
ax{ IE (z,w)] tk+m<N, (z,w) € D? (zo, wo), L] }

(12)

IN

This inequality implies (5) with py = 2]—[]2:1(()\1,]-(1{))*1\’ (A2,j(R))N)7 and some ko, mg, such
that kg + mo < N. The necessity of condition (5) is proved.

Now we prove the sufficiency. Assume that for every R € R?,, |R| < B, there existng € Z,
po > 1, such that for every (zp,wg) € B2 and for some (ko,mo) € Z%, (ko + mo < np),
inequality (5) holds. By Cauchy’s integral formula we have (V(zo, wg) € B?), (V(k,m) € Z2),
(V(s,y) € Z2):

dzdw.

F(k+s,m+y) (ZOr wO) 1 / E(k;m) (Z, ZU)
sly! - (2mi)? 72 ((zg,m0)

i) (2= 20)  H (w — wo )Y
Hence, in view of (5), we obtain that

[P+ (20, wo) | 1 / [FEM) (z,w)|
((Zo wo)

< dz||d
sly! — (2m)?2 ) Iz = zo[**H|w — wo |y+1‘ 2ljdw

R
’L(Z@Wo)
m 15+ (20, w0) 13 (20, wp)

< L EE 2, w)] =
TZ((zo,wo),L—>) (27‘()2 s+ g

(zg,w0q 1
KimtpoAy; (R)AS, (R)
< oy IFE o) | 2 S
T((zo,wo),m) (27‘()2k0!m0!r1 5}

|dz||dw|

li+k+1( ZOer>

lk (Zo, wO)l (ZOI ZUO)

ktmipo A% | (R)AS, (RIS (zo, wo) 1y ™ (20, wo)
ko!mo!rfl’rgl 0 (2o, wo )15 (2o, wo)

kim!po szzl Agf’j(R)liJrk(zO, wo)lg (zo, wp)

kolmolrirgl’fo (zo, wo)15° (2o, wo)

Z0, W

|dz||dw|

= [|E®™ (2o, w) |

= ||[F%™) (29, wy) |
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It follows that
[|[Etsmt9) (20, wg) | _ TT7—q A5 (R)Ktm!po || FFomo) (zg, wo) ||sty!
(k+s)!(m +y)!l'l‘”(zo,wo)lgiw(zo,wo) =y (k4 s)!(m + y) ko tmol] O(ZO,wO)ZZO(zo,wo).
(13)
. . ksl _ ! my! y!
It is obvious that (kfs) = (k+1)s (k+s) <1, Ty = (m+1) ) < 1. We choose ri €

-
1,8/V2),j € {1,2}. Then |R 2 < B, Thus, WREM®) g0y o,
(1B j o y
k+m < ny. e
Therefore, there exists sy such that for every (s,y) € Z3 with s +y > so the inequality
holds
pok!m!s!y'Agl(R)Ag”z(R) B pok!m!s!y! Hz Ano-(R)

(k+s)!(m + y)'r5ry  (k+59)! (m + y)'rjrs

Then, in view of (13), one has

|| FUFsm+9) (29, wp) | || Fkomo) (2o, wy) ||

(k + s)!(m + y)1E(zo, wo)l;"ﬂ/(zo, wy) ko!mo!l’{0 (zo, wo)ly° (zo, wo) .

It implies that for all (j1, /) € Z%

[FOR) (2o, wo)| { IE%™) (2o, wo) |

> ck+m< So+nop,
]1']2'171 (Zofwo)l] (2o, wo) kim!I¥ (2o, wo) 18" (zo, wo) }

where sy and 719 do not depend on (zp, wp). Then the analytic vector-function F in B? has
bounded L-index in joint variables N(F, L, B?) < sq + no. O

Note that instead of sup-norm ||F(z, w)|| = max;<j<2{|fj(z,w)|} one can consider the Eu-
clidean norm ||F(z,w)||g = /|fi(z,w) ]2 + | fo(z,w) |2
Theorem 1 implies the following corollary.

Corollary 1. Let L € Q(B?). An analytic vector-function F : B> — C? has a bounded L-index
in joint variables in sup-norm if and only if it has a bounded L-index in joint variables in the
Euclidean norm.

Proof. Obviously, that for all (k,s) € Z2 and for all (z, w) € B? we obtain
IEE) (2, )| < |F*9) (z,w) | < V2I[FE)(z,w)].

Using the given double inequality and repeating arguments from Theorem 1 for the case of
the Euclidean norm we can verify the equivalence of these norms for vector-functions having
bounded L-index in joint variables. O

Further, we will use only the sup-norm.
The following proposition was obtained for entire curves in [14]. Here we deduce it for
vector-functions which are analytic in the unit ball.
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Proposition 1. Let L be a positive continuous function in B? satisfying condition (1) and each
component f; of an analytic vector-function F : B? — C? is of bounded L-index in joint vari-
ables. Then F is of bounded L-index in joint variables by the sup-norm with N(L;F) <
max{N(ls;, fs) : 1 < s < 2} and F is of bounded L.-index by the Euclidean norm with
L.(z,w) > v2L(z,w) and

N(L,, F) <max{N(l, fs) : 1 <s <2}
Proof. Foralli+j > N = max{N(L, f;) : 1 <s < 2} we have

IFE o) max{Ifi" w1 (2, w)]}
iljlli (z, w)l (z, w) iljlli (z, w)ly(z, w)
(k)
<maxd L EOL g cN1<s<o
Km!lK (z, w) 15 (z, w)
(k,m)
< max IE; (z, )] :0<k+m<N,,
Km!¥ (z, w) 13 (z, w)

thatis, N(L; F) < N = max{N(L; f;) : 1 <s < 2}. Also

IFD ol VI A @ w)P

1!]!l’1(z,w)l] (z,w) it (z,w)lé(z,w)

: ) ) 2
= JSX% (max{k!m!l’f(z,w)lgi(z,w) 0sk+msN

A (z,w)|
< v2max > d :0<k+m<N,0<s<2
Km!lk (z, )15 (z, w)

Km!X (z, w)15' (z,w) ~ ~ -

(k,m)
§\/§max{ IE (z, )|l :O<k—|—m<N}
and, thus, fori+; > N+1
|FUD) (2, w)||g <1 |F0) (2, w) ||
i!j!lil(z,w)liz(z,w) N \/§N+1 i!j!li(z,w)lé(z,w)

< Lmax [E®")(z,w)le :0<k+m<N
- \/§N Km!¥ (z, )13 (z,w) ~ — -

(k,m)
< max IE (z )| :0<k+m<N},
Kim!Ik (z, w)I™ (z, w)

thatis, N(L., F) < max{N(L, f;) : 1 < j < 2}. Proposition is proved. O

Theorem 2. Let L € Q(B?). In order that an analytic vector-function F : B> — C? be of
bounded L-index in joint variables it is necessary that for all R € R?, |R| < B there exist
ny € Z+, p > 1 such that for all (zo,wy) € B? there exists (ko,mo) € Z2, ko +my < n,
satisfying inequality

max{|[F¥™0)(z,w)| : (z,w) € D?[(z0,w), R/L(zo,wo)]} < p|[F*0") (zo,wp)||  (14)
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and it is sufficiently that for all R € R?, |IR| < B there existny € Z, p > 1¥(zo,wp) € B2
Elkg = (k(l),O), Imy = (0, mg): kg < ny, mg < ng, and
max{ || F50) (zo,wo) | : (z,w) € D?[(z0,w0), R/ L(z0,wp)]} < p|[FH) (zg,0)||  (15)
max{HF(O'mg)(z,w)H 1 (z,w) € Dz[(zo,wo),R/L(zo,wo)]} < pHF(O'mg)(zo,wo)H. (16)
Proof. Then by Theorem 1 inequality (5) is obeyed for some tuple (ko, 1719). We obtain
po_ |IF®om0) (zp, wp) ||
kolmo! l’1<0 (Zo, wO)lgnO (Zo, ZUO)
|[Fkomo) (z, w)|
> max 3
ko!mo!1y° (z, w) 1) (z, w)
(ko,mo) Tko i
S LA 5 (20, 00) 3 20, wo)

ko!my! 15020, w0) 12 (20, wo) 1X° (2, w) I3 (2, w)
(2) € DP{(an o), R/ Lz, 0)]

[ IE e Tl
kolmo!  19(zg, w0) 13" (2o, wo)
From this inequality it follows
po(A2,1(R))™ (Ag2(R))™  |[Fkom) (zg, wp)||
kolmo! 13 (29, w0) 13" (20, wo)

: (z,w) € D? [(z,wp), R/L(z0, wp)] }

:(z,w) € D*[(z0, wo),R/L(zo,wO)]}.

ko,m

> max { Hf( i 0)(2,:10)” : (z,w) € D? [(zo,wo),R/L(zo,wo)]} :
ko!mO!llo (Zo, wO)lz 0 (ZO, ZUO)

From inequality (14) it follows (5) with p = pp(A21(R))"™ (A22(R))™. The necessity of condi-

tion (14) is proved.

Now we prove the sufficiency of (15) and (16). Suppose that for each R € R?, |R| < B there
exist ng € Z4, p > 1 such that for every (zp, wp) € B2 and some kg e Z,, mg € Z, with
k(l) < ny, mg < np inequalities (15) and (16) hold.

Let us write the Cauchy formula in the form V(zg, wp) € B> V(s,y) € Z%

FR+59) (29, wp) 1 / Fk0) (z, w)dzdw
sly! (2711)2 JT2((20,0), R/ L(z0,0)) (2 — 20)5 T (w — wp )Y+
FOmty) (zo,wg) 1 / FOM) (2, w)dzdw
sty! —(271)2 J12((20,00),R/L(zo,0)) (2 — 20)5HH(w — wp )y
We obtain that
0 0
|FRT9) (2, wp) | o1 / |F50) (z, )| dzdeo]
sly! = (271)2 JT2((z0w0),R/L(z0w0)) |2—20[5 T |w—wp[VH1
1 K00 . 2
< Gy max{”F(l )(z,w)|| : (z,w) € D [(zo,wo),R/L(zo,wo)]}
ls+1 ly“‘l
« 1 (ZO'WO)ZH(ZO'wO)/ |dz||dw|
ri“rg T2((zo,w0),R/L(z0,wp))

S .Y ¢

s y
— max {HF(k?rO) (z,w)|| : (z,w) € Dz[(Zo,wo),R/L(zo,wo)]} 15 (2o, wo)13 (20, wo)
1
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||F(S,mg+y)(z0, w0)|| < 1 / ||F Omz)(z w)”
S'y' - (27‘()2 Tz((zo,wo),R/L(zo,wo)) ’Z_ZO’SJrl’w wo ’

= 2np max {HP(O,mS)(z,w)H : (z,w) € D? [(zo,wo),R/L(zo,wO)]}
y 151 (20, w0) 1 (20, wo)

i—i—l y+1 /T2((zo,wo),R/L(Zolw0))

i |dz||dw|

|dz||dw]|

s Y
:nmxﬂwmm@@ﬂwn3@ﬂ@e[ﬁ“mﬂmLRﬂimﬂ%ﬂ}h@mwﬁg&mww.
1°2

PutR = <%, %) . In view of (15) and (16) we have

|IE59) (20, wo) |
sly!
15 (zo, wo)13 (2o, wo) 0
< 2 ax { |[F%0 (z,w)| : (z,w) € D*[(z, o), R/ L(z0, wg)]
(B/vV2)™ { }
Is ?/
<P 120, o)l S(i?/’ “o) | F90) (29, wp)]],
(B/V2)
17)
[EG349) (20, wo) |
sly!
15 (20, wo) 3 (20,
< A= wo>3(f£yw0> ax{HF(O'mg)(z,w)H : (z,w) € ID? [(zo,wo),R/L(zo,wo)]}
(B/V2)
I5 1
< PR WOB 0 00)y 0 2, ).
(B/V2)
(18)
We choose s,y € Zi such that s +y > sp, where (5/55)90 <1.
Then from (17) and (18) we obtain as kg < ny, mg < ng
|FR) (2o, wo) | P syt |IF®50) (zo, wo) |
0 0
l]1<1+s(20’ wo)lg(Zo,wo)(kO +5)ly! (,3/\/2)S+y (s+ k(l))!y! l’1<1 (Zorw0>k(1J!
IFO0) (2, o) |
= 0 7
lll(l (Zo, wo)k(l)!
[F©3+) (2o, wo) | o b syl FO") (o w)|
0 =
15 (z0, w0y 2 Y (20, wo)s!(m +y)t — (B/V2)™H st(m3 +)! Iy (20, wo)my!
- E OmZ)(Zo wo)”
B [ 2(20, ZUQ)
Therefore, N(F, L, B?) < ng + so. O

Lemma 1. Let Ly, Ly € Q(IB?) and for every point (z,w) € B? one has L1(z,w) < Ly(z,w). If
an analytic vector-function F in B? has a bounded Ly -index in joint variables, then the vector-
function F has a bounded L;-index in joint variables and N(F, Ly, B?) < 2N(F,L;,B?).
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Proof. Let N(F,Ly,B?) = ng. In view of (2) we obtain that

IFWD (z,w)|| _ |[FW)(z,w)|
i!j!L;’j (z,w) i!j!lél1 (z, w)lé/z(z, w)
El,Ew) E W)
15,1 (z, w)lé/2 (z,w) i!j!lil1 (z, w)l]L2 (z,w)
I (z,w i Z, W (k,m)
RCADLPEAD max{ IFCM @Oy e 22 e < no}
I (er)lélz(zrw) klmllf | (er)le(er)
< li,l (er)li,z(zrw)
1y (z, )1 (2, )
1k (z, W)™ (z,w (k,m)
xmax{ il( >i12( ) ”f (Z';U)” 2 (k,m) EZZ,k—i-mSnO}
IT1(z w)lf'y (2, w) ktmlly | (z, )13, (z, w)
i~k j—m
< max <ll,1 (Z/ w)) . <ll,2(zl ZU)>
k+m<ny lZ,l (Z/ ZU) lZ,Z (Z/ ZU)
(k,m)
X max IF (z,w)] : (k,m) EZi,k+m§n0 .
k!m!l’z‘,1 (z, )3y (z, w)

Since L1 (z,w) < Ly(z,w), for all i + j > 2ny we have

[FD )l { |EE (2, w)|

_ c(km) € Z2 k+m<mngyp.
i | (z,w)lél2 (z,w) k!m”Iﬁ,1 (z,w)l5, (z,w) -

Therefore, the vector-function F has a bounded L;-index in joint variables and

N(F, Ly, B?) < 2N(F, Ly, B?).

The notation L =< L means that there exist 6; € R, 6, € R such that for all z € B2 and
for each j € {1,2} we have

011:(z) < Ii(z) < 6a1;(2).

Lemma 2. Let L € Q(B?), L < L, B(®;) > 1. An analytic vector-function F in B? has a
bounded L-index in joint variables if and only if it has a bounded L-index in joint variables.

Proof. Ttis easy to prove that with L € Q(B?) and L < L corresponding function L € Q(IB?).
Let N(F,L,B?) = 7ig < +c0. Then by Theorem 1 for each R = (71,7,) € R%, |R| < B there
exists p > 1 such that for all (zg, wg) € B? and some (ko, mg) with ko + my < 7ig inequality (5)
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is true with L and R instead of L and R, respectively. Hence, we have

P PR zo,we)| 6™ [P (zg,wp)|
kO!mO! ZIIO (Zo, wO)lgio (Z(), wo) ko!ﬂ’lo! 912<0+m0 l’l(o (Z(), wOﬂ;”O (Z(), ZU()>
P |[Fkomo) (7, wo) |
~ ko'mpg! le(ﬁmolleo(Zo, wo)lszo (z0, wo)
(k,m)
> max{ IF @O < ) (20) € D2 [(zO,wo>,R/L<z,w>]}
0+mp ~ko ~my
0, kKim!ly “(z,w)l, ~(z,w)
erm_ |F®™ (zw)| ~ 2 =
> 9§0+m0 max {91 k!m!l’l‘(z,w)lzm(z,w) ck+m <, (z,w) €D [(zo,wo),QlR/L(z,w)}

min{1,6°} { IE®) (z, )|

oy : k+m <, (z,w) €D? |(z9,w0),0:R/L(z, ,
~ max{1,6,°} Km!If z,w) " z,w) +m <, (z,w) [(ZO wo),61R/L(z w)}}

By Theorem 1 we conclude that the vector-function F has a bounded L-index in joint variables.
O

Theorem 3. Let L € Q(IB?), B > 2. An analytic vector-function F : B> — C? has a bounded
L-index in joint variables if and only if there exist R € R%, |R| < B, ng € Z2 and py > 0 such
that for all (zp, wg) € B? and for some (ko, mg) € Zi, ko + mo < ng inequality (5) is valid.

Proof. The necessity of this theorem follows from the necessity of Theorem 1.

Now we prove the sufficiency. From the proof of Theorem 1 with R = <%, %) we have

that N(F, L, B?) < +-co.
0 0
Let L*(z,w) = ROLI({Z’W), that is <l;‘(z,w) = %f’w),l;(z, w) = M), where RV =

r2
- ) - (4
such that |[R| < B,

, %) In the general case, with validity of (5) for F, L and R = (rq,72)
R # R°, we get

[FE™ @ w) *
max { ktm! (13 (z,w))k (13 (z, w))™ k+m <mng,(z,w) € D? [(zo,w0), Ro/L*(z, w)]}

. IE®™) (2, w) |
a k!m!(r(l)ll(z,w)/1’1)k(7’(2)lz(zrw>/7’2)m

R
tktm <o, (z,w) €D? [(Zo’w0>’ m] }

k+m
275 [FEm (z,w)|| 2
< max{k!m!l’{(z,w)l’zﬂ(z,w) sk +m < ng, (z,w) € D?[(z0,wo), R/L(zo, wp)]

po  2/2||Fkomo) (z5, wy) || 2M0/2(B/+/2)kotmo || Fkomo) (2o, w) |
~ kolmo! 10(zg, w0) 13" (20, wo) Rorokotmg!  (R1(z,w)/r1)Ro(rla(z, w) /ra)™0
ng (B/+/2)kotmo || Fkom0) (29, wp) |
<22 -7 .k < ’
=<7 pomax { Koy 0¥ Mo = o ko!mo! (1} (z,w) )% (I3 (z, w) ) ™o

i.e. (5)is true for F, L. and Ry = (B/+/2, /+/2). Hence, by Theorem 1 the vector-function F
is of bounded L,-index in joint variables. By Lemma 2 the vector-function F has a bounded
L-index in joint variables. O
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Y Wit CTaTTi MM PO3TASIAAEMO KAAC BEKTOP-(PYHKIIIN, aHAAI TUIHIX B OAVHIYHI Ky Ai. AAS ITBOTO
KAacy (PYHKIIi BBEACHO HOHSITTSI 06MeXeHocTi L-iHAeKkcy 3a cykymHicTio 3MiEmX, ae L = (I3, 1) :
B2 — R%2 — aoaarHa HenepepBHa BekTop-cpyHKuist, B2 = {z € C2: |z| = \/|z1]2 + |22]2 < 1}. Ha-
MU OTPMMAHO HeObXiAHI 1 AOCTaTHI YMOBU 0bMeXXeHOCTi L-iHAekcy 3a cyKynHicTIO 3MiHHMX. BoHu
OIICYIOTh AOKAAbHE MOBOAXKEHHSI MAKCMMYMYy MOAYASI KOXXHOTO KOMIIOHEHTa BeKTOP-(PYHKIIT um
il YaCTMHHVX IOXiAHMX.
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TUYHA (PYHKIIisl, OAMHMYHA KYAS, AOKaAbHe TIOBOAXKEHHS, MAaKCMMYM MOAYASI, SUp-HOpMa, BeKTOp-
HO3HauHa (PYHKIIisI.
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THE NONLOCAL BOUNDARY VALUE PROBLEM WITH PERTURBATIONS OF
MIXED BOUNDARY CONDITIONS FOR AN ELLIPTIC EQUATION WITH
CONSTANT COEFFICIENTS. I

In this article we investigate a problem with nonlocal boundary conditions which are multipoint
perturbations of mixed boundary conditions in the unit square G using the Fourier method.

The properties of a generalized transformation operator R : Ly(G) — Ly(G) that reflects nor-
malized eigenfunctions of the operator Lg of the problem with mixed boundary conditions in the
eigenfunctions of the operator L for nonlocal problem with perturbations, are studied. We construct
a system V(L) of eigenfunctions of operator L. Also, we define conditions under which the system
V(L) is total and minimal in the space L,(G), and conditions under which it is a Riesz basis in
the space Ly (G). In the case if V(L) is a Riesz basis in L, (G), we obtain sufficient conditions under
which nonlocal problem has a unique solution in form of Fourier series by system V(L).

Key words and phrases: differential equation with partial derivatives, eigenfunctions, Riesz basis.
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1 INTRODUCTION

The fundamentals of the theory of linear differential equations in partial derivatives with
constant coefficients were established by L. Ehrenpreis, L. Hermander, V. Malgrange, 1. Petro-
vsky.

Boundary value problems in bounded domains for certain classes of differential equations
with constant coefficients have been studied in [1-13]. This paper is a continuation of the
investigations that were begun in [3-6].

For our investigation we will use the following notations. Let G := {x := (x1,x,) € R?:
0 < x1, xp < 1}, Dj, D; are the operators of differentiation by the variables x1, x; respec-
tively; Hy := Lp(0,1), Hy := Lp(G); Hp := WZZ”(G) be a Sobolev space with a scalar product
and norm respectively

(u,v; Hy) := (u,v; Hy) + (D3"u, D3"v; Hy) + (D3"u, D3"v; Hy), ||u; Hal| := 1/ (u, u; Hy);

W:={veC01]: v eC[0,1],s=1,...,2n—1, o) e Hy};
Hos = {u(t) € Hy: u(t) = (~1)°u(1 - 1)}, s € {0,1};
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W, := WN Hy,, r =0,1; and [Hy] be a set of linear continuous operators on the space Hy. Let
us consider the boundary value problem

n . .
L(-D},—D}u:= Y a;DVDS" Fu = f(x), x€G, (1)
j=0

Csqu := DP " 2uly,—o + DF 2uly =1 + u =0, 2)

€n+s,1u = D%:izu‘xl:() - D%:izu‘xl:l =0, 3)

st := D3 2uly,—0 + D3°2uly,—1 = 0, (4)

lpysou = D%S’1u|x2:0 + D%S’1u|x2:1 =0,s=1,...,n, (5)

where

ks,l ny

E(s),ll/l = Z Z bslq/rD?uLxl:er, S = 1, . .,1’1, (6)
q=0r=0

0=x11<x12<-<x1 <1, a5, bs g0 €R,
q=0,1,...,ks1, ks1 <2n,r=0,1,...,nm,s=1,...,n,j=0,1,...,n.
Let L : H; — Hj be the operator of the problem (1)—(6) and
Lu := L(—D3?,—D3)u, u € D(L),
D(L):={u€ Hy: b u=0,s=1,...,2n, j=1,2}.

Definition. The functiony € D(L), that satisfies equality |L(—D3?, —D3)y — f; Hy|| = 0, is
called a solution of problem (1)—6).

Let us consider the following assumptions and theorems, that are necessary for further
investigation.

1. Assumption Py: bs g, = —(—=1)7bs g u,—r, X1, =1 —=X1p,—, ¥ =0,1,...,n1, s=1,...,n.
2. Assumption Py: k;1 <25 —2,s=1,...,n.

3. Assumption P;: for any real numbers py, py the positive number Cq(L) exists, that the
inequality Cy(L)[p[*" < [L(u1, p2)l, = (p1, p2), |1 == [ia * + [pa]?, holdss.

Theorem 1. Let Assumption Py holds. Then, for an arbitrarya;€ R, ¢ =0,1,...,n, bs 5, € R,
the operator L has a set of eigenvalues

o= {Ak,m = L(Hl,kr VZ,WI)/ ]’ll,k = 7.C2k2, Uom = 7.[2(21,” - 1)2/ k e Nr m e N}r (7)
and the system V (L) of eigenfunctions, which is complete and minimal in the space H;.

Theorem 2. Let Assumptions P;—P; hold. Then, the operator L has the system V (L) of eigen-
functions, which is the Riesz basis of the space H;.

Theorem 3. Let Assumptions P1—P3 hold. Then, for arbitrary function f € H; the unique
solution of problem (1)—(6) exists.
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Let Ag be the operator of boundary problem in the space Hj :
—z® () = g(t), t € (0,1), z(0) = z(1) = 0;
Apz = —23) (1), z(t) € D(Ap), D(Ap) := {z € W3(0,1) : z(0) = z(1) = 0};
Ti:= {1 sx(t) € Hy: T5x(t) := \/Esinps,kt, psk=(2k+s—1),keN, s=0,1};
Tis:={msx(t) € Hys, ke N}, s=0,1;
o(Ag) := {p1x = 7k*, k € N}.
Lemma 1. The operator A has the point spectrum o(Ay) and system of eigenfunctions Tj.

Proof. A direct substitution proves that the elements of system T; are the eigenfunctions of
operator Ap, which correspond to the eigenvalues o (Ap) .

Taking into account that the subsystem of eigenfunctions T; ; of the operator Ay is an or-
thonormal basis of spaces Hp;, s = 0,1, we obtain the statement of the lemma. O

Let © = {0 };>, be any sequence of real numbers. We consider the operator Ag : Hy —
Hy, which has a set of eigenvalues 0 (Ap), and the system of eigenfunctions

V(Ag) := {vsx(t, Ae) € Ho: voi(t, Ae) := Tiok(t),
v1k(t Ae) == T 1k(t) + 0xV/2 cos 2krmtt, k € N}

Lemma 2. For an arbitrary sequence ® the system of functions V(Ag) is complete and mini-
mal in the space Hy. The system of functions V (Ag) is the Riesz basis of this space if and only
if the sequence © is bounded.

Proof. Suppose that the system V(Ag) is not complete in the space Hy.
Let us suppose that there exist functions f = fo + f1 € Hop, and fs € Hps, s = 0,1, for
which the conditions of orthogonality hold:

(f, Us,k(tr A@),‘ Ho) =0,s=0,1, ke N.

Taking into account, that the system of functions 71,04(t) = vo4(t, Ae), 4 € N, is an orthonor-
mal basis of the space Hpg with respect to the condition of orthogonality, we obtain fy = 0.
Thus f = f1 S HO,l-

According to the condition of orthogonality we have the relation

(f,v1k(t, Ae); Ho) = (f, t11x(f); Hyo) =0, k € IN.

Taking into account the totality of the system of functions V;(Lg) = Tj 1 in the space Hy,
we have f = f; = 0. Thus the system V(Ag) is total (complete) in the space Hy. Therefore, the
operator Ag is defined on a dense set of the space Hj.

In the space Hj let us define the operators

R(Ag) := E+S(Ap), S(Ae)Tio4(t) =0, S(Ae)T1,14(t) := 05v2cos2gmt € Hyp, g € N.

According to equality S*(Ag) = 0 we get the relation R"!(Ag) = E — S(Ag). Therefore, the
system of functions V(Ag) is minimal in the space Hy. Let us prove the second part of the
lemma.
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Necessity. We choose any bounded sequence ® and show that S(Ae) : Hy — Hp is a
bounded operator.
Let us expand an arbitrary function 1 € Hy into Fourier series

o 1
=) Z Tk (£)
k=1j=0

Consider S(Ag)h = i 9mh1,k\/§cos 2krtt.
k=1

Taking into account that the system of functions {1,cos2krtt, k € IN} is an orthonormal
basis of Hy o and using Cauchy’s inequality, we obtain

IS(Ae)h; Hol|* < Ci|l; Hol|?, C1 = max |6k|*.

Thus S(Ae) € [Ho).
Taking into account the relation R"!(Ag) = E — S(Ag), we obtain an estimate

HR_l(A®)} [HO]”Z <G, G =2+2C.

Thus the system V(Ag) is the Riesz basis by definition.
Sufficiency. Let V(Ag) be the Riesz basis in the space Hy. Therefore, this system is almost
normalized. Thus, for any positive numbers C3 < Cy the next inequality holds:

Cs < ||vsm(t, Ag); Ho|| < Cq < 00, m € N.
Taking into account the equalities
lvox(t, Ae); Holl = 1, |loim(t, Ae); Holl = 1+ |0, k=0,1,..., m €N,
we obtain the proof of sufficiency. O

Let By be the operator of spectral problem

—2@ () = pz(t), peC,
tz:=2(0) +2(1) =0,
bz :=z1 (0) + zV(1) =0,
Boz := —z3)(t), z(t) € D(By), D(By) := {z € W3(0,1) : £z =0, s = 1,2},
Ty := {12, m(t) € Hy: Toom(t) :=V2sinw(2m — 1)t, To1 m(t) := V2cos w(2m —1)t, m € N},
o(Bo) := {pom = m*(2m —1)?, m € N}.
Lemma 3. The operator By has the point spectrum ¢(By) and system of eigenfunctions T,.

Proof. After performing a direct substitution we obtain that

Torm(t) € D(By), —Tz(,zr?m(t) =tomTrm(t), r=20,1, m € N.

Thus operator Lj has the system of eigenfunctions V(Lj), which corresponds to the set of
eigenvalues 0. O
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For the equation (1) we consider the boundary conditions gO,s,ju =0,s=1,...,2n,j=1,2,
which are the partial case of boundary conditions (2)—(6) for Z;lu =0,s=1,...,n.
Let Ly : H] — Hj be the operator of the obtained problem

Lou:=L <—D2,—D%> u, u € D(Lg), D(Lo) :={u € Hy: bpsju=0,5=1,...,2n,j=1,2},
and
V(Lo) = {vyskm(x Lo) € Hi: 0p50m(x, Lo) := Tisk(¥1)T2rm(x2), 7, s € {0,1}, m, k € N}

be the orthonormal basis of the space H;.

n
Considering the ratio Lo = (—1)" ¥ AjB; °, we obtain the following statement.
s=

Lemma 4. The operator Ly has eigenvalues (7) and the system of eigenfunctions V (Ly).

2 THE NON SELF-AJOINT PROBLEM FOR A DIFFERENTIAL EQUATION OF EVEN ORDER

For any fixed p € {1,...,n} we consider the problem

L(-D?, —D3)u := i asDF*D3" % u(x) = Au(x), x € G, A €C, (8)
s=0

Uy gqu = D%s_zu\xlzo + D%s_zu\xlzl =0,s#p,s=1,...,n, 9)

O pau = D" 2ul o+ DY Puly o1 + €0 ,u =0, (10)

U st i= D%s_2u|xlzo — D%s_2u|x1:1 =0,s#p, s=1,...,n, (11)

l1ot := D3 2uly,—0 + D3 2uly,—1 =0,5=1,...,n, (12)

Ot := D55 tuly, o4+ DF uly,o1 =0, s=1,...,n (13)

Let Ly, be the operator of the problem (8)—(13):

Ly pu = L(—D?,~D3)u, u € D (L1,),
D(Lip):={ueHy: by, ju=0,r=1,...,2nj=12},

and V (Ly,,) be the system of eigenfunctions of the operator Ly .
For any fixed m € IN let’s consider the solutions of problem (8)—(13) in the form of product

u(x) :=z(x1) T,m (x2), s € {0,1}.

To determine the unknown function z(x; ), we obtain the problem for eigenvalues

Zaq ) Sy;mq( D(x1) = Az(x1), % € (0,1), A€C, (14)

lS 12 1= Z(ZS’Z)(O) —{—2(2572)(1) =0,s#p s=1,...,n, (15)
Iz =272 (0) + 272 (1) +19,z =0, (16)
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Bz =2%20)-z2>21)=0,s=1,...,n (17)
where
kp1
12,12 =Y ) bp,q,rz@(xllr), p=1,...,n (18)
q=0r=0

Let Ly, be the operator of problem (14)—(18):

n

Lipmz == Z as(—l)m_syg:nsz(zs), z€D (Ll,p,m) ,
s=0

D (Lipm) = {z€W:lhz=0, j=1,...,2n}.
Lemma 5. Let Assumption P; holds. Therefore, for anya; € R, by, € R, 4 =0,1,.. .,kpll,
r=20,1,...,ny, m, p € N, the operator L, has the set of eigenvalues 0y, := {Mem € 0,
k € N}, and the system of eigenfunctions V (Ly,p,,) , which is complete and minimal in the
space Hy.
n
Proof. The solutions wy, (A), r =1,...,n, of equation ) as(—l)”_syg;fwzs = A, which is
=0 7

S=
characteristic for equations (14), we choose to fulfill the conditions
Rewpm (A) <Rewy_1m (A) <--- <Rewqy(A) <0.

Let us determine the functions

1
Zgm (X1,A) 1= E(exp wWgm (A) X1+ expwgm (A) (1= x1)) € Hoo, g=1,...,1,

1
Zntgm (X1,A) 1= E(exp wWgm (M) X1 —expwygm (A) (1 —x1)) € Hop, g=1,...,n,

2n
Zm(xl) = chzj,m (Xl,)t) s Cj € R. (19)
j=1

Substituting expression (19) into boundary conditions (15)—(17), we obtain an equation for de-
termining of eigenvalues for operator Ly, :

Ap(A) = det(l;,lzj,m (x,}\))]z,’;zl =0.

According to the relations z,,14,m (x1,A) € Ho,, l,}+sn e WS, s, re {0,1}, 12,1 e W, we
obtain
l}wq,lzj,m (x1,A) =0, l;llznﬂ-,m (x1,A)=0,j,9=1,...,n,
Apm(A) = Bom(A) A1 (A),

n

Am(A) = [TA =™y TT  (wjm (A) = @gm (A))* = 0. (20)

g=1 1<j<q<n
Let w,x,, be roots of the equation (20) for A = Ay,, which are selected so that
Wikm = 1k, Rewypn, < Rewy_ 1, < -+ < Rewyg,, < 0, k € IN. Substituting ex-

pression (19) in boundary conditions (15)—(17), we can find the eigenfunctions of the operator
Ll,p,m .
o (x1,Lipm) = V2sinpgxx1, pox = m(2k —1), k € N. (21)
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Let us define the system of functions

211 gm (X1) = V2008 py px1, p1x = 2km, k €N, (22)

1 _
Zl,q,k,m(xl) = E(1 + exp wq,k,m) 1(exp Wy kmX1 + exp wq,k,m(l —x1)), k€N, (23)

and a square matrix of order 7, elements of which we define by the following rule: pth row is
defined by functions (22), (23), and elements of other rows is defined by numbers

. 2-2r _ 2-2r, 2r—2 _ _
ﬂq,r,k,m = P1x ll,r,lzl,q,k,m/ Vgrkm = P71 Wl 4= 2,3,...,n,r#p,r=1,...,n

Opjom =2V2, r £ p, =2,3,...,n, ke N.
Determinant of the given matrix is denoted by z ,, x ,(x1), k € N.

Remark 1. For any fixed m € N and k — oo, we obtain the relation

. -1 _
51,k,m = wl,k,mpllk =1,

Sgfm = O Wakm = &g (1 + O <k‘1>) ,
where ¢, are the solutions of equation (=1)"(e)* =1, ey =1, Im e<0,g=23,...,n

Substituting function z; ; (x1) in boundary conditions (14)—(17), we obtain the equalities

el,s,lzZ,p,k,m =0,s 7& p, ll,p,lzZ,p,k,m = Cpkms S = 1,...,2n, ke N,

where ¢k = \/EZp?ﬁ(_ZWk,m, Wim = W <5%,k,m’ o, 02 ) is Vandermonde determinant of

n,k,m
order n, which is constructed by numbers 5§,k,m' g=1,...,n

Remark 2. For arbitrary m € IN and k — oo the number sequence {Wy ,, }7- ; converges to

Vandermonde determinant W (€2, €2,...,€2), which is constructed by numbers €2, . .., €%.
17 €2 n 4 1 n

Therefore, 8, , . m = s%r_z(l +0(1)), k=00, g=1,...,n

Thus, the positive numbers Cs, Cq exist such that the following inequality holds:
0<GCs < }cp,k,m}pi;zﬁ < Ce < o, k€ N.
Let us choose the functions
Z3,pm(X1) := ijlzz,p,k,m(xl), k € IN. (24)

Taking into account equalities (24), we obtain the relations

2p—2
g%/SZ;),,p,k,m =0,s#p, ﬂ%lpz;;,p,k,m(xl) = 2\/§p1”;{ ,s=1,...,n (25)
Let Ajsxm := det(ﬁqu’m)gfz rl,ns' Consider the functions y, i, (x1) := A7 11,k, mZ3,pkm(X1),
n
Yojom(¥1) = 211 jm (¥1) + Y Vjpkm?1,jem (X1), k € N, (26)
j=2

where v, km = Al,p,k,mAj,p,k,m/ j=23,...,n
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From formulas (24)—(26) we obtain

yp,k,m(xl) = Cl,p,k,mZZ,p,k,m(xl)/
where
-1
Cl,p,k,m = Wk,mAl,p,k,mr C7 < C1,pk,m < CS < 0.

Therefore,

2p-2
l%,pyp,k,m(xl) = ch,k,mZ\/ipL;;< , l%,syp,k,m(xl) =0,s#p s=1,...,n
The eigenfunctions vy  (x1, L1,,m) of the operator L; p, ,, we define by the equality

01k(x1, L1pm) = T,106(x1) + 1pgmYppm(x1), k € N. (27)

To determine the unknown parameters 7,,,,, we substitute the expression (27) in the
boundary conditions (16), (17).
Taking into account (24), we obtain

_ 2-2
Hpkm = (=1)Pv 8_1C1,;,k,mp1,k pl%,p"fl,l,k/ k € N. (28)

Thus, the operator Ly, has the system V (Ll,p,m) of eigenfunctions (21), (24), (28).

The completeness of the system of functions V (L1, ) in the space Hy is proved from the
opposite, like in the proof of the Lemma 2.

Let us consider the operators

R(Ll,p,m)r S(Ll,p,m) : H() — Ho, R(Ll,p,m) =E+ S(Ll,p,m)/

R(L1,p,m)ti0k(x1) := T0x(x1), R(L1,pm)T1k(x1) := 014(x1, L1,pm), k € N.

From the definition of operator S(Ly ;) we obtain S(L1,p,) : Hoo — 0, S(L1,p,m) : Ho1 —
Hoo, S*(L1,pm) =0, R™Y(Ly,pm) = E—S(L1,p,m). Therefore, the system of functions V (L1, )
is minimal in the space Hy. Lemma 5 is proved. O

Let 0y = 17y km, then Ap = Ag, k, me N, p € {1,...,n}.

Lemma 6. If {1,k };-, is a bounded sequence, then the system of functions V(Lyp,) is the
Riesz basis in the space Hy.

Proof. Taking into account the definition of the function y,  ,,(x1) and the choice of numbers
Wykm, 4 = 1,...,n, we can conclude: if 6 = 1,1m, kK € N, p € {1,...,n}, is a bounded
sequence, then the systems of functions V(L1 ), V (Ap,n) are quadratically approximate for
everym e N, pe {1,...,n}.

Therefore, taking into account the Lemma 5 and the theorem N.K. Bari [10], we obtain the
statement of Lemma 6. O

Let us choose an arbitrary sequence of real numbers ® = {6, }> ;, and define the operator
Ae,pm : Ho — Hp, which has the set of eigenvalues 7y, = {A, € 0, k € N} and the system
V(Ae,pm) = {Vskm(¥1, A@,pm) € Ho: s =0,1, k € N} of eigenfunctions

00 k,m (X1, Ae,pm) = T10k(X1), OLkm(X1, Ae,pm) = T1,1k(%1) + OkYpim(x1), K EN. (29



236 BARANETSKIJ YA.O., KALENYUK P.I., KOPACH M.I., SOLOMKO A.V.

Consider the operators

R(A@/lg’m) = E + S(A@/lg’m),
S(Ae,pm)T10k(x1) := 0,
5(Ae,pm)T1,1k(x1) = OYpjem(x1), k € N
Let I'y ,(Lo,m) be the set of operators, which have purely point spectrum ¢y, and the system

of eigenfunctions (29).
We define on I'y ;(Lo,») the commutative multiplication operation

R(A®1,p,m)R(A®2,p,m) =E+ S(A®1,p,m) + S(A®2,p,m) = R(A®2,p,m)R(A®1,p,m)f

A®2,p,m/ A®1,p,m S rl,p(LO)/

and inverse operator R™!(Ag pm) = E — S(Ae,pm), Aepm € T1(Lom)-

Lemma 7. For any real numbers 0, € R, g € N, the system of functions V(Ag ) is complete
and minimal in the space Hy. The system of functions V(Ae ) is the Riesz basis in Hy if and
only if the sequence © is bounded.

Proof. The lemma can be proved by the schema of proof the Lemma 2. O

We define by the formulas

Us,r,k,m (xl Ll,p) = vs,k (xlr Ll,p,m) TZ,r,m (x2) 7 Sr r E {O/ 1}/ k/ m E N/ (30)
the eigenfunctions of operator Ly .

Lemma 8. Suppose that the Assumption P; holds. Then, for arbitrary as € R, by, € R,
the operator Ly, has the point spectrum o, and the system of eigenfunctions V (Ly,) :=
{01 pm (x,L1,p), s, r € {0,1}, k, m € N}, which is complete and minimal in Hy.

If the Assumptions Py—P3 hold, then the system of functions V (L1 ) is the Riesz basis in
the space Hj.

Proof. Substituting functions (30) into the equations (8)—(13) makes sure that the numbers
Am € 0 are eigenvalues, if k, m € IN.

In the space H; we define the operator R (Ly ) := E 4+ S (Ly,,) , which maps the system of
functions V (Lg) into V' (L) -

The operator R (L; ,) has the form

R (LLP) = ZR(Ll,p,m> X T02,r,ms

r,m

where 713, ,,, is the orthoprojector into the one-dimensional proper subspace in Hy, which cor-
responds to eigenfunction 1, , ,,(x2) of operator By.

We consider the operator A, : Hy — Hj, which has purely point spectrum o(A,) :=
{Mem € R: Ay = Pk + pom, k, m € N} and the system of eigenfunctions

V(Ap) :={vgppm (X1, %2, Ap) 1= vs (X1, Apm) Torm (x2), s, ¥ € {0,1}, k, m € N}.

Let R(Ap) := ¥ R(Apm) X 72,0 m-
r,m
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According to the Lemma 5, for an arbitrary m € IN the system of functions W (L1, ) exists,
and it is biorthogonal to the system V (L1, ) -

Therefore, we can define the elements of system W (L, ,,) , which is biorthogonal to system
V (L1,p) in the space H; :

Wy y jom (X1, X2, L1,p) = Ws (%1, L1,pm) T2r,m(x2), 5, ¥ € {0,1}, k, m € N.

Thus, the system V (L;,) is complete and minimal in Hj.

Therefore, when the Assumptions P, and P; hold, then we obtain the inequality |17, x| <
Cy < oo, for arbitrary m, k € IN. Taking into account the estimates ||R(A,); [H1]||* < Cyo, we
obtain the statement: eigenfunctions (30) of operator A, are almost normalized, and system
V (A,) is the Riesz basis of the space Hj.

We consider the operator R(L1,,) = E+ S(L1,,) = (E + Q)(E + S(A})). Then the operator
Qp := S(L1,p) — S(Ay) is completely continuous, because the systems of functions V' (L1,p,m),
V(Ap,m) are quadratically approximate and the operator Qpm := S(L1,p,m) — S(Ap,m) is idem-
potent: Q%,m =0.

According to the definition of function v, ,,(x, Ly), we obtain

1QpVs v km (X, Lo); Hi|| = O(m + k)f?’, m, k — oo.

Then, for an arbitrary 1 = Y Ng, g s rkm(¥, Lo) € Hi, from Cauchy’s inequality we can
s,r,mk

get the inequality

HQph} Hle - ” Z hs,r,k,meUs,r,k,m(xr LO); Hle < Cll”h} HlH2~
s,rkm
Thus ||Qp; [H1]||> <oe, (L1,p) =Qp + R(A1,p) € [H1], R(L1,p) '=(E—S(A,)(E—Q)€[Hy]. O
n
Proof. Proof of the Theorem 1. Let R(L) :=
p=

R(Ly,p). The eigenfunctions of operator L we
1

can define in the form
vs,r,k,m(xr L) = R(L)vs,r,k,m(xl LO)/ r, s € {0,1}, k, m € N.

Taking into account, that operators R(Ly ) are elements of the group I'1 ,(Lo), we obtain
n
R(L) = E+S(L), R"Y(L) = E—S(L), S(L) := Y _ S(Ly,).
p=1

Therefore, the system of eigenfunctions V (L) is complete and minimal in Hj. O

Proof. Proof of the Theorem 2. Let the Assumptions P;—P; hold, then the system of eigenfunc-
n
tions V (Ly,,) is the Riesz basis in the space H;, and R(L) = [] R(Ly,,) € [Hj]. Therefore,
p=1
taking into account the theorem N.K. Bari [10], we obtain the statement of the theorem. O

Let us define the elements of system W(L), which is biorthogonal to system V (L) in the
space Hi:
Wsr km(X, L) := R(L)T1 5 (x1)T2rm(x2), s,7v € {0,1}, k, m € N.
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Remark 3. The positive numbers C1(L), Cy(L) exist, such that for function

f(x> = Z fs,r,k,mvs,r,k,m(xlr X2, L)r fs,r,k,m = (f/ ws,r,k,m(xlr X2, L)? Hl)

s,rk,m

the following inequality holds

QOIS HIP < Y forkml’ GO Hil (31)

s,r,k,m

Proof. Proof of the Theorem 3. We will use a solution of the problem (1)—(6) in the form of
series

u(x) = Z us,r,k,mvs,r,k,m(xlerI L). (32)

s,rk,m

If we substitute series (31), (32) into equation (1), we obtain
T
Taking into account the Assumption P3 and inequality A ,}1 <1, we can get
lu; Hi || < Cs(L) || f3 Fll?, Cs(L) = Ca(L)~H(L)C3(L)Cy (L),

ID3"u; Hy||* < Cs(L)|| f3 Fhll?,
ID3"w; Hy|* < Cs(L)|| f5 Fh||*.
Therefore, |lu; Hy||> < 3Cs(L)||f; H1|? O
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bapanenskmit 51.0., Kaaentok I1.I., Komau M.I., Conomko A.B. HenokanoHa kpatiosa 3adaua 3i 36ypeH-
HAMU MIUAHUX Kpaiiosux Yymoe 0.1 eninmuuHoeo pisHaHHS 3i cmanrumu koepiyienmamu. I // Kapmarceski
MaTeM. my6A. — 2019. — T.11, Ne2. — C. 228-239.

Y poborTi B oavHMUIHOMY KBaapaTi G MeToaoM Dyp’e AOCAIAXYETHCS 3aAaUa 3 HEAOKAABHVIMU
yMoBaMy, SIKi € 6araToTOYKOBMMM 30YpPEeHHSIMM MilllaHMX KPaifoBMX yMOB. BMBYeHO BAACTMBOCTI
y3araAbHEHOT0 orneparopa nepersopeHHs R : Ly (G) — Ly (G), stkwmit BiAobpaskae HOpMOBaHi BAACHI
dyHkLii onepaTopa Lo 3apadi i3 MilllaHMMM KpalfoBMMM yMOBaMM Y BAacHi pyHKIiI oneparopa L
36ypeHoi HeAOKaABHOI 3apaui. [To6yaoBaHo cucremy V(L) BAacHMX dpyHKLiN onepaTopa L. Busna-
YeHO yMOBY, ITpu sIKMX cucTeMa V(L) moBHa Ta MiHiMaAbHA B ripocTopi Ly (G), Ta yMOBY, TIpU SIKMX
BOHa € 6asucoM Picca y mpocropi Ly (G). Y Bumaaxy, sikimo cvicrema V(L) e 6asucom Picca B mpocTopi
L,(G), BCTAHOBA€HO AOCTATHI MOBI, IIPY SIKMX HEAOKAABHA 3aAdUa Ma€ CAVHIIA PO3B’SI30K Y BUTASIAL
psiay ®yp’e 3a aucremoro V(L).

Kntouosi crosa i ppasu: amdpepeHIiarbHe PiBHSHHS 3 YaCTMHHMMM IOXiAHMMM, KOpeHeBi pyH-
Kuii, 6a3uc Picca.
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ON COMPARISON OF THE PRINCIPLES OF EQUIVALENT UTILITY AND ITS
APPLICATIONS

An insurance premium principle is a way of assigning to every risk, represented by a non-
negative bounded random variable on a given probability space, a non-negative real number. Such
a number is interpreted as a premium for the insuring risk. In this paper the implicitly defined
principle of equivalent utility is investigated. Using the properties of the quasideviation means,
we characterize a comparison in the class of principles of equivalent utility under Rank-Dependent
Utility, one of the important behavioral models of decision making under risk. Then we apply this
result to establish characterizations of equality and positive homogeneity of the principle. Some
further applications are discussed as well.

Key words and phrases: insurance premium, quasideviation mean, comparison, equality, positive
homogeneity, risk loading.

University of Rzeszéw, 1 Pigonia str., 35-310 Rzesz6éw, Poland
E-mail: mchudziak@ur.edu.pl

1 INTRODUCTION

Assume that Xy is a family of risks, represented by non-negative bounded random vari-
ables on a non-atomic probability space (€}, F, P). An insurance premium principle is a way
of assigning to every X € X, a non-negative real number H(X). The number H(X) is in-
terpreted as a premium for insuring X. There are many methods of defining the principles.
In what follows we deal with the principle of equivalent utility. The principle, postulating a
fairness in terms of utility, has been introduced in [2]. Under the Expected Utility model the
premium for a risk X € X is defined through the equation

Efu(w + H(gu) (X) = X)] = u(w), @)

where w € [0, ) is an initial wealth level and © : R — R is a continuous and strictly increasing
function such that #(0)=0. In general, (1) has no explicit solution. However, in some cases the
premium can be expressed in an explicit way. In particular, if u is linear, then

H(w,u)(X) = E[X] for X e X+,

i.e. the principle of equivalent utility becomes the net premium principle. If u(x) = a(1 —e™ %)
for x € R, with some a,c > 0, then from (1) we deduce that the principle of equivalent utility
reduces to the exponential principle

Hi) (X) = %lnE[e"X] for X e X,.

YAK 519.812
2010 Mathematics Subject Classification: 91B16, 91B30, 39B22.

@ Chudziak M., 2019
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Note that in both cases the premium for a given risk does not depend on an initial wealth
level. Some properties of the principle of equivalent utility defined by (1) can be found e.g
in[1,2,6,13].

In this paper we deal with the principle of equivalent utility under Rank-Dependent Utility,
one of the behavioral models of decision making under risk. In this setting the principle has
been introduced and investigated in [7]. In order to define it, recall that if g : [0,1] — [0,1]
is a probability distortion function, that is a non-decreasing function such that ¢g(0) = 0 and
g(1) = 1 then, for any bounded random variable X on (2, F, P), the Choquet integral with
respect to g is given by

0 %)
E[X] = lw(g(P(X > 1) 1) dt—l—/o 2(P(X > 1)) dt. @)

The premium for a risk X € X under the Rank-Dependent Utility model is defined as a
solution of the equation

Eg[u(w + H(w,u,g)(X) - X)] = u(w)' (3)
It is known (cf. [4, Remark 1]) that if g is a continuous probability distortion function and u :
R — R is a continuous strictly increasing function with #(0) = 0 then, for every X € X, the
number H, , o)(X) is uniquely determined by (3). Some properties of the premium defined
by (3) have been investigated in [7] under the assumption that g is convex and u is concave and
differentiable.

The main result of this paper provides a characterization of a comparison in the class of the
principles of equivalent utility. Applying this result we establish characterizations of further
natural properties of the principle, namely equality and positive homogeneity. Some results
concerning the risk loading property of the principle of equivalent utility are presented as
well.

It turns out that an effective tool for dealing with this issue is a notion of a quasideviation
mean. Therefore, in the next section we present a definition of the mean and a result concern-
ing a comparison of quasideviation means.

2 QUASIDEVIATION MEANS

The notion of the quasideviation mean has been introduced in [10]. In order to recall the
notion, assume that I C R is an open interval. A function D : | 2 3 Riscalled a quasideviation
if it satisfies the following three conditions:

(i) D(x,x) =0forx € Iand (x —y)D(x,y) > 0for x,y € I with x # y;
(ii) forevery x € I, the function I 5 t — D(x, t) is continuous;

D(y.t)
D(x,t)

(iii) for every x,y € I, with x < y, the function (x,y) > t — is strictly increasing.

Let
Ay :=1[0,00)"\ {0}.
In [10] it has been proved that, if D : I> — R is a quasideviation, then for every n € N,
X =(x1,..,xn) € "and A = (Aq, ..., Ay) € Ay, equation

i AZ‘D(XZ‘, i') =0 (4)
i=1
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has a unique solution ty. Moreover
min{x;:i € {1,..,n}} <to <max{x;:i€{l,.,n}}

Thus, equation (4) defines a mean, called a D-quasideviation mean of X weighted by A. Fol-
lowing [10], we denote the mean by 9p(x; ). Several properties of quasideviation means
have been proved in [11]. In our considerations we will need the following result, which is a
particular case of [11, Theorem 7].

Theorem 1. Assume that I C R is an open interval and D1, D5 : I? > R are quasideviations.
Then the following statements are equivalent:

(1) Mp, ((x1,x2); (A, 1= A)) <Mp,((x1,%2); (A, 1= A)) forxy, x2 € I, A € [0,1];
(ii) there exists a function A : I — (0,00) such that

Dy(x,y) < A(y)Da(x,y) for x,y €.

3  PRELIMINARY REMARKS

Remark 1. Let ¢ be a probability distortion function. It is known (cf. [5, Proposition 5.1])
that the Choquet integral is monotone and positively homogeneous. Furthermore, for every
bounded random variable X on (Q), %, P), we get

E¢[X+c] = Eg[X] +c for c€R (5)

and
Eg[—X] = —Eg[X], (6)

where g : [0,1] — [0,1], given by
glp) =1-g(l—p) for pe[01], (7)
is the probability distortion function conjugated to g.

Remark 2. Note that if g is the identity on [0, 1] then E¢[X] = E[X] for every bounded random
variable X on (Q), %, P). Therefore, applying [5, Proposition 5.2 (iii)], we conclude that:

o ifg(p) < p forp € [0,1] then E¢[X] < E[X] for every bounded random variable X on
(Q,%,P);

o ifg(p) > p forp € [0,1] then E¢[X] > E[X] for every bounded random variable X on
(Q,%,P).

Remark 3. Let g be a continuous probability distortion function. Since the Choquet integral is
monotone, for every X € X, the function

R>t— Eglu(w+t—X)] —u(w)

is nondecreasing. Furthermore, H (w,1,9) (X) is its unique zero.
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Remark 4. In view of (3) the premium for a given risk depends only on a probability distribu-
tion of the risk. Thus, we identify the risks with their probability distributions. Note also (ct.
e.g. [12, Lemma 2.71]) that, as the probability space (), %, P) is non-atomic, for every x,y € R,
with x < y, and every p € (0,1), there exists a random variable X on (), %, P) such that
P(X = x) = pand P(X = y) = 1 — p. Denote any such a random variable by (x,y;1 —p, p).
Furthermore, let X?) be a family of all such random variables and

XJ(FZ) = {(x,;1—p,p) € @ :x >0}
Remark 5. If X = (x,x2;1 — p, p) € X2 then, in view of (2), we get (cf. [8])

Eo[X] = (1—g(p))x1 +g(p)xa.

Remark 6. Assume that w € [0,00), g is a continuous probability distortion function and
u : R — R is a strictly increasing continuous function such that u(0) = 0. Then, taking

X=(x,y,p1-—p) € XE), we obtain

u(w + H(w,u,g)(X) - X) = <(u(w + H(w,u,g)(X> - y)/u(w + H(w,u,g)(X> - x>>; 1-p, P>~

Therefore, applying Remark 5, from (3) we derive that H(,, , o(X) is a unique solution of the
equation

(1 - g(p))(u(w + H(w,u,g)(X) - ]/) +g(p)u(w + H(w,u,g)(X) - x) = u(w)- (8)

4 RESULTS

The following theorem is the main result of this paper.

Theorem 2. Let wq, w; € [0,00). Assume that g is a continuous probability distortion function
and u,v : R — R are strictly increasing continuous functions such that u(0) = v(0) = 0. Then
the following statements are pairwise equivalent:

(i)

Hiuy9)(X) < Hipyug)(X) for X € X%, 9)
(i)
Hy,0)(X) < Hiupug)(X) for X € Xy; (10)
(iii) there exists ¢ € (0,0) such that
u(x) <co(x +wy —wy) +u(wy) —co(wy) for x € R. (11)
Proof. Let Dy, Dy : (0,00)? — R be given by
Di(x,y) =v(w1) —v(wy +y—x) for x,y € (0,0), (12)

and
Dy(x,y) = u(wy) —u(wy +y—x) for x,y € (0,00), (13)
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respectively. Then, as one can easily check, D1 and D, are quasideviations. Furthermore, since
¢ is continuous with ¢(0) = 0 and g(1) = 1, for every A € (0,1) there exists (not necessarily
unique) p, € (0,1) such that

g(pa) = A. (14)

First we show that (i) = (iii). Assume that (9) holds. Let x;,x, € (0,00) and A € [0,1].
We claim that
Mp, ((x1,x2); (A, 1= A)) <Mp, ((x1,x2); (A, 1 —A)). (15)

If x; = xp or A = 1, then both sides of (15) are equal to x;. Moreover, if A = 0, then both
sides of (15) are equal to xp. So, assume that A € (0,1) and x; # xp, say x; < xp. Let

X = (x1,x2;p1, 1 — pa), where p, € (0,1) satisfies (14). Then X € XJ(FZ) whence, taking into
account (8) and (12), we get
AD1(x1, H(w,,0,6) (X)) 4 (1 = A)D1(x2, H(qp,,0,) (X))
=g(pa)(v(w1) — v(w1 + H(gy,,0,9)(X) — x1))+(1 — g(pa)) (0(w1) — v(w1+H g, 0,6)(X) —x2))
=v(w1) — ((1 = g(pa))v(w1 + Hw,0,6)(X) — x2) + g(pa)v(w1 + H(w,0,6)(X) — x1)) = 0.

Thus

H,,0,6)(X) = Mp, ((x1,x2); (A, 1 = A)).
The similar arguments show that
H(wyu,g)(X) = Mp, ((x1,x2); (A, 1= A)).

Hence, in view of (9), we get (15). In this way we have proved that (15) holds for every x1, x; €
(0,00) and A € [0,1]. Therefore, applying Theorem 1 and making use of (12)-(13), we obtain
that there exists a function A : (0,00) — (0, o0) such that

v(wy) —v(wy +y—x) < A(y)(u(wp) —u(wy, +y —x)) for x,y € (0,00).

Since 1 and v are strictly increasing with u(0) = v(0) = 0, replacing in the last inequality x by
y —x, we get

v(wy) —ov(wy +x) < A(y)(u(wy) — u(wy +x)) for x € R, y € (max{0, x},c0).

Thus " .
u(wy ) — u(w- x
v(wy) — v(wy + x) < AW for x € (0,00), y > x (16)
and o) s 41 1
u(wy) —u(wy + x . N
o(wy) — v(wy + x) = A(y) for x € (—00,0], y € (0,00) (17)

Hence, taking

c:= sup{ﬁ Yy € (O,OO)},

we conclude that 0 < ¢ < co. Moreover, it follows from (16) that the inequality

u(wy 4+ x) < co(wy + x) + u(wy) — co(wy) (18)
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holds for all x € (0,00). Furthermore, taking in (17) the supremum over all y € (0,0), we

obtain . (wy) (w03 + )

u(wy ) — u{wyr X

FToP {@ Ve (O'oo)} : v(w:) —v(w: + x)

which implies (18) for x € (—o0,0]. Therefore, (18) holds for all x € R. Replacing in (18) x by

x — wy, we obtain (11). So, (i) = (iif).

Now, assume that (11) is satisfied. Then, as the Choquet integral is monotone and positively

homogeneous, in view of (3) and (5), for every X € X, we have

for x € (—o0,0],

Eg[u(w2 + H(wl,v,g)(X) - X)] - u(w2) < C(E[U(wl + H(wl,v,g)(X) - X)] - v(wl)) =0.
Moreover, according to Remark 3, for every X € &', the function
R >t — Eglu(wy +t — X)] — u(w,)

is nondecreasing and Hy, , o) (X) is its unique zero. Hence, (10) is valid. In this way we have
proved that (iii) = (ii).
The implication (ii) = (i) is obvious. O
From Theorem 2 we derive the following characterization of equality in the class of princi-
ples of equivalent utility under the Rank-Dependent Utility model.

Corollary 1. Letwy, w; € [0,00). Assume that g is a continuous probability distortion function
and u,v : R — R are strictly increasing continuous functions such that u(0) = v(0) = 0. Then
the following statements are pairwise equivalent:

(i)

Hwn0)(X) = Hgug)(X) for X € X?; (19)

wa,u,8

(i)
H(wl,v,g)(X) = H(wz,u,g)(X) for X € X+,‘

(iii) there exists c € (0,00) such that

u(x) =co(x +wy —wy) + u(wy) —co(wy) for x € R. (20)

Proof. Assume that (19) holds. Then, according to Theorem 2, there exist ¢, & € (0, o0) such that
(11) is valid and

v(x) <cu(x+wy—wy)+v(wy) —cu(wp) for x € R.
Hence
u(x) —u(wy) < clo(x+wy —wy) —ov(wy)) < éc(u(x) —u(wp)) for x € R.
Therefore, since v is strictly increasing, we get ¢ = 1 and so (20) is valid. This proves that
(i) = (iii).
If (20) holds then, replacing x by x 4+ wy — wy, we get
v(x) = %u(x +wy —wy) +v(wy) — %u(wz) for x € R. (21)

Taking into account (20) and (21), from Theorem 2 we derive (19). Thus (iii) = (ii). Obviously,
we have also (ii) = (i). O
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Applying Corollary 1 we are going to characterize the positive homogeneity of the principle

of equivalent utility. Recall that the principle H, , ¢) is positively homogeneous provided, for
every X € X4 and A € (0, 00), it holds
H(w,u,g) ()‘X) = )‘H(w,u,g)(X)' (22)

If (22) holds for every X € Xf) and A € (0,0), then the principle H(y,, o)

tively homogeneous on Xf). The positive homogeneity of Hy,,, ¢) in the case w = 0 has been
characterized in [7]. It is proved there that if g is convex and u is concave and differentiable
then Hg , o) is positively homogeneous if and only if u is linear.

is said to be posi-

Theorem 3. Assume that w € [0,00), g is a continuous probability distortion function and
u : R — R is a strictly increasing continuous function with u(0) = 0. Then the following
statements are pairwise equivalent:

(1) H(w,u,g) is positively homogeneous on X’ ).
(i1) H(qy,u,q) is positively homogeneous;

(iii) there exista,b,r € (0,00) and v € R such that

—a(w —x)"+q for x € (—oo,w),

u(x) = { b(x —w) +v  for x € (w,c0). @3)
Proof. Assume that (i) holds. For every t € (0,0), define u; : R — R as follows
ur(x) =u(w+tx) —u(w) for x €R. (24)

Then, taking into account (3) and (5), for every X < XE) and t € (0, ), we get

Eg[ut(H(w,u,g)(X) - X)] = Eg[u(w + tH(w,u,g)(X) - tX)] - u(w)
= Eglu(w 4 Hy ) (tX) — tX)] —u(w) = 0 = uy(0) = Eglus(H gy, 4)(X) — X)].

Therefore,
2
Hipu,0)(X) = Higug)(X) for X e X, t e (0,00)

and so, applying Corollary 1 with w; = 0, w; = w and v = u, we conclude that for every
t € (0,00) there exists c(t) € (0,00) such that

u(x) =c(t)ur(x —w) + u(w) for x € R.

Hence, replacing x by x + w, in view of (24), we get

up(x) = —uy(x) for x €R, t € (0,00).

c(t)

Moreover, it follows from (24) that

ur(x) = u1(tx) for x € R, t € (0,00).
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Thus, we have
1
uy(tx) = C(—t>u1(x) for x e R, t € (0,0). (25)

Since u1(x) > 0 for x € (0, 0), applying (25) with x = 1, we obtain

c(t) = (1) for t € (0,00).

up (t)
Hence (25) becomes
i(tx) = a(t)i(x) for x €R, t € (0,00), (26)
where ii : R — R is given by
_ up (x)
(x) = for x € R. 27
( ) ul(l) ( )

Note that as u is strictly increasing and continuous, so is 7. Moreover, it follows from (26) that
i(tx) =u(t)i(x) for x,t & (0,00).
Thus, according to [9, Theorem 13.3.8], there exist 8,7 € (0, 00) such that
i(x) = Bx" for x € (0,00).

Furthermore, replacing in (26) x and t by —1 and —x, respectively, we get

i(x) =a(—-1)ia(—x) for x € (—o0,0).
Therefore, as u(0) = 0 and, in view of (24),

u(x) = uj(x —w) +u(w) for x €R,

taking into account (27), we obtain (23) with a := —Buy(—1) > 0, b := Buy(1) > 0 and
v := u(w). In this way we have proved that (i) = (iii).

If u is of the form (23) with some a,b,r € (0,00) and ¢ € R then, for every x € R and
A € (0,00), we have

u(w+Ax) =ANu(w+x)+ 1 —=A)y=Nu(w+x)+ (1 —A)u(w).

Thus, as the Choquet integral is positively homogeneous, in view of (3) and (5), for every
X e Xy and A € (0, ), we obtain

Eglu(w 4+ AHy,,6)(X) = AX)] = A Eglu(w + H(y ) (X) — X)] + (1 — A")u(w)

=Au(w) + (1 = Au(w) = u(w) = Eglu(w + Hy ) (AX) — AX)].
Hence
H(w,u,g)(AX> = AH(w,u,g)(X) for X € X+, AE (0, OO)
This means that Hy, ,, ) is positively homogeneous and shows that (iii) = (ii).
The implication (ii) = (i) is obvious. O

Corollary 2. Assume that w € [0,00), ¢ is a continuous probability distortion function and
u : R — R is a strictly increasing continuous function with u(0) = 0. Then the following
statements are pairwise equivalent:
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H(wfu,g)(X) > Eg[X] for X e XJ(FZ);

H(w,u,g)(X) > Eg[X] for X € X+,’ (28)
(iii) there exists ¢ € (0,0) such that
u(x) <c(x —w)+u(w) for x €R. (29)
Proof. Let v be the identity on IR. Then, taking into account (3) and (5)-(6), for every X € X,
we get
w = v(w) =Eg[v(w + H(w,v,g)(X) — X)]
:Eg[w + H(w,z,,g)(X) — X] =w+ H(w,z,,g)(X) — Eg-[X]
which implies that
H(w,v,g)(X> = Eg[X] for X e X,.
Therefore, applying Theorem 2, we get the assertion. O
The next result concerns the risk loading property of the principle of equivalent utility
under the Rank-Dependent Utility model. Let us recall that the principle H(y, , ) has the risk
loading property, provided
H(w,u,g)(X) > E[X] for X € X+. (30)

Corollary 3. Assumethatw € [0,00) and u : R — R is a strictly increasing continuous function
with u(0) = 0. Let g be a continuous probability distortion function such that

glp) = p for pe[01]. (31)
If the premium principle Hy,, o) has the risk loading property, then there exists ¢ € (0, )
such that (29) holds.

Proof. It follows from (7) and (31) that g(p) < p for p € [0,1]. Therefore, if H y,,¢) has the risk
loading property then, applying Remark 2, we get (28). Hence, according to Corollary 2, (29)
is valid with some ¢ € (0, ). O

Remark 7. Suppose that g(p) < p forp € [0,1]. Then g(p) > p for p € [0, 1] and so, according
to Remark 2, we have
Hence, if (29) is valid, then using a monotonicity of the Choquet integral, in view of (3) and
(5)-(6), for every X € X, we get
E¢[u(w + E[X] — X)] < Eglu(w + E¢[X] — X)] < ¢(Eg[Eg[X] — X]) + u(w) = u(w).

Therefore, applying Remark 3, we conclude that (30) holds, that is H y,, ¢) has the risk loading
property.

We complete the paper with a result which is a direct consequence of Corollary 3 and
Remark 7. In fact, it is a slight generalization of [3, Theorem 7].

Corollary 4. Assume that w € [0,c0), ¢ is the identity on [0,1] and u : R — R is a strictly
increasing continuous function with u(0) = 0. Then the premium principle H,,, . has the
risk loading property if and only if there exists ¢ € (0, 00) such that (29) holds.
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[TpyHIMIT cTPaxoBOi BUHATOPOAY € CIOCOO0M IOCTABUTH Y BiATIOBIAHICTD KOXXHOMY PU3MKY, 30-
6paxkeHOMy 3a AOIIOMOTOIO HeBiA €éMHOI 06MeXXeHOI BUIIaAKOBOI BEAMUNHI Ha 3aAQHOMY JIMOBipHi-
CHOMY IIPOCTOpi, AesKe AiVicHe HeBip'eMHe umcAo. Taxe umcAo MOXHa iHTepIpeTyBaT! SIK BMHA-
TOPOAY 3a CTPaxOBWii pU3MK. Y Hilf CTaTTi AOCAIAXKEHO HesIBHO 3aAaHMV MPMHLIMII eKBiBaAeHTHOI
KOPMCHOCTI. BMKOPMCTOBYIOUM BAACTMBOCTI CepeAHbOTO KBa3iBiAXMAEHHS MM XapaKTepM3yeMO II0-
PiBHSIHHS B KAACi IPMHILMIIB eKBiBaA€HTHOI KOPMCHOCTI 33 paHI-3aAeXHOK KOPMCHICTIO, OAHIEO 3
BaXKAMBMX MOBEAIHKOBMX MOAEAEV MPUIHSTTS PillleHHsI B YMOBax pU3MKYy. Mmu BUKOPMCTOBYyeMO
1LIeVi pe3yAbTaT AASI BCTAHOBAEHHSI PiBHOCTI i AOAQTHOI OAHOPiAHOCTI IIbOro IpyHIyITY. TaxoX Bu-
CBiTA€HO AesIKi iHIIIi 3aCTOCYBaHHSI.

Kntouosi cnioea i ppasu: cTpaxoBa BUHAropoaa, CepeAHe KBa3iBiAXMAeHHS, IOPiBHSIHHS, PiBHICTS,
AOAMATHA OAHOPIAHICTD, PU3MK.
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Let L be an algebra over a field F with the binary operations + and [-, -]. Then L is called a left
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To Professor L.A. Kurdachenko on the occasion of his 70th birthday

Let L be an algebra over a field F with the binary operations + and [, -]. Then L is called a
left Leibniz algebra if it satisfies the left Leibniz identity

[[a, 6], c] = [a, [b,c]] = [b, [a,c]

foralla,b,c € L.

Leibniz algebras appeared first in the papers of A.M. Bloh [5-7], in which he called them the
D-algebras. However, a real interest to Leibniz algebras rose after the paper of J.-L. Loday [25]
(see also [26, Section 10.6]), who rediscovered these algebras and used the term Leibniz algebras
since it was G.W. Leibniz who discovered and proved the Leibniz rule for differentiation of
functions.

Note that the Leibniz algebras have many connections with some areas of mathematics such
as differential geometry, homological algebra, classical algebraic topology, algebraic K-theory,
loop spaces, non- commutative geometry, and physics (see, for example, [8,12,13]).

The theory of Leibniz algebras has been developing intensively but very sporadic. On the
one hand, many analogues of important results from the theory of Lie algebras were proven
(see, for example, a survey [18]). On the other hand, many natural questions about the struc-
ture of Leibniz algebras are not considered. For example, we can note the situation about the
structure of finite-dimensional Leibniz algebras. The first natural step in the study of all types
of algebras is the description of algebras having small dimensions. Unlike the simpler cases
of 1- and 2-dimensional Leibniz algebras, the structure of 3- dimensional Leibniz algebras is
more complex, as well as it is more complex than the structure of 3- dimensional Lie algebras.
The study of Leibniz algebras, having dimension 3, has been conducted in the papers [1,2,9,11]
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for the fields of characteristic 0, moreover for the field C of complex numbers or algebraically
closed fields of characteristic 0. In [33], Yashchuk V.S. considered the opposite situation. She
described the structure of Leibniz algebras of dimension 3 over finite fields. In some cases, the
structure of such algebras essentially depends on the characteristic of the field. In other words,
it depends on the solvability of specific equations in the fields, and so on. It is also worth men-
tioning here that the description of Leibniz algebras of dimension 3 is very different from the
description of Lie algebras of dimension 3, which indicates a significant difference between
these types of algebras.

Note that if L is a Lie algebra, then [[a, ], c] + [[b, ], a] + [[c, a], b] = 0. It follows that

[[a, 0], c] = = [[b,c], a] —[[c,a], b]
=la, [b,cl] + [, [c, a]]
=la,[b,c]] = [b, [a,c]],

which shows that every Lie algebra is a Leibniz algebra.

Conversely, suppose that [a,a] = 0 for all elements @ € L. Then for arbitrary elements
a,b € Lwehave 0 = [a +b,a+b] = [a,a] + [a,b] + [b,a] + [b,b] = [a,b] + [b, a]. It follows that
[a,b] = —[b,a]. Then

0

[[a, 0], c] — [a, (b, c]] + [b, [a, c]]
[[a, 0], c] + [[b, c], a] — [[a, c], b]
[[a, b], ] + [[b, ], a] + [[c, a], b]

foralla,b, c € L. In other words, Lie algebras can be characterized as Leibniz algebras in which
[a,a] = 0 for every elementa € L.

Recall some basic definitions.

A Leibniz algebra L is called abelian if [a,b] = 0 for all elements a,b € L. Thus, an abelian
Leibniz algebra is a Lie algebra.

Let L be a Leibniz algebra over a field F. If A, B are subspaces of L, then [A, B] will denote
a subspace generated by all elements [a,b], wherea € A, b € B. A subspace A of L is called a
subalgebra of L, if [x,y] € A for every x,y € A. It follows that [A, A] < A.

Let L be a Leibniz algebra over a field F, M be a non-empty subset of L, then (M) denote
the subalgebra of L generated by M.

A subalgebra A of L is called a left (respectively right) ideal of L, if [y, x] € A (respectively
[x,y] € A) forevery x € A, y € L. In other words, if A is a left (respectively right) ideal, then
[L, A] < A (respectively [A, L] < A).

A subalgebra A of L is called an ideal of L (more precisely, two-sided ideal) if it is both a left
ideal and a right ideal, that is [y, x|, [x,y] € A forevery x € A,y € L.

If A is an ideal of L, we can consider a factor-algebra L/ A. It is not hard to see that this
factor-algebra also is a Leibniz algebra.
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Denote by Leib (L) the subspace, generated by the elements [4,4], a € L. Note that Leib(L)
is an ideal of L, which is called the Leibniz kernel of algebra L.

The left (respectively right) center {'*f*(L) (respectively {"8"(L)) of a Leibniz algebra L is
defined by the rule:

Cleft(L) = {x € L| [x,y] = 0 for each elementy € L}

(respectively, _
C”ght(L) = {x € L| [y,x] = 0 for each elementy € L}).

It is not hard to prove that the left center of L is an ideal, but it is not true for the right center.
The right center is a subalgebra of L, and in general, the left and right centers are different.
Moreover, they even may have different dimensions as shows an example 2.1 from [19].

The center {(L) of L is the intersection of the left and right centers, that is

(L) ={x € L|[x,y] =0= [y, x| for each element y € L}.

Clearly, the center {(L) is an ideal of L. In particular, we can consider the factor-algebra

L/g(L).

Now we define the upper central series

(0) = Co(L) < Qa(L) <...0a(L) < Cag1(L) < ... Ty (L) = Ceo(L)

of a Leibniz algebra L by the following rule: {1(L) = (L) is the center of L, and recursively,
Cat1(L)/Ca(L) = C(L/Ca(L)) for all ordinals &, and {5 (L) = U u(L) for the limit ordinals
<A

A. By definition, each term of this series is an ideal of L. The last term {« (L) of this series is
called the upper hypercenter of L. A Leibniz algebra L is said to be hypercentral if it coincides
with the upper hypercenter.

Let L be a Leibniz algebra. Define the lower central series

L=m(L) = 72(L) = ... 7a(L) Z Yas1(L) = ... 75(L)

of L by the following rule: 1 (L) =
all ordinals @ and YA (L) = N 7yu(L
U<A

7s(L) = [L, vs(L)].

The introduced here concepts of the upper and lower central series for Leibniz algebras are
an analogous of others similar concepts, which became standard in several algebraic struc-
tures. They play an important role, for example, in Lie algebras and groups. Following
this analogy, we say that a Leibniz algebra L is called nilpotent, if there exists a positive in-
teger k such that (L) = (0). More precisely, L is said to be nilpotent of nilpotency class c if
Ye+1(L) = (0), but 7c(L) # (0).

We note that in [22] Kurdachenko L.A., Subbotin I.Ya. and Semko N.N. proved a series of
results, which connected with (locally) nilpotent and hypercentral Leibniz algebras. In partic-
ular, these results are analogues of well-known group-theoretical results.

It is a well-known that in nilpotent Lie algebras and nilpotent groups the lower and the
upper central series have the same length. The same result is also true for Leibniz algebras
(see, for example, [19]).

L, v2(L) = [L, L], and recursively v,41(L) = [L, ya(L)] for
) for the limit ordinals A. For the last term 5(L) we have
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Let L be a Leibniz algebra. Let us define the lower derived series
L=246y(L) 2 61(L) > ...04(L) = 6441(L) = ...0y(L)

of L by the following rule: dy(L) = L, 61(L) = [L, L], and recursively 8,+1(L) = [6x(L), dx(L)]
for all ordinals « and J,(L) = () 6,(L) for the limit ordinals A. For the last term ¢, (L) we
U<A

have 6, (L) = [6,(L),dy(L)]. If 6,(L) = (0) for some positive integer n, then we say that L is a
soluble Leibniz algebra.

One of the first questions that naturally arises in the study of any algebraic structure is
the question of the structure of its cyclic substructures. Unlike Lie algebras, associative al-
gebras, groups, etc., cyclic Leibniz algebras are no necessarily abelian. In [10, Theorem 1.1]
Chupordia V.A., Kurdachenko L.A. and Subbotin I.Ya. described the structure of such Leibniz
algebras. This description made it possible to obtain a structure of the Leibniz algebras, whose
proper subalgebras are Lie algebras. Such algebras are either Lie algebras, or nilpotent cyclic
algebras, or they can be represented as a direct sum of an abelian ideal (from the left center of
algebra) and Lie subalgebra of dimension 1 with some additional properties [10, Theorem 1.2].
As a corollary it was described Leibniz algebras whose proper subalgebras are abelian [10,
Corollary 1.1]. This result implies that a description of Leibniz algebras, whose proper sub-
algebras are abelian, can be deduced to the case of Lie algebras, whose proper subalgebras
are abelian. Such Lie algebras are either simple, or soluble. Soluble minimal non-abelian Lie
algebras (even soluble minimal non-nilpotent Lie algebras) were described in [16,30,31]. Sim-
ple minimal non-abelian Lie algebras were studied in [14,15], but their complete description
remains an open problem.

Another natural question concerns the relationship of the subalgebras and ideals. In partic-
ular, what is a structure of Leibniz algebras, all of whose subalgebras are ideals? It is not hard
to prove that a Lie algebra, all of whose subalgebras are ideals, is abelian. For groups the sit-
uation is different: there exists non-abelian groups, all of whose subgroups are normal. Such
groups have been described in [3]. For Leibniz algebras the situation is quite diverse. Recall
that a Leibniz algebra L is called an extraspecial algebra if it satisfies the following condition:
¢(L) is non-trivial and has dimension 1, and L/{(L) is abelian. It is important to observe that
there are extraspecial Leibniz algebras in which not every subalgebra is an ideal. In [20] Kur-
dachenko L.A., Semko N.N. and Subbotin I.Ya. proved that if L is a Leibniz algebra over a field
F, all of whose subalgebras are ideals and L is non-abelian, then L = E & Z where Z < (L),
and E is an extraspecial subalgebra such that [, a] # 0 for every element a & {(E).

Consider now some other natural questions of the general theory of Leibniz algebras. Note
that the relation “to be a subalgebra of a Leibniz algebra” is transitive. However, the relation
“to be an ideal” is not transitive even for Lie algebras. Therefore it is natural to ask the question
about the structure of Leibniz algebras, in which the relation “to be an ideal” is transitive. In
this context, the following important type of subalgebras naturally arises. A subalgebra A of
a Leibniz algebra L is called a left (respectively right) subideal of L, if there is a finite series of
subalgebras A = Ag < Ay < ... < Ay = Lsuch that A; 1 is a left (respectively, right) ideal of
A] , 1 < ] < n.

Similarly, a subalgebra A of a Leibniz algebra L is called a subideal of L, if there is a finite
series of subalgebras A = Ag < A; < ... < A, = L such that Aj_l is an ideal of A]-, 1<j<n.

We note the following property of nilpotent Leibniz algebras (see, for example [18]): if L is
a nilpotent Leibniz algebra over a field F, then every subalgebra of L is a subideal of L.
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A Leibniz algebra L is called a T-algebra, if a relation “to be an ideal” is transitive. In other
words, if A is an ideal of L and B is an ideal of A, then B is an ideal of L. It follows that
in a Leibniz T-algebra every subideal is an ideal. Lie algebras, in which a relation “to be an
ideal” is transitive have been studied by I. Stewart [28] and A.G. Gejn and Yu.N. Muhin [17].
In particular, soluble T-algebras and finite dimensional T-algebras over a field of characteristic
0 has been described. As in the mentioned above cases, the situation in Leibniz algebras is
much more complex and diverse than it was in Lie algebras (see, for examples [18]). The
description of Leibniz T-algebras has been obtained by Kurdachenko L.A., Subbotin I.Ya. and
Yashchuk V.S. in the paper [24].

Consider now some new approach in Leibniz algebra theory. Two ideals are naturally as-
sociated with each subalgebra A of a Leibniz algebra L: the ideal AT which is the intersection
of all ideals including A (that is an ideal, generated by A); and the ideal Core (A) which is
the sum of all ideals that are contained in A. A subalgebra A of L is called an contraideal of
L, if AL = L. From the definition it follows that the contraideals are natural antipodes to the
concepts of ideals. Therefore, the study of Leibniz algebras whose subalgebras are either ideals
or contraideals is very natural. The description of such Leibniz algebras was obtained by Kur-
dachenko L.A., Subbotin I.Ya. and Yashchuk V.S. in the paper [23]. As a corollary, the authors
obtained the structure of Lie algebras, whose subalgebras are either ideals or contraideals [23].

As we noted above, the fact that y.,1(L) = (0) is equivalent to the fact that {.(L) = L, i.e.
the lower and the upper central series in nilpotent Leibniz algebras have the same length. The
next natural step is the consideration of the case, when the upper (respectively lower) central
series has finite length. For this case the question about the relationships between L/ (L) and
Yk+1(L) naturally appears.

If L is a Lie algebra such that L/{x(L) is finite-dimensional, then 7, 1(L) is also finite-
dimensional [29]. A corresponding result for groups has been obtained early by R. Baer [4].
Kurdachenko L.A., Otal J. and Pypka A.A. in the paper [19] obtained the following analog of
these theorems: if L is a Leibniz algebra over a field F and codimp({(L)) = d is finite for some
positive integer k, then ;1 (L) has finite dimension; moreover dimp(7;1(L)) < 28K 1dF+1,

An important specific case here is the case when the center of a Leibniz algebra L has finite
codimension. For Lie algebras the following result is well known (see, for example [32]). A
corresponding result for groups was proved much earlier: if G is a group and C is a subgroup
of the center {(G) such that G/C is finite, then the derived subgroup [G, G] is finite. In this
formulation, for the first time it appears in the paper of B.H. Neumann [27]. This theorem was
obtained also by R. Baer [4].

For Leibniz algebras the following analog of these results was proved by Kurdachenko L.A.,
Otal]. and Pypka A.A.in [19]: if L is a Leibniz algebra over a field F, codimp({**/*(L)) = d and
codimp({"8" (L)) = r are finite, then [L, L] has finite dimension; moreover, dimp([L,L]) <
d(d+r).

In this connection, the following question appears: suppose that only codimp(Z/f*(L))
is finite. Is dimp([L, L]) finite? The Example 3.1 from [19] gives a negative answer on this
question. However, if L is a Leibniz algebra over a field F and codimp({(L)) = d is finite, then
[L, L] has finite dimension; in particular, dimp([L, L]) < d? [19]. Moreover, if L is a Leibniz
algebra over a field F and codimp({(L)) = d is finite, then the Leibniz kernel of L has finite
dimension at most 3d(d — 1) [19].

Finally, we note that in [21] Kurdachenko L.A., Semko N.N. and Subbotin I.Ya. introduced
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the concepts of anticenter of Leibniz algebras and antinilpotent Leibniz algebras. Let L be a
Leibniz algebra. Put

a(L) = {z € L|[a, z] = —[z,a] for each element a € L}.

This subset is called the anticenter of a Leibniz algebra L. Note that the anticenter is an ideal
of L. Note also that we must consider the case, when char(F) # 2, because in the case when
char(F) = 2 anticenter in general is not ideal [21].

For this concept the above authors proved some analogs of result from Leibniz algebra
theory. In particular, in [21] they proved that if L is a Leibniz algebra over a field F and the
anticenter of L has finite codimension d, then the Leibniz kernel of L has finite dimension at
most d2.

Starting from the anticenter, we define the upper anticentral series

(0) = (L) < ar(L) < ...aa(L) < ansa(L) < ooty (L) = ol L)

of a Leibniz algebra L by the following rule: a1 (L) = a(L) is the anticenter of L, and recursively,
wr4+1(L) /(L) = a(L/ap(L)) for all ordinals A,and &, (L) = U ay (L) for the limit ordinals .
v<p

By definition, each term of this series is an ideal of L. The last term ao (L) of this series is called
the upper hyperanticenter of L. A Leibniz algebra L is said to be hyperanticentral if it coincides
with the upper hyperanticenter. Denote by al(L) the length of upper anticentral series of L. If
L is hyperanticentral and al(L) is finite, then L is said to be antinilpotent.

If U,V the ideals of L, then we denote by (U, V) a subspace, generated by all elements
[u,v] 4+ [v,u], u € U,v € V. Note that [u,v] + [0,u] € {'*f*(L) and (U, V) is an ideal of L [21].
Define the lower anticentral series of L

L=x1(L) 2 x(L) > ...%(L) = x441(L) > ...x5(L)

by the following rule: x1(L) = L, xp(L) = (L, L), and recursively x,1(L) = (L, k(L)) for
all ordinals A and x,(L) = () xy(L) for the limit ordinals y. For the last term x5(L) we have
v<p

Ka(L) = (L,s(L).

As we noted above in nilpotent Lie algebras and nilpotent groups the lower and the upper
central series have the same length. For antinilpotent Leibniz algebras Kurdachenko L.A.,
Semko N.N. and Subbotin I.Ya. [21] proved the analog of this statement: if L is an antinilpotent
Leibniz algebra, then the length of the lower anticentral series coincides with the length of the
upper anticentral series; moreover, the length of these two series is the smallest among the
lengths of all anticentral series of L.
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Hexait L — aarebpa Haa moaeM F 3 ABoMa 6iHapHMMU ornepartiisiMut + Ta [+, -]. Toai L HasuBatu-
MeMO AIBOIO aAre6poro AerbHilla, sIKIIO BOHA 3aA0BOABHSIE AiBy TOTOXHIcTh AeiibHina [[a,b],c] =
[a,[b,c]] — [b, [a,c]] Arst Bcix a, b, ¢ € L. AaHa CTATTsI € KOPOTKMM OTASIAOM AESIKMX CYIaCHUX Pe3yAb-
TaTiB, TIOB'SI3aHMX 31 CKIHUEHHOBMMIPHMMM Ta HeCKiHUeHHOBVMIpHMMY aATebpamu AetibHiria.

Kntouosi cnosa i ¢ppasu: asrebpa AeibHina, mmkaigHa aarebpa AelibHila, iaean, cybiaean,
KOHTpaiaeanr, IEHTp, BepXHIill (HVKHIl) IeHTpaAbHMI PsIA, CKiHUeHHOBMMipHa aarebpa AeiibHila,
HIABIIOTeHTHa aArebpa AeitbHina, T-aareb6pa AeitbHilla, aHTUMIIEHTp, aHTVMHIABIIOTEHTHa aAre6pa
AeribHina.
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SOME DISTANCE BASED INDICES OF GRAPHS BASED ON FOUR NEW
OPERATIONS RELATED TO THE LEXICOGRAPHIC PRODUCT

For a (molecular) graph, the Wiener index, hyper-Wiener index and degree distance index are
defined as W(G) = Z{u,v}QV(G) dG(u, Z)), WW(G) = W(G) + Z{u,v}QV(G) dG(u, '0)2, and DD(G) =
Y{uorcvic)dc(u,0)(d(u/G) +d(v/G)), respectively, where d(u/G) denotes the degree of a ver-
tex u in G and dg(u,v) is distance between two vertices # and v of a graph G. In this paper, we
study Wiener index, hyper-Wiener index and degree distance index of graphs based on four new
operations related to the lexicographic product, subdivision and total graph.

Key words and phrases: Wiener index, degree distance index, hyper-Wiener index, lexicographic
product, subdivision, total graph.
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INTRODUCTION

In this paper G is a simple and connected graph with vertex set V = V(G) and edge set E =
E(G). The degree of a vertex v in G is the number of edges incident to v and denoted by d(v/G).
The distance dg (1, v) between any two vertices 1 and v of a graph G is equal to the length of a
shortest path connecting them. A line graph, L(G), is the graph whose vertices correspond to
the edges of G and two vertices of L(G) are adjacent if and only if the corresponding edges in
G are adjacent.

In chemical graph theory, a graphical invariant is a number related to a graph which is
structurally invariant. These invariant numbers are also known as the topological indices.
The well-known Zagreb indices are one of the oldest graph invariants firstly introduced by
Gutman and Trinajstic¢ [18], where they examined the dependence of total 7r-electron energy
on molecular structures, and this was elaborated on in [17]. For a (molecular) graph G, the first
Zagreb index M;(G) and the second Zagreb index M, (G), are:

Mi(G)= Y d(w/G?*= Y [d(u/G)+d(v/G)],

veV(G) uveE(G)

and
My(G) = ). d(u/G)d(v/G).
uveE(G)
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For properties of the two Zagreb indices see [4-6] and the papers cited therein. In re-
cent years, some novel variants of Zagreb indices have been put forward, such as Zagreb
coindices [2, 10, 15], reformulated Zagreb indices [20, 24], Zagreb hyper index [3, 25], multi-
plicative Zagreb indices [13, 30], multiplicative sum Zagreb index [11, 28], and multiplicative
Zagreb coindices [29], etc. The Zagreb coindices are defined as:

Mi(G)= }, [d(u/G)+d(v/G)],

uvéE(G)
and
My(G)= Y, d(u/G)d(v/G).
uv€E(G)
The Wiener index of G is denoted by W(G) and is defined by
W(G) = Y. dg(uv). (1)
{u,v}CV(G)

The name Wiener index or Wiener number for the quantity defined in Equation (1) is usual in
chemical literature, since Harold Wiener [27] in 1947 seems to be the first who considered it.
Wiener himself conceived W only for acyclic molecules and defined it in a slightly different-yet
equivalent-manner; the definition of the Wiener index in terms of distances between vertices
of a graph, such as in Equation (1), was first given by Hosoya [19]. Eliasi et. al [12], determined
the Wiener index of some graph operations.

The hyper-Wiener index of G is denoted by WW(G), and is defined as

WW(G) =W(G)+ Y dg(u0)
{u,0}CV(G)

Lukovits [23] derived formulas for the hyper-Wiener index of chains and trees which contain
one trivalent or tetravalent branching vertex, and this index is studied by several authors in
[1,8,16,22]. Khalifeh et. al [21], determined the hyper-Wiener index of graph operations.

The degree distance of a graph G, DD(G), was introduced by Dobrynin and Kochetova [9]
and Gutman [14] as a weighted version of the Wiener index, and is defined as

DD(G)= ), dg(u,0)(du/G)+d(v/G)).
{u0}CV(G)

In this paper, we study of the Wiener, hyper-Wiener and degree distance indices of graphs

based on operations related to the lexicographic, subdivision and total graph. For this purpose,
we recall some operations on graphs in the following.
The composition or lexicographic product of two connected graphs G; and G, denoted by G1[G;],
is a graph with vertex set V(G;) x V(G;) and two vertices u = (u1,v1) and v = (up,v;) of
G1[G2] are adjacent if and only if either u; is adjacent to uy or u; = uy and v; is adjacent with
0. For a connected graph G, there are four related graphs as follows:

(i) S(G) is the graph obtained by inserting an additional vertex in each edge of G. Equiva-
lently, each edge of G is replaced by a path of length 2;

(ii) R(G) is the graph obtained from G by adding a new vertex corresponding to each edge
of G and joining each new vertex to the end vertices of the corresponding edge;
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(iii) Q(G) is the graph obtained from G by inserting a new vertex into each edge of G and
joining those pairs of new vertices on adjacent edges of G;

(iv) T(G) is the graph with vertex set V(G) U E(G) and adjacency in T(G) is defined as adja-
cency or incidence for the corresponding elements of G.

The graphs S(G) and T(G) are called the subdivision graph and the total graph of G, respec-
tively.

Based on the lexicographic product of two connected graphs G; and G, Sarala et al. [26],
introduced four new operations on these graphs.

Let F € {S,R,Q,T}. The F-product of G; and G, denoted by Gi[G], is defined by
F(G1)[Gy] — E*, where E* = {(u,v1)(u,v2) € E(F(G1)[Gz]) : u € V(F(G1)) — V(Gy) and
1102 € E(Gp)}, ie., G1[Gy]r is a graph with the vertex set V(G1[Gz]r) = (V(G1) UE(Gy)) X
V(Gy) and two vertices u = (u1,v1) and v = (up, vp) of G1[Gy]r are adjacent if and only if
either [u1 = up € V(G1) and v10; € E(Gy)] or [ugup € E(F(Gy1)) and v1,v;2 € V(Gy)].

Sarala et al. [26] determined the Zagreb indices of F-product of G; and G, where F €
{S,R,Q, T}, and Dehgardi et. al [7] computed the leap Zagreb indices of these graphs.

We will use the following results.

Theorem 1 ([7]). Let Gy and G, be two connected graphs, and let G = G1[Gy | be the F-product
of G1 and G,. Then

1 if u=veV(Gy),xye€E(Gy)
)2 if u=veV(Gy),xy ¢ E(Gy)
d6((u,x), (@) = 5 if u=ove V(F(lGl)) - V(Gi)

dr(G)(u,0) if u#o.
Theorem 2 ([15]). Let G be a graph with n vertices and m edges. Then
M (G) +M;(G) =2m(n —1).
Theorem 3 ([15]). Let G be a graph with n vertices and m edges. Then
1

My(G) + M2(G) = 2m* — - My (G).
Theorem 4 ([31]). Let G be a graph. Then for any v,v" € V(G),
1
5ds(6)(0,0") = dr(c)(v,0) = dg(c)(v,9) = dg(c)(v,0) =1 = dg(v,0").
Theorem 5 ([31]). Let G be a graph. Then for any e, e’ € E(G),

1
ds(c) (e ¢') = drig(ee') = drig(ee) =1 =dgg (e e) = dyglee).

1 WIENER, HYPER WIENER, AND DEGREE DISTANCE INDICES FOR F-PRODUCT OF GRAPHS

In this section, we consider F € {S,Q, R, T}, and compute the Wiener, hyper Wiener, and
degree distance indices for F-product of two connected graphs G; and G,. Let |V(G;)| = n;,
and |E(G;)| = ¢; for i = 1,2. Throughout this section we assume that

L1 7= L (ux),(0)} CV(G) u=0eV (G1) ayeE (o)

L2 7= L (ux),(0)} CV(G) u=veV (G1) ay£E(Ga)-

13 1= L{(u,x),(09)}SV(G) u=ve V(E(G1)~V(Gr) xyV (Gy) AN
L4 *= L (ux),(0) }CV(G) u0,xy€V (Gy)-
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1.1 Wiener index and hyper Wiener index

Theorem 6. Let G and G, be two connected graphs, and let G = G1[Gy|r. Then
W(G) = mmna(np—1) —niep +ena(np — 1) + n%W(F(Gl)).
Proof. By Theorem 1, we have

W(G) = Xi{wq)(wyicvic)dc((u,x), (v,y))
= 2q1+352+ 232+Z4dF(G1)(U,U)
= mea +2m (202 ) 4 26 20271 4 2W(F(Gy))
= mny(np — 1) — nyex + e1ma(ny — 1) + nW(F(Gy)).

Theorem 7. Let Gy and G, be two connected graphs, and let G = G1[Gy|r. Then
WW(G) = —4njey +3np(ny — 1)(ng +&1) + n3WW(F(Gy)).
Proof. By Theorem 1, we have

WW(G) = L), oy icvicdc((u,x), (v,y)) +d&((u,x), (v,y))]
= Y12+ 256+ Y36+ Yaldp,)(w0) + djzp(cl) (u,0)]
— 2nyey+ 6my (202 gy 4 6 202 4 ZWW(F(Gy))
= —dnyey + 3np(ny — 1) (ny + &1) + nZWW(F(Gy)).

1.2 Degree distance index

1.2.1 The case F=S

Theorem 8 ([26]). If G; and G, are two connected graphs of orders ny and nj, respectively, and
G=G [Gz]s, then

[ nad(u/Gy)+d(x/Gy) if ueV(Gy),
A((w,2)/G) = { 2;212 1 Y e V(S(lGl)) —V(Gy).

Theorem 9. Let G; be a connected graph of order n;, and size¢; fori = 1,2, and let G = G1[G]s.

Then

DD(G) = 2(np —1)(4e1n3 + eany) — dnaperen + 1My (Gz) + 2n3DD(Gy)
+ 4ny(ea — n3)W(Gy) + 4n3(nd — e2)W(L(G1)) + (2n262 +2n3)W(S(Gy))
+ 13 Cuev (G oeV(S(Gy))—V(Gy) A1/ G1)ds g, (1, 0).

Proof. Let e, be the corresponding edge to the new vertex u. We deduce from Theorems 1, 2,
3,4,5 and 8, that

DD(G)

I
!
—~
=
=
<
=
N
=
D)
=
—
—
&
=

G) +d((v,y)/G)ldc (4, x), (v,y))
)

+ 4+
N
1]
@
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and

Yald((u,x)/G) +d((,y)/G)] = YLai[2nad(u/Gy1) +d(x/Ga) +d(y/Ga)]
= dnyereq + n1Mp(Gy).

255[d((u,x)/G) +d((n,y)/G)] = 2 5[2n2d(u/G1) +d(x/G2) +d(y/ Ga)]
= 471%81 (1’12 — 1) — 8nyeqep + 21’11M1(G2).

23 5[d((u,x)/G) +d((u,y)/G)] = 2Y34ny = 4ndei(ny —1).

Y (d((u,x)/G) +d((v,y)/ G))dsc,) (u,0)]

4
= Zu;&v,u,veV(Gl),x,yEV(Gz)[nz(d(u/cl) +d(v/G1)) +d(x/Gz) +d(y/ G2)]dsc,) (1, v)
+ Zu#v,u,veV(S(Gl))—V(Gl),x,yEV(Gz) 4nyds(c,)(u,0)
+ Y eV (G eV (S(Gr) -V (Gr) ey (Gy 1241/ G1) +d(x/ Go) + 2mo)ds ) (1, )
= 2n3DD(Gy) +2W(Gy) (2M; (Gy) +2M1(Gy) + 4e2)
+4n3 Zeu eocV(L(Gy)) 2d;(G,)(eus e0) + 113 ZuEV (G1),0e(V(S(G1))—V(Gy)) d(u/G)dsc,)(u,0)
+(2m2e2+203) Yy wevi(sia)-viay) ds(en) (10)
= 2n3DD(Gy) + 8e21,W(Gy) 4 8m3W(L(Gy))
+ 13 ZueV(Gl),veV( 5(Gy)-v(Gy 41/ G)ds () (1,0)
+ (222 + 23) [W(S(Gy)) — zw<cl> 2W(L(G1))].

Therefore
DD(G) = 2(ny— 1)(481112 + eon1) — dnperen + 1My (Gp) 4+ 2n3DD(Gy)
+ 41’12(82 —n3)W(Gy) +4nd(nd — e2)W(L(G1)) + (2n2ea + 2n3)W(S(G1))
+ 13 Cuev (G eV (S(Gy))—V(Gy) A1/ G1)ds ) (1, 0).

1.2.2 The case F=R

Theorem 10 ([26]). If G; and G, are two connected graphs of orders ny and ny, respectively,
and let G = Gl[GZ]R- Then

[ 2n0d(u/Gyr) +d(x/Gy) if ueV(G)
A((u,x)/G) = { 2n§ 1 Y e V(R}Gl)) —V(Gy).

Theorem 11. Let G; be a connected graph of order n;, and size ¢; fori = 1,2, and let G =
G1[Gz|Rr- Then

DD(G) = 2(np —1)(6e1n3 + eany) — 8nzeren + n1(M;(Gy) + 2n3DD(Gy)
+ 4e3nyW(Gy) + 4ea) + 43 [W(L(Gy)) + 2171
+ (21 +2n3)[W(R(Gy)) — W(Gy) — W(L(Gy)) — LY
+ 213 Yuev(G)wev(R(Gy))-v(Gr) A1/ G1)dR(G,) (1, 0).
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Proof. Let e, be the corresponding edge to the new vertex u. By Theorems 1, 2, 3, 4, 5 and 10,

DD(G) Y {w), (oy)ycvc)d((u,x)/G) +d((v,y)/G)ldc ((u, x), (v, )
Yald((u,x)/G) +d((u,y)/G)]

2)5[d((u,x)/G) +d((u,y)/G)]

2)3[d((u,x)/G) +d((u,y)/G)]

Yal(d((u,x)/G) +d((v,y)/G))dr(c,)(u,0)],

+ 4+

and

Yild((u,x)/G) +d((1,y)/G)] = Li[dnad(u/Gi) +d(x/Ga) +d(y/Ga)]
= 87128281 + TllMl(GZ)r

2Yo[d((u,x)/G) +d((u,y)/G)] = 25 ,[4n2d(u/Gr) +d(x/Gz) +d(y/Gz)]
= 81’1%81(1’12 — 1) — l6nyeier + 21’[1M1(G2),

2Y50d((1,%)/G) +d((,y)/G)] = 2¥54m; = dnde; (n; — 1),

Y [(d((u,x)/G) +d((v,y)/ G))dg(c,) (1, )]

4
- Zu#v,u,veV(Gl),x,er(Gz)[an(d(u/cl) + d(v/G1>> + d(x/G2> + d(y/GZ)]dR(Gl)(ur U)

+ Zu;ﬁv,u,veV(R(Gl))—V(Gl),x,er(Gz) 4nydp cy) (1, 0)

+ ZueV(Gl),veV(R(Gl))fV(Gl),x,er(Gz) [2n2d(u/G1) +d(x/ Ga) + 2nadg g, ) (4, 0)

= 2n3DD(Gy) + W(G1)(2M1(Gy) +2M1(Gy) + 4e3)

+4n3 Yonencv(L(G) (L(Gy) (euser) +1)+ 2n3 Youev (G eV (R(Gy)) V(e A/ G)dRr(Gy) (1, 0)

3
+ (2me2 +213) } vy wevR(Gy)) - viGy) “R(G (1)

= 2n3DD(Gy) + 4e2mW(Gy) + 4n3[W(L(Gy)) + M]
+213 ZueV(Gl),veV(R(Gl))fV(Gl) d(u/Gr)dgc,)(#,0)

'H%M+%MW@@M—Wmn;muqn_ﬂggﬂy

Then

DD(G) = 2(ny —1)(6e1n5 + eany) — 8ngeren + n1 My (Gz) + 2n3DD(Gy)
421 W(Gy) + 43 [W(L(Gy)) + =1

(2n263 + 2n3)[W(R(G1)) — W(G1) — W(L(Gy)) — 2]
213 Yuev(Gy) eV (R(G))—v(Gy) 4(1/ Gr)dR (g, (1, v).

+ 4+

1.2.3 The case F=T

Theorem 12 ([26]). If G; and G, are two connected graphs of order ny, and ny, respectively,
and let T(G1) be the defined graph of G; such that u is the new vertex corresponding to the
edge e, = ww'. Then in graph G = G1[G]r we have

. nzd(u/Gl)+d(x/G2) if ue V(Gl),
A((u,x)/G) = { rad (e if ueV(T(G))—V(G).
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Theorem 13. Let G; be a connected graph of order n;, and size ¢; fori = 1,2, and let G =
G1 [GZ]T- Then
DD(G) 2(np — 1)(2e1n3 + ean1) — dngeren + 1M1 (Gp) + 2n3(np — 1) M1 (Gy)

n3DD(Gy) + 4[eanaW(Gy) + W(L(Gy))] +n3DD(L(Gy))

2n262[W(T(G1)) — W(G1) — W(L(G1))]

13 Cuev(Gy)we(V(T(Gy)—v(G) 41/ G1) + d(ew)]dr(g,) (1, v).

Proof. Let e, be the corresponding edge to the new vertex u. We deduce from Theorems 1, 2,
3,4,5 and 12, that

+ 4+

DD(G) = Yi(ux),eyicvc)d(wx)/G) +d((v,y)/G)ldc((u,x), (v, y))
= Lald((u,x)/G) +d((u,y)/G)]
+ 2o[d((u,x)/G) +d((u,y)/G)]
+ 2)50d((u,x)/G) +d((u,y)/G)]
+ Lald((u,x)/G) +d((v,y)/G))dr(c,)(#,0)]
and
Yald((u,x)/G) +d((u,y)/G)] = Ya[2nad(u/G1) +d(x/Ga) +d(y/Ga)]
= 4n25251+n1Ml(G2).
25[d((u,x)/G) +d((w,y)/G)] = 2)1,[2n2d(u/G1) +d(x/G2) +d(y/ Ga)]

= 4ndei(ny — 1) — 8npeqen + 211 My (Gy).

2)5ld((u,x)/G) +d((u,y)/G)] = 21 52mpd(eu)
= 2n3(ny —1)M1(Gy).

Y l(d((u,x)/G) +d((v,y)/G))dr(c,)(u, )]

4
= Zu;év,u,veV(Gl),x,er(Gz)[nz(d(u/Gl) + d(U/Gl)) + d(x/Gz) + d(y/Gz)]dT(Gl)(u,v)

+ Zu;&v,u,veV(T(Gl))—V(Gl),x,yEV(Gz) [n2(d(ew) +d(e0))dr (G, (1, 0)]
+ ZuEV(Gl),veV(T(Gl))fV(Gl),x,er(Gz) [n2d(1/G1) +d(x/ Ga) + nad(eo))dr(c,) (1, 0)
= n3DD(Gy) + W(G1)(2M1(G2) 4 2M;(Gy) + 4¢5)
+ ”% Zu;«év,u,veV(T(Gl))fV(Gl) [d(ew/L(G1)) +d(es/L(G1)) + 4]dL(Gl) (eu, €0)
+m3 ZueV(Gl),veV(T(Gl))—V(Gl) [d(u/Gr) +d(ew)ldr(c,)(#,0)
+ 2n2¢2 ZueV(Gl),UEV(T(Gl )—V(Gy) dr(c,)(u,v)
= n3DD(Gy) + n3DD(L(G1)) + 4[e2naW(Gr) + W(L(Gy))]
+n3 ZueV(Gl),veV(T(Gl))fV(Gl) [d(u/G1) + d(ew)]dr(c,) (4, 0)
+ 21262 [W(T(G1)) — W(G1) — W(L(G1))]-
Hence

DD(G) 2(np — 1)(2e1n3 + ean1) — dngeren + n1Mq(Gp) + 2n3(na — 1) My (Gy)

n3DD(Gy) + 4[eanaW(Gy) + W(L(Gy))] +n3DD(L(Gy))
2n2e2[W(T(G1)) — W(Gy) — W(L(Gy))]
13 Yuev(Gy)we (V(T(G) - V(G [d(1/ G1) + d(ew)]dr () (1, 0).

+ 4+



SOME DISTANCE BASED INDICES OF GRAPHS 265

1.2.4 The case F=Q

Theorem 14 ([26]). If G| and G, are two connected graphs of order ny and nj, respectively, and
let Q(G1) be the graph obtained from G; by inserting a new vertex into each edge of Gy, then
joining with edges those pairs of new vertices on adjacent edges of G1. Suppose that u is the
new vertex inserted at the edge e, = ww'. Then in graph G = G1[Gy|o we have
[ npd(u/Gy) +d(x/Gy) if ueV(Gy),
A(u,x)/G) = { nad(ey) if ueV(Q(G))—V(G).
Theorem 15. Let G; be a connected graph of order n;, and size ¢; fori = 1,2, and let G =
G1 [Gz]Q. Then
DD(G) 2(ny — 1)(2e1n3 + eany) — dnaeren + n1 M1 (Gp) + 2n3(na — 1)M1(Gy)
ng(DD(Gﬁ + Ml(G1>> + 2821’12(2W(G1) + 1y (le — 1)) + TlgDD(L(Gl»
4W(L(GL)) +2me2[W(Q(Gr)) = W(Gr) — W(L cm — i)
13 Luev(G)wev(0(Gy)—v(cy [(d(u/Gr) +d(ew))dgc,) (1, v)].
Proof. Let e, be the corresponding edge to the new vertex u. By Theorems 1,2,3,4,5and 14,

DD(G) = X{wx),eyicvcld((u,x)/G) +d((v,y)/G)lde (4, x), (v,))
Yald((u,x)/G) +d((u,y)/G)] +215[d((w, x)/G) +d((u,y)/G)]
23 5[d((u,x)/G) +d((,y)/G)]

Lal(d((u,x)/G) +d((v,y)/G))dgc,) (1, 0)]

+ 4+

+ +

and

Yald((u,x)/G) +d((u,y)/G)] = Ya[2n2d(u/G1) +d(x/Ga) +d(y/Ga)]
= 4n25251+n1Ml(G2).

255[d((,x)/G) +d((n,y)/G)] = 2)15[2n2d(u/G1) +d(x/G2) +d(y/ Ga)]
= 411%81 (1’12 — 1) — 8nyeqep + 21’11M1(G2).

22 (u,x)/G) +d((u,y)/G)] = ZZand (ey) = 2n3(ny — 1)M;(Gy).

Y_[(d((u,x)/G) +d((v,9)/G))dg(c,) (1, )]

4

= Zu;«év,u,vEV(Gl),x,er(Gz) [n2(d(u/Gy) +d(v/Gr)) +d(x/Ga) +d(y/G2)]dgc,) (4, 0)

+ Y itoue(Q(Gy) V(G ryev(cn M2(d(en) + d(en))dg(c,) (1, )]

+ Y V(G 0eV(0(G)—V(Gy), xyev(Gy) 1241/ G1) +d(x/ Ga) + nad(eo)ldg(c,) (#,0)

— (DD(G) + My (G1) + (W(Gr) + 2271y o, (6) + 201 (Go) +4e2)
F13Y sy woev(r(ar)-viop d(en/L(G1)) +d(eo/L(G1)) + 4l ) (eu o)
+ 13 ZueV(Gl),veV(Q(Gl))fV(Gl) [(d(u/G1) +d(en))dg(c,) (1, )]

+ 21282 ZueV(Gl),veV(Q(Gl))—V(Gl) dgcy)(u,0)
= n3(DD(Gy) + M1(Gy)) + 2e0m2(2W(Gy) + n2(np — 1)) + n3DD(L(Gy)) + 4W(L(G1))

113 Y (61 0ev(Q(Gy) iy [([4(/ Gr) +d(e))dgg,) (u,0)]

F2me(W(Q(G) - W(G) ~ W(L(G)) - M =Dy
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DEHGARDI N., SHEIKHOLESLAMI S.M., SOROUDI M.
Hence,
DD(G) = 2(np —1)(2e1n3 + eany) — dnperen + n1 M1 (Gy) + 2n3(ny — 1) My (Gy)
+ H%(DD(Gl) +M1(G1)) +2€21’12(2W(G1) 1’12(712 1)) +H%DD(L(G1))
+ 4W(L(G1)) +2me2[W(Q(G1)) = W(Gr) — W(L(G)) — =]
+ 13 Luev(G)wev(Q(Gy))—v(Gy ([d(u/Gr) +d(ew))dg g, (u,0)].
O
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Aerapai H, Ilertxoaecaami C.M., Copoyai M. Aeaki ducmanyitini inOexcu epagpis, o IpyHmMy0mocs
HA HOMUPLOX HOBUX ONepayiax, gKi sioHocgmucs 00 sekcuxoepagpiuroeo do6ymky // Kapmarceki MaTem.
my6a. — 2019. — T.11, N2. — C. 258-267.

Anst (MoaexyastpHOTO) Tpady iHAexc BiHepa, rimepsiHepiBchbKmif iHAEKC i iHAEKC CTeITeHeBOI Bia-
crani BusHavaoTees sk W(G) = Ly, 01cv(c) de(u,0), WW(G) = W(G) + Z{u,v}gv(c)dc(%v)z i
DD(G) = Lupycv(c)dc(u,v)(d(u/G) +d(v/G)) sianosiaxo. d(u/G) nosxavae cTemniHb BepLin-
mu B Gidg(u,v) — BiacTaHb MiX ABOMa BepmmHamMu U i v B rpadpi G. Y Wil CTaTTi MM BMBYAEMO
inaexc Binepa, rinepBiHepiBchKIIT iHAEKC 1 iHAEKC CTeTIeHeBOI BiAcTaHi Y Ipadpax, 10 I'PYHTYIOTCS
Ha YOTMPHOX HOBMX OTIepallisiX, SIKi BiAHOCSATECS A0 AeKCMKorpadpiuHOro A06yTKY, mApO3AiABHOCTI
Ta TOTAaABHOTO rpady.

Kntouosi cnosa i ¢ppasu: iHAexc BiHepa, iHAeKc cTemeHeBol BiacTaHi, rimepBiHepiBChbKIIL iHAEKC,
Aexcukorpadpiuamit A06yTOK, MAPO3AIABHICTD, TOTaABHIIM Tpad.
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PROPERTIES OF INTEGRALS WHICH HAVE THE TYPE OF DERIVATIVES OF
VOLUME POTENTIALS FOR ONE KOLMOGOROV TYPE ULTRAPARABOLIC
ARBITRARY ORDER EQUATION

In weighted Holder spaces it is studied the smoothness of integrals, which have the structure
and properties of derivatives of volume potentials which generated by fundamental solutions of
the Cauchy problem for one ultraparabolic arbitrary order equation of the Kolmogorov type. The
coefficients in this equation depend only on the time variable. Special distances and norms are used
for constructing of the weighted Holder spaces.

The results of the paper can be used for establishing of the correct solvability of the Cauchy prob-
lem and estimates of solutions of the given non-homogeneous equation in corresponding weighted
Holder spaces.

Key words and phrases: ultraparabolic Kolmogorov type arbitrary order equation, an integral
which have the type of derivatives of the volume potential, weight Holder norm, Holder space of
increasing functions.

1 Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, 3b Naukova str., 79060, Lviv, Ukraine

2 National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”,7 Peremogy av., 03056, Kyiv, Ukraine

3 Lviv Polytechnic National University, 12 Bandera str., 79013, Lviv, Ukraine

E-mail: vdronQukr.net (Dron’VS.), ivasyshen.sd@gmail.com (IvasyshenS.D.),
i.p.medynsky@gmail.com(Medyns’kyil.P)

INTRODUCTION

Properties of the corresponding volume potentials are very important when the fundamen-
tal solution is being constructed and investigated, correct solvability of the Cauchy problem is
being established and estimates of solutions for parabolic equations are being obtained. Such
properties have been established for parabolic equations in the sense of Petrovsky and for 2b-
parabolic equations in the sense of Eidelman without any degenerations in works [5, 6,8] and
for equations with degenerations on the initial hyperplane in works [6,7,10,12,13]. Volume
potentials for the degenerated arbitrary order parabolic equations of the Kolmogorov type
(ultraparabolic equations of the Kolmogorov type) were studied in [1-4, 6] and properties of
volume potentials with density from Holder spaces of bounded functions which are increasing
as |x| — oo were established only for the second order equations.

It is convenient to obtain such properties if the statements about properties of integrals
which have the type of derivatives of volume potentials are proved first at all. These properties
are described by belonging such integrals to corresponding functional spaces according to the
type of spaces which density and kernel of the integral belong to. Statesments of such type are
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proved in works [6,8,9,11] for parabolic equations in the sense of Petrovsky and for parabolic
equations in the sense of Eidelman. By the way they have their own value.

In this paper there is an attempt to prove the corresponding statements in case of the Kol-
mogorov type parabolic equations. The major part of these equations are parabolic in the sense
of Petrovsky with respect to basic indepedent variables.

1 NOTATIONS AND ASSUMPTIONS

Let b, ny, ny, n3 be given positive integer numbers such that 1 < nz < ny; < ny, n =
N1+ np + ns; x := (x1,x2,x3) € R", x:= (xll,...,xln],) € R", 1 € L:={1,2,3}; Tisa positive

number; if ky := (kq1,...,kin,) € Z'! is a n-dimensional index, then |kq| := ki1 + ... + k1,
kl . kll klnl
Oy i= 0yl ... axlnl.

The paper is concerned with the study of properties of integrals of the type

t
%) = / it / M(t, %7, &) (T, E)dE, (%) € g = (0,T] x R™. (1)
0 n

The kernel M is a complex-valued function which has properties of the derivatives of the
fundamental solution G of the Cauchy problem for the equation

%) ns
— Z xljaxzj — Z XZjaij - Z l}lkl axi ) f(t, x), (t, x) € H(O,T]' (2)
j=1 j=1

k1| <2b

In the equation (2) oy — Y ay, (t )8],2 is parabolic by Petrovsky differential expression, and
ky|<2b
coefficients ay, are cont1r|1uous on [0, T] functions.

The equation (2) belongs to a class of ultraparabolic equations arbitrary order 2b and it gen-
eralize known equation of A.N.Kolmogorov of diffusion with inertia. In [6] it was established
a structure and properties of the function G and its derivatives.

Let us describe properties of the kernel M of integral (1). For the purpose we denote:

g :=2b/(2b —1), N := (n1 + (2b + 1)ny + (4b + 1)n3)/(2b), AY f(t,x) := f(t,x) — f(t,x'),
nq ny ns
p(t, x,¢) 1:’517‘7_21|x1j—§1j|q + 2 _Zl |9 + b1 — G| T+ #1737 .Z |3 4 bxgj + 2712wy — Gy,
]:

d(x;x’) — |xl N x/|1/(2b(l—1)+1)’ dl(x;x’;A) — |x1 _ x1|/\ + Z |x |(A+1)/(2b(l—1)+1),

l

1l LMw

dy (x; x5 M) X — x1|A + |xp — é|()\+1)/(2b+1 + |x3 — |(A+2b+1)/(4b+1)’ if t € (0,T],
{x,x/,&} C ]R” A€ (0,1].
Note, that if d(x; x') < 1, then

dy(x; 2 A) < dp (x5 A) <477 ()Y, {x, 2’} C R, A € (0,1].

As the kernel of the integral (1), let us take the function M, which can be represented in the
form
Mt xT, &)= (t—-1) " Nt 51,8, 0<T<t<T {x,& CR", (3)

where v € (0,2b 4 1/(2b)], and the function (), with the values in C, is continuous and it
satisfies the conditions below with some numbers ¢ > 0 and y € (0, 1]:
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A V{t,t} C (0, T], T <t Vx e R":

/Q(t,x;r,g)dg —0 forve (1-1/(20),1],
IR}'l

/ Q(t, %7, 8)dE2dEs = 0 forv € (1,1+1/(2b)], @)

]Rn2+n3

/ Q(t,x;7,8)dé = 0 forv e (1+1/(20),2b +1/(2b)];
R™3
Ay, AC > 0V{t,t} C (0,T], T < t, V{x,&} CR":

1Q(t, x;7,8)| < Cexp{—cp(t —1,%,(}; 5)
A3.3C > 0V{t, T} C (0,T], T < t, V{x, &/, &} CR", d(x;x') < (t — 7)1/ () .
870t 37,8)] < Cld(52))7(t — 1)~ exp{—cp(t —7,%,)}. ©

The definition of the function M contains the number v, ¢, and 7, which assume are consid-
ered to be given. By M(v, ¢, y) we denote a set of all functions M determined by formula (3),
in which the function Q) satisfies conditions A; — A3 with giveny € (0,1], v € (0,2b+1/(2b)],
c € R;.

It should be noted that for v € [1,2b + 1/(2b)] integral (1) with the function M € M (v, c, )

is treated as the limit
t—h

}113(1) dT/M(t,x;T,é)f(T,g',‘)dé‘,
0 R¢

which exists for suitable f, because of condition A;.

Let us define spaces to which the functions f and u belong. They are the spaces of functions
which are continuous or satisfy Holder condition and which have certain restrictions as |x| —
co. Their behavior as |x| — co will be described by the functions

3

p(t,x) :=exp Y_ki(t,a)|x|7
i1

or

3
P(t,x) :=exp Y s/(t)|x]7, t €[0,T], x € R".
=1

Here for a fixed number cj from the interval (0,c), where c is the constant from conditions

Ap and As, and for a set a := (aj1,ap,43) of non-negative numbers a;, | € L, such that T <
min(co/a;) @1/ @(1-1)+1)
leL

ki(t,a;) = com (31 — a%bfltzb(lfl)ﬂ)l’q, leL;

s1(t) == ky(t, 1) + 27 Wiky(t, a0) + 27 2429k5(t, a3),
Sz(t) = 2q71k2(t, 1}12) +4’771t’7k3(t, 613>, Sg(t) = 4q71k3(t, Elg), t e [0, T].
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The functions k(t) := (k1 (t,a1), k2 (t,a2),k3(t,a3)) and s(t) := (s1(¢),s2(¢),s3(t)), t € [0, T],
have the following properties [6]:

k(O) =a,aq < kl(T,ﬂl) < kl(t,al) < Sl(t), 0<t<t<T, lel (7)
kl(t—T,kl(T,ﬂl>> Skl(t,ﬂll), 0<t<t<T, lel; (8)
3 3 3
—cop(t =7, %,8) + Y al|&l" < Y kit a)|m(H)|T <Y si(t)]x]f,
1=1 I=1 1=1
0<t<t<T{x¢} CR", 9)

where %;(t) := (%1(t), X2(t), -, X1, (t)), 1 € L; %1(t) == x1, ] € {1,...,m}; %(t) 1= xpj +
txl]-,j S {1, ceey Vlz},‘ fg,]'(t) = X3; + i'X2]' + 2_1t2X1j,j € {1, ceey Vl3}.
From these properties it is follows that

¢(T, X1(t = 7)) < (8, Xa(t)) < p(t %),

exp{—cop(t —7,x,&) }o(7,8) <y(t,x), 0<T<t<T, {x,¢} CR", (10)
where X (t) := (1(t), %2(t), X3(1)).
For a given number A € (0,1] we denote by C°, C;}, C{\, o and Cé\, spaces of continuous

functions u : IT7) — C, for which the corresponding norms ||u||9, Hqu = HuH?P + [u]é,
ullg = lullg + [ult, and [[ull3, := [|ull§ + [u]3,, where
u(t, x)|
lully = sup ,
¢ (t,x)eH[O,T] (t’ x)

A% u(t, x)|
[u]} = sup ,
P e @) (ol 2) + gl )
(t)# (1)

A u(t, )]
[u]t, = su ,
i DA () + 9E, )
(tx)#(tx")

|AY u(t, x)|
Wy i=  sup
o {(£0), (64"} Mg gy dy (x;x'; A) (p(t, x) + o(t, x'))
(Ex) (1)

are finite.

Except these spaces we will use the space Cfl‘,. The definition of this space is obtained if in
the definition of the space Cg the function ¢ replace by the function .

2 MAIN THEOREM

Let us formulate the main results of this paper.
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Theorem. Let M € M (v, c,y) and function u is determined by formula (1). Then the following
statements are valid:
a)ifv <1—-1/(2b) and f € CO thenu € Cg and

[lully < ClIfIl; (11)

b)ifv € (1—-1/(2b),1] and f € C}, A € (0,1], then withv + (v — A)/(2b) < 1 we have
ue Cg and

[lullf < ClIA1lG, (12)
and withv + (y —A)/(2b) > 1 we haveu € C$ and
[lully < ClIfllg; (13)
oifve (1,1+1/(2b)] and f € Cl(P,A € (0,1], then withv + (y —1—A)/(2b) < 1 we
have u ECIZ and
[lull§, < ClIfI1 g (14)

and withv+ (y —1—A)/(2b) > 1 we haveu € CI)IE and

[l < ClIfI1 g (15)

d)ifve (1+1/(2b),2b+1/(2b)] and f € CQ\(P,A € (0,1], then withv+1—-2b+ (y —1—
A)/(2b) < 1 we haveu € Cg and
ully, < ClIf112,4/ (16)

and withv+1—2b+ (y—1—A)/(2b) > 1 we haveu € C@ and

[ullf < ClIf115,- (17)

The constants C in inequalities (11)—(17) depend only on the constant C from conditions A;
and A3, and also they depend on the numbers n1, nz, n3, b, v, ¢, v and A.

Proof. Below various constants we will denote by same letters if we have no interest in con-
stant’s values.
a) Using the equality [6]

/(t — 1) Nexp{—cp(t —7,x,8)}dé =C, 0<t<t<T,x€R", >0, (18)
]Rn

with the help of (3), (5), (10) and of the definition of the norm ||| |9P we have

u(t,x)| < C/(t v Ndr/exp{ co(t —7,x,8)Hf(T,8)|dE = C/ )V Ndr
0 R"
[ expt=contt = %, o)L expl— (e~ copte — 7,21} 1)

Rn

t
< Cy(t,x / (t =) vdr||flly = Cyp(t, )| fIfg, (¢ x) € Mg .
0
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Let x and x’ be arbitrary fixed points from R" and d := d(x; x"). Let us estimate the differ-
ence A;‘/u
When d?’ > t, with the help of estimate (19) we obtain

[AF ut, 2)] < Jult,x)| + Ju(t, )| < C(t,x) + (e, NI

/ INYY $1—v—7/(2b) 0 / n (20)
< C(y(t,x) + 9t x"))(d(x; x7)) 7t || fllp, t€(0,T], {x,x'} CR", v € (0,1].
Let us consider the case d%’ < t. We have
t
AT u( / / AY M(t,x;7,8)| |f (T, &)|dE, te (0,T], {x,x'} CR". (21
O n
Let us prove for the difference AM := A§/M(t, x; 7, ) the inequality
IAM| < Cd(t — )77/ )V "Nexp{—co(t — T,x,¢)}. (22)

We shall distinguish the following cases: 1) d?? >t —1,2) d* < t — 1.
In the first case, we obtain estimate (22) immediately from (3), (5) and from the inequality
|AM| < |M(t,x;7,8)| + [M(t,x";T,)|. In case 2) note that

AM = (t — 1)V NAYQ(t, x; 7, 8).

Because of (6) we have estimate (22) in case 2).
With the help of (10), (18), (21) and (22) we get
AT u(t,x)] < C(p(t,x) + (e, x))d e ==/ @O £|[E, (23)
te (0,T], {x,x'} CR", vy € (0,1—1/(2b)].

From (20) and (23) the estimate
[uly, < ClIfIG

follows and by this result and (19) the estimate (11) holds.
b) Let v € (1 —1/(2b), 1]. Because of the first condition from (4) we represent integral (1)
in the form

t
u(t,x) = / dt / M(t % T, O8O f(,0)de, (1,x) € g, (24)
0 n

where X1 (t) := (%1(t), %2(t), X3(t)) as in (10).
With the help of (3), (5) and (7)—(10) we get

u(t,0)] < C [ (¢ =) Nar [ exp{—(c~ co)p(t — 7,%,8)} exp{—cop(t — T, %)}
0

R~

AXl (t—7) ,
R

0
x /eXP{—(C —co)p(t — 7,2, &) }(d(&, X (t — 7)) dEy(t, 1) [flg.

R~

a¢ < C/(t — 1) Ndr
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Now let us use the inequality [6]
(d(g, X (t =)  exp{—cp(t = 7,%,8)} < C(t =DM P exp{—cip(t — 7,%,0)},

0<t<t<T, {x,¢}CR",0<¢ < Ae(0,1] )
For ¢ = ¢ — cp with the help of (18) we have
t
u(t, )] € [(t=1) NN @har [expi-eip(t —7,x,)Hzy(t, )]}
0 t R" (26)
/ A D) gr — Cy(t, x)v]g);tl—v-i-/\/(Zb)’ (t,%) € TTo7.
0
Then
[lully < Clflg- (27)

Let us estimate the difference A§/u. If d?° > t, where d := d(x;x’), then under condition
(26) we have the estimate

AT u(t,x)| < C((t,x) +(t, X)) [flpt )t e (0,T], {x,¢} CR".
We obtain
AT u(t, )] < C(p(t,x) + (e, x)) [flpd
< C(p(t,x) + (1, x)d* [l t € (0, T), {x,&} CR";
and with v+ (y —A)/(2b

AT u(t,x)| < C(p(t,x) + (kX)) [flgt' D/ @0/ 20)

< C(p(t,x) + (8, x) [flpt! v D/ 0 (29)

< C(p(t,x) +9(t,x")d"[fly, t € (0,T], {x,&} CR".

(28)

) < 1 we receive

It is sufficient to consider the case, where d?’ < t. By the first condition from (4) like (24)

we write
tidzb

A u(t x) = / dt / Y Mt %7, )R f(x, 8)de

0 R”

t
+ / dT/M(t,x;r,g’,‘)A?l(t_T)f(T,§)d§

d% R

t
o 3
- / dt / Mt x5, AN T f(z,8)dE = Y Ky,
f—g2b  Rn I=1
where X/ (t) 1= X1 ()] y—y'-
Using (3), (6), the second inequality from (9), (10), we get
t—d?

Kil<C [ (t=0) 7 Nar [(@dna)) Tt =) exp{—cp(t — 7,%,8))
0

R”
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|AX1tTf(T€ v N—v/(2b
x(p(n8) +o(t Xt —D) ey < € / —v=N=7/(2b) g

X /llﬂ(f,x) exp{—(c—co)p(t — 7, x,&) }(d(& X1 (t — 7)) dgd" [f];-
R~

Now let us use the inequality (25) and equality (18). We get
t—d?b
Kil < Cdv [ (e 7)o @y, )£, (30)
0
If v+ (y —A)/(2b) < 1, then from (30) we obtain

|Ka| < CdVip(t, ) [f](t — 7)1 (=000

T=t—d?b
= Cp(t, x)[fl (#1770 — 2O < cdryp(t, ) [,
If v+ (y —A)/(2b) > 1, then from (30) we obtain

[Ka| < Cap(t, x)[f]5(t — 7)== (=M GO — (s, x) ] (a2 011

_tl—v—('y—/\)/(Zb)) < Cde(l—v)—i-/\lP(t’x)[f]/(}) _ Cd/\l[J(i', x) [f]g
Let us estimate K. With the help of (3), (9), (10) and (25) we obtain

Kol <C [ (t= 1) Nar [(@d@Xa(t - 1) exp{—cplt — 7,%,0))

e R

<(9(r,8) + p(r, Xt~ )dElfly <€ [ (1) Nar

t—d2b

x /(d(é; X1 (t = 1)) exp{~(c — co)p(t — 7, x,6) }p(t, x)dZ[f];,
R7

R~

<C [ (t-m) NN @ar [exp{-eip(t - 7,0 bp(t 2)azlf]].
42b

Using (18) with ¢’ = ¢;, we have

Kol < C / M @yt x)[ ;.

t—d2b

Since —v + A/(2b) > —1, we obtain

K| < C(t =)V @B ) [ = Ca (10 (s, ) [f]) G1)

and thus, we have

[Ko| < Ca*d®Vy(t, x)[f]}, < Cd*y(t, x) [fg,
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if v+ (y—A)/(2b) > 1. In case, where v+ (7 — A)/(2b) < 1, we receive from (31) the
following inequality

[Ko| < CaYd® 002" p(t, 2)[f] < CdTy(t, x)[fg.

By the similar way we obtain

[Ks| < Caty(t,x')[f]y

in case, where v € (1 —1/(2b), 1], and

|Ks| < Cdp(t,x') 1]

in case, where v € (1 —1/(2b),1Jand v — (y — A)/(2b) < 1.

From (27), (28), (29) and from the estimates for Kj, I € L, the estimates (12) and (13) follow
withv € (1—-1/(2b),1].

o) Letv € (1,1+1/(2b)]. Because of the second condition from (4) we represent integral
(1) in the form

t
utx) = [ar [ (] =07 N mT o8R0 (0 dedz ) e,
0 RM  RM+n3

(t,x) € o,

(32)

where X;(t) := ({1, X2(t), %3(t)), with %;(t), | € {2,3}, which were determined in (9).
With the help of (3), (5) and (7)—(10) we get

u(tx)| < C [(t=7) 7 Nar [exp{—(c ~co)p(t — 7,%,0))
0 R”
AR f (2, )]
7,0) + (T, Xalt 7))

< exp{—cop(t = 1,5,0)}(p(r,8) +(r, Xalt ~ 1) dé

t

< C [(r= 1) Nar [ exp{—(c — co)p(t — 1,38}y (&5 Kot — T A)EY(E, ) [f1}
0 R"

The inequality below follows from definitions of d, d; and Xj.

3
& (& Xa(t— 1) A) = Y |8 — &) (t — 7)|AFD/ 2001+
=2

3 A+1
=C <Z 61— xi(t = T)I”(Zb(l_l)“> = C(d(&Xa(t = 7)),
1=2

0<t<t<T, {x¢}CR", Ae€(01].
Here C > 0 is some constant. Then taking into account inequality (25) we have
(& Xa (= T); A) exp{—p(t —T,%,8)} < CLA(E Xa(t — 7)) exp{—cp(t — 7,%,8)}
< C(t —1)1FN/ @Y exp{ —c1p(t — 7, x, &)},

0<t<t<T, {x,¢}CR", 0<ec1<¢ Ae(0,1]
(33)
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For ¢ = ¢ — cg with the help of (18) we have

t
u(t,x)| < / —v=N+(14+1)/ (Zb)dr/exp{—c‘lp(t—T,x,g)}dglp(t,x)[f]i\,q)
O ]Rﬂ
; 34
= C‘/’(tfx)[f]i\,q, /(t — )~V (2b) g (34)
0

= Cl/](t, x)[f]i\,(ptl_v—i_(l—i_/\)/(%)/ (t/ x) € H(O,T]'

Then
[|ull§ < CLAIR,- (35)

Let us estimate the difference Ai/u. If d2 > t, where d := d(x; x"), then under estimate (34)
we have the inequality

[AF u(t,x)] < Clp(t,x) + 9 (t, x) [} 't~/ @)
< C(y(t,x) + (1, X)) d [f)14, t € (0,T], {x,5} C R,
and withv + (v —1—A)/(2b) < 1 we receive
|A§c(’u( )| < C(p(t,x) + Pt x/))Lf]{\,(Ptl—v—(W—l—/\)/(Zb)t’Y/(Zb)
< C(P(t,x) + (b, ) [fI] 'V (36)
(

< C(y(t, ) + (1, 2)d" )14, t € (0,T], {x,¢} CR™

It is sufficient to consider the case, where d?” < t. By the second condition from (4) like (32)
we write
t—d?

83 ut,x) = / ar [ (] sM(xnoaR T fn odzdz ) e

R"  R"2*713

- / dr [ (] MexmaR T f(r 0 dcds ) e ®)

t— de R”l Rn2+?13

3
- / ar [ (] Ml oal T edzdes ey =LK

t—d2t R™M  R"2t3
where X}, (t) := X ()] y=y'-
Using (3), (6), the second inequality from (9), (10), we get
t—d?

Kil<C [ (t=m) Nt [(@dna) (e =) expl—ep(t — 7, %,8))
0

R7

\A?Zt “f(T o)l —v—N—7/(2b)
X (9(1,8) + 9(5,Xalt = 1) ot T e < C [ (=m0

< [ 9l expi—(c = co)plt = 7,%,8) by (& Xa(t — 7); )" [f]1.
Rn
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Now let us use the inequalities (33) and equality (18). We get

t—d?
K| < Cd / (t — 1)~V N=7/(20)+(1+4)/(2b) g7 / ¥(T,x) exp{—c1p(t — T, x,&) }dE
0 n
t—d?
demf? — CdY / (t— T)*U*('Y*lfft)/(Zb)dTw(t’x)[f]{\l(P_
0

Ifv+(y—1—A)/(2b) > 1, then

K| < Cavp(t, x)[fI, (¢ — 1) 7= =N/ @OEAR — Cavp(r, x)[f]], (@077

=

_tl—v—('Y—l—)\)/(Zb)) < Cde(l_V)+1+/\lP(t1x)[f]i\,go < Cd/\llj(t'x)[f]i\,go'
Ifv+(y—1-A)/(2b) <1, then

[Kq| < Cdp(t,x)[f];

,(P(t _ T)lfvf(fyflfA)/(Zb) 0 = Cdp(t, X)[f] o

T=t—d? —

« (tl—v—('y—l—A)/(Zb) N de(l—v)—'y+1+/\) < Cd7¢(t,x)[f]i\¢.

Let us estimate K. With the help of (3), (9), (10) and (33) we obtain

Kl <C [ (t—0) 7 Nar [ (@ Xa(t - 7);A) expl—colt — ,%,0)}
)

t—d2b

t

<(9(r,8) + 9(r, Xalt —))E[f, <C [ (t—7)Nar

t—d2b

x /dl(ﬁ; Xa(t = 1);A) exp{—(c —co)p(t — 7, &)}y (t, )dS[f13,

R”

<C / —v=N+(1+A)/ (Zb)dr/exp{—c_lp(t - T,X §)}lp(t,x)d§[f]{\,¢

t—d2b R"

Using (18) with ¢/ = ¢;, we have

Kyl <C / SN @y (1, 2)[f]},.

t—d2b

Sincev — (1+ A)/(2b) < 1, we obtain
_ _ b B
|Kp| < C(t =)' IVt x) (1T, = Ca* 0T Ay (1, 1) [f]7

The estimate

IK5| < CdVde(lfv)+1+Af’Y¢(t,x)[f]{\,go < Cd%,l)(t,x)[f]{‘,?
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follow from (38) if v + (v — 1 — A)/(2b) < 1, and the estimate

[Ky| < Cara?* =0 g (8, 2)[fh,, < Caly(t, ) [f]7,,

ifv+(y—1-A)/(20) > 1.
By the similar way we obtain

[Ks| < Cdp(t, x)[f13,

in case, where v+ (y —1—A)/(2b) < 1, and

[Ks| < Catp(t, x)[f1,

in the case, where v+ (y —1—A)/(2b) > 1.

From (35), (36), (37) and from estimates for K/, | € L, the estimates (14) and (15) follow.

d) This case can be proved by the similar way as the case ¢). We must use the third equality
from (4); representation of the integral (1) in the form

t
u(t, x) = O/ dr [ ([0 Vot s sl U pr e e, (%) € g,

]Rnl +ny R"3

where X3(t) := (&1, &2, %3(t)), with %3(t), which was determined in (9); and estimates

02 (& X5 (t — ); A) exp{—cp(t — T,x,&)} < C(A(& X3t — 1)) "2 exp{~p(t — 7,%,8)}
< C(t =) P exp{—crp(t — 1,x,8)},
0<Tt<t<T, {x,¢} C R",
0<e<eg, A e (0,1].

These estimates are obtained in the same way as estimates (33). O
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Aponb B.C., Ipacumren C.A., Meauscsxmit LIT. Bracmusocmi inmeepaie muny noxioHux eio 06’ e mHozo
nomenyiany 015 00Ho20 Ynompanapaboniuroeo pisHanHa muny Konmozopoea dosinvrozo nopsdky // Kap-
maTchbki MaTeM. my6a. — 2019. — T.11, Ne2. — C. 268-280.

Po3rAsSIAQIOTBCST iHTErpaam, sIKi MalOTh CTPYKTYPY Ta BAACTMBOCTI, MOAIGHI AO MOXiAHMX Bia
06’eMHIX MTOTeHIIiaAiB, MOPOAXKeHNX PYHAAMEHTAABHMM PO3B’si3koM 3aaaui Kot aast yabTpara-
paboaiuroro pisHsHHS Ty KoaMoroposa aosiabHOTO mopsiaky. KoedpirieHTn 11poro piBHSHHS
3aAeXaTh TIABKM BiA YacOBOi 3MiHHOI. BCcTaHOBAIOEThCSI HAAEXHICTD IYIX iHTErpaAiB AO BiATIOBIAHIX
BaroBux Mpocropis I'eabaepa, 3aA€XHO BiA TOTO, AO SIKMX IIPOCTOPIiB HAA€XMUTD I'yCTMHA Ta SAPO
iHTerpana.

Anst mobya0BM IpocTOpiB I'eAbaepa BUKOPWCTOBYIOTBCS CIIelliaAbHI BiACTaHi Ta BaroBi HOpMIL.
BiacraHi BpaxoBYIOTh aHi30TPOMNHICTh 3a IPOCTOPOBUMM 3MIHHVMIL PiBHSIHHSI, sIKe IIOPOAXYE iHTe-
TpaAm, IO PO3TASIAAIOTECS. BaroBumm (pyHKIISIMI € €KCTTOHEHTH, sIKi HeOOMeXXeHO 3pOCTaloTh Ipy
|x| — ©o i THII IX 3pOCTaHHS CIEiaABHMM CIIOCOB0M 3aAEXKUTD Bia 3MIHHOI £.

PesyabTaTyi po60TH MOXYTH 6y TV BUKOPWCTaHi AASI BCTAHOBAEHHS KOPEKTHOI pO3B’SI3HOCTI 3a-
Aaui Ko Ta oIiHOK po3B’sI3KiB AAHOrO HEOAHOPIAHOTO PiBHSHHS Yy BiAIIOBIAHIMX BaroByX IIPOCTO-
pax I'eabaepa.

Kntouosi croea i ppasu: yapTpamapaboiiune piBHsHHS Ty KoAMOroposa AOBIABHOTO TTIOPSIAKY,
iHTerpaa TUITy MOXiAHMX Bia 06’€éMHOrO IOTeHIIiaAy, BaroBa reabAepoOBa HOpMa, IpocTip I'eabaepa
3pocTarounX yHKIII.
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FEDUNYK-YAREMCHUK O.V., HEMBARS'KA S.B.

ESTIMATES OF APPROXIMATIVE CHARACTERISTICS OF THE CLASSES B’% OF
PERIODIC FUNCTIONS OF SEVERAL VARIABLES WITH GIVEN MAJORANT OF
MIXED MODULI OF CONTINUITY IN THE SPACE L,

In this paper, we continue the study of approximative characteristics of the classes 339 of peri-
odic functions of several variables whose majorant of the mixed moduli of continuity contains both
exponential and logarithmic multipliers. We obtain the exact-order estimates of the orthoprojec-
tive widths of the classes B?ﬁ in the space Ly, 1 < p < g < oo, and also establish the exact-order
estimates of approximation for these classes of functions in the space L, by using linear operators
satisfying certain conditions.

Key words and phrases: orthoprojective width, mixed modulus of continuity, linear operator,
Vallée-Poussin kernel, Fejér kernel.
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INTRODUCTION

Let R?,d > 1 denote d-dimensional space with elements

x=(x1,...,x3), (x,y) =x1y1+ ...+ X3y
and let Ly(7y), 1 < p < oo, be the space of functions f(x) = f(x1,...,x4), which are 27-
d
periodic in each variable and summable in degree p on the cube 7t; = [T [0; 27t] for which the

j=1
norm is defined as follows:

ALy () = [1fllp = ((27T>d/|f(x)|pdx) :

Respectively, Lo (777) is the space of essentially bounded functions f(x) = f(x1,...,xy),
which are 271- periodic in each variable, with the norm

1AL (mg) = [Iflleo = esssup | f(x)].

XETT,
Further, we assume that, for functions f € L,(7,), the following additional condition holds:

27 S
A f(x)dx; =0 j=1,d.

YAK 517.51
2010 Mathematics Subject Classification: 42B99.
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For f € Ly(my),1 < p < oco,and t = (t1,...,ta), t; > 0,j = 1,d, we consider the mixed
modulus of continuity of the order I
Qy(f,t)p = sup HAilf()Hp,
hj|<t;
j=14
where € N, Al f(x) = A;ll e A;ldf(x) = A;ld(. . (Aillf(x))) is a mixed difference of the order

I with a vector step h = (hy,...,hy), and the difference of the Ith order with a step hj in the
variable X is defined as follows:

1

A;l]f(x) = Z (—1)1_”C?f(x1, ey x]-,l, X]' + nh]-, xj+1, . ,Xd).
n=0

Let Q(t) = Q(#y, ..., tz) be a given function of the type of a mixed modulus of continuity
of the order /, which satisfies the following conditions:

_ d
1) Q) >0,t>0,j=1dQ(t) =0, [Tt =0;
j=1

2) Q(t) is nondecreasing in each variable;

d 1
3) Q(mltl,...,mdtd) < < H m]> Q(t), m] - N,j = 1,d;
j=1

4) Q(t) is continuous for ti>0,j=1,d.

We assume that )(t) satisfies also the conditions (S) and (S;), which are called the Bari-
Stechkin conditions [1]. This means the following.

A function of one variable ¢(7) > 0 satisfies the condition (S) if ¢(7)/7* almost increases
for some & > 0, i.e., there exists a constant C; > 0 independent of 71 and 7> and such that

M<C1¢(Tz) 0<n<n<l

® x 7
’l’l T2

A function ¢(7) > 0 satisfies the condition (S;) if ¢(7)/T" almost decreases for some
0 < v <, ie., there exists a constant C, > 0 independent of 71 and 7, and such that

&?ECQ&?, 0<ug<n<l
T T
1 2

We say that Q)(t) satisfies the conditions (S) and (S;) if Q)(¢) satisfies these conditions in
each variable ¢t; for fixed t;, i # j.

Thus, let 1 < p < oo, 1 < 6 < o0, and let Q)(¢) be a given function of the type of a mixed
modulus of continuity of the order /. Then the classes ng are defined in the following way [21]:

B = {f € Ly(ma) : [flgo, <1},

0 4 ) %
||fHB§19:{/<%> Hdt—?} , 1<60<oo,

Uuvi ]:1

where
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N(f,t)p
1fllgo, =sup —= <~
By =0 Q)
(the expression t > 0 for t = (t1,...,t;) is equivalent to ti>0,j= 1,4).
We note that, for 6 = oo, the classes B?Q coincide with the classes HS, which were consid-
ered by N.N. Pustovoitov in [13].
In the subsequent, it will be convenient to use the equivalent (to within absolute constants)

definition of the classes B?Q. For this purpose, we need the corresponding notations.

To every vector s = (s1,...,54), sieEN, j= 1,d, we put the set

s)={k=(ky,... . kg): 251 < |kj| <2%,k; € Z,j=1,d}

in correspondence, and, for f € L,(74),1 < p < oo, we denote

-~

where .
= (2m)~ / F(E)e kb gt
Ty

are the Fourier coefficients of the function f.

Letl < p < oo, 1 <6 < ooand let ()(t) be a given function of the type of a mixed modulus
of continuity of the order I that satisfies the conditions 1 -4, (S) and (S;). Then, to within
absolute constants, the classes ng can be defined as follows [21]:

1
g
By = {/ € Lyl g, = (ZO ). <f>||z) <1f )
forl1 <60 < oo and
145 (A
B = {1 € Lyl Iflgp, = sup o202 <1}, ®
Here and below, Q(27°) = Q(271,...,27%),5; € N, j = 1,d.
The given definitions of the classes B?e can be extended also to the extreme values p = 1

and p = oo, by modifying the "blocks" Js (f) in (1) and (2). Let V, () stand for a Vallée-Poussin
kernel of the order 2n — 1, i.e.,

2n—1 k—mn
V()—l—l—ZZcoskt—i-Z ) (1—T>coskt.

k=1 k=n+1

To every vector s = (s1,...,84),5; € N,j = 1,d, we put the polynomial

4.0 =TT (Vi ) = Vy )
[

in correspondence. For f € L,(74),1 < p < o0, by As(f) we denote the convolution

As(f) i= As(f,x) = (f * As) ().
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Then, to within absolute constants, the classes B, 1 < p < oo, can be defined as follows:

p.6”

1

%e—{fGLAW)HﬂW>—<ZK) H%(Hﬂ) Sl} 3)

forl1 <0 < ocoand

Bl = {1 € L) [ lsp, —sup 20 <1}, n

We note that relations (3) and (4) were obtained in works [18] and [13], respectively.
d .

We note also that, for Q(t) = [] t]r.’ ,0<r < 1, the classes B?Q are analogs of the well-
:1 7

known Besov B;/e, 1 < 6 < o0, and Nikol’skii B;/OO = H; classes (see, e.g., [8]).
In what follows, we study the classes ng that are defined by the function Q():

d £
——LT,ﬁg>Qj:L¢
_ — (logt)
Q) =Qt, ... ta) = ] (5)
0, if T[t;=0.
j=1

Here and below, we consider the logarithms with base 2, and

<logtl]_> = max {1,logtlj} .
+

In addition, we assume that b]- €eR,j= 1,d,and 0 < r < 1. Hence, properties 14 and the
conditions (S) and (S;) are satisfied for the function Q)(t) of the form (5).

In the present paper we obtain the exact-order estimates of orthoprojective widths of the
classes ng in the space L;,1 < p < g < co. We recall that the notion of orthoprojective width
was introduced by V. N. Temlyakov [23].

Let {u;}M, be an orthonormalized system of functions u; € Leo(7y), f € Lg(ma),
1 < g < 0. We set

(Fu) = @) [ flx)m ()

where 1; is the function complex conjugate to the function u;.

To every function f € Ly(74), 1 < g < 00, we put an approximation of the form Z (f, ui)u;
i=1
in correspondence, i.e., the orthogonal projection of the function f onto the subspace generated

by the system of functions {u;},. Then, for the functional class F C Ly(74), the quantity

f= qu

is called the orthoprojective width (the Fourier-width) of this class in the space L, (7t4).
In addition to orthoprojective widths, we study the quantities d%;(F, L,) introduced by V.N.
Temlyakov [22]). They are defined as follows:

dyi(F,Lg) = inf sup (6)

{uidtly feF

q
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d8(F,L,) = inf su —Gfl.. 7
m(F Lg) GeLM(B)quFNI;’(G)Hf fllg ()

Here, Lj1(B), stands for a set of linear operators satisfying the conditions:

a) the domain of definition D(G) of these operators contains all trigonometric polynomials,
and their domain of values is contained in a subspace with dimension M of the space

Lq(”d)}

b) there exists a number B > 1 such that, for all vectors k = (ky, ..., k), k; € Z,j = 1,d, the
inequality HGei(k”) Hz < B holds.

We note that Ly;(1)2 contains the operators of orthogonal projection onto the spaces with
dimension M and the operators that are set on an orthonormalized system of functions with
the help of the multiplier defined by a sequence {A,, } such that |A,,| < 1 for all m.

From (6) and (7), it is easy to see that the quantities dy;(F, Ly) and dB (F, L;) are connected
with each other by the inequality

d5i(F,Ly) < dy(F, Ly). (8)

At present, a lot of works are known, in which the quantities dy;(F, L) and d%,(F, L;) were
studied for various classes of functions. We mention works [14,16,17,22,24], where the quan-
tities (6) and (7) were considered for the classes of functions of many variables Wy« Hp, B;IQ,
and H? (see also numerous references therein). The quantities dI%A(B;%, Ly) and d]%[(B?,e, L)
for the classes of functions of many variables with a given function () of the form (5) under

the condition bj <r,j =1,d, were considered in works [4-7].

1 AUXILIARY ASSERTIONS

We now give several known assertions, which are used in the subsequent considerations.
As was noted above, ()(t) is a function of the form (5). For a natural N, we set

) _ 1
x(N) = {s = (s1,...,84) : sieN, j=1,4d, Q2% > N},

QN) = U ols)-
sEX(N)

We note that the approximation of certain classes of periodic functions of many variables
with mixed generalized smoothness by trigonometric polynomials with "numbers" of harmon-
ics from the sets that are analogs of Q(N) was started in work [15]. Later, the approximations
by trigonometric polynomials with "numbers" of harmonics from the sets Q(N) were studied
in works [4], [19], [20] and other ones.

The following proposition is true.

Lemma 1 ([14]). For the number of elements of the set Q(N), the following ordinal equalities
hold:

b b
T+v-1

IQ(N)| = N7 (logN) 7"~ ,
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ifblS...Sby<7’<bv+1§...§bd,'

b

b
[Q(N)| < N7 (logN) ™7,
I'fTSblS...de, b2>1’.

Here and below, the notation y1 < pyp for positive functions y1(N) and pp(N) means that
there exists a constant C > 0 such that, VN € IN, the inequality y#1(N) < Cuy(N) holds.

The relation p; =< pp holds if py; < pp and pg > up. We note also that all constants C;,i =
1,2,..., which are used in what follows, can depend only on parameters that are contained in
the definitions of a class and a dimension d of the space R".

To formulate the following assertions, we note that, according to (5), the definition of a set
X (N) takes the form

Therefore,

Let

. 1 _ 1
O(N) = {s = (s1080): 5 €N j=T1d, S0 <0(27) < N}'

In work [11], it was established that the number of elements of the set @(N) satisfies the
ordinal equality

©(N)| = (log )™

Lemma 2 ([14]). For the function Q)(t) defined by equality (5) for0 < B < r,0 < p < oo the

relation
2 (Q( 2H Hlﬁ < Z 2H H1!3)
s€x+(N) s€Q( )

holds, where ||s||; = s1 + ...+ 354, 5; € N.

Lemma3 ((14]). If y1 <... <7 <1<9,11 <...< 7y then

) Hs T = (log N) el
s€O(N) j=
If 1<y <...<794 72>1, then
) Hs "< (logN) ™"

s€®(N)j=

Lemma 4 ([22]). Let1 < p < g < oo and f € L,(7). Then

1.1 q
|!f|\q<<2<|\5s Hlly sl (3 q)) _
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Lemma 5 ([24]). Let A be the linear operator given by the equality
‘ M
A = N (),
m=1

where {i,(x) }Zzl is the set of functions for which
lom()2 <1, m=1,..., M.
Then, for any trigonometric polynomial t, the following inequality holds:
1
M 2
min Re At(x —y) < (M Yo ) ]a]fn?(k)F) :
y=x m=1 k

Theorem 1 ([10]). Let Ty, be a trigonometric polynomial of the order n = (ny,...,1y), i.e.,

Tu(x)= ) ... ) Cy, g0

lki|<ny  |kgql<ng

where nj, j = 1,d are natural numbers, and Ck,,...k, are any coefficients. Then, for1 < p < g <
oo the inequality

'mb—‘
Q\)—‘

d
ITully < zd(nn]-) ITull, ©)

j=1

holds.

Inequality (9) was established by S. M. Nikol’skii and is called the "inequality of different
metrics". In the one-dimensional case for p = oo, the corresponding inequality was proved by
D. Jackson [3].

Theorem 2 (Littlewood-Paley theorem; see, e.g., [9], p. 65). Let p € (1,00). Then there exist
positive numbers C3(p) and C4(p) such that, for every function f € L,(m;), the following

relations are true:
l

(o)

2 MAIN RESULTS

Ca(p)IIfllp < < CIfllp -

p

Passing to the statement of the propositions and their proof, we assume that M = |Q(N)|.
First, we consider case by < ... < b, <r < b,y < ... < b;. Then, according to Lemma 1, we

have

b v
M = N%(logN)_Tl_'"_ijLV_1

logM = logN, N = M’ (logM)" 0= 1r,

The following theorem is true.
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Theorem 3. Let1 < p < g < 0,9 < 0 < oo, and let Q)(t) be a function of the form (5). Then,

for%—%<r<l,b1§...§bv<ﬁ<b,/+1S...de,therelations
g

—bhy—. — _ 142 1
A (B, Lg) = dy (B, Ly) = M7 (log M) 0" D(=3+3-1) (10)

hold.

Proof. First, we establish the upper bounds in (10). According to (8), it is sufficient to obtain
the upper bound for the orthoprojective width d3; (B;%, Ly).

For this purpose, we consider an approximation of the functions f € BSG by trigonometric
polynomials 4y of the form

tony () = ), &s(f, %)

sex(N)

Let go be any number that satisfies the condition p < g0 < g.
Then, using Lemma 4, and the relation

16s(F ) llg0 = N1 As(F)llgo, T < go < oo,

for f € ng we have

Y. &(f)

sex*(N)

If — tom g = Hf— x o)

x(N) q

q

<=

<<( Y 5s<f>202“<;°”q) x( L As<f>|202“(mq) -n

sex+(N) sex(N)

Then, applying to As(f) the Nikol’skii inequality of different metrics, we continue the esti-

mate as follows:
1

L < ( Z As(f)|zzsl(il"110)q251(’710$>q) = ( Z |As(f)|t’77251(;;>q)

sex+(N) x*+(N)

( )3 0q<25>|As<f>zm<zs>z“<%W)q12.

sext(N)
Using first the Holder inequality with index g and then Lemma 2, we get
1 0—q

L<| T oafeoanl] | T (mzsp'sh(é—é))”
N) sexL(N)

g
sex(
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< ( Z (Q(25)251<;}1)>m)9q <N1( Z 251(;1,”9%)

s€O(N) s€O(N)

£
|
&

|
=

Is.

Taking into account that, for s € ®(N),

b:

d
1 _
olslh = N7 | Is]. ,
j=1

~|S

and using Lemma 3, we have

Thus, in view of the definition of orthoprojective width, the above reasoning gives the upper
bound for dﬁ(Bi}/e, L;), and, respectively, for the quantity dfd (B;%, Ly).

Let us find the lower bounds in (10). Since inequality (8) holds, it is sufficient to obtain the
lower bound for the quantity d%, (B;%, Ly).

With the help of the reasoning analogous to that in [12], we can prove the existence of a set
©1(N) C O(N) such that, fors = (s1,...,54) € O1(N), the following relations are satisfied:

si<logN, j=1,d and |@;(N)| = (logN)dfl.
Also we can assert that there exists a set
@g’/)(N) ={s€O(N):sjxlogN, j=1,...,v,5;=1,j=v+1,...,d}

such that
@ (N)| < (logN)"™"

Consider the set Q(N) = U p(s). By T(Q(N)) we denote the set of trigonometric
se@l(N)
polynomials with the "numbers" of harmonics from @(N ).
Let K, be the Fejér kernel of the order 1, i.e.,

Ku(t) =) (1_ n@l) oikr

k| <n
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We set .
a@= Y kM@ I ¢
se@l"(N) j=v+l

where
v

}CS(’V) (x) = 111 eikj]xi[<25r2 (x].),
]:

Py { 251‘—1_'_25]‘—2, Z 2’

S‘
K = j =
] 1, si=1j=1v.

Suppose that the operator G belongs to Lys(B);,1 < g < co. Consider the operator A =
S o N)G, where S A(N) is the operator of taking partial Fourier sum corresponding to the set

Q(N). Then A € L M(B); and the domain of values of the operator A is a subspace Ay of
the space T(Q(N)), whose dimension dim Ay; = M < M. It follows from Theorem 2 that for

f € T(Q(N)), the following relation is satisfied:

If = Afllg < IIf = Gfllg-

Consider the quantity
I'=sup|[gi(x —y) — Agi(x — )l
y

Obviously,

I'2 §1(0) — min ReAg; (x —y).

Using Lemma 5, we obtain

1

2 ~
min Redg1(x —) < MB( LIgi0) < MBI )
- k
Further, taking into account the relation
-1
O} (N)] = (logN)" ™,
as well as , .
lo(s)| = 2/kslh < N (logN) 7 T se @gv)(N),
we can write
1 S R |
|IQ(N)| < N7 (logN) 7 ’ (12)
On the other hand,
1 Sh gy«
g1(0) < N7 (logN) "7 771 < |Q(N)]. (13)

Using (11) and (12), we can chose a number N so that |Q(N)| =< M and the right-hand side
of (13) will be at least twice as large as the right-hand side of (11).
For some y* = (vj,...,y}), for this N we have

g1(x —y*) — Ag1(x =y ) [lo > M. (14)
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Consider the function

by by

1
g (x) = CsN 1 (N%(longT*'"*T) " (logN) 7 g1(x), Cs5 > 0.

We now show that, at the corresponding choice of the constant Cs, this function belongs to the
class B?(). Indeed, since

for the Fejér kernel, we have

Thus, we can write

D=

ngHng = <Zﬂ_9(2_s)|\As(gz)Hfa>

%
1

< N_1<Nr(logN)b71 hr”)”_l(logN) 7 Y. o)Al

T s\s/llp (15)

s€0; (N
1 1
b by L1 1 6
< <Nr(logN)7717 7’>p (logN) 7 (Z): olisli (1-3)e =1
sE@lv (N)

B (16)

N —rd
< (N7 (logN) 7 ) @[ (N)[F < (logN) "7 (1ogN) T = 1.

By comparing (15) and (16), we may conclude that g, € ng with the corresponding constant

Cs > 0.
It was established in work [14] that for t € T(Q(N)), the following estimate is satisfied:

b by L _ 1
[|H]] 0 < Ht”q<N%(10gN)7717“'77>q(logN)(V 1)(1 }1)
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Taking into account the last relation and using estimate (14), we get

182(x —y*) — Gga(x —y7) I,
-1 1 S —1 %7 —v5l * *
> N (Nr(logN) ’ ’) (logN) 7 [lgi(x —y") = Ggi(x —y")ll,

byy -1 vl
) (l0gN) T i (x— ) — Agi(x =y,

_ M77+%*% ( log M) 71717...7171/4’(1/*1) (7‘7%%»%7%) ‘
The lower bounds in (10) are established. Theorem 3 is proved. O

In the following proposition, we consider other relations for the numbers r, by, ..., b;. Let
r <by <...<by by > r.Inthis case, by Lemma 1, we obtain

b

1 _h
M = Nr(logN) 7,
logM =< logN, NxMr(logM)b1

Assume that
blz...:bv<bv+1§...§bd.

Then, for v = 1, the inequality r < b; < by holds. But v > 2, then by > r.

Theorem 4. Letl <p < q < 00,4 < 6 < oo, and let Q)(t) be a function of the form (5). Then,

for - — = < r<l, by >+ the order estimates
F’

111 b
dir(BSY, Ly) =< dRy(BYy, Lg) < M™""777 (log M) (17)

hold.

Proof. For g < 6 < oo, the embedding BQ C HQ is valid. Therefore, the upper bounds in (17)
follow from the corresponding estimate 1:lL (ng), L;), proved in [14].

To get the lower bounds in (17), it is sufficient to get the corresponding lower bound for the
quantity d% (B¢} norLa)-
We choose a vector § = (51,...,5;) € O(N) so that

§1X10gN, 52:...:§d:1,

and set



ESTIMATES OF APPROXIMATIVE CHARACTERISTICS OF THE CLASSES B?o 293

where k¥ = (2571 +2%72,1,...,1).
Suppose that the operator G belongs to Ly(B);,1 < g < co. Consider the operator A =
S,(s)G, where S, s) is the operator of taking partial Fourier sum corresponding to the set p(3).

Taking into account that
b

2l = N7 (log N) 7,

and using lemma 5, we get

1

2 TN _bh
min ReAgs (x — y) < M%B<Z |§3(k)|2> < ME(2I1)2 < MENT(logN) 7. (18)
y=x p
On the other hand,
z 1 _h
23(0) < 25 < N7 (logN) ™7 (19)

Therefore, we can chose a number N so that |Q(N)| < M and the right-hand side of (19)
will be at least twice as large as the right-hand side of (18). For some y* = (v;,...,y}), for this
N we have

lg3(x —y*) — Agz(x =y )[lo > M. (20)
Consider the function

ga(x) = CeN 1219 G gy (1), G > 0.

We now show that, at the corresponding choice of the constant Cg, the function g4 belongs to
the class Bli)g.
Indeed, in view of the properties of the Fejér kernel, we have

D=

Isl150, = <20-9<2-5>||As<g4>||2) < N2 G (009 As(ss)11)

< 2\|§\|1(%*1) 1As(g3)l, = 2H§|\1(%*1)2H§|\1(1*%) -1

Hence, g4 € BSQ with the corresponding constant Cg > 0.
It was established in work [14] that for a trigonometric polynomial ¢ with "numbers" of
harmonics from the set p(3), the following relation is satisfied:

l15]11

[[Elleo < 1[E[g2 7

Taking into account the last relation and using estimate (20), we get
5, (1
Iga(x —y*) = Ggalx — ), > N2 G jga (x — ) — Gaa(x =),

N—12\|§\|1(%*1) Y~ A r
> 1g3(x —y*) — Ags(x —y7)l|,

K

\
7 |lga(x —y") — Ag(x — ¥ )|l
- 1MzMiH%f%(logM)*bl.

> N1l (G-1),

1_
q

> M~ (logM) "M?
The lower bounds in (17) are established. Theorem 4 is proved. O
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Remark 1. Results, corresponding to Theorems 3 and 4, but for the classes ng in the space
L, are obtained in [2].

Remark 2. The analogues of Theorems 3 and 4 for the classes H? are obtained by N.N. Pus-
tovoitov in [14]. Moreover, if the conditions of Theorem 4 are satisfied, the ordinal relations

dyi(Bylg, Lg) = dig(Bylg, Lg) = dig(Hy, Lg) = dyg(H}, Lg)

hold. In other words, the orders of the quantities d]{/l(ng, Ly) and df/l(ng, L,) are indepen-
dent on the parameter 0.
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Deayruk-Spemuyk O.B., Tembapcbka C.b. Oyinku anpoxcumMamusHux XapaKkmepucmux Kaacie Bgo ne-
pioduuHux pyHKYill 6a2ameox 3SMIHHUX i3 300AHOI0 MANHCOPAHMON MIUAHUX MOOY.1i8 HenepepsHOCHI I npo-
cmopi Ly // Kapnarchbki maTeM. my6a. — 2019. — T.11, Ne2. — C. 281-295.

B poboTi MPOAOBXKYETHCSI BUBUEHHST allPOKCUMATUBHMX XapaKTEPUCTHUK KAacis B;),e nepioau-
yHMX (PYHKIIi baraTbox 3MiHHMX, Ma>kKOpaHTa MilllaHMX MOAYAIB HellepepBHOCTI SIKMX MICTUTb SIK
CTeneHeBi, Tax i Aorapudpmiuni MHOXHMKY. OAep>KaHO TOUHI 3a IOPSIAKOM OLiHKM OPTONPOEeKLIili-
HMX TMOMIePeYHMKIB KAaciB Bge y mpoctopi Ly, 1 < p < g < 00, a TAaKOX BCTAHOBAEHO TOUHI 32
TIOPSIAKOM OLLHKM HabAVDKEHHS X KAACiB YHKIIiA y mpocTopi Ly 3a AOOMOTOIO AiHilHMX OrTe-
paTopiB, sIKi MATOPSIAKOBaHi IeBHMM yMOBaM.

Kntouosi crosa i ¢ppasu: OpTONPOEKILHII IONepeYHMK, MilllaHMiI MOAYADb HellepepBHOCTI, Ai-
HiViEVI oneparop, 1apo Baane-Ilyccena, ssapo @eriepa.
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GUTIK O.V., SAVCHUK A.S.

ON INVERSE SUBMONOIDS OF THE MONOID OF ALMOST MONOTONE
INJECTIVE CO-FINITE PARTIAL SELFMAPS OF POSITIVE INTEGERS

In this paper we study submonoids of the monoid A4 (N) of almost monotone injective co-
finite partial selfmaps of positive integers IN. Let 7% (N) be a submonoid of yAd (IN) which con-
sists of cofinite monotone partial bijections of IN and 4y be a subsemigroup of 75 (IN) which is
generated by the partial shift n — #n + 1 and its inverse partial map. We show that every automor-
phism of a full inverse subsemigroup of 4 (IN) which contains the semigroup %y is the identity
map. We construct a submonoid IINL%] of 75 (N) with the following property: if S is an inverse
submonoid of Joz/ (IN) such that S contains I]NL%] as a submonoid, then every non-identity congru-
ence € on S is a group congruence. We show that if S is an inverse submonoid of yAe (N) such
that S contains 4y as a submonoid then S is simple and the quotient semigroup S/€mg, where
Cmg is the minimum group congruence on S, is isomorphic to the additive group of integers. Also,

we study topologizations of inverse submonoids of A4 (IN) which contain 43y and embeddings of
such semigroups into compact-like topological semigroups.

Key words and phrases: inverse semigroup, isometry, partial bijection, congruence, bicyclic semi-
group, semitopological semigroup, topological semigroup, discrete topology, embedding, Bohr
compactification.

Ivan Franko National University, 1 Universytetska str., 79000, Lviv, Ukraine
E-mail: oleg.gutik@lnu.edu.ua (Gutik O.V.), asavchuk3333@gmail.com (Savchuk A.S.)

1 INTRODUCTION AND PRELIMINARIES

In this paper all spaces will be assumed to be Hausdorff. Furthermore we shall follow the
terminology of [14, 16, 20, 35, 39]. We shall denote the set of all positive integers by IN, the first
infinite ordinal by w and the cardinality of the set A by |A|. If A is a subset of a semigroup S,
then by (A) we shall denote a subsemigroup of S generated by the elements of the set A.

An algebraic semigroup S is called inverse if for any element x € S there exists a unique
x~1 € S such that xx !x = x and x 'xx~! = x71. The element x ! is called the inverse of
x € S. If S is an inverse semigroup, then the function inv: S — S which assigns to every
element x of S its inverse element x~! is called an inversion.

A congruence € on a semigroup S is called non-trivial if € is distinct from universal and
identity congruences on S, and a group congruence if the quotient semigroup S/ is a group. If
¢ is a congruence on a semigroup S then by ¢ we denote the natural homomorphism from S
onto the quotient semigroup S/¢.

If S is a semigroup, then we shall denote the subset of all idempotents in S by E(S). If S is
an inverse semigroup, then E(S) is closed under multiplication and we shall refer to E(S) a as

YAK 512.534
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band (or the band of S). Then the semigroup operation on S determines the following partial
order < on E(S): e < fif and only if ef = fe = e. This order is called the natural partial order
on E(S). A semilattice is a commutative semigroup of idempotents.

An inverse subsemigroup T of an inverse semigroup S is called full if E(S) = E(T).

By (Z<w(A),U) we shall denote the free semilattice with identity over a set of cardinality
A > w,ie, (P<w(A),U) is the set of all finite subsets (with the empty set) of A with the
semilattice operation “union”.

If S is a semigroup, then we shall denote the Green relations on Sby Z, ., ¢, % and ¢
(see [16]). A semigroup S is called simple if S does not contain proper two-sided ideals and
bisimple if S has only one Z-class.

A (semi)topological semigroup is a topological space with a (separately) continuous semi-
group operation. An inverse topological semigroup with continuous inversion is called a topo-
logical inverse semigroup.

A topology T on a semigroup S is called:

semigroup if (S, T) is a topological semigroup;

semigroup inverse if S is an inverse semigroup and (S, T) is a topological inverse semigroup;

shift-continuous if (S, T) is a semitopological semigroup.

The bicyclic semigroup (or the bicyclic monoid) € (p, q) is the semigroup with the identity 1
generated by two elements p and ¢, subject only to the condition pg = 1.

The bicyclic semigroup is bisimple and every one of its congruences is either trivial or a
group congruence. Moreover, every homomorphism / of the bicyclic semigroup is either an
isomorphism or the image of %(p,q) under h is a cyclic group (see [16, Corollary 1.32]). The
bicyclic semigroup plays an important role in algebraic theory of semigroups and in the the-
ory of topological semigroups. For example a well-known Andersen’s result [1] states that a
(0-)simple semigroup with an idempotent is completely (0-)simple if and only if it does not
contain an isomorphic copy of the bicyclic semigroup. The bicyclic monoid admits only the
discrete semigroup Hausdorff topology. Bertman and West in [13] extended this result for the
case of Hausdorff semitopological semigroups. Stable and I'-compact topological semigroups
do not contain the bicyclic monoid [3, 33]. The problem of embedding of the bicyclic monoid
into compact-like topological semigroups was studied in [5, 6, 28]. Independently to Eberhart-
Selden results on topolozabilty of the bicyclic semigroup, in [41] Taimanov constructed a com-
mutative semigroup 2, of cardinality x which admits only the discrete semigroup topology.
Also, Taimanov [42] gave sufficient conditions for a commutative semigroup to have a non-
discrete semigroup topology. In the paper [23] it was showed that for the Taimanov semigroup
2, from [41] the following conditions hold: every T;-topology T on the semigroup 2, such that
(x, T) is a topological semigroup is discrete; 2 is closed in any T;-topological semigroup con-
taining A, and every homomorphic non-isomorphic image of 2 is a zero-semigroup.

Non-discrete topologizations of some bicyclic-like semigroups were studied in [7, 8, 9, 10,
11, 12,22, 25, 34, 36, 40]. In particular in [21] it is proved that the discrete topology is the unique
shift-continuous Hausdorff topology on the extended bicyclic semigroup 47z. We observe that
for many (0-)bisimple semigroups S the following statement holds: every shift-continuous Haus-
dorff Baire (in particular locally compact) topology on S is discrete (see [15, 24, 26, 27, 29, 30]).

Let ., denote the set of all partial one-to-one transformations of a set X of cardinality A
together with the following semigroup operation:

x(aB) = (xa)B if x € dom(ap) = {y € doma | ya € dom B}, for a,pe . g).
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The semigroup .7, is called the symmetric inverse semigroup over the set X (see [16]). The sym-
metric inverse semigroup was introduced by Wagner [43] and it plays a major role in the theory
of semigroups.

Remark 1. We observe that the bicyclic semigroup is isomorphic to the semigroup 6, which
is generated by partial transformations « and 3 of the set of positive integers IN, defined as
follows:

doma =N, rana=N\{1}, (n)a=n+1

and
dompB=IN\{1}, ranf=N, (n)p=n-1

(see Exercise IV.1.11(ii) in [38]).

Let IN be the set of all positive integers. We shall denote the semigroup of monotone, non-
decreasing, injective partial transformations ¢ of IN such that the sets N \ dom ¢ and IN \
rank ¢ are finite by % (N). Obviously, 7% (N) is an inverse subsemigroup of the semigroup
Zw. The semigroup N4 (IN) is called the semigroup of cofinite monotone partial bijections of IN.

In [29] Gutik and Repovs studied the semigroup 4 (N). They showed that the semigroup
IL (IN) has algebraic properties similar to the bicyclic semigroup: it is bisimple and all of its
non-trivial group homomorphisms are either isomorphisms or group homomorphisms. Also,
they proved that every locally compact inverse semigroup topology T on L (IN) is discrete
and described the closure of (.#% (N), T) in a topological semigroup.

Doroshenko in [18, 19] studied the semigroups of endomorphisms of linearly ordered sets
IN and Z and their subsemigroups of cofinite endomorphisms Oy;,(IN) and Of;,(Z). In [19]
he described the Green relations, groups of automorphisms, conjugacy, centralizers of ele-
ments, growth, and free subsemigroups in these subgroups. Especially in [19] it is proved that
the group of automorphisms consists only of the identity mapping, whereas the groups of au-
tomorphisms of O¢;,(Z) is isomorphic to the semigroup of integers with operation of addition
and consist only of inner automorphisms. In [18] there was shown that both these semigroups
do not admit an irreducible system of generators. In their subsemigroups of cofinite functions
all irreducible systems of generators are described there. Also, here the last semigroups are
presented in terms of generators and relations.

A partial map a: IN — IN is called almost monotone if there exists a finite subset A of IN such
that the restriction a [\ 4: IN'\ A — IN is a monotone partial map.

By e (IN) we shall denote the semigroup of monotone, almost non-decreasing, injective
partial transformations of IN such that the sets N \ dom ¢ and N \ rank ¢ are finite for all
P € 75" (N). Obviously, " (N) is an inverse subsemigroup of the semigroup .#, and the
semigroup 7% (N) is an inverse subsemigroup of 7 (N) too. The semigroup I (N) is
called the semigroup of co-finite almost monotone partial bijections of IN.

In the paper [15] the semigroup e (IN) is studied. It was shown that the semigroup
yAd (N) has algebraic properties similar to the bicyclic semigroup: it is bisimple and all of
its non-trivial group homomorphisms are either isomorphisms or group homomorphisms.
Also it was proved that every Baire shift-continuous Tj-topology T on e (N) is discrete,
described the closure of (ﬂozf (N), T) in a topological semigroup and constructed non-discrete
Hausdorff semigroup topologies on yAe (N).
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A partial transformation a: (X,d) — (X, d) of a metric space (X, d) is called isometric or a
partial isometry, if d(xa, ya) = d(x,y) for all x,y € domua. It is obvious that the composition
of two partial isometries of a metric space (X, d) is a partial isometry, and the converse partial
map to a partial isometry is a partial isometry. Hence the set of partial isometries of a metric
space (X, d) with the operation of composition of partial isometries is an inverse submonoid
of the symmetric inverse monoid over the set X.

Let IIN, be the set of all partial cofinite isometries of the set of positive integers IN with
the usual metric d(n, m) = |n —m|, n,m € IN. Then IIN with the operation of composition of
partial isometries is an inverse submonoid of .7,,. The semigroup IIN of all partial co-finite
isometries of positive integers is studied in [32]. There we describe the Green relations on
the semigroup IN, its band and proved that IIN is a simple E-unitary F-inverse semigroup.
Alsoin [32], the least group congruence €mg on IN is described and proved that the quotient-
semigroup INe /Cmg is isomorphic to the additive group of integers Z(+). An example of a
non-group congruence on the semigroup mathbfIINe is presented. Also we proved that a
congruence on the semigroup IIN« is group if and only if its restriction onto an isomorphic
copy of the bicyclic semigroup in IIN is a group congruence.

In this paper we show that every automorphism of a full inverse subsemigroup of I% (N)
which contains the semigroup 4y is the identity map. We construct a submonoid INY of
I (N) with the following property: if S be an inverse subsemigroup of I (N) such that
S contains INY as a submonoid, then every non-identity congruence ¢ on S is a group con-
gruence. We show that if S is an inverse submonoid of e (N) such that S contains % as
a subsubmonoid then S is simple and the quotient semigroup S/€ng, where €y is the mini-
mum group congruence on S, is isomorphic to the additive group of integers. Also, we study
topologizations of inverse submonoids of 75 (IN) which contain %y and embeddings of such
semigroups into compact-like topological semigroups.

2 MAIN ALGEBRAIC RESULTS

We recall for a semigroup S a homomorphism ®: S — S is called an endomorphism of S
and every bijective endomorphism (isomorphism) ®: S — S is called an automorphism of S.
We observe that in the case when S is a monoid with the unit 1g, then an endomorphism
®: S — S with (15)® = 15 is called a monoid endomorphism. 1t is obvious that (15)® = 15 for
any automorphism ®: S — S of a monoid with the unit 1.

Recall [37] a semigroup S is combinatorial if it has no non-trivial subgroups. A regular (an
inverse) semigroup S is combinatorial if all its #-classes are singleton. It is obvious that any
subsemigroup of a combinatorial semigroup is combinatorial.

Lemma 1. Let ¥Y: S — S be an automorphism of a combinatorial inverse semigroup S. If
(e)¥Y =eforalle € E(S), then ¥ is the identity map.

Proof. Fix an arbitrary s € S\ E(S). Then (ss™1)¥ = ss~! and (s7!s)¥ = s~!s. Since in
any inverse semigroup the following condition hold: x.#y if and only if xx~! = yy~! and
xlx = y‘ly (see [35, Section 3.2, p. 82]), we have that

($)¥(s HY = (ss )Y =557} and (s"HY¥ ()Y = (s 1s)¥ =57 15,

and hence (s)¥.#s. Since S is a combinatorial inverse semigroup, (s)¥ = s. O
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For any positive integer i by (i) we denote the identity map of the set IN'\ {i}. It is obvious
that ¢(i) € E(IINw ) for any positive integer i.

Lemma 2. Let S be a full inverse submonoid of fof (N) and ®: S — S be an automorphism.
Then (e(1))® = ¢(1).

Proof. Since ®: S — S is an automorphism, (I)® = I. Suppose to the contrary that (e(1))® #
g(1). Since the restriction ®[gsy\ 1y E(S) \ {I} — E(S) \ {I} of the automorphism & onto
E(S) \ {I'} is an automorphism, there exist (not necessary distinct) idempotents ,v € S\
{IL e(1) } such that (¢(1))® = v, (1)® = ¢(1) and [N \ domv| = |IN \ dom| = 1.

We shall show that 1 € dom ¢ Nran ¢ and moreover (1)¢ = 1 for any ¢ € ((a)®, (B)D).
Our assumption implies that (1)) = pa and hence

D)(B)® =1 = (1)(f)¥ = (1)) = (1)1 = 1.

This implies that 1 € dom(a)® and 1 € dom(B)®P. If (1)(B)P # 1, then the monotonicity of B
implies that 1 ¢ dom(a)®, and hence 1 ¢ dom(ap)® = IN, a contradiction. Since « is inverse
of B in S, the equality (1)(B)® = 1 implies that 1 = (1)(Ba)® = ((1)(B)P)(x)¥ = (1)(a)D.
This implies that (1)(B'a/)® = 1 for all non-negative integers i and ;.

By Remark 1, («, B) is a submonoid of I (IN) which is isomorphic to the bicyclic monoid,
and since ®: S — S is an automorphism, ((«)®, (B)P) is isomorphic to the bicyclic monoid,
too. By Lemma 2.6 of [29] for every idempotent ¢ € .75 (IN) there exists a positive integer
such that ¢ - f"a" = p"a" for any positive integer n > n.. Then there exists a positive integer
n, such that ("a" = f"a" and hence (1f"a")® = (f"a")P for all n > n,. Since (1)® = fa we
have that (1"a™)® = (1)®(p"a")D = ¢(1)(B"a")® and hence 1 ¢ dom Ba for all n > n,. This
contradicts the previous part of the proof. The obtained contradiction implies the statement of
the lemma. O

Lemma 3. Let S be a full inverse submonoid of fof (N) and ®: S — S be an automorphism.
Then (B'a/)® = Bia/ for all non-negative integers i and j.

Proof. By Lemma 2, (Ba)® = (¢(1))® = ¢(1) = pa and since (I)® = I, we have that
(B)P(a)® = pa and (0)®(B)® =1

By Proposition 2.1(iii) from [29] the semigroup .#% (IN) is combinatorial and hence S is com-
binatorial, too. Then the arguments presented in the proof of Lemma 1 imply that (8)® = B
and («)® = a. Therefore we get

(Ba)® = (B)0(a) = ((B)®) ((2)®) = p'o/
for all non-negative integers i and ;. ]

Lemma 4. Let S be a full inverse submonoid of fof (N) and ®: S — S be an automorphism.
Then (¢)® = ¢ for each idempotent ¢ € S.

Proof. Since the restriction ®|g(g)\ qry: E(S) \ {I} — E(S) \ {I} of ® onto E(S) \ {II} is an
automorphism, the equality (1)® = v for ,v € E(S) \ {I,¢(1)} implies that [N \ domv| =
|IN \ dom|. Fix so elements 1, v € E(S) \ {I,&(1)} with [N\ domv| = [N\ dom(| = 1. Then
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there exist positive integers k and ! such that v = e(k) and ¢ = ¢(I). Suppose to the contrary
thatt # v. If k > | > 1 then,

Bla' = (Ba")® = (Bla’ - e(1))® = pla’ - (e(1))@ = B'a’ - (e(1))® = pla’ - e(k) # p'a
Ifl > k> 1, then

it = (pfa) @™ = (B'a" (k)@ = prat - (e(k)) @7
= pa - (e(k) @71 = Brat (1) # prat.
The obtained contradictions and Lemma 3 imply that (1)® = ¢ for every : € E(S) with
N\ dom:| = 1.
By Proposition 2.1 of [29] for every idempotent ¢ & IL (IN) there exists a finite subset

{ny, ..., ny} of positive integers such that ¢ is the identity map of N \ {ny, ..., n;}. This implies
that e = e(nq) - - - €(ny). Hence we get that

(&)@ = (e(m1) -~ - e(11g) )P = (e(m))® - -+ (e(e) )P = e(m) - -~ emg) = ¢,
which completes the proof of the lemma. O

It is well known that every automorphism @ of the bicyclic semigroup % (p,q) is trivial.
i.e., @ is the identity map of € (p,q). The following theorem shows that every full inverse
subsemigroup of L (IN) which contains the semigroup % has such property.

Theorem 1. Let S be a full inverse submonoid of .75, (N) which contains the semigroup 6.
Then every automorphism of S is the identity map.

Proof. By Lemma 4 for each automorphism ®: S — S the band E (ff (N)) is the set of fixed
points of ®. By Proposition 2.1 of [29], L (IN) is combinatorial inverse semigroup, and hence
by Proposition 3.2.11 of [35] so is S. Next we apply Lemma 1. O

Theorem 1 implies the following two corollaries.
Corollary 1. Every automorphism of the semigroup N4 (IN) is trivial.
Corollary 2. Every automorphism of the semigroup IIN, is trivial.

Remark 2. By Lemma 1.1 from [15] the band of the monoid 4 (IN) is isomorphic to the free
semilattice (Z«,(w),U). Next we identify IN with w. Then every bijective transformation
of IN extends to an automorphism of the free semilattice (%<, (w),U). This implies that the
monoid .75, (IN) contains a full inverse subsemigroup which has ¢ distinct automorphisms.

An example of a non-group congruence on the semigroup IIN is presented in [32]. Later
we shall establish what submonoids of .75 (N (N) admit only a group non—identity congruence.
For an arbitrary positive integer 19 we denote [ng) = {n € IN: n > ng}. Since the set of all
positive integers is well ordered, the definition of the semigroup .7 4 (IN) implies that for every
n € I P/‘(]N) there exists the smallest positive integer n¢ € doma such that the restriction
alr,a [nd) of the partial map a: N — N onto the set [nd) is an element of the semigroup %y i.e.,

0c|[ 9) is a some partial shift of [nd). For every a € 7 (N) we put @ = oc|[ng), ie.

dom @ = [ng) , (x)@ = (x)a forall xedom @  and ran @ = (dom @) a.
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Also, we put

nd =min{j € N: j € doma} for ac 75 (N),

and
d

ﬁ“:max{jedom(x:j<ng} for ocefoz/(N)\‘gN.
It is obvious that nd < nd when & € e (N) and nd <7 < nd whena € fozf(]N) \ én-
The following theorem is proved in [32].

Theorem 2 ([32, Theorem 9]). Let € be a congruence on the semigroup INe. Then the follow-
ing conditions are equivalent:

(1) € isa group congruence;

(2) there exists a subsemigroup S of N« which is isomorphic to the bicyclic semigroup and
S contains two distinct €-equivalent elements;

(3) every subsemigroup of IIN«, which is isomorphic to the bicyclic semigroup, has two
distinct €-equivalent elements.

The following lemma completes the statements of Theorem 2.

Lemma 5. Let € be a congruence on the semigroup IN, ¢ € E(éN),t € E(IN&) \ E(éN) and
t < e. Then €€ implies that € is a group congruence on IINc.

Proof. The assumptions of the lemma imply that n < nd. Put €parr: N —~Nandeq: N —

N are identity maps of the sets [nf! +-1) and [n{), respectively. It is obvious that e,q ,1,€,4 €
E(éN),

€pd = EpdEpd g =& L= Epa g1 and €pdy1 = Epdyq " &

and hence ¢ 4 ;C¢, 4. Then Theorem 2 and Corollary 1.32 [16] imply that € is a group congru-
ence on INe. 0

Definition 1. Put I]N(%] = {(x € ﬂof (IN): the restriction a|y o\ {nd} is a partial isometry ole}.

It is obvious that I]Ng is an inverse submonoid of the inverse monoid fof (N), INy is an
inverse submonoid of IN& and E(IN) = E(I]N(%]) = E(fof (N)) = E(foz/‘(]N)).

Lemma 6. Let S be an inverse subsemigroup of foz/ (N) such that S contains I]Nc%} as a sub-
(1]

monoid. Let € be a congruence on S such that two distinct idempotents ¢ and 1 of INg' are
C-equivalent. Then € is a group congruence on S.

Proof. 1f € and  are idempotents of the subsemigroup ¢ of yAe (N), then the statement of
our lemma follows from Theorem 2. Hence, we assume that at least one of idempotents € and
1 does not belong to ¢ .

We consider two cases: 1) nd = n4; and  2)nd #nd.

Suppose case nd = nd holds. Since ¢ # ¢ without loss of generality we may assume that
there exists a positive integer 7y < nd such that ng € dome \ dom:. Then g = nd — (k +1)
for some positive integer k.
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For every positive integer j < nd — 1 we define a partial bijection aj: IN — IN in the follow-
ing way:

domogz{j}U{nGlN:n}nS}, ranocj:{j—l—l}u{neN:n}ng}

and

(n)a; = { n, ifn>nd;

n+1, ifn=j.

Simple verifications show that

pr— _1 .« .. _1 _1 .« ..
‘c’ng—l - ang,Q Xo+1%ng E&nong+1 ang—Z
and
€4 = Aty = o Ly = =a g oot a g e
nd = By g = By 1B Hngtno+1 — -0 — nd—2 ng+1%ng “Anolny+1 nd—2
are identity maps of the sets {n € N: n >nd — 1} and {n € N: n > nd}, respectively, and

hencee,q_; and ¢4 are distinct €-equivalent 1dempotents of the subsemigroup % in .75 4 (N).
By Theorem 2 all 1dempotents of the sebsemigroup IIN,, are €-equivalent, and hence € is a
group congruence on the semigroup S, because E(IN) = E(S) = E(Ix 7 (IN)).

Suppose case nd # nd holds. Without loss of generality we may assume that nd > nd.
Putea ;2 IN — N is the identity map of the set {n € N: n > nd —1}. Simple verifications
show that e, 4 ; = €,4_,€and T = €,4_t are distinct €-equivalent idempotents of the sub-

semigroup %]N in .7 I7(]N). By Theorem 2 all idempotents of the sebsemigroup IIN, are ¢-

equivalent, and hence € is a group congruence on the semigroup S, because E(IN«) = E(S) =

E(Sf (N)). 0
1]

Theorem 3. Let S be an inverse subsemigroup of e (N) such that S contains INg' as a
submonoid. Then every non-identity congruence € on S is a group congruence.

Proof. Let « and 8 be two distinct €-equivalent elements of the semigroup S.
We consider two cases:

(i) a/Bin S;
(ii) « and B belong to distinct two .7#’-classes in S.

Suppose that a.7’B in S. Then Proposition 1.1(ix) of [15] and Proposition 3.2.11 of [35]
imply that doma = domp and rana = ranf, and hence there exists a positive integer
ng € domua such that (ng)a # (n9)B. Let €yy: IN — IN be the identity map of the set
{no}U{n € N: n>mp}, where my € doma is an arbitrary positive integer such that my >
ng + nd. By Proposition 3(i) of [32] and Proposition 3(i) of [15], E(IN«) = E(Fw V(]N)) and
hence ¢,, € E(S ). Since S is an inverse semigroup Proposition 2.3.4 from [35] and a€p imply
that a~1¢B~1, and hence we have that (a~le,,,a)€(B ey, B). Then the definition of ¢,,, implies
that a~le,, 0 and B~ e, B are distinct idempotents of the semigroup S, and hence by Lemma 6,
¢ is a group congruence on S.

If case (ii) holds then at least one of the following conditions holds

wat £ BB or o ta £ BB
Then by Proposition 2.3.4 of [35] the semigroup S has two distinct ¢-equivalent idempotents.
Next we apply Lemma 6. O



304 GUTIK O.V., SAVCHUK A.S.

Every inverse semigroup S admits the least group congruence €mg (see [38, Section III]):
$Cmgt if and only if there exists an idempotent e € S such that se = te.
Later we shall describe the least group congruence on any inverse subsemigroup S of
e (IN) such that S contains %}y as a submonoid.
Definitions of inverse semigroups %, e (IN) and the congruence €ng imply the follow-

ing lemma.

Lemma 7. Let S be an inverse subsemigroup of I (N) such that S contains 6\ as a sub-
monoid. Then the following conditions hold:

(i) ochg7 foreverya € S;
(ii) if x and B are elements of S such thatx = « and p = F, then aCmgp if and only if
(n)a = (n)pB for alln € doma N dom B.

Theorem 4. Let S be an inverse subsemigroup of e (N) such that S contains 6 as a sub-
monoid. Then the quotient semigroup S/€ng is isomorphic to the additive group of integers

Z(+).

Proof. We define a map §: S — Z(+), a — i, in the following way. Put i, = (n)7 -,
where n € dom @. Simple verification implies that so defined map § is correct and it is a
homomorphism. Also, Lemma 7 implies that «€ngf if and only if (a)§ = (B)F fora, p € S. O

Theorems 3 and 4 imply the following corollary.

Corollary 3. Let S be an inverse subsemigroup of I (N) such that S contains I]NL%] as a
submonoid. Then for any non-injective homomorphism §: S — T into an arbitrary semigroup
T there exists a unique homomorphism $): Z(+) — T such that the following diagram

7

Chng
Z(+)

T

commutes.

The semigroups %N, Y4 (N) and 5 (IN) are bisimple (see [16], [29], [15]). But the semi-
group IIN is not bisimple whereas it is simple. A very amazing property about some inverse
subsemigroups of 77 (N) illustrates the following theorem.

Theorem 5. Let S be an inverse subsemigroup of e (N) such that S contains ¢\ as a sub-
monoid. Then S is simple.

Proof. Since « = all = llx for any element « of S, it is sufficient to show that for every p € S
there exist 7y, 6 € S such that y56 = 1.
. . : . L = == —
Fix an arbitrary element 8 in S. Simple verifications show that = = f B~ and B B

is an idempotent of S, where B ~!is inverse of B in S, because B and B ~! are elements of
the sebsemigroup % in S. Next we define a partial maps y: IN — IN in the following way

domy = 1NN, ran’y:{neN:n>n$} and (i)'y:i—l—l—n'jYl for i€ domvy.

Then ’yﬁ(?’l’y*l) =1L O
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3 ON SHIFT-CONTINUOUS TOPOLOGIES ON INVERSE SUBSEMIGROUPS OF foz/‘(]N)

A subset A of a topological space X is said to be co-dense in X if X \ A is dense in X.
We recall that a topological space X is said to be:

compact if every open cover of X contains a finite subcover;
countably compact if each closed discrete subspace of X is finite;
feebly compact if each locally finite open cover of X is finite;

pseudocompact if X is Tychonoff and each continuous real-valued function on X is
bounded;

locally compact if each point of X has an open neighbourhood with the compact closure;

Cech-complete if X is Tychonof and there exists a compactifcation cX of X such that the
remainder ¢X \ ¢(X) is an Fy-set in ¢X;

a Baire space if for each sequence Aj, A, ..., A;, ... of nowhere dense subsets of X the
union |J72; A; is a co-dense subset of X.

According to Theorem 3.10.22 of [20], a Tychonoff topological space X is feebly compact if and
only if X is pseudocompact. Also, a Hausdorff topological space X is feebly compact if and
only if every locally finite family of non-empty open subsets of X is finite. Every compact
space is countably compact and every countably compact space is feebly compact (see [4]).
Also, every compact space is locally compact, every locally compact space is Cech-complete,
and every Cech-complete space is a Baire space (see [20]).

By the Eberhart-Selden theorem every Hausdorff semigroup topology on the bicyclic semi-
group is discrete. It is natural to ask: Do there exists non-discrete semigroup topology on the semi-
group INe?

Theorem 6. Let S be an inverse subsemigroup of e (N) such that S contains 6 as a sub-
monoid. Then every Baire shift-continuous Hausdorff topology T on S is discrete.

Proof. If no point in S is isolated, then since the space (S, T) is Hausdorff, it follows that {a}
is nowhere dense for all « € S. But, if this is the case, then since the semigroup S is countable
it cannot be a Baire space. Hence the space (S, T) contains an isolated point u. If v € S is
arbitrary, then by Theorem 5, there exist a, € Ssuch thata -7y -p = y. The map f: x —
& - X - B is continuous and so the full preimage ({¢})f~! is open. By Proposition 1.2 from [15]
for every a, B € ﬂozf(N), both sets {x € A (N) |a-x=pB}and {x € fozf(lN) | x-a = B}
are finite, and hence the same holds for the subsemigroup S of 75 (IN). This implies that the
set ({u})f~! is finite and since (S, T) is Hausdorff, {7} is open, and hence isolated. O

Since every Cech complete space (and hence every locally compact space) is Baire, Theo-
rem 6 implies Corollary 4.

Corollary 4. Let S be an inverse subsemigroup of e (N) such that S contains 6 as a sub-

monoid. Then every Hausdorff Cech complete (locally compact) shift-continuous topology T
on S is discrete.



306 GUTIK O.V., SAVCHUK A.S.

The following example shows that there exists a non-discrete Tychonoff inverse semigroup
topology Ty on the semigroup INe.

Example 1. We define a topology Ty on the semigroup INe as follows. For every a € IIN
we define a family

PBw () = {Uy(F) | F is a finite subset of domua},

where
Uy(F) = {p € INw | domB C domw and (x)B = (x)a forall x € F}.

It is straightforward to verify that {ZBy(«)}
semigroup IINe.

el (Z) forms a basis for a topology Ty on the

Proposition 1. (IN«, Tiy) is a Tychonoff topological inverse semigroup.

Proof. Let « and B be arbitrary elements of the semigroup IINo,. We put v = a - § and let
F = {ny,...,n;} be a finite subset of dom~. We denote m; = (n1)a,...,m; = (n;)a and
ki = (n1)7y,...,ki = (n;)7y. Then we get that (mq1)B = ki, ..., (m;)B = k;. Hence we have that

Ux({n1, ..., ni}) - Ug({my, ..., mi}) S Uy({ny, ..., ni})
and
(Uy({n,oooni}) T C U (T, K}
Therefore the semigroup operation and the inversion are continuous in (IN, T ).

Let N = N U {a} for somea ¢ IN. Then NV with the operation composition is a semigroup
and the map ¥: INs — NN defined by the formula

@ = {

(x)a, if x € domu;
a, if x ¢ doma

is a monomorphism. Hence NV is a topological semigroup with the product topology if N has
the discrete topology. Obviously, this topology generates topology Tty on IINe. Therefore by
Theorem 2.3.11 from [20] topological space N¥ is Tychonoff and hence by Theorem 2.1.6 from
[20] so is (INe, Tyy). This completes the proof of the proposition. O

Theorem 7. Let S be an inverse subsemigroup of e (N) such that S contains 6 as a sub-
monoid. Let T be a Ty semitopological semigroup which contains S as a dense discrete sub-
semigroup. If = T\ S # @ then I is an ideal of T.

Proof. By Lemma 3 [31], S is an open subspace of the topological space T.

Fix an arbitrary elementy € I. If x-y = z € I for some x € S then there exists an
open neighbourhood U(y) of the point y in the space T such that {x} - U(y) = {z} C S. By
Proposition 1.2 from [15] the open neighbourhood U (y) should contain finitely many elements
of the semigroup S which contradicts our assumption. Hence x -y € [ forallx € Sand y € I.
The proof of the statement that - x € [ forall x € Sand y € I is similar.

Suppose to the contrary that x - y = w ¢ I for some x,y € I. Then w € S and the separate
continuity of the semigroup operation in T yields open neighbourhoods U(x) and U(y) of the
points x and y in the space T, respectively, such that {x} - U(y) = {w} and U(x) - {y} = {w}.
Since both neighbourhoods U(x) and U(y) contain infinitely many elements of the semigroup
S, equalities {x}-U(y) = {w} and U(x) - {y} = {w} donothold, because {x}- (U(y) NS) C L.
The obtained contradiction implies that x - y € I. O
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Theorem 7 implies the following corollary.

Corollary 5. Let T be a T1 semitopological semigroup which contains IIN as a dense discrete
submonoid. If | = T \ IN« # &, then I is an ideal of T.

Proposition 2. Let S be an inverse subsemigroup of e (N) such that S contains 6| as a
submonoid. Let T be a Hausdorff topological semigroup which contains S as a dense discrete
subsemigroup. Then for every y € S the set

Dy={(x¢) €SxS|x-¢=7}
is a closed-and-open subset of T x T.

Proof. Since S is a discrete subspace of T by Lemma 3 [31] we have that D,, is an open subset
of T x T.

Suppose that there exists v € S such that D,, is a non-closed subset of T x T. Then there
exists an accumulation point (¢, 8) € T x T of the set D.,. The continuity of the semigroup
operation in T implies that « - = . But S x S is a discrete subspace of T x T and hence by
Theorem 7, the points & and B belong to the ideal I = T\ S and hence w - B € T \ S cannot be
equal to 7. O

Theorem 8. Let S be an inverse subsemigroup of e (N) such that S contains 6| as a sub-
monoid. If a Ty topological semigroup T contains S as a dense discrete subsemigroup then the
square T x T cannot be feebly compact.

Proof. By Proposition 2, for every c € S the square T x T contains an open-and-closed discrete
subspace D.. If we identify the elements of the semigroup 4y with the elements the bicyclic
monoid % (p, q) by anisomorphism h: € (p,q) — én, then the subspace D, contains an infinite
subset

{ (@, () : 1 € No}

and hence the set D, is infinite. This implies that the square S x S is not feebly compact. [

A topological semigroup S is called I'-compact if for every x € S the closure of the set
{x, xZ,x3, .. .} is compact in S (see [33]). The results obtained in [3], [5], [6], [28], [33] imply the
following

Corollary 6. Let S be an inverse subsemigroup of e (N) such that S contains 6 as a sub-
monoid. If a Hausdorff topological semigroup T satisfies one of the following conditions:

(i) T is compact;

(ii) T is I'-compact;
(iii) T is a countably compact topological inverse semigroup;
(iv) the square T x T is countably compact;

(v) the square T x T is a Tychonoff pseudocompact space,
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then T does not contain the semigroup S and for every homomorphism j: S — T the image
(S)b is a cyclic subgroup of T. Moreover, for every homomorphism y: S — T there exists a
unique homomorphism uy: Z(+) — T such that the following diagram

b

S
Qg“gl %

Z(+)

T

commutes.

Recall [17] that a Bohr compactification of a topological semigroup S is a pair (B, B(S)) such
that B(S) is a compact topological semigroup, f: S — B(S) is a continuous homomorphism,
and if g: S — T is a continuous homomorphism of S into a compact semigroup T, then there
exists a unique continuous homomorphism f: B(S) — T such that the diagram

P B(S)
N

commutes. Then Corollary 6 and Proposition 2 from [2] imply the following:

S

Corollary 7. Let S be an inverse subsemigroup of e (N) such that S contains 6 as a sub-
monoid. The Bohr compactification of the discrete semigroup S is topologically isomorphic to
the Bohr compactification of discrete group Z(+).
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I'ytik O.B., CaBuyk A.C. IIpo iHeepcHi nidmoH0iOU MOHOIOA Maiioice MOHOMOHHUX iH EKIMUBHUX KOCKIH-
UeHHUX UACKOBUX nepemeopeHv HamypanroHux uucen // Kapmarcbki Marem. my6a. — 2019. — T.11,
Ne2. — C. 296-310.

Y mpalli BUBYArOThCSI iHBEpCHI MiAMOHOIAM MOHOIAA JOZ/ (IN) Marke MOHOTOHHUX iH'€KTMBHIX
KOCKIHUEHHMX YaCTKOBMX MEePeTBOPEeHb MHOXIMHY HaTypaabHux umceA IN. Hexaii V4 (N) — mia-
MOHOIA B .7} (IN), sIKmMit CKAAQAQETBCS 3 KOCKIHUEHHMX MOHOTOHHMX YaCTKOBMX Oi€KITi MHOXMHM
N i ¥n — miaMoHOIA B 75 (N), sxy1 HOPOAXKEHMIT YaCTKOBMM 3CyBOM 1 +— 1 + 1 HaTypaab-
HIIX 9yCeA i AO J10r0 06epHEHMM YacTKOBYMM BipOOpakeHHSIM. AOBeAEHO, III0 KOXKeH aBTOMOPpdi3m
TIOBHOI iHBepCHOI ITiAHAMiBrpyIM MOHOIAA fof (IN), sKv MiCTUTD HaMiBIPYIy 6N € TOTOXHIM Bia-

obpaxeHHsIM. [1o6yArOBaHO MiAHAMIBIPYITY I]N([}o] MOHOIAA fozf (N) 3 TakoK0 BAACTUBICTIO: SIKILIO

[

S — iHBepcHa MiAHaIIBrpyma B JOZ/ (]N), IO MiCTUTH HaMiBrpyIy I]No% , SIK TIIAMOHOIA, TO KOXHa
BiAMiHHa BiA TOTOXHOI KOHTpyeHHist ¢ Ha S € rpynoBoo. AOBeAeHO, SIKIIIO S — iHBepCHa ITiAHAIIiB-
rpymna B 75 (IN), 1o MicTUTh 6N SIK IMAMOHOIA, TO HAIIBIPYIIa S € MPOCTOIO 1 pakTOp-HaIiBrpyIa
5/€mg, Ae Emg — HalIMEHIIIa IPyTIOBa KOHTPYeHIIisl Ha S, i30MOpdpHa aAMTUBHIl FPyYTIi IILAMX UMCeA.
TaxoX AOCAIAXYIOTbCSI TOIOAOTri3alii IHBepCHMX IMiAHAMIBIPYI HaiBIpyIm 75 (N), sk MicTsITD
HaIIBIPYIy %N i 3aHYpeHHS TakMX HaIliBIPYI y 6AM3bKi A0 KOMITAKTHMX TOIOAOTIYHI HalliBrPYIIN.

Kntouosi cniosa i ppasu: iHBepcHa HamiBTpyIIa, i30MeTpist, yacTKOBa OieKIIisl, KOHTpYeHIIis, 6imm-
KAiUHA HamMiBrpyIa, HaliBTOIOAOIIUHA HaMiBrpyIla, TOMOAOTIUHA HAIiBIpyMa, AMCKpeTHa TOIOAO-
rist, 3aHypeHHsI, KoMnakTudikarnis bopa.
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SPECTRA OF SOME ALGEBRAS OF ENTIRE FUNCTIONS OF BOUNDED TYPE,
GENERATED BY A SEQUENCE OF POLYNOMIALS

In this work, we investigate the properties of the topological algebra of entire functions of bo-
unded type, generated by a countable set of homogeneous polynomials on a complex Banach space.

Let X be a complex Banach space. We consider a subalgebra H,p(X) of the Fréchet algebra of
entire functions of bounded type Hj,(X), generated by a countable set of algebraically independent
homogeneous polynomials IP. We show that each term of the Taylor series expansion of entire func-
tion, which belongs to the algebra Hyp(X), is an algebraic combination of elements of IP. We gener-
alize the theorem for computing the radius function of a linear functional on the case of arbitrary
subalgebra of the algebra Hj(X) on the space X. Every continuous linear multiplicative functional,
acting from Hyp(X) to C is uniquely determined by the sequence of its values on the elements of
IP. Consequently, there is a bijection between the spectrum (the set of all continuous linear multi-
plicative functionals) of the algebra Hyp(X) and some set of sequences of complex numbers. We
prove the upper estimate for sequences of this set. Also we show that every function that belongs
to the algebra Hy,p(X), where X is a closed subspace of the space {« such that X contains the space
coo, can be uniquely analytically extended to ¢« and algebras Hyp(X) and Hyp(¢) are isometrically
isomorphic. We describe the spectrum of the algebra Hyp(X) in this case for some special form of
the set IP.

Results of the paper can be used for investigations of the algebra of symmetric analytic functions
on Banach spaces.

Key words and phrases: n-homogeneous polynomial, analytic function, spectrum of algebra.
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INTRODUCTION

The theory of analytic functions is an important section of nonlinear functional analysis.
In many modern investigations topological algebras of analytic functions and spectra of such
algebras are studied.

The existence of algebraic basis plays an important role in the description of the spectrum
(the set of all continuous complex-valued linear multiplicative functionals) of the algebra, since
every continuous linear multiplicative functional is uniquely defined by its values on elements
of the algebraic basis.

The problem of description of spectra of algebras of analytic functions of bounded type was
considered by many authors (see, e.g., [2,3,10]). In the general case the problem of description
of spectra of algebras with the countable algebraic bases is not solved. However for some of
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these algebras descriptions of spectra were constructed. Algebras of symmetric analytic func-
tions of bounded type on spaces with symmetric structures are typical examples of algebras
generated by countable sets of polynomials and were studied in [1,4-8].

We generalize the theorem [2] for computing the radius function of a linear functional
on case of arbitrary subalgebra of the Fréchet algebra of entire functions of bounded type
Hy(X) with the topology of uniform convergence on a complex Banach space X. We consider
the subalgebra Hyp(X) of the algebra Hy(X) of entire functions, generated by a countable
set of algebraically independent polynomials P = {Py, P,,...,Py,...}, such that P, is an n-
homogeneous polynomial for every n € IN. We show that each term of the Taylor series
expansion of entire function, which belongs to the algebra H,p(X), is an algebraic combination
of elements of IP. Accordingly, every f € Hyp(X) can be uniquely represented in the form

(e 9]

flx) =f(0)+ ) Y. Ak, Ky, o (PL(X)) T (Pa(2))%2 -+ (Py(x))"r,
n=1ky+2kp+--+nk,=n

where x € X, ay, k,..k, € Cand ky, ko, ..., ky are non-negative integers. Therefore every con-
tinuous linear multiplicative functional ¢ acting from Hyp(X) to C is uniquely determined by
the sequence (¢(Py), (P2),..., ¢(Py)) of its values on elements of IP. Consequently, the spec-
trum of the algebra Hyp(X) is in one-to-one correspondence with some set of sequences of
complex numbers. We prove the upper estimate for sequences of this set. Also we show that
every function that belongs to the algebra Hyp(X), where X is a closed subspace of the space
¢« such that X contains the space c(, can be uniquely analytically extended to /., and algebras
Hyp(X) and Hpp(f«) are isometrically isomorphic. We describe the spectrum of the algebra
Hyp(X) in this case for the set P = {Py, P,, ..., Py, ...} such that

Py((x1,%x2,...,%p,...)) = x

forn € IN.

In the first section we recall some basic notions on the theory of analytic functions on a Ba-
nach space and the theory of the Fréchet algebras which are necessary for a full comprehension
of the paper.

In the second section we generalize the theorem for computing the radius function of a
linear functional on case of arbitrary subalgebra of the Fréchet algebra of entire functions of
bounded type Hy(X) on a complex Banach space X. We also prove that every term of the Taylor
series expansion of entire function, generated by the countable set of algebraically independent
polynomials, is an algebraic combination of these polynomials.

In the third section of the paper we describe spectra of the Fréchet algebras of entire func-
tions, generated by the sequence of polynomials P on complex spaces, which are the closed
subspaces of the space /«, and contain the linear space cqp.

1 PRELIMINARIES

In this section we will review the formal definition of polynomial on a Banach space and
introduce the necessary background. To begin with, we establish some notation. Throughout
the whole article the letter X will always stand for a complex Banach space. The set of all posi-
tive integers will be denoted by IN, whereas the set IN U {0} will be denoted by INy. We denote
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by Q™ the set of all positive rationals. We also denote by {« the complex Banach space of all
bounded sequences x = (x1,x2,...) of complex numbers with the norm ||x|jcc = sup;p |%i]
and by cqg the linear space of eventually zero sequences x = (x1,x2,...,X,,0,...) of complex
numbers with the norm ||x|| = sup;p |xi]-

Definition 1. Forn € N a mapping P : X — C is said to be an n-homogeneous polynomial if
there exists some n-linear form Ap : X" — C such that P(x) = Ap(x,...,x) forevery x € X.

n

We shall denote by P"(X) the vector space of all n-homogeneous polynomials from X to C.
Also let PY(X) be the vector space of all constant mappings from X to C. For each P € P"*(X)
we shall set

[P} = sup{[P(x)] : x € X, [|x|| <1}.

It is known that a polynomial P € P"(X) is continuous if and only if ||P|| < co.

Definition 2. A mapping P : X — C is said to be a polynomial of degree at most n, where
n € Ny, if it can be represented as a sum P = Py + Py + - - - + P, where p; e Pj(X) forj = 0,n.

Definition 3. Polynomials Py, P,, ..., where P; € P/(X), j € N, are called algebraically inde-
pendent polynomials, when for all n € IN and every polynomial g : C"* — C if the equality
q(Py(x), P2(x),...,Py(x)) = 0 holds for every x € X, thenq = 0.

Definition 4. A polynomial P : X — C is called an algebraic combination of elements of
P = {P,P,,...} if there exists n € N and a polynomial g : C" — C such that P(x) =
g(Py(x),...,Py(x)) forevery x € X.

Let us denote by B(a,r) and B(a,r) an open and a closed balls of radius r and center a € X
respectively.

Definition 5. Let U be the open subset of X. A mapping f : U — C is said to be holomorphic
or analytic on U if for each a € U there exists an open ball B(a;r) C U and a sequence of
polynomials fy, f1,..., where fo € C and f; is a j-homogeneous polynomial for each j € N,
such that

F6) = ¥ e —a)
uniformly for x € B(a;r).

Note that the power series ) - fn(x — a) is called the Taylor series of the function f at the
point a. If U = X the function f is called an entire function.

According to [9, p. 47, Corollary 7.3] the terms of the Taylor series of an entire function
f : X = C can be found using the Cauchy’s integral formula

1
fi) = 5 [ B,

where v > 0. (1)

Also recall that the radius of convergence p, of the power series } ", f»(x — a) is the supre-
mum of all » > 0 such that the series converges uniformly on the ball B(a, r). According to [4,
p- 27, Theorem 4.3], the radius of convergence of the power series is given by the Cauchy-
Hadamard formula

1 1
o = limsup |y
Pa n—o0
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Denote by Hy(X) the algebra of C-valued entire functions of bounded type on X, that is,
the space of all entire mappings from X to C, which are bounded on bounded subsets. We
endow the algebra Hj,(X) with the system of uniform norms

I£llr = sup{|f(x)| : x € X, ||x|| <}, wherer € Q™.

It is known that the topology on a countably-normed space can be given by some metric.
Note that the algebra Hy(X) is complete with respect to this metric. Hence Hy(X) is a Frechet
algebra.

Let H (X) be an arbitrary subalgebra of Hy(X). For every continuous linear functional

< (X )) there exists r € QT such that ¢ is continuous with respect to the norm || - ||,
where < ;EO) (X)) is the space of all continuous linear functionals on HIS )(X)

Analogically to [2, Section 2] let us define the radius function on <Hl§0) (X)) as follows.

Definition 6. For ¢ € (HISO)(X)> let the radius function R(¢) be the infimum of all v > 0

such that ¢ is continuous with respect to the norm || - ||,

Thus,
0 < R(¢) < o0.

For n € Ny let P*(X) = P"(X)N HZSO) (X) denote the space of n-homogeneous polynomi-
als on X, which belong to HzEO) (X). For each P € P"(X) we shall set

IP] = [[Pl[y = sup{[P(x)| : x € X, [|x|| <1}

Each f € HISO) (X) has a Taylor series expansion
f=3 fu 2)
n=0

where f, € 7/5”(}() for n € Ny, and the series (2) converges in HZEO)(X), that is, the series (2)
converges uniformly to f on each bounded subset of X.

Let ¢ € (H éo) (X )) . Taking into account the continuity and the linearity of ¢, we obtain
o(f) = 2 o(fn). (3)

n=0

We denote by ¢, the restriction of ¢ € (HISO) (X)) to P"(X). Then ¢, is continuous. Its norm
on P"(X) will be denoted by

lpall = sup{|9(P)| : P € P*(X),||P|| < 1}.

Definition 7. The spectrum of the topological algebra A is the set of all continuous complex-
valued linear multiplicative functionals = continuous complex-valued homomorphisms =
continuous characters.
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2 ALGEBRAS, GENERATED BY A COUNTABLE SET OF POLYNOMIALS

Let Pp(X) be the algebra, consisting of all polynomials, which are algebraic combinations
of elements of the set IP. Let us denote by Hyp(X) the closure of Pp(X) in the metric of the
algebra Hy(X). It can be checked that Hyp(X) is a subalgebra of H,(X) and that Hyp(X) is a
Frechet algebra with respect to the metric of the algebra Hy(X).

Proposition 1. Each term of the Taylor series of a function f € Hyp(X) can be uniquely repre-
sented as an algebraic combination of elements of the set IP. Consequently,

FO=fO+Y Tt (P (P )2 - (Pa(x)),

n=1ky+2ky+---+nk,=n
where x € X, ay, k,..k, € Candky, ky ... ky € No.

Proof. For n € N let f, be the nth term of the Taylor series of f. Let us show that f, can be
uniquely represented as an algebraic combination of polynomials Py, ..., P;.

Let us denote by Pp (X) the space of all n-homogeneous polynomials, which are alge-
braic combinations of polynomials P, ..., P,. Note that the set of polynomials of the form
P{“P;(’- .. .P,li”, where kq,ky, ..., k,; € Ng and ky + 2kp + ... + nk, = n, is a Hamel basis for the
space Pp (X). Since there is a finite number of such polynomials the space Pp (X) is a finite-
dimensional. Therefore Pp (X) is complete with respect to each of the norms. In particular
Pp, (X) is complete with respect to the norm || - [|;.

Since Hyp(X) is the closure of the algebra Pp(X), then there exists a sequence {a;}7°, C
Pp(X), which converges to the function f with respect to the metric of Hy(X). Let a;, be
the nth member of the Taylor series of the polynomial 4;. Note that a;, € Pp (X) for each
I € N. Let us show that the sequence {a;, }$° ; converges to f, with respect to the norm || - [|;.
According to the Cauchy’s integral formula (1), in which we take r =1,

o f(gx) 1 a,(Cx)
ful2) ag / d

_ d _
27i Jigoa g and ) =57 f g

Therefore
|fu(x) —ap,(x)] = ‘% - f(Cx>€11—+Elll(€x) dC'

1 f(Gx) —a(Zx)] . 1
<o [ L = [ @) — @) az

When x € X is such that ||x|| < 1and { € C is such that || = 1, we obtain ||{x|| < 1. So when
||x|| <1 we have

f(Zx) —a(Zx)| < [If —aill
It follows that
1
Ifo =l = sup |fa(0) = an(@)| < _lf ~ailh [ 2= ~alh.
x| <1 el=1

Since a; — f asl — oo, then ||f — a;]|1 — 0as ! — oo. Therefore ||f, — a;,||1 — 0as ] — oo.
Hence aj, — fu as | — oo with respect to the norm | - [|;. Since Pp (X) is complete with
respect to the norm || - [[1, then f, € Pp (X). Hence f, can be represented as an algebraic

combination of polynomials P, P;, ..., P;. Such representation is unique, since polynomials
Py, P,, ..., Py are algebraic independent. O
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Let Myp be the spectrum of the algebra Hyp(X). According to the Proposition 1 every func-
tion f € Hyp(X) can be uniquely represented in the form

f=Y.fa=f0)+) )y Oy .. oy Py PY2 -+ PET,

n=0 n=1ki+2ky+...4+nk,=n

where a, i, r, € Cand ki, ka ..., k, € INg. Consequently, for every non-trivial character ¢ €
Myp, taking into account that ¢(1) = 1, we have the following:

¢(f) = f(0) + i )3 Oy . (9 (P1)H (@(P2))2 - (@(Pa)) "

n=1k{+2ky+...+nk,=n

Thus we can see that ¢ is completely defined by its values on polynomials P;, where j € IN.
Hence we can identify every ¢ € Myp with the sequence {¢(P;) ]?";1.
Let us prove the following analog of [2, Theorem 2.3] on case of arbitrary subalgebra

HEEO) (X) of algebra Hy(X). Let us recall that we denote by ¢, the restriction of ¢ € <H£O) (X )) )
to P*(X), where P"(X) = P"(X) N HZSO)(X).

Theorem 1. The radius function R on <H£0) (X)) is given by

. 1
R(¢@) = limsup ||@y||7.

n—oo

Proof. Suppose that 0 < t < limsup,_, ., H(an%. Then there is a sequence of homogeneous
polynomials P; of degree n; — oo such that ||P;[| = 1 and |¢(P;)| > t". If 0 < r < t, then by
homogeneity, || P[], = 1", so that

AN
o) > (=) 1Bl

and ¢ is not continuous with respect to the norm of uniform convergence on rB. It follows that

R(¢) > r, and on account of the arbitrary choices of r and t we obtain R(¢) > limsup ||¢x|| .
n—o0
For the reverse inequality, let s be strictly larger than the supremum above, so that

|lpn|| < s" for n large. Then there is ¢ > 1 such that ||¢,| < ¢s”, n > 0. Letr > s is arbi-
trary, and a function f € HZSO) has Taylor series (2). Then the Cauchy estimates yield

fall = fallr < Ifllr, 7> 0.

Hence, [¢(fu)| < [[@nllllfall < Crs—nanHr, so that in view of (3) we obtain

o0

oAl <e( X 5)Ifll-

n=0
Thus ¢ is continuous with respect to the norm of uniform convergence on the ball B and

R(¢) < r.On account of the arbitrary choices of s and r, we can see that

. 1
R(gp) < limsup ||y ||7.

n—oo
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Proposition 2. For every ¢ € Myp there existsr € Q, such that the estimate
|9 (Pu)] < 7" Pullx
holds for all P, € Pp (X).

Proof. Each ¢ € Myp is continuous with respect to the norm of uniform convergence on some
ball in X. Let ¢ be continuous with respect to the norm || - ||,, where r € Q. Since the norm
of every non-trivial continuous complex valued homomorphism is equal to 1, the estimate

|9(Pn)| < [|1Pully, Pn € Pp,(X)

holds for all » > R(¢).

So, |¢(Py)| < sup |Py(x)|. Let us make the following replacement x = ry. Thus we obtain
x| <r
[@(Pa)| < 71" Sup [P, [@(Pa)| < 7| Pa]ls- N
ylI=<1

3 THE CASE OF SUBSPACE X, cgg C X C Yo

Let X be a closed subspace of ¢, such that X contains cyy and IP be a sequence of continuous
polynomials Py, ..., Py, ... such that

1. P, is an n-homogeneous polynomial;

2. P,’s are algebraically independent;

3. every P, depends only on a finite number of coordinates.

Lemma 1. Let us define the mapping | : Hyp({o) — Hyp(X) by J(g) = glx, where g €
Hyp(Y). Let gy € Hpp(loo) be an n-homogeneous polynomial. Then the following equality
holds:

18nll1 = 117(8n)1-

Proof. According to the Proposition 1 each term of the Taylor series g, can be uniquely rep-
resented as an algebraic combination of polynomials P, ..., P,. Since in our case every poly-
nomial P, depends on a finite number of coordinates, then polynomials g, depend on a finite
number of variables. Let us denote by x(j) the maximum among indices of elements of the
sequence x on which the polynomial p; depends on, j = 1,n,n € N. Obviously, «(j) € IN.
Also let us denote by k. = max{x(j) : 1 < j < n}. Then we can write down the following
chain of equalities:

llgnlli = sup{|gn(x)]| : x = (X1, ..., Xm, - ..) € oo, X = OVm > Kpax,m € N, ||x]| < 1}
= sup{|gn(x)| : x € coo, [|x]| < 1}.

Thinking analogically we obtain the following chain of equalities for norms of J(g,) € Hpp(X):

17(gn)ll1 = sup{|J(gn(x))] : x = (x1,.., Xm,...) € X, ||x]| <1}
= sup{|gn(x)| : x = (x1,..., %m,...) € X, x| <1}
=sup{|gn (%) :x = (x1,..., Xm,...) € X, xm = 0Vm > Kyax,m € N, ||x]| <1}

= sup{|gn (x)| : x € coo, [|x[| < 1}.
Thus the equality ||gx|l1 = ||J(gn)||1 is established. O
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Theorem 2. Every function that belongs to Hyp(X) can be uniquely analytically extended to
ls and algebras Hyp(X) and Hyp (¢ ) are isometrically isomorphic.

Proof. Let us consider a mapping | : Hyp(les) — Hyp(X) such that J(f) = f|x for every
function f € Hpp(¢s). It is easy to check that | is a homomorphism from Hyp(/s) onto
Hyp(X).

Next we will show that the mapping | is a bijection. Firstly, let us prove that for all fi, f» €
Hyp(£s) whenever J(f1) = J(f2), then fi = f,, that is ] is an injection. Let us consider ¢ €
Hpp(Ys) such that ¢ = f; — f, and g has a Taylor series representation § = Y.;° ;gu. By

assumption, [(f1) = J(f2), and so J(g) = J(f1 — f2) = J(f1) — J(f2) = 0. On the other hand,

— (Y e =Y (g
n=0 n=0

and the Cauchy estimate yields ||J(gx)|l1 < ||J(g)|l1, 7 € Np. Since J(g) = 0, then ||J(g)|l1 =0
and ||J(gn)|l1 = 0. According to Lemma 1 we have ||gx|l1 = ||J(gx)||1- Therefore ||, |1 = 0 and
it follows that g, (x) = 0 for all x € /.

Thus we obtain the chain of equalities

fi(x) = fa(x Zgn =

for all x € /. It follows that f; = f,. Hence, the mapping ] is injective.
Now let us show that | is a surjection, that is for every h € Hp(X) there is at least one
h € Hyp(le), such that J(i1) = h. Since h € Hyp(X), it has a Taylor series representation
h =Y 5o h, with the radius of convergence
polh) = ————— =
limsup,, . ||fnl{

for all x € X. Let us show that the last equality also holds for all x € f«. According to
Proposition 1 each term h;, of the Taylor series of /i can be uniquely represented as an alge-
braic combination of polynomials P, ..., P,. Since every polynomial P, depends on a finite
number of coordinates, then polynomials /, depend on a finite number of variables. Let
us denote by x(j) the maximum among indices of elements of the sequence x on which the
polynomial P; depends on, j = 1,n,n € N. Obviously, x(j) € N. Also let us denote by
Kmax = max{x(j) : 1 < j < n}. Then we have the following chain of equalities

(x)| : x (xl,...,xk,...)eX,HxH§1}
=sup{|hn(x)| : x = (x1,...,%k,...) € X, % = 0 Vk > Kpax, k € N, ||x]| < 1}
= sup{[hn(x)| : x € coo, [|x]| S 1}
= sup{|hn(x)| 1 x = (x1,..., X, ..) € loo, X = 0 VK > Kpax, k € N, [|x]|| < 1}
()] 1 x = (31,0, Xy ) € Lo, ||x]| <1} = |[Tu]1.

[hallr = SUP{’hn X

= sup{|hn(x)| : x =

~ 1 ~
Therefore limsup,,_, . ||11:l{ = 0 and respectively po(h) = L —ocoforall x € /.
limsup, oo |11 |

Hence every function € Hyp(X) can be uniquely analytically extended to {e. This extension
is a desired function h. Thus the mapping ] is surjective.
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It remains to prove that the given function ] is an isometry between algebras Hyp (/o) and
Hyp(X). For this it is sufficient to show that for all i € Hyp(X), I € Hyp(feo) such that J(i1) =
h,and r € Q" the following equality ||J ()|, = |||, holds, that is ||k]|, = ||k]],.

Leth = Y% oh, and h = Y=, I, be the Taylor series representations of the functions h €
Hyp(X) and h € Hyp (o) respectively. Alsolet S,y1 = ho+...+hyand S,q = ho + ... +
be the partial sums of the given Taylor series. Then the following equalities hold:

nh_{{}o”h_snﬂ”r =0, (4)
Jim ||l = S [l = 0. 5)
Besides, by the continuity of a norm we have the following inequalities:
Bl = Snsallrl < 1B = Sniallr, 6)
[Fllr = 1Susallel < W2 = Sl (7)

Taking into account (4) and (6) we obtain
nlgro‘o [Sn+1llr = (7]l

Analogically, by (5) and (7) we have

tim |3l = il
Therefore limy, oo ||Sy41 ||y = 1imy_seo ||Spp1 ]|y and so ||1]|, = ||%|,. Thus, the mapping ] is the
isometry and the algebras Hyp(X) and Hyp (/) are isometrically isomorphic. O
Theorem 3. Let P, : {.c — C be defined by
Pu(x) = x;

forx = (x1,x2,...) € oo and ||P,|| = 1,n € N. Then the spectrum Mp of the algebra Hyp({«)
coincides with the set of all point-evaluation functionals at points of «,.

Proof. Let ¢ € Myp be a character that belongs to the spectrum of the algebra Hyp (¢ ). Let us
denote by Jy the point-evaluation functional at a point x € {«. Let us show that ¢ = &, for
some X € {oo.

Every ¢ € Myp is uniquely determined by the sequence (¢(P1), p(P2),...,¢(Py),...). Let

us put x = (¢(P1), /@(P2),..., /9(Py),...). Since ||Py]| = 1,n € N, then according to the
Proposition 2 the sequence ((p(Pl) (p(Pz) ey q)(Pn) ..) grows no faster than some geometric
progression. Thus the sequence x = (¢(P), \2/(p(P2), oo, Y/ @(Py),...) is bounded and so,
X € loo.

Besides, the following chain of equalities holds

6x(Pu) = Pu(x) = 23 = ({/ 9(Pu))" = @(Pn).
Hence ¢ = 4y and every character ¢ € M,p is a point-evaluation functional at some point
of leo. O

Corollary 1. Letcog C X C {w polynomials P, : X — C be defined by
Py(x) = x,

for every x = (x1,x2,...) € X. Then the spectrum M,p of the algebra Hyp(X) coincides with
the set of all point-evaluation functionals at points of {c,.
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Y AaHiM poboTi AOCAIAXEHO BAACTMBOCTI TOIOAOTIUHOI aATeb6py IiAMX PYHKIIiM, TTOPOAXKEHOL
3AIUeHHOK MHOXXIHOIO OAHOPIAHVX TIOAIHOMIB Ha KOMIIAEKCHOMY 6aHaXOBOMY IIPOCTOPA.

Hexait X e xoMITAeKCHMM 6aHaxoBUM IpOCTOpoM. PosrasHyTo miaaarebpy Hyp(X) anrebpm
Dperure mianx dpysKui obmexesoro iy Hy,(X), HOpoAXeHy 3AI4€HHOI0 MHOXIHOO aArebpaiaHo
He3aAeXXHMX OAHOpiaHMX roAiHoMiB IP. TToxasaHo, Mo KoXeH uneH psiay Teiiropa minoi oyHKIII,
sika HaaexnTh aarebpi Hyp(X), € aarebpaiutoro kombiHamieo eaeMeHTiB IP. Y3araAbHeHO TeopeMy
IIpO ObUMCAEeHHST paAiyc pyHKIII AiHITHOTO PYHKITIOHaAa Ha BUMTAAOK AOBIABHOI MiAaATe6pY aATe-
6pu Hy,(X) ma mpocropi X. KoxxeH HerepepBHII AiHIHIIT MyABTUIIAIKATVBHII (PYHKIIIOHAA, SIKVIA
Ale 3 Hpp(X) y C OAHO3HAYHO BM3HAYAETBHCSI IIOCAIAOBHICTIO CBOIX 3HaueHb Ha eaeMeHTax IP. SIk
HacCAiAOK, icHye B3a€MHO OAHO3HAUHA BiATTOBIAHICTD MiX CIIEKTpOM (MHOXMHOIO BCiX HellepepBHMX
AIHIHUX MYABTUIIAIKQTUBHMX (pyHKIHOHAAIB) aarebpu Hyp(X) Ta AeSIKOI0 MHOXMHOIO IIOCAIAOB-
HOCTel KOMIIAEKCHMX umceA. BcTaHOBAEHO OLIHKY 3BepXy AASL IIOCAIAOBHOCTEN 3 ITi€l MHOXIHIAL
Taxox AOBEAEHO, IO KOXHY (PYHKIIIO, sika HaaeXnTs aarebpi Hyp(X), Ae X € 3aMKHEHNM ITATIpO-
CTOPOM IPOCTOPY oo 1 MICTUTD IPOCTIp Cop, MOXKHA EAVIHVM UMHOM aHAAITIYHO IMPOAOBXUTI Ha Lo
i aare6pu Hyp(X) ta Hyp (o) € i30MeTpuuro i3oMopdrammu. OmmcaHo criekTp aarebpu Hyp(X) y
AAHOMY BUIIAAKY AASI A€SIKOTO CIHelliaAbHOTO BUTASIAY €AeMeHTiB MHOXHM IP.

PesyabTaTii AaHOI pO6OTH MOXYTD 6yTV BUKOPMCTaHI AAST AOCAIAXKEHHS aATebpy CMMEeTPIUIHIX
aHaAITUIHMX PYHKIIIA Ha 6aHaXOBYMX IPOCTOpPaX.

Kntouosi cnosa i ¢ppasu: n-oAHOPiAHMI TIOAIHOM, aHAAITVUHA (PYHKITisI, CIIEKTpP aArebpi.
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HRABOVA U.Z., KAL'CHUK I.V.

APPROXIMATION OF THE CLASSES WE,OO BY THREE-HARMONIC POISSON

INTEGRALS

In the paper, we solve one extremal problem of the theory of approximation of functional classes
by linear methods. Namely, questions are investigated concerning the approximation of classes
of differentiable functions by A-methods of summation for their Fourier series, that are defined
by the set A = {A;(+)} of continuous on [0, ) functions depending on a real parameter J. The
Kolmogorov-Nikol’skii problem is considered, that is one of the special problems among the ex-
tremal problems of the theory of approximation. That is, the problem of finding of asymptotic
equalities for the quantity £(0; Us)x = sup ||f () — U (f;-; A)||x, where X is a normalized space,

en

N C X is a given function class, Us (f; x;fA) is a specific method of summation of the Fourier series.
In particular, in the paper we investigate approximative properties of the three-harmonic Poisson
integrals on the Weyl-Nagy classes. The asymptotic formulas are obtained for the upper bounds
of deviations of the three-harmonic Poisson integrals from functions from the classes Wg,w. These
formulas provide a solution of the corresponding Kolmogorov-Nikol’skii problem. Methods of in-
vestigation for such extremal problems of the theory of approximation arised and got their devel-
opment owing to the papers of A.N. Kolmogorov, S.M. Nikol’skii, S.B. Stechkin, N.P. Korneichuk,
VXK. Dzyadyk, A.l Stepanets and others. But these methods are used for the approximations by
linear methods defined by triangular matrices. In this paper we modified the mentioned above
methods in order to use them while dealing with the summation methods defined by a set of func-
tions of a natural argument.

Key words and phrases: Kolmogorov-Nikol’skii problem, three-harmonic Poisson integral, Weyl-
Nagy classes.

Lesya Ukrainka East European National University, 13 Voli avenue, 43025, Lutsk, Ukraine
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1 INTRODUCTION

Let L be a space of 27r-periodic summable on a period functions f equipped with the norm
7T

Ifll. = [ |f(#)]dt; C be a space of 27-periodic continuous functions f in which the norm
-7

is set by means of the equality || f|lc = max |f(t)]; Lo be a space of 27t-periodic measurable
essentially bounded functions f with the norm ||f||c = esssup |f(t)].
t
Assume that f € L and S[f] = 2 4+ ¥ (axcoskx + by sinkx) is the corresponding Fourier

k=1
series. Let, further, r > 0 and B € RR. If the series

1:1 < <ak cos <kx + ’377-() + by sin <kx + ﬁ%))

YAK 517.5
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is the Fourier series of a summable function ¢, then we call the function ¢ a (7, §)-derivative
of f in the Weyl-Nagy sense and denote it by fﬁ (see, e.g., [14], p. 130). A set of functions for
which this condition is satisfied is denoted by Wg. If f € Wy and, besides, fE() |, <1, then
f belongs to the class W5 oo

Let f € L, 6 > 0. Functions of the following form

o

P f;x) = 612—0 + Zeilg (ay coskx + by sinkx),
k=1
> k 2.\ _k .
P (5 frx —EO ;( 2 (1—e" 5))6 o (a coskx + by sinkx) ,

P3(6; f;x) = % +) <1 + 31(3 — e’%)(l - e’%)k%— %(1 — e’%)zkz)e’]% (ay cos kx + by sinkx),

are called the Poisson integral [10], the biharmonic Poisson integral [16] and the three-harmo-
nic Poisson integral [2] of the function f, respectively.
The paper is devoted to investigation of asymptotic behavior as § — co of the quantity

E(We0i P3(0))c = Sup 1£() = P3(6; £ )l (1)

If the function ¢(4) is found in an explicit form, such that £(Wj ; P3(6))c = ¢ (6) +
0(p(d)) as 6 — oo, then according to Stepanets [14, p. 198] we say that the Kolmogorov-
Nikol’skii problem is solved for the class Wy ., and the three-harmonic Poisson integral in the
uniform metric.

The Kolmogorov-Nikol’skii problem for the Poisson integral on classes of differentiable
functions have been solved in [7,9,12,15,18,19]. The papers [5,11,20] are devoted to an investi-
gation of analogous problem for the biharmonic Poisson integral. Asymptotic properties of the
three-harmonic Poisson integrals were considered in [2], [17]. Nevertheless, the Kolmogorov-
Nikol’skii problem have not been solved for the three-harmonic Poisson integral on the classes

5 «- Therefore a question arose of finding asymptotic equalities for the quantities (1).

2 ASYMPTOTIC EQUALITIES FOR UPPER BOUNDS OF DEVIATIONS OF THREE-HARMONIC

POISSON INTEGRALS FROM FUNCTIONS FROM THE CLASS W ..

For the three-harmonic Poisson integral, analogous to the relation (6) from [8], let us
rewrite a sum function 7(u) in the following form

() = { (1— (14 yu+6u?) e‘”% S, 2

1
57
(1= (1+yu+6u?)e ™ @)

where y = () = 13 —e 3)(1—e74)5, 8 =0(6) = L(1—e7)262, 5> 0.
The following statement is true.

Theorem 1. Let0 < r < 3. Then the asymptotic equality holds as 6 — oo

1

1 1
EWhoi PO = A +0 (5 + 557 )
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where the quantity A(T) is defined by

A(r) = p- / /r cos <ut+ 7)6114 dt 3)
- 0
and the estimate M
O(1), 0<r<3,
AlT) = { O(Ind), r=3, @

takes place.

Proof. To conduct the proof let us use theorem A from [1]. We now check if its conditions are
fulfilled. For that reason let us show a summability of the Fourier transform 74(t) of function
T(u) of the form

- 17 B

Tp(t) = — /T(u) cos <ut + —)du 5)

7T
0

i.e., a convergence of integral A(t) of the form (3). According to theorem 1 from [1], for prov-
ing a convergence of the integral (3) it is necessary and sufficient to show that the following
integrals are convergent

/iu\dT'(u) 7\1{—1‘ |47’ (1) 7!T(uu)
' 0

1
As while investigating the first integral of (10) from [6] let us estimate the first integral of
(6) on each segment [0 1] and [ 5 2] (assume, that § > 3). Taking into account that v/ (u) > 0

/1 TU-w-tlru)l,

u

NI

ifue [0, o] 0 > 3, and the inequalities

e <1, e*<1l—u+—, u>0, (7)

we get

5'1| _
N2
_l_
(o)
IA
I\\JI [¢8)
2
)
o
g
-
o5}
=
=

In view of estimates 1 5 —0<

/u }dT <%> asd — oo. (8)
0

Let further u € [%, %} . We set

4 1
T (u) = (1 — (1 +yu+0u?)e ™ — a2t~ guz - 8u3> u’, (
9)
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then t(u) = 7y (u) + 1o (u) and

wldt' ()| < [ uldr(u)| + [ uldo(u)|. (10)

=

Nl—=
=

NI—
=

Nl—=

To estimate the first integral from the right-hand side of inequality (10), we first investigate
the following function

i _ 4 1 1
() = 1= (1 qu+ )™ — s — <u? — 2t )
Taking into account, that

4 2 1
~N 2\ ,—u _ s SR B
w(u)=(14y+06ue (v +20u)e a2 5Tk

i'(u) = —(14+y+0u?)e ™ —2(y +20u)e " — 20" — % —u,

4
~ - /\// - _ o
H0)=0,(0) =17~ 35 <0,
we can show that if u > 0, then
ji(u) <0, '(u) <0, #"(u) <0. (12)
In view of (12) and the inequalities (7) and

2 3 4

u u u

U <1 — R T U1 -
e " <1 u—|—2 6—|—24,e >1 u+2

we have
ol <u(r-14 ) - 2§ e it (F o) (4 ),
Pl (vt ) sy os D) rai(G-0) eo(b o)

" (u)] < 2(% —v+9+§) +6u(% 0) +1u?(5 +66).

Further, using the estimates

4 3 1 3 v 2 1 0 1
-1 0+-< >, ~—0<Z, —+-<1, 2 +60<3, 2+20<2
we obtain
3 5 3 4 |~ 2 3
A ( )!_53u+5—2u +50 [ ()] < 5+ u+ st + 20, w
2
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Taking into account (9), (11) and relation (13), in the case u > % we get

1 1 1
2 2 2
1/u|dl'1’(u)| < 1/ <5% + 15—2u +3u2> ul~"du + rl/ <% + é—gu + 15—2u2 +4u3>u_rdu
s s s
. (14)
3 3 2,253 4\ —r1
+r(r+1)/ <5—3u+ﬁu +gu +u )u "du < Kj.
%
One can easily verify that the estimate
1
2
/u|dr2’(u)| =0(1) aséd — o0 (15)
%
is true. Combining (14) and (15), we have
1
2
/u|dr’(u)| =0(1) asd — oco. (16)
0

Now we move to an estimation of the second integral from (6). If u > 1 from a representa-
tion of function T(u) of the form (2) we obtain

T'(u) =e"((2y—20—1) +u(46 —y) — Ou?))u~" — 2re " (1 — ) + u(y —26)

17
+ 0 )u " r(r - 1)(1 = (1 yu + 6u2)e ™ Ju 2 (17)

The relaton (17) yields
u —1|dt’ (u)| <

uldt' (w)] < [ e ((2y —20 — 1) + u(40 — ) — 0u?))u'"du

I\Jb—‘\ 3
I\Jb—‘\ 3
I\Jb—‘\ 3

+ Zr/e’”((l — ) +u(y —20) +0u?)u"du+r(r +1)

1
2

(1— (14 yu+60u?))e "u=""du.

ND—‘\S

(18)
Further, taking into account the following estimates for u > 0

1—(1+qut06u?)e <1,
ue (1 — ) 4+ u(y —26) 4+ 6u?) <2, (19)
(27 —20 —1) + u(40 — ) — 6u? < 8,

from (18) we have

lu —1||dt’(u)| = O(1) asé — oo. (20)

NIH\g
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Let us estimate the third integral from (6) on each segment [0, 1], [},1] and [1, ). In view

of (2) and the inequality

1—e % —que ™ —0ue ™ < %u + %uz +u®, u>0,

1 1 1
|T(u)| _ 4 / —r 1 1-r 1/ 2—r O(1>/ r<3,
1/ du = / u"du + u du—l—6 u " "du + O(ng), r=3,
; ;

[ 0(1), r<s3
| O(Ing), r=3,

Taking into account the formula (2) and the first inequality from (19), we get

oo [ee) oo 1
/T(uu / (1—(1+qyu+0u?)e )u"du < /u_’_ldu =7
1 1 1

From (22)—(24) the estimate follows

u)|du _ { o), r<3,

o(Ins), r=3, as 0 — oo.

0\8
=

1 1 1

3 ; P
/‘T(uﬂdu o /(1—6 ”—7ue”—9u26”)d7u§5r/<2 +2u—|—u>du§ M
0 0 0

(21)

(23)

(24)

(25)

Now we estimate the fourth integral from (6). Similarly as to obtain the formula (39) form

[3], we can get the equalities

/]rl—u);rlJru /Ml—u (1+u)’du—|—O(H(T)),

where H(7) is defined by equality

H(T) = [7(O)] + 7)) + [ u]de' ()] + [ ju=1]|a'(w)
0 1

2

(26)

(27)



APPROXIMATION OF THE CLASSES WE - BY THREE-HARMONIC POISSON INTEGRALS 327

1

and A(u) = (1+ ~yu + 6u?)e . Taking into account, that [ [A(1 —u) — A(1+ u)|d7” = 0(1)
0

and using the estimates (16), (20), we have

1
/|T(1_”);T(1+u)|du:0(l), 5 — oo, (28)

Therefore, in view of theorem 1 from [1], integral A(7) of the form (3) is convergent. Using
inequalities (2.14) and (2.15) from [1] and the formulas (16), (20), (25) and (28) we obtain the
estimate (4).

Hence, we proved that for the function 7(u) defined by (2) the conditions of theorem A
from [1] are fulfilled. Then, as § — oo, the equality

E (Wi P(6))c = 5A(r) +0(5a(x)) (29
holds, where
a(t) = / %4 (t)|dt. (30)
[{ESs

Let us estimate the integral (30). First, we represent a transform T (t) in the form

:%(/%—k]o)T(u)cos <ut + 52 ) du. (31)
0 3

Integrating both integrals from the right-hand side of the equality (31) twice by parts and
taking into account that 7(0) = 0 and lgn T(u) = lgn v'(u) = 0, we have
Uu—00 Uu— 00

~ 1

0=~z (1= o = (10 o (5 )

S— .

7 :3_ 'B_
+ [ v"(u)cos <ut +5 )du / '(u) cos <ut +5 )du)
%
Further, in view of inequalities (21) and 1 — ¢ < 52, we obtain

|75 ‘—tz(gz y mz(/"’ "’/) u)|du. (32)
0 1

Taking into account that 7”"(u) > 0if u € [0, ] (6 > 3) and using inequalities v — 26 < %,
0 < %, we get

%IH\
—_

17 (u)|du = e s ((1—7)+L+—> —0(1—-9)< (33)

O\oﬂb—-
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Letu € [%, 1]. Repeating the argumentations used to estimate the first integral from (6) on
the segment [%, %], we can easily verify that the estimate

1
‘T//(M)’du =0 <1 + W) , 0 — 00, (34)

S
—_

holds.
Consider now u € [1,c0). Taking into account the relation (17), we get

1" )l < [ etu (27 =20~ 1)+ u(46 — ) — bu)du
1 1

o]

—{—Zr/e_”u_’_l((l — )+ u(y —260) + 0u?)du
1

r(r+1) /1— (1+ yu + 0u?)e " )u~""2du.
1

In view of the first and the third inequalities from (19) and the inequality
T =) Fu(y —20) +0u*) <2, u>1,

the last relation yields
/yr"(u)\du < K. (35)
1

Combining formulas (32)—(35), we obtain
~ 1 1

a0 = [ [bld=0 <%+53i_> as 6 — oo. (36)

‘t|>¢5n

Therefore,

From the relations (29) and (36) the equality follows. Theorem 1 is proved.

Theorem 2. Ifr > 3 the following asymptotic equality holds as 6 — oo

5(wg,w;P3<5>)C=— s H SO0+ 0| roven), @

Y(6;r) = 121_45, r=4,
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Proof. Asin the paper [4], let us represent function 7(u) defined by the relation (2) in the form
T(u) = ¢(u) + p(u), where

2 1
v (352u+ +1u3 ou>
(u) = 1= (1+qut 0ul)e™ — su—ju =g ) &', 0<u<y, (39)
" 1—(1+qu+6u?)e™ — sou—Ju? — b ) u™, u>;3

Now we show a convergence of the integrals A (¢) and A (i) of the form (3).
To prove a convergence of the integral A (¢), in view of theorem 1 from [1], let us show a

convergence of the integrals

/ 1 1

u|de'(u)],

7 lo(u)
ol

O\Nb—-
NIH\ 8

and find their upper estimates.
From (38) we get that for u € [0,1],6 > 2,

1 1
; :
2 K
/u|dg0’(u)| = (V/ <5u+u2> du < 53;. (41)
0 0
] . .
Since [u|dg'(u)| < [u|d¢’(u)|and f lu —1{|d¢’ ()| < [u|d¢’(u)|, then it is sufficient to
1 1 1
5 s 5 5

get an estimate of the integral f uldg'(u)|. If u > 1 we have

J
i 72 r(4 2 1
/ </ = —r+1 / -r
1/u]d(p (u)]du_1 <(5+u>u du + 2r 352+5u+2u du
5 ; 3 (42)

+r(r+1)/<3§2u+(15u +é”> —r=lgy < ;;zr_
1
5

/u\dq)’(u) :O<%> /\u—lHd(p( )| = O<%> as § — oo. (43)
0 1
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i 1 B K,
1/(@—{— u+6u>urdugm.
o

%h—l\ 8
‘S

Hence,

—~

l? u”duzO(%) as d — oo.
u 53-r

Analogous to (26), the formula

1
/|qo<1—u>— (1 +u)| /M (1—u) (1+u)|du+O(H(90)) (44)

is true, where A(u) =1 — 3 02” — +u? — 1u3, and H(g) is defined by formula (27). In view of

u

1
the relation [ A=) =A Q)] g, O(1) and (43), from (44) we have
0

h 1 1 1
Jnmnenenly, o( 1) o
u (537
0

Therefore, all integrals from (40) are convergent. Further, applying Theorem 1 from the
paper [1] we conclude that the integral A(¢@) converges and the estimate

Alg) = O(%) asd — oo

holds.
Now we prove a convergence of the integral A (y). For this reason, according to Theorem 1
from [1], let us show a convergence of the integrals

ju‘dl/(u) 7!u—1’ |y’ (u) 7!]15;1)
" 0

1
Repeating the argumentations used to estimate the first integral of (24) from [4], we divide
the segment [0, 1] into two parts: [0, 5] and [}, 1], § > 2. From the representation (39) of
function p(u), for u € [0, %] we have p"(u) = ji"(u)é", where ji(u) is defined by equality (11).
Then, taking into account the third inequality from (13), we get

/1 P g e
u

NI

: K
uldy (u /<—u+ ~u*+3u )d = 54;. (46)

3 O(1), 3<r<4,
/u\dy’(u)\ ={ O(Ing), r=4, as § — . (47)
1 O<%>, r >4,
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Combining (46) and (47) we get the estimate

3 O(1), 3<r<4,
/u\dy’(u)\ ={ O(Ing), r=4, as § — . (48)
0 O<54 ,), r >4,

Let us move to an estimation of the second integral from (45). In view of (39), for u > %
holds

()] < r(f+u1r)+|2ﬂ(u)| +2r|5+(:t)| n Iﬂu(ru)l‘ (49)

To make further estimations, we take into account inequalities (12) and

u
e <1, e‘”<1—u+7, e >1—u, u>0,

and, hence, get

4 1 1 v 1
)l <u(=1tr435) +idG-r+0+5) +w(5+ ),

o 4 2 3 1

F)] < (=147 +55) Fu(l =27 +20+3) + (37 +0+ 5),

" (u)] < (1—2y+20+ %) +u(B3y+1) + (6u2 + 40u)e™"

Then, using estimates

4 2 1 1 2 4 1 3 1
_1 —<_/__ 9 _<_/_ _<1I_ 6 _§4/
BT I S A I T S M A
37+1<6, (40u+0u*)e ™ <2u, u>0

we obtain

2 4 - 4
+ —u 4 4u?, \y”(u)]§5+8u,u20. (50)

2 2 ~
)] < ut 50+, 7 (W) < 55+ 5

)
In view of (49), (50), we have

(e 9]

[l =1l )] <

+2r/ ((522 +§u+4u ) u_rdu+/ <§+8u> u "y <Ky, r> 3.
1
3

2

uldp' (u)| <r(r+1) <£u—|— 2.2 +u ) u" "y

52 )

NIH\S
NIH\S

NI—=

(51)

Let us estimate the third integral from (45). We devide the segment [0, o) into three parts:
[0,3], [3,1], [1, ). From formula (11) using the first inequality from (13) and (50) we obtain

1 1 1
o o 8

[ (u)] 2 K; |
0/ ” du:5r0/| / 53 _u+§u +u dUSF,
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1 1 Kz, 3<7’<4,
/ pu /( —u~|— u 24w ) u"du<{ Kzlno, r=4,

] 4 %, r>4,

) o °

/( + - u+u>u’du§K5, r > 3.
1

1
Combining last relations, we have

7 i)
/

To estimate the fourth integral from (45) we use the formula

0(1), 3<r<4,
O(Ind), r=4, as & — oo. (52)
O(5=), >4,

1
d
[ =) —p+u) )= /IA (1= ) = A(L+w)|°" + O(H(w)), (53)
0
where A(u) = e (1 + yu + 0u?) + W” + 3u? + tu®, and H(y) is defined by formula (27).

1
In view ofbf IAM(1T—u)— A1+ u)\%” = O(1), using relations (48) and (51), from (53) we get

1 i O(1), 3<r<4,
/]y(l ) —u(1+w)|™ =] ons), r=4, as 6 — oo, (54)
u 1
0 O(F), 7’>4,

Hence, taking into account Theorem 1 from [1], according to formulas (48), (51), (52) and
(54) we can verify that the integral A(p) is convergent and the following estimate holds

O(1), 3<r<i4,

A(p) =< O(Ind), r=4, as § — oo. (55)
O(%), r>4,

In view of the fact, that the Fourier transform 74(t) of the form (5) is summable on a whole
real axis, for an arbitrary function f € WE,OO and x € R the equality

f(x) —Ps(6; f;x) =6"" / i <x+ g) T(t)dt, 6 >0, (56)

is true.
Using (56), (38), (39), for the quantity (1) we get

t
E(Whoo: P3(8)) = sup |67 / A <x+ —> Tg(t)dt
< B )c fEWI;m ) fp 5)F c
—r ji T t oy 7
= sup |6 / 8 (x + 5) (@p(t) +pp(t))dt (57)
FEWE o o C
(e9) t R -
= sup |[6" / 8 <x+ 5) Pp(t)dt]| +O (67"A(p)) .
fEW’,oo o C
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It is easy to show, that the Fourier series of a continuous function

fo(x) :_7 f (x + g) Pp(t)dt

(e 9]

takes the form

S [fo) :qu)(g)kr(ak(f)coskx—i-bk(f)sinkx), (58)

(see speculations used in proving Theorem 1.3.1 from the paper of A.L. Stepanets [13], p. 54).
Due to (58), taking into account (38), we obtain the equality

S

S [fe] = 531_r 1; (%k—l—kz + %k3> (ag(f) cos kx + bi(f) sinkx).

On the other hand,

[%fo(l)(x) +f(§2)(x) + %fé?’)(x)} = 531_r ko:il (%k + K+ %k‘o’) (ax(f) coskx + by(f) sinkx).

In view of (58), we get for all x € R

7 £\ 1 4 1 2 1.3
[ 5 (x4 5) a0 = 5 (G0 4220+ 10 ). 9
Therefore, from (57), in view of formulas (55) and (59), we get the equality (37). Theorem 2
is proved. O
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I'pabosa V.3., Kaavuyk 1.B. Habnuowcenns xaacis W}g,m mpueap moHitiHumu inmeeparamu Ilyaccona //
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Pob6ora npucBsideHa po3B’sI3aHHIO OAHIET 3 eKCTPeMaABHMX 3aAa4 Teopil HabAVDKeHHsT (pyHKIIio-
HaABHMX KAACiB AiHIVHMMM MeTOAAMM, a caMe AOCAIAKEHHIO IMTaHb PO HabAVDKEHHS KAaciB Av-
depeHiioBEMX (PyHKIII A-MeTopaMM IACYMOBYBaHHS iX psiaiB @yp’e, 3apaHMMI CYKYIIHICTIO
A = {As(-)} HenepepsHuX Ha [0,00) dpyHKIIN, 3aAeXHMX Bia AjiicHOro mapamerpa J. PosrasiHy-
To 3apauy Koamoroposa-HikoabchKoro, 1o 3aiiMae 0cObAMBe MicIle cepea eKCTpeMaAbHMX 3apad
Teopil HabAVIKeHHsI, TOOTO 3apady IPO 3HAXOAXKEHHS acMMITOTUYHMX PiBHOCTEN AAS BeAVUMHMN
EMLU;s)x = sup ||f () —Us (f; 5 A)|lx, Ae X — HOpMOBaHMiA poctip, 91 C X — 3apaHmii Kaac

fen

dyuxuin, Us (f;x; A) — KOHKpeTHMIA MeTOA IiaCyMOByBaHHs psiaiB Dyp’e. 3okpeMa, B poboTi
AOCAIAXYIOThCSI allPOKCMMATMBHI BAACTMBOCTI TpUTapMOHIiVHMX iHTerpaaiB IlyaccoHa Ha xaacax
Betirs-Haast. OTprMaHO acMMITOTIYHI (POPMYAM AASI BEPXHIX I'paHelf BIAXMA€HD TPUrapMOHIHIIX
inTerpanis Ilyaccona Bia pyHKIIN 3 KAaciB Wé,oo, sIKi 3abe3reuyroTh PO3B’SI30K BiAIOBiAHOI 3aha-
4i Koamoroposa-Hikoabcbkoro. MeToay AOCAIAKEHHST eKCTpeMaAbHNX 3aAad HaOAVKEeHHs TaKOTO
TUITYy BUHVMKAM i OTpMMaAM CBilf po3BUTOK 3aBAsSKM poboTam A.M. Koamoroposa, C.M. Hikoabcbko-
ro, C.b. Creuxnna, M.I1. Kopareituyxa, B.K. Azsanka, O.I. Crenaniist Ta iHIINMX, are BOHM BUKOPU-
CTOBYIOTBCSI AAST HAOAVDKEHD AIHIHMMM METOAAMM I ACYMOBYBaHHsI, IO 3aAQIOTHCS TPUKY THAMM
UNMCAOBMMM MaTpUIISIMUL. B AaHIl Xe po6oTi 3rapaHi MeTOAM MOAMIKOBAHO AASI METOAIB TiACYMO-
BYBaHHSI, III0 33 AQI0ThCSI MHOKXIMHOIO (DYHKIIIJ HATypaAbHOTO apryMeHTY .

Kontouosi croea i ppasu: 3apava Koamoroposa-Hikoabcekoro, Tpurapmosivami inTerpana Ilyac-
coHa, kAaacu Berasi-Haast.
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JAWAD F., KARPENKO H., ZAGORODNYUK A.

ALGEBRAS GENERATED BY SPECIAL SYMMETRIC POLYNOMIALS ON /¢,

Let X be a weighted direct sum of infinity many copies of complex spaces ¢; @ ¢;. We consider
an algebra consisting of polynomials on X which are supersymmetric on each term ¢; @ ¢;. Point
evaluation functionals on such algebra gives us a relation of equivalence ‘~” on X. We investigate the
quotient set X/ ~ and show that under some conditions, it has a real topological algebra structure.

Key words and phrases: symmetric and supersymmetric polynomials on Banach spaces, algebras
of analytic functions on Banach spaces, spectra algebras of analytic functions.

Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine
E-mail: farah.jawad@yahoo.com(Jawad F.), ganna.karpenko@gmail.com(Karpenko H.),
azagorodn@gmail.com (Zagorodnyuk A.)

INTRODUCTION AND PRELIMINARIES

Let X be a complex Banach space and (P,) a family of continuous complex valued polyno-
mials on X. Often, it is interesting to consider algebras of analytic functions on X, generated
by the family of polynomials (see e. g. [6,12,16]). If the family (P,) does not separate points of
X, then the same is true for any function, generated by (Py). So, we have a natural relation of
equivalence on X: z ~ w if and only if Py(z) = Py(w) for every a. If X is finite-dimensional,
then from the Algebraic Geometry is well known that the quotient set X/ ~ is dens in an alge-
braic variety. The same is true for infinite-dimensional case, if the family (P,) is finite [2]. But
in the general case, the situation may be more complicated.

Let S be the group of all permutations on the set of natural numbers IN. A polynomial
P: {1 — Cissaid to be symmetricif P(c(x)) = P(x) for every X € {1 and ¢ € S.Itis known [15]
that polynomials

F(X)= Y« k=12..,
n=1

form an algebraic basis in the algebra of all continuous symmetric polynomials Ps(¢7 ). In other
words, {F;}{> ; are algebraically independent and Ps(¢; ) is the minimal unital algebra contain-
ing {F}7> ;. In [1] it was shown that two vectors with finite supports x,y € /; are equivalent
in the means Fy(x) = Fi(y) for every k, if and only if x = o(y) for some o € S. Some algebraic
operations on ¢1/ ~ which form a semi-ring structure [4] were considered in [5,7]. Composi-
tion operators, associated with these operations, on analytic functions were investigated in [8].
Algebras of analytic functions generated by symmetric polynomials on ¢, were investigated
in[1,3,5-7,13,14].
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Let X = {1 @ ¢1. We represent each element z of X by z = (y|x), x,y € ¢1. Let us consider
polynomials T;,,: X — C,

Tn(z) = Fu(x) — Fu(y) = Z(X;(n — Y-

Polynomials Ty, m € IN are algebraically independent and form an algebraic basis on the
algebra of supersymmetric polynomials on X. In [11] the algebra of supersymmetric polynomials
was investigated and a commutative ring structure on the corresponding quotient set X/ ~
was described.

For a given complex Banach space E with an unconditional basis {e,; } 3> , we denote by ¢ gE)

a Banach space defined by the following way. If x € EgE), then
X = (x(o),x(l), oo ), (1)

where each x(") = (xgn), .. .,x,E"), ...) €fyand

[e ]
Z Hx(")Hglen €E with Hxﬂggﬂ = n)”gle”

E
(E)

A polynomial P on ¢, is separately symmetric [10] if for every sequence of permutations on
N, o = (00,01,-.-,0n,...),0n € Swe have P(c(x)) = P((ro(x(o)),...,Un(x(”)),...) = P(x) for

all x € ZgE). Polynomials
Flx) =Y )y, jezy, meN

are separately symmetric and algebraically independent.

In this paper we consider a complex Banach space X which is a weighted direct sum of
infinity copies of /1 @ ¢; and polynomials which are supersymmetric on each term of this sum.
We show that under some assumptions, X/ ~ is a real locally convex algebra which contains a
normed subalgebra. This is an extension of results on supersymmetric polynomials, obtained
in [11]. For details about analytic mappings on Banach spaces we refer the reader to [9].

1 THE RING MY

Let w be a positive number, 0 < w < 1. We denote by £y, a “weighted” version of the
space (£. Namely, if x € ¢, then

1,007
x = (x©, 20,y = () e gy
and

]l = llx[le , = max (Z w" |3 Hzl,sup 2" I) :

We denote by A{’ the direct sum of two copies of £¢’
will be denoted by (y]x) y ey

Toor AT = €1 @ {7 - Elements of AY
x € 4y, and || (y|x )l = 1Yl + llx[[ee_ - In other words,

1,007
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any element z € A“ can be represented as

y,(co) .ygo) | xgo) .x,EO).
z=(ylx) = n " n n
...y](()...yg) | xg). .x,E)
| .
or o o o
=L Y+ L Y e, @)
n=0k=1 n=0k=1
where
0...0 | 0...0..
e =1 0.0 ] 0..0x"0...
0.0 | 0...0..
|
and
.0...0 ] 0...0
yMe M) = 0y 0...0 | 0...0..
.0...0 | 0...0..

Note that the expansion (2) is formal, that is, the series on the right is not convergent in general.
We denote by A" and A{'~ subspaces {(0[x): x € ¢} and {(y[0): y € £} respec-

tively. If z = (y|x) we will use also notations z; = x and z_ = y when it will be convenient.
Let us define the following polynomials on A{’

Ty (y]x) = Z ")) _ Z w"F,gqn)(y(")
e Q
n
Z Z Z w" Z(yk )", (y|x) € AY.
n=0 k=1 n=0 k=1
Proposition 1. For every m € IN the polynomial Ty is continuous on A{’ and || T, || = 1.

Proof. Let [|(y]x)]| < 1. Then [ly]le + [|x]le < 1, and |x{"| < 1and [y{"| < 1forallk € N
and n € Z4. Thus

Tl < Lo L (17" + ") < B o L (7] i) < 1l
n=0 k=1 n=0 k=1
So || T|| < 1. Let now (y|x) be such that y = 0, x(©) = (1,0,0,...), x(") = 0 for n > 0. Then

|(y|x)|| = 1and T, (y|x) = 1. Thus || Ty || = 1. O

Definition 1. Let us say that a polynomial P: Ay — C is w-supersymmetric if it is an algebraic
combination of polynomials Ty, m € IN. We denote by Py’ = P’ (AY’) the algebra of all w-
supersymmetric polynomials on AY’ .
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Theorem 1. Let w = 1/N for some N € IN, N > 1. For every number a € R there exists
z(qy € AY such that

2 = la| ifla| > 1
{a} 1 iflal <1

and Ty} (z(,,) = a for every m € IN.

Proof. Leta > 0. Then we can write
v
—= 4
; NG (4)

that is, ap = [a] the integer part of 4 and (0.414; . ..)N is the representation of a — [a] in the
positional base N numeral system. Let z;,} be of the form z;,, = (0]x {a}), Where

v L)
Xy =) x{Z}
n=0

and

0 = (L., 1,0,0,. ) = el el n=012,....

Then for |a| > 1,

HZ{H}llzmaX(ZNn,) Z =Ty (z()) =a, mEN

n

and |[z(g || = 1for |a| < 1.1f a < 0 we can consider b = —a > 0. By the same way, using (4)
for b, we can find the vector x(;,. Let us define now zy,, = (x(4;(0). Then

Iz = w=la|l ifla| >1,
{a} 1 ifla <1,

and T}/ (z(,)) = a for every m € N. O

Let us recall that two operations on ¢; “e” and “¢” which preserve symmetric polynomials
were introduced in [7] and [5]. Namely, let x = (x1,x2,..., %k, ...) and x = (y1,¥2,-- -, Yk, - - -)
are in /1, then

xoy = (X1,Y1,%X,Y2, -, Xy Yr - - -)
and x oy is the resulting sequence of ordering the set {x;y;: i,j € IN} with one single index
in some fixed order. It is easy to check that for every symmetric polynomial P on ¢; and
fixed y € ¢1, polynomials P(x e y) and P(x ¢ y) are symmetric. In [11] these operations were
extended to ¢; @ ¢1 with preserving supersymmetric polynomials. Now we propose natural
extensions of these operations to A{’.

Definition 2. Letz = (z_|zy) andr = (r_|ry) are in AY. We say that h = z er if h =

2" o ") and h(f) = zgf) o r(f) forevery n € Z.. We also say thats = z o r if

s(f) = (z(f)or(ﬁ) ° (z(j) orf_l)) o -0 (zgf) <>r(+0)) ° (z@ <>r(f)) ° (z(j) <>r(f_1)) o -0 (z(f) or(f)))
and
s(,") = (ng)or(,n)) ° (zgrl)or(,n*l)) o -0 (zgf)or(,o)) ° (z@ <>r(+”)) ° (z(}) orgflfl)) o -0 (z(") <>r(+0)).



ALGEBRAS GENERATED BY SPECIAL SYMMETRIC POLYNOMIALS ON {1 339
Proposition 2. Ty (zer) = Ty (z) + Ty (r) and Ty (zor) = Ty (2) Ty (r) for all z,r € A and
m € IN.

Proof. The first equality directly follows from the definition of T}, (3). Also, in [5] it is proved
that F,(x oy) = Fu(x)Fn(y), x,y € ¢1, m € IN. So, using (3) and Definition 2, we have for
s=zor

T (s) = Ty (zor) Z w”F ) - Z w”F,gf)(s(f)

n=0 j=0 j=0
e} n . n
e (Z FO D) ESD () 4 3 ED (0 ) (_n—n))
n=0 j=0 j=0
e ( E OVESD (D) 1 3 E ) F(nn(r(n])))
=0  \j=0 =0
_ <Z wnFr%n)(z(ﬁ)) y wnFr(nn)(Z”))> (Z w”Fr(nn)(r@) y w”F,Ef)(r”))>
n=0 n=0 n=0 n=0

Corollary 1. Let P(z) € P’. Then, for every fixedr € A{’ polynomials P(zer) and P(zor) are
in Py,

For a given z = (y|x) € A{ we denote z~ = (x|y). Clearly, the map z — z~ is a continuous
involutioninr € A{ and Tj (z7) = —T;. (2).

Let us introduce the following relation of equivalence on A{’. We say that z ~ r if and only

if Ty (z) = Ty (r) for every m € IN. Let us denote by M® the quotient set A{’/ ~ and by [z]
the class of equivalence which contains z.

Proposition 3. The following operations [z| + [r] := [z e 1], [z][r] := [zo7], z,v € A}, of addi-
tion and multiplication are well-defined on M“ x M% and (M%,+, -) is a unital commutative
ring.

Proof. Letz’ € [z] and " € [r]. By Proposition 2 and the definition of the equivalence we have
that for every m € IN,

T (2) + T (r) = T,(2) + T, (r') = T, (2 o ')
and
T (2) Ty (r) = Ty () T (r') = Ty (2 o 7).
So the operations on M® do not depend on representatives. Let [u] = [z|([r] + [s]) and [v] =
[z][r] + [z][s]. Since for every m € IN

T (u) = T (2)(Ty (r) + T (5)) = T (2) Ty (r) + T (2) T (5) = T (0),
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so [u] = [v] and we have the distributive law. Clearly that the associativity and commutativity
of the addition and multiplication can be proved by the same way. Also, —[z] = [z7] and

I= [ego)] is the identity. Thus M is a unital commutative ring. O

Forany A € C and z € M we set A x [z] = [Az]. Since, Tr (Az) = A"T%(z), the operation
“x” is well defined on C x M%. But (M%, 4, x) is not a linear space. Indeed, if z € A{’ and
z # 0, then [z] + [z] = [z @ z] # 2 * [z] because Ty ([z  z]) = 2T (z) but T¥ (2z) = ZmT“’( ).

2 OPERATORS AND SEMINORMS ON M1/N

For a given z = (y|x) € A{’, we denote by supp z the support of z, that is, the following pair
of sets of indexes

suppz = ({i e N,j € Zy: y £ 0}, {ke N,n e Z,: 2" £0}).
Let us define the following maps on A%/ N,

5;(’1/”1) (z) = (z — x}({”)el((”)) . (xISM)eI((M) o .- o (xlgm)elgm))

Nm—n

and

") = - ye ™) o (1 e, " 00 (e ™)

NI’H*H

4

wherem > nand z = (y|x) € A%/N forsome N € N, N > 1. Letc: N — IN be a permutation.
We denote by S;r @ and S, @ linear operators on Al/ N such that

Si(i)(e,((j)) Ul() K ifi =jand SH )( jE(])) = e,f(j) otherwise,
and ‘ . . ‘ _ _

S;(l)(ek_(z)) = e;((kl)) ifi = jand S;(l)(eki(])) = eki(]) otherwise.

1/N
Al

Lemma 1. Foreveryz = (y|x) € , permutation 0 onIN and m > n we have

2] = [s5(2)] =[5, V(2)] = 17 "™ (2)] = [s; "™ (2)).

Proof. The proof follows from the definitions and direct calculations. O
Proposition 4. Let z = (y|x) € A%/N for some N € IN, N > 1 and z has a finite support.
If [ ] [O] then there is a number ] € IN and a composition S of a finite set of mappings
{S (n.m) } defined above such that
0...0 | 0...0
..0...0 | 0...0... &
S(z) = (V') = U R 3 x e+ Z ve 6
/A T I S =
...0...0 | 0...0
|

and x;((j ) = y;((j ) for every k € IN.
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Proof. Let j be a minimal number such that x]((j ) = 0and y,((j ) for every k € IN. Using a finite

+(n,m)

number of mappings S,
So, for every m € IN

and Lemma 1 we can find 2’ = (v/|x’), 2/ ~ z which satisfies (5).

i @;{(;‘))’“ _ i (x;jf))m.

1
From [1] it follows that vectors <y;<(j )) . and < i
(/)

)k coincide up to a permutation o of coordi-

‘G _ 0

nates (x1,..., %, ...). So, applying S5/’ to z’ we have x,”’ =,/ for every k € IN. O

Corollary 2. Letz = ( |x) € Al/N forsome N € IN, N > 1, and z has a finite support. Then
there is an element z = (y E4 ) € AN such thatz ~ 7' and 7’ has the following property:
1(7)
i

1fyl #0, thenxk 7éy forallk e IN,n € Z.
Proof. To get a proof it is enough to apply Proposition4tozez'~ = (yex'|xey’). O

Due to Theorem 1, we can introduce an alternative multiplication by real constants in M,
at least for the case w = 1/N, N € N, N > 1.

Theorem 2. Let N € N, N > 1. Then M'/N js a real linear commutative unital algebra with
respect to the operations of addition and multiplication defined in Proposition 3 and the fol-
lowing multiplication by constants:

alz] :== [zgn]lz] = [z 02|, a €ER,
where z(,) is as in Theorem 1.

Proof. Note first that from Theorem 1 and Proposition 2 it follows that for every m € IN,
Ti (z{ay ©2) = aTy/(z). So I = z(yy is the unity in MYN and Z(ay+ar}] = [Z{a}] + [Z{an}],
a1, a2 € R. Thus,

a(z] +[r]) = alz] +alr]  and (a1 +a2)[z] = a1[z] + a2[z],
where a,a;,a, € R and [z], [r] € MVN, O

Let us denote by () the class of functions v: C — C such that the mappings ®,: Ay — AY’
defined by

|
) =@y = | |
|

are well defined and z ~ z’ implies ®,(z) = ®,(z’). Such class is nonempty, for example,

y(t) =t" e Q,meN.

Theorem 3. Lety € Q. Then ®., generates a linear operator ®.,,: MYN — M'/N defined by
Do ([2]) = Py (2).
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Proof. From the definition of () it follows that &DV is well defined. Also, it is clear
337([2] +[r]) = Py(zor) = Dy (z) 0Dy (1) = &)v([z]) + &)7([;/]),

Z,1 € A%/N. Let now z,y = (¥{a}|¥{4)) be as in Theorem 1, that is,

o ay o dp
=L 14", yw=0ifa>0 and yu=) )", xm=0ifa<o,
n=0i=1 n=0i=1
where
> q
— 1
|a| —];) N aj € N

Ifa > 0, then [z(,)][z] = afz], a € R,z = (y|x) € AN and

D@ (21 02) = Py ((z0...02)0e; '0...0(z0.. . 0z)0e 0. )

= (Dy(z)0...0D,(2)) 0cV ..o (Dy(z)e...00,(2) ) 0el 0. = 20y 0 D, (2).

[\ /

ap an

If a < 0, we have to replace eg") by e;("), n € Zi.So ®,(alz]) = ad,([z]). Therefore, ®, isa
linear operator. O

Let us denote 7, ([z]) = T N(z), [z2] € MYN, m € N. Clearly, 7, are complex valued
real-linear and multiplicative functions, that is, 7, are homomorphisms from M/N o C. By
the definition of M!/N we have that functionals T,: m € IN separate points of M/N. Let
us denote by z = ®,(z), where y(f) = f is the complex conjugate of t. It is easy to check

that 7, ([z]) = ©u([z]) and so (t) = f belongs to Q. So [z] — T,([2]) is a complex valued
functional for every m € IN. Thus T, + Ty, and —i(T, — Tp) are real valued linear functionals
on M/N,

Corollary 3. Ify € Q is multiplicative, then ®., is an algebra homomorphism.

Proof. Let [z],[r] € MYN,

(ool e ] [o o luNe o]

2= 5 5 5 5

n=0 k:l n=0 k:].
and

r= X:Okzlrgfk)e,((") +) Zr(_rllge,:(”).
n=0k=

n=0k=1
Since @, (z(f]ze,((n)) =75 (zgfk))el((n), we have
n) +(n i) £(j n) (j)\ x(n +
0 (L o) = e o0

k,i € N,n,j € Z.From the linearity and multiplicativity of 7 it follows
T (o ([2])) T (B3 ([1])) = Te (P ([2]) D ([1])) = Ton (@ ([2][1]))

Since it is true for every m, we have

&, ([2)) @y ([r]) = &4 ([2][r])
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Proposition 5. Let v € Q) and y(0) = 0. Then the following formula defines a seminorm on

MU/N;
i) = ik 3 5 & (1) + )

Proof. Since the infimum is taken over all representations (y|x) € [z], the norm is well defined.
It is easy to check that p, is nonnegative and satisfies the triangle inequality and is homoge-
neous. U

Definition 3. Let us define the following seminorms on M'/N:

pu([2]) = o ([2]) for yn(t) = £",

It is clear that |7 ([z])| < pm([2]), 2] € MY/N and so, if [z] # 0, then there is m € N such
that py ([z]) > 0.

Let us denote (MY, (p,,)) the linear space M!/N endowed with the projective topology,
generated by seminorms (p,,). So we have the following proposition.

Proposition 6. The space (MY, (p,,)) is a locally convex metrisable topological vector space
and each functional T, is continuous on (./\/ll/ N, (pm))

Let us denote by D the following subset of M1/N:
D= {u e MYN. thereis z € u such that ‘zlgn)‘ <l,ne”Z,ke ]N}.

Theorem 4. D is a subalgebra in M'/N and the restriction of the topology of (MN, (p,)) to
D is generated by a norm on D.

Proof. From the definition of addition and multiplication in M!/N it follows that u +v € D
and uv € D forallu,v € D. Also, forevery a € R, [z(,,] € D and so au = [z(,,]u € D. Hence,
D is a subalgebra in M!/N_ Note that for every u € D and m € N, py(u) < p1(u). Also, py is
anorm on D. Indeed, if u # 0, then there is m € N such that 7, (1) # 0. So

07 |Tu(u)| < pm(u) < pr(u).

So (D, p1) is a normed space and all p,, are continuous with respect to p;. So the restriction of
topology of (M'N (p,)) to D coincides with the norm topology of (D, p1). O
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Hexait X — 3BakeHa mpsiMa CyMa HeCKiHYEHHOI KiABKOCTi KOIIJ KOMIIA€KCHOTO IIPOCTOPY
{1 @ ¢1. Myt posrasiaaeMo aATebpy, sika CKAAAAETHCS 3 TIOAIHOMIB Ha X, KOTpi € CyIepCMeTpUIHN-
MU Ha KOXHOMY AOAaHKY ¢ @ ¢1. yHKIIOHaAM 3HaUeHb B TOUKaX Ha IIilf aATeOpi 3aAal0Th BiAHO-
IIIeHHST eKBiBaAeHTHOCTi ‘~’ Ha X. Y poboTi AocAiaXkeHO dpakTop-MHOXMHY X/ ~ i MoKas3aHoO, 1o
3a AeSIKMX YMOB Ha ILIilf MHOXMHI € CTPYKTypa AiliCHOI TOIIOAOTiUHOI aATeOpIL.

Kntouosi cosa i ppasu: cMeTpuUHi i cymepcuMeTpuyHi TOAIHOMM Ha 6aHaXOBMX IMPOCTOPaXx, aA-
rebpy aHaAITHUHMX (PYHKIIIN Ha 6aHAXOBMX MPOCTOpaX, CIIEKTPY aArebp aHaAITHIHMX (PyHKIII.
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A NEW FACTOR THEOREM FOR GENERALIZED ABSOLUTE RIESZ SUMMABILITY

The aim of this paper is to consider an absolute summability method and generalize a theorem
concerning | N, p, |, summability of infinite series to 9— | N, py; J |, summability of infinite series by
using almost increasing sequence. Furthermore, it is explained that a well known result dealing with
IN, pn|, summability is obtained when this generalization is restricted under special conditions.
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inequality, Minkowski inequality.
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INTRODUCTION

A positive sequence (z,) is said to be almost increasing if there exists a positive increasing
sequence (d,) and two positive constants L and M such that Ld, < z, < Md, (see [1]).

Let )" a, be a given infinite series with partial sums (s,,). Let (p,) be a sequence of positive
numbers such that

n
Py=)Y po—o0 as n—oo, (P_j=p_;j=0,i>1).
v=0

The sequence-to-sequence transformation

defines the sequence (w;,) of the (N, p,) means of the sequence (s;,), generated by the sequence
of coefficients (py) (see [8]). The series ) a, is said to be summable | N, p,, |, k > 1, if (see [2])

00 P k-1
S () wm e
n=1 \Pn

Let (¢n) be any sequence of positive real numbers. The series }_a, is said to be summable
¢ —| N,pu;6 |, k> 1and 6 > 0, if (see [16])

[ee]
) e w, —w, g [F< 0.
n=1

If we take ¢, = %, then ¢ — | N, ps; 0 |, summability is the same as | N, p,; |, summability
— by

(see [4]). Also, if we take ¢, o

and 6 = 0, then we get |N, p, | summability.

YAK 517.521.7
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1 THE KNOWN RESULT

A well known theorem dealing with | N, p,, |, summability factors of infinite series is given
below.

Theorem 1 ([3]). Let (X,) be a positive non-decreasing sequence and suppose that there exists
sequences (A,) and (By) such that

| Ay |< Bu, D)
Bn —0 as n— oo, (2)
Y n|ABy | Xu < oo, (3)
n=1
If
Uy
Zﬁ|sn|k O(Xy) as m— oo (5)
and (py) is a sequence such that
P, = O(npy), (6)
PyApn = O(pupns1), 7)

is summable | N, p, |, k > 1.

then the series Y°°_; a, 2 ”;‘”

2 THE MAIN RESULT

Some works dealing with generalized absolute summability methods have been done (see
[5-7,9,10,13-19]). The aim of this paper is to generalize Theorem 1 to ¢ — |N, py; |, summa-
bility using almost increasing sequence in place of positive non-decreasing sequence.

Theorem 2. Let (¢,) be a sequence of positive real numbers such that

PnpPn = O(Pl’l)r (8)

Z (p‘Sk 1 O(q)ikl) as m — oo. 9)
P,
n=v+1

Let (X,,) be an almost increasing sequence. If conditions (1)-(4), (6)—(7) of the Theorem 1 and

m k
) q)ik% =0(Xy) as m— oo (10)

are satisfied, then the series ), a, P”’f‘" is summable ¢ — |N, py; 8|x, k > 1and 0 < 6k < 1.
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We need the following lemmas for the proof of Theorem 2.

Lemma 1 ([11]). Under the conditions on (X,), (Bx) and (Ay) as taken in the statement of the
theorem, we have that

nXuPn =0(1) as n— oo, (11)
i BnXn < 0. (12)
n=1

n

Lemma 2 ([12]). If the conditions (6) and (7) of Theorem 1 are satistied, then A ( Ln ) = O(l).

Remark 1 ([3]). It should be noted that, from the hypotheses of Theorem 1, (A,) is bounded
and AA, = O(1/n).

3  PROOF OF THEOREM 2
Pl
nPn
A . Pn ! ayPyAy

Jn = PP, 1 = v—1 VP

Proof. Let (J,) indicate (N, p,) means of the series } o ; a, . Then, for n > 1, we obtain

Applying Abel’s formula, we get

- SnAn pn Tl—]. PZ]+1PUA)\U Pz; 1
A = + Sy + PyAys,A P,Ays
I n Pnpn_lv;l(v+1)pv+1 PPn Z oAosol( pv) PPn 1; D

= ]n,l + ]n,Z + ]n,3 + ]n,4-

For the proof of Theorem 2, it is sufficient to show that
Z P F< oo, for r=1,2,3,4.
By using Abel’s formula, we have

1 Spl*
Z ¢5k+k 1 ’ ]n — Z(P§k+k 1 Mn‘k 1‘)\11"511‘]{ Z (P ‘)\n“ Z’
g 5k‘sv‘k 5k‘5n‘
DY a1 o2l o 3 et
n=1 v=1 n=1

m—1
1) Y. BuXn +O(1)|Am|Xm = O(1) as m — oo,
n=1

by virtue of (1), (4), (6), (8), (10) and (12).
Now, using Holder’s inequality and (1), (6), (8), we obtain

k
n—1
Z q)ék+k 1|]n _ Z q)ok—i—k 1, Pn 1 (Z P, |AA| ]svl>

”* v=1

’T.i

m+1 n—1 k
Z o 1k— Y Po|AAo| [so]

n—1 \v=1

1 k—1
Zq)ok 11 - (; P,y !sv]) (Pnll ;Pvﬁv> .
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Again, using Abel’s formula and (3), (9)-(12), we have

Z qDok—i-k 1 | ]n,2 |k Z q)ék 1 vaﬁv‘sv‘ — Zpﬁv|5v|k Z q)ék 1

n=v+1
m—1
1 g qoik%vﬁv - o)'E afop) 1ol
Donpn 3 o5 00) 'S A(0pa) X, + O(1) B X,
v=1
=0(1 )mi:lv|AﬁU|X +0(1 Z BoXo +O(1)mPuXm = O(1) as m — oo.
v=1

Since A < o ) =0(}), asin J, 1, we obtain

Z q)ék+k 1 Z q)ok—i—k 1 Pn (ZP 50| V\ ’_>
Sk— 1 —!' P, ‘
qu prv!sv!\?»!

v=1
m+1 g1 1 n—1 P, 1 n—1 k-1
Sol [Ay

DY ol ( Do pelsel ol ) (5 Do
m+1 n—1 P P

ok—1 v \k—-1 To
ZG’) nlz,X:(UP> UPo v|v| |Av|

= ()Z Po |80]" | A Z Pn

o=1 YPv n=v+1 ” 1

—on)y. 2

v=1

m
—oq) 3 gkl
v=1 v

by means of (1), (4), (6), (8)—(10) and (12).
Finally, as in J, 3, we have

Sk+k—1 k k1 (_ Pk (=) 1"
ZG’) | Jua I° = ZG’) Ppn—l) (EPU|50||)\0|5>

= O(1) as m — oo,

in view of (1), (4), (6), (8)—(10) and (12).
Thus, the proof of Theorem 2 is completed. O

k-1 5k 1
Upvpv|sv| | Ao |Ao] @5

=0(1) as m — oo,

4 CONCLUSION

If we take (X,) as a positive non-decreasing sequence, ¢, = 5” and 6 = 0 in Theorem 2,
then we get Theorem 1. In this case, condition (10) reduces to condition (5). Also, the condi-
tions (8) and (9) are automatically satisfied.
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ON SINGLE-LAYER POTENTIALS FOR A CLASS OF PSEUDO-DIFFERENTIAL
EQUATIONS RELATED TO LINEAR TRANSFORMATIONS OF A SYMMETRIC
«x-STABLE STOCHASTIC PROCESS

In this article an arbitrary invertible linear transformations of a symmetric a-stable stochastic
process in d-dimensional Euclidean space R? are investigated. The result of such transformation
is a Markov process in RY whose generator is the pseudo-differential operator defined by its sym-
bol (—(QE,&)*/?) zerd With some symmetric positive definite d x d-matrix Q and fixed exponent
a € (1,2). The transition probability density of this process is the fundamental solution of some
parabolic pseudo-differential equation. The notion of a single-layer potential for that equation is
introduced and its properties are investigated. In particular, an operator is constructed whose role
in our consideration is analogous to that the gradient in the classical theory. An analogy to the
classical theorem on the jump of the co-normal derivative of the single-layer potential is proved.
This result can be applied for solving some boundary-value problems for the parabolic pseudo-
differential equations under consideration. For & = 2, the process under consideration is a linear
transformation of Brownian motion, and all the investigated properties of the single-layer potential
are well known.

Key words and phrases: pseudo-differential equation, single-layer potential, a-stable stochastic
process, jump theorem.

Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine
E-mail: mamalygakhrystyna@gmail.com(Mamalyha Kh.V.), myosyp@gmail.com (Osypchuk M.M.)

INTRODUCTION

Let us consider a symmetric a-stable process (xo(t));>o in the d-dimensional Euclidean
space IR? (we denote by (-, -) the inner product in this space), that is, a Markov process with its
transition probability density given by the equality

go(t,x,y) = (23T>d /Rd dC-tilgz, >0, xeRY, yeRY,

where the exponent « € (1,2) is fixed. The class of all symmetric a-stable processes can be ob-
tained from the process (xo(t))s>0 by multiplying it on some positive constants. More complex
processes can be obtained in the following way.
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Let P be some invertible d x d-matrix and x(t) = Pxy(t), t > 0. This process is obviously
Markov process and its transition probability density is given by the equality

gt x,y) = ﬁ /IRd ei(g'x’y)’t(Qg'g)a/de, t>0, xeRY yE RY, (1)

where Q = PPT. It is clear that the process (x(t));>0 is stochastically equivalent to the Markov
process (Lxo(t))t>0, where L is some lower triangular matrix which satisfies the equality Q =
LLT.

The function g is the fundamental solution of the pseudo-differential equation

ou(t, x)

P = Au(t,-)(x), t>0, xR, 2)

where operator A is a pseudo-differential operator whose symbol is given by the function
(—(Q&,&)*/?) zerd- The operator A is the generator of Markov process (x(t)):>0-

For a given surface S, which separates IR into two open sets D_ and D (R = D_USU
D) and a given continuous function (¢(, x))¢>0,xcs, we consider a function

t
v(t,x) = /0 dT/Sg(t —7,%Y)P(t,y)doy, t>0,x¢€ RY,

where the inner integral is a surface one. The function v is called a single-layer potential on
the surface S with the density ¢ for equation (2).

In this article, we determine the existence conditions of the single-layer potential and inves-
tigate its properties. The case of Q = ¢?/*I (c > 0 and I is a unit d x d-matrix) was considered
in article [3]. We will use several methods from [3]. In the case of & = 2, the theory of single-
layer potentials is well-known (see, for example, [2]).

1 SOME AUXILIARY RESULTS

1.1 The function g

The function ¢ defined above by formula (1) is continuous on the domain ¢ > 0, x € R,
y € R%, and is uniformly continuous on each set of the type (¢, x,y) € [T, +00) x RY x R? with
T > 0. The following estimations of ¢ and its derivatives are known (see [1, Ch.4]):

t
k d d.
D g(t,-,y)(x)]SNk(tl/a [y — 2]k t>0, xeR yeRY (3)

1
(7 Ty = )7

ID*g(t,-,y)(x)] < N, t>0, xeRY, y e R

Here D* means a differential operator of the order k (k = 0,1,2,...), D* means a pseudo-
differential operator with a homogeneous symbol (p({))zcgre of the order > which has all

derivatives of the orders I < M with some M > 2d + s+ a + 1 and ]pg) (&)] < Cml¢) ! with
some constant Cyy > 0 for all & # 0, and Ny and N, are some positive constants.
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1.2 The operator A

An action of the operator A defined in Introduction on a smooth (with at least Lipschitz
continuous gradient) and bounded together with its derivatives function ¢(x), g« is given by
the expression

Ap(x) = W /Rd(qv(x +y) = 9(x) = (Vo(x),»)(Q 'y y) "9 2y, 4

where
aT((3—a)/2)T((d +a)/2)
o = m(d+1)/21(2 — i)
The value of the constant g, can be obtained by applying the operator A to the function ¢¢(x) =
e'€*) x € R? with some fixed ¢ € R%.

1.3 An operator B

Let us introduce the operator B using its symbol (i(Q¢, &)*/271¢) ferd- Some simple cal-
culations lead us to the relation A = (V,QB). The action of the operator B on a bounded
Lipschitz continuous function (¢(x)) e is defined by the following formula

_ Ja / ~1 —(d—a)/2 -1
B — T /1 . ~\1/0 - 4 d 4
¢(x) (et Q)12 Rd(qo(xw) ¢(x))(Q "y, y) Q 'ydy
where g, has the above meaning.
Let v be some fixed ort in RY. Consider the operator B, = 2(Qv, B). We denote the re-
sult of its action on the function g with respect to the second argument by g, (¢, x,y). Using
representation (1) of the function g and the integration by parts, it is easy to obtain the relation

vt x,y) = %Mg(t, x,y), t>0x¢€ ]Rd, AS RY. (5)

1.4 A surface of the class H! 7

Let some surface S in R? (a manifold of dimension d — 1) divide the set R into two open
sets: outer D and inner D_ (i.e, Ry = D_USUD,). Suppose that this surface has a tangent
hyperplane at each point x € S. We will denote v(x) the unit vector of the outer normal to
the surface S at the point x € S. Choose the point x € S and consider a local orthogonal
coordinate system with the origin at this point, such that v(x) is the ort of its last axis. Assume
the surface S is such that for some 6 > 0 each part Ss(x) = SN Bs(x), x € S, of the surface
S (here Bs(x) is a ball with the radius § > 0 and the center at the point x) can be described
in the mentioned above local coordinate system by the equation y; = Fy(y1, ..., ¥4_1) with a
single-valued function Fy.

The bounded closed surface S belongs to the class H'*7 if the function F; has all partial
derivatives g—;’j, k=1,2,..,d—1, satisfy Holder’s condition with a power v € (0;1) and the
constant does not dependent on x.

Among the properties of the surface S which belongs to the class H™7 we will use the
following one (see [2, Ch.5]): there are some positive numbers Jy and ry, and a finite set of
points x1, Xx2,..., X;; on the surface S, such that S\ S, /2(x) C Uker,Sy,/2(xx) for each x € S, and
minge;, infyesro/z(xk) ly — x| > &y, where I, is some subset of the indices {1,2, ..., m}.
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2 A SINGLE-LAYER POTENTIAL

2.1 Existence conditions

Let S be a bounded closed surface of the class H'*7 with some v € (0;1). Consider some
continuous function ((t, x));>0,xcs and define the function (v(t, x));>q e by the following
equality

t
v(t,x) = /0 dr/sg(t —7,%y)¢(t,y)doy, t>0, x¢ R, y € RY, (6)

where an inner integral is a surface one. This function is called a single-layer potential on the
surface S with the density ¢. The following statement contains the conditions under which a
single-layer potential is well defined.

Lemma 1. Let S be a bounded closed surface of the class H'™7 with some v € (0;1) and
((t, x))s>0,xcs be a continuous function, which satisfies the inequality | (t,x)| < Crt=F in
each set of (t;x) € (0; T] x S with some constants p < 1 and Cy > 0 (the last one can depend
on T > 0). Then, the single-layer potential (6) is finite for allt > 0 and x € R?.

Proof. Estimation (3) with k = 0 and the fact that (see [3])

do,
Y —1-1/a d
/s(tl/aﬂy_x’)mgw t>0,xcR

with some constant K > 0 imply to the inequality

t at 5
[o(t, )] < KNoCr | 7~ KNoCTB(1 =B, 1 =1/t P

forallt € (0;T], x € R? and each T > 0. O

2.2 Properties of the single-layer potential

Classically (when a = 2), a single-layer potential satisfies the appropriate parabolic differ-
ential equation in the domain (0; +c0) x (R?\ S) (see [2, Ch.5] ). Let us prove an analogous
statement in our case (1 < a < 2).

Theorem 1. Let S be a bounded closed surface of the class H'*" with some v € (0;1), and
((t, x))s>0,xes be a continuous function satisfying the inequality | (t, x)| < Crt~F in each set
of (t;x) € (0; T] x S with some constants p < 1 and Cy > 0 (the last one can depend on T > 0).
Then the single-layer potential (3) satisfies the equation

9vu(t, x)

ST Av(t,-)(x), t>0,xcR?

in the domain (t; x) € (0;00) x (R%\ S).

Proof. It has already been mentioned that the function g is the fundamental solution of equa-
tion (2), and therefore, for all t > 0, x € R?, y € R the equality w = Ag(t,-,y)(x) holds
true. So, we only have to prove that the operator A with respect to the variable x can be moved
under the integral symbol in the right-hand part of (6) and the equality
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lim /Sg(e,x,y)tp(t,y)day =0,

e—0+
holds true for t > 0, x € R?\ S. The last is due to estimation (3) with k = 0 and the inequality
5]
(p(x,S))+e
where |S]| is the area of the surface S, and p(x, S) is the distance from the point x to the surface
S.

Next, we will take presentation (4) of the operator A and prove the possibility to change
the order of integrating in the integral

g gt—t,x+zy) —gt—7,xy) - (Vg(t—7,,y)(x),2)
/0 dT/SIP(Try)de /]Rd (Q—1z,z)(@d+a)/2 dz.

Take into account that the following inequalities 1;|z|?> < (Q7'z,z) < M|z|? hold true with
some constant M > 0 for all x € R¥. Divide the last integral into the sum of two integrals
and I, taken from the same function: the first of them is by (0;t) € S x B, and another is by
(0;t) € S x (R*\ B), where B is a ball of some small enough radius ¢ > 0 centered at the
origin.

Since for0 < T < t, x € RY, y € S, z € Bg the following equality

CTt_ﬁ,

[, 8tex )t y)doy | < Noe

1 & gt —1,x 4 62,y)

gt—tx+zy) -8t -t xy) - (Vg(t—7,y)(x),2) = 3 i]Z_ll 9x0x, 22

is true, where 6 = 0(7;y) € (0;1), the absolute value of the integrand in I; is estimated by the
expression

1 t—1
C 7’B—dZN ZM(d+D()/2 7d704,
tT 2 2((t_T)1/a+|y_x_gz|)d+a+zyz‘ 2|
where estimation (3) for k = 2 is used. Take a sufficiently small ¢ > 0 such that the inequality
inf,cs2ep.0e(0,1) [¥ — % — 02| = po > 0 holds true. Therefore, I is absolutely convergent.
The absolute value of the integrand in I, is estimated by the expression (estimation (3) is
also taken into account)

_ i No(t—1) No(t — 1)
C /3M(d+zx)/2 d—ua < 0
i S (e T M (Gt CeEa v i

Ni(t—1)
+ ((t— T)l/a1+ Y — x|)dratl M)
_ o No(f — No(f — Ny (f —
< Crr PMUH)/2|5)~d <((t_T)1/a(j£|y _T)x_z|)d+rx (p((;c(,S))Q“ (p(xi(s))dfz+1‘zf>~

Observe that the second and the third terms in this expression are integrable. Consider
the integral of the first term and change the variable z into u using the equality y —x —z =
(t — 7)Y/ *u. We have got

NoC;M(d+0)/2 / Lttt

d /d / —x—(t— 1/a,,|—d—u 1 7d*0¢d ,
(T e Loy = = 0 )

where D(7,y) = {u € R?: |y — x — (t — 7)1/%u| > &}. Surely, this integral converges, and for
completing the proof of the theorem, we have to use the Fubini’s theorem. O
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2.3 The jump theorem

In a classical theory (with &« = 2) of a single-layer potential the jump theorem takes an
essential place. It is the theorem on the jump of the co-normal derivative of a single-layer
potential. This section is devoted to an analogue of that theorem in our situation (1 < a < 2).

Lemma 2. Let the surface S and the function ((t,x))t>0xes satisfy the conditions of Theo-
rem 1. Then for eacht > 0 and x € S the following integral

t
| 4t [ Bustt =) (0w (T ey 7)
is finite.

Proof. By equality (5), we can rewrite integral (7) in the following form

2 [t d
E/o T / —x,v(x))g(t — 7, x,y)¢(T,y)doy.

t—71
Taking into account estimation (3) and the properties of the surface S (see Section 1.1), we can
obtain for T < t, x € §, the inequality

/S(y —x,v(0)g(t = T, x,y) (T, y)doy | <Cr PK((t =) 2+((t = 1)+ 60) "t - 1))

< constyt P((t— 1) 2 4+ (t — 1)),
where K > 0 is some constant and const; is some positive constant, which probably depends
on t. Hence the statement of the lemma is proved. O
Remark 1. Integral (7) is called a direct value of the action result of the operator B, (,), x € S
on single-layer potential (6) at the point x € S. We will denote it by B%Z;v(t, ) (x).
The next statement is the jump theorem mentioned above.
Theorem 2. Let S be a bounded closed surface of the class H'*7 with some v € (0;1) in
RY, and ((t, x));>0,xcs be a continuous function satisfying the inequality |ip(t, x)| < Crt~F,

0 <t <T,x € S with some constants B < 1 and Ct > 0 (the last one can depend on T) for
eachT > 0. Then for eacht > 0, x € S the following equality

lim B,(yo(t,)(y) = FP(t,x) + B o(t, ) (x),

holds true, where y — x4 means that y approaches x staying in some closed bounded cone
K C RY with the vertex at the point x and K C D4 U {x}.

Proof. Similar to the classic case it is sufficient to consider only the case of y = x + dv(x) and
6 — 0+. Therefore, taking into account formula (5) we will obtain

B2t )0) = 2 [ [ 2= xv)ge — vy 2)p(n 2o

t—T

2 [todrt
_5§/0 t—r/g —7,y,2)¥(t, z)doy,

_ B s . o _ _ _
=B, »yo(t )(x)+oc/() t—r/z x,v(x))(g(t —T,y,2z) — gt — 7, x,2))P(t,z)do,

t
_(%/ dv /g —7,9,2)¥(t,z)do.

ot—T1T
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Denote the integrals on the right-hand side of this equality by I and I; accordingly.
First, let us prove that lim;_,o I; = 0. In order to get this proof, rewrite I; in the form of the
sum of the following expressions

1o = E/O*“’ at /S(z—x,v(x))(g(t — T, x+0v(x),2) = g(t = 7,%,2))p(1, 2)doz,

o t—t

& —‘/t;frf (z = x,v(x))(g(t — 7, x +0v(x),2) — g(t — T, %,2) (7, 2)do,

u 570/2 (X)

(1)—2/t dr/ z—Xx,V(x t—1,x
= - X, —T,x+0v(x),z) —g(t—1,%x,z T,z)do,
R A AL (x),2) = glt = ,%,2)9(x, 2)do
where 0 < p < tis some constant (t is fixed), which should be chosen. We estimate each of
these expressions. Taking into account the properties of the surface S, we can obtain |(z —
x,v(x))| < |z—x|"*7forz € Sy ,(x). As aresult, we have

— x|+
<1><C%/td_f |z — x| p
S G s Sy GO R x = buGa e
2 todt |z — x|+
C—/ o do.
- t“ t—p P Sro/z(x) ((t_T)l/a+|Z_x|)d+lx 7z

Let Z be the orthogonal projection of the pointz € Sy , (x) on the tangent hyperplane to S at the
point x. Hence, taking into account the inequalities |z — x| > |Z — x|, |z — x — dv(x)| > |2 — x|,
|z — x| > const|Z — x|, where const is some positive constant that does not depend on the point
x (see [2, Ch.5]), we will obtain to the inequalities

e[ X I T
X Jt

- T St (= DV 2T = (= Pt

where C;, C; are positive constants that probably depend on t, and A, A (x) C R?-1 is some
bounded set. It means that A, ,(x) is the orthogonal projection of Sy, ,(x) on the tangent
hyperplane to S at the point x € S in the coordinate system of this hyperplane.

Next, we will estimate ]fgl):

(1) <C/t dt |z — | d
BT C 8 Jsvs, o0 =DV T e = x —du(m) e

e /t d—T/ |2 = x| do.
t t—p P S\Sro/z(x) ((t_T)l/a+|Z_x|)d+a -

Taking into account that for z € S\ S ,(x) the inequalities |z — x| > dy, [z — x — dv(x)| >
|z — x| — || > g — |4] are true (choose § to be the one that |§| < &), we will have

A tdr
<1><c5—5*d*“/ a
O < o) [

Thus, the sum ]2(1) + ]351) can be made as small as we want by choosing p > 0.
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Now, consider | 1(1). Since the function g(t — 7, x, z) is uniformly continuous in the sets of the
type (7, x,z) € [0;t — p] x K7 x Ky, where Kj and K; are some compacta in R?, and taking into
account the integrability of the function ¢ on [0;t — p] x S and the boundary of the function
(z —x,v(x)) as the function of z on S, we will obtain that lim;_, ]1(1)
6 — 0.

Now, consider the behavior of I; as 6 — 0. Put I in the form of the sum of the following

expressions

= 0. Therefore, I; — 0 as

2 b od
1= oyt [ 2

t—1,x+6v(x),z)doy,
8 (x),2)

2 d
]2(2) _ E(S/t T /E( )g(t —1,x+6v(x),z)(¢(T,z) — ¥(t,x))do,

pt—T

2 _ 2 t=p drt B
= 5/0 /()g(t T, x + 6v(x), 2)¢(t, 2)do,

I t—7

t
]f) i A tLiTT /s\sg gt —1,x+ov(x),z)P(T,z)do,

where p > 0, ¢ > 0 are rather small constants.

Let us estimate each of these terms. We start with the last one. Taking into account the
properties of the surface S, there are numbers Iy (natural) and py > 0, such that we can find
points x; € S\ Se(x), k=1,2...,Ipthat S\ S¢(x) C uﬁles,o/z(xk) and
infiz <5 infzesro/2 (x) 12 = x = ¢v(x)| = po. Then estimation (3) implies

t
12 < ECtNO\S\lo\cS\ / TPt =)V po) 4 %dT — 0, & — 0.
0

Similarly, using inequality (3) we will get

(2) <%5CN/th_T 4o
1= G010 Jo 55 s (G =07 + e — x—svim
2 t—p dt
< Z _ .
= a"S’CtNO‘S‘/O tﬁ(t—T)Hd/"‘ =0, 020

Here |S| means the area of the surface S like mentioned above.
Now, prove the existence of a limit of | 1(2) as 6 — 0. By the way, it means that by choosing
p > 0and e > 0 the term ]2(2) can be made as small as you like. It is sufficiently to note that the

function ¢ is uniformly continuous on the set [t — p; t] X S¢(x). Denote the tangent hyperplane
to the surface S at the point x € S by I, and consider

t
R=2s[ AT / ot — 7, x + 0u(x), 2)do.

o Ji—pt—1

To prove that lim(gﬁo(]l(z) —(t,x)R) = 0, consider

5/0{3617T </g(x) —/x>g(r,x+(5v(x),z)dtfz
= 5/090171' </g(x) —/X> g(t,x +dv(x),z)do,

Pdrt
_5/0 ?/Hx\ng(x)g(r,x+5v(x),z)daz
— ]/+]//’
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where I'l;(x) is the orthogonal projection S¢(x) on IT,. Taking into account the properties of
the surface S, it is easy to see that there is a constant 6 > 0 such that for all z € IT, \ I'l;(x) the
inequality |z| > 0 is true. Therefore the following estimation

d 24y _c ) rd—Z ﬂ
52+72) (d+a)/2 P 8/6| (1+r2)(ﬂl+rx)/2|(5|zx

< clole [

holds true with some constant C > 0. As a result, taking L'Hopital’s rule, we will obtain that
J"— 0asé — 0.

In order to estimate ]’ let us transfer it to the local coordinate system with its origin at the
point x and the vector v(x) as the ort of its last axis. We have

Se(x) = {u e R?: u? = F(u=%),u~% € Dg(x) c R 1},

Ie(x) = {u e R : u? = 0,u~%" € D¢(x) c R},

where D;(x) is some bounded closed set depended only on properties of the surface S, u<%>
is the vector (uj,uy, ..., uz_1), and Fy is some single-valued function with Holder continuous
gradient (see Section 1.1) with power v € (0;1). Talking into account inequality (3), it is not
difficult to state that

dt Tlu|"(1 4+ |u|")du
L e e
(TV& + k/|u|? + 52)d+a

. p d 2+7d1,
K|é / T/ ,
- ‘ ‘ 0 0 (Tl/lx + Je/ 12 + 52)d+0¢

where K > 0,K > 0,k > 0, g9 > 0 are some constants. Changing the order of integration in the

last integral and taking into account the equality fooo (Tl/;i% = «B(d,a)a"" that is correct

for all 2 > 0, we will obtain the estimation

€ d—2+4y oo pd—2+4+7
|]’|§K|5|/0¥§K/ ﬁwé
0 (Vr2452)d 0 (Vr241)d

with some constant K > 0. Therefore ]’ — 0 as § — 0 and lim(HoUl(z) —(t,x)R) = 0. Thus,

we have to prove the existence of lims_,o1 R and to find it. In order to prove this we will take
the equality proved in [3] (¥ is a fixed ort in IR¥)

/ hg(x + AV)doy = l/ e~ cos Ardr, (8)
II 7T Jo
where A € RY, IT = {x € R? : (x,0) = 0} and hy(x) = (271) ™% [ e'®&)~<llqg, x € R

Therefore, after simple transformations related with the changing of the variables in the sur-
face integral, we will obtain the equality

I:/ g(t,x +ov(x),y)doy =t~ 1/"‘/ hi(z — 6t~ V%0)do,,
I,

where IT = {z € R?: (z,0) = 0}, ¥ is some ort in RY. Equality (8) implies
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1 [ « 1 [ «
I = t_l/”‘;/ e~ cosrot Y edr = ;/ e " cosrédr.
0 0

Thus,
t
R=2; aT
&t Ji—pt—T

/ e <=1 cos Srdr.
0

By changing the order of integration in this integral, we obtain the equality

2 [ «siné
R = signé — —/ e—cpr ST g,
7t Jo r
and, therefore, we have that lims_,o- R = +1. Hence, lims_,o+ ]1(2) = +y(tx),t>0,x€S
and the theorem has been proved. O

2.4 The single-layer potential with a hyperplane as a carrier

Let S be a hyperplane defined by the equation (x,v) = r, where v € R? is some unit
vector, and r € R is a fixed real number. Let the function (¢ (¢, x))¢>0,xes be continuous as
mentioned above, and the inequality |¢(t,x)| < Crt P be true forall 0 < t < T, x € S and
each T > 0. Here the constant Cy > 0 probably depends on T and 8 < 1. Taking into account
inequality (3), we obtain the estimation |, s8(t,x,y)doy < Kt~V t > 0, x € R? and for the
fixed x € R4 \ S we have f P g(t,x, y)day < Mt, t > 0, where K > 0 is some constant, and
M > 0 is the constant depending on x. This, is analogous to the previous, one can state that
the statements of Lemma 1 and Theorem 1 are true in this case (S is a hyperplane) as well.

Furthermore, formula (5) shows that g, (t,x,y) = 0forallt > 0, x € RY, yE RY. Therefore,

1(/‘:20(15, )(x) =0, t>0, x € Sholds true. Thus, an analogue of Theorem 2 is

the equality B
valid.

Theorem 3. Let S be a hyperplane with a unit normal vector v € R? and ((t, x));>0,xcs be a
continuous function satisfying the following inequality |i(t, x)| < CrtP,0<t<T xeS
with some constants B < 1 and Ct > 0 (the last one can depend on T) for each T > 0. Then
forallt > 0, x € S the following relations

Jlim, Buo(t, ) (y) = Fy(t,x)

hold true, where y — x+, (ory — x—) means thaty — z in the way that (y — x,v) > 0 (or
(y—x,v) <0).

Proof. The proof of this theorem repeats the proof of Theorem 2 with some simplification. [I
Acknowledgment. The authors thank to Prof. Mykola Portenko for useful discussions on the

topic of the paper and an anonymous referee for valuable comments that helped to improve
the article.
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CrarTs npucBsTIeHa AOCAIAXEHHIO HEBMPOAKEHOI'O AiHITHOTO ITlepeTBOPEHHST CMMeTPUYIHOTO K-
CTIfIKOTO BUTIAAKOBOTO TIPOIIECy B eBKAiAOBOMy mpocTopi RY. PesyAbTaT IbOTO TepeTBOpeHHs €
npouecom Mapxosa B RY, umit TBipHmit omepatop 3anaeThcst cumBorom (—(QE, &)*/?) ceRrd 3 Ae-
SIKOIO CMMETPUYHOIO AOAATHO Bu3HaueHOwo d X d-marpuueto Q Ta dixkcosarmm a € (1,2). Mliap-
HicTh JIMOBIpHOCTi IIepexoAy IIbOro Ipoliecy € (pyHAaMEeHTaAbHMM PO3B’SI3KOM AESIKOTO Hapaboai-
YHOTO TICeBAOAMepeHIIIaAbHOTO PiBHSHHS. BBOAMTHCS MOHSTTS MOTeHIiaAy IPOCTOTO IIapy Ta
AOCAIAXYIOTBCS JI0TO BAACTUBOCTI. 30KpeMa BCTaHOBAEHO OIlepaTop, SIKMI BiAirpae poAb IpaAieHTa
B KAACIUHI Teopii. AOBEAEHO aHAAOT KAACHMYHOI TeOpeMM PO CTpMOOK KOHOPMAABHOI IIOXiAHOI
IIOTeHIiaAy IIPOCTOro mapy. Lls BaacTuBicTh IOTeHITIaAY IPOCTOrO IMIaAy MOXe OYTH BUKOPMCTaHa
AASI TOOYAOBM PO3B’SI3KiB AESKMX KPaliOBMX 3aAad AAS PO3TASIHYTHMX ITapaboAiuHyX IceBaoAMde-
PpeHLiaAbHMX PiBHSHD. SIKIIO & = 2, PO3TASHYTMII IIPOLIeC € AiHIITHMM IepeTBOPeHHSM IIpollecy
OpOYHIBCBKOTO PYyXY i BCi AOCAIAXKEHI BAACTMBOCTI IOTEHIIiaAy IIPOCTOTO MIapy AO6pe BiAOMi.

Kntouosi cioea i ppasu: 1iceBAOAMpepeHIliaAbHe PiBHSIHHSI, TOTEHIIiaA IPOCTOrO IIapy, X-CTiKmi
BIITaAKOBMIA IIPOLIEC, TeOpeMa IIPO CTPUBOK.
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FILTERING OF MULTIDIMENSIONAL STATIONARY SEQUENCES WITH MISSING
OBSERVATIONS

The problem of mean-square optimal linear estimation of linear functionals which depend on
the unknown values of a multidimensional stationary stochastic sequence is considered. Estimates
are based on observations of the sequence with an additive stationary stochastic noise sequence
at points which do not belong to some finite intervals of a real line. Formulas for calculating the
mean-square errors and the spectral characteristics of the optimal linear estimates of the functionals
are proposed under the condition of spectral certainty, where spectral densities of the sequences are
exactly known. The minimax (robust) method of estimation is applied in the case where spectral
densities are not known exactly while some sets of admissible spectral densities are given. For-
mulas that determine the least favorable spectral densities and minimax spectral characteristics are
proposed for some special sets of admissible densities.

Key words and phrases: stationary sequence, minimax-robust estimate, mean square error, least
favorable spectral density, minimax spectral characteristic.
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INTRODUCTION

The problem of estimation of the unknown values of stochastic processes is of constant in-
terest in the theory and applications of stochastic processes. The formulation of the estimation
problems (interpolation, extrapolation and filtering) for stationary stochastic sequences with
known spectral densities and reducing these problems to the corresponding problems of the
theory of functions belongs to Kolmogorov [17]. Effective methods of solution of the estimation
problems for stationary stochastic sequences and processes were developed by Wiener [41] and
Yaglom [42,43]. Further results are described in the books by Rozanov [38], Hannan [12], Box et
al. [3], Brockwell and Davis [4]. The crucial assumption of most of the methods developed for
estimating the unobserved values of stochastic processes is that the spectral densities of the in-
volved stochastic processes are exactly known. In practice, however, complete information on
the spectral densities is impossible in most cases. In this situation one finds parametric or non-
parametric estimates of the unknown spectral densities and then apply one of the traditional
estimation methods provided that the selected spectral densities are true. This procedure can
result in significant increasing of the value of the error of estimate as Vastola and Poor [40] have
demonstrated with the help of some examples. To avoid this effect one can search estimates
which are optimal for all densities from a certain given class of admissible spectral densities.
These estimates are called minimax since they minimize the maximum value of the error of

YAK 519.21
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@ Masyutka O.Yu., Moklyachuk M.P,, Sidei M.I., 2019



362 MASYUTKA O.YU., MOKLYACHUK M.P., SIDEI M.I.

estimates. The paper by Grenander [11] was the first one where this approach to extrapola-
tion problem for stationary processes was proposed. Several models of spectral uncertainty
and minimax-robust methods of data processing can be found in the survey paper by Kas-
sam and Poor [16]. Franke [7,8], Franke and Poor [9] investigated the minimax extrapolation
and filtering problems for stationary sequences with the help of convex optimization methods.
This approach makes it possible to find equations that determine the least favorable spectral
densities for some classes of admissible densities.

In the papers by Moklyachuk [23, 25, 26] results of investigation of the extrapolation, in-
terpolation and filtering problems for functionals which depend on the unknown values of
stationary processes and sequences are described. The problem of estimation of functionals
which depend on the unknown values of multivariate stationary stochastic processes is the
aim of the papers by Moklyachuk and Masyutka [28,29]. In the book by Moklyachuk and
Golichenko [27] results of investigation of the interpolation, extrapolation and filtering prob-
lems for periodically correlated stochastic sequences are proposed. In their papers Luz and
Moklyachuk [18-22] deal with the problems of estimation of functionals which depend on
the unknown values of stochastic sequences with stationary increments. Prediction problem
for stationary sequences with missing observations is investigated in papers by Bondon [1,2],
Cheng, Miamee and Pourahmadi [5], Cheng and Pourahmadi [6], Kasahara, Pourahmadi and
Inoue [15], Pourahmadi, Inoue and Kasahara [35], Pelagatti [34]. In papers by Moklyachuk and
Sidei [30-33] an approach is developed to investigation of the interpolation, extrapolation and
filtering problems for stationary stochastic sequences with missing observations.

In this paper we investigate the problem of the mean-square optimal estimation of the func-
tional A = ¥, @(j)T&(—j) which depends on the unknown values of a multidimensional sta-
jezs
tionary sequence {&(j),j € Z} from the observations of the sequence {(j) + 7(j)} at points
j € Z_\S,where {7j(j),j € Z} is uncorrelated with {&(}),j € Z} multidimensional stationary
S

S
sequence, S = U{—-(M;+ N)),...,—M;}, 25 = {1,2,.. }\ST, St = U{M,,...,M; + N;},
=1 I=1

My = 0, Ng = 0. The problem is investigated in the case where both spectral densities of the
sequences {¢(j),j € Z} and {ij(j),j € Z} are known. In this case we derive formulas for
calculating the spectral characteristic and the mean-square error of the optimal estimate using
the method of projection in the Hilbert space of random variables with finite second moments
proposed by Kolmogorov (see, for example, selected works by Kolmogorov [17]). In the case of
spectral uncertainty, where the spectral densities of the sequences are not exactly known while
a set of admissible spectral densities is given, the minimax method is applied. Formulas that
determine the least favorable spectral densities and the minimax-robust spectral characteristics
of the optimal estimates of the functional are proposed for some specific classes of admissible
spectral densities.

1 HILBERT SPACE PROJECTION METHOD OF FILTERING

Consider multidimensional stationary stochastic sequences &(j) = {(j) },{:1 ,j € Z,and
() = {m(j )}1{:1 , ] € Z, with absolutely continuous spectral functions and correlation func-
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tions of the form

Rao) = BB+ m(EG) = 7 [ e,
Riy(i’l) 17(] +n) 17 ) 2 / mAG

where F(A) = {sz(M}z,z:l/ G(A) = {gu (A)}k,lzl are the spectral densities of the sequences

{&(j),j € Z} and {7](j),]j € Z} respectively. We will suppose that the spectral densities F(A)
and G(A) satisfy the minimality condition

7T

/ Tr (F(A) + G(A)) L dA < co. (1)
This condition is necessary and sufficient in order that the error-free filtering of unknown
values of the sequences is impossible (see for example, Rozanov [38]).

The stationary stochastic sequences {Z(j)} and {7(j)} admit the following spectral decompo-
sition (see, for example, Gikhman and Skorokhod [10]; Karhunen [14])

) = [ Pzg@n, G = [z @),

where Zz(d)\) and Z,(dA) are orthogonal stochastic measures defined on [—7, 7r) such that
the following relations hold true

EZe(0)(Ze(02))" = o | L FaA
EZ)(80)(Zy(82)" = 5= [ Gy

Suppose that we have observations of the sequence {&(j) +7(j)} at points j € Z_\S, where
S
S= U{-(M;+N),...,—M;}. The problem is to find the mean-square optimal linear esti-
=1

mate of the functional
AG =} () (=),
jeZs
which depends on the unknown values of the sequence {Z(j)}, Z5 = {1,2,...}\ST,

St = U{M,..., M + N},
=1

Suppose that coefficients {@(j),j = 0,1, ...} defining the functional A satisfy the condition

Z Z |Elk | < 0.
jeZS k=
This condition ensures that the functional A(f has a finite second moment, since

2
E|AZP < max E|2(0) (Z Y lax() )

jE€ZS k=
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It follows from the spectral decomposition of the sequence {&(j)} that the functional AZ
can be represented in the following form

AE = / VT Ze(dA), Ale™) = Y d(j)e
jEZS

Consider values ¢i(j),k = 1,...,T;j € Z and n(j),k = 1,...,T;j € Z as elements of
the Hilbert space H = Ly(Q), F, P) generated by random variables ¢ with zero mathematical
expectations, E¢ = 0, finite variations, E|¢|?> < oo, and the inner product (&, 7) = EZ7. Denote
by H*(Z + 1) the closed linear subspace generated by elements {(j) + #x(j) : j € Z-\S, k =
1, T} in the Hilbert space H.

Denote by Ly(F + G) the Hilbert space of vector-valued functions @(A) = {a(A) },?:1 such
that

7T -
/ G0 T (F(A) + G(A) ZA)dA < oo.
—7T
Denote by L5 (F + G) the subspace of L, (F + G) generated by functions of the form
ei")‘ék, (Sk = {5kl}lT:1/ k=1,...,T, n€ Z_\S,

where Jy; are Kronecker symbols.
The mean square optimal linear estimate AZ of the functional AZ from observations of the
sequence {Z(j) +7(j)} can be represented in the form

/ T(Ze(dA) + Z, (dA)),

where h(et) = {h(e') }k:1 € L5(F + G) is the spectral characteristic of the estimate.
The mean square error A(f; F, G) of the estimate AZ is given by the formula

A F,G) = E|AZ - Adl’ ;ﬂ/ﬁ(A(em)—h(eiA))TP(A)(A(eM)—h(em))m
+%/ﬂ<h(ei)‘))TG()\)(h(ei)*))dA.

-7t
The Hilbert space projection method proposed by Kolmogorov [17] makes it possible to
find the spectral characteristic (e**) and the mean square error A(h; F, G) of the optimal lin-
ear estimate of the functional AZ in the case where spectral densities F(A) and G(A) of the
sequences are exactly known and the minimality condition (1) is satisfied. According to this
method the optimal estimation of the functional AZ is a projection of the element AZ of the
space H on the space H’(¢ + 77). It can be found from the following conditions:

DAL € H (E+1),
2)AZ — AZLH(E +1).

It follows from the second condition that the spectral characteristic h(e*) forany j € Z_\S
satisfies the equation
T T
L L [ (e TG)e ar =5

o [ (Al =) F@)ear - .
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The last relation is equivalent to equations

o [ [ TFQ) — () (F3) + G| e ar =T, je z\s.

Hence the function [(A(e")) "F(A) — (h(e!)) T (F(A) + G(A))] is of the form
(A(e™))TF(A) = (h(e™)) "(F(A) + G(A)) = (C(e")) T,

where

C(e™ ) =Y ¢ ”)‘+Zc )elit,
j€eSs
Here ¢(j), j € U =5U{0,1,2,...} are unknown coefficients that we have to find.
From the last relation we deduce that the spectral characteristic of the optimal linear esti-
mate A(f is of the form

(™)™ = (A™)TEQ)(EA) + G(A) ! = (Ce) T (E(A) + G(A)) !

It follows from the first condition, AZ € H *(¢ + n7), which determine the optimal linear
estimate of the functional AZ, that the Fourier coefficients of the function (e'*) are equal to
zero for k € U, namely

% / <(A(e’“))TF(A>(F(A) +G(A) = (Ce™) T (F(A) + G(A))1>eik)‘d}\ _§ ke

—7T

We will use the last equality to find equations which determine the unknown coefficients
c(j),j € U. After disclosing the brackets we get the relation

I ik 17
Y () 5 [ FO)EQ) +6) et~ T )T [ (R
2 .
jeZ -7 j€s -7 @)
1 7T
1 —z(k A T —1p=ilk=))Ag)y — 0
LG A — };c 2n/ e A =0, k e U.

For the functions
(F(A)+G(A)™, FM(F(A) +G(A)~!, F(A)(F(A) +G(A)'G(A)

we introduce the Fourier coefficients

Bk j) = 5= [ (FO) +G() ey,

R(kj) = 5~ [ EO)(F(A) +G(1)) e <0,
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1
2

/ )+ G(A) TG )e kDA g,

Using the introduced notations we can verify that the equality (2) is equivalent to the fol-
lowing system of equations:

Y R(k,j)a(j) =Y _ B(k,j)c(j) + Z(kj)E(j), k e U.

jEZS j€S j=0

-

Let us introduce notations @(j) = 0, j € S, @(0) = 0 and @(j) = 0, j € S*. Thus, we can
write

Y Rk )() = Y Bk EG) + Y B DE(G), ke U,

jeu jes i=0
The last equations can be rewritten in the following form
Rd = B¢, (3)
where ¢ is a vector constructed from the unknown coefficients ¢(j),j € U, vector d has the
same with the vector ¢ dimension, it is of the form

3T ST 3T al, o7 ,a]
:(OOra1101/2102/" a; ,0; ..., 4,05 ,d5q),

where 0 is the vector which consists of (|S| 4 1)T zeros, where |S| = (N;< +1) is the amount
k=1
of missing values, vectors OZ-, i=1,2,...,s consist of (N; + 1)T zeros, vectors

i =@nT,...,dM —-1)"),
il = @M1+ N+, aM-1)T), i=2,...,5,

dl = (@(Ms+Ne+1)T,d@(Ms + Ne +2)7,..),

are constructed from the coefficients that determine the functional AZ.
Here B is a linear operator in the space ¢, which is defined by the matrix

Bs,s les,l oo Bs,l Bs,n
Bsfl,s Bsfl,sfl e Bsfl,l Bsfl,n
B=| S F
Bis Bys-1 .- Bix By
Bn,s Bn,S,1 oo Bn,l Bn,n

where elements in the last column and the last row are compound matrices constructed from
the block-matrices

Bln(k ]) = ( ) 121,2,...,5, k= —Ml—Nl,...,—Ml, j:0,1,2,...,

Bn,m(k,]) B( ), m:1,2,...,S, k:0,1,2,...,j:_Mm_Nm,...,_Mm,
Bun(k,j) = B(k,j), k,j =0,1,2,...
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and other elements of matrix B are the compound matrices with elements of the form

Biw(j, k) = B(k,j), Im=12,...5,
k:_Ml_NZI""_Ml/ ]':—Mm_Nm,.”’_Mm.

The linear operator R in the space /; is defined by the corresponding matrix in the same
manner.
The unknown coefficients ¢(k), k € U, which are defined by the equations (3), can be calcu-
lated by the formula
c(k) = (B~'Ra)(k),

where (B~!R3)(k) is the k-th component of the vector B~'Ra. (see paper by Salehi [39] for
more details).

The formula for calculating the spectral characteristic h(e"*) of the estimate AZ is of the
form

(h(e™))" = (A(e™))TF(A)(F(A) + G(A) !
.
— (Z(B_lRﬁ)(k)eikA> (F(A) +G(A) L. @

kel

The mean square error of the estimate A€ can be calculated by the formula

A(F,G) = E|AZ - AFl = % [ e TEW)re(hyin
o (5)
b [ re(0) TGN dA = (R4, BRa) + (Q4,3),

27T

where

kel

.
(re(A) " = ((A(e“))TF(A) - (Z(B”Ri)(k)em) ) (F(A) +G(A) ™,

.
(re(A)" = ((A(e“))TG(A) + (Z(B_lRi)(k)ei“) ) (F(A) +G(A) ™,

kel

and Q is the linear operator in the space ¢, defined by matrix with coefficients Q(k, j), k,j € U
in the same way as the operator B is defined.
Let us summarize the obtained results and present them in the form of a theorem.

Theorem 1. Let {&(j)} and {ij(j)} be uncorrelated multidimensional stationary sequences
with spectral densities F(A) and G(A) which satisfy the minimality condition (1). The spectral
characteristic h(e'!) and the mean square error A(F,G) of the optimal linear estimate of the
functional AZ which depends on the unknown values of the sequence &(j) based on obser-
vations of the sequence {(j) + 7(j)} at points j € Z_\S can be calculated by formulas (4),

(5)-
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Consider the problem of the mean-square optimal linear estimation of the functional AZ,
which depends on the unknown values of the sequence {&(j)} from observations of the se-
quence {&(j) +7(j)} at points j € Z_\S, S = {—(M+N),...,—M}, Z5 = {1,2,...}\S,
St ={M,..., M+ N}.

From Theorem 1 the following corollary can be derived for this problem.

Corollary 1. Let {Z(j)} and {ij(j)} be uncorrelated multidimensional stationary sequences
with spectral densities F(A) and G(A) which satisfy the minimality condition (1). The spectral
characteristic h(e'!) and the mean square error A(F,G) of the optimal linear estimate of the
functional AZ which depends on the unknown values of the sequence g (j) based on observa-
tions of the sequence {&(j) + 7(j)} at points j € Z_\S can be calculated by formulas (4), (5),
where B, R, Q are linear operators in the space {, defined by compound matrices constructed
of coefficients B(k, j), R(k, ), Q(k,j), k,j € U, (U= SU{0,1,2,...}). For example, the matrix

B is of the form
BS S BS n )
B = ’ ’ ,
< Bn,s Bn,n

where its components are matrices constructed from the block-matrices

Bin(k,j) = B(k,j), k=-M-N,...,—M, j=0,1,2,...,
Bus(k,j) = B(k,j), k=0,1,2,..., j=—-M-N,...,—M,
Bun(k,j) = B(k,j), kj=0,1,2,...,

Bss(k,j) = B(k,j), k=-M-N,...,-M, j=-M-—N,...,—M.

Consider the problem of the mean-square optimal linear estimation of the functional AZ
which depends on the unknown values of the sequence {(j)} from observations of the se-

quence {&(j) +7(j)} at points j € Z_\{—s}, Z% = {1,2,...}\{s}.
It follows from Theorem 1 that the following corollary holds true.

Corollary 2. Let &(j) and 7(j) be uncorrelated multidimensional stationary sequences with
spectral densities F(A) and G(A) which satisfy the minimality condition (1). The spectral char-
acteristic h(e**) and the mean square error A(F, G) of the optimal linear estimate of the func-
tional A which depends on the unknown values of the sequence Z (j) based on observations
of the sequence &(j) +7j(j), j € Z_\{—s} can be calculated by formulas (4), (5), where B, R, Q
are linear operators in the space {, defined by compound matrices constructed of coetficients
B(k,j), R(k,j), Q(k,j), k,je U, (U=SU{0,1,2,...}),

B_ < B(—s,—s) B_sn )
By, —s Buun )’
where elements in the last column and the last row are the matrices with the elements
B_su(k,j) =B(k,j), k=-s, j=0,12,...,
By, —s(k,j) = B(k,j), k=0,1,2,..., j=—s,
Bun(k,j) = B(k,j), kj=0,12,....
Consider the problem of the mean-square optimal linear estimation of the functional

A= Y () E(=)),

j€ez5n{o,..,.N}
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which depends on the unknown values of the sequence &( j) from observations of the sequence
&(j) +1(j) at points j € Z_\S where S is defined in the introduction. The linear estimate of
the functional An¢ has the representation

ANE = / T(Zz(dA) + Zy (dA)).

Define the vector ay as follows: elements with indices from the set UN (SU{0,...,N})
coincide with the elements of the vector a@ with the same indices and elements with indices
from the set U\(SU{0,...,N}) are zeros. B, R, Q are linear operators in the space ¢, defined
in the Theorem 1.

The spectral characteristic /iy (e**) and the mean square error A(hy; F, G) of the optimal
linear estimate of the functional A NE can be calculated by formulas (6), (7)

(v (€M) " = (An(e™) TF(A)(F(A) + G(A)) 7

N\ 6)
- <Z<B—1Ram<k>el’“> (F(A) +G(A) !
kel

(hN/F G) <RaN/B71R_a’N> + <Q5N/ aN>/ (7)
where Ay (e) = )3 a(j)e it
j€z5n{o,..,N}
The following corollary holds true.

Corollary 3. Let &(j) and 7(j) be multidimensional uncorrelated stationary sequences with
the spectral densities F(A) and G(A) which satisfy the minimality condition (1). The spectral
characteristic hy (e'!) and the mean square error A(hy; F, G) of the optimal linear estimate of
the functional Ax¢ which depends on the unknown values of the sequence g (j) from obser-
vation of the sequence {&(j) +7(j)} at points of time j € Z_\$S can be calculated by formulas
(6), (7).

2  MINIMAX-ROBUST METHOD OF FILTERING

Theorem 1 and its corollaries can be applied to filtering of the functional in the cases when
spectral densities of the sequences are exactly known. If complete information on the spectral
densities is impossible but the class of admissible densities is given, it is reasonable to apply
the minimax-robust method of filtering which consists in minimizing the value of the mean-
square error for all spectral densities from the given class. For description of minimax method
we propose the following definitions (see Moklyachuk and Masytka [29]).

Definition 1. Fora given class of spectral densities D = D x D the spectral densities FO(\) €
Dr, G%(A) € Dg are called least favorable in the class D for the optimal linear filtering of the
functional AZ if the following relation holds true

A <P0, GO) —A (h <p0, GO) :FY GO) _ (p,cgg;(chA (h(F,G);F,G).
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Definition 2. For a given class of spectral densities D = Dr x D¢ the spectral characteristic
h0(e'!) of the optimal linear estimate of the functional AZ is called minimax-robust if there are
satisfied conditions
H(e™) € Hp = N LyF+G),
(F,G) €DpxDg
min max A(I;F,G) = max A (hO;F, G) .
heHp (F,G)eD (F,G)eD
From the introduced definitions and formulas derived above we can obtain the following

statement.

Lemma 1. Spectral densities FO(\) € Df, G°(A) € Dg satisfying the minimality condition (1)
are the least favorable in the class D = Dr x D for the optimal linear filtering of the functional
A if operators B% R% QU determined by the Fourier coefficients of the functions

(F(A) + GO(A)) L, FO)(EY(A) + GO(A)) L, FO(A)(E(A) + GO(A)) GO (A)

determine a solution to the constrain optimization problem

max _ (Ra B 'Ra) + (Qd,d) = (R, (B°)'R%E) + (Q"3, &).
o )+ (Qd,3) = (R%, (BY)'R") + (Q"a, ) ®
The minimax spectral characteristic i° = h(F°,G°) is determined by the formula (4) if

h(F°,G°) € Hp.

The least favorable spectral densities F’(1), G°(A) and the minimax spectral characteristic
W = h(F° G%) form a saddle point of the function A (i; F,G) on the set Hp x D. The saddle
point inequalities
A (mF,c°) = 8 (W5 F,6%) > A (KF,G)
VYV he Hp,VY FeDgV GEeDg

hold true if h° = h(F°, G°) and h(F°, G°) € Hp, where (F°, G°) is a solution to the constrained
optimization problem

sup A (W(F’,G");F,G) = A (n(F°,G%);F°,G), 9)
(F,G)EDFXDG

where the functional A (h(F°, G%); F, G) is calculated by the formula

27
—7T

A (h(PO, G%);F, G) = % /(r%(A))TF(A)r%(A)d)\—i— L /(r%(A))TG(A)rg(A)dA,
keu

.
(rF(A) " = ((A(e“))TFO(A) - (Z((BO)_lROE)(k)eiM) ) (F(A) +G°(A)

.
(re()" = ((A(em))TGO(A) + (Z((Bo)lROE)(k)ei“> ) (F'(A) +G2(A) .

kel
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The constrained optimization problem (9) is equivalent to the unconstrained optimization
problem (see, for example, Pshenichnyj [36]):

Ap(F,G) = —A(h(F°,G°);F,G) +6((F,G) |DF x Dg) — inf, (10)

where §((F,G) |Dr x Dg) is the indicator function of the set D = Df x Dg. Solution of the
problem (10) is characterized by the condition 0 € dAp (F°, GY), where dAp (F°, G¥) is the subd-
ifferential of the convex functional Ap (F, G) at point (F?, G%). This condition makes it possible
to find the least favourable spectral densities in some special classes of spectral densities D (see
books by Ioffe and Tihomirov [13], Pshenichnyj [36], Rockafellar [37]).

Note, that the form of the functional A (h°; F, G) is convenient for application the Lagrange
method of indefinite multipliers for finding solution to the problem (10). Making use the
method of Lagrange multipliers and the form of subdifferentials of the indicator functions
we describe relations that determine least favourable spectral densities in some special classes
of spectral densities (see books by Moklyachuk [24, 25], Moklyachuk and Masyutka [29] for
additional details).

3 LEAST FAVORABLE SPECTRAL DENSITIES IN THE CLASS D = Dy X Dys

Consider the problem of filtering of the functional AZ in the case where spectral densities
F(A), G(A) belong to the set of admissible spectral densities Dy x D,s, where

D= {F )5 [ ML= |,

D}, = {63 [ m(G) - G Par < 6}

)

1 7T 2
D3, = {G(A)‘E - ‘gkk()Q —811k(}\)‘ dr < 6, k = 1,T};

D2 = {F(A) '% /kak(}\)d}\ — k=TT

DS’:{ ‘— (B1, F(A)) dA = P}

D3, = { ‘— (B, G (A)—Gl(A)>|2dA§5};

2171 /_ZF(A)dA _p }

2 . _

D = {F(A)

3 cl= ["
o = {c| 5 [
Here the spectral density G;(A)) is known and fixed, p, 6, py, 6, k = 1, T, 5{ ,i,j = 1,T, are fixed
numbers, P, By, B are fixed positive definite Hermitian matrices.
The classes D’O‘, k = 1,4 describe densities with the moment restrictions while the classes
DX;, k = 1,4 describe the “-neighborhood” models in the space L; of a fixed bounded spectral
density Gy (A).
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From the condition 0 € 9Ap (F°, G°) we find the following equations which determine the

least favourable spectral densities for these given sets of admissible spectral densities.
For the first pair D} x DJ; we have equations

(re())*(rg(A) " = a(F'(A) + G°(1))?,

(RO (2T = BT (CA) = G (F(1) + G°(1))?
o [ TG ~ G Pdr =g,

where a2, g% are Lagrange multipliers.
For the second pair D3 x D3; we have equations

(L) (L) = (F) +G°()) { addu

"0+ ),

kl=1

() (FO0)T = (F(3) + G(4) { BHeh() — ghA) }, | (F°(0) +G°(),

1 7 . 2 o
oy /_7T ‘8kk()\) _gkk()‘)‘ A =6, k=1,T,

where a2, B2 are Lagrange multipliers.
For the third pair D x D3; we have equations

(200)" (AT = 2(F(A) + GUA)B] (F°(A) + GO(1)),
() ()T = B (B2, G(N) — Gi(W) ) (F(A) + GO(A))2,

o= [ B2 GO — A Pan =,

where a2, B2 are Lagrange multipliers.
For the fourth pair D§ x D3; we have equations

(re() (rg(A) " = (F(A) + G (A))a - &* (F'(A) + G°(A),

(F)) ()T = () + GO () { BN — sh(M) ) () + G (),

i,j=1
1 T
5/

where @, B;; are Lagrange multipliers.
The following theorem and corollaries hold true.

2 _— _
8ij(A) —g}j()\)‘ dr =46, i,j=1,T,

(11)
(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

Theorem 2. The least favorable spectral densities F’(1), G°(A) in the classes D’é X D’z‘ s k= 1,4,
for the optimal linear filtering of the functional Ag’,? are determined by relations (11) — (13) for
the first pair Dé X D% s of sets of admissible spectral densities; (14) — (16) for the second pair
D% X D% 5 of sets of admissible spectral densities; (17) — (19) for the third pair DS X Dg 5 Of sets
of admissible spectral densities; (20) — (22) for the fourth pair Dé X DEL& of sets of admissible
spectral densities; the minimality condition (1), the constrained optimization problem (8) and
restrictions on densities from the corresponding classes Dy x Djs. The minimax-robust spec-
tral characteristic of the optimal estimate of the functional AZ is determined by the formula

(4).
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Corollary 4. Assume that the spectral density G(A) is known. Let the function FO(1) + G(A)
satisfies the minimality condition (1). The spectral density F°(A) is the least favorable in the
classes Dé, k = 1,4, for the optimal linear filtering of the functional Ag’,? if it satisfies relations
(11), (14), (17), (20), respectively, and the pair (F°(1),G(A)) is a solution of the optimization
problem (8). The minimax-robust spectral characteristic of the optimal estimate of the func-
tional A(f is determined by formula (4).

Corollary 5. Assume that the spectral density F(A) is known. Let the function F(A) + G°(A)
satisfies the minimality condition (1). The spectral density G°(\) is the least favorable in the
classes D’Z‘ s k= 1,4, for the optimal linear filtering of the functional A(f if it satisfies relations
(12) - (13), (15) - (16), (18) — (19), (21) — (22), respectively, and the pair (F(1), G°())) is a solution
of the optimization problem (8). The minimax-robust spectral characteristic of the optimal
estimate of the functional Af is determined by formula (4).

4 LEAST FAVORABLE SPECTRAL DENSITIES IN THE CLASS D = Dq5 X D‘L}

Consider the problem of filtering of the functional AZ in the case where spectral densities
F(A), G(A) belong to the set of admissible spectral densities D15 x DY, where

ply = {F) 5 [ m(F) - A an < 6},

pU' = {G(A)

Tt V(A) < Tr G(A) < TrU(A), % /” Tr G(A)dA = q},

DY = {F(A) %/_7; ‘fkk(/\) _fklk(A)’ dA < O, k= ﬁ} ,

DY* = {G(A)

1 7T
Ure(A) < gike(A) < uge(A), Y- /_ngkk()\)d)\ =g, k=1, T},

D3 = {F |5 [ 1B FO) - )l ar <o,

pu’ {cm' (B2, VM) < (B, GA)) < (BoUN) 5= [ (B, G(A)) dA = q},

D4 — F(A) i/n—
10 27T o
1

pu* — {G(A)'V(A) <G < U(A),E/ZG()\)LM — Q}.

£(A) = F0)] dr < 5£,i,f=L_T}f

Here the spectral densities F;(A), V(A), U(A) are known and fixed, 6,4, &, qi, k = 1, T, (55, i,j=
1, T, are fixed numbers, Q, By, B, are fixed positive definite Hermitian matrices.

The classes D‘L}k, k = 1,4 describe the “strip” models of spectral densities while the classes
DX, k = 1,4 describe “d-neighborhood” model in the space L; of a fixed bounded spectral
density Fj(A).

From the condition 0 € dAp (F%, GY) we find the following equations which determine the
least favourable spectral densities for these sets of admissible spectral densities.
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For the first pair D}; x DY " we have equations

(re(A)*(rE(A) T = &y (M) (FO(A) + G°(A))?, (23)
% /" T (F() — F(A)|dr =5, (24)
(rp(A)* (2 (A) T = (B> +11(A) + 12(AM) (F(A) + G°(A))?, (25)

where a2, B2 are Lagrange multipliers, |y(A)| < 1 and
7(A) = sign (Tr (F'(A) — Fi(A))) : Te(FO(A) — Fi()) #0,

11(A) < 0and y1(A) = 0if TrG%(A) > TrV(A), 12(A) > 0and 12(A) = 0if TrGO(A) <
TrU(A).
For the second pair D?; x Du we have equations

(B G = (F) + ) {dniea},  (FR)+E0), @9

o / )fkk — fx(A dA = o, k=1,T, (27)

() (RN = (F4) + GO0 {8+ 7eh) + vaWNd ), (FO) +6°(1)), @9
where a2, B2 are Lagrange multipliers, |y,(A)| < 1and

|
T(A) = sign (fe(A) = fae(V)) = feA) = fie(A) #0, k=1,T,

T1k(A) < 0and y1,(A) = 0if gkk( ) > vk (A), Y2(A) > 0and 7ok (A) = 0iif gy (A) < ugre(A).
For the third pair D3; x Du we have equations

(re(A)*(r&(A) T = a9 (A)(F*(A) + GO(A))B{ (F(A) + G°(1)), (29)
%/ZKBLFO(A) ~EW)|dr =3, (30)
(rp(A) (13 (A) T = (B + 11 (A) + 12(A) (FO(A) + G'(A))By (FO(A) +G°(A)),  (31)
where a2, B2 are Lagrange multipliers, |7/(A)| < 1 and
7'(A) =sign (B, F'(A) —Fi(A)) : (B, F'(A) = Bi(A)) #0,

Yi(A) < 0 and 74(A) = 0 if (B, GO'(A) > (B, V(A)), 75(A) > 0 and 74(A) = 0 if
(By, GO(A) < (Bp, U(A)).
For the fourth pair D}; x D‘L}4 we have equations

(rg())*(rg(M) " = (F°(A) + G (A)) {“z‘j')”ij()‘»}l] L(F' ) +G°(1)), (32)

— " | - o ar =g, =TT, (3
(PR (rR ()T = (FO(A) + GY () (B B +T1(A) + L2(M)(F'(A) +GO(A))  (34)
where B, u;j are Lagrange multipliers, |y;j(A)| < 1and

BO-AY o
RN = FYN) £0, 1 =TT,
pa-pm T ]

I1(A) <0and T1(A) = 0if GO(A) > V(A), To(A) > 0and Tp(A) = 0if GO(A) < U(A).

Vij(A) =
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The following theorem and corollaries hold true.

Theorem 3. The least favorable spectral densities F'(A), G°(A) in the classes D¥; x ng, k =
1,4, for the optimal linear filtering of the functional AE are determined by relations (23) — (25)

for the first pair D‘l1 5 X D‘L} ! of sets of admissible spectral densities; (26) — (28) for the second pair
D5 X D‘L/I2 of sets of admissible spectral densities; (29) - (31) for the third pair Dj; X D‘L/I3 of sets

of admissible spectral densities; (32) — (34) for the fourth pair D}; X D‘L/I4 of sets of admissible
spectral densities; the minimality condition (1), the constrained optimization problem (8) and
restrictions on densities from the corresponding classes D15 x D{}. The minimax-robust spec-
tral characteristic of the optimal estimate of the functional A€ is determined by the formula

(4)-

Corollary 6. Assume that the spectral density G(A) is known. Let the function FO(1) + G(A)
satisfies the minimality condition (1). The spectral density F°(A) is the least favorable in the
classes D’l‘ s k= 1,4, for the optimal linear filtering of the functional Ag’,? if it satisfies relations
(23) - (24), (26) - (27), (29) - (30), (32) - (33), respectively, and the pair (F°(A), G(A)) is a solution
of the optimization problem (8). The minimax-robust spectral characteristic of the optimal
estimate of the functional AE is determined by formula (4).

Corollary 7. Assume that the spectral density F(A) is known. Let the function F(A) + G°(A)
satisfies the minimality condition (1). The spectral density G°(\) is the least favorable in the
classes D%,Ik, k = 1,4, for the optimal linear filtering of the functional Ag if it satisfies relations
(25), (28), (31), (34), respectively, and the pair (F(1), G°())) is a solution of the optimization
problem (8). The minimax-robust spectral characteristic of the optimal estimate of the func-
tional Ag’,? is determined by formula (4).

5 CONCLUSIONS

In the article we propose methods of the mean-square optimal linear filtering of functionals
which depend on the unknown values of a multidimensional stationary stochastic sequence.
Estimates are based on observations of the sequence with an additive stationary noise se-
quence. We develop methods of finding the optimal estimates of the functionals in the case of
missing observations. The problem is investigated in the case of spectral certainty, where the
spectral densities of the sequences are exactly known. In this case we propose an approach
based on the Hilbert space projection method. We derive formulas for calculating the spec-
tral characteristic and the mean-square error of the optimal estimate of the functionals. In the
case of spectral uncertainty, where the spectral densities of the stationary sequences are not
exactly known while some special sets of admissible spectral densities are given, we apply the
minimax-robust estimation method of estimation. This method allows us to find estimates that
minimize the maximum values of the mean-square errors of the estimates for all spectral den-
sity matrices from a given class of admissible spectral density matrices. We derive formulas
that determine the least favorable spectral densities and the minimax spectral characteristics
for some special sets of admissible spectral densities.

These least favourable spectral density matrices are solutions of the optimization problem
Ap(F,G) = —A(h(F°,G°);F,G) + 8((F,G) |DF x Dg) — inf, which is characterized by the
condition 0 € dAp(F°, GY), where dAp (F?, G?) is the subdifferential of the convex functional
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Ap(F,G) at point (F°,G%). The form of the functional A(h(F°,G%); F,G) is convenient for
application of the Lagrange method of indefinite multipliers for finding solution to the opti-
mization problem. The complexity of solution of the problem is determined by the complexity
of calculating of subdifferentials of the indicator functions §((f,g)|Ds x Dy) of sets D¢ x Ds.
Making use of the method of Lagrange multipliers and the form of subdifferentials of the in-
dicator functions we describe relations that determine the least favourable spectral densities
in some special classes of spectral densities. These are: classes Dy of densities with the mo-
ment restrictions, classes D1; which describe the “6-neighborhood” models in the space L; of
a fixed bounded spectral density, classes D,; which describe the “é-neighborhood” models in
the space L, of a fixed bounded spectral density, classes Dif which describe the “strip” models
of spectral densities.
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AOCAIAXY€EThCS 3apa4a ONTUMAABHOTO B CepeAHbOKBAAPAaTMUYHOMY CeHCi OLIHIOBaHHS AiHIVHIMX
dyHKIIOHAAIB, IITO 3aA€XAaTh BiA HEBIAOMMX 3HAaUeHb 6araTOBMMIpHMX CTalliOHapHMX MOCAIAOBHO-
crett. OmiHKY 6a3yI0ThCSI Ha CIIOCTEPeXXKEHHSIX IIOCAIAOBHOCTI 3 aAUTMBHIM CTaliOHAPHNMM IIYMOM i3
IIPOIYCKaMI CIIOCTepeXeHb. 3HAACHO (POPMYAM AASI OOUMCAEHHSI CepeAHbOKBAAPATIIHMX ITOXV-
60K Ta CHEeKTpaABHMX XapaKTEPUCTHUK ONTHMMAABHUX OLIHOK (PYHKITIOHAAIB Y TOMY BUITAAKY, KOAM
CIIeKTPaABHI ITIABHOCTI IIOCAIAOBHOCTEN TOYHO BiaroMa. MiHiMakcHIN (pobacuHmit) METOA OIiHIO-
BaHHSI 3aCTOCOBAHO y TOMY BUMIIAAKY KOAM CIIEKTPaAbHI IIIABHOCTI ITOCAIAOBHOCTEN TOYHO HeBiAOMi
a 3apaHi MHOXVHM AOITYyCTMMMX CIIEKTPaAbHMX IIiAbHOCTeN. DopMyAM, IO BU3HAYAIOTh HaliMeHII
CHPUSITAMBI CIIEKTpaAbHi IIIABHICTI Ta MiHIMaKCHI CIIeKTpaAbHI XapaKTepUCTUKI ONTUMAABHMX OLIi-
HOK (PYHKIIiOHAAiB, 3aIIpOIIOHOBAHI AAST 3aAaHMX MHOXVH AOITY CTMMMX CTIEKTPaABHMX LIIABHOCTEIA.

Kontouosi cnosa i ¢ppasu: cramioHapHi IOCAIAOBHOCTI, MiHiMiKCHa OliHKa, pobacTHa OILiHKa, ce-

PEAHPOKBaApaTHUYIHaA n0x1/161<a, HalMEeHIII CIIPUSITAVIBA CIIEKTPaAbHA H_IiAI)HiCTb, MiHIMaKCHa CITeK-
TpaAbHa XapaKTePHMCTMKA.
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PROPERTIES OF SOLUTIONS OF A HETEROGENEOUS DIFFERENTIAL EQUATION
OF THE SECOND ORDER

Suppose that a power series A(z) = Y ;—a,2z" has the radius of convergence R[A] € [1,+o].
For a heterogeneous differential equation

20" + (Boz? + P1z)w’ + (1022 + Mz + 12)w = A(2)

with complex parameters geometrical properties of its solutions (convexity, starlikeness and close-
to-convexity) in the unit disk are investigated. Two cases are considered: if 7, # 0 and 7, = 0. We
also consider cases when parameters of the equation are real numbers. Also we prove that for a
solution f of this equation the radius of convergence R[f] equals to R[A] and the recurrent formulas
for the coefficients of the power series of f(z) are found. For entire solutions it is proved that the
order of a solution f is not less then the order of A (¢[f] > ¢[A]) and the estimate is sharp. The same
inequality holds for generalized orders (0u5[f] > 0aplA]). For entire solutions of this equation the
belonging to convergence classes is studied. Finally, we consider a linear differential equation of the

endless order OZO: %ww = ®(z), and study a possible growth of its solutions.
n=0 "

Key words and phrases: differential equation, convexity, starlikeness, close-to-convexity, general-
ized order, convergence class.
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INTRODUCTION

An analytic univalent in D = {z : |z| < 1} function

f(z) = fo fur" &

is said to be convex if f(ID) is a convex domain. It is well known [4, p.203] that the condition
Re{1+zf"(z)/f'(z)} > 0(z € D) is necessary and sufficient for the convexity of f. By
W. Kaplan [7] the function f is said to be close-to-convex in ID (see also [4, p. 583]) if there
exists a convex in D function ® such that Re (f'(z)/®'(z)) > 0(z € D). A close-to-convex
function f has a characteristic property that the complement G of the domain f(ID) can be
filled with rays L which go from 0G and lie in G. Every close-to-convex in ID function f is
univalent in D and, therefore, f'(0) # 0. Hence it follows that the function f is close-to-convex
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2010 Mathematics Subject Classification: 30B10, 30C45,35B08.

@ Mulyava O.M., Sheremeta M.M., Trukhan Yu.S., 2019



380 MULYAVA O.M., SHEREMETA M.M., TRUKHAN YU.S.

in D if and only if the function (f(z) — £(0))/f’(0) is close-to-convex in ID. Therefore, f is
close-to-convex in D if and only if the function

g(z) =z+ ) gu7" (2)
n=2

is close-to-convex in ID, where g, = f,/f1. We remark that a function defined by (2) is said
to be starlike in D, if g(ID) is a starlike domain with respect to the origin and the condition
Re{z¢'(z)/g(z)} > 0(z € D) is necessary and sufficient for the starlikeness of g. It is clear
that every starlike function is close-to-convex. We remark also that if the function g is starlike,
then the function cg is starlike, where c = const.

S.M. Shah [9] indicated conditions on real parameters Bo, B1, Yo, Y1, 72 of the differential
equation

20" + (Boz® + pr12)w’ + (102° + Mz +12)w =0

under which there exits a transcendental solution given by (1) such that either all its derivatives
or even derivatives or odd derivatives are close-to-convex functions in ID. The investigations
of Shah are continued in the papers [12-15].

Here we consider a heterogeneous differential equation

220" + (Boz’ + rz)w’ + (y02 + iz +m)w = ) anz", @)
n=0

where parameters o, B1, Yo, Y1, 72 are complex and the power series A(z) = Y ja,z" has
the radius of convergence R[A] € (0, +o0]. We will investigate conditions such that equa-
tion (3) has convex or close-to-convex solutions, and in the case if a solution is entire function
we will study its possible growth and belonging to convergence classes.

1 PRELIMINARY LEMMAS

At first we remark that an analytic in some neighborhood of the origin of coordinates func-
tion given by (1) is a solution of equation (3) if and only if

n(n—1)fuz" + Po Z (n—1)fu12" + 70 Z fu2z"
n=2 n=2 n=2
B Y nfuz+ Y farZ' 2 Y fu" = Y an",
n=1 n=1 n=0 n=0

ie.

Yofo = a0, (B1+72)fi+r1fo=a (4)
and forn > 2

(n(n+pB1—1) +72)fu + (Bo(n — 1) +71) fu—1 + Y0 fu—2 = an. 5)

Lemma 1. If a function defined by (1) is a solution of equation (3) and n(n+ 1 —1) + 2 # 0
foralln > 2, then R[f] = R[A].
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Proof. Suppose at first that R[A] < +co. From (5) for n > 2 we have
PBo(n—1)+m Y0 an
= _ 4= At .
N T T | Ea L T U g
Let ny = ng(R[A]) is such that for all n > ng
Bon + 71 1 2 Y0 1
RIA < -, R|A < .
[A] (m+1)(n+pB1)+72] ~ 4 4] m+2)(n+p1+1)+72] ~ 4
Then for each r < R[A]
+')’1 1
[l < 1ot
HZI’ZO I’ZZ?IO 1’1"—‘3 "
LY ‘|fn N lan|r”
n=ng n+ﬁ n= no’Tlﬂ—Fﬁl—l)—F’)’z‘
= 50ﬂ+’h n
=7 r
RN (e ey AER L
. Y0 |an|r
+72 ' r
n_%_z (m+2)n+p1+1)+7 fulr” nzno n(n+p1—1) + 72|
- Bon + 711 " Bo(no —1) + 11 ‘ o1
=7 rt+r 0~
ngno (m+1)(n+p1)+7 [l no(no — 14 B1) + 72 [fro-1lr
2 Y0 Y0 no—2
nzno n+2)(n+pB1+1)+7 "f"v +r no(ng +/31—1)+72‘|f”02|r
Y0 1 |an|r
+r2 ' no— +
CERVTET e [ W orr v
whence
i <1—r Bon + 1 2 70 D AL
e (n+1)(n+ﬁ1)+vz (m+2)(n+p1+1)+7
Bo(no —1) + 711 m Yo o
( 0_1+’31 _{_,Y ’fﬂo 1‘ 7’10(7’10—{—’3 ‘f?lo 2’7’
70 o+1 !ﬂn\r
+ T+
TSV nEE s [ s et
In view of (7) hence we obtain
Bo(no —1) + 71 ' Yo '
- r
nzno ’fn’ — ”0(”0 1+’31 +,Y ’fﬂo 1‘ ] no(no_{_ﬁl ‘f?lo 2‘ ]
Y0 n +1 |‘1ﬂ|r
+ 0Fl 4 < +oo,
(no+1)(no+ B1) + 72 ‘|fn0 1R( nX,;O In(n+B1—1) + 72

i. e. R[f] > R[A]. On the other hand, from (5) we get

i|an|r” < f:z|(n(n—|—,31 — 1)+ )|l fult"

r Y 1Bo(n = 1) +millfama [ 72 Y |0l fumal 2,

381

(6)

(7)
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oo
and, since the convergence of the series Y. |f,|r" implies the convergence of each series in
n=ny

right-hand side of the last inequality, we have R[A] > R[f]. In the case if R[A] < +co the
equality R[A] = R[f] is proved.

If R[A] = +oo0, then the proof of the equality R[A] = R[f] is similar. Now it is enough to
choose 1y = np(R) for every R € (0, +0c0) so that inequality (7) holds with R instead of R[A].
Then instead of the inequality R[f] > R[A] we obtain the inequality R[f] > R, whence in view
of the arbitrariness of R we get the equality R[f] = +o0. Lemma 1 is proved. O

For the investigation of the convexity and the starlikeness of solutions of differential equa-
tion (3) we will use the following lemma ( [1,5, 6]).

Lemma 2. If ¥ n|gy| < 1, then function (2) is starlike, and if Y n?|g,| < 1, then it is convex

. n=2 n=2
inD.

From Lemma 2 the following lemma follows.

(e 9]

Lemma 3. If Y n|f,| < |f1|, then function (1) is close-to-convex, and if Y n?|f,| < |f1|, then
n=2 2

n=
it is convex in ID.

From the first equality (4) it is clear that the choice of coefficients f, of solution (1) of equa-

tion (3) depends on the equality of the parameter 7, to zero.

2  CLOSE-TO-CONVEXITY AND CONVEXITY IN THE CASE 7 # 0

From (4) we get fo = ap/v2 and (B1 + 72) f1 = a1 — Y1 fo. Since we find univalent solutions,
f1 must be not equal to zero. In view of (4) two cases are possible:

2a) a1 —vy1fo # 0and By + 72 # 0;

2b) a1 —y1fo=pB1+72=0.

a1 —v1fo 7241 — 7140

= , and thus the solution
Bi+72  72(B1+72)

By the conditions 2a) from (4) we get f| =

is of the form

4o | 7281 — MAo o n
fle) = 2 Bt nX::anZ ’ ®)
where the coefficients f, are defined by the recurrent formula (5). Supposing that
n(n+ By —1)+v2 # 0 forall n > 2, this formula can be rewritten in the form (6).
Suppose that |B1] < 1 and |y2//2 < (1= |B1]). Then |n(n+ B1 —1) + 72| >
> n(n—1—|B1]) — |72| and, since the function x2 — (1 + |B1|)x — |y2] is increasing on [2, +-c0),
we have n(n — 1 — |B1|) — |72| > 2(1 — |B1]) — |r2| > 0 for all n > 2. Therefore, (6) implies

|70l x|

Bol(n— 1) + Il
R 1y iy B 1 Y A TN el

n—=1—1[p1]) = ||

|fn| < n( |fn—1|+n(
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Hence it follows that

Salfy <y Bl =V ml gy

n=2 n2 _1n(n_1_’ﬁ1‘)_‘72‘
c ol )
*EZ o ey e (UL '*2 T B) =l
o 141 |Boln + |11] n+2 70|
L )= Bi) — " ’f””z " (n+2)(n+1—Iﬁll)—lvzln‘fn‘ (10
- n‘an’ _ Z n+1 ‘50’n+ ’71’ n‘fn‘
a1 1B — Tl & n (r D)= JBi) — 72l
\Bo| + |71 n+2 70|
+2 n
2<1—\ﬁlr>—m'f1' Z S CEs e e
2|0 3]70| - nlay|
+ + + :
TTR TR R LU oy o UL Bl cromy wg sy oy
Since forn > 2
n+1 [Boln + || _ [Bol + 11|/ <« __Bol +Iml/2
n (n+1)(n—IB1]) = |2l (m—1B1]) = |12l/(n+1) = (2—|B1]) — |72|/3
and
n+2 70l B 70| /1 |70[/2

= < ,
n (n+2)(n+1—[p1]) =|r2l  (n+1=1|p1]) = |n2l/(n+2) = B —I[p1]) = |72|/4
from (10) it follows that

- > |Bol + /2 [70]/2 2(|Bo| + 71D If1l
Llfl < L g — i 3" ’f””z “B) — A" T 20— a ) - e

2|70

(e 9]

3|’YO| n|an|
R TGy oSl ek rpn gy £ R e crpm g
and by the condition
|Bol + |71]/2 170]/2
@16 - 273 T BB —al/d < ()
we obtain
Bl +Iml/2 [70]/2 \Bol + |71
(1 @15~ 73~ GTh) - mm)z il <230 18— !
2|70 3]70] . n|ay|
R Tg oty oS kv py gy e £ e g gy e
whence
= 2(|Bo| + [71l) 3|70 2|0
L nlfal < <<2<1— B —Inal T3 1B - mw) Al a1 — Tl !

(o]

n|an| _|BolFml/2 |70]/2 !
*,;Zn(n—l—rm\)—m\)(l 2—1B1]) — 12173 <3—rﬁ1\>—m\/4> |
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By Lemma 3 solution (1) of equation (3) is close-to-convex if the right-hand side of (12) is
less than |f1], i. e.

(1Bo| + 1) 3|70 2|0
< 201 B wzﬁa(z—\ﬁlr)—mr)'f1'+z<1—r/s1\>—m\'f0' o
i njay| <1_ Bol + [11l/2 70]/2 >|f1|
Lot i) Tl =\ T @B a3 BIa) — al/a) 1

Thus, the following proposition is proved.

Proposition 1. Let v # 0, a172 —apy1 # 0, B1+ 72 # 0, [B1] < 1, |72]/2 < (1 —|B1]) and
R[A] > 1. If

i n|ay| <1_ Bol +Iml/2 [70]/2
=on(n—1—[B1]) —[r2| ~ 2= 1B1]) = |72/3 B =|B1]) — |72[/4 (14)
~ 2(|Bol tImlD) 3|70 ) 7201 — M40 2|70 o]

20 =p1l) = 2l 32 =1Bal) = 72/ [m2(Br+72)| 20 = |Ba]) = [72] |72’

then there exists a solution given by (8) of differential equation (3) with R[f] = R[A]|, which is
close-to-convex in ID. If moreover ay = 0 it is starlike.

Indeed, the condition (14) is equivalent to condition (13), and (13) implies (11).
We will pass to the convexity. From (9) we get

(e 9]

2 =P |Bol(n —1) + [711] 0 1)2
Lmin] Sg Baln— 1= Jpl) — ] "~ ) V1l

= "YO‘ nz!an\
+,§<n—z>2n<n—1—|ﬁ1|> 7 ("~ 21 2”2 RS EA

i n+1 |[30|1’l—{—|’)/1| n2|fn|
L NI
= (02 70 ) 2
+ 2| fal +
20 G- " Pt L a1 By =l
> ”+1 |Boln + | 11| 2 |Bol + |71
n +4
; arDm =B =" = e = e
> (02 70 ) ol
n +
; mre - =T P aa—ia) e
9")”0‘ oo nz!an\
+ + .
5e=1a) el Lt —1i— B =il
Since now forn > 2
(n+1)? [Boln + 7] 23 |Bol+Iml/2
2 _
n (n+1)(n—|B1]) — 72| — 2(2—1B1l) —|72//3
and )
(n+2) |70l <9 |v0]/2

n2  (n+2)(n+1—|B1]) —[r2] = B —|[B1]) = |72]/4
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by the condition
3 |Bol +|ml/2 |70l
2@ 1B1]) — |mal/3 T G-I —al/d ="
as above we obtain
N 70l ) 4(|Bo] + 1))
(1 2@ 1) — vl /3 G1Ail) - mw)z Ul < g g —
4|0 9|70 - n?|ay|
BTGy oS kv gy e o L £ W g gy e
1. €.
o 2 4(1Bo| + [71l) 4|y 9]0
L wifal < <z<1— B = T e~ T s s -

(15)

i n?Ja,| <1_§ Bol +Iml/2 |70l >_1

=z 1 —=1—|B1]) = [72] 22— 1[pl) = nal/3 G=1pl) = [n2l/4) 7

By Lemma 3 a solution given by (1) of equation (3) is convex if the right-hand side of (15) is
less than |f1], 1. e.

4(|1Bo| + [71l) 4|y 9]0
20— 161D — vl T 21 — Tl P T 3 e — Tl

n?|an| 3 [Bol+Iml/2 70
R By mr(l 2T 1B~ 11l <3—|ﬁ1|>—|vz|/4>‘f1"

Thus, the following proposition is proved.

Proposition 2. Let v, # 0, a172 —apy1 # 0, B1+ 72 # 0, [B1] < 1, |72]/2 < (1 —|B1]) and
R[A] > 1. If

i nla,| < (1_§ Bol + [1l/2 70
=onn—1—[B1]) —[7r2| ~ 22— B1]) = |12l/3 B —|B1]) = [72[/4 (16)
4Bl +ml) 970l ) [7281 — 1140| 4|70 |ao|

20 =p1) =2l 32 =[B1l) = 72/ [r2(Br+72)[ 20 = [Ba]) = |72 |72’

then there exists a solution defined by (8) of differential equation (3) with R[f] = R[A], which
is convex in ID.

Uniting Propositions 1 and 2 we get such theorem.

Theorem 1. Lety; # 0,a172 —apy1 # 0, B1+72 # 0, |B1] < 1, |72]/2 < (1—|B1|) and R[A] >
1. Then there exists a solution given by (8) of differential equation (3) with R[f] = R[A], which
by the condition (14) is close-to-convex and by the condition (16) is convex in D. If ay = 0 and
(14) holds then (8) is starlike.

The conditions |B1] < 1 and |y2|/2 < (1 —|B1]) in Theorem 1 can be weakened if f; and
72 are real numbers. We will consider a simple case, when 7y, > 0, 81 > —1and 72 4+ B1 > 0.
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Suppose also that ypa; — y140 # 0. Then from recurrent formula (6) we have

Yol < 3 Bl 2Dl yyp )

n=2 n:2n_1n(n+ﬁ1_ )_}"Y

S 70| nlay|
+;§2”_2”(”+51—1)+’7( 2 2|+Z nn+p1—1)+7

o |Bol +1ml/(n—1) © ygl/(n—2)

S Iy s | vy UL L I D e s e U IR

v nan| ol + 711/ — 1)
+n;z"(n+ﬁ1—1 )+72 Z’z (n+pg1—1) (2 = Dlfa]

o |[70l/(n —2) n|ay|
LB £ gty
:iw ’f’+i "YO\/” ’f"f‘i nlay|

= ntp T g+ T St pi— 1) 7

n

1Bol + |1l ’,30\+’71!/2 70l 70l
1+ B |f|+2ﬁ”|fﬂ|+ |f|+2+’31|f1|

‘70‘/2 C ”’ﬂn‘
i Z 23+ B1 el + Zg”(”ﬂﬂ@l -1+’

| /\

whence by the condition
Bol + [71[/2 | |70]/2

<1
2+ By 3+ B4

we obtain

Bol + 111172 |70]/2 & 1Bol + ]
(1 - ot T2 - 02 ) 5 i < BLEI

(17)

|70l |70l an]
o U A e e e
Similarly we get

Zn2|fn| < Z n |,30|+|’)/1|/£1’l—1) (n_1)2|fn—1|

= n— n+ B
n|yol/ (n — 2)? n|ay]
+nX::2 (1’1—}—[3—)( ’fn 2‘+Z n+’31 )+72

- ”+1![50\+!71!/” 2 = (”+2)!70\/” 2 n?|ay|
n+ By ful + nz‘b (n+pB1+1) ‘an—Z nn+pr—1)+7

|l30|+|’h| 3|,30|+|71|/2 2 2|70l 3|70|

[ee]

> la
+ /
234'5 ol + X:Z”(”+ﬁl—1)+’¥2

whence by the condition
3 |Bol +[11]/2 L 1ol

<1
2 24pB 3+ B
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we get

_31Bol+1ml/2 | ) 2 |Bol + |71
(1 > arpavp) Bt = )

2|’Y0| 3]70| n?|ay|
TRl ol 2 it Pr—1)+ 72

From (17) and (18) we obtain the following propos1t10n.

Proposition 3. Lety, > 0, B1 > —1, 72 + B1 > 0, 7241 — 1140 # 0 and R[A] > 1. Then there
exists a solution (8) of differential equation (3) with R[f] = R[A], which by the condition

2 njay| < (1_ 1Bol + [7111/2  |v0l/2  |Bol + |71l
— n(n+p1—1) + 72 2+ B 3+ b1 1+ 61

|70l >|’Yzﬂ1—’hﬂ0| ol lao

24B1) 12(Bi+72)  Pr+1|r
is close-to-convex (starlike if ag = 0) and by the condition
3 ?ay| <(1-Ylrinl2_ twl L+t
=nm+pr—1)+7 2 24P 3+ B 1+ p1

_ 37l ) 7201 — 140l 2|70 lao
24+B1) mBi+72) 1417
is a convex function in D.

Now we suppose that the condition 2b) holds, that is, 7y, # 0 and a1 — y1fo = B1 + 72 = 0.
Then fy = ag/72 and f; can be arbitrary number, in particular we can choose f; = 1. Thus, the
solution will have a form

@) =2 gz4 Y fuz, (19)
T2 n=2
where the coefficients f, are defined by the recurrent formula

(n=1)(n +B1)fu + (Bo(n = 1) +711) fa1 + Y0fn-2 = an.
Supposing that n + 1 # 0 for all n > 2, this formula can be rewritten in the form

__Bo(n=1)+m B 70 ay
fu= (n— 1)(11—|—,31)f”71 (n —1)(n+[31)fn_2+ (n—1)(n+pB1)’
whence by the condition | 51 | < 2 we have
—Dlbol +ml,
Z |fﬂ| < Z )( |ﬁ |) (Vl 1)|fn—1|

nlay|

\70\ " 3
Ty e [ L R W s ey

+ C n+1 + /n 2
:2|!30| |71l Ly Bol + || ful + 70
2—|pl sz om o n+1-|p] 2—|pl

3|70
—|B1l)

|f|+(

n—+2 ”)’0’ d n‘an‘
+n>:2 n (n+1)(n+2—Ifﬂll)n‘f”’+Z —1)(n—|B1])

3|ﬁ0|+|’¥1|/2 - |70| |ﬁo|+|71|
—nzz o " Ly e

2\70\ Bl & nlay|
LR TN *EQ CESCEE)
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i. e. by the condition
32lBol +Iml) . _ 27l
AB—1pl) 34 —1pl)

<1

we get
@Bl D) 2l ) &
<1 G- 1p1]) <—rm>>z”'f"' o0
<olPol +Iml | 2!70! ol + ratol_ _ SBlml iy njan|
R = R s L7y Rl B g Ty
Similarly,
S —1){ol + 1]
nX::zn |fﬂ| < X:: )(Tl—‘ﬁ ’)( ) |fn 1|
o 2 m\ L o e
R By ey Yo 1o K B ) DY e gy
Bl e Dl /el 97o|
AT ,1;2 it 1= 1m0 e aE e
= (2 - oS a
*Z CER T LR Y ey epray
9|,30|+|’Y1|/2 2 — 16 |70| 2
\5o\+m\ 4!70! 9\70\ - n2|ay|
S ST Ty |’f‘+ G- 1A |)+Z(n—1)(n—|ﬁ1|)
i. e. by the condition
9(2|Bo| + |711) 4|0 <1
8G—1B) 30— |6
we get
~9Q2[Bol + ) 4ol 2
(1 SG—1p1l)  3(- |ﬁ1|>2”'f” o
Bol+lnl . Svl . 4l laol ]
<4 TR Tae-mD Tz \muwr*Z(n—l)(n—mlw

In view of Lemma 3 from (20) and (21), as in the proof of Proposition 1, we obtain the following
theorem.

Theorem 2. Lety; # 0, a172 —apy1 = B1+ 72 =0, |B1| < 2 and R[A] > 1. Then there exists a
solution given by (19) of differential equation (3) with R[f] = R[A], which by the condition

> e @B+ D) 2l
Lo Dm—TBD S 46-TA) G- A
Bl Iml 3l 2l aof

2= g1l 2@ —1Al) 2=l |2l
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is close-to-convex (if ag = 0 then starlike) and by the condition

(e 9]

|| <1 2@+ [ml) 4l

LoD ST 8G-1A)  3G- ]
Bl Il vl 4ol aof
2B 26— 2-1B]

is a convex function in ID.
In the case of real parameters 7y, and 1 as above it is easy to obtain following statement.

Proposition 4. Let v, > 0, a17y2 —apy1 = P1+ 72 = 0, p1 > —2 and R[A] > 1. Then there
exists a solution given by (19) of differential equation (3) with R[f] = R[A], which by the
condition

i njay| <1 32Bol+Im| 2|70 1Bol + |71 3lvl  2[vollaol
S m—1)(m+p1) ~ 4 4B+p1) 3(4+p) 24+B1 283+B1) (Q2+B)n

is close-to-convex (starlike if ag = 0) and by the condition

£ ol 92lsin /90l Al inl (/2] sl
= (n—1)(n+p1) 8 3+ 4+ By 2+ By 3+ B (24 B1)72

is a convex function in D.

3 CLOSE-TO-CONVEXITY AND CONVEXITY IN THE CASE 7, = 0

In this case from (4) it follows that ayp = 0, i. e. fy can be arbitrary number, and we choose
fo = 0. Then B4 f1 = a;. Since we are finding univalent solutions f; # 0. Therefore, two cases
are possible:

3a) a1 # 0and B # 0;
3b) a; = ﬁl =0.

By the condition 3a) a solution of equation (3) has the form

fz) = %z + i fuz", (22)
n=2

where the coefficients f, are defined by recurrent formula
1’1(1’[ + ﬁl - 1)f" + (ﬁO(n - 1) + ’Yl)fn—l + 'YOfan = Ap,
from which by the condition n + 1 — 1 # 0 for all n > 2 it follows that

Bo(n—1)+m
n(n+p—1)

_ Y an
f?l__ fnfl_—o_l)fn—Z‘i‘ (

n(n+ B nn+p—1)"
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whence by the condition |B1| < 1 we get

ylfil < 3t B I Gy g,y

n=2 n:2 - (1’l—|[31|
70l |an|
+ |y —
L el X
!ﬁoH\%\ |Bol + |71l/n |70l = |vol/n
+ Y P TL R )l + p
EETARA ,;2 S R U AR Vs ]
|an| |Bol + |71]/2 o |v0l/2
+ nl + n
I I IR PRt
|Bol + |71/ |a1] la1]] 0l - |an|
+ + ,
TR R TG RyR DY oy
i. e. by the condition
Bol +ml/2  Ivol/2 _
2— B 3—|B1]
we obtain
+ 2 2 s
(1_|f30|_|’71|/ B |ﬁ)|/ )anfnl
2 ’.Bl‘ 3 ‘51’ n=>2 (23)
|Bol + |71/ |a1] n la1]] 0l +i |an| .
= 1—=B1] Bl 2= B1l) = (n—B1] 1)
Similarly,
2 n?  (n—1)|Bol + 7
nX_:Z |fﬂ|_nX:2(n_1)2 n(ﬂ—\ﬁll ) ( )|fn 1|
n? "70’ ”’an‘
+ wal+ Y
,E(n—z>2n<n—|ﬁ|—>< Plhal+ X et
|Bol + |71] |a1] ”+1|ﬁo|+|’h|/” 2 3|70l
T L 4 5 A
> n+2 |yl 2 njay| — 32(Bol + |71 2
+ A+ Y e < Y ST e
L e e L S L e
|70l o |l30|+|’h||ﬂl| 3|ﬂ1||70| nla,|
+ al 2 + vy
L gl + 2 e e L Ty
i. e. by the condition
32[Bol + [71] 70l
— 1
2B 3-1pl T
we get
< 32|Bo| + |71 70 )“’ 2
11—+ - Y | ful
4 2 — 3 —
|B1] B1l ) = )

ol il lor] . Bmllvol @
e R TR N R Ty R W crpme vy pu

In view of Lemma 3 from (23) and (24) in the usual way we obtain the following theorem.
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Theorem 3. Let v, = 0,41 # 0, 1 # 0, |f1| < 1 and R[A] > 1. Then there exists a solution
given by (22) of differential equation (3) with R[f] = R[A], which by the condition

i |ax] <1_ |Bol +1711/2+ |70l |70l/2 \50’+’71’> |a1]

= (n— g1 =1) — |1l 3-8l 1|1l / Il
is starlike, and by the condition

i njay| < < ~32|Bol + il + 4ol ol _2|ﬁo|+|’h|> |a1]

= (n—[B1| = 1) 4 2 — B 3—|B1] 1—1[B1| / |B1

is a convex function in ID.
For a real parameter $; in the usual way we obtain the following proposition.

Proposition 5. Lety, = 0,a7 # 0, B1 # 0, 1 > —1 and R[A] > 1. Then there exists a solution
given by (22) of differential equation (3) with R[f] = R[A], which by the condition

i el <1_ [Bol + [11l/24 |70l [70]/2  |Bol + |')’1|> |a1|
Tl—l—ﬁl—l) 2+ B 3+ B 14 B |B1]

is starlike, and by the condition

i nla| << ~32|Bol + il +4lvol ol _2|ﬁo|+|71|> |a1]
= (n—i—ﬁl—l) - 4 2+ B 3+ B 14+ B ‘51‘

is a convex function in D.

If the condition 3b) holds then we can choose f; = 1 and search a solution in a form

flz)=z+ ) fuz", (25)
n=2
where the coefficients f, are defined by recurrent formula
Bo(n —1) +m Yo ay
= - [P (R T [ 2
fi n(n—1) fu-1 n(n—l)f” 2+n(n—1) (26)
Then
= ol +1m Y| o« |70 a
L nlfal < Ipol+ bl 1 P g Do 3 g+ 3
n=2 n=2 n=2
— 2|Bo| + |71 Y0 Y0 a
< M \fn\+2’ | !fn!+!ﬁo\+wr+‘ ‘+Z ‘”’
n=2

and by the condition (2|Bo| + |v1])/4 + |70|/6 < 1 we get

oo oo ‘

(1= @Bol + 1) /4~ 1301/6) Y. nlful < B0l + il + lvol/2+ 3 AL @)
n=2 n=2
Similarly,
o 2 o 2|Bol(n—1) + |71 o 2 |70| . ”|ﬂn|
2££n|fh|§ 2:’1 n(n__ ) Uﬁ—1|+'2:71 _ )Uh*2y+ 2: _

Yo — 1|a
< 2(1Bol + ) + X 2(2lol + Il 2|fn|+3|vo|/z+2’3’ A+ L
n= 2 n=2
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i. e. by the condition 3(2|Bo| + |71])/8 + |y0]/3 < 1

[ee]

(1=3(2lBol + 111)/8 = 70l /3) }_ m?Iful < 2(1Bol +[71]) +3lvol /2 + Z

n=2 n= 2

nlan|

— (@8

In view of Lemma 2 from (27) and (28) in the usual way we obtain the following theorem.

Theorem 4. Let v, = a9 = p1 = a1 = 0 and R[A] > 1. Then there exists a solution given by
(25) of differential equation (3) with R[f] = R[A], which by the condition

(e 9]

a 3 5 2
DR NES R NI PRI (29)
n=2

is starlike, and by the condition

© |ay| 11 19 11
<1——|Bo| = —|m| - — 30
n§:2', 1 = 1= lBol = g Iml =l (30)

is a convex function in D.

4 GROWTH OF ENTIRE SOLUTIONS

If n(n+pB1 —1)+ 72 # 0forall n > 2 by Lemma 1 a function given by (1) can be an entire
solution of equation (3) only if the function A is entire.

For an entire function (1) let M¢(r) = max{|f(z)| : |z| = r}, and for the characteristic of
the growth of My (r) we will use generalized orders. To give a definition of generalized order
we denote, as in [11], by L a class of continuous nonnegative on (—oo, +00) functions « such
that a(x) = a(xg) > 0 for x < xp and a(x) T +o0as xg < x — +oo. We say thata € L°,
ifa € Land a((1+4+0(1))x) = (1 +o0(1))a(x) as x — +oo. Finally, « € Ly, if « € L and
a(cx) = (14 0(1))a(x) as x — oo for each fixed ¢ € (0, +00), i. e. « is slowly increasing
function. Clearly, Ly; C L°. The value

rm n Mg (r))
uplf] = HHOW

is called [11] generalized order of f. The following lemma is true.

(weL,Bel)

Lemmad4. Ifa € Ly, B € L, B(x +0(1)) = (1+0(1))B(x) as x — +oco and f is an entire
transcendental function then g,5[f'] = 0aplf]-

Proof. Indeed, from the integral formula of Cauchy it easily follows that M f/( r) < Mg(r+1),
whence we get 0,5[f'] < 0up[f]. On the other hand, since f(z) f f'(t)dt, we have

Mg(r) < rMgp(r)+|f(0)] and, thus, In M¢(r) < In Mg (r) +1n r+0(1) = (1 +0(1))In Mg (r)
as 7 — 00, because the function f is transcendental. Hence we get 0,4(f] < 0ap[f’]. Lemma 4
is proved. O

We will use the theory of the value distribution of Nevanlinna. For an entire function f we
put

27
T(r,f) = 5 [ 10" £e)]dg.
0

This function is said to be a characteristic function of Nevanlinna. It is known that
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Lemma 5. If« € Ly, B € L, B(x +0(1)) = (1 +0(1))B(x) as x — +oo and f is an entire
transcendental function then

= a(T(r,f))
0uplf] = YETJ{‘OOW- (31)
Proof. Indeed, in [3, p. 54] it is proved that for 0 < r < rq
T(r,f) <Wn* My(r) < 25000, ). (32)
=

Choosing r; = 2r and using (32), in view of the conditions a € L; and 8 € L hence we obtain

— a(T(r,f)) _ 7= a(nMs(r)) _ — a(3T(2r,f))
rgl}rloo B(In ) = r—>+wW = rllffoow
_ G I S) o 2T )

r—+ f(Inr—1In2) rot+e0 B(lnr) ~
Lemma 5 is proved. 0
Now we prove the following theorem.

Theorem 5. Leta € Ly, B € L, a(ln x) = o(a(x)), B(x +0(1)) = (1+0(1))B(x), a(x) =
o(B(x)) as x — +o0 and f be an entire transcendental solution of the differential equation

ag(2)w + a1 (2)w' + - -+ aw(2)w™ = A(z), (33)
where a; are polynomials, 0 < j < m, and A is an entire function. Then g,4[f] > 0ap|A].

Proof. If gup[f] = oo then theorem is obvious.
So we consider the case g,p[f] < -+o0. At first we remark that if Py, is a polynomial of
degree m > 1 then [3, p.47] T(r, Pyy) = mIn r + O(1) as r — +oo. Further we put

Qui(z, f) = a0(z)f(2) + a1(2)f (2) + -+ aw(2) " (2),

where 4;(1 < j < m) are polynomials and f is an entire functions. Using well-known [3, p.44]
inequalities

q q q q
T (r, f]> <Y T(r.f), T (r, f]> <Y T(r.f;) +Ing
=1 =1 =1 =1

we have
T(r, Qu(, ) <T@ f)+T(r, f)+---+T(r, f™)+0(Inr), r— +oo. (34)

By the lemma about a logarithmic derivative [3, p.122] T(r, f'/f) = Q(r, f) for each entire
function f, where Q(7, f) is denoting [3, p.122] an arbitrary function such that:

1) if f has a finite order then Q(r, f) = O(In r) as r — +o0;

2) if f has an infinite order then Q(r, f) = O(In T(r, f) +In r) as r — +o0 outside, possibly,
some set of finite measure.
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Clearly, Q(r, f) £ Q(r, f) = Q(r, f) and AQ(r, f) = Q(r, f) [3, p-122]. We remak also that
since f has a finite generalized order then in view of (31) T(r, f) < a~!(gB(In 1)) for ¢ > 0up|f]
and r > rg. Hence it follows that Q(r, f) = O(In a~'(¢B(In 7)) +1In r) as r — -+oo and by
Lemma4 Q(r, f') = O(In a1 (0B(In 7)) +1In r) as r — +co.

Therefore,
T(r,f'Y=T <r,ff7/> <T(r,f)+T <r,f7/> =T(r,f)+Q(r,f)
=T(r,f)+O0(na YoB(In 7)) +1Inr), r— +oo.
Similarly,

s =T <r'f/]}_/’l> < T(r, f)+Q(r, f) =T(r, f) + Oin a™ (of(In 1)) +1n 1), r = +00,

et cetera. As a result from (34) we will get
T(r, (-, ) < (m+1D)T(r, ) +O(n a  (0B(In 7)) +1In7r), r— +oo. (35)

Since f is an entire solution of the differential equation (33), we have (), (z, f) = A(z). There-
fore, since a € Lg;, in view of (31) and (35) we obtain

— a(T(r,4) _ — a((m+1)T(r,f) +Kiy(In a1 (eB(In 7)) +In 1))
onplA] = lim “Blnr) = AT é(ln )
< Tm a(Ky max{T(r, f), In a=1(0B(In 7)), In r})
T r—+oo ,3(11’1 7’)
_ T a(max{T(r, f), ma=(eB(In 1)), Inr})
r—-oo B(In r)
_ Tm max{a(T(r, f)), a(ln a=(gB(In 7))), a(In r)}
r—oo B(In r)
_ I a(T(r, f)) +a(ln a=(0B(In 1)) + a(In r)
r—>+o00 [S(ln 1’)
(T, f) | allna(oB(n 1) | — a(in)
= rglfoo B(In r) R B(In r) * VEI—IJOO B(lnr)
Since a(x) = o(B(x)) as x — 400 we have ggi :3 — 0 as r — +oco. Simultaneously,
o a(In a=(oB(In r))) _ a(ln a~'(ox)) _ o a(lnx)
r—-oo B(In r) x—+00 x x—too  w(x)
Therefore, g,5[A] < 04p[f] and Theorem 5 is proved. O

If we choose a(x) = In x and B(x) = x for x > x( then we come to the following statement.

Corollary 1. If function f be an entire transcendental solution of the differential equation (3)

then o[f] > o[A], where o[f] = lim M

r—oo Inr

is the order of f.
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We remark that the contrary inequality is not true in general. Indeed, if for example By =
-1, 1 =71 = 72, —1 < 79 < 0and all a, = 0, then [13] there exists an entire solution f of
equation (3) such that

in (s, ) = Z50 (Igol + o+ 0l ) v, 1 4o

Clearly, in this case 0[A] =0 < 1 = ¢[f].
Suppose that 72 = a9 = 1 = a1 = Bo = 71 = Y0 = 0and A(z) = Y ,a,z" is an

entire function. Then equation (3) has the form w” = Y%° ,a,z"~2 and the function f(z) =
z+ Yo ﬁz” is a solution of this equation. Using the formula of Hadamard of the

order it is easy to prove that o[A] = ¢[f], i. e. the estimate g[A] < o[f] is sharp.

If 045[f] = 0 then for the characteristic of the growth of f it is used the belonging to gener-
alized convergence classes. For « € L and B € L we will say that an entire function f belongs
to generalized convergence class if

T a(ln My(r))

Choosing r; = 2r from (32) we get T(r, f) < In™ M(r) < 3T(2r, f). On the other hand, in [10]
itis proved thatif & € L0 then « is RO-increasing [8], 1. e. forevery hh € [1,4],1 < a < +0c0, and
all x > xg the inequality a(hx)/a(x) < M(a) < +oo is true. Therefore, if & € LY, B € L and
B(x+ O(1)) = O(B(x)) as x — +oo then (36) holds if and only if

[ (T, f))

/ iy < oo 37)
ro

Using (35) we prove the following theorem.

Theorem 6. Leta € L%, B € L, B(x + O(1)) = O(B(x)) as x — +oo and
tfmmalwu»>

dx < +oo. (38)
VN 6y
0
Suppose that f is an entire transcendental solution of the differential equation (33) where a;
are polynomials, 0 < j < m, A is an entire function and 0up [f] = 0. Then in order that f

belongs to generalized convergence class, it is necessary that A belongs to this class.
Proof. Since gup[f] = 0, we have Q(r, f) = O(In &~ (B(In r)) 4 In r) as r — +o0 and from (35)
as above in view of the condition « € L° we obtain
a(T(r,A)) o _ [ a(T(, Q- f)))
dr = d
rB(In r) rB(In r)
o

Tal((m+1)T(r, f) + Ki(ln a1 (B(In 7)) +In 7))
Sm/ rB(In r) dr

/ a(Ky max{T(r, f), na='(B(In r)), In r})
B(In r)

< M(K,) / a(T(r, f)) +a(In a1 (B(In 7)) + a(In 7) "

r

IN

rB(In r)
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® a(lnr)

Since f is an entire function, from (36) it follows that [

o rB(In r)

dr < 400, and in view of (38)

7a(ln a1 (Bn 1)), _ ]%(m a~1(B(x)))

dx < 4-o0.
rp(In ) B(x)
Therefore, (37) implies [ Mdr < +o00. Theorem 6 is proved. O
ro rlB(ln 1’)

For entire functions of the minimal type of the order ¢ € (0, +c0) G. Valiron [16, p.18]

°In Mg (r)

introduced the convergence class by the condition f =S| dr < +oo. If we choose a(x) = x
r

and B(x) = e for x > xp, then from Theorem 6 we get the following statement.

Corollary 2. If an entire function f is a solution of the differential equation (3), then in order
that f belongs to the convergence class of Valiron, it is necessary that A belongs to this class.

Clearly, from the belonging of the function A to the convergence class of Valiron the be-
longing of the function f to this class does not follow. On the other hand, an entire solution of
the differential equation z>w” = A(z) belongs to the convergence class of Valiron if and only
if A belongs to this class.

Finally we will consider a linear differential equation of the endless order

Y- 2l = @), (39)
= n!
where the characteristic function ¢(t) = Z —t” is entire and has a growth not higher than

=0
the normal type of the first order, and ® is an ent1re function.

A.O. Gelfond [2] proved that equation (39) for every 6 > 1 has an entire solution f such
that

In My(r) < C(6) In Mo(6r), r>rq, (40)

In Mf(t)

where C(0) does not depend on r and In M((r) = rmax { ;

1<t < r}. Using this
result we prove the following statement.

Proposition 6. Equation (39) has an entire solution f such that:

1) ifa(e*) € Ly, p € L, B(x +0(1)) ~ B(x) and a(x) = o(B(Inx)) as x — +oo, then
Qaﬁm < szﬁ[q)]/'

2) ifa(e*) € L9 B € L, B(x +O(1)) = O(B(x)) as x — +oo and f dr < +oo, then

rB( ln r)

the belonging of ® to the generalized convergence class implies the belonging of f to this
class.
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Proof. Clearly, In M¢(r) < In Mg(r) < rln My(r) for r > 1. Therefore, if a(e*) € L and
B(x+ O(1)) ~ B(x) as x — +oo then from (40) we have

_ oo aInMg(r) o a(nMy(r)) _ —— a(C(f)In Mo(6r))
eaplf] = Bim —z i< lm —ra e < m =
— a(InMo(r)) _ — a(rlnMo(r)) - a(exp{lnr+Inln Me(r)})
= iy ST pinn = Binr)
< Tm a(exp{2max{In r,Inln Me(r)}}) _ m a(exp{max{In r,Inln Me(r)}})
r—+oo B(In r) F—400 B(In r)
= max{a(r),a(In Me(r))} = —— a(r)+a(ln Mo(r))
B rEToo B(In r) = rgrpoo B(In r) = Qupl®l:
The firs part of Proposition 6 is proved.
Similarly, if a(e¥) € L, B(x + O(1)) = O(B(x)) as x — 4o0 and [ %d?’ < oo,

then

T a(In My (r)) T 4(C(6) In Mo (6r)) 7 a(rln Mo (r))
/ rB(In r) ar < / rB(In r) ar < My / ’ﬁ(l—n”)dr

ro

<M / a(exp{2max{In 7,Inln Mcp(”)}})dr < Mle/ a(r) +aln McD(r))dr < 400,
o

rB(In r) rB(In r)

0

where M; = M;(0) and M, = M;(2). The proof of Proposition 6 is completed. O
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MyasBa O.M., llepemera M.M., Tpyxan YO.C. Baacmusocmi poss’a3kie 00H020 HeodHopioHo20 dugpeper-
yianvHo20 pisHaHHa Opyeo2o nopadky // Kapmarceki Matem. my6a. — 2019. — T.11, N22. — C. 379-398.

Hexait creneresmi psia A(z) = Y 5 anz" Mae paaiyc 36ixHOCTi R[A] € [1, +00]. AAst HEOAHO-
piaHOTO AMdpbepeHIiaAbHOTO PiBHSIHHS

2w + (Boz® + P1z)w’ + (7022 + Mz + 12)w = A(z)

3 KOMIIAeKCHMMM KoedpillieHTaMl BMBUAIOThCSI TeOMeTPUUHI BAACTUBOCTI B OAMHIMYHOMY KpPY3i 110ro
PO3B’sI3KiB (OIMYKAICTB, 3ipKOBiCTb, 6AM3BKICT A0 OMYKAOCTi). PosrasiaaeTbest ABa Bumaaku: o 7# O
iy, = 0. TakoX MM PO3TASIAQEMO BMITAAKM AIVICHMX IIapaMeTpiB IIbOrO PiBHSIHHs. AOBeAeHO, IO
AASL PO3B’SI3Ky f LIBOTO PiBHSIHHS paaiyc 36ixHOCTi R[f] AopiBHIOe R[A] i 3HaIAEHO peKypeHTHi
pOpMyAM AAST BHAXOAKEHHS KOe(pillieHTiB CTEIIeHeBOro pO3BMHEHHS f(z). AAS IIAOTO PO3B’SI3KY
AOBEAEHO, III0 TIOPSIAOK PO3B’SI3KY f He MeHIt HiX mopsiaok dpyskuii A (o[f] > o[A]) i ouinka e
TOYHOI. AHAAOTiUHA HEPiBHICTh AOBEAEHA AAST y3araAbHeHMX MOPSAKiB (0up[f] > 0up[A]). Anst mi-
AOTO PO3B’sI3Ky IBOTO PiBHSHHSI BUBUEHO HAAEXKHICTb AO KAacy 36ixHocTi. Hampukiani posrasiaae-

oo
c . . . an .
ThCSI AiHiliHe AMdpepeHITiaAbHe piBHSHHS HeCKIHUeHHOTO TIOPSIAKY ) —|w(”) = ®(z), i BUBUaETHCS
n=0 1
MOXKAVBE 3POCTaHHSI JIOr0 pO3B’SI3KiB.

Kntouosi cnoea i ppasu: AmdpepeHITiarbHe piBHSHHSI, OIYKAICTD, 3ipKOBICTD, 6AM3BKICTH A0 OIIy-
KAOCTi, y3araAbHEHMIT TIOPSIAOK, KAAC 361KHOCT].
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PATTABIRAMAN K12

INVERSE SUM INDEG COINDEX OF GRAPHS

The inverse sum indeg coindex ISI(G) of a simple connected graph G is defined as the sum of
% over all edges uv not in G, where dg (1) denotes the degree of a vertex u of G.
In this paper, we present the upper bounds on inverse sum indeg coindex of edge corona product
graph and Mycielskian graph. In addition, we obtain the exact value of both inverse sum indeg
index and its coindex of a double graph.

Key words and phrases: inverse sum indeg index, edge corona graph, Mycielskian graph, double

graph.
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INTRODUCTION

Let G be a connected graph with vertex set V(G) and edge set E(G). We denote by §(G)
and A(G) the minimum and maximum vertex degrees of G, respectively. A topological index
or molecular descriptor of a graph is a parameter related to the graph; it does not depend on
labeling or pictorial representation of the graph. In theoretical chemistry, molecular structure
descriptors (also called topological indices) are used for modeling physicochemical, pharma-
cologic, toxicologic, biological and other properties of chemical compounds. Several types of
such indices exist, especially those based on vertex and edge distances.

Molecular descriptors, results of functions mapping molecule’s chemical information into a
number [16], have found applications in modeling many physicochemical properties in QSAR
and QSPR studies [8, 6]. A particularly common type of molecular descriptors are those that
are defined as functions of the structure of the underlying molecular graph, such as the Wiener
index [18], the Zagreb indices [4], the Randi¢ index [14] or the Balaban J-index [5]. Damir
Vukicevi¢ and Marija Gasperov [17] observed that many of these descritors are defined simply
as the sum of individual bond contributions.

Among the 148 discrete Adriatic indices studied in [17], whose predictive properties were
evaluated against the benchmark datasets of the Internation Academy of Mathematical Chem-
istry [7], 20 indices were selected as significant predictors of physicochemical properties. In
this connection, Sedlar et al. [15] studied the properties of the inverse sum indeg index, the
descriptor that was selected in [17] as a significant predictor of total surface area of octane
isomers and for which the extremal graphs obtained with the help of Math. Chem. have a
particularly simple and elegant structure. The inverse sum indeg index is defined as

dg(u)dg(v
S0 = £ ————= T it

uv€E(G) dg(u) ' dg(v) uveE(G)

YAK 519.17
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The first Zagreb index My (G) is the equal to the sum of the squares of the degrees of the
vertices, and the second Zagreb index M;(G) is the equal to the sum of the products of the
degrees of pairs of adjacent vertices, thatis, M1(G) = Y d2(u)= ¥ (dg(u)+dg(v)),

ueV(G) uveE(G)
M;(G) = Y dg(u)dg(v), wheredg(v) is a degree of a vertex v in G. For a connected graph
uveE(G)
G, the harmonic index H(G) is defined as H(G) = Y = +——2+——.
(G) ©)= Z o T@iw
The first and second Zagreb coindices are defined as M1(G) = ¥ (dg(u) +dg(v)),
uv¢E(G)
My(G) = ¥ dg(u)dg(v). Similarly, the harmonic coindex of G is defined as
uvg E(G)
AG) = ¥
uogE(G) dG(u) + dG(U) .

Motivated by the invariants like Zagreb and harmonic indices, we proposed the another
invariant inverse sum indeg coindex as

dg(u)dg(v)
dg(u) +dg(v)

TS1(G) =
uvg E(G)

Extremal values of inverse sum indeg index across several graph classes, including con-
nected graphs, chemical graphs, trees and chemical trees were determined in [15]. The bounds
of a descriptor are important information of a molecular graph in the sense that they establish
the approximate range of the descriptor in terms of molecular structural parameters. In [2],
some sharp bounds for the inverse sum indeg index of connected graphs are given. The in-
verse sum indeg index of some nanotubes is computed in [3]. Several upper and lower bounds
on the inverse sum indeg index in terms of some molecular structural parameters and relate
this index to various well-known molecular descriptors are presented in [12]. In this paper,
we present the upper bounds on the inverse sum indeg coindex of edge corona product graph
and Mycielskian graph. In addition, we obtain the exact value of both inverse sum indeg index
and its coindex of double graph.

1 EDGE CORONA

Hou and Shiu [5] introduced a kind of new graph operation, namely, edge corona product.
The edge corona product G  H of G and H is defined as the graph obtained by taking one copy
of G and |E(G)| copies of H, and then joining two end vertices of the i edge of G to every
vertex in the i copy of H. The computation for some of the topological indices of edge corona
product are resently studied in [1, 13, 5].

Lemma 1 ([9]). Let f be a convex function on the interval I and x1,x»,...,x, € I. Then
f<X1+X2+...+Xn> < f(x1)+f(x2)+"‘f(xn)
n — n

, with equality if and only if x; = xp = ... = xy.

Theorem 1. Let G; and G; be two graphs with ny, ny vertices and my, my edges, respectively.
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Then
- -
“12([;2) AI1(62)

TSI(G, e Gy) < (n2+1)m(cl)+%(m(cz)+2H(Gz)

4 2
3n2(n82 -1) 3212) n nz(ni—i- 1) <2m1n1 B Ml(G)>
(my +ny)(n3 —2my)  my(my — 1)n2(A(Gy) +2)?

2 4(3(Gy) +2)

Proof. Let x;; be the jth vertex in the ith copy of H,i € {1,2,...,m1},j € {1,2,...,n2}, and let
yx be the kth in Gk € {1,2,...,n;}. Also let x; be the jth vertex in G,.
By the definition of edge corona of G; and G, for each vertex x;;, we have dg,«c,(xij) =
dg,(xj) +2, and for every vertex yx in G1, dG,ec, (k) = dg, (yk)n2 +dg, (vk) = (n2 + 1)dg, (y)-
Now, we consider the following four cases of nonadjacent vertex pairs in G; e G,.
Case 1: The nonadjacent vertex pairs {xi]-,xih}, 1<i<m,1<j<h<mny and itis assumed
that x;x, ¢ E(Gy).

+

C; = %: Z dGl'GZ (xij)dGloGz(xih)
=1 x;x;, ¢ E(G10Gy) dc,ec, (xif) +dG e, (xin)
& (de,(xj) +2)(dc, (xn) +2)

=) L

=1 0, #E(Go) dGZ(x]‘) + dGz (xh) +4

1 1
76, (%) o, ()12 = (e, (%) +dc, (1))
dGz (x]) + dGz (xh) = 4. Thus,

By Lemma 1, we have + % with equality if and only if

1

1 (de, (%)) +2)(dg, (xn) +2) | (dg, (%)) +2)(dg, (xa) +2)
4 1221 x]‘thZE(Gz) dGZ (X]) + dGz (xh) + 4 )
My(Gy)  Mh(Ga)
24 2) | 12 2 )
= 7 ISI(Gy) + %H(Gz) + %E(Gz) + %E(Gz) + 3m1n2(8n2 - _ Bmimz‘

Case 2: The nonadjacent vertex pairs {yk,vs},1 < k < s < nj and it is assumed that
YiYs & E(G1). Thus,

IN

G

3

1 1’12(1’12 — 1)

2

(151(G2) +3( —my) +2H(Ga) +

=

~.

1

|3

Cy — 3 610G, (Yk)dG106, (¥s) y (n2 +1)*dg, (yx)da, (ys)
nytE(Graca) G606 W) Fderacas) G ) (m2 1) (e, (i) + 6 (v:))

. dey(yk)de, (Ys) _ | 1\[oT
= 2+1)yky5¢2E(Gl) T, () T de () = (n2 + 1)ISI(Gy).

Case 3: The nonadjacent vertex pairs {xi]-, Yeh 1 <i<my,1 <j<mnp1<k<nganditis
assumed that the ith edge e; 1 <i < mj in G; does not pass through y.

Note that each vertex yj is adjacent to all vertices of dg, (yx) copies of G, that is, each yy is
not adjacent to any vertex of my — dg, (y) copies of G,. Hence

v o &2, (n2+1)(dg, (x;) +2)dg, (yk)
CG = ), (m dcl(yk))]gdcz(xj)+2+(nz—i-l)dgl(yk)




402 PATTABIRAMAN K.

. 1 1 1
By Lemma 1, we obtain dg, (x))+2+(n2+1)dg, (yk) = 4(dg, (xj)+2) T 4(np+1)dg, (yi)” Thus,
13 (n2 +1)(dg, (xj) +2)dc, (yx)  (n2+1)(dg,(x;) +2)dc, (k)
C; < = ny—d +
P 41;( ' Gl(yk))]§:1< de, (xj) +2 (n2 +1)dg, (v«) )

= 31 (1 —dg, (yx)) <”2(1’lz +1)dg, (ve) + 2ma + 2n2>

k=1
2
-2
= 7;12(”1—{— 1) <271111’l1 — Ml(G)) + (mz + nZ)énl ml) .

Case 4: The nonadjacent vertex pairs {xl-]-, X}, 1 <i<l<my1<jh<ny.

Co— 46,06, (Xij)dGy0Gy (Xen) m1—1 ﬁ "Z"—: (dc,(xj) +2)(dg, (xn) +2)
X2 £E(G1oC2) dG,eG, (i) +dG e, (Xen) S de(xj) +de, () +4

Since for any vertex x; € V(G2), 6(G2) < dg,(xj) < A(G,). Hence

my(my — 1)n3(A(Gy) + 2)?

Co= 1(5(C2) +2)

From the above four cases of nonadjacent vertex pairs, we can obtain the desired result. This
completes the proof. O

1.1 Mycieskian graph

In a search for triangle-free graphs with arbitrarily large chromatic number, Mycielski [8]
developded an interesting graph transformation as follows: Let G be a connected graph with
vertex set V(G) = {v1,vy,...,0,}. The Mycielskian graphu(G) of G contains G itself as an
isomorphic subgraph, together with n + 1 additional vertices: a vertex u; corresponding to
each vertex v; of G, and another vertex w. Each vertex u; is connected by an edge to w, so
that these vertices form a subgraph in the form of a star K; ,. Some topological indices of
Myrcielskian graph were computed in [10, 11].

Lemma 2. Let G be a connected graph on n vertices and m edges. Then for eachi € {1,...,n},
we have d () (v;) = 2dg(vi), dyc)(ui) = dg(vi) + 1 and d, ) (w) = n.

By the definition of Mycielskian graph, for each edge v;v; of G, the Mycielskian graph
includes two edges, u;v; and v;u;. Now we find the upper bound for inverse sum indeg coindex

of Mycielskian graph.
Theorem 2. Let G be a graph on n vertices and m edges. Then

nn—1)—2m+ 16— 1) —m)< 2(G) N M;(G)
G

ISI(G) + i(L” — > ;

ISI(u(G)) < 5

+ H(ZG) + 3"("4_ b _ 37"1) + %(ISI(G) + Mzz( ) 4 H(ZG) + 37"1)
m+ 4 n(n—1) 2A(G)(A(G) +1)  7m  n(3n+5)
+ M)+ (T ) e 3T
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Proof. Let V(u(G)) = {v1,...,vs} and let V(u(G)) = {v1,...,0n,11,...,un, w}. By the struc-
ture of Mycielskian graph, if v;v; ¢ E(G), then v;u; ¢ E(G), and vju; & E(G).

Now we consider the following cases of nonadjacent vertex pairs in j(G).
Case 1: The nonadjacent vertex pairs {v;, v;} in u(G).

d )d ; 4d; (v;)dg (v;
c = Z y(G)(vz) y(G)(U]> _ Z c(vi) G(v]) ’ by Lemma 2
o2 EGu(6)) W6 () + w6y (), 5 ) 246 (v1) + 2dc ()
dg(v;)dg(v; _
-2y - 6(@) Z(v]) — 2151(G).
v;0;2E(G) G(Ui) + G(vj)
Case 2: The nonadjacent vertex pairs {u;, u;} in u(G).
Case 2.1: u;u; ¢ E(u(G)) and v;v; ¢ E(G).
d )d ; dg(v;)) +1)(dg(v;) +1
o - u(@) i)y (1)) y (dg(vi) +1)(dg(v)) + ), by Lemma 2.
uin @ EQu(G)) F(G) (i) +dyc) (1)) 00 2E(G) dg(vi) +dg(v)) +2
By Lemma 1, we obtain
2 = 4 0,0,2E(G) ! J dg(v;) + dc(?}j) 2
1 dc(vi)dg(vj)  dg(vi)dc(v;) dg(v;) +dg(v)) 1 3
= = + + + +2
4vivj§(G)<dG(vi) +dG(Z)]) 2 2 dG(vi) +dG(Z)]) 2)
 frec . MG Mi(G) | H(G) 3 n(n=1)
= ;(BIe) + 2+ =2+ =24 S (55— —m)).
Case 2.2: u;u; ¢ E(u(G)) and v;v; € E(G).
d )d ; dg(v;)) +1)(dg(v;) +1
o 3 u(e) (i)dy(c) (uy) 3 (d(vi) +1)(dg(vj) + ),byLemmaZ.
wit; 2E(u(G)) dy(c)(ui) +dy(c) (1)) 0;0,€E(G) dg(vi) +dg(v)) +2
Apply Lemma 1, we have
1 dg(vi)dc(vj) | do(vi)ds(vj) | do(vi) +dc(v)) 1 3
G < 7 + + + +5
2 = 4vivj§5:(G)<dG(vi> + dG(U]) 2 2 dc(vi) + dG(U]) 2)
1 Ms(G) | Mi(G) _ H(G) , 3m
= S(1s16) + 22+ 2+ =2+ ).

If ujuj ¢ E(u(G)), then there are m edges v;v; € E(G) and M m nonadjacent vertex

pairs {v;,v;} in G as well as 4(G). By Cases 2.1 and 2.2, we have the contribution of nonadjacent
vertex pair of case 2 is given by

C, = n—l) m)Cé—l—mCé’
_ 31( n—l) m) (m(G) n M22(G) n M12(G) n H(ZG) n 3n(n4— 1) 37111)
m M(G) = M;(G)  H(G) 3m
+Z<ISI(G) e R S}
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Case 3: The nonadjacent vertex pairs {u;,v;} in u(G) foreachi =1,2,...,n.

n dy) (Uidyc)(vi) I 2(dg(vi) + 1)dg (v)

G = = , by Lemma 2
’ = ey (i) +dyy6)(vi) l; 3dc(vj) +1 y
14 ’ 1
< — . .
< 3L () +2c(@) (3575 +1), by Lemman
1 16m 2n

Case 4: The nonadjacent vertex pairs {u;,v;} in u(G).

dy(c)(i)dy(c)(vj) 2(dg(v;) + 1)dg (vj)

C4 = - 7
w0 ¢E(u(G)) dy(c) (1) +dy(c)(0)) 0,0, #E(G) dg(vi) +2dg(vj) +1

by Lemma 2.

For any vertex v; € V(G), we have 6(G) < dg(v;) < A(G). Thus

nn—1) 2A(G)(A(G) +1)
o= (B -m) 36(G) +1

Case 5: The nonadjacent vertex pairs {w, v;} in u(G) foreachi =1,2,...,n.

du(c)(vi)d,(c)(w) 2(n +1)dg(v;)
(G)\Yi)%u(G) G\u;
C = £ = , by Lemma 2
in%%(c)) dyc)(vi) +dyc)(w) vlg@ 2dg(v;) + (n+1)
1 ) 1 1
< Zﬂjg%(})Z(n%—l)dG(vl)<2dc(vi) + n—|—1>’ by Lemma 1

1
= Z(n(n+1) +4m>.
From the above five cases of nonadjacent vertex pairs, we can obtain the desired results. This
completes the proof. O

1.2 Double graph

Let G be a graph with V(G) = {v1,vy,...,v,}. The vertices of the double graph G* are
given by the two sets X = {x1,xp,...,%,} and Y = {y1,y2,...,yn}. Thus for each vertex
v; € V(G), there are two vertices x; and y; in V(G*). The double graph G* includes the initial
edge set of each copies of G, and for any edge v;v; € E(G), two more edges x;y; and x;y; are

dc(“)dG(v)) . Now we find the exact value

added. For a given vertex v in G, let Dg(v) = ) To i) 1o

uv¢ E(G)
of the inverse sum indeg index and its coindex for double graph of a given graph.

Theorem 3. The inverse sum indeg index of the double graph G* of a graph G is given by
ISI(G*) =81SI(G).

Proof. From the definition of double graph it is clear that dg+(x;) = dg-(y;) = 2d(v;), where
v; € V(G) and x;, y; € V(G*) are corresponding clone vertices of v;.
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Thus from the definition of ISI, we have
dg+(u)dg+ (0) dg+(x;)dc- (x))
wweE(Gr o (1) +dc-(v) %1, €E(G*) dgs (xi) + dg+ ()
. ddc* (vi)dc+(y;) 3 dg: (xi)dc-(y;)
o) e+ (i) +de- (yj) G e+ (xi) +dc (yj)
)

ISI(G*) =

viy; €E( xiy; €E(
dG* (x])d(;* (yl) _ Z 4dG(’0i)dG( ]
x]-yiEE(G*) dG* (x]) + dG* (yz) viv]EE(G) ch (’()i) + 2!71@(’0])

= 81ISI(G).

O

Theorem 4. Let G be a connected graph with n vertices and m edges. Then ISI(G*) =
8ISI(G) + 2m.
Proof. Let V(G) = {v1,vy,...,vn}. Suppose that x; and y; are the corresponding clone vertices,
in G*, of v; for each i € {1,2,...,n}. For any given vertex v; in G and its clone vertices x; and
Y, dg(x;) = dg+(y;) = 2dg(v;) by the definition of double graph.

For v;, 4 S V(G), if 0;0; ¢ E(G), then XiX; ¢ E(G),yl]/] ¢ E(G),xzy] ¢ E(G)and YiX; ¢ E(G)

Hence we only consider total contribution of the following three types of nonadjacent ver-
tex pairs to calculate ISI(G).

Case 1: The nonadjacent vertex pairs {x;, x;} and {y;,y;}, where v;v; ¢ E(G).

dG* (yl)dG* (y]) _ dG* (Xl')dc* (X]) _ 4dG('UZ')dG'U]‘)
Yyiy;#E(G*) de-(¥i) + de- (1)) xXixj¢E(G*) dg: (xi) + dge (%)) 0;v;¢E(G) 2dc(0i) + 2d6v))

= 2ISI(G).
Case 2: The nonadjacent vertex pairs {x;,y;} foreachi € {1,2,...,n}.

1 dc* xl dc* (]/1) 1 4dc(’()l)dc ’01
Z Cdoe(x;) +de(yi) Z * 2dg (v;) +2dg(v;) ;d 6(vi) =2m.

Case 3: The nonadjacent vertex pairs {xl,y]} and {y;, xj}, where v;v; ¢ E(G).

For each x;, there exist n — 1 — dg(v;) vertices in the set {y1, 2, . . ., Y }, among which every
vertex together with x; compose a nonadjacent vertex pairs of G*. The total contribution of

these n — 1 — dg(v;) nonadjacent vertex pairs to calculate ISI(G*) is

do+ (xi)dc-(yj) 4dc(v;)dg (v;) _ 2De(o)
— _ ).
wyer(en Ger (1) T (Yj) -, dF(gr 2Aa(vi) + 246 (v))
Hence
dG*( )dG* y] _
Z2Dc ) = 4IS1(G).
i#j, xiyj£E(G*) de(xi) +do(yj) 5

Hence
ISI(G*) = dg- (xi)dc (x;) do (y)de: () & de (xi)de (1)

XfXjéE(G*) dG* (xl-) + dG* (x]) yiyjéE(G*) dG* (yl) + dG* (y]) =1 dG* (Xl') + dG* (yl)

dg (x;)dc+(y;)

= 8ISI(G) + 2m.
i), vt E(G) 96" (x;) +dg=(y)




406

(1]

(2]

(3]

(4]

(5]
6]
(7]

8]
9]

[10]
(1]

[12]

(13]

[14]
(15]
(16]
(17]
(18]

PATTABIRAMAN K.

REFERENCES
Abdolhosseinzadeh I. R., Rahbarnia F., Tavakoli M., Ashrafi A. R. Some vertex-degree-based topological indices
under edge corona product. Ital. ]. Pure Appl. Math. 2017, 38, 81-91.

Dosli¢ T., Azari M., Falahati-Nezhad F. Sharp bounds on the inverse sum indeg index. Discrete Appl. Math. 2017,
217, 185-195.

Falahati-Nezhad F., Azari M. The inverse sum indeg index of some nanotubes. Studia Ubb Chemia, LXI 2016, 1,
63-70.

Gutman I., Trinajsti¢ N., Graph theory and molecular orbitals. Total rt-electron energy of alternant hydrocarbons.
Chem. Phys. Lett. 1972, 17, 535-538.

Hou Y., Shiu W.C. The spectrum of the edge corona of two graphs. Electron. J. Linear Algebra 2010, 20, 586-594.
Karelson M. Molecular Descriptors in QSAR/QSPR. Wiley-Interscience, New York, 2000.

Milano Chemometrics & QSAR research group, molecular descriptors dataset.
http:/ /www.moleculardescriptors.eu/dataset/dataset.htm (accessed 18.04.14).

Mycielski J. Sur le colouring des graphes. Colloq. Math. 1955, 3, 161-162.

Niculescu C., Persson L.E. Convex functions and their applications: a contemporary approach. Springer, New York,
2006.

Pattabiraman K. On Topological Indices of Graph Transformation. Int. ]. Appl. Comput. Math. 2017, 3, 1171-1184.

Pattabiraman K. Degree and Distance Based Topological Indices of Graphs. Electron. Notes Discrete Math. 2017,
63, 145-59.

Pattabiraman K. Inverse sum indeg index of graphs. AKCE Int. J. Graphs Comb. 2017, 15 (2), 155-167
doi:10.1016/j.akce;j.2017.06.001.

Rinurwati, Slamin, Suprajitno H. General results of local metric dimensions of edge-corona of graphs. International
Mathematical Forum 2016, 16 (11), 793-799. doi:10.12988 /imf.2016.67102

Randi¢ M. On characterization of molecular branching. J. Am. Chem. Soc. 1975, 97, 6609-6615.

Sedlar J., Stevanovi¢ D., Vasilyev A. On the inverse sum indeg index. Discrete Appl. Math. 2015, 184, 202-212.
Todeschini R., Consonni V. Handbook of Molecular Descriptors. Wiley-VCH, Weinheim, 2000.

Vukicevi¢ D., Gasperov M. Bond aditive mdelling 1. Ariatic indices. Croat. Chem. Acta 2010, 83, 243-260.
Wiener H. Structural determination of paraffin boiling points. J. Am. Chem. Soc. 1947, 69, 17-20.

Received 15.10.2018

IMarrabipaman K. Ob6opomto nidcymosyrouuii indee koindexc epapie // Kapmarcbki MaTeM. my6A. —
2019. — T.11, N22. — C. 399-406.

ObopoTHO TiacyMoBytounit inaer xoitaekc 1SI(G) mpoctoro 38’s3H0T0 Tpacdy G BU3HAUEHO SIK
dg(w)dg(v)
dg(u)+dg(v)
Hu u B G. Y CTaTTi BCTAaHOBAEHO BepXHi 06Me>XKeHHs Ha 060POTHO MiACYMOBYOUNMIA iHAET KOIHAEKC

rpadpy A0OYTKy BepIMH KOpoHM Ta Tpacdpy Mumeackiaga. Kpim Toro orpumano TouHe 3HaUeHHs
060POTHOTO MiACYMOBYIOUOTO iHAET IHAEKCY i KOIHAEKCY AASI IIOABIMHOrO rpady.

CyMa AOAAHKIB 110 BCiX pebpax uv, siki He Aexartb y G, ae d (1) O3HAUAE CTEIiHb BepIL-

Kntouosi croea i ¢ppasu: ob6OpOTHO TiACyMOBYIOUMIZ iHAET iHAEKC, Tpadd BepIIMH KOpOHM, Tpad
MumreackiaHa, TOABiVHYDE Tpadp.
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PIRZADA S.}, GANIE H. A.1, ALGHAMDI A. M.2

ON THE SUM OF SIGNLESS LAPLACIAN SPECTRA OF GRAPHS

For a simple graph G(V, E) with n vertices, m edges, vertex set V(G) = {v1,vp,...,v,} and
edge set E(G) = {ey, e, ...,en}, the adjacency matrix A = (a;;) of G is a (0,1)-square matrix
of order n whose (i, j)-entry is equal to 1 if v; is adjacent to v; and equal to 0, otherwise. Let
D(G) = diag(dy,dy, ..., d,) be the diagonal matrix associated to G, where d; = deg(v;), for alli €
{1,2,...,n}. The matrices L(G) = D(G) — A(G) and Q(G) = D(G) + A(G) are respectively called
the Laplacian and the signless Laplacian matrices and their spectra (eigenvalues) are respectively
called the Laplacian spectrum (L-spectrum) and the signless Laplacian spectrum (Q-spectrum) of
the graph G. If 0 = py, < 1 < -+ - < py are the Laplacian eigenvalues of G, Brouwer conjectured

k
that the sum of k largest Laplacian eigenvalues Si(G) satisfies Sx(G) = ¥ y; < m+ (k;l) and this
i=1
conjecture is still open. If 41,42, ..., g, are the signless Laplacian eigenvalues of G, for 1 < k < n,

let 5,7 (G) = YX | gi be the sum of k largest signless Laplacian eigenvalues of G. Analogous to

Brouwer’s conjecture, Ashraf et al. conjectured that S;(G) < m+ (szrl), foralll < k < n. This
conjecture has been verified in affirmative for some classes of graphs. We obtain the upper bounds
for S (G) in terms of the clique number w, the vertex covering number T and the diameter of the
graph G. Finally, we show that the conjecture holds for large families of graphs.

Key words and phrases: signless Laplacian spectra, Brouwer’s conjecture, clique number, vertex
covering number, diameter.
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INTRODUCTION

Let G(V,E) be a simple graph with n vertices, m edges, having vertex set
V(G) = {v1,v2,...,vn} and edge set E(G) = {ey,ey,...,em}. The adjacency matrix A = (a;;)
of G is a (0,1)-square matrix of order n whose (i, j)-entry is equal to 1 if v; is adjacent to
v; and equal to 0, otherwise. Let D(G) = diag(dy,dy,...,d,) be the diagonal matrix associ-
ated to G, where d; = deg(v;), for all i € {1,2,...,n}. The matrices L(G) = D(G) — A(G)
and Q(G) = D(G) + A(G) are respectively called the Laplacian and the signless Laplacian
matrices and their spectra (eigenvalues) are respectively called the Laplacian spectrum (L-
spectrum) and the signless Laplacian spectrum (Q-spectrum) of the graph G. These matri-
ces are real symmetric and positive semi-definite. Welet 0 = pu, < pp—1 < -+ < pp and
0 <gn <gu_1 <--- < g to be the L-spectrum and Q-spectrum of G, respectively. It is well
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known that the multiplicity of the Laplacian eigenvalue y,, = 0 is equal to the number of con-
nected components of G and also y,,—; > 0if and only if G is connected. Moreover y; = g;, for
alli € {1,2,...,n},if and only if G is bipartite [4].

k
For k € {1,2,...,n}, let x(G) = ¥ p; be the sum of k largest Laplacian eigenvalues of G.

i=1
Also, let df(G) = [{v € V(G) : dy > i}|, fori € {1,2,...,n}. In 1994, Grone and Merris [12]
observed that for any graph G and forany k € {1,2,...,n},

k
Sk(G) < ) di(G).
i=1

This observation was proved by Hua Bai [2] and is nowadays called as Grone-Merris theorem.
As an analogue to Grone-Merris theorem, Andries Brouwer [3] conjectured that for a graph G
with n vertices and m edges and for any k € {1,2,...,n},

k k+1
Sk(G):Zyigm—}—( : )
i=1

This conjecture is still open and is presently an active component of research. For the progress
on this conjecture and related results, we refer to [8-11,14] and the references therein.

Fork € {1,2,...,n},1et S} (G) = 21-‘21 g; be the sum of k largest signless Laplacian eigen-
values of a graph G. Motivated by the definition of Sx(G) and Brouwer’s conjecture, Ashraf et
al. [1] proposed the following conjecture about S;" (G).

Conjecture 1. If G is a graph with n vertices and m edges, then

k
k+1
i=1

forallk € {1,2,...,n}.

Using computations on a computer Ashraf et al. [1] verified the truth of this conjecture for
all graphs with at most 10 vertices. For k = 1, the conjecture follows from the well-known
inequality q1(G) < 2% +n+2and m > n— 1. Also, the cases k = nand k = n — 1 are
straightforward. The conjecture is true for trees. This follows from the fact that Brouwer’s
conjecture holds for trees and that both Laplacian and signless Laplacian eigenvalues are the
same for trees. Ashraf et al. [1] showed that the conjecture is true for all graphs when k = 2 and
is also true for regular graphs. Yang et al. [16] obtained various upper bounds for S (G) and
proved that the conjecture is also true for unicyclic graphs, bicyclic graphs and tricyclic graphs
(except for k = 3). For the progress on this conjecture and related results, we refer to [1,7,16]
and the references therein.

A cligue of a graph G is the maximum complete subgraph of the graph G. The order of the
maximum clique is called the clique number of the graph G and is denoted by w. A subset S
of the vertex set V(G) is said to be a covering set of G if every edge of G is incident to at least
one vertex in S. A covering set with minimum cardinality among all covering sets is called
minimum covering set of G and its cardinality, denoted by 7, is called vertex covering number of
G.
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The distance between any two vertices 1 and v is defined as the length of shortest path
between them and the diameter of a graph G is the maximum distance among all pair of vertices
of G. If H is a subgraph of the graph G, we denote the graph obtained by removing the edges
in H from G by G \ H (that is, only the edges of H are removed from G).

Further, as usual P;, K, and K, respectively, denote the path on n vertices, the complete
graph on n vertices and the complete bipartite graph on s + t vertices. For other undefined
notations and terminology from spectral graph theory, the readers are referred to [4,13].

The paper is organized as follows. In Section 2, we obtain some upper bounds for S} (G)
in terms of the clique number w, the vertex covering number T and the diameter of the graph
G. As applications to the results obtained in Section 2, we prove that Conjecture 1 is true for
some new classes of graphs in Section 3.

1 UPPER BOUNDS FOR S, (G)

In this section, we obtain the upper bounds for S, (G), in terms of the clique number w, the
vertex covering number T and the diameter of the graph G.

Yang et al. [16] obtained the following upper bound for S;" (G), in terms of the clique num-
ber w and the number of edges m:

SH(G) <k(w—2)+2m — w(w —2). (1)

Das et al. [5] obtained an upper for S¢(G) of a graph with n vertices, in terms of the vertex
covering number T and the number of edges m. Using similar analysis, the following upper
bound can be obtained for S} (G), in terms of the vertex covering number T and the number
of edges m:

SE(G) <m+kr, (2)

with equality if and only if G = Ky ,,_1.
The following observation is due to Fulton [6].

Lemma 1. Let A and B be two real symmetric matrices of order n. Then forany 1 <k <n,

k k k

Y Ai(A+B) <Y A(A) + Y Ai(B),

i=1 i=1 i=1
where A;(X) is the it eigenvalue of the matrix X.

Let I'; be the family of all connected graphs except for the graphs G, where the vertices in
the vertex covering set S = {v1,vy,...,v,-1} of the subgraph K, have the property that there
are pendent vertices incident to some v; € S or any two vertices of S forms a triangle with a
vertex v € V(G) \ C, where C is the vertex covering set of G.

The following theorem gives an upper bound for S (G) in terms of the clique number w,
the vertex covering number T and the number of edges m of the graph G. The number of
vertices in a graph G is denoted by n(G) and the number of vertices adjacent to a vertex v is
denoted by N(v).
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Theorem 2. Let G € I'y be a connected graph of order n > 2 with m edges having clique
number w and vertex covering number T. Then, for1 <k <mn,
wlw=3)

ST(G) <k(t—1)+m— I

3)
with equality if and only if G = K.

Proof. If G € T'y is a connected graph with clique number w, vertex cover number T and mini-
mum vertex covering set C = {v1, 0y, ...,07}, then K, is a subgraph of G. Further, the vertex
covering number of a complete graph on w vertices is w — 1. Without loss of generality, let
v1,02,...,Vu—1 be the vertices in C, which belong to V(K ). The signless Laplacian spectrum
of Ky is {2w — 2, w — 2[¢~1}. After removing the edges of K, from G, the signless Laplacian
matrix of G isdecomposed as
Q(G) = QKo U (n = w)Ky) + Q(G \ Ku),
where G\ K, is the graph obtained from G by removing the edges of K. Using Lemma 1 and
the fact 5, (Ko U (n — w)Kq) = S (Ky), we have
k

k k
50(G) = ;%‘(G) <2 4i(Ko) + 3 4i(G\ Ko)

i=1 i=1
= S5/ (Kw) + 5 (G\Ky) = w(k+1) =2k + 5 (G \ Ko).

To complete the proof, we need to estimate SIQL (G\ Kw). So let Gy, Gyi1, - - -, Gr be the span-
ning subgraphs of H = G \ K,, corresponding to the vertices vy, U441, - .., 0r of C, having
vertex set same as H and edge sets defined as follows.

E(Gw) = {vwvr 1 vr € N(vw) \ {v1,02,...,00-1}}

E(Guw+1) = {vw+10t : v € N(v4p11) \ {v1,02, ..., 00} }
and in general

E(G;) = {vjvs : vy € N(v;) \ {v1,02,...,0i1}}, i=w,w+1,...,7T.
Fori € {w,w+1,...,7}, let m; = |E(G;)|. Clearly E(H) = E(Gu) UE(Gup+1)U--- UE(Gy)
and G; = Ky, U (n(H) —m; — 1)Ky, foralli € {w,w +1,...,T}. Also, it is clear that
Q(H) = Q(Gw) + Q(Gw+1) + -+ + Q(Go). (4)
The signless Laplacian spectrum of G; = Ky ,,, U (n(H) — m; — 1)K is
{m; +1,111(G)=2] glr(H)=m]}

Therefore,
SH(G) =mi+k, forall i=w,w+1,...,7T. (5)
Now, applying Lemma 1 to Equation (4) and using Equation (5) and the fact that Z]-T: wMj =

m(H) =m — w(c‘;_l), we have

k T k T
SF(H) = ;qi(ﬂ) <3 Z;%(Gj) =) 5((G)
i= j=wi= j=w
= XT: <m]-+k) =m— w(wz—l) + (T —w + 1)k
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This shows that

w(w—1)

SH(G\Ky) =S (H) <m— 5

+ (tT—w+1)k.
Therefore, it follows that
SH(G) < w(k+1) —2k+ 5 (G\ Ka)
Sw(k+1)—2k+m—w
w(w —3)

= k(T =1) +m— SE2

+(t—w+1k

Equality occurs in (3) if and only if all the inequalities above become equalities. Since G is
connected equality occurs in S (G) < S (Kw) + S (G \ Ko), only if G = K,,. Conversely, if
G=2K,,thent=n—-1, w=mn, m= @ and so equality holds in (3), completing the

proof. O

Remark 1. Fora graph G € Ty, it is easy to see that the upper bound given by (3) is better than
w(w-1)

the upper bound given by (1) for all m > k(T — w + 1) + —==—*. In particular, for the graph
with T = w and k < n — w, the upper bound (3) is better than the upper bound (1).

Remark 2. Clearly for the graph G € I'y the upper bound given by (3) is always better than the
upper bound given by (2).

Let I'; be the family of all connected graphs except for the graphs G, where the vertices in
the vertex covering set S = {v1, vy, ..., V4] } of the subgraph P, has the property that there are
pendent vertices incident at some v; € S or any two vertices of S forms a triangle with a vertex
v € V(G) \ C, where C is the vertex covering set of G.

Rocha et al. [15] obtained an upper bound for Si(G) in terms of diameter of the graph G.
Using similar analysis, the following upper bound can be obtained for S} (G), in terms of the
diameter d — 1 of the graph G.

(6)

T qin( k7t ik
SH(G) <2(m—d)+1—n+4k+ p+cos <k_7r> Cos(d)sfi(nbzg;sm( 4 ),
d

d
where p is the number of isolated vertices in the graph obtained by removing the edges of P,
from G.
The following theorem gives an upper bound for S;"(G), in terms of the diameter, the num-
ber of edges m and the vertex covering number 7 of the graph G.

Theorem 3. Let G € I'; be a connected graph of order n > 3 with m edges having diameter
d — 1 and vertex covering number T. Then for1 <k <mn,

.

51(6) < (v 2]+ 2)k-+m—d-+ cos (1) 4 MDD + sin(4)

with equality if and only if G = P,.
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Proof. Let G be a connected graph with diameter d — 1 and vertex cover number 7 and let
C = {v1,vy,...,0¢} be a minimum vertex covering set in G. Since the diameter of G is d — 1,
it follows that P, is a subgraph of G. Also, the vertex covering number of a path graph P, on
n vertices is |5 ]. Let vy,v,. .., Ty be the vertices in C, which belong to V(P;). The signless

Laplacian spectrum of P is {2 — 2cos(%j), 0:7€{1,2,...,d—1}}. If we remove the edges of
P; from G, the signless Laplacian matrix of G can be decomposed as

Q(G) = QR U (n —d =1)K1) + Q(G\ Py),
where G \ P, is the graph obtained from G by removing the edges of P;. Applying Lemma 1
and using the fact that ;" (P; U (n —d — 1)Kq) = 5,7 (P;), we have

Kk
Z < ) 4i(Pa) +Zq1G\Pd)—5+(Pd)+S+(G\Pd)

i=1 i=1

Z(Z 2 cos( (d_d]_1>)>+51j(G\Pd)

~.

,\..
,_\>—l

kn) cos(Z) sin(A%) + sin (A7)

)
= 2k + cos (— sin(7) —1+57(G\ P),

d

where we have used the well-known equality

=l in(nk) cos(n) + sin(n
Zcos(n]’) =5 (k) cos(n) + sin(nk) _ 1cos(nk)

1
2sin(n) 2 T2

In order to establish the result, we need to estimate S, (G \ Py).

Let GL |41/ GL 42770 Gr be the spanning subgraphs of H = G\ P; corresponding to
the vertices ’(JL |41/ L |47 0r Ut of C, having vertex set same as H and edge sets defined as
follows.

d d
E(G;) = {vjvt : vr € N(v;) \ {v1,02,...,0i-1}}, L J+1, LZJ +2,...,1.

Now, proceeding similarly as in Theorem 2, we obtain

d
ST(G\ Py) < k(t— LEJ) +m—d+1.
Therefore, from above we have
krt cos(Z) sin(4F) + sin(X7)
d sin(%)

S;(G)ng—l—cos( —1+SH(G\ Py)

s kr (kT
S(T—LgJ—I—Z)k%—m i+ cos krt cos(d)sm(dg—l—sm(d)’
2 d in(7)
and hence the result follows.
Equality occurs in (7) if and only if all the inequalities above occur as equalities. Since G is
connected, the equality in the inequality S (G) < S (P;) + S/ (G \ P;) can only occur if and
n

only if G = P,. Conversely, if G = P, then T = ij, m=n—1, d = n —1 and so it can be
seen that equality holds in (7), completing the proof. O
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Remark 3. For the connected graphs G € I, it is easy to see that the upper bound given by

(7) is better than the upper bound given by (6) for all k < ”1;"_7‘”1;”. In particular, if G € T

-15)-
is such that T < L%J +2andm > n+d —1— p, the upper bound (7) is always better than the
upper bound (6).

Let I's be the family of all connected graphs except for the graphs G, where the vertices
in the vertex set S = {v1,vy,...,0s,, U1, Uy, ... Us,} of the subgraph K, ,, s1 < sp, has the
property that there are pendent vertices incident at some v; or u; € S or any two vertices of S
forms a triangle with a vertex v € V(G) \ C, where C is the vertex covering set of G.

Let Ks, s, 51 < 52, be the maximal complete bipartite subgraph of a graph G. Using the fact
that the vertex covering number of K, 5, 51 < sy, is 51 and its signless Laplacian spectrum is
{s1+ s2, sgszfl], 5[2517”, 0}, and proceeding similarly as in Theorem 2, we obtain the following
upper bound for 5;"(G).

Theorem 4. Let G € I's be a connected graph of order n > 2 with m edges having vertex
covering number T. If Ks, s, 51 < sy, is the maximal complete bipartite subgraph of the graph
G, then

S;(G) Sk(T—FSz—Sl)—Fm—Sl(Sz—l), (8)

with equality if and only if G = K, 5, and s1 + s, = n.

If s; = s, for the graphs G € T, it is easy to see that the upper bound (8) is always better
than the upper bound (2).

2 CONJECTURE 1 IS TRUE FOR SOME MORE CLASSES OF GRAPHS

In this section, we show that Conjecture 1 holds for some more classes of graphs.

Theorem 5. If G € I'; is a connected graph of ordern > 12 with m edges having clique number
3+\/3n22—14n+9

w, then for w >
k(k+1)
2 7

SH(G) <m+
forallk € {1,2,..., 5]}

Proof. Let G be a connected graph of order n having clique number w and vertex covering
number 7. If T = n — 1, clearly G = K;, and so Conjecture 1 always holds (this is due to the fact
that Conjecture 1 holds for all regular graphs). So suppose that T < n — 2. With this choice of
T, from inequality (3), we have

-3 k(k+1
$5(G) gk(n—3)+m—% <m+ M ; ),
if k(2n — 6) < k* + k+ w(w — 3). Thatis, k* — (2n — 7)k + w(w — 3) > 0.
Consider the polynomial f(k) = k* — (2n — 7)k + w(w — 3), k € [1,n — 1]. The roots of this
polynomial are

(2n —7) + \/4n?2 — 28n + 49 — 4w (w — 3)
2

N =
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and
(2n —7) — /4n2 — 28n + 49 — 4w (w — 3)
p=! . |
Thus f(k) > 0, forall k € (—oo, ,3] U [, +-00). We will show B > 5. We have B > 5 implies
(2n —7) — \/4n2 — 28n + 49 — 4w (w — 3) n
2 2

which implies that (n — 7)? > 4n? — 28n + 49 — 4w(w — 3), and further implies that 4w? —
12w — (3n* — 14n) > 0, which gives @ > 3TV -l4n+9 ”3”22_M”+9.
Since a (3 3”22_14”+9) = 3”514 > n —1, for all n > 12, it follows that a(w) > n — 1, for all

w < 3EVin'-—l4n+9 ”’7’22’14”*9. Thus, if w > 3EV3n°—14n+9 ””“22’14””, we have proved that Conjecture 1 holds for all
ke{1,2,...,[5]} O

Let (), be a family of those connected graphs G & I'y for which the vertex covering number
T€{w—1,w,w+ 1}, that s,

O, ={Gell:T=w—-1lorworw+1}.
For the family of graphs (), we have the following observation.

Theorem 6. If G € (), then

Sk(G) <m+

holds for all k, if T = w — 1; holds for all k except fork = w —2,w — 1 if T = w; holds for all
k k < 20180t gnd k > 2= VBOtl i = o + 1.

k(k+1)
2

Proof. LetG € O),. Then T € {w — 1, w,w + 1}. If T = w — 1, from inequality (3), we have

5 (G) Sk(w—2)+m_w§m+k(k27+1),
if 2K(w — 2) < K2+ k+ w? — 3w, that is,
R (20 = )k + w? 3w > 0. ©)

For the polynomial f(k) = k* — (2w — 5)k + w? — 3w, the discriminant D = (2w — 5)? —
4(w2 —3w) = 25—8w < 0,if w > 4. This shows that (9) holds for all w > 4. By direct
calculations, it can be seen that (9) holds for w < 3. Thus, it follows that (9) is true for all k.

If T = w, from inequality (3), we have

$; (G) Sk(w—1)+m_@ Sm+k(k;—1)
£ 2k(w — 1) < K + k+ @ — 30, that is,
K = (2w =3)k+ @’ 3w 2 0. (10)

For the polynomial f(k) = k? — (2w — 3)k + w? — 3w, the roots are w — 3 and w. It follows that
f(k) <0, forallk € (w—3,w). Since k and w are integers and the only integers in (w — 3, w)
are w — 2, w — 1, it follows that f(k) > 0 for all k except k = w — 2, w — 1. Thus, it follows that
(10) holds for all k ¢ {w — 2, w —1}.

If T = w + 1, proceeding similarly as above, it can be seen that the conjecture holds for all

k k < 2w—1— \/Sw—o— and k > 2w—1+2\/8w+1_ 0
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Theorem 7. Let G € I'; be a connected graph of order n > 2 with m edges having vertex
covering number T. Let Ks, s, be the maximal complete bipartite subgraph of G. Then Con-

jecture 1 holds for all k, if T < B AC ) VSS;“” holds for all k < 2T—1—\/(2T—21)2_851(51—1) and

k> 2T71+\/(2T721)27851(5171)/I.fT > 1+\/8521(51—1)'

Proof. Using s; = s; in inequality (8), we have

k(k+1)

S;(G)SkT—i‘m—Sl(Sl—l)Sm—F > ’

! K* — (21 — 1)k +2s1(s; — 1) > 0. (11)
The roots of the polynomial f(k) = k* — (2t — 1)k + 2s1(s; — 1) are & = w and B =
w, where § = (27 — 1)? — 8s1(s; — 1). We have (2t — 1)?> — 8s1(s; — 1) < 0, which
implies that 472 — 47 — (85% —8s7 — 1) < 0, which gives T < Hivsszl(sl_l). This shows that
the discriminant of the polynomial f(k) is non-positive for all T < Hivgszl(SﬁD. That is, (11)

holds forall T < AV VSSQ(H. On the other hand if the discriminant of the polynomial f (k) is
non-negative, then (11) holds for all k > « and for all k < 8, completing the proof. O

Let G be a connected bipartite graph of order n having the vertex covering number 7. For
bipartite graphs, it is well known that T < 7. With this in mind, we have the following obser-
vation for bipartite graphs.

Theorem 8. Let G € I'3 be a connected bipartite graph of order n > 4 with m edges having the
vertex covering number . If K, 5, with sy > %, is the maximal complete bipartite subgraph of
the graph G, then

k(k+1)

Sk(G) <m+ )

forallk <% —1andk > %.

Proof. Using s; = s; in (8) and the fact that T < 7, for bipartite graphs we have

S (G) <kt+m—si(sg—1) < k(g)+m—51(51 D <m+ k(k;l)
if
kn S k(k+1) +251(Sl — 1) (12)

The right hand side of (10) is an increasing function of s;. Therefore, to prove the assertion, it
suffices to consider s; = 7. With this value of s, from (12), we have

n(n —4)

K —(n—1)k+ > 0.
: 2 n(n —4)
The roots of the polynomial f(k) =k~ — (n — 1)k + —g are
I T B e (VT
- 2 s - ) .

This shows that f(k) > 0, for all k > «; and f(k) > 0, for all k < B. By using elementary
algebra it can be seen that & < 0.85351 and 8 > 0.1464n — 1. Hence the result follows. O
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For graphs with girth ¢ > 5, Rocha et al. [15] showed that Brouwer’s conjecture holds for
all k < L%J . Using similar analysis, we have the following observation.

Theorem 9. For connected graphs with girth ¢ > 5, Conjecture 1 holds forallk, 1 <k < [£].

Using Theorem 3, the fact that

cos <krc> + cos() Sin(%z);— sin(*7)

7T
i : <2k+1
sin(%
and proceeding similarly as in above theorems, we arrive at the following observation.

d

Theorem 10. Let G € I'; be a connected graph of order n > 3 with m edges having diameter
d — 1 and vertex covering number t. Then for 1 < k < n, Conjecture 1 holds for all k, if

d
¢ < LD po1ds for all k,

21— 2(4) +7 /21— 2(4] +7-8(d - 1)

<
k< 2

and

- 21— 2|4| +7+ /21~ 2[4] +7-8(d - 1)

iy 2 7
ifr > 2[4]-7++/8(d—1)

5 .

3 CONCLUDING REMARKS

The aim of this paper is twofold. Firstly, in Section 2, we obtained some upper bounds for
the graph invariant S (G), in terms of clique number w, the vertex covering number 7 and the
diameter of the graph G. These bounds can be used to obtain the upper bounds for the signless
Laplacian energy of the graph G and so can be helpful to obtain the extremal graphs among
various families of the graphs. Secondly, in Section 3, we have used the results of Section 2 to
verify the truth of the Conjecture 1 for some more families of graphs. Although, in Sections 2
and 3, we have restricted ourselves to graphs G € {I';, I, '3}, the importance of these results
can be realized from the fact that not many families of graphs are known for which Conjecture
1 holds.
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IMipzaaa C., T'ari X.A., Aapramai A.M. IIpo cymy 6e3sHaxosux nannacianiscokux cnekmpis epacpis //
Kapmarcbxi Marem. my6a. — 2019. — T.11, Ne2. — C. 407-417.

Anst aesikoro mpocroro rpadpa G(V,E) 3 n BepimHamu i m pebpamy, MHOXIHOIO BepIIIVH
V(G) = {v1,0v2,...,vn} i MHOXMHOIO pebep E(G) = {e1, €2, . .., e}, MaTpumst cymixuocTi A = (a;))
rpacdpa G — e (0, 1)-kBaApaTHa MaTpuLIsI IOPSIAKY 1, AASI SIKOI eaeMeHTH 3 iHaekcoM (i, ) AopiB-
HIOIOTP 1, SIKIO v; CymixHa 3 v; i 0 y mpotuaexuomy sumaaxy. Hexait D(G) = diag(dy, da, . .., dn)
— AlaroHanbHa MaTpuisl, acoliitoBata 3 G, ae d; = deg(v;), aast Bcix i € {1,2,...,n}. Marpumi
L(G) = D(G) — A(G)iQ(G) = D(G) + A(G) Ha3uBaroThCsI AaTAaciaHiBehKi i 6e33HAKOBI Aamaacia-
HiBCbKI MaTpMIli, BiAITIOBiAHO, a Ix crieKTpy (BAacHi 3HaUeHHS), BIATIOBiAHO — AallAaciaHiBCBKMM cIle-
KTpoM (L-criekTpoM) Ta 6e33HaAKOBMM AaIlAaciaHiBCBKIUM cHeKTpoM (Q-criekTpoM) rpadpa G. Sximo
0= pn < pp_1 < -+ <y € AannaciagiBebKi BaacHi 3HaveHHsT G, Bpoysep npymycTus, mo cyma k
k-é—l)

k
HaM6IABIIMX AalIAaciaHiBcbKmX 3HaueHb Si(G) 3aproBoabHsIE Sp(G) = Y u; < m+ ( i e npu-
i=1

IyIIeHHs € BCe e BiakpuTuM. SIKIIo 41, g2, . . ., §n — O€33HAKOBi AamAaciaHiBCbKi BAACHI 3HaUEHHS
rpada G arsi 1 < k < n, i Hexait S, (G) = Y¥ | g; — cyma k Haitbiabimx 6e33HAKOBMX AamAacia-
HIBCBKVX BAACHMX 3Ha4ueHb G. AHaAOTiUHO A0 mpumyIneHHs: bpoysepa, Acxpad Ta iH. TpuITy CTAN,
110 S,:’ (G) < m+ (kél) aast Bcix 1 < k < n. ILle mpumymieHHsT 6yAO MATBEPASKEHO AASI AESIKMX
KAaciB rpadis. My oTpuMany BepXHe 06MeXeHHS AT S}j (G) B TepMiHax KAIKOBUX UMCEA W, UMCEA
TIOKPUTTSI BepIIMH T i AlameTpa rpadra G. 3pelIToro, MU IOKa3aAH, 10 IPUITYIIEeHHS! BUKOHY€EThCS
AAST IIIMPOKOI ciM'T rpadpis.

Kontouosi croea i ppasu: 6e33HaKOBi AamaaciaHIBChKi CIIEKTpY, IpUITyIIeHHs: bpoyBsepa, KAikosi
4lCAQ, UMCAA IOKPUTTSI BePIIVH, AlaMeTp.
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METRIC DIMENSION OF METRIC TRANSFORM AND WREATH PRODUCT

Let (X, d) be a metric space. A non-empty subset A of the set X is called resolving set of the
metric space (X, d) if for two arbitrary not equal points u, v from X there exists an element 4 from
A, such that d(u,a) # d(v,a). The smallest of cardinalities of resolving subsets of the set X is called
the metric dimension md(X) of the metric space (X, d).

In general, finding the metric dimension is an NP-hard problem. In this paper, metric dimension
for metric transform and wreath product of metric spaces are provided. It is shown that the metric
dimension of an arbitrary metric space is equal to the metric dimension of its metric transform.

Key words and phrases: metric dimension, metric transform, wreath product.
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E-mail: ponomarchuk.bogdan@gmail.com

INTRODUCTION

Let (X, d) be a metric space. It is said that a set A is the resolving set of the metric space
(X,d) if A is a non-empty subset of X and for an arbitrary different points u, v from X there
exists an element a in A, such that distances d(u,a) and d(v,a) are not equal. The smallest of
cardinalities of resolving subsets of the set X is called the metric dimension md(X) of the metric
space (X, d).

Definition of the metric dimension for metric spaces was firstly introduced by Blumenthal
in 1953 [4]. 20 years later Harari and Melter in [7] applied it to the graphs. After that the
metric dimension concept found range of applications, like in combinatorial analysis, robotics,
for finding its location, biology, chemistry etc. [14], [9], [13].

In 2013 S. Bau and F. Beardon [2] got the Blumenthal’s ideas and proceeded research of the
metric spaces metric dimension. They has managed to calculate the metric dimension of the
sphere in a k-dimensional Euclidean space. Later, M. Heydarpour and S. Maghsoudi in [8§]
calculated the metric dimensions of geometric spaces.

As well as metric dimension, Blumenthal has also described metric transforms [3], which
was studied further by other researchers, like by Schoenberg and von Neumann in scope of
Euclidian subspace metric transforms into Hilbert space subsets [12], [15].

In general, finding of the metric dimension of a finite graph is an NP-hard problem [6].
Following that, metric dimension characterization for a finite metric space is also NP-hard.
This is why there are several ways of conducting metric dimension research. One of those is
researching metric dimension of constructions of two graphs, if we know metric dimensions
of both of them. For example, metric dimensions of wreath products and cartesian products
of two finite graphs characterized in [5], [1].

YAK 519.1
2010 Mathematics Subject Classification: 05C12, 51K05, 54E35.
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In this paper we characterize metric dimensions of the wreath products of metric spaces
which were considered in [11], [10]. This construction of metric spaces was called a wreath
product because the isometry group of the wreath product of metric spaces is isomorphic
to the wreath product of theirs isometry groups. In particular, we will also show that metric
dimension of the metric transform of an arbitrary metric space is equal to the metric dimension
of this space.

1 METRIC TRANSFORM

Denote by R the set of all non-negative real numbers. Let s be a continuous monotone
increasing function and s(0) = 0. Such functions are called scales. Transformation of metric
space (X, dx) is the space (X, s(dx)), where function s(dx ) might not follow triangle inequality
[3]. Transformation is called metric, if s(dx ) is metric.

Definition 1 ([3]). If for metric spaces (X,dx) and (Y,dy) there is a bijection § : X — Y, and
scale s that for arbitrary u,v € X holds:

dx(u,v) = s(dy(g(u),8(v))),
then such metric spaces are called isomorphic.

Proposition 1. Let (X, d) be a metric space and lets : Rt — R™ be a metric transform. Then
metric basis of X is also the metric basis of the metric transform (X, s(d)).

Proof. Let V. = {v;,i € I} be a metric basis of the space (X,d). As follows from the definition
of a metric basis, for every u, w € X there is v; eV, such that

d(u,v;) # d(w,v;),

1. e. v; resolves points # and w. The function s is monotone increasing, so, we have

s(d(u,v;)) # s(d(w,v;)).

Hence, v; resolves u and w in (X, s(d)). Therefore, V is resolving set of (X, s(d)).

We need to show, that V is minimal cardinality. Assume, that there is v;, such that V' \ {v;}
also is a resolving set of (X,s(d)). But V is a minimal resolving set of (X, d). Hence, there are
points u,w € X such that for any v; € V'\ {v;} the following condition holds:

d(u,v;) = d(w, ;).

But it means, that s(d(u,v;)) = s(d(w,v;)). Hence, V' \ {v;} is not a metric basis of (X, s(d)).
O

Corollary 1. Metric dimension of a metric space (X, d) is equal to the metric dimension of its
metric transform (X, s(d)) for any scales.
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2 WREATH PRODUCT

First, we recall the construction of a wreath product of metric spaces.

Definition 2. A metric space (X,d) is called uniformly discrete if for an arbitrary u,v € X
either u = v or there exists a radius r > 0 such thatd(u,v) > r.

Let (X,dx) be a uniformly discrete metric space, and (Y, dy) be a bounded metric space.
Since space (X, dx ) is uniformly discrete, then there exists r such that for two different arbitrary
points x1, x, from set X inequality dx(x1,x2) > r holds. Let s(x) be the scale such that

diam(s(Y)) <. (1)

Let us define a function ps on the Cartesian product X x Y by:

_ [ dx(x1,x2), if x1 # x
pollxny), (x2,%2)) = { s(dy(y1,y2)), if x1 = xa.

Such a metric space is called wreath product of metric spaces (X, dx) and (Y, dy) and denoted
as XwrsY [11]. For different scales s; and s, metric spaces Xwrs, Y and Xwrs,Y are isomorphic.

Theorem 1. Let X be a finite metric space and Y be a bounded metric space, md(Y) < oo. Then,
the dimension of wreath product of metric spaces (X, dx) and (Y,dy) is equal to

md(XwrsY) = |X| «* md(Y).
Ifmd(Y) = oo, then md(XwrsY) = oo.
Proof. Let vy, ..., v; be ametric basis of (Y, dy). We assume that X = {x3,...,x, }. Define a set
B={(xj,v)1 <j<m1<i<n}.
We need to show that the set B is a basis of XwrsY.
Let (x1,y1) and (x2,y2) be two different points of Xwr;Y. From the definition of the wreath

product of metric spaces follows, that if x; # xp, then points (x1,y1) and (x2,y>) are resolved
by point (x2,v2). Indeed, we will have:

o((x1,y1), (x2,y2)) = dx(x1,x%2),  p((x2,¥2), (x2,02)) = s(dy (y2,v2))-
From inequality (1) follows, that

p((x1,y1), (x2,12)) < p((x2,2), (x2,02))
and therefore points (x1,y1) and (x7, y2) are resolved by (x2,v7).
Let x; = x». In this case, since vy, ..., v, is the metric basis of Y, exists vj that resolves 4
and y,. Then

p((x1,y1), (x1,9))) = s(dy(y1,9)),  p((x2,¥2), (x1,9})) = s(dy(y2,7}))-

Since v; resolves y1 and y», s(dy(y1,vj)) # s(dy(y2,v;)). In this case all elements from the
set X are supposed to be included into a basis of the cartesian product.

And now let us show that B is a basis. Assume that B = B/{x1,v;} is a basis. Since
v1,...,0p is the basis of the metric space Y, then there exists 11,2 € Y which are not resolved
by vy, v, ..., v, but are resolved by v; only. Then points (x,y1) and (x, y») are not resolved by
points from B’. This means that B is the minimal set, therefore B is a metric basis of the space
XwrgY.

As a result we have that md(Xwr;Y) = |X|md(Y). O

Theorem 1 implies the next statement.

Corollary 2. If the space X is infinite, then md(XwrsY) = oo.
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Anst AOBiABHOTO MeTpuyHOro mpoctopy (X,d) MHOXMHa A C X HasMBAa€ThCSI PO3AIASIOUOIO,
SIKIIIO AAST AOBIABHMX Pi3HMX €A€MEHTIB U, U, IO HaAeXXaThb MHOXMHI X iCHye Takmii eAeMeHT 4 €
A, o Biacrani d(a,u) ta d(a,v) e pisuuMmn. Merpuunoto posmipHictio md(X) mpocropy (X, d)
Ha3MBAETHCSI PO3AiASIIOYAa MHOXMHA HalIMEeHIIIOI IIOTY>KHOCTI.

B zaraarpHOMY BMITaAKY TIOIITYK MeTpMYHOI po3mipHOCTi € NP-Baxkkoro 3apauero. B pobori oxa-
PaKTepM30BaHO METPUYHY PO3MipiHCTh MeTpWUUHOI TpaHcopMallii Ta BiHIIEBOTO AOGYTKY MeTpu-
YHMX npocTopis. TakoX moxa3aHo, IO MeTpUYHA PO3MiPHICTH AOBIABHOTO METPUYHOTO HPOCTOPY
CITiBIIaAA€ 3 METPUIHOIO PO3MiPHICTIO 110r0 MeTpMYHOI TpaHcdopMalii.

Kntouosi cnosa i ¢ppasu: MeTpudHa po3MipHICTD, MeTpWYHA TpaHCcpOpMallisi, BiHIIeBII AOGYTOK.
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RAKDI M.A., MIDOUNE N.

WEIGHTS OF THE F;-FORMS OF 2-STEP SPLITTING TRIVECTORS OF RANK 8
OVER A FINITE FIELD

Grassmann codes are linear codes associated with the Grassmann variety G(¢,m) of ¢-dimen-
sional subspaces of an m dimensional vector space Fj'. They were studied by Nogin for general g.
These codes are conveniently described using the correspondence between non-degenerate 1, k|,
linear codes on one hand and non-degenerate [n, k| projective systems on the other hand. A non-
degenerate [1, k] projective system is simply a collection of # points in projective space IP*~! satis-
fying the condition that no hyperplane of IP*~! contains all the 1 points under consideration. In
this paper we will determine the weight of linear codes C(3, 8) associated with Grassmann varieties
G(3,8) over an arbitrary finite field IF;. We use a formula for the weight of a codeword of C(3,8),
in terms of the cardinalities certain varieties associated with alternating trilinear forms on FF&. For
m = 6 and 7, the weight spectrum of C(3, m) associated with G(3, i), have been fully determined by
Kaipa K.V, Pillai H.K and Nogin Y. A classification of trivectors depends essentially on the dimen-
sion 1 of the base space. For nn < 8 there exist only finitely many trivector classes under the action
of the general linear group GL(n). The methods of Galois cohomology can be used to determine
the classes of nondegenerate trivectors which split into multiple classes when going from F to [F.
This program is partially determined by Noui L and Midoune N and the classification of trilinear
alternating forms on a vector space of dimension 8 over a finite field IF; of characteristic other than 2
and 3 was solved by Noui L and Midoune N. We describe the IF;-forms of 2-step splitting trivectors
of rank 8, where char F, # 3. This fact we use to determine the weight of the ]Fq-forms.

Key words and phrases: trivector, Grassmannian, weight.
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INTRODUCTION

Let V be an 8-dimensional vector space over a field K and let A>V denote the exterior
power of degree 3 over V, the classification of trivectors is the study of the action of general
linear group GL(V) on the space A3V defined by f.w = (A3f)(w). The equivalence classes
are the GL(V)-orbits under this action. As A3V* ~ (A3V)*, there is no difference between
trilinear alternating forms and trivectors. The support of the trivector w is the least subspace
F of V such that w € A3F, its dimension is the rank of w. Let w be a trilinear alternating form
onV.Theset {u € V, w(u,-,-) = 0} is called the radical of w and will be denoted by Radw. If
Radw = {0}, then w is called nondegenerate (full rank).

This classification is motivated by many important applications, especially in the theory
of codes. See [2,4,5,7]. Let C(3,8) be a grassman code (linear code) associated with the
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2010 Mathematics Subject Classification: 15A69, 20B40.
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Grassmann variety G(3,8) of 3-dimensional subspaces of an 8-dimensional vector space IF&,
where IF; is a finite field with g elements. The parameters 1 and k of the code C(3,8) are

S —1)(* ' -1)(g* P -1
(P -D(g*t-1)(g—-1)

n=|C(38) =

8
k= .
(5
The minimum distance of grassmann codes C(3,8) equals d = °(8=3) = 415 The weight of
C(3,7), C(3,6) and C(2,m) is determined by [2], [5] and [4] respectively. In this paper,we are
interested in the classification of IF;-forms of the 2-step splitting trivectors of rank 8, and in

determining the weights of IF;-forms where IF; is a finite field of characteristic other than 3.
Some undefined terms can be found in references [2,3,6] and [5].

1 ]Fq—FORMS OF 2-STEP SPLITTING TRIVECTORS OF RANK < §

If w is a trivector defined over the field K, a K-form of w is another trivector of the same
type as that of w, defined over K which is isomorphic to w over K, the algebraic closure of K.
The element w of A3V is called splitting if there exists a decomposition V = V; @ V, such that
w € V1 ® A2V, If dimVy = 2, w is called 2-step splitting.

Preliminary result
1.1 Degenerate forms

Theorem 1 ([1]). Let V be a vector space of dimension 7 over a finite field IF;. Then any trivector
of rank < 7 in A3V is equivalent to one of the trivectors in Table 1.
Tablel. Trivectors of rank < 7 over IF; (degenerate forms).

Name Trivector

w3 €162€3
Ws €1 (6263 —+ 6465)
We,1  €162€3 + €465¢6
Weid, €1 (eseq + eseq) + ex(ezeq — dieqes) if char F; # 2
we1d, e1(exes +eges) + eg(erey — doeses + eges) if char F; =2
We,2 €1€2€4 + €xe365 + €1€3€¢
a)7’1 €1 (6263 —+ eyés —+ 6667)
w72 W71 + €046
w73 €162€3 + e3e4e5 + e5e6e7
w734, €1 (exes + esey) + eq(exes + dyesey) + egeses  if char F; # 2
wys, e1(exes +eses) + eq(eoey — dyeses + eges) + ejegey if charlFy = 2
wya  ej(exe3 + eges) + epeses + ezesey
w75  wWr2 + esesey

wheredy ¢ (Fg)?, dy € (Fg+)%.
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Main results
1.2 Nondegenerate forms (full rank)

Theorem 2. Let V be a vector space of dimension 8 over a finite field IF;. Then any IF;-form of
2-step splitting trivector of rank 8 in A3V is equivalent to one of the Table 2.

Table2. Trivectors of rank 8 over IF; (nondegenerate forms).

Name Trivector

wg1  e1(exe3 + eses5) + egeyes

wgy  eq(exes + eses + egey) + eseqes
wgs  e1(eseq + eseq) + ex(eses + eyes)
wsy  e1(exes +eseg) + eg(ezer + eses)
wgag, es(erex +eses) +eg(eres +dieses) +ey(eres) + eg(ezes) if char Fy # 2
wg a4, eg(eres +ezep) +ey(eres + eser + dreies) + egeren +eseseq  if char Fy = 2
ws5 €1 (

1 )
wgs,, e7(e1ex +ezeq + eseq) + egleq (eq + dres) + exeg + d—le3e5] if char Fy # 2

wgs,, e3(erex +ese7 + eseg) + es(ejes + eger + doegey) if char Fy = 2
wgs4, e1(dsezes + daeses + ezeg) + ex(eses + esey +-eqeg) if charlFy # 3
wge  e1(exes + eses + egey) + eg(eses + eseq)

(
(
(
(
(
(exe3 + eqes) + eg(exes + eyes)
(
(
(
(
(

whered; ¢ (Fg+)?,dy € (Fge)?,ds & (Fg+)°.

Proof. The IF;-forms of 2-step splitting trivectors of rank 8 where IF; is a field of characteristic
other than 2 and 3 has been done in [6], hence, in characteristic 2, it is sufficient to study the
case of orbits of type wg;, fori = 4,5.

In characteristic 2, the trivectors of type wg;, for i = 4,5 are written

wg a4, = eg(e1e4 + e3e2) + e7(e1es + eger + drere3) + ese1e2 + esezey

wg 54, = e3(e1ea + eqe7 + eges) + es(e1eq + egex + daesey).

If L is the quadratic extension of K, there exists a trivector wy & A3V such that w; % wsg 4
and w; ® L € A3(V ® L) is L-isomorphic to wg 4. We construct w as follows: wg 4 = e1(ezes +
eseg) + eq(ezer + eges) is a 4-step splitting because wga4 = esuj + eglp + eyus + egity where
Uy = ejep, Uy = ejes, Uz = epeq and uy = eseq, thus E = vect{uy,up, uz, us} is a subspace of
dimension 4 of A*K*. We put w), = wg 44, = €501 + €60 + €703 + egvy, with v = ezeq, v2 = eqep,
U3 = e1e4 + eaer + dreres, and vy = eqes + e3¢0, where K = K(a),a®> +a = dy, a € K. To each of
the forms wg 4, Wy 4 4,, We associate a quadratic form on E [6]: 2 (xuy + yuo + zuz + tuy), then
we get 7o (xuy + yup + zusz + tug) = (xt —yz), v2(xv1 + yvy + zv3 + tvg) = (y?dy — x> + zt)
respectively. The two forms are not equivalent over K but they may become equivalent over
the algebraic closure K. We can also prove that wg4 is not equivalent to wg 44, by using the
arithmetical invariant d1 (w) [6].

Similar arguments apply to the case for wg . O

2 FORMULA FOR THE WEIGHT OF A TRIVECTOR

The correspondence between equivalence classes of nondegenerate forms and equivalence
classes of nondegenerate linear [n, k|-codes, is one-to-one. In what follows, we speak by abuse
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of language not only of a weight of a codeword, but also of a weight of hyperplane and a
weight of a form w € A3V. Therefore, the problem on the spectrum of a Grassmann code
(at least, on the weights of the codewords) is closely related to that on the classification of the
elements of A\3V.

The cardinality of the general linear group GL(8, IF;) will be denoted by [8],

Bl =** V2~ D - 1) (g - 1),

Given a codeword of C(3,8), let w be the corresponding trivector on IFg, and let H be the
corresponding hyperplane of IP(/\3IF2) . The weight of the codeword w

wtlw)=|{P; : 1<i<mn, P;¢& H}|
We have
3]g - wt(w) = [{[v1,v2,v3] : (w,v1 Avp Avs) # 0}
21 Weight of a degenerate trivector

If w is degenerate, let Radw be r-dimensional. We pick a basis {ej, ...,es} of V such that
{es—r+1,...,es} is a basis for Radw. Let W denote the span of {ey, ..., es_,}.

Let @ denote the restriction of the form w to W. Since W N Radw = {0}, it is clear that @ is
a nondegenerate trivector on W. Thus, @ can be thought of as codeword in C(3,8 —r).

Proposition 1 ([2]). The weight of a degenerate trivector w in IFg is given by
wt(w) = 37 wt(@).

The proposition shows that in order to calculate the weights of codewords of C(3, 8), it is
enough to know only the weights of nondegenerate codewords of C(3, m) for m < 8.

Lemma 1. The weights of degenerate trivectors are

g

tws) =
Wﬂw>—q +q°
(wm>—qﬁ+qm+q qm
(we 1) =q° + 4" +‘1 2440
(we2) = q° + 4" + 4"
wt(wz1) = ‘115 + ‘113 +q"
(wr2) =4 +q° +q2 +q"
(w73) = q' +q +q +q —q
(wmd) q +q +q +q Y+ q"
wt(w74) +q +q —i—q
(

10

Proof. According to Proposition 1, the weight of a degenerate form w is g° times the weight
of w viewed as a trivector on ]F; the span of {ej,...,e7}. The latter weights were determined
in [2]. We multiply them by g°; we get the weights of w. O
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2.2 Weight varieties of a nondegenerate trivector

Let V be an 8-dimensional vector space over an arbitrary field F.
We consider the map ¢, : V — A2V* sending v — 1,w where 1, is the operation of the
interior multiplication defined by

(1w, B) = (w,v A B), forall € A2V.

Here, (, ) is the pairing between A/V* and AV for each j.

Given a two-from A € A2V*, we define certain quantities Pfy(A) € N2V for each k > 1
which we call the k-th Pfaffian of A. Let Pfy(A) = 1. We define Pfi(A) € A%V* inductively by
requiring

1A APf_1(A) = 1,Pfe(A), forallv € V.

This Pfi(A) generalizes the forms % =LAA- AN

Definition 1 ([2]). Given a nondegenerate trivector w on IFS, the k-th weight variety of w is the
subvariety of P’ given by

Xi(w) = P{x € 2\ {0} | Pty (1) = O}.

We have
@ = Xo(w) C X1(w) C Xa(w) € X|sa)_4(w) = P,
Lemma 2. Given a nondegenerate trivector w on IFg.
Let
ni = [ Xi(w)| = [Xi-a(w)]-

The weight wt(w) is given by

np +ny(l+ qz)

W) = (@ 4+ @ g ) - s

(1)

Proof. We use Theorem 7 in [2], we get

m;w

24 | .
wt(w) = ni(l1—q ),
=g arere g
for the case m = 8, we use 1y + n, + n3 = |P’|, we get this result in (1). O

3  WEIGHT CLASSIFICATION OF TRIVECTORS ON ]FS

The weights of the nondegenerate forms wg;, 1 < i < 6 can be determined from formula
(1) once the cardinalities of the varieties Xj (wg ;) and X5 (ws ;) are known. We recall that

Xi(w) = P{x € FS\{0} | Pf,(1,w) = 0}

Xp(w) = P{x € F3\{0} | Pf3(1,w) = 0}.
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Proposition 2. The varieties X;(wg ;) and their cardinalities for1 < i < 6 are

wgi | X1(ws,) ni(ws ;)

wgy | PPUP? | ¢ +2¢>+29+2
wsy |PPUp PP | ¢®+24°+q+1
wsz | PLUP! 2q+2

wgq | P x P! 7> +29+1
wsaq | PUF.) 7> +1

wgs | Pt Upo P! 29 +1

Ws 5,4 Z 0

ws 6 P! g+1

Proof. Let x = 2}3:1 xjej. We have

8
Ph(1xw) =) szsz(Lejw) + Y xixj(te,w) A (te;w). (2)
j=1

i<j

We calculate Pf; (1yw;) using the above formula (2) and set it equal to zero to determine the
varieties X1 (w;). We begin with wg ;. The forms lejws, for j =1--- 8 are eze3 + eyes, €31, €162,
eseq, e1eq, eyes, eseq, ey, respectively. For j > 2; the forms leg,| are decomposable and hence
sz(tengll) = 0, whereas Pf;(1,,wg 1) = exezeqes.

We also note that t,,wg1 A tewsy = 0 for all j = 3,4,5, and te,wg 1 A le,tg1 = Lestgy N
lestig1 = le,g 1 VAN lestg1 = legWg 1 AN le;(Wg1 = legWg 1 A\ legtig 1 = le,W8 1 AN legg1 = 0. Using
these relations, we get

Pfy(1xws;1) = xieseseses + X1[xoeseseser + Xzeseserer + xaereseser + Xsereseres

=+ X¢ (62636768 + 64656768> + X7(62636866 + egesegeq + x8(62636667 + 64656667)]

+ xp(xgeze1e7es + xyesereses + Xgeze1eqey) + x3(Xge1e2e7es + Xzeiereses + Xge1e2e6e7)

+ x4(x6ese16768 + X7€5€1€8€6 + X5€5€1€667) + X5(X6C1€4€7€8 + X7€1€4€8€6 + X5E1€4€6€7) = O

Since the coefficient of e;ezeses above is x%, x1 = 0 is necessary for Pfy(ixwg1) = 0. Setting
x1 = 0 in the above equation, we get

Pfy(1xws 1) =0 = X2(Xse3e107€8 + X7€301€8¢6 + X3C3€186€7) + X3(X6C1€207€8
+ xye1ereges + Xgeexeqe7) + X4(Xgese1e7e8 + Xyeseieges + Xgese1eqer)

+ x5(xge1e4e7€8 1+ X7€1€46866 + Xg€1€466€7) = €1 N (X380 — X2€3

+ Xxseq — x4e5) A (xge7€8 + X7€8€6 + X8€67)-

Therefore,

Xi(ws1) = {x1=0}N[{xa=x3=2x4 = x5 =0} U{xs = x7 = x5 = 0}]
= P{es, e7,e3} UP{es, e3,e4, 5} ~ P> UP.

Next, we consider Pf(iywgp). The coefficients of exeseses + eresegey + eseseqey, e1eseqes,
e7e1eges are x% and x% and x% respectively, x; = x5 = x4 = 0 is necessary for Pf;(ixwgy) = 0. By
Setting x1, x5 and x¢ to zero, in the equation, we get
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Pfy(1xws2)x;=xs=x,=0 = €1 A (X3e2 — X2€3) A Xgeses.
Therefore,

Xi(wsp) = {x1=1x5=1x6=0}N[{xz =x3 =0} U{xg =0}]
= PP{ey e7,e5} UP{eyer} P{ey, e3,e4, 7} =~ P2 Up1 P3.

In Pf,(1xwsg 3), the coefficients of ezeseseq, ezeseres, eseiesep and egeqezes are x%, x3, x% and xé,
respectively. By setting x1, xp, x3 and x5 to zero, Pf,(1xwsg3) is reduced to ejep A (x4€3 + Xge5) A

(X8€7 — X768>.

Therefore, X1(wg3) = {x1 = xp =33 = x5 = 0} N[{xg = x6 = 0} U{xy = x5 = 0}] ~
P! UPL. Similar arguments apply to the case for X; (wg;) fori =4,...,6. O
We now compute the varieties X, (w) and their cardinalities.
Proposition 3. The varieties Xp(wg ;) and their cardinalities for1 < i < 6 are
wsi X5 (ws,i) | X2 (ws,i)|
ws1 IP® Ups IP* [PO] + || — [IP°]
ws P [IP°]
ws3 P> Ups P* Ups P4 IP°| 4 2|IP4| — 2|P|
W4 P> Ups IP° 2|P°| — [P
We4d P’ [P
wss | (P° Ups P* Ups P4) U (Fp)? | [IP°] + 2|IP*| — 2|IP3| + 4
Wss,d P [P°]
Ws,6 P° Ups IP* P°| + [P — [P
Proof. Let x = Z?Zl xjej. We have
5, 2 2
Pf3(1,w) = Z% x;Pf3 (1) + Z[xl- XjPhy(te,w) A (o) + xix (te,w) N Pho (1)) (3)
j= i<j

We calculate Pf5(ixwg ;) using the above formula (3), and set it equal to zero to determine the
varieties X, (wg ;). We begin with wg 1.
Forj>1, Pf3(lejw8,1) = 0 and Pfy(1e,wg1) = epezeses, we get

Pf3(lxw8,1) = x%x6€2€3€4€5€7€8 + x%X7€2€3€4€5€g€6 + x%xgeze3e4e5e6e7.

Since the coefficients of ejesesesereg and eresesesegeg and exezegeseqe7 above are x%x6 and x%x7

and x%xg, respectively, x; = 0 or x4 = x7 = xg = 0 is nececessary for Pf3(1ywg) = 0.
Therefore,

Xz(wgll) = {x1 = 0} U {x6 = X7 = Xg = O}
6 4
= IP{eZI €3, €4, 65,66, €7, 68} UP{62,63,E4,65} IP{ell €2, €3, €4, 65} ~ P U]P3 P=.
Next, we consider Pf3(ixwgy). The coefficient of eyezesesegey is xi’; moreover, x; divides

Pf3(ixws ). Therefore,
Xz(wg,z) = {x1 = O} >~ ]P6.
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For Pf3(ixws3), the coefficients of eseseseseres, eseseseesen, e€3eseseqerey, e3esezegeseq,
€36567€864€1, €7€8€4€1€6562 and e€7egepf1€e2€3 are X%XL x%x7, x%xg, x%xg,, x%x5, xzx% and XQJC% respec-
tively. Reducing x1xp, x1X7, x1x8, X2x3 and xx5 to zero is necessary for Pf3(1ywg3) = 0.

Therefore,

Xz(a)&g) = {x1 =Xy = O} U {xz = X7 = Xg = O} U {x1 = X3 = X5 = 0}
]13{63/ €4,65,6¢,€7, 68} U]P{€3,€4,€5,€6} l]?{elr €3,€4, 65, 66} U]P{e4,36,e7,es}]l—){627 €4, 66,67, 68}
~ IPS U]P3 IP4 U]P3 IP4.

Similar arguments apply to the case for X(ws ;) fori =4,...,6. O

Theorem 3. The weights of the nondegenerate forms wg, ..., ws s are

Wt(a)gll) — q15 + q13 + q12 + qll _ q8
Wt(a)glz) — q15 + q13 + q12 + qll

Wi’(w8,3) — q15 + q13 + q12 + qll + q10 _ q8
Wt(w8,4) — q15 + q13 + q12 + qll + q10 _ q9
Wt(w8,4,d) — q15 +q13 + q12 +q11 + q10 +q9
Wt(w8,5) — q15 + q13 + q12 + qll + q10 _ q8
Wt(w8,5,d) — q15 +q13 + q12 +q11 + q10 +q8
Wt(w8,6) — q15 + q13 +q12 + qll +q10_

Proof. We use the formula (1) with np(w) 4+ n1(w) = | X2(w)|, we get

| Xo (wsgi)| + ‘72|X1(w8,i)|>
1+q+4? '

Wt(wgli) :q15+q13+q12+q11+q10+q9+q8+q6_q6(

the quantities | X (wg;)| and | X»(wg ;)| have been computed in Proposition 2 and 3.

For wt(wg 1),

we have | X1 (wg1)| = ¢° +2¢%> +2q +2 and |Xa(wg1)| = |PO| + [P} — P3| = ¢° + ¢° +
2q* + g% + q% + g + 1, substituting these in the above equation we find

Wt(w&l) — q15+q13+q12+q11+q10+q9+q8+q6
q6(\11’6\+!1P4!—\ﬂ’3\+q2<q3+2q2+2q+2>

>:q15+q13+q12+q11_q8.

1+q+4?
Similarly for the weights wt(wsgy2),..., wt(wgg). O
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Pakai M.A., Miayne H. Baeu Fg-¢popm 2-cmyninuacmux mpuseexmopis po3ujensienns parey 8 Hao cKir-
uenHum nosem // Kapmarceki matem. myba. — 2019. — T.11, Ne2. — C. 422-430.

Koan I'paccmana — 11e AiHiVHI KOAM, TIOB's13aHi 3 MHOTOBMAOM FpaCCMaHa G(¢, m) {-BumipHOTO
HiAIIPOCTOPY y 1-BUMIpPHOMY BEeKTOpPHOMY mpoctopi IF7!. Ix BuBuas M. Horin arst AoBiAbHMX g. LTi
KOAM 3pyYHO ONMCATHU 332 AOTIOMOT OO BiATIOBiAHOCTI Ml)K HeBUPOAXeHNMN [11, k|; AiHiVHMMYI KOAAMM
3 OAHOTO 60Ky, i HeBUPOAKeHMMY [, k| IpOeKTUBHMMM crcTeMaM 3 iHIoro 60Ky. HesupoasxeHna
[n, k] mpoexTMBHA crcTeMa — Iie TPOCTO Habip 7 TOUOK y MPOEKTUBHOMY IIPOCTOPi PK=1, st 3a-
AOBOABHSIE YMOBY, IO XOAHA TillepIIAOLIVHA P*~1 me micTuTs 1 TOYOK, III0 PO3TASIAAIOTBCS. Y IIil1
po6oTi My BusHaumMMOo Bary AiHivHMX K0aiB C(3, 8), acowiitoBanux i3 MEOrosuaom I'paccmana G(3, 8)
HaA AOBIABHMM CKiHUeHHUM moaeM IFy. My BUKOPUCTOBYeMO (pOPMYAY AASI BarM KOAOBOTO CAOBA
C(3,8) y ceHci MOTY>KHOCTI IIEBHIX MHOTOBVAIB, IIOB’SI3aHIX 3 UepryBaHHSIM TPMAiHIHMX dpopM Ha
IFS. Arst m = 617, 3Byxenmii ciektp C(3,m) acouitoBanmit 3 G(3,m), 6yB HOBHICTIO BU3HAYEHVIT
B poborax K.B. Kaitrra, X.K. TTiaai i M. Horiza. Kaacudikatiist TpuBeKTOpiB icTOTHO 3aAeXUTb Bia
po3mipHOCTi 11 6a30Boro mpocropy. Aas n < 8 icHye TiABKM CKiHUeHHa KiABKICTB KAaciB TpuBe-
KTOpIB TiA Ai€fo 3araAbHOI AiHiNHOI rpymm GL(n). Metoan xoromoaorii [aaya MOXyTb 6yTy BUKO-
PUCTaHi AAST BUBHAUEHHST KAACiB HEBUPOAXKEHVX TPMBEKTOPIB, SIKi MOALASIIOTHCS Ha KiAbKa KAAaciB
npu nepexoai Bia F ao F. Llst mporpama uacrkoso BusHaueHa A. Hoyi i H. Miayre. Kaacudpikarrist
TPUAIHIHMX 3MIiHHMX POPM Ha BEKTOPHOMY TpPOCTOPi po3MipHOCTi 8 Haa ckiHueHHUM ToaeM IF,
XapaKTepUCTHK, BiAMIiHHMX Bia 2 i 3, 6yaa 3pobaena y poborax A. Hoyi i H. Miayse. Mu ommca-
an [Fy-popmut 2-cTymiHUACTMX TPUBEKTOPIB posiiernaenHs panry 8, ae char IF, # 3. Lleit dpaxT mu
BMKOPMCTOBYEMO AAsl BU3HaueHHs Baru IF;-popm.

Kntouosi cnosa i ¢ppasu: TpUBEKTOp, TpacMaHiaH, Bara.
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THE DERIVATIVE CONNECTING PROBLEMS FOR SOME CLASSICAL
POLYNOMIALS

Given two polynomial sets { P, (x) } >0, and {Qy(x) },>0 such that

deg(Pu(x)) = n,deg(Qu(x)) = n.
The so-called the connecting problem between them asks to find the coefficients «,, ; in the expres-
n
sion Qu(x) = Y a,kPi(x). Let {Su(x)}y>0 be another polynomial set with deg(S,(x)) = n. The
k=0
(n)

general connection problem between them consists in finding the coefficients «; j in the expansion

n
Qu(x) = Y alVP(x)8;(x).
i,j=0

The connection problem for different types of polynomials has a long history, and it is still of interest.
The connection coefficients play an important role in many problems in pure and applied mathe-
matics, especially in combinatorics, mathematical physics and quantum chemical applications. For
the particular case Q,(x) = P, (x) the connection problem is called the derivative connecting
problem and the general derivative connecting problem associated to { P, (x) },>0.

In this paper, we give a closed-form expression of the derivative connecting problems for well-
known systems of polynomials.

Key words and phrases: connection problem, inversion problem, derivative connecting problem,
connecting coefficients, orthogonal polynomials.
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INTRODUCTION
Given the two polynomial sets { P, (x) } >0, {Qn(x) }n>0 such that

deg(Py(x)) = deg(Qu(x)) = n,

for all n. The connection problem between them consists in finding the coefficients a,, ; in the
expansion

Qu(x) = Y g P(x).
k=0
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Let {Sn(x)},>0 be another polynomial sets with deg(S,(x)) = n. The general connection
problem between them consists in finding the coefficients ocl(’;) in the expansion

Z“z] )

i,j=0

For the particular case Q,(x) = P, (x) the connection problem is called the derivative

connecting problem and the general derivative connecting problem for the polynomial family
{Pa(x) buo.

The study of such a problem has attracted a lot of interest in the last few years. For in-
stance, the representations of parametric derivatives have been obtained by Froehlich [6] for
Jacobi polynomials, by Koepf [7] for generalized Laguerre polynomials and Gegenbauer poly-
nomials, by Koepf and Schmersau [8] for all the continuous and discrete classical orthogonal
polynomials, in [5,9,11, 13] for classic orthogonal polynomials.

The derivative connecting problem is considered for Chebyshev polynomials of the first
and the second types [10], for some Koornwinder polynomials in [1]. In [2, 3] the derivation
connection problem was solved for the Fibonacci, Lucas and Kravchuk polynomials and the
authors use the solutions to produce new combinatorial identities for these polynomials. Also,
the derivative connecting problem is solved in [4] for some hypergeometrical polynomials.

As an example let us consider the sequence of Appel polynomials { A, (x)},,>o with expo-
nential generating function

where A(z) is an arbitrary formal power series, A(0) # 0.
Then

00 n+1
——G(An(x),z) = A(z)e" z = G(An(x),2)z = ;An(X) o
On the other side
iQ(A z) —ii = io:A’(x)i
dx ) dx = ot

Equating the coefficients near z"" we will flnd

Lan(xy = ﬁfx“(x),

n:

and will obtain the solution of derivative connecting problem for Appel polynomials:

An(x) =nA,_1(x).

In the paper we solve these derivative connecting problems for many well-known classes
of polynomials P, (x).

In Section 2, a general appearance of the decomposition of the derivative of the polyno-
mial P)(x) is established, depending on the appearance of the logarithmic derivative of the
generating function. In Section 3, the derivative connecting problem is solved for Lagguerre,
Kravchuk, Charlier, Stirling, Bell, Bernoulii, Euler and Hermite polynomials. In Section 4, the
general derivative connecting problem is solved for Chebyshev, Gegenbauer and Legendre
polynomials.
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1 THE MAIN THEOREM

We propose a method for solving the derivative connecting problem based on the use of
the generating functions of polynomial families. The generation function of the family of poly-
nomials { P, (x) },,>0 is the formal functional series

G(Pa(x),2) = i@ 6uPa(x)2",

where ¢, is a certain numerical sequence. For case of ¢;, = 1 the generating function is called as

ordinary generating function, and when ¢, = — we obtain an exponential generating function.
n

Theorem 1. Let the logarithmic derivative of the ordinary generating function G (P, (x),z) of
the polynomials family {P,(x)} can be represented by the following series with rational coef-
ficients

d
P InG(Py(x),z) =

a;z'.

e

i=1

Then ;
Pn(x>/ = Z aipn—i(x)'
i=1

Let the logarithmic derivative of the exponential generating function G(x,z) of the polynomi-
als family {P,(x)} is written as formal series with rational coefficients

dg(x) & ‘zi
dx —;ﬂzn!~

Then
L n!
Py(x)" = X; ﬂimpnfi(x)-
i=

Proof. Assume that the generating function G(P,(x),z) and its particular derivative
G (Py(x),z)’ are connected

where R(z) = a1z + az> + - - - is a formal power series. Then
g(Pﬂ(x)/Z);c = Z cnp’;(x)zﬂ = (Z Cnpn(x)zn> (‘112 + ‘1222 + - )
n=0 n=0

o n
= Z Z aic,_iP,_i(x) | 2".
n=0 \i=1
Equating the coefficients at the same powers of z, we obtain that

n
Cﬂprg(x) = Z ﬂicn—ipn—i(x) = a1¢cy—1Py—1 +accy 2Py o+ -+ anCOPO(x);
i=1
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which will be a solution of the derivative connection problem for the polynomial family P, (x).
For the case of the ordinary generating function, we have ¢, = 1 and so

n
= Z a;P,_;(x
i=1

Similarly, for the exponential generating function for ¢, = -

i we obtain that

O

Proved theorem sets strict requirements for the generating function G(P,(x),z)-its loga-
rithmic derivative must be a function of the one variable, although the generating function
depends upon of two variables.

Suppose that the logarithmic derivative of the generating function is not a function of the
variable and it has the following expansion

d

P InG (P, (x Z”Z

where a;(x) — some polynomial. In this case for polynomials S, (x) their degree is equal n so
they form the basis of the vector space of all polynomials from the variable x. Therefore the
polynomials a;(x) can be expanded on this basis:

x) = XZ: 0;Sj(x)
=0

The following Theorem 1 may be proved similarly

Theorem 2. Let the logarithmic derivative of the generating function G(P,(x),z) of the poly-
nomials family {P,(x)} can be written as formal series

% InG(Py(x),z) = iai(x)zi,

and
ai(x) = ) a;;Sj(x),

for some coefficients a; ;. Then

2 THE DERIVATIVE CONNECTING PROBLEM

Let apply the proved theorems for solving of the derivative connecting problems for some
types of the classical polynomials.
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2.1 The Laguerre polynomials L)) (x)

The Laguerre polynomials are defined by the following formula

L,(f)(x) _ i(_l)z(wr)») X!

—i)ir
= n—i)il

with ordinary generating function

Xz
G(L}(x),2) = (1-2) "l 177
We find the derivatives by parameters
Xz N
A GMx)z) = — (1—2) 2P ze 1—2 = 29ULn(0).2)

dx z—1 !

and
Xz

) o
(L), 2) =~ (1-2) e T=ZIn(1-2).

Therefore, the logarithmic derivative has following form

d A e I
T InG(Ly(x),2) = — = ;Z
ilng(m(x) z) = —In(l-z2) = ilZi
A Y "

so we proved the theorem:

Theorem 3.
—Lp(x) =—) Li(x),
dx " =
d A n 1 A
ﬁLn(x) = Z ?Lnfi(x)

This coincides with results [8] and [13] obtained by other methods.

2.2 The Kravchuk polynomials

The Kravchuk polynomials are defined such formula

KN = Y- (T) (V)

= IVANEY

and have following generating function

G (x,N),z) = 1+ (p—1)2)N > (1-2)".

435



436 RAMSKYI A., SAMARUK N., POPLAVSKA O.

Theorem 4.

d (p) & (Di(p-1) =1y
den (x,N) = Z K ,z‘(er)r

i n

)Ny = 3o DT =D g,

AN = i n—i

d () - i1 i~1 1 (p)

@Kn (x,N)=(N—x))_(-1)"" (p—1)" " K/”,(x,N).
i=1

Proof. We find derivatives of the generating function for Kravchuk polynomials with respect
to parameters x, N, p :

LGP (x4 N),2) = (1 (p =DV (1-2)" (In(1=2) =l (14 (p~1)2))
=9k (5 N), ) (3 )

A GV (e, N)2) = (1+ (p =1 2N In(14 (p—1)2) (1 — 2)%,

AN

d oop) _(+(p-1))"T(N-x)z(1-2)"

%Q(Knp (er)fZ)_ 1+(p_1>z )

So

L _ o) 1-z
TQMJ&AM@—GWJ&AW@m<rﬁ;fﬁﬁ'
iNg< '(x,N),2) = G(KP (x,N),2)In (1 + (p — 1) 2),
d _ (») (N—x)z
d_g( (X,N),Z) _g(Knp (x'N)’Z)m'

From here we find expansion of a logarithmic derivative in a formal series

d _ 1-z e DD -1
dx lng( (x,N),Z) =1In <m> —ZZX; ; z,
d _ -G R Vi,
Wlng( (x,N),z)—hr1(1+(p—1)z)—i:1 ; z!,
d (N=x)z v, il ayiel_i
4y MO N 2) = 5 T = (N R ()
Applying the Theorem 1 we get the required result. O

For a particular case p = 2 the problem is solved in [3].

2.3 The Charlier polynomials c,(f) (x)
(a)

The Charlier polynomials c;, ' (x)have such an exponential generating function

z

G(ek(x),2) =& (1- —)x.

a
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From here it’s easy to get that

d (a) B Z\ . © z!
—dxlng(cn (x),z) =In <1 a) =L 1“11,
d (a) Xz 1 & x
7 InG(cy'(x),2) =2 <1_E> _Z: s

Therefore, the following theorem holds.

Theorem 5.
d 1 n!
a(x) = =Y el (),
a

1
n!
da Cr(la)(x) == ﬂ(cga) (x) — 1) Z WC’(;Z_)Z(X).

2.4 The Stirling and Bell polynomials.

437

The Stirling and Bell polynomials S, (x) ( see [12]) are defined by the exponential generating

function

We have that the logarithmic derivatives is equal to

d z x+1 z
Eln<71_e_z> :1n<1_e_z>.

Let’s expand to series the function
z
h(z) =In | ——
(z) =In <1 — ez> ’

preliminary differentiating it.

We have
d _H(z) 1 e  f-1-z =z & z o Byz"
E(ln(h(z))) = h(Z) T, 1—ez 72 .ez—l _MXZ%)(H-FZ)! nX::O n!
0 By n - z" "o n+2 1 —  Bni1
_ b _ B, = - — ",
;(Z n_l+2)m)z 1;)(71+2)!];0< k > K72 ,;(n+1)lz

Here we used the known identity

and the fact that the generating function for the Bernoulli numbers B; is equal to

n
= Z Blzl
i=1

Note that the function /(z) has a removable gap point at z = 0 and

P 1
h0) = limh(z) = lim 73— = = 1
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Therefore, by integrating, taking into account that 1(0) = 1, we get

_ 1_00 Bn+1 n _E_oo n+1 nl
h(z)_/(z n;(nﬂ)!z) 2 Lt

Consequently, we have proved the theorem.

Theorem 6.

d%sn(x) = Xn: (?) % Sn—i(x).

i=1
The Bell polynomials ¢, (x) are determined through the Stirling numbers of second type

= Xn: S(n,i)x"
i=0

and have the generating function
gX(e=1),
In the same way as in the case of Stirling polynomials the following statement is proved.
Theorem 7.
n
2200 =L () oo
2.5 Generalized Bernoulli, Euler and Hermite polynomials

Generalized Bernoulli B,(f) (x), Euler E,(f) (x) and Hermite Hr(,”) (x) polynomials are defined
by the following exponential generating function

() =L
2 a o "
~(a2s) z

z':0
xz —at? Z H

With respect to the variable x these polynormals are the Appel polynomials, see [12], there-
fore for all three types of polynomials the following is performed

di B\ (x) = nB\", (x),
d
- EW(x) = nE", (),
d

—H(x) = nHY, (2).

Let’s find the logarithmic derivatives by parameter a:
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here B;, E;(1) — are the Bernoulli numbers and Euler numbers respectively. Expansion

z oz & (=1)"B;
ln<eZ—1>__§+Z T

i=2

is obtained in the same way as expansion in subsection 2.4.
So, the following statement takes place.

Theorem 8.

3 A GENERALIZED DERIVATIVE CONNECTING PROBLEM

3.1 The Chebyshev polynomials

The Chebyshev polynomials T;,(x) of the first kind and the Chebyshev polynomials U, (x)
of the second kind are determined by such ordinary generating function

1—xz 1

G(Tu(x),2) = G(Un(x),2) = 7

1—2xz + 2% —2xz+ 2%’
The following theorem take place.
Theorem 9.
d
%Tn(x) = To(x)Ty—1(x)+3T1(x)Ty—2(x)
0 . i—1 )
+) (To(x)Tl(x)Z_lﬂL2 Y. Tk(x)Tl(x)l_l_k> Tu—i(x),
i=3 k=1
d n
7 Un(®) =2) Ui q(x)Up—1-i(x)
i=1
Proof. We have
d z (22— 1)
o N9Tn0)2) = G A 2w )
= To(x)z + 3Ty (x)z +Z( )= 1+22Tk (x)i—l—k>z1
k=1

For the Chebyshev polynomials U, (x) of the second kind we have

d 2z
%mg(un(x)zz)—m Zuz 1

Therefore

=2 i U1 (x)Up—1-i(x).
i=1
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3.2 The Gegenbauer and Legendre polynomials
The Gegenbauer polynomials Cj (x) are determined by ordinary generating function

1
(1 —2xz+z22)N

G(Ch(x),2) =

It is logarithmic derivative is expressed through Chebyshev polynomials

P N _ 2Az . a
L n0(C(),2) = g5 s =

d |

ﬁan(C,ﬁ‘(x),z) = —In <1 —2xz+zz) = ZZ ?Ti(x)zi.

Theorem 10.

In [13] another expressions for the Gegenbauer polynomials were obtained. The Legendre
polynomials P, (x) are determined by generating function

1
G(Py(x),2) = —m———.
(Pu(x).2) V1 —2xz + 72
We have ; -
“ - _ . i
I InG(Py(x),z) = TR — Y Uiq(x)Z'.

i=1
Therefore there is the following assertion.
Theorem 11. i

EPH(X) = i Uj—1(x)Py—i(x).
i=1
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Hexait AaHO ABi MHOXXMHM MHOTOUAEHIB { Py (X) };>0 Ta {Qn(x) } ;>0 Takmx, mo

deg(Pu(x)) = n,deg(Qu(x)) = n.
Tax 3BaHa 3apava AMdpepeHITiaAbHOI 3B I3HOCTI MiXK HVMM IIOASITAE ¥ 3HAXOAXKEHHi KoedpillieHTiB
n
ty iy Bupasi Qn(x) = Yy,  Pe(x).
k=0

Hexait {S,(x) }n>0 — Ie iAmIa MHOXVHA nopsiaky deg(S,(x)) = n. Y3araabHeHa 3apava 3B 53

HOCT1 MK HVIMU IIOASTA€ Y 3HAXOAKEHH1 KO@CPILIIGHTIB (Xl(]) Yy BHMpasi

Qux) = Y & Pi(x)8)(x).

i,j=0

3apava 3B'S3HOCTI AASI Pi3HMX TUIIIB MHOTOUAEHIB Ma€ AOBIY iCTOpilo, IPOTe 3aAMIIAETHCS
nikasoio i Temep. KoedpirtieHTn 3B’ I3HOCTI IpafoTh Ba>KAMBY POAD y 6araTboX 3aAadax KAACHMYIHOI Ta
IIPUKAAAHOI MaTeMaTHMKM, OCODAMBO B KOMOIHATOpMIN, a TakoX y MaTeMaTuuHiit dismi Ta
TIPMKAAAHNMX 3aCTOCYBAHHSX KBAHTOBOI XiMil. AAsI 4acTKOBOTO BUTAAKY, KOAU Qu(x) = P (),
3apavy 3B'SI3HOCTI Ha3MBaIOTh AMdpepeHIiaAbHOIO 3aAavero 3B SI3HOCTI i BIAHOCSATD 1i A0 MHOXMHMA
{Pu(x) buzo.

Y cTaTTi HaBeA€HO BMpasM y 3aMKHYTilt dpopMi 3apau AMdpepeHIiaAbHOT 3B’ I3HOCTI AAST BIAOMIX
CICTeM MHOTOYAEHIB.

Kntouosi cnosa i ppasu: 3aprada 3B'SI3HOCTI, obepHeHa 3apava, 3apada AvidpepeHIiaAbHOI 3B SI3HOC-
Ti, KoedpillieHTN 3Bs13HOCTI, rinepreoMeTpuuHi (PYHKIII, rilmepreoMeTpuyHi MHOTOYAEHNA.
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RAVSKY A.

A NOTE ON COMPACT-LIKE SEMITOPOLOGICAL GROUPS

We present a few results related to separation axioms and automatic continuity of operations
in compact-like semitopological groups. In particular, is provided a semiregular semitopological
group G which is not T3. We show that each weakly semiregular compact semitopological group is
a topological group. On the other hand, constructed examples of quasiregular T; compact and T se-
quentially compact quasitopological groups, which are not paratopological groups. Also we prove
that a semitopological group (G, ) is a topological group provided there exists a Hausdorff topol-
ogy ¢ O Ton G such that (G, ¢) is a precompact topological group and (G, 7) is weakly semiregular
or (G, 0) is a feebly compact paratopological group and (G, 7) is T3.

Key words and phrases: semitopological group, paratopological group, compact-like semitopo-
logical group, compact-like paratopological group, continuity of the inverse, joint continuity, sepa-
ration axioms, countably compact paratopological group, feebly compact topological group, count-
ably compact topological group.

Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, 3b Naukova str., 79060, Lviv, Ukraine
E-mail: alexander.ravsky@uni-wuerzburg.de

1 PRELIMINARIES

In this paper the word "space" means "topological space".
1.1 Topologized groups

A topologized group (G, T) is a group G endowed with a topology 7. It is called a semi-
topological group provided the multiplication map G x G — G, (x,y) > xy is separately con-
tinuous. Moreover, if the multiplication is continuous then G is called a paratopological group.
A semitopological group with the continuous inversion map G — G, x — x~ ! is called a qua-
sitopological group. A topologized group which is both paratopological and quasitopological is
called a topological group.

Whereas investigation of topological groups already is one of fundamental branches of
topological algebra (see, for instance, [11,29] and [5]), other topologized groups are not so
well-investigated and have more variable structure.

Basic properties of semitopological or paratopological groups are described in book [5] by
Arhangel’skii and Tkachenko, in author’s PhD thesis [32] and papers [30,31]. New Tkachenko’s
survey [40] presents recent advances in this area.
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1.2 Separation axioms

These axioms describe specific structural properties of a space. Basic separation axioms
and relations between them are considered in [16, Section 1.5]. For more specific cases and
topics, also related to semitopological and paratopological groups, see [7,31], [40, Section
2], [22,41].

All spaces considered in the present paper are not supposed to satisfy any of the separation
axioms, if otherwise is not stated. We recall separation axioms which we use in our paper. A
space X is

o Tp, if for any distinct points x,y € X there exists an open set U C X, which contains
exactly one of the points x, y,

e Ty, if for any distinct points x,y € X there exists an openset x € U C X \ {y},

e T or Hausdorff, if any distinct points x, y € X have disjoint neighborhoods,

e T3, if any closed set F C X and any point x € X\ F have disjoint neighborhoods,
o reqular,if itis T} and T3,

e quasiregular, if any nonempty open subset A of X contains the closure of some nonempty
open subset B of X,

o weakly semiregular, if X has a base consisting of regular open sets, that is such sets U that
U =intU,

o semiregular, if it is weakly semiregular and T>,

e functionally T, of functionally Hausdorff, if for any distinct points x,y € X there exists a
continuous function f : X — R such that f(x) # f(y),

o T, y or completely reqular, if it is Ty and for any closed set F C X and any pointx € X \ F
there exists a continuous function f : X — R such that f(x) = 0and f(F) C {1}.

Remark that each T3 space is quasiregular and weakly semiregular, so each regular space
is semiregular.

1.3 Separation axioms in semitopological groups

It is easy to show that each topological group is Tz. Near 1936 Pontrjagin showed that each
Tp topological group is completely regular and T;.

On the other hand, simple examples shows that for paratopological groups neither of the
implications Ty = T; = T, = Tj is necessary (see [30, Examples 1.6-1.8] and page 5 in any of
papers [31] or [40]) and there are only a few backwards implications between different sepa-
ration axioms, see [31, Section 1] or [40, Section 2]. Moreover, in 2014 Banakh and the author
of the present paper similarly to Pontrjagin’s proof showed that each T; weakly semiregular
paratopological group is T, ! and each T, paratopological group is functionally T; [7]. On the
other hand, Banakh’s announcement for a seminar for 28 November 2016 (see [39]) claims on
an example of a regular quasitopological group which is not functionally Hausdorff.
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It is easy to show that each weakly semiregular paratopological group is T3 [31, Proposition
1.5], but there exists a semiregular semitopological group G which is not T3, see Example 1.
On the other hand, in Proposition 1 we shall prove that each Ty weakly semiregular semitopo-
logical group is semiregular.

Given a topological space (X, T) Stone [38] and Katétov [18] considered the topology s, on
X generated by the base consisting of all regular open sets of the space (X, 7). This topology is
called the semiregularization of the topology 7. If (X, 7) is a semitopological group then (X, Ts;)
is a weakly semiregular semitopological group (see [31, p. 96]). If (X, T) is a paratopological
group then (X, 7,,) is a T3 paratopological group [31, Ex. 1.9], [32, p. 31], and [32, p. 28].

1.4 Compact-like spaces

Different classes of compact-like spaces and relations between them provide a well-known
investigation topic of general topology, see, for instance, basic [16, Chap. 3] and general [13,
23,25,37,42] works. The including relations between the classes are often visually represented
by arrow diagrams, see, [25, Diag. 3 at p.17], [12, Diag. 1 at p. 58] (for completely regular
spaces), [37, Diag. 3.6 at p. 611], and [17, Diag. at p. 3].

We recall the definitions of compact-like spaces with which we shall deal in the paper. A
space X is called

o sequentially compact, if each sequence of X contains a convergent subsequence,
e countably compact, if each countable open over of X has a finite subcover,

e feebly compact, if each locally finite family of nonempty open subsets of the space X is
finite,

e pseudocompact, if X is T; completely regular and each continuous real-valued function on
X is bounded.

It is well-known and easy to show that each (sequentially) compact space is countable com-
pact and each countable compact space is feebly compact. Moreover, by [16, Theorem 3.10.22]
a Ty completely regular space is feebly compact iff it is pseudocompact.

1.5 Automatic continuity of operations in semitopological groups

It turned out that if a space of a semitopological (resp. paratopological) group satisfies
some conditions (sometimes with some conditions imposed on the group) then the multi-
plication (resp. inversion) in the group is continuous, that is the group is topological (resp.
paratopological). Investigation of these conditions is one of main branches of the theory of
paratopological groups, and, as far as the author knows, the firstly developed that. It turned
out that automatic continuity essentially depends on compact-like properties and separation
axioms of the space of a semitopological group. An interested reader can find known results
and references on this subject in the survey Section 5.1 of [32] and in Section 3 of the survey [40]
(both for semitopological and paratopological groups), and in Introduction of [1], [8, Section
1.6](for paratopological groups).

We briefly recall the history of the topic. In 1936 Montgomery [26] showed that every com-
pletely metrizable paratopological group is a topological group. In 1953 Wallace [43] asked
whether every locally compact regular semitopological group a topological group. In 1957 Ellis
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obtained a positive answer of the Wallace question (see [14,15]) (remark that later the author of
the present paper showed that regularity condition can be relaxed, see Proposition 5.5 in [32] or
its counterpart in English in [33]). In 1960 Zelazko used Montgomery’s result and showed that
each completely metrizable semitopological group is a topological group. Since both locally
compact and completely metrizable topological spaces are Cech-complete (recall that Cech-
complete spaces are Gs-subspaces of Hausdorff compact spaces), this suggested Pfister [28] in
1985 to ask whether each Cech-complete semitopological group a topological group. In 1996
Bouziad [9] and Reznichenko [36], as far as the author knows, independently answered affir-
matively to the Pfister’s question. To do this, it was sufficient to show that each Cech-complete
semitopological group is a paratopological group since earlier, Brand [10] had proved that
every Cech-complete paratopological group is a topological group. Brand’s proof was later
improved and simplified in [28]. For recent advances in this topic see Moors’ paper [27] and
references there.

If G is a paratopological group which is a T; space and G x G is countably compact (in par-
ticular, if G is sequentially compact) then G is a topological group, see [34]. On the other hand,
we cannot weaken Tj to Ty here, because there exists a sequentially compact Tp paratopo-
logical group which is not a topological group, see Example 5.27 from [8]. Also we cannot
weaken countable compactness of G x G to that of G because under additional axiomatic as-
sumptions there exists a countably compact (free abelian) paratopological group which is not
a topological group, see [8, Example 3.22]. Also there exists a functionally Hausdorff second
countable feebly compact paratopological group G which is not a topological group, see [8, Ex-
ample 3.30]. On the other hand, by Proposition 3.15 from [8] each feebly compact quasiregular
paratopological group is a topological group. In particular, each pseudocompact paratopolog-
ical group is a topological group, see also [4, Theorem 1.7] and [2, Theorem 2.1].

According to [24, Corollary 6.3], a subgroup of a compact Hausdorff semitopological semi-
group is a topological group. On the other hand, The group of integers (Z, +) endowed with
the cofinite topology is a T; compact semitopological group which is not a paratopological
group. On the other hand, it is easy to check that each T; regular countably compact space
is strongly Baire (see, [19, p.158] for definition), so by [19, Theorem 2], each T; regular count-
ably compact semitopological group G is a topological group. Nevertheless, there exists a
pseudocompact quasitopological group G of period 2, which is not a paratopological group,
(see [20, 21] and also [5, p.124-127]). On the other hand, Reznichenko in [35, Theorem 2.5]
showed that each semitopological group G € N is a topological group, where N is a family of
all pseudocompact spaces X such that (X, X) is a Grothendieck pair, that is if each continuous
image of X in C,(Y) has the compact closure in C,(Y). In particular, a pseudocompact space X
belongs to A provided X has one of the following properties: countable compactness, count-
able tightness, separability, X is a k-space, see [35]. Also is known that every pseudocompact
semitopological group of countable 7-character is a compact metrizable topological group,
see [5, Corollary 5.7.27]. Arhangel’skii, Choban, and Kenderov proved in [3, Proposition 8.5]
that a T locally countably compact semitopological group containing a compact of countable
character is a paracompact locally compact topological group.

In the present paper we show that each weakly semiregular compact semitopological group
G is a topological group, see Theorem 1. On the other hand, we construct examples of quasireg-
ular T compact and T sequentially compact quasitopological groups, which are not paratopo-
logical groups, see Examples 2 and 3, respectively.
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2 RESULTS

Example 1. There exists a semiregular semitopological group G which is not Tz. Put G =
(R?,+) and B = {U, : 0 < n € N}, where U, = {0} U{(x,y) € R?: |y| < |x| < 1/n} for
eachn. Putt ={V C G: (Vx € V)(3U € B) : x+ U C V}. Itis easy to check that (G, T) is a
semitopological semigroup and B is its base at the unit. Let ¢ be the standard topology of IR?.
Since T O o, the group (G, T) is T». Since int, U’ = U for each U € B, the group (G, T) has a
base {x + U : x € G,U € B}, consisting of regular open sets. But the group (G, T) is not T,
because U7 1 Fnr for each n.

Let G be a semitopological group and H C G be a normal subgroup of G. It is easy to check
that the quotient group G/ H endowed with the quotient topology with respect to the quotient
map 77 : G — G/H is a semitopological group.

Lemma 1. (see, [41, Theorem 3.1 and Corollary 3.2]) Let (G, T) be a semitopological group,
N={U:e€Uce€t}and K = NNN~L Then K is a normal subgroup of the group G
and ToG = G/K is a Ty semitopological group. Moreover, let T : G — G/K be the quotient
homomorphism. Then U = 7t~ 17t(U) for each open set U C G and hence the map 7 is clopen.

Lemma 2. A semitopological group G is a paratopological group iff ToG is a paratopological
group.

Proof. The sufficiency is evident. The necessity follows from Lemma 1. O

Lemma 3. Let (X, T) be a weakly semiregular space, (Y,0) be a space and 7 : X — Y be a
continuous clopen surjection. Then Y is a weakly semiregular space.

Proof. Let y € Y be any point and V € ¢ be any open neighborhood of y. Pick a point x &
7 1(y). Since 7~ 1(V) is a neighborhood of x and X is a weakly semiregular space, there exists
a regular open neighborhood U of the point x, contained in a set 771(V). Then y = 7(x) €

n(U) C n(U) C n(U) C e~ 1(V) = V (the third inclusion here holds because the map 7t is

closed). Therefore a canonical open set V' = intr(U) isclosedandy € V' Cc n(U) C V. O

Lemma 4. Let (G, T) be a weakly semiregular semitopological group. Put N = N{U:e € U €
T}. Then N is a closed normal subgroup of the group G and

N=({U:ecUet}=(({UU ' :ecUect}=({U':ecUeT1}

Proof. Put N' = N{U:ec U € t}and N" = N{UU ! :e € U € 7}. The set N’ is a closed
subset of the group G. Since forany V C G,V = N{VU ! :e € U € 7}, we have N’ = N".
Moreover, it is easy to see that N1 = N\{U':ec U €1}, NCN,NCN'and N~! C N".
Let U € T be any open neighborhood of the unit of the group G and x be any element of the
set U. There exists an open neighborhood V' € T the of unit of the group G such that xV C U.
Then xN' C xV C U. Since this inclusion holds for an arbitrary element x of the set U, we
see that UN’ C U. But UN' is an open subset of a group G and hence N’ C UN’ C intU.
Then N' C ({intU:ece U et} =N{U:e €U et} =N (the first equality holds because
G is a weakly semiregular space). At last, since N~} € N” = N’ C N, we have the inclusion
NcNL
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Let x, y be arbitrary elements of N and U € T be an arbitrary open neighborhood of the
unit of the group G. Then x € N C U. There exists an open neighborhood V' € 7 of the unit of
the group G such that xV C U. Theny € N C V. Hence xy € xV C U. Since this holds for an
arbitrary open neighborhood U € 7 of the unit of the group G, xy € N{U:e € U € T} = N.
So N is a subsemigroup of the group G. Since N = N~!, N is a group.

Let ¢ be an arbitrary element of the group G, and U € T be an arbitrary open neighborhood
of the unit of the group G. There exists an open neighborhood V' € 7 of the unit of the group
G such that g7'V¢ C U. Then ¢"'Ng C ¢~'Vg C U. Since this holds for an arbitrary open
neighborhood U € T of the unit of the group G, g™ 'Ng C {U:ec€ U €1} =N.SoNisa
normal subsemigroup of the group G. O

Proposition 1. Each Ty weakly semiregular semitopological group (G, T) is semiregular.

Proof. Put N = N{U : e € U € t}. Since G is a Ty space, NN N~ ! = {e}. But by Lemma 4,
N-'=N=Nn{UU1':e€ U € 1} = N". Therefore N = {e} and the group G is T,. O

Lemma 1, Lemma 3 and Proposition 1 imply the following

Proposition 2. If G is a weakly semiregular semitopological group then TG is a semiregular
semitopological group.

We remark that Proposition 2 cannot be generalized for arbitrary quotient groups even
of regular paratopological groups, because in [6] Taras Banakh and the author constructed a
countable regular abelian paratopological group G containing a closed discrete subgroup H
such that the quotient G/ H is T, but not T3. The group G/H is even not weakly semiregular,
because by [31, Proposition 1.5] each weakly semiregular paratopological group is T3.

Lemma 5. [35, Theorem 0.5] A T, compact semigroup with separately continouous multipli-
cation and two-sides cancellations is a topological group.

Lemma 6. (see [32, Lemma 5.4], [41, Proposition 3.2], or [8, Proposition 3.2]) Each compact
paratopological group is a topological group.

Theorem 1. Each weakly semiregular compact semitopological group G is a topological group.

Proof. By Proposition 2, T)G is a semiregular compact semitopological group. By Lemma 5,
ToG is a topological group. By Lemma 2, G is a paratopological group. By Lemma 6, G is a
topological group. O

Let us illustrate the topic by the following simple

Proposition 3. Let G be a group endowed with the cofinite topology, that is a set U C G is
open in G iff U = @ or a set G\ U is finite. Then G is a T; semitopological group and the
following conditions are equivalent.

1. The group G is a paratopological group.
2.1. The group G is T5.

2.2. The group G is weakly semiregular.
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2.3. The group G is quasiregular.
3. The group G is finite.

Proof. The continuity of shifts on the group G and implications 3 = * are obvious, implications
2.x = 3 follows from the fact that if the group G is infinite then each nonempty open subset
of G is dense in G. It remains to show an implication 1 = 3. Suppose to the contrary that G
is an infinite paratopological group. Pick an element x € G\ {e}. Since the multiplication at
the unit of G is continuous, there exists a finite set F C G \ {e} such that (G \ F)?> C G\ {x}.
Since the group G is infinite, there exists a pointy € G\ (FUxF~!). Then y(G\ F) > x, a
contradiction. O

Example 2. There exists a 11 quasiregular compact quasitopological group G, which is not a
paratopological group. Let G = T = {z € C : |z| = 1} be the unit circle. We define an open
base B at the unit of a topology of a semitopological group on G by putting B = {U, : 0 < n €
Z}, whereU, = {z€ C\{(-1,0)} rargz € (—=1/n,1/n)U(mt —1/n,7t+1/n)}.0

Example 3. There exists a Tp quasiregular sequentially compact quasitopological group G,
which is not a paratopological group. Let

G=XwZy={xeZ": {a:xy #0}| <w}
Put B = {Uy4 \ S : A is a finite subset of w1}, where
Ug ={x € G:xy = xpgforeachu,p c A}

and
S={xeG:xp=1andx, > x5 foreachy < 6 < w1 }.

We claim that the family B satisfies Pontrjagin conditions (see [30, Proposition 1]). Indeed,
the one non-evident of these conditions for the family B is: for each U € B and for each point
x € U there exists U’ € B such that x + U’ C U. Let’s check this. Let B> U = U4 \ S, where
A is a finite subset of wy and x € U. If x = 0 then it suffices to put U’ = U. If x # 0 then there
exists an index ' € wy such that x,, = 1. Since x € X, Z5, there exists an index 7' < §' < w;
such that xg = 0. Since x ¢ S, there exist indexes v",¢" € wy, y"" < 6" such that x,» = 0 and
xsr = 1. Put A" = AU{y/,v",8,6"} and U = Uy. Then x + U’ C U. Hence the family B is
an open base at the unit of a topology of a semitopological group on G. Denote this topology
asT. Since U D Uy \ S, the group (G, T) is quasiregular. Since the set U 4 is a group for any
subset A of w1 and N{U4 : A is a finite subset of w1} = {0}, the group (G, 1) is T,. Since
the topology T is weaker than the sequentially compact topology on the set ¥, Z,, induced
from the Tychonoff product, the group (G, T) is sequentially compact too. At last, to show that
(G, 1) is not a paratopological group, it suffices to show that for any finite set A C w; there
exist points x,y € Uy \ S such that x +y € S. Fix arbitrary two indexes «, B € wj such that
supA < w < B. Foreachy € wy putx, = 1ify € {a, B} and x, = 0 otherwise. For each
v € wy puty, = lifa # v < B andy, = 0 otherwise.

Recall that a topological group G is precompact if for each neighborhood U of the unit of G
there exists a finite subset F of G such that FU = G (or, equivalently UF = G).
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Theorem 2. Let (G, o) be a T, precompact topological group, (G, T) be a weakly semiregular
semitopological group and T C ¢. Then (G, T) is a topological group.

Proof. Let (G, &) be a Raikov completion of the group (G, o). Since the group G is a dense pre-
compact subset of the group (G, &), by Corollary 3.7.6 from [5], the group (G, &) is precompact.
Since the group (G, &) is Raikov complete, by Theorem 3.7.15 from [5] it is compact.

In this proof as - we denote the closure with respect to the topology 0.

Put N = N{U : e € U € t}. We claim that N is a normal subgroup of the group (G, &).
Indeed, let x, y be any elements of N, U € T be an any open neighborhood of the unit of the
group G, and W = (W)~ € ¢ be any symmetric open neighborhood of the unit of the group
G. Then there exists an element u € U N Wx. There exists an open neighborhood V € T of
the unit of the group G such that uV C U. Then there exists an element v € V N yW. Then
xy € WuvW C WUW. Since this holds for any symmetric open neighborhood W = (W)~! ¢
¢ of the unit of the group G, xy € U. Since this holds for any open neighborhood U € T of
the unit of the group G, xy € N{U : ¢ € U € 1} = N. So N is a closed subsemigroup of a
T, compact topological group (G, ). By Lemma 5, N is a group. Let g be any element of the
group G and U € 7 be any open neighborhood of the unit of the group G. Since (G, 1) is a
semitopological group and g~ leg = e there exists an open neighborhood V € T of the unit
of the group G such that g~'V¢ C U. By continuity of multiplication on the group (G, ?),
¢ INg c ¢~ WVg C U. Since this holds for any open neighborhood U € T of the unit of the
group G, g7!Ng C M{U : e € U € 7} = N. Now suppose that there exists an element
¢ of the group G such that (¢)"'N¢ ¢ N. Then there exists an element x € N such that
()" 'x¢ ¢ N. Since N is a closed subset of the group (G,&) and the multiplication on the
group (G, &) is continuous, there exists a symmetric open neighborhood W = (W)~ € ¢ of
the unit of the group G such that W(¢) " 'x¢W N N = @. Since the group (G, ) is dense in its
completion (G, ?), there exists an element ¢ € G N ¢W. But then g~ 'xg € W(¢)'x¢W & N,
a contradiction. Therefore (¢)"!N¢ C N for each element (¢§) € G. Thus N is a normal
subgroup of the group G.

Define a topology ¢ on the group G by putting oy = {WN : W € ¢}. Itis easy to check
that (G, o) is a topological group. We claim that &x|G = T. Let’s check this.

(0n|G C T) Let W € 6 be any non-empty set and x € WN N G be any point. Then e €
x"TWN,soN{U:e€ U €t} =NC x 'WN. Since x 'WN is an open subset of the compact
group (G, o), there exists a sete € U € 7 such that U C x~!WN. Then xU is a neighborhood
of the point x in the topology T and xU C WN N G.

(0n|G D 7) Let U € T be any open neighborhood of the unit of the group G. We claim
that UN C U. Indeed, let x be any element of the set U. There exists an open neighborhood
of V € 7 the unit of the group G such that xV C U. Then xN C xV C U. Since this inclusion
holds for any element x of the set U, we see that UN C U. Let y be any element of the set
N. Then Uy C U and U C Uy~ . Since the set Uy~ ! is closed in the group (G, o), we see
that U C Uy~ !. At last, since this inclusion holds for any element y of the set N, we see that
UN c U. Since |G D T, there exists an open neighborhood W € ¢ of the unit of the group
G such that WN G C U. Since the set G is dense in the space (G, &), W c WNG c U. Then
WN C UN C U. But WN NG € 7, because on|G C 1. Therefore WNNG C int.(UNG) C
int; U (wehave UNG C U", because |G D 7). Atlast, since U € T is any open neighborhood
of the unit of the weakly semiregular group G, we have that (6x5|G D 7).
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Thus, since on|G = 7, (G, 7) is a topological group. O

Theorem 3. Let (G, o) be a T, feebly compact paratopological group, (G, T) be a Tz semitopo-
logical group and T C ¢. Then (G, T) is a topological group.

Proof. The group G endowed with the topology o5, is a feebly compact T, and T3 paratopo-
logical group. By [8, Proposition 3.15], (G, 0, ) is a feebly compact topological group. Hence

the

group (G, 0y) is precompact. Let U € T be an arbitrary set and x € U be an arbitrary

point. Since topology T is T3, there exists an open neighborhood V' € 7 of the point x such that

V’l’

CU. SincetCo,Veo. Thenx €V =int,V Cint, V' Cint, V' Cint, V' Cc V' C U.

Since int, Ve Osr, T C 05, and (G, 0, ) is a weakly semiregular space, by Theorem 2, (G, T) is
a topological group. O
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Pascoxmit O.B. Aeujo npo komnaxmonodioni Haniemononoeivni epynu // Kaprarceki MaTeM. my6bA. —
2019. — T.11, N2. — C. 442-452.

OrpumaHO AesiKi pe3yAbTaTy IIOB'sI3aHi 3 aKkCioMaMM BiAOKpeMAEHHSI Ta aBTOMATUYHOIO Helle-
PEPBHICTIO Y KOMITAaKTOIOAIGHIX HaIliBTOIIOAOTiUHMX TpyIax. 30KpeMa, HaBeAeHa HalliBpeTryAsipHa
HamiBTromoaoriuHa rpyma G, xoTpa He € T3. [ToxasaHO, 0 KOXHa cAabKO HaIiBperyasipHa KOM-
ITaKTHA HaIliBTOTIOAOTiUHa IPyTia € TONOAOTIYHOI Irpymoo. 3 iHmmoro 60Ky, mo6yaoBaHi MPUKAAAM
KBasiperyasspaux T7 KOMIakTHOI Ta T) ceKBeHIiaAbHO KOMIIAKTHOL KBa3iTOMOAOTIIUHIIX TPYTI, KOTPi
He € [IapaTOIOAOT UHMMIY rpymamu. Takox MmokKasaHo, 1o HamiBTOmoAoriuda rpyma (G, T) € Tomo-
AOTIYHOIO IPYIOK 3a YMOBM iCHYBAHHS Takol raycaopdgoBoi Tomoaorii ¢ O T Ha G, mo (G,0) €
IIPEKOMITAKTHOIO TOMOAOTIUHOIO rpymoio i (G, T) € caabko HamiBperyasipHoo a6o (G, o) € caabko
KOMITAKTHOIO ITapaTOIOAOriuHoW rpynowo i (G, T) € Ts.

Kontouosi cnoéa i ¢ppasu: HaIiBTOIOAOTiUHA IpyIla, MApaTOIOAOTiUHA IpyTia, KOMIIAKTOIIOAIGHA
HaIliBTOIIOAOTiUHa TPyTla, KOMIIAKTOIOAI6HA MapaTOIOAOTiUHa TPpyIia, HellepepBHiCcTh 06epHEHOTO,
CYKyIIHa HellepepBHiCTb, aKCiOMM BiAOKPeMAEHHsI, 3AiYeHHO-KOMITaKTHa MapaToNOAOTiUHa IpyIa,
cAabKO KOMITAKTHA IIapaTOINOAOTiYHA IPYIIa, 3AiYeHHO-KOMITaKTHA TOIIOAOTIUHA TPyTIa.
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ON ADDITIVITY OF DERIVATIONS

Let R be a ring and M be an R-bimodule. A mapping d : R — M (not necessarily additive)
is called multiplicative derivation of R if d(xy) = d(x)y + xd(y) for all x,y € R. In this paper, we
intend to establish the additivity of d under some suitable restrictions. Moreover, we introduce
multiplicative semi-derivations of rings and discuss their additivity.
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INTRODUCTION

All through this paper, R denotes an associative ring (not necessarily with unity). A map-
ping d : R — Riis called a derivation of R if for any x,y € R

d(x +y) = d(x) +d(y) @
and d(xy) = d(x)y + xd(y). ()

If d satisfies (2) but not necessarily (1), then d is called a multiplicative derivation of R (see
[3]). In [2] Bergen extended the notion of a derivation by introducing semi derivation of a ring.
Accordingly, a semi derivation (d, ) of a ring R is an additive mapping d : R — R associated
with a ring endomorphism g of R such that d(xy) = d(x)y + g(x)d(y) = d(x)g(y) + xd(y)
and d(g(x)) = g(d(x)) for all x,y € R. Clearly, every derivation is a semi derivation but the
converse is not true always. We denote the Lie commutator xy — yx by the symbol [x,y]. A
non-zero element ¢ € R is said to be idempotent if > = e and by a non-trivial idempotent we
mean an idempotent element e different from the multiplicative identity of R. Let M be an
R—bimodule and e; € R be a non-trivial idempotent element. For any x € M U R we shall
write x(1 — e1) instead of x — xeq, (1 — e1)x instead of x — e;x and e; instead of (1 — e1). Then
we set R;j = ¢;Rej and M;; = e;Me;, where i, j € {1,2}. Therefore, R and M can be factorized as
follows: R = Rq11 @ R12 @ Ro1 @ Rop and M = My @ Mip @ My @ M. This representation
of R and M is called Peirce decomposition relative to ey (see [[5], pg. 48]). Further, the following
are some well-known facts related to this decomposition of R:

(i) Rz’jR]’k C Rjx, where i,j,k S {1,2}.
(11) Rinkl =0, wherej 7é k, and i,j, k1 e {1, 2}
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(iii) xiz]. = 0 for all x;; € R;j, where i # jand i,j € {1,2}.

The structure of rings is tightly connected with the additive mapping like isomorphisms,
derivations, centralizers etc. Therefore, the problem of exploring the conditions under which
these mappings become additive on rings (or algebras) has naturally grown as a fascinating
area of research and has been attracted many algebraists for the last six decades. In this direc-
tion, Martindale [8] considered the so called problem “When a multiplicative mapping is addi-
tive?" He gave a remarkable technique and established a set of conditions on a ring that forces
a multiplicative isomorphism to be additive. In particular, every multiplicative isomorphism
from a prime ring containing a non-trivial idempotent onto any ring is additive. Inspired by
this, Daif [3] obtained the additivity of multiplicative derivations of rings and consequently
introduced the notion of multiplicative derivations. After that a number of results has been
obtained in associative as well as alternative rings and algebras (see [4, 6,7,9-11]) and refer-
ences therein). Recently, Wang [11] explored the additivity of n—multiplicative isomorphisms
and n—multiplicative derivations of rings. As a consequence, one may deduce the theorem of
Martindale and theorem of Daif from corollary 3.1 and 3.3 of [11] respectively. In this paper,
we will continue the study of analogue problems for some derivable mappings on associative
rings.

1 MAIN RESULTS

1.1 Additivity of multiplicative derivations

In view of Peirce decomposition, we see that any mapping d : R — M can be expressed as
6(x) = 011 (x) + b12(x) + 021 (x) + d22(x)

for all x € R, where §;; : R — M;; be a mapping defined as x + e;xe; for all i,j € {1,2}. For
any x,y € R, we have x = x11 + x12 + x21 + x22 and y = y11 + y12 + Y21 + y22. Further,

xy = (x11y11 + x12921) + (X11y12 + X12y22) + (x21y11 + X20¥21) + (X21Y12 + X22Y22)-
Now, we extend the notion of multiplicative derivation of a ring R as follows:

Definition 1. Let R be a ring (not necessarily with unity) and M be a bimodule over R. A
mapping d : R — M (not necessarily additive) is said to be a multiplicative derivation of R into
M ifd(xy) = d(x)y + xd(y) forall x,y € R.

Since d(el) € M1 P My M1 P My ie., d(el) = my + mip + Moy + mpy, where mjj €
M;; for all i,j € {1,2}. Also d(e;) = d(e?) = d(e)er + e1d(eq). By using the value of d(e;)
we obtain that mj;; = 0 = myp and hence d(e;) € Mip @ My;. For some fixed x € M and
z € R, we define a function f : R — M by a — [z,x]a + a[x,z]. Clearly, f is a derivation. Fix
X = myp + My and z = e1. Re-defining f as a — [61,71’[12 + 71121]{1 + a[m12 + 11121,61]. Thus, we
have

f(er) = [e1, mip + mp)er + e1[min + myy, eq]

= (mpp —mor)er +e1(myp —mp) = —myp — my = —d(ey).
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Hence, (f +d)(e1) = 0. We set f +d = D. That means D(e;) = 0. Now, we have the following
relations:

D11(xy) = D11(x)y11 + x11D11(y) + D12(x)y21 + x12D21 (), (3)
D1a(xy) = D11(x)y12 + D12(x)y22 + x11D12(y) + x12D22(y), (4)
Dy (xy) = x21D11(y) + D21 (x)y11 + x22D21(y) + Do (x)y21,

Dy (xy) = x21D12(y) + D21(x)y12 + Do (x)y2 + x20Dxn(y).
Further, it is easy to check that D;;(e;) = 0 and D;;(xy) = D;;(x)y + xDj;(y) for alli,j € {1,2}.

Lemma 1. Let R be a ring (not necessary with unity) and M be a bimodule over R. Suppose
that R contains a non-trivial idempotente; such that for any m € M, the following are satistied:

(H1) eyme Ry = (0) implies eyme; = 0,
(H2) eymeyRyp = (0) implies eymep = 0,
(H3) eymeyRy1 = (0) implies eymep = 0.
Then Dy and Dy are additive.

Proof. Firstly, we shall show that D1 is additive on Ry1 @ Rix @ Rao and that Dy, is additive
on Ry; @ Ri2 @ Ry1. We begin with

D11(x11 + x12 + X21 + X22) = erD(x11 + X12 + X21 + x22)e1 = erD((x11 + x12 + x21 + X22)e1)ex
= e1D(x11 + x21)er = D11 (x11 + x21).
That is
D11 (x11 + x12 + X21 + X20) = D11(x11 + %21)- 5)
In particular, we have
D11(x11 + x12 + x22) = D11(x11). (6)

For any y12 € Ry, we have Diy(x12)y12 = Di1(x12y12) — x12D11(y12) = 0. That means
Dll (x12)R12 = (0) By (Hl), we obtain Dll (Xlz) = 0 for all X12 € RlZ- Likewise Dll (sz)Rlz
= (0) for all xp» € Rpy. Again by (H1), we find Dj1(x2) = 0 for all xpp € Rp. Now, we can
rewrite (6) as

D11 (x11 + x12 + x22) = D11(x11) + D11(x12) + D11(x22).

It means that D1y is additive on Ry; @ Ry @ Ry. On the other hand, for any r € R, we find
that

(D12(x11 + X12 + X21 + x22) — D12(x12 + x22))7
= D1a(x11 + x12 + x21 + x22)7 — D12(x12 + x22)7
D12 (x11 + x12 + x21 + x22) (r21 + 122) — D12(x12 + x22) (121 +722)
= Dra((x11 + x12 + x21 + %22) (r21 +722)) — (%11 + X12 + X21 + X22)
D1a(ra1 +122) — D1a((%12 + x22) (21 + 722)) + (x12 + x22) D12(721 + 722)
= —(x11 + x21)D12(r21 +r22) = —(x11 + x21)e1D12(r21 + 122)
= —(x11 + x21)D12(e1(ra1 +722)) + (%11 + x21) D12(e1) (r21 +r22) = 0.
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Hence (D12 (x11 + x12 + %21 + X22) — D12(%12 + x22) )R = (0). In particular, (D1p(x11 + x12 +
X21 + x22) — D12(x12 + x22) )R = (0). By (H2), we find

D1p(x11 + x12 + X1 + x22) = D12 (%12 + x22).

Consequently
D1a(x11 4 x12 + x21) = D12(x12). (7)

Now, for any zp € Rop, we get D1p(x11)222 = D12(x11222) — X11D12(222) = —x11€1D12(222) =
—X11D12(€1222) + x11D12(el)zzz = 0. That is Dlz(xll)Rzz = (O) for all X11 € Rll- Thus we may
apply hypothesis (H2), which forces that D15(x11) = 0 for all x1; € Ryp. In the similar manner,
we find that D15 (x21)Roo = (0) for all xp1 € Rp1. Again applying (H2), we get D15(xp1) = 0 for
all xp; € Rp;. Thus expression (7) assures that D1, is additive on Ry; @ Rz @ Rp;.

We now proceed to show that Dj; is additive on Rp; and Dy, is additive on Ry,. For any
x,y € R, we have

Dy1(xy) = D11((x11 + x12 + %21 + x22) (Y11 + Y12 + Y21 + Y22))
= D1y1((x11y11 + x12v21) + (x21y11 + X20Y21) + (*¥11Y12 + X12Y22)
+(x21v12 + x2Y22)) = D11((x11y11 + X12¥21) + (X21y11 + X202Y21) ) ( using (5) ).

and

D11 (x)y11 + x11D11(y) + D12(x)y21 + x12D21(y) = D11(x11 + x21)y11
+ x11D11(y11 + y21) + D12(x12 + x22)y21 + X12D21 (Y11 + Y21)-

Now, relation (3) can be expressed as

D11 ((x11y11 + x12y21) + (221¥11 + X22Y21)) = D11(x11 + %21)y11

+ x11D11(y11 + y21) + D12(x12 + x22)y21 + x12D21 (Y11 + Y21)- ®
In particular, putting x;; = 0 = x1 in (8), we obtain
D11 (x21y11 + x22y21) = D11(x21)y11 + D12(x22)y21- )
It follows that
Dy1(x21y11) = Dun(x21)y11,  D1a(x22y21) = D1a(x22)ym- (10)
Thus, (9) can be written as
D11 (x21y11 + x22y21) = D11(x21y11) + D11 (x22y21)- (11)

Replacing y11 by x12y21 and xp; by z1x12 in (11), we get

D11 (x21%12Y21 + 221X1221) = D11 (x21x12Y21) + D11 (221%12Y21),
D11 ((x21 4 z21)x12y21) = D11((x21)(x12Y21)) + D11((221) (X12Y21) ).

Application of (10) yields that

D11 (x21 + 221)x12Y21 = D11(x21) (X12Y21) + D11(221) (X12Y21)-
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That is,
(D11(x21 4 221) — D11(x21) — D11(221))R12R21 = (0).

Application of (H3) and (H1) respectively yields
D11(x21 +z21) = D11(x21) + D11(za1) forall xa1,221 € Roy.

From (10), we have D15(x22)y21 = D11(x22¥21). Therefore

Dip(x22 +z22)y21 = Di1((x2 + z2)y21) = D11(x22y21 + 22221)
= Di1(x22y21) + D11(220¥21) = D12(x22)y21 + D12(222)y21.

It implies that
(D12(x22 +2z22) — D12(x22) — D12(222))Ro1 = (0).

We may apply (H3) in order to obtain D1y(x22 + z22) = Dia(x22) + D12(z22). Hence, Dy; is
additive on Ry).

Next, we shall show that Dj; is additive on Ry; and Dy, is additive on Ry;. It is straight
forward to check that, for any x13,y12 € Ry»

(D11(x12 +y12) — D11(x12) — D11(y12))Ri2 = (0).

Thus, hypothesis (H1) forces D11 (x12 + y12) = D11(x12) + D11(y12)- Let r12 € Ryp. Then

D11 (x11 +y11)r12 = D11 ((x11 + y11)r12) — (x11 + y11) D11 (r12) = D11 (x11712 + y11712)
— x11D11(r12) — y11D11(r12) = D1i(x11712) + D11 (y11r12) — x11D11(r12) — y11 D11 (r12)
= D11(x11)r12 + D11(y11)712-

That is (D11(x11 +y11) — D11(%11) — D11(y11))r12 = O for all 11 € Ryp. Again we apply (H1) in
order to obtain

D11(x11 +v11) = D11(x11) + D11(y11) for all x11,y11 € Rys.

In like manner, for any 71 € R21, we see (Dlz(xll + yll) - Dlz(xll) - DlZ(yll))rﬂ = 0. Thus
(Dlz(xll + yll) - Dlz(xll) - DlZ(]/ll))Rﬂ = (0) On utilizing (H3), D12 is additive on Rll-
Further, we consider

(D12(x12 +y12) — D12(x12) — D12(y12))721 = D12(x12 + y12)721 — D12(x12)721 — D12(y12)721
= D12(x12721 + y12r21) — D12(x12721) — D12(y12721) = 0.
Therefore, we obtain (D1(x12 + y12) — D12(x12) — D12(y12))R21 = (0). Hypothesis (H3)
yields
D12(x12 + y12) = D12(x12) + D12(y12)-
Now, we are well occupied to prove that Dj; and Dj; are additive on R. Observe that, as
per the results derived above it is enough to show that Dy1(x11 + x21) = D11(x11) + D11(%x21)

and Dyp(x12 + x22) = D12(x12) + D12(x22).
Firstly, note that

D21(y) = Da1(y11 + y12 + y21 + y2) = e2D(y11 + y12 + y21 + y22)er
= e;D((y11 + y12 + y21 + y22)er)er = e2D(y11 + y21)er = Doi(y11 + va1)-
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and
(Da2 (11 + x12 + x21 + x22) — Do (12 + x22) )7
= Dy (x11 + x12 + %21 + x22) (21 + 122) — Do (%12 + x22) (121 + 122)
= Dop((x11 + x12 + x21 + x22) (21 + 722)) — (X171 + X120 + X21 + X22) D2 (721

+722) — Do ((x12 + x22) (121 + 722)) + (xX12 + x22) D2a (121 + 122) = 0.

Let us rewrite expression (4) as

D1p((x11y12 + x12y22) + (22112 + X22Y22)) = D11(%11 + X21)Y12
+ D1 (x12 + x22)y22 + x11D12 (Y12 + ¥22) + X12D22 (Y12 + Y22).

In particular, we put x1, = 0 = xp; in (12), we find

(12)

D12 (x11y12 + x22y22) = D11(x11)y12 + D12(x22)y22 + *11 D12 (Y12 + ¥22)- (13)
On substituting x1; = €1, y12 = z12y22 in (13), we get
D12((z12 + x22)y22) = Di1(e1)z12y22 + D12(x22)y22 + e1D12(z12y22 + Y22)
= D1a(x22)y22 + D12(e1(z12y22 + ¥22)) — D12(e1)(z12y22 + y22)
= D12(x22)y22 + D12(z12Y22) = D12(x22)y22 + D12(212)y22-
That gives
D12((z12 + x22)y22) = D12(212)y22 + D12 (x22)y20- (14)
We next put y1p = 0 = x1; in (12), we get
D1a((x12 + x22)y22) = D1a(x12 + x22)y22 + x12D2(y22)- (15)
On combining (14) and (15), it follows that

D1p(x12 + x22)y22 + x12D22(y22) = (D12(212) + D12(x22) )y20.

On substituting y22 = y21t12 in the above expression in order to obtain

(D12(z12) + D12(x22))y21t12 = D1a(x12 + x22)y21t12 + X12D22 (Y21 t12)
= D1p(x12 + x22)y21t12 + ¥12D20 (Y21) t12 + X12y21 D22 (t12) = D12(x12 + X22)y21t10.
That is (Dlz(xlz + Xzz) — D12(212) — Dlz(X22))y21i'12 = 0 for all yp; € Ry and t15 € Ryp.
Thus (D12(x12 + x22) — D12(212) — D12(x22))R21R12 = (0). An application of (H1) and (H3)
successively yields D1p(z12 + X22) = D12(2z12) 4+ D12(x22). Moreover, we put x5 = 0 = yzp in
(14) in order to obtain

D11 (x11 + x21)y12 + x¥11D12(y12) = D1a(x11¥12 + X21Y12) (16)
= D1a(x11¥12) + D12(x21Y12)-

It follows that

D12(x11y12) = D11(x11)y12 + x11D12(y12),  D1a(x21¥12) = D11(x21)y12- (17)
By utilizing (17) in (16), we find (D11 (x11 + x21) — D11(x11) — D11(X21))y12 = O for all y1» € Ry.
That means (D11 (x11 + x21) — D11(x11) — D11(%21))R12 = (0). By (H1), we get D11 (x11 + x21) =
D11(x11) + D11(x21). O
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Analogously, we can prove the following lemma:

Lemma 2. Let R be a ring (not necessary with unity) and M be a bimodule over R. Suppose
that R contains a non-trivial idempotente; such that for any m € M, the following are satistied:

(H4) e;me;Ry1 = (0) implies epmep = 0,
(H5) e;me1Rq1 = (0) implies epme; = 0,
(H6) e;me1Rq = (0) implies epmep = 0.
Then D5 and D5, are additive.
Since D = Dy + D1y + Dy 4 D2y, Lemma 1 and Lemma 2 proves our main result:

Theorem 1. Let R be a ring and M be a bimodule over R. If e is a non-trivial idempotent in R
such that for all m € M the conditions (H1)-(H6) hold. Then every multiplicative-derivation
d : R — M is additive.

Recall that R is said to be a prime ring if aRb = (0) implies either a = 0 or b = 0 and
is called semiprime if aRa = (0) for all @ € R. Let R be a semiprime ring and Q be the two
sided Martindale quotient ring of R. The maximal left ring of quotients (also called left Utumi
quotient ring) of R is denotes by Q,,;. The center C of Q is called the extended centroid of R. If
Rhappens to be prime, then C is a field. Moreover, the extended centroid C of R coincides with
the center of Q,,; and is reduced in the sense that C does not have nonzero nilpotent elements.
For more information of these objects, we refer the reader to [1]. As an application of Theorem
1, we obtain the following consequent results:

Corollary 1. Let R be a semiprime ring containing a non-trivial idempotent e. Suppose that for
any a € Q,, the following holds:

(I) ejae1Rey; = (0) implies eqae; =0,
(II) epaepReq = (0) implies epae; = 0.
Then any multiplicative-derivationd : R — Q,,; is additive.

Proof. Leta € Q, be an element such that e;ae;Re; = (0) for all 7,j,k € {1,2}. We have the
following possible cases:

Case 1. If i = k, then we have (e¢;ae;Re;)ae; = 0. It yields that e;ae; = 0 for all i, j € {1,2}.

Case 2. Suppose that j = k. In the view of proposition 2.1.7 (ii) of [1], there exist a dense left
ideal D of R such that De;a C R. It implies that (De;aej)R(De;ae;) C (Dejaej)Re; = (0). It
follows that De;ae; = (0) for all i,j € {1,2}. With the aid of proposition 2.1.7 (iii) of [1], we
obtain ¢;ae; = 0 for all i,j € {1,2}.

Case 3. In latter case i = j. By our hypothesis e;ae;Re; = (0) implies e;ae; = 0 for all i € {1,2}.
Now, we see that the condition (H1)-(H6) hold here. Therefore, d is additive by Theorem 1. [

In case R is a prime ring, every derivation d : R — Q,,; is additive automatically, since if
for any g1, 92 € Qui, 1Rq2 = (0) implies g1 = 0 or qo = 0. Thus, we obtain

Corollary 2. Let R be a prime ring containing a non-trivial idempotent e. Then every multipli-
cative-derivationd : R — Q,,; is additive.
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1.2 Additivity of multiplicative semi-derivations

In [8] Martindale give a set of conditions that are sufficient for the additivity of ring iso-
morphisms. Precisely, he proved that “Let R be a ring containing a family {e) : A € A} of
idempotents satisfying (Martindale’s conditions)

(I) xR = (0) implies x = 0,
(IT) If for each A € A, e,Rx = (0), then x = 0 (hence Rx = (0) implies x = 0),
(II) IfepxeyR(1 —ey) = (0) foreach A € A, then eyxe, = 0.

Then any multiplicative isomorphism of R onto an arbitrary ring S is additive”. It is natural
to think of a unified notion of multiplicative derivation and a semi derivation. In view of this
idea, we now give the notion of multiplicative semi-derivation, as follows:

Definition 2. Let R be a ring. A mapping ¢ : R — R (not necessarily additive) defined by
g(xy) = g(x)g(y) for all x,y € R is called a multiplicative homomorphism of R. Then the
mapping 6 : R — R (not necessarily additive) together with g is called multiplicative semi-
derivation of R if

(xy) = 6(x)g(y) +x6(y) = 6(x)y + g(x)é(y)-
holds for all x,y € R.

Example 1. Let R = {( ! ZJ > : u,v,w € R}, where R denotes the field of real numbers.

u 0
Define a mapping § : R —+ R byg< ! Z) ) = ( 0 det ( u v ) ), which is clearly a
0 w

ring endomorphism of R. Now, it can be easily verified that 6 = g — I is the multiplicative
semi-derivation of R.

In this section, our aim is to obtain the additivity of multiplicative semi-derivations of rings
under certain conditions. Precisely, we obtain the following result:

Theorem 2. Let R be a ring satisfying Martindale’s conditions (I)-(IlI). If d : R — R is a
multiplicative semi-derivation of R associated with a multiplicative isomorphism g : R — R,
then d is additive.

Let us define a function ¢ : R x R — R that ¢(x,y) = d(x +y) —d(x) —d(y), where d is
a multiplicative semi-derivation of R. Clearly, ¢ is a well-define mapping and ¢(x,0) = 0 =
¢(0,x) for all x € R. Now, it is clear that d is additive if and only if ¢ = 0. This observation
motivated the technique opted in this paper. We prove Theorem 2 through a sequence of
lemmas.

Lemma 3. Forany x,y,k € R, ko(x,y) = ¢(kx,ky) and ¢(x,y)k = ¢(xk, yk).

Proof. In the view of [ [8], Theorem], ¢ must be additive on R. For any x,y,k € R, we have
p(kx, ky) = d(k(x +y)) —d(kx) —d(ky) = d(k)g(x +y) + kd(x +y) —d(k)g(x) — kd(x) —
d(k)g(y) —kd(y) = k(d(x +y) —d(x) —d(y)) = k¢(x,y). On the other hand, let us consider
¢(xk,yk) = d((x +y)k) —d(xk) —d(yk) = d(x +y)k + g(x +y)d(k) —d(x)k — g(x)d(k) —
d(y)k —g(y)d(k) = (d(x +y) —d(x) —d(y))k = ¢(x,y)k. O
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Lemma 4. ¢(x;;, xjx) = 0= ¢(xj, x;i); ] # k, wherei, j,k € {1,2}.

Proof. In case i = j. For any r;; € Ry, we find ¢(x;;, xjx)ryy = @(xiiriy, Xjxrit) = ¢(z,0) = 0 for
alli,j, k1 € {1,2}, by Lemma 3. For any ryy € Ry, we have ¢(x;;, Xjx)rin = @(Xiitw, Xjxta) =
@(0,wj;) = 0 for all i,j,k, 1 € {1,2}. Since i = j # k, it implies ¢(x;;,x3) R = (0). By
hypothesis (I), we obtain ¢(x;;, x]-k) = 0. In the latter case, we assume i # j. For any r,,; € Ry,
we have 7,,;¢(xii, Xj) = @("miXii, TmiXjx) = @(zmi,0) = 0 for all i,j,k,m € {1,2}. Similarly,
we may infer that r,,;¢(x;;, xjx) = 0 for all r,;; € Ryj and i,j,k,m € {1,2}. Combining these
relation, we get Rg(x;;, xjx) = (0). By hypothesis (II), we get ¢ (x;;, x;x) = 0. Hence, we conclude
that ¢(x;;, xjx) = 0 forall j # kand i,j,k € {1,2}. Analogously, we obtain ¢(xj, x;;) = 0 for all
j#kandi,j k € {1,2}. O

Lemma 5. ¢(x12,y12) = 0.

Proof. Clearly, e19(x12,y12) = ¢(e1x12,€1912) = @(x12, ¥12) and @(x12,y12)e1 = @(x121, Y12
61) = q)(O, 0) = 0. It implies that q)(xlz, ]/12) € Rjpp. Therefore, go(xlz, ylz)ﬂll = 0 and
gD(Xlz, ]/12)&12 = 0 for all a17 € Rq1,a12 € Rqp. Now for any ap; € R»1, we have

¢(x12,¥12)a21 = @(X12021, Y12021) = @(X12(a21 + Y12021), €1(a21 + Y12421))
= ¢(x12,€1)(a21 + y12a21) =0 (using Lemma 4).

In the similar way, we can show that ¢(x12,y12)a2 = 0 for all ay; € Ry. Combining all these
relations, we get ¢(x12,y12)R = (0). Hence, ¢(x12,y12) = 0 by condition (I). O

Lemma 6. q)(xll,yll) =0.

Proof. Under the influence of Lemma 3, it is easy to see that ¢(x11,¥11) € Ryi1. For any aj, €
Rqp, we have ¢(x11,y11)a12 = ¢(X11412, ¥y11412) = ¢(Y12,212) = 0 by Lemma 5. That means

@(x12,y12)R12 = (0). (18)

Since ¢(x11,Y11) € Ri1, 50 @(x11,y11) = e1@(x11,y11)e1. From Eq. (18), we get ¢(x11, y11)R12
= e19(x11,y11)e1R(1 — e1) = (0). By condition (III), we obtain e;¢(x11,¥11)e1 = 0 and hence

¢(x11,y11) = 0. -
Lemma 7. ¢(x11 + x12, 11 + y12) = 0.

Proof. For any a17 € Ry1 and ajp € Ryp we see that ¢(x11 + x12, 11 + Y12)a11 = @(X11411, Y11

a11) = 0 by Lemma 6, and ¢(x11 + x12, 11 + Y12)a12 = ¢(x11412, Y11412) = 0 by Lemma 5. By
repeating same arguments and utilization of Lemma 5, 6 we get ¢(x17 + x12, y11 + Yy12)a21 =0
forall ay; € Ryp and ¢(x11 + X12, Y11 + Y12)a = 0 for all ay; € Ry. Add up all these equations
in order to find ¢(x11 + x12, y11 + ¥12)R = (0). Hence, ¢(x11 + x12, y11 + y12) = 0 by hypothesis
). 0

Proof of Theorem 2: By Lemma 7, ¢(u,v) = 0 for all u,v € e;R. For any x,y,r € R, we have
e1re(x,y) = ¢(e1rx,e;ry) = 0. Since e; was arbitrary member chosen from the family {e, :
A € A}, so we must have eyRe(x,y) = (0) for all A € A. By our hypothesis (II), we find that
¢(x,y) =0forall x,y € R. O
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Hexait R — aesike kinblle i M — aestkmii R-6iMoayAb. Biaobpaxkenss d : R — M (He 060B’s13-
KOBO aAUTMBHE) Ha3UBAETHCSI MYABTUIAIKATUBHUM AV(PEPEHIIIIOBAHHSIM KiABLS R, SIKIIO d(xy) =
d(x)y + xd(y) aast Bcix x,y € R. VY it cTaTTi My HaMaraéMoch BCTAHOBUTY AAMTUBHICTG d IIpu
AESIKMX AOMATKOBMX O6MexxeHHsIX. KpiM TOro mMu BBOAMMO MYABTUIIAIKATHBHE HaIiBAMpEpEeHIIio-
BaHHSI KiABIIS i 06TOBOPIOEMO JIOTO a AUTHUBHICTB.

Kntouosi cnosa i ¢ppasu: AMdpepeHITiOBaHHSI, MyABTUIIAIKATHUBHE AVidpepeHITiFOBaHHS, My ABTUIIAI-
KaTMBHe HamiBAVdepeHIIiFoBaHHS KiABIISI, aAMTUBHICTD, po3kaaa ITipca.
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THE NONLOCAL BOUNDARY VALUE PROBLEM FOR ONE-DIMENSIONAL
BACKWARD KOLMOGOROV EQUATION AND ASSOCIATED SEMIGROUP

This paper is devoted to a partial differential equation approach to the problem of construction
of Feller semigroups associated with one-dimensional diffusion processes with boundary condi-
tions in theory of stochastic processes. In this paper we investigate the boundary-value problem for
a one-dimensional linear parabolic equation of the second order (backward Kolmogorov equation)
in curvilinear bounded domain with one of the variants of nonlocal Feller-Wentzell boundary con-
dition. We restrict our attention to the case when the boundary condition has only one term and it
is of the integral type. The classical solution of the last problem is obtained by the boundary inte-
gral equation method with the use of the fundamental solution of backward Kolmogorov equation
and the associated parabolic potentials. This solution is used to construct the Feller semigroup cor-
responding to such a diffusion phenomenon that a Markovian particle leaves the boundary of the
domain by jumps.

Key words and phrases: parabolic potential, boundary integral equation method, Feller semi-
group, nonlocal boundary condition.
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INTRODUCTION
LetTI[0,T] = {(s,x): 0<s<T, x € R} and letS; C IT[0, T] be the curvilinear domain
St={(5,x): 0<s<t<T,ri(s) <x<rs)},

where T is a fixed positive number, and r1, 7, are given functions defined on [0, T]. Denote by
D; the interval (r1(s),r2(s)) and by S; and D, the closure of S; and D; respectively. Denote
also by C; the curves {(s,7i(s)) : s € [0,T]} (i =1,2) and let C = C; UCy.
In 1[0, T] we consider the parabolic operator of the second order with bounded continuous
coefficients
d 0 1 02 d
—+Li=—+=b — —.
s T2 (S'x)axz —HZ(S'x)ax
The main problem is to find a classical solution u(s, x, t) of equation
ou

% +Lu=0, (s,x)€S, (1)
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2010 Mathematics Subject Classification: 60J60, 35K20.

@ Shevchuk R.V,, Savka I.Ya., Nytrebych Z.M., 2019



464 SHEVCHUK R.V., SAVKA I.YA., NYTREBYCH Z.M.

which satisfies the “initial” condition

ligm(s, x,t) = @(x), x€Dy (2)
S
and two boundary conditions

/[u(s,ri(s),t) —u(s,y,H)pi(s,dy) =0, 0<s<t<T, i=1,2, 3)

D

where ¢ is the given function and y;(s,-) (s € [0,T], i = 1,2) are given finite nonnegative
measures on Ds, s € [0, T].

The problem (1)-(3) appears, in particular, in the theory of stochastic processes while study-
ing the diffusion processes with boundary conditions. Recall that the most general form of
boundary conditions for one-dimensional diffusion processes was established in works of W.
Feller [2] and A. D. Wentzell [12] (see also [13], where the multidimensional case is consid-
ered). From the assertions proved there, it follows that if the ordinary differential operator
of the second order is a generator of the Feller semigroup in C[ry, o] (71, 72 are fixed, —oo <
r1 < rp < 00), then its domain of definition consists of functions satisfying nonlocal boundary
conditions. In the general case, these boundary conditions contain the values of the function
and its first-order derivatives with respect to the time variable and with respect to the spatial
variable at points 7;, i = 1,2, and the nonlocal component of the integral type that correspond,
respectively, to such properties of process after it reaches the boundary point 7; as its termina-
tion, delay, reflection and jump out of ;.

In the present paper we shall establish the classical solvability of problem (1)-(3) by the
boundary integral equation method with the use of the fundamental solution of the equation
(1) and the associated parabolic potentials, and prove that its solution u(s, x, f) = Ts+@(x) can
be treated as the two parameter semigroup of operators describing an inhomogeneous Feller
process in R which trajectories are located in curvilinear domain St. It is easy to understand
that the trajectories of this process in St \ C can be treated as the trajectories of the diffusion
process generated by the operator L; and at the points of curves C; (i = 1,2) their behavior is
determined by Feller-Wentzell boundary conditions in (3). The conditions in (3) correspond to
jump discontinuity of trajectories of process which is caused by inward jump of a Markovian
particle from the boundary.

It is necessary to note that the scheme we shall use to solve the problem (1)-(3) is partially
presented in work [6], where the similar problem was investigated in the case when the back-
ward Kolmogotov equation is given in U%ZlSEZ) =2 {(sx): 0<s<t<T, (—1)(x—
r(s)) > 0} and, at the common boundary x = r(s) of domains St(l) and St(z), the Feller-
Wentzell conjugation condition, which, in addition to the integral term, contains also the lo-
cal term corresponding to the termination of process, is imposed. We should also mention
works [8], [11], which give the results concerning the construction of diffusion processes with
nonlocal boundary conditions of the integral type by the methods of stochastics [8] and func-
tional analysis [11].

We need the following conditions:

I. The operator d/0ds + Ls is uniformly parabolic in IT[0, T], i.e., there exist constants b and
Bsuch that 0 < b < b(s,x) < B < oo forall (s,x) € IT[0, T].
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II. The coefficients of Ls are bounded and continuous functions in IT[0, T| which belong
to Holder class H2*(I1[0,T]), 0 < a < 1 (to recall the definitions of Holder classes
see [7, p.16]).

III. The function ¢ in (2) is assumed to be defined on R and belongs to the space of bounded
continuous functions on R, which we will denote by C,(IR). The norm in this space is
defined by the equality ||¢|| = sup, g |¢(x)|. Furthermore, two fitting conditions

[lo0i(®) = 9w)li(tdy) =0, i=1,2, hold.
Dy

IV. The nonnegative measures y; in (3) are such that y;(s,Ds) = 1, s € [0,T] and for all
f € Cy(R) the integrals

/ fyui(s, dy), i=12,
o}

belong to H = ([0, T]) as functions of s.
V. The functions r;(s), i = 1,2, are continuous and belong to H = ([0, T)).

Conditions I, II ensure the existence of the fundamental solution of the parabolic operator
d/0s + Ls in T1[0, T] (see [7, Ch.1V, §15], [9, Ch.II, §3]), i.e., a function G(s, x, t, i) defined for all
(s,x) and (t,y) in II[0, T], s < t, satisfying the following condition:

for any ¢ € Cy(IR), the function

uo(s, x,t) = / G(s, x,t,y)g(y)dy 4
R
satisfies the equation (1)if 0 < s < t < T, x € R and the condition (2) if t € (0, T], x € R.
Note that the function G admits the representation
G(s,x,t,y) = Zo(s, x, t,y) + Z1(s,x, t,y), i=1,2,
where

1 —x 2
Zo(s,x, t,y) = [2mb(t,y)(t —s)] "2 exp {—m} ,

t
Z1(s,x,t,y) = /dT/ZO(s,x,T,z)Q(T,z, t,y)dz,
s R

and the function Q(s, x, t, ) is the solution of some singular Volterra integral equation of the
second kind. Note also that

. Y
IDIDEZo(s, %, t,y)| < C(t—s)" 7 exp {—C%} , (5)

r+p—a — 2
|DIDYZy (s, x,t,y)| SC(t—s)’HZZﬂ} exp{—c%} (6)



466 SHEVCHUK R.V., SAVKA I.YA., NYTREBYCH Z.M.

(0<s<t<T, xy € R), and that for the function uy defined by (4) (¢ € C,(R)) which is
called the Poisson potential in the theory of parabolic equations, the inequality

2r
|DIDYug(s, x,t)| < Cllgl|(t —s)" 7, 0<s<t<T xeR, (7)

holds. Here C and c are positive constants (we shall subsequently denote various positive
constants by symbols C or ¢ without specifying their values), r and p are the nonnegative
integers for which 2r + p < 2, D}, is the partial derivative with respect to s of order r, DY is the
partial derivative with respect to x of order p.

In addition to the integral u(s, x, t) we need to consider two more integrals

t
i (s, %, £) = / G(s, x, 7, r(0)Vi(t, Hdt, i=1,2,
S

where 0 < s <t < T, x € R and Vj, V, are some functions. The function u;; is called
the parabolic simple-layer potential. If we assume that the density V;(7,t) is continuous for
T € [s,t) and admits a weak singularity with an exponent of not less than —3 when 7 = ¢,
then the function u;(s, x,t), i = 1,2, is bounded continuous in0 < s < t < T, x € R and
satisfies the equation (1) in (s, x) € [0,¢) x (R \ ;(s)) with the initial condition: u; (s, x,t) — 0
ifstt(xeR,i=1,2).

The important property of the function u;; is reflected in the so-called theorem on the jump
of conormal derivative of parabolic simple-layer potential (see, e.g. [3, Ch.V, §2], [7, Ch.IV,
§15]). In the present paper this assertion is not used, and therefore we do not formulate it.

1 SOLVING THE PARABOLIC BOUNDARY VALUE PROBLEM

We shall find a solution u of problem (1)-(3) as a sum of Poisson potential 1y and two
simple-layer potentials 177 and up;, namely:

2 t
u(s,x, ) = / G(s,x,ty)gy)dy + Y / GG, 2T r(T)Vi(T, dr, (s,x) €5 (8)
R =1

Here ¢ is the function in (2) and V;, i = 1,2, are the unknown densities to be determined.
Note that since y;(s, Ds) = 1 for every s € [0, T] (see the condition IV), the conditions (3)
and the fitting conditions in III can be reduced to

u(s,ri(s), t) — /u(s,y, Dui(s,dy) =0, 0<s<t<T,i=1,2, 9)
Ds
and
o(ri(®) — [ oWm(tdy) =0, i=12, (10)
D¢

respectively.
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Substituting (8) into (9), we get the system of two Volterra integral equations of the first
kind for the unknowns V;, i = 1,2, namely

t
2
Z/Kij(s,r)vj(r,t)dr =®(s,t), 0<s<t<T,i=1,2, (11)

jzls

where

Ky(s,7) = Gls, (), 715(x)) = [ Gl w1y (x)puls, dy),
Ds

D;(s,t) = /uo(s,y,t)]/ti(s, dy) —ug(s,ri(s), t).
Dy

Using Holmgren’s method [4] (see also [5]) we shall reduce (11) to an equivalent system
of Volterra integral equations of the second kind. For this purpose we consider the integro-
differential operator

E(s,t)f = \/%% /(p—s)‘%f(p,t)dp, 0<s<t<T

and apply it to the both sides of each equation in (11).
The application of the operator £ to the left-hand side of (11) gives the expression which
after interchanging the order of integration takes on the form

) 59 t T B
Li(s,t) =) \/;g/v]-(r,t)dr/(p — )" 2K;i(p, T)dp.
j=1 s s
Write K;; as Kij(p, T) = KZ.(].l) (o, T) + KZ-(]-Z) (p,7T) — KZ.(]?) (p, T), where

Kz‘(jl)(Pf T) = Zo(p, 1i(7), T, 7(T)),
Ki(]-z) (0, T) = Z1(p, 7i(7), T, 7j(T)) + [G(o, 7i(p), T, 7i(T)) — G(p, 7i(T), T, 7j(T))],

KP(0,7) = [ Zolo v mri(Opilody) + [ Zi(o,y, w0l dy),
D, D,

T
and denote by Jij(s,7) the integral [(p — s)’%Kij(p, T)dp, and by ]l-(]-k)(s, T) the integral
S

T

[0 =) 2K (0, 0)dp, k=1,2,3.

S

Note that | 1.(].1) (s,7) is equal to

1 T
(p—s) 2dp = M’

NI

1 /T(T_ -
\/27tb(T,1i(7)) J 2

when i = j, and tends to zero as s T T when i # j. Note also that application of the mean value
theorem to difference G(p,7i(p), T, 7j(T)) — G(p,7i(T), T, 7{(T)) together with the condition V
and the estimates (5), (6) lead to the estimate

K (0, 7)| < |Za(p,7i(7), 7, 7i(7))| + [DLG(p, x0,7,7;(7))| - [ri(T) — ri(p)| < C(x —p) 274

NI
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(xo is a point in the open interval with endpoints 7;(7) and r;(p)) from which it follows that
](2)(5 T) > 0ass?TT.

1
st \/ia/V 1] srdr—[/V ,T)dt (12)

Hence,
. - . . . o o ) (k) _ VI'(S,t)
ifk=1,i#jorifk =2 Ifk=1and i = j, then IZ.]. (s,t) = NI
Let us show that the relation (12) is true also for k = 3. For this it suffices to prove that

hm] ( T) =0. (13)
sTT
Let us denote by Kffl) the first term in the expression for K Z.(].3) and by ]1(131) the integral ]1(13) with

Ki(]'?)) replaced by Kz‘(]?ﬂ)- In view of (5) and (6), we may verify (13) only for ]l.(].?’l)

Write ]1.(].31) in the form ]1.(].31)(5, T) = Ll(].l)(s, T)+ Ll(]-z) (s, T)+ Ll(]-g) (s,7),i=1,2,j =1,2, where
1

% —>7dp

Ly o wen@?
W” / D/ P{ zb<r,rj<r>><r—p>}“”’dy)
O U A

/ P{ zb<r,r]-<r>><r—p>}“l('d”}'

Ds
/ / xp { b(t,r; (:'])()?T)Z— s) }
27tb(T, r j

<y )
o {_2b<n =) } [t vt

y —1(s))?

W/GXP{ 2b(7,7;(1)) (7 — )}Rj(S'T'yM(S'dy)'

and R;(s, T,y) denotes the integral

T

Ri(s,7y) = [(o—5)"

S

NI—=

o) texpd o W@ s
(T=p) p{ 2b(7,7i(7))(T = 5) T—p}dp’

which after the change of variables z = g—:; takes on the form

(o) . 2
Rj(s:my) = 0/ 1) exp {_Zb(grj(rj)(;()r)— 5) 'Z} =

and so

IR;(s, 7,y)| < C. (14)
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From this and IV it follows immediately that

14a
2

Ly (s, 1) < C(r—5)'7", (15)

16,01 = € (ts, st (o) +ep { - 1), (16

T—5)

where Us(ri(s)) = {y € Ds : |y —rj(s)| < J}, 0 is any positive constant, B is the constant
from I. Applying the mean value theorem to the difference of exponents within the braces in

the expression for Lf]-z), we get, after using the condition V as well as the estimate (14) and the
inequality 0¥ exp{—co} < C(0 <0 <00, 0 <v < ),

L (s, 1) < C(T—5)%. (17)

The estimates (15)—(17) imply that ]1(131) (s,7) — 0 ass T 7. This completes the proof of (13).
Thus, the relation (12) holds also for k = 3.

Let us apply the operator £ to the right-hand side of (11). In order to simplify the expression
for Yi(s,t) = E(s,t)P;(s, t) we need to prove the following two relations:

®;(s,t) - 0ass Tt, (18)

|@;(s, ) — D5, 1) < Cllgl(t—s) T (s—3) T, 0<5<s<t<T. (19)

Passing to the limit as s 1 ¢ in the expression for ®; (i = 1,2), and recalling that the Poisson
potential 1 satisfies the condition (2), we get the expression which equals the left side of (10)

taken with the opposite sign and which therefore vanishes. Thus (18) holds.
We proceed to prove (19). Write the difference ®;(s, t) — ®;(s, t) in the form

Pi(s,1) = @u(5,1) = [ luo(s,,1) = wo(&,y, )]s, dy)

Ds
| oGy mits,dy) = [ oy, G5, dy) 20)
D D;s

+ [uO(gl T’i(g/), t) - uO(S/ 7’1-(5), t)] + [uO(SI T’i(g/), t) - uo(S, T’i(S), t)]

and note that for s < s

o (s, 1) — uo(5,y,1)| = [uo(s,y,t) — o3y, )| = [uo(s, y, £) — uo(3,y, )| ="
1+a

dug(8,y,t : ~ 1-a
oS, 1) (Jofs, v, Bl + 05,1, )))

14a

< Cllgl[(t—5-0 w@»*@—@{T

< Cllgll[((t—5)+(s—5)(1—8)) (s —5)] =
< Cllo|l(t - r%@—@#,o<e<r

(s—9)

§=5+60(s—5)

Using this inequality for differences ug(s, y,t) — uo(S,y,t), uo(s, ri(s),t) — uo(s, ri(s), t) and the
condition IV to estimate the difference of integrals in the second line of the expression (20)
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as well as the Lagrange formula together with the condition V and the inequality (7) (with
r =0, p = 1) to estimate the last term u(s, 7;(5), t) — uo(s, ri(s), t) in (20), we arrive at (19).

Taking into account (18) and (19) we see thus that the application of the operator £ to the
function ®; gives

I\J\U)

Yi(s,t) = —= [ (0 —s) " 2[Pi(p, 1) — (S,t>]dp—\/g(t—@‘%@(s,t) (21)

Having considered the action of the operator £ on both sides of (11), we can now write the
system of Volterra integral equations of the second kind for the unknowns V;, i = 1,2, which
is equivalent to (11) and has the form

ZNZ]ST (T, H)dt +¥i(s,t), 0<s<t<T,i=1,2, (22)

where

]z‘(ig)(sf T))/ i=j,

a_
b(s,ri(s)) o .,
Nij(s, T) = \/ ! 8]1]51' i

Note that from (21), (19) and (7) (with r = p = 0), it follows that

”ST

1

[¥ils, )] < Cllgll(t —s)™2.

Unfortunately, the kernels Nj; do not have a weak singularity. We can not find the estimate for
Ni;(s, T) better than C(7 — s) . However this difficulty arises due to only one term

d

/ 5, 20(8, 3, T ri(0)pils, dy)
Y

Us(ri(s))

which appears after writing %]z‘(]‘?ﬂ) (s, 7) in the form

T
0 (31) . 0 _1
g i (S,T) = g/(p 2 </ZO 0,97, 7’( ))]’ll(p’dy)

5 Dy

d f 1
- [ Zoloyri(x ))Vz(sordy)> 5 [to=5)4dp [ Zolp,y, () pils0,d)
50=S5 S So=s

qu 50

and then taking the derivative of the last term in this expression. Namely,
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2 / (0 s>%dst/O Zoloy @] = (L el

x (%D/O exp {—Zbg{(ij)(f@z— 5) } Rils T y)uilso dy)| = an(lr, (1)
X %DS/O 1i(s0, dy) Zz% z+1) lexp {—%(gr;(;f)(;()f_ 5 (z + 1)} dz .
- \/7 ) D/ 2 Zalsy et dy) = | T

x <u§( rj/(s)) %ZO 8,9, T,7;(T)) i (s, dy) +Ds\u 5{ . %ZO(S/% r,rj(r))ui(s,dy))

All other terms in the expression for N;; can be estimated by C(6) (T — s)~1*2, where C(9)
is the positive constant depending on 4.

Despite the strong singularity of kernels Nj;, the system of equations (22) has a solution
and this solution can be found by the method of successive approximations:

2\/ (s,t), 0<s<t<T,i=1,2, (23)

where
2 t
vO(s,t) =¥i(s,1), VI (s,)=) / Nis, V" V(e d, n=12,....
j:l s

The convergence of series (23) and so the existence of the function V; follows from the next
inequality

n
V" (s, 6)| < Cllgll(F—s)"2 Y. Cha" Mk, 0<s<t<T,i=12 (24)
k=0

where
 (2cTin®) T)
T

m = max {ZVZ (s, Usy(ri(s))), i = 1,2}

s€[0,T]

k=0,1,...,n,

al

and the constant 6 = Jy is chosen to be sufficiently small so that m < 1. One can prove the
estimate (24) by induction and by using the scheme analogous to those used in the proofs of
(15), (16) and (17). Note also that the similar scheme was used in [10] in the study of the system
of Volterra integral equations of the second kind with strong singularity in the kernels.
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From (24) it also follows that the function Vj(s, t), i = 1,2, satisfies the inequality
1
Vi(s, )] < Cllel|(t —s) 2. (25)

Thus, the formula (23) represents the unique solution of (22), which is continuous in the
domain 0 < s < t < T and satisfies the inequality (25).

From estimates (5) (with r = p = 0) and (25) it follows that there exist the simple-layer
potentials u;1 (s, x,t), i = 1,2, in (8), and for them the condition u;; (s, x,t) — 0if s T t and the
inequality

uia(s,x,5)l < Cllgll, (s,x) €Sy, (26)

hold. It is obvious (see (7)) that the same inequality is also true for the Poisson potential
up(s, x,t) in (8) and thus for the function u(s, x, t) as well. Recalling that ug(s, x,t) — ¢(x) if
s 1 t and that the functions u(s, x, t) and u;; (s, x, t) satisfy equation (1) in the domain (s, x) €
St we conclude that u(s, x, t) is the desired classical solution of problem (1)-(3).

Let us prove the uniqueness of the solution of the problem (1)-(3). Suppose that the prob-
lem (1)-(3) has two solutions u1(s, x,t) and u,(s, x,t) which are continuous in S;. Then the
function 7 = 11 — uy satisfies equation (1), the initial condition (2) with ¢ = 0 and two bound-
ary conditions

u(s,ri(s), t) =gi(s,t), 0<s<t<T,i=1,2,

where
ils,t) = [ (s, y, Opils,dy).
D
The above problem is the first boundary value problem and since the function g; is continuous
in s, it has a unique classical solution, continuous in S, which can be represented in the form
(8) with ¢ = 0. Thus, the function u can be expressed in the form (8) where there are no Poisson
potential and V; are the unknown functions, continuous in s € [0, ), which are determined by
gi(s, t). Further, if we repeat the considerations of this section concerning the construction of
solution of the problem (1)-(3), we obtain the system (22) with ¥; = 0 for the unknowns V.
Then V; = 0 and hence u# = 0. This completes the proof of the uniqueness.
Thus we have proved the following theorem:

Theorem 1. Let conditions I-V hold. Then problem (1)-(3) has a unique classical solution,
continuous in S; for all t € (0, T]. Furthermore, this solution has the form (8) and satisfies the
inequality (26).

2 FELLER SEMIGROUP

Suppose that the conditions I-V hold and consider the two-parameter family of linear op-
erators Ty, 0 < s < t < T, acting on the function ¢ € C,(R) by the rule:

2 t
Tyo(x) = / GG, ty)p(y)dy + Y / G(s, %, 7, 7i(T))Vi(T, t)dr, 27)
R i=1%

where the pair of functions (V;, V;) is the solution of (22). Recall that the function V; (i = 1,2)
has the form (23) and satisfy the inequality (25).
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We introduce the subspace Cyo(R) of Cp(IR) which consists of all functions ¢ € C,(R) for
which the fitting conditions in III holds. Since the subspace Cy(IR) is closed in Cy(R), it is a
Banach space. Furthermore, it is invariant under the operators Ty, i.e.,

(ONS Co(IR) = Tsp € Co(]R).

Let us study properties of the family of operators Ty in Cy(IR).
First we note that if the sequence ¢, € C,(IR) is such that 1211 ¢on(x) = @(x) forall x € R
n—oo

and, in addition, sup ||¢,| < co, then nh_r}n Tot@n(x) = Tspp(x) forall0 < s <t < T, x € D;.
n o0

The proof of this property is based on well known assertions of calculus on passage of the
limit under the summation and integral signs (here this concerns series (23) and integrals on
the right-hand side of (8)). This property allows us to prove the following properties of the
operator family Ts; without loss of generality, under the assumption that the function ¢ has a
compact support.

Now we prove that the operators Ts;, 0 < s < t < T, remain the cone of nonnegative
functions invariant.

Lemma 1. If 9 € Cy(R) and ¢(x) > 0 for all x € R, then Typ(x) > 0 for all x € D;,
0<s<t<T.

Proof. Let ¢ be any nonnegative function in Cy(IR) with a compact support. Denote by 7 the
minimum of Ts@(x) in S; and assume that 4 < 0. From the minimum principle [3, Ch.II]
it follows that the value v may be attained only when s € (0,f) and x = r(s), i = 1,2. Fix
so € (0,t) and ip € {1,2} for which Ts;¢(r;,(s0)) = - But then

/ [Tsot @ (riy(50)) — Tsot@(y) i (S0, dy) < O
Dy,

which contradicts (3). Therefore v > 0 and the assertion of the lemma follows. O

Note also that Tst@g(x) = 1forall0 < s < t < T, x € D if ¢y = 1. This property together
with the assertion of lemma 1 allow us to assert that operators T;; are contractive, i.e.,

[ Tseqll < [l

forall0<s<t<T.
Finally, we show that the operator family Ts; has the semigroup property

TSt:TSTTTtI O§S<T<t§T.

This property is a consequence of the assertion of uniqueness of the solution of the problem
(1)-(3). Indeed, to find u(s, x,t) = Ts¢(x), when it is given that u(s,x,t) — ¢(x) ass T ¢,
one can solve the problem first in time interval [7, ] and then solve it in the time interval [s, 7|
with that initial function u(7, x,t) = Tr¢(x) which was obtained; in other words, T (x) =
TST(Tth))(JC), (NS Co(IR) or Ty = Tsr Tt

The above properties of operators Ts; imply the following assertion (see [1, Ch.IL, §1]).

Theorem 2. Let conditions I-V hold. Then the two-parameter family of operators Ts;, 0 <
s < t < T, defined by formula (27) describes the inhomogeneous Feller process in R which
trajectories are located in curvilinear domain St. In St \ C, the trajectories of this process can
be treated as the trajectories of the ditfusion process generated by the operator Ls and at the
points of curves C; (i = 1,2) they behave according to boundary conditions in (3).
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CrarTs npucssiieHa BUBUEHHIO MeTOAAMM Teopil AndpepeHITiaAbHIX PiBHSHD B YaCTMHHMX IIO-
xiaHMX TIpobaemy TobyaoBy HamiBrpym deanepa, sKi OmiCyIOTh OAHOBUMMIpHI AMdpy3iliHi mporte-
Ci B 0OAACTSIX 13 3apaHMMM KpalfOBMMM yMOBaMM. Y Hilf CTATTi MM AOCAIAXKYEMO KpaltoBy 3aravy
AAST OAHOBMMIPHOTO AiHIMHOTO IapaboAidHOTO PiBHSHHSI APYTOTO HMOPSIAKY (06epHEHOTO piBHSIH-
=5 KoaMoroposa) y KpMBOAiHilHIN o6MeXeHilt 06AacTi 3 0OAHNMM i3 BapiaHTiB HeAOKaABHOI Kpaiio-
Boi ymoBu Tuny @eanrepa-Benrieas. Mmu 30cepeaxyeMo yBary Ha BUIIAAKY, KOAM KpalioBa yMO-
Ba ®earepa-BeHTIIeAsT MiCTUTH AMIIle KOMIIOHEHTY iHTerpaAbHOro Tumy. Kaacuuny po3s’si3HICTH
OCTaHHBOI 3aAa4i OAEPXaHO HaMl METOAOM I'PaHMYHUX iHTErPaAbHMX PiBHSHD 3 BUKOPUCTAHHSIM
dyHAAMEHTAABHOTO PO3B’I3Ky 0bepHeHOro piBHSHHI KoAMOroposa i mopoaXeHNX HUM Mapaboai-
YHMX TIOTeHIiaAiB. [ell po3B’sSI30K BUKOPMUCTAHO AASI OOy A0BM HamiBrpymi dearepa, sika ommicye
sByIIe Adpy3ii B 06MeKeHill 06AaCTi 3 BAACTUBICTIO IIOBEPHEHHSI AVIPYHAYIOUOI YaCTUMHKI B cepe-
AVHY 06AacTi cTpubKamm.

Kntouosi cnosa i ¢ppasu: mapaboAiIHIIL TIOTEHITiaA, METOA I'PaHNYHMX {HTETpaAbHIX PiBHSHD, Ha-
nisrpyna ®Mearepa, HeAOKaAbHA KpalioBa yMOBa.
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In this paper a new generalization of a-type almost-F-contractions and an extension of a-type
F-Suzuki contractions are given. Moreover, some new fixed point theorems of them are discussed.
Some examples and applications in order to illustrate the main results are presented. The results of
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1 INTRODUCTION

After innovation of the Banach contraction principle [2], fixed point theory, which was one
of the most celebrated tool in nonlinear analysis, acquires a distinguished role in research ac-
tivity. Due to its applications in the nonlinear integro-differential equations, nonlinear Volterra
integral equations, game theory etc, existence of a fixed point for contraction type mappings
in metric spaces have been considered by many authors. see, for instance, [4,12,13,17,19,22,23]
and the references therein.

During the past decades, scholars extend this principle towards different contractions. Spe-
cially, in 2012, Wardowski [24] generalized it interestingly by introducing a new type of con-
tractions called F-contractions. After presentation of F-contractions, many authors extended
them in various forms. Some extensions and generalizations are obtained in [1,6-11,14-21,25].
Wardowski and Van Dung [25] (also independently Minak et al. [14]) with using Ciri¢-type
generalized contraction [5] in definition of F-contractions, introduced the notion of F-weak
contractions and utilize the same to generalize the main result of [24].

Very recently (in 2016) Gopal et al. [7] generalized it by introducing the concept of a-type
F-contraction. On the other hand, In 2014 Piri and Kumam [16] extended the results of War-
dowski [24] by introducing the concept of an F-Suzuki contraction. Also, in the same year,
Minak et al. [14] introduced a new concept of an almost-F-contraction. Most recently (in 2016)
Budhia et al. [3] introduced the new concepts of an a-type almost-F-contraction and an a-type
F-Suzuki contraction and proved some fixed point theorems concerning such contractions. In
this research, we extended the results of [7] and [3], by introducing a new type of contractions
that is called a-type almost-F-weak contraction and an a-type F-weak Suzuki contraction.

YAK 517.988.523
2010 Mathematics Subject Classification: 47H10, 54H?25, 37C25.
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2 PRELIMINARIES

Here, we express a series of definitions of some fundamental notions.
First, let us, following [24], denote with F the family of all functions F : (0, +c0) — R that
satisfy the following conditions:

(F1) F is strictly increasing,
(F2) for every sequence {a,} in (0, +00), we have lim,_,o F(a,) = —o0 iff lim, o 0y = 0,
(F3) there exists a number k € (0,1) such that lim,_,o+ a*F(a) = —co.

And following [20], denote by G the collection of all functions F : (0, +c0) — R satisfying the
following conditions:

(G1) F is strictly increasing,
(G2) there exists a sequence {ay } in (0, +00) such that lim,_,« F(a,) = —o0, orinf F = —o0,
(G3) F is a continuous map.

Example 1 ([3]). The following functions belong to F:
1

F(o) =Ina, F(a) =Ina+a, Fla)= ~

and the following functions F : (0, +o0) — R belongs to G:

F(a) = Ina, F(a) = —%m, Fla) = —%.

Definition 1 ([24]). Let (X,d) be a metric space. The mapping T : X — X is called an
F-contraction, if there exist F € F and T > 0 such that, for all x,y € X withd(Tx, Ty) > 0, we
have

T+ F(d(Tx, Ty)) < F(d(x,y)).

Example 2 ([24], Example 2.1). It is easy to verify that every Banach contraction is an
F-contraction with F(t) = Int and T = Inr. For more details and examples see [24].

Definition 2 ([25]). Let (X, d) be a metric space. The mapping T : X — X is called an F-weak
contraction on X if there exist F € F and T > 0 such that, for all x,y € X withd(Tx, Ty) > 0,
we have

T+ F(d(Tx, Ty)) < E(m(x,y)),

where

m(x,y) = max {d(x, y),d(x, Tx),d(y, Ty), d(x, Ty) —{2— d(y, Tx) }

Remark 1. Every F-contraction is an F-weak contraction but converse is not necessarily true
[25].

Definition 3 ([25]). Let (X,d) be a metric space and & : X x X — (0,400) U{—0c0} be a
symmetric function. The mapping T : X — X is called an a-type F-contraction on X if there
exist F € F and T > 0 such that, for all x,y € X withd(Tx, Ty) > 0, we have

T+a(x,y)F(d(Tx, Ty)) < F(d(x,y)).
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Definition 4 ([25]). Let (X,d) be a metric space and a« : X x X — (0,+0c0) U{—o0} be a
symmetric function. The mapping T : X — X is called an a-type F-weak contraction on X if
there exist F € F and T > 0 such that, for all x,y € X withd(Tx, Ty) > 0, we have

T+ a(x,y)F(d(Tx, Ty)) < F(m(x,y)),

where

m(x,y) = max {d(x,y), d(x, Tx),d(y, Ty), d(x, Ty) 42— d(y, Tx) }

Remark 2. Every a-type F-contraction is an a-type F-weak contraction but the converse is not
necessarily true.

Remark 3. It is clear that every F-weak contraction is an x-type F-weak contraction with
a(x,y) =1, for all x,y € X. But every a-type F-weak contraction is not necessarily an F-weak
contraction. For example, see ([25], Example 3.4).

Definition 5 ([14]). Let (X,d) be a metric space. The mapping T : X — X is said to be an
almost-F-contraction, if there exist F € F,T > 0 and L > 0 such that for all x,y € X,

d(Tx,Ty) >0 = v+ F(d(Tx, Ty)) < F(d(x,y) + Ld(y, Tx))

and
d(Tx,Ty) >0 = T+ F(d(Tx, Ty)) < F(d(x,y) + Ld(x, Ty)).

Remark 4. Every F-contraction is an almost-F-contraction with L = 0, but the converse is not
necessarily true [14]. Also, it is obvious that every F-weak contraction is an a-type F-weak
contraction with «(x,y) = 1, for all x,y € X, but the converse is not necessarily true. For
examples, see [14].

Definition 6 ([3]). Let (X,d) be a metric space. The mapping T : X — X is said to be an a-type
almost-F-contraction, if there exist F € F and T > 0 and L > 0 such that forallx,y € X,

d(Tx,Ty) >0 = T+ F(d(Tx,Ty)) < F(d(x,y) + Ld(y, Tx))

and
d(Tx,Ty) >0 = T+ F(d(Tx, Ty)) < F(d(x,y) + Ld(x, Ty)).

Remark 5. Every almost-F-contraction is an a-type almost-F-contraction with a(x,y) = 1, for
all x,y € X. But the converse is not necessarily true. For some examples, see [3, Example 3.1].

Definition 7 ([16]). Let (X,d) be a metric space. A mapping T : X — X is said to be an
F-Suzuki contraction if there exist F € G and T > 0 such that for all x,y € X with Tx # Ty

%d(x, Tx) <d(x,y) impliesthat T+ F(d(Tx,Ty)) < F(d(x,y)).
Definition 8 ([3]). Let (X,d) be a metric space and « : X x X — (0,+00) U {—o0} be a sym-
metric function. The mapping T : X — X is said to be an a-type F-Suzuki contraction if there

exist F € G and T > 0 such that for all x,y € X with Tx # Ty

%d(x, Tx) < d(x,y) impliesthat 7+ a(x,y)F(d(Tx,Ty)) < F(d(x,y)).



478 TAHERI A., FARAJZADEH A.P.

Remark 6. Every a-type F-Suzuki contraction is an F-Suzuki contraction with (x,y) = 1, for
all x,y € X. But the converse is not necessarily true. For example, see [3, Example 3.2].

Definition 9 ([19]). Leta : X x X — (0, +o0) be a given mapping. The mapping T : X — X is
said to be an a-admissible, whenever a(Tx, Ty) > 1 provided a(x,y) > 1 and x,y € X.

Definition 10. An a-admissible map T is said to have the K-property, if for each sequence
{xn} € X with a(x,,x,41) > 1, for all n € N, there exists a natural number k such that
a(Txp, Txy) > 1, forallm >n > k.

We state the following lemmas which are useful in proving our main results.

Lemma 1 ([16]). Let F : (0,+00) — R be an increasing function and {«,} be a sequence of
positive real numbers. Then, the following holds:

(a) if limy,_ F(a,) = —oo, then lim, s a, =0,
(b) if inf F = —o0 and limy_,e &y, = 0, then limy,_,o F(a,) = —oo.

Lemma 2 ([4]). Let (X,d) be a metric space, and {x,} be a sequence in X such that
limy o0 d(Xpn, xy11) = 0. If {x,} is not a Cauchy sequence then there exists ¢ > 0 and two
sequences of positive integers {ny} and {my} with ny > my > k such that d(xu,,x, ) > €,
d(Xpy, Xn,—1) < € and

1) limy_ oo d(Xm,, Xn,) = €,

(
(2) limy_yeo d(Xpm,—1,%n,) =&,
(3) Limy—seo d(%Xmy, Xnt1) =&
(4) (

4) limy o d Xre—1s xnk+1) =&

3 MAIN RESULTS

In this section, two new contractions are introduced. In the first part of this section, the
concept of an a-type almost-F-weak contraction is defined in metric spaces. And in the second
part the concept of an a-type F-weak Suzuki contraction is introduced. Some fixed point the-
orems for these contractions are proved and suitable examples are furnished to demonstrate
the validity of the hypotheses of our results and reality of our generalizations.

We commence our main result with the following definition.

Definition 11. Let (X, d) be a metric space and « : X x X — (0, 400) U {—co} be a symmetric
function. The mapping T : X — X is said to be an a-type almost-F-weak contraction (for
simplicity we write almost-a F-weak contraction), if there exist F € F, T > 0 and L > 0 such
thatd(Tx, Ty) > 0 implies that

T+ a(x,y)F(d(Tx, Ty)) < F(m(x,y) + LNy(x,y)),

where

m(x,y) = max {d(x,y),d(x, Tx),d(y, Ty), d(x, Ty) +d(y, Tx) },

2
and
Ni(x,y) = min{d(x, Ty),d(y, Tx)}.
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Example 3. Let X = {(0,0), (0,4), (5,0), (4,5)} be endowed with the metric d defined by

d((xl,xz» (y1/y2)>= 51— | + 72— val

It is easy to see that (X, d) is a complete metric space.
Suppose that T : X — X is defined as follows :

T(0,0) = T(5,0) = T(0,4) = (0,0), T(4,5) = (5,0).

Furthermore, suppose «((x1,x2), (y1,y2)) = 1, for all (x1,x2), (y1,y2) € X. It is easily verified
that, for each F € F, the mapping T is not an a-type almost-F-contraction. Indeed, for any
T > 0andF € F, we have

T4 ((0,4), (4,5)) F (d <T(0,4), T(4,5)> ) = T+F <d<(0,0), (5,0)) ) = T+ F(5).
On the other hand, we have
F<d<(0,4), (4,5)) + Ld<(4,5), T(O,4)>> = F(5).

And T+ F(5) > F(5). So, T is not an a-type almost-F-contraction. But, one can easily see that,
for0 < T <In&and F(t) = Int, ifd(T(xl,xz), T(yl,y2)> > 0 then

e (o) ) ) F (4T, T ) ) < F ({02, G0 )+
(1)
LN ((xlf x2), (y1,y2)> ) ,

where

(), ) ) = max{a( (o mm), () )t (0,02, T ),

d <(x1,x2),T(y1,y2)> +d <(y1,y2),T(x1,x2)>
d((ylfyz)rT(y1/y2)>r }

2

and

N (52, (920 ) = min {3, 50), T, )1 (00,0, 20 )

For example d(T(O,4), T(4,5)> —=d ((0,0), (5,0)) =5 > 0and

m<(0,4), (4,5)) ~ max {d<(0,4), (4,5)>,d<(0,4),T(O,4)>,d<(4,5),T(4,5)>,

d<®ALH&®>+d<M§LHQM>
5 } = max{5,4,6, 22} =9,
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and we have
T4a ((0, 4), (4,5)) F (d(T(O,AL), T(4,5)> ) —T+F(5) < 1n§ +1In5 = Iné.

On the other hand, we have

F(m ((0,4), (4,5)) +LN; ((0,4), (4,5))) = F(9) = In9.

Hence,

T+a<(0,4), (4,5)>F<d<T(O,4),T(4,5)>> < F<m ((0,4), (4,5)) +LN1<(0,4), (4,5))).

Or for (5,0) and (4,5), we have d(T(S, 0), T(4,5)> = d((0,0), (5,0)) =5>0and

m<(5,0),(4,5)> = max{d((S,O),(4,5)),d<(5,0),T(5,0)>,d<(4,5),T(4,5)>,

d <(5,o),r(4,5)> +d <(4,5),T(5,0)>
5 } = max{6,5,6, 2} = 6,

and we have
T+« ((5, 0), (4,5)) F (d(T(S,O), T(4,5)> ) =T1+F(5) < lng +1In5 =1Iné6.
On the other hand, we have
F(m((S,O), (4,5)) + LN1((5,0), (4,5))) = F(6) = Iné6.

Hence,

T+ a<(5,0), (4,5)>F<d <T(5, 0), T(4,5)>> < F<m<(5,0), (4,5)) +LN; ((5, 0), (4,5)) )

In the same manner, we can easily check that (1) is satisfied for (0,0) and (4,5). Therefore, T
is an almost-a F-weak contraction.

Now, we present our first result.

Theorem 1. Let (X, d) be a complete metric space, x : X X X — (0, +0c0) U {—oc0} be a symmet-
ric function, F € F and T : X — X be an almost-x F-weak contraction satisfying the following
conditions:

(i) T is a-admissible,
(ii) there exists xo € X such that a(xg, Txg) > 1,

(iii) if {x,} is a sequence in X such that x, — x asn — oo and a(x,, x,4+1) > 1, foralln € N,
then a(x,,x) > 1, foralln € IN.
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Then, if T or F is continuous then T has a fixed point.
Proof. Let xo € X be such that a(xg, Txp) > 1. For any n € IN, define:
Xpe1 = T(xy).

If xy4+1 = Xp, for some ny € IN then x,, is a fixed point of T. So, we can assume that x,, ;1 # x5,
for each n € IN. Since T is x-admissible, one can easily obtain that

a(xn, xy41) > 1, Vn € N. 2)

Now since T is an almost-aF — weak contraction, there exist T > 0 and L > 0 such that if
d(Tx, Ty) > 0, then

T+ a(x,y)E(d(Tx, Ty)) < F(m(x,y) + LN (x,1)). ©)
Therefore, by (2) and (3)

T+ F(d(Txn, Txpi1)) < T+ a(xn, Xp11)F(d(Txy, Txp41))
< F(m(xn, Xp41) + LN1 (X0, Xn41)) < F(m(xn, Xpi1) + Ld(xp41, Txn))
= F(m(xy, xy+1) +0) = F(m(xn, Xp11)).
Hence, we have
T+ F(d(xXn41, Xn42)) < F(m(xn, Xn41))- (4)
But

A(xn, Xp41),d(xn, Txn), d(xp41, TXnt1),

d(x,, T d T
m(xn, Xy41) = max Gt an)er (s, x”)}

d
max d(xn’ x”Jrl)r d(xn+1, xn+2), W}

) d(xn/xn+1)+d(xn+1rxn+2) }
4 2

IN

max d(xn; xn—i—l)/ d(xn—i—l/ Xn4-2

—

< max{d(xy, Xy 41),d(Xp11, Xn12) }-
Now, if d (X, 11, Xng4+2) > d(Xny, X4y+1) for some ny € IN, then
m(xno,anH) < d(xno+1/xno+2)/
and since F is strictly increasing,
F(m(xno,xn0+1)) < F(d(xno+1rxno+2));
so, it follow from (4)
T+ F(d(xng11, Xng+2)) < F(d(Xug+1, Xngt2))-

So, T < 0is a contradiction. Consequently,

d(Xp41, Xns2) < d(xn, Xpy1), V1 € N. (5)
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Hence, from (4) and (5), we have

T+ P(d(xn+lrxn+2>> < F(d(xn/ anrl))r
or

F(d(xp41, Xn12)) < F(d(xn, Xp41)) — T

In general, one can get

F(d(xn11,xn42)) < F(d(x0,x1)) — 1. (6)

Hence limy,_yo0 F(d(xy, X;11)) = —00. So, from (F,) we have,

nlgrc}o d(xp, xp41) = 0.

Therefore, with notice to (F3), there exists k € (0,1) such that

lim (d (%, Xpi1))¥F(d(x, X41)) = 0.

n—oo

Now, (6) implies that
(d(xn, % 11) ) F(d(xn, Xu11)) < (d(xn, x011)) (F(d(x0, %1)) — n7).
Then, it can be easily seen that

Tim 1(d(xs, %11))* = 0.

So, there exists ny € IN such that
1

=, Vn>n.
nk

d(xp, Xp41) <

Consequently, if m > n > no, then

d(xXn, xm) < L, d(xi, xip1) < Zi:né < YiZu l%
1 1

Since k € (0,1), the series };° 1 is convergent. Therefore, {x,} is a Cauchy sequence, and
ik

since X is complete, there exists u € X such that x, — u as n — oo. We claim that u is a fixed
point of T.
To prove the claim, at first suppose that T is continuous, then we have

u= lim x,11 = lim Tx, = T(u),
n—oo n—oo

and so u is a fixed point of T. Now, suppose that F is continuous and in contrary, suppose
that Tu # u. Without lose of generality, one can assume that there exists nyp € IN such that
Txn # Tu, for all n > ny. (Indeed, if x,, 11 = Tx,, = Tu for infinite values of 1, then uniqueness
of the limit concludes that Tu = u).

From (iii) and (4), we have

T+ F(d(Tx,, Tu)) T+ a(xy, u)F(d(Txy, Tu)) < F(m(xy, 1) + LNy (xy, 1))

F(m(xy,u) 4+ Ld(Tx,,u)) = F(m(x,, u) + Ld(x,41,1))
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And since F is continuous, as n — co we get

T+ F(d(u,Tu)) < F(i}iigo(m(xn,u) + Ld(xy51,1))), (7)
where
m(x,, u) = max {d(xn, u),d(xp, xy41),d(u, Tu), A(xn, Tu) —;d(u, Xni1) },
SO,
nlgrc}o m(x,, u) = max {O, 0,d(u, Tu), W} =d(u, Tu).

Also, we have

nlgrolo Ld(xy41,u) = 0.

Therefore, from (7) we have
T+ F(d(u, Tu)) < F(d(u, Tu)),
which is contradicted by positivity of T . So, d(u, Tu) = 0i.e. Tu = u. O
The next result establishes a sufficient condition for uniqueness of fixed point.

Theorem 2. Let (X,d) be a complete metric space and T : X — X be a mapping for which
there exist F € F and T > 0 and L > 0 such that d(Tx, Ty) > 0 implies that

T+a(xy)F(d(Tx, Ty)) < F(m(x,y) + LN2(x,y)), (8)
where m(x,y) is defined as in Definition 11 and
Na(x,y) = min{d(x, Tx),d(x, Ty),d(y, Tx)}.

We further assume that a(x,y) > 1, for each x,y € Fix(T). Then if T is satisfies the conditions
(i), (ii) and (iii) of Theorem 1 and T or F is continuous, then T has a unique fixed point.

Proof. 1t is clear that T is an almost-a F-weak contraction. So, by Theorem 1, T has a fixed
point.

Now, suppose that u and v are two fixed point of T. If u # v, then d(Tu, Tv) > 0. Also
a(u,v) > 1, because u, v € Fix(T), hence (8) implies that

T+ F(d(u,v)) T+ F(d(Tu, Tv)) < T+ a(u,v)F(d(Tu, Tv))
F(m(u,v) + LN2(u,v)) < F(m(u,v) + Ld(u, Tu))

F(m(u,v) 4+ 0) = F(m(u,v)),

Al

where
d(u,Tv)+d(v,Tu
m(u,v) = max{d(u,’()),d(u,Tu),d(’(J,T’(J),%}

— max{d(x,0),0,0, 2 TACMY _ g0y, 7).

So, we have
T+ F(d(u,v)) < F(d(u,v)),

which is contradicted by positivity of 7. So, u = v. O
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Corollary 1 ([3], Theorem 3.1). Let (X,d) be a complete metric space and T : X — X be an
a-type almost-F-contraction, where F € F, satisfying the following conditions:

(i) T is a-admissible,
(ii) there exists xo € X such that a(xg, Txg) > 1,

(iii) if {x,} is a sequence in X such that x, — x asn — oo and a(xp, x,41) > 1 foralln € N,
then a(x,,x) > 1, foralln € IN.

Then, T has a fixed point.

Proof. 1t is enough to notice that T is an almost-« F-weak contraction in which m(x,y) =
d(x,y). One can prove this corollary by applying the proof of Theorem 1, without needing
to continuity of T or F. O

The following corollaries are some obvious results of Theorem 1.

Corollary 2. Let (X, d) be a complete metric space and T : X — X be an almost F-contraction.
Then, T has a fixed point.

Proof. In Theorem 1, put a(x,y) = 1, foreach x,y € X. O

Corollary 3. Let (X,d) be a complete metric space and T : X — X be an F-contraction. Then,
T has a unique fixed point.

Proof. In the Theorem 1, put a(x,y) = 1, for each x,y € X, and L = 0. O
The following example shows that Theorem 1 is a generalization of the Theorem 3.1 in [3].

Example 4. In the Example 3, we observed that the mapping T is not an a-type almost-F-
contraction. So, T does not satisfy to Theorem 3.1 in [3]. But T is an almost-x F-weak contrac-
tion, and we can easily see that T satisfies all conditions of Theorem 1 and (0, 0) is a fixed point
of T. Also, all conditions of the Theorem 2 are satisfied and (0, 0) is the unique fixed point of
themap T.

Here, to obtain our next results, we first introduce the following definition.

Definition 12. Let (X, d) be a metric space and a : X x X — (0, 400) U {—co} be a symmetric
function. The mapping T : X — X is said to be an x-type F-weak Suzuki contraction (for
simplicity we write & F-weak Suzuki contraction) if there exists F € G and T > 0 such that for
all x,y € X with Tx # Ty,

%d(x, Tx) <d(x,y) impliesthat T+ a(x,y)F(d(Tx,Ty)) < F(m(x,y)),

where m(x,y) is defined as in Definition 11.

Example 5. Let X = {0,1,2} be endowed with the metric d defined by

d(x,y) =[x —y|.
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And T : X — X is defined as follows
T(1)=T(2)=1 and T(0) =2.

Furthermore, suppose thata(x,y) = 1, forall x,y € X. It is easily verified that, foreach F € F,
the mapping T is not an a-type F-Suzuki contraction. Indeed, for any T > 0 and F € F, we
have

%d(o, TO) = %d(o,z) —1=d(0,1),

and
T+wa(0,1)F(d(T0,T1)) = t+ F(d(2,1)) = T+ F(1).

On the other hand, we have
F(d(0,1)) = F(1).

And T+ F(1) > F(1). So, T is not an a-type F-Suzuki contraction. But one can easily see that,
for0 < 7 <In2andF(t) = Int, ifd(Tx, Ty) # 0 then

%d(x, Tx) <d(x,y) impliesthat T+ a(x,y)F(d(Tx,Ty)) < F(m(x,y)), 9)

where m(x,y) is defined as in Definition 11. For example, d(T(0),T(1)) = d(2,1) = 1 and

m(0,1) = max {d(O, 1),d(0, T0),d(1, T1), d(0,T1) +d(1,T0) }

=2,
2

and we have
T+a(0,1)F(d(T0,T1)) =7t+ F(1) <In2+Inl=1In2.

On the other hand, we have
F(m(0,1)) = F(2) =In2.

Hence,
T+ w(0,1)F(d(T0,T1)) < F(m(0,1)).

In the same manner, we can easily check that (9) is satisfied for x = 0,y = 2. Therefore, (9) is
satisfied for any x,y € X whichd(Tx, Ty) # 0. So, T is an « F-weak Suzuki contraction.

Theorem 3. Let (X,d) be a complete metric space and T : X — X be an a F-weak Suzuki
contraction, satistying the following conditions:

(i) T is a-admissible,
(ii) there exists xo € X such that a(xg, Txg) > 1,

(iii) if {x,} is a sequence in X such that x, — x asn — oo and «(x,,x,+1) > 1, for all
n € NU{0}, then a(x,,x) > 1, foralln € NU {0},

(iv) T has the K-property.

Then, T has a fixed point in X.
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Proof. Let xo € X be such that a(xg, Txp) > 1. For any n € IN U {0}, define:
Xp1 = T(xn).
Since T is a-admissible, one can easily obtain that
a(xp, Xp41) >1, Vn € NU{0}. (10)

If X4y41 = Xy, for some ny € IN U {0}, then x,, is a fixed point of T. So, we can assume that
Xpi1 # X foreachn € N U {0}, i.e. d(xy, x,,+1) > 0 and so

1 1
Ed(xn, Txn) = Ed(xn,xnﬂ) < d(xn, Xp41)- (11)

Now, since T is an a« F-weak Suzuki contraction, there exist F € G and T > 0 such that if
d(Tx, Ty) > 0, then

%d(x, Tx) <d(x,y) impliesthat T+ a(x,y)F(d(Tx,Ty)) < F(m(x,y)), (12)

where m(x, y) is defined as in Definition 11.
Therefore, by (11) and (12)

T+ F(d(Txy, TXp11)) T+ a(xy, Xp01)F(d(Txn, Txpi1))

F(m (X, Xs1)), 13)

[VANRVAN

in which

m(xn’ xn+1) — max {d(xn, anrl), d(xn, Txn), d(xn+1, Txn+1), d(xn,Txn+1)-£d(xn+1,Txn) }

d
= max {d(xn, Xni1), A(Xni1, Xns2), W }

d d
< max {d(xn,xn+1),d(xn+1,xn+2), (x”’x”“Hz(x"“'x””)}

< max{d(xy, X, 41),d(Xp11, Xn12) }-
Now, if d(Xp, 11, Xny+2) = d(Xny, Xny+1) for some ng € IN U {0}, then
M (Xng, Xng41) < d(Xng41, Xng42),
and since F is strictly increasing,
F(m(xny, Xny+1)) < F(d(Xpg+1, Xno+2))-

Therefore by (13)
T+ F(d(xﬂoJrl/ xn0+2)) < F(d(xno+1r xno+2>>'

So, T < 0 a contradiction. Consequently,

d(Xp41, Xns2) < d(xn, Xpy1), ¥n € N. (14)
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Therefore,
m(xn, Xp41) < d(xn, x,41), ¥Yn € NU{0}.

So, from (13) and (14) one can obtain that

T+ F(d(Xpq1, Xn42)) < F(d(xn, Xp41)),

or
F(d(xn41, Xn42)) < F(d(xn, Xp11)) — T.

In general, one can get
F(d(xpq1,xn42)) < F(d(x0,x1)) — nt.

Hence,

JE)I(}OF(d(xn’ xn+1)) = —o0,

which together with (G2) and Lemma 1, gives

lim d(x, X11) = 0.
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(15)

Now, we claim that {x, } is a Cauchy sequence. If it is not true, then by Lemma 2, there exists
ep > 0 and two sequences of positive integers {ny} and {m;} with n; > my > k such that

d(Xpy, Xn,) > €0, A(Xmy, Xn—1) < €0 and
Ll hmk%ood xnerTka> = €0,
L2

(
limy 0 d(xnk/ xmk—l) = €0,
(

(L1)
(L2)
(L3) limy_yeo d(Xy,41, Xm,) = €0,

(L4) limyyeo d(Xp+1, Xmy—1) = €0

Therefore, with notice to definition of m(x, y) we have:

lm m(xp, Xp—1) = lim max < d(xp, X —1), d(Xn, Xnp11), (-1, Xmy),

k—o0 k—o0
d(xnermk +d(xmk711xnk+1))

gote
> } = max{gg, 0,0, 252

So

I}L)r&m(xnermk 1) = €o.

(16)

On the other hand, since limy_,o d(Xy,, X —1) = €0 > 0, and limy_, d(xp,, X, +1) = O, by
considering a subsequence if necessary, one can assume that, there exists k; € IN such that for

any k > ki and ng > my > k

d(xnk/ xnk+1) S d(x}’lk/ xmk—l)-
So, it is clear that

1
2

1
—d(xpn,, Txn,) = Ed(xnk,xnkﬂ) < d(xn, Xm—1), Yk > ki and ng > my > k.

(17)
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Also, using the K-property, there exists k, € IN such that
& (X, Xpy—1) > 1, Vk > ko. (18)
Let k > max{kq, ky}, then from (18), (17) and (12) we have

T+F(d(Tx”k’xmk—1)) S T+a(xnkl xmk—l)F(d(Txnk/Txmk—l))
< F(m(xnk/xmk—l))'

Letting n — oo, since F is continuous, by (L1) and (16) we have
T+ F(So) < F(S()),

which is a contradiction, as T > 0. Consequently, {x,} is a Cauchy sequence in the complete
metric space X. So, there exists u € X such that x, — u, as n — co. To complete the proof, we
show that u is a fixed point of T. At first, we claim that, foralln > 0

1 1
5, Xn41) < d(xn,u) or Sd(Xn1, Xnr2) < d(Xnpr,u). (19)

In fact, if for some 1y > 0, both of them are false then we will have

1 1
Ed(xno,xnoﬂ) > d(xp,,u) and Ed(xn0+1,xn0+2> > d(Xpy41,1).

So, with notice of (14) we have
d(xnol x”oJrl) < d(xn()/ u) =+ d(ur xi’loJrl) < %d(x?lol xn0+1> + %d(xn0+1/ xn0+2>
< %d(xnorxnoJrl) + %d(xnorxnoqu) = d(x?lorxnoJrl)'

Which is a contradiction and the claim is proved.
Well, let us begin with the first part of (19), i.e. suppose that

1
50 (xn, Xi1) < d(xn, 1),

and in contrary, assume that Tu # u. Without lose of generality, one can assume that Tx,, # Tu,
forall n € IN. (Indeed, if x,,+1 = Tx,, = Tu for infinite values of n, then uniqueness of the limit
concludes that Tu = u). Then, from (14) and (iii) we get

T+ F(d(xy41, Tu)) T+ F(d(Txy, Tu))

< T+ a(x,, u)F(d(Tx,, Tu)) < F(m(x,,u)),
and since F is continuous on (0, +c0) and d(u, Tu) > 0 as n — oo, we get
T+ F(d(u, Tu)) < F(nh_{n m(xn, u)). (20)

But

m(xy, u) = max {d(xn, ), d(xn, Xni1),d(u, Tu), d(xy, Tu) +d(u, x,41) }

2

So, we have

lim m(x,, u) = max {O, 0,d(u, Tu), W} =d(u, Tu).

n—o0
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Therefore, if d(u, Tu) # 0 then from (20) we have
T+ F(d(u,Tu)) < F(d(u, Tu)),
which is contradicted by positivity of T. So, d(u, Tu) = 0, i.e. Tu = u. Finally, if we assume

that the second part of (19) is true, i.e.

1
Ed(xn-i-l/ xﬂ+2) < d(xn+1/ u)'
Then, as the same manner, we can prove that d(u, Tu) = 0, i.e. Tu = u. O

The next result establishes a sufficient condition for uniqueness of fixed point of an « F-
weak Suzuki contraction.

Theorem 4. Suppose that all the conditions of Theorem 3 are satisfied. In addition, assume
that a(x,y) > 1, for all x,y € Fix(T). Then, T has a unique fixed point.

Proof. Suppose that u and v are two fixed point of T. If u # v, then d(Tu, Tv) > 0. Also
a(u,v) > 1, because u,v € Fix(T). Also, it is clear that 1d(u, Tu) = 0 < d(u,v). Hence, (12)
implies that

T+ F(d(u,v)) = T+ F(d(Tu,Tv)) < v+ a(u,v)F(d(Tu, Tv)) < F(m(u,v)),

where
m(u,v) = max{d(u,v),d(u,Tu),d(U,TU),W}

= max{d(u,0),0,0, W} =d(u,v).
So, we have

T+ F(d(u,v)) < F(d(u,0)),

which is a contradiction, as T > 0. So, u = v. O

Since each a-type F-Suzuki contraction is obviously an & F-weak Suzuki contraction, the
following two corollaries are elementary results of Theorems 3 and 4 respectively.

Corollary 4 ([3], Theorem 3.3). Let (X,d) be a complete metric space and T : X — X be an a-
type F-Suzuki contraction, satistying the conditions (i)—(iv) of Theorem 3. Then, T has a fixed
point.

Corollary 5 (3], Theorem 3.4). If in the Corollary 4, we further assume that «(x,y) > 1, for all
x,y € Fix(T), then T has a unique fixed point.

The following example shows that Theorem 3 is a generalization of Theorem 3.3 in [3].

Example 6. In the Example 5, we saw that the mapping T is not an a-type F-Suzuki contraction.
So, T does not satisty to Theorem 3.3 in [3]. But T is an « F-weak Suzuki contraction, and we
can easily see that T satisfies all conditions of Theorem 3. And u = 1 is a fixed point of T. Also,
all conditions of Theorem 4 are satisfied and u = 1 is the unique fixed point of T.
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4 CONSEQUENCES

In this section, one of the consequences of our research in metric spaces with graph is
introduced. First, we remind a series of definitions and notions in graph theory.

Let (X, d) be a metric space and A = {(x,x),x € X}. Suppose that G is a graph, V(G) is
the set of all its vertices and E(G) is the set of all edges of G. We say that G has no parallel
edge, if (x,y), (v, x) € E(G) implies that x = y. Also G is directed if the edges have a direction
associated with them. We denoted by G(X) the set of all directed graph G with no parallel
edge in which V(G) = X and A C E(G).

Definition 13 ([9]). The mapping T : X — X is called G-continuous, if for each sequence
{x,}$> 1 in X that (x4, x,41) € E(G) Vn € N and x, — x asn — oo one can conclude that
Tx, — Tx asn — oo.

Theorem 5. Let (X,d) be a complete metric space endowed with a graph G € G(X) and
T : X — X be a mapping with the following conditions:

(i) forallx,y € X, (x,y) € E(G) = (Tx,Ty) € E(G),
(ii) there exists xy € X such that (xy, Txg) € E(G),

(iii) for any sequence {x,}° ; € X and x € X if limy . X, = x and (x,, X,+1) € E(G), for
alln € N, then (x,,x) € E(G), foralln € N,

(iv) there existF € F,and T > 0 and L > 0 such that if (x,y) € E(G) and d(Tx, Ty) > 0 then
T+ F(d(Tx, Ty)) < F(m(x,y) + LN1(x,y)), (21)
where m(x,y) and Ni(x,y) are defined as in Definition 11.

Then, if T is G-continuous or F is continuous, then T has a fixed point.

Proof. Define a : X x X — (0, +00) U {—o0} by
1, if (x,y) € E(G),
. (x,y) € E(G)

—o0, otherwise.

We show that all condition of Theorem 1 are satisfied. First, prove that T is a-admissible, it is
enough to notice that if a(x,y) > 1, then (x,y) € E(G) and it follows from (i) that (Tx, Ty) €
E(G). Hence, a(Tx,Ty) > 1. By (ii) there exists xo € X such that (xp, Txg) € E(G) i.e.
a(xp, Txp) > 1. Now, suppose that {xn};l’ll C X is asequence in X such that x, = xasn — oo
and a(x,, x,41) > 1, for all n € N, Then, (x,,x,11) € E(G) and it follows from (iv) that
(xn,x) € E(G), foralln € N, i.e. a(xy,x) > 1, foralln € NU {0}. Finally, we show that T
is an almost-a F-weak contraction on X. For this, suppose that x,y € X and d(Tx, Ty) > 0. If
(x,y) ¢ E(G), then a(x,y) = —o0 and so we have

© (o, y)E(@(Tx, Ty)) < F(m(x,y) + LNy (x,9)).
If (x,y) € E(G), then a(x,y) = 1 and it follows from (21) that
T+ a(x,y)F(d(Tx, Ty)) = v+ F(d(Tx, Ty)) < F(m(x,y) + LN1(x,y)).

Thus, T is an almost-a F-weak contraction on X. It follow from all the conditions of Theorem
1 are satisfied and T has a fixed point in X. O
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The following result is immediately deduced from Theorem 5.

Corollary 6 ([6], Theorem 4.1). Let (X, d) be a complete metric space endowed with a graph
G € G(X) and T : X — X be a mapping with the following conditions:

(i) forallx,y € X, (x,y) € E(G) = (Tx,Ty) € E(G),

(ii) there exists xy € X such that (xg, Txy) € E(G),

(iii) for any sequence {x,}° ; € X and x € X if limy X, = x and (x,, x,41) € E(G), for

alln € IN, then (x,,x) € E(G), foralln € IN or T is G-continuous.

(iv) there exist F € F, T > 0and L > 0 such thatif (x,y) € E(G) and d(Tx, Ty) > 0 then

T+ F(d(Tx, Ty)) < F(d(x,y) + LNy(x,y)).

Then, T has a fixed point.
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Taxepi A., ®apaaxaare A.IL Hosa xapakmepusayia matisce-F-cmucky a-muny i F-Cysyki cmucky a-
MUnY 6 MeMpUUHUX NPOCIOpPAx i meopemu npo ¢ixcosary mouxy 019 Hux // Kapmnarcbki MaTeM. my6a.
—2019. — T.11, N22. — C. 475-492.

Y miit cTaTTi 3apONOHOBAHO HOBe y3araAbHeHHsI Mavbke-F-cTucKy a-Tumy i mpoaosxeHHs F-
Cy3syxki ctucky a-tymy. Kpim Toro, A0BeaeHO Aesiki HOBi TeopeMut IIpo (piKCOBaHY TOUKY AAST WX
BrIIaAKiB. HaBeaeHO mpMKAaaM i 3aCTOCYBaHHsI, SIKi IAFOCTPYIOTh OCHOBHI pe3yAbTaTi. PesyabraTi
1Ii€i CTaTTi HOKPAIIYIOTh Pe3yAbTaTH, sIKi A0bpe BiaOMi ¥ AiTepaTypi.

Kntouosi cnosa i ppasu: mavixe-F-ctyek a-tvmy, F-Cysyxi cTmck a-Tuy.
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(L)

VASYLYSHYN T.V.

POINT-EVALUATION FUNCTIONALS ON ALGEBRAS OF SYMMETRIC FUNCTIONS
ON (Lo)?

It is known that every continuous symmetric (invariant under the composition of its argument
with each Lebesgue measurable bijection of [0,1] that preserve the Lebesgue measure of measur-
able sets) polynomial on the Cartesian power of the complex Banach space Lo, of all Lebesgue mea-
surable essentially bounded complex-valued functions on [0, 1] can be uniquely represented as an
algebraic combination, i.e., a linear combination of products, of the so-called elementary symmet-
ric polynomials. Consequently, every continuous complex-valued linear multiplicative functional
(character) of an arbitrary topological algebra of the functions on the Cartesian power of L, which
contains the algebra of continuous symmetric polynomials on the Cartesian power of L as a dense
subalgebra, is uniquely determined by its values on elementary symmetric polynomials. There-
fore, the problem of the description of the spectrum (the set of all characters) of such an algebra is
equivalent to the problem of the description of sets of the above-mentioned values of characters on
elementary symmetric polynomials.

In this work the problem of the description of sets of values of characters, which are point-
evaluation functionals, on elementary symmetric polynomials on the Cartesian square of Lo is com-
pletely solved. We show that sets of values of point-evaluation functionals on elementary symmetric
polynomials satisfy some natural condition. Also we show that for any set ¢ of complex numbers,
which satisfies the above-mentioned condition, there exists the element x of the Cartesian square of
L such that values of the point-evaluation functional at x on elementary symmetric polynomials
coincide with the respective elements of the set c.

Key words and phrases: symmetric polynomial, point-evaluation functional.
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INTRODUCTION

In general, the problem of the description of the spectrum (the set of continuous complex-
valued linear multiplicative functionals, or characters) of a topological algebra of analytic func-
tions on a Banach space is unsolved. But if a topological algebra or its dense subalgebra has
a countable algebraic basis (the subset B of the algebra A is called an algebraic basis of A, if
every element of A can be uniquely represented as an algebraic combination (a linear com-
bination of products) of elements of B), then the problem of the description of the spectrum
simplifies, because in this case every character is uniquely determined by the sequence of its
values on elements of the algebraic basis and, consequently, the problem of the description of
the spectrum is equivalent to the problem of the description of the set of such sequences. For
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example, in [2] it was constructed an algebraic basis of the algebra of all continuous symmet-
ric (see definition below) polynomials on the complex Banach space L, of all complex-valued
Lebesgue measurable essentially bounded functions on [0, 1]. Also, using this result, in [2] it
was described the spectrum of the Fréchet algebra Hys(Lo) of all entire symmetric functions
of bounded type on L and it was shown that every character of Hys(L«) is a point-evaluation
functional.

Firstly algebraic bases of algebras of symmetric continuous polynomials on real Banach
spaces of Lebesgue measurable integrable in a power p functions on [0,1] and [0, +0c0), where
1 < p < +o00, were studied by Nemirovskii and Semenov in [7]. Some of their results were
generalized to real separable rearrangement invariant Banach spaces of Lebesgue measurable
functions on [0, 1] and [0, +o0) by Gonzélez, Gonzalo and Jaramillo in [4]. Symmetric polyno-
mials and symmetric analytic functions on the complex Banach spaces of all complex-valued
Lebesgue measurable essentially bounded functions on [0, 1] and [0, +o0) were studied in [2]
and [3] respectively. Symmetric polynomials on Cartesian products of some Banach spaces
were studied in [6,8-12]. In particular, in [10] it was constructed a countable algebraic basis of
the algebra of continuous symmetric polynomials on the Cartesian power of L.

In this work the problem of the description of sequences of values of point-evaluation func-
tionals on the elements of the algebraic basis of the algebra of continuous symmetric polyno-
mials on the Cartesian square of Lo, is completely solved. We show that the above-mentioned
sequences satisfy some natural condition. Also we show that for any sequence c of complex
numbers, which satisfies this condition, there exists an element x of the Cartesian square of L,
such that the sequence of values of the point-evaluation functional at x coincides with c. We
generalize the results of [11].

1 PRELIMINARIES

We denote by IN the set of all positive integers and by Z, the set of all nonnegative integers.
A mapping P : X — C, where X is a Banach space with norm || - ||x, is called an N-
homogeneous polynomial, where N € IN, if there exists an N-linear mapping Ap : XN — C such
that
P(x) = Ap(x,...,
(x) p(x,...,x)
N
for every x € X. It is known that an N-homogeneous polynomial P : X — C is continuous if
and only if
IP| = sup |P(x)| < +oo.
[ x<1
Consequently, if P is a continuous N-homogeneous polynomial, then
[P < IIPlIxl% e
for every x € X.
A mapping P = Py + Py + ...+ Py, where Py € C and P; is a j-homogeneous polynomial
forevery j € {1,...,N}, is called a polynomial of degree at most N.

Let Lo, be the complex Banach space of all Lebesgue measurable essentially bounded com-
plex-valued functions x on [0, 1] with norm

¥[loo = ess supye o[ x(H)]-
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Let (Leo)? be the Cartesian square of L with norm

|xlleo2 = max{|[x1[leo, [[x2]leo }
where x = (x1,%2) € (Leo)?.
Let & be the set of all bijections ¢ : [0,1] — [0, 1] such that both ¢ and ¢! are measurable

and preserve the Lebesgue measure. A function f : (L )? — C is called symmetric if

flxoo) = f(x)
for every x = (x1,x3) € (L )? and for every ¢ € E, where x o 0 = (x1 00, x00).
For every multi-index k = (k1,kp) € Z3 \ {(0,0)} let us define a mapping Ry : (Le)? — C
by

2
R0 = [ TT (e, @
[01] ;7
ks>0
where x = (x1,x7) € (Leo)?. Note that Ry is a continuous symmetric |k|-homogeneous poly-
nomial, where |k| = k; + kp, and ||R¢|| = 1. By [10, Theorem 2], the set of polynomials
{Ry : k € 22\ {(0,0)}} is an algebraic basis of the algebra Ps((L)?) of all continuous
symmetric polynomials on (L )?.
Let A be an algebra of functions f : D — C, where the set D is such that D O (L« )?. For
x € (Lo)?, let the mapping 6 : A — C be defined by

5:(f) = f(x),

where f € A. The mapping Jy is called a point-evaluation functional at the point x. Note that
a point-evaluation functional is linear and multiplicative.
We shall use the following result.

Theorem 1. (see [2, Section 3]) For every sequence ¢ = {, }>_,; C C such that

n=1

sup {/|&n| < 400,
nelN

there exists (S Lo such that
)" dt =
/[0,1](06( )) gn

for every n € N and ||xz||e0 < 2 sUp,cpy V/]En], where
= T 1
M= T~ ). 3
[ ] cos (2 n+1> @)
2 THE MAIN RESULT

Theorem 2. For every mapping c : Z2 \ {(0,0)} — C such that

sup  Je(n)[V/" < 4o
neZ3\{(00)})

there exists a function x, € (Le)? such that R, (x.) = c(n) for every n € Zi \ {(0,0)} and
24
¢ |loo2 < 3 sup \c(n)]l/‘”\,

nez3\{(00)}
where M is defined by (3).
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Proof. Let ¢; be the kth Rademacher function, that is, e, (t) = sign(sin 2¥7rt). It is well known
(see, e.g., [1, p. 162] or [5, Chapter 3]) that the series ) ;° ; ek (f)uy is convergent almost every-
where on [0, 1] if and only if the series Y5> ; |ux|? converges. Consequently, the series Y - k+(t1)
converges almost everywhere on [0, 1].

For every n = (ny,n3) € IN? let us define a function p,, : [0,1] — C? by

o) = (o (g, 5 520 o0 oy £ 259))

k=

Note that the function p, belongs to the space (L[0,1])? and ||p,|| = 1.
The sequence of the functions {pg,l) }1-,, where

e = (e (37, L 520 o (3 S 29))

converges pointwise to p,. Therefore, for every m = (my,m;) € IN?, according to the domi-
nated convergence theorem,

Run(pu) = lim R (p).

Note that
Ruo) = [ e (gm 1 20 ) exp (e - 20
=00 (gm3) [y o0 Gm B34 ew (m L 2
cop (gmz) fy,op Gm L5 e (g 1 2
<—><>
[y o (om 2 20 exp (37 37 20 )
e (1) o (1) (1) (221
<oy oe Grm B 5 e (g 1 P40 =
1
[ e (o ()
1
Therefore,

Ry (pn) = Iojcos <7;Tmllk41——1> cos <§ijﬁ>
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Fork e Nandje {1,...,k}, let

For every k € IN let us define a function Si : [0,1] — C in the following way. For t € []_Tl, %],
wherej € {1,...,k}, let

Sk(t) = ajk.
Let frac(t) be the fractional part of a real number t. For every n = (11, 1,) € IN? let us define a
function v, : [0,1] — C2 by a formula

yn(t) = <Sn1(t)pnll(frac(nlnzt)),Snz(frac(nlt))png(frac(nlnzt))).

Note that ||y, || 2 = 1. For every m = (mq,my) € IN?, we have
Ri(yn) = /[0 . Sy (t )pn1(frac(nlnzt))SZ’zz(frac(nlt))pnmlzz(frac(nlnzt))dt =

— Z ai /] e S (frac(nlt))pzll(frac(nlnzt))p’n'fzz(frac(nlnzt))dt.

”1 m

Let us make the substitution u = nyt — (j — 1) in the jth integral. Then n1t = u+j — 1 and,
consequently, frac(nyt) = frac(u + j — 1) = frac(u) and frac(ninyt) = frac(npu +ny(j — 1)) =
frac(npu). Therefore,

1

1 m m
Ry (yn) = n—1]; a;%l /[0,” Sy (frac(u))p,,} (frac(nou)) py (frac(npu) )du.
Note that
/[O | SH(frac(u)) i (Frac(nyu) i (frac )

_ Z a2 / p™ (frac(nyu))p™™3 (frac(nyu) )du.

112 ?12

Let us make the substitution v = nyu — (r — 1) in the rth integral. Then nou = v +r —1 and,
consequently, frac(nyu) = frac(v +r — 1) = frac(v) = v. Therefore,

1 M 1 1 &2
Rim(yn) = 7 ;ﬂ,il 1 - Z naay nz/ pm () pny (v)do = <n_1 Z ]n1)< Zﬂr nz)
j= j=
B 1 I 1 & my 1 my 1
XRm(pn)_<n_1]¥ ]n1>< Zarm)l—lc S(an k+1> OS<2—nzk+1)'

If my is not a multiple of 7y, then

Similarly, if m; is not a multiple of 1, then

712

my
Z arn, = 0.
r=1
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Let mq = kyny and my = konp, where k1, k, € IN. Then
1 . — my
n_l ]nl - Z a?’ My T 1
j=1

Therefore,

n) - IECOS (%klk—t{l——1> COS <7T7k2ﬁ)

If k1 > 1 ork, > 1, then there is a multiplier cos 7 = 0 in the given product. Thus Ry, (yn) =0,

if m # n.If m = n, then Ry, (y,) = M2, where M is defined by (3).
For every n = (n1,n2) € IN?, let us define a function z,, : [0,1] — C2 by

Zn:

1
V"

Note that ,

1
1z ||co2 = W < VX

since 0 < M < 1. For every m € N2,

1, ifm=mn,

Rin(zn) = { 0, ifm # n.
Let us define sequences ¢ = {¢;}521,17 = {m}jo; C Cby

1/k
& =4c((1,0)) — 4 2 kzk = Z N2 TR 40 (2 )

and
1/k
m = 4c((0,1)) —4 Z 2k+1 Z DR R0 (2 - )
for | € N. Let us show that sup,p |&]*! < 400 and sup;p |11|1/! < +o0. Let

a= sup |c(n)V/I"
neZ2\{(00)}

Then |c(n)| < all for every n € Z3 \ {(0,0)}. By (1), [R10) ()| < [IRuo)llllz(ix-

By (4), taking into account the equahty IR0l =1,

1

Ra0)(Z(ix—i)| < 37-

Therefore,

& k1)K
&1 <4’ + Mzz 2 2k+1 (k277%)

Note that supp (k271)1/% = 4. Therefore, ka+1 < 4 for every k € IN. Consequently,

ad 1 1/k 1 4!
2k+1 < 41 — .
L Lo

(4)

(5)

(6)
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Therefore,
!
&) < 4a' + 2](3[21) .
Taking into account the estimate 0 < M < 1,
2(4a)" _ 4d' +2(4a)! _ 3(4a)t _ (12a)
!
4a’ + MZZ < MZZ < MZZ < MZZ :
Thus,
. (12a)
Analogically,
(12a)!
Im| < A

Since sup; . | 1/ < 12a/M? and sup;ep |11 |V < 12a/M?, by Theorem 1, there exist vg, v; €
Lo such that

1) dt = d ) dt = 7
Jo @O dt =8 and [ oy(6)'dt = )
for every I € IN and
24a
[0¢ |eos 107 [0 < ek (8)

Forke Nandje {1,...,k},let
1 =11
Ajk = <1 "ok T k2k+1’1 Tk T k2k+1)
and hjy : Ajx — (0,1) let be defined by
Lo T=1\\ okt
miat) = (= (1= 5 + ) J K2

Note that h]-,k is a bijection. Let us define a function x. : [0, 1] — C? by

(vz(41),0), if £ € (0,1/4),
o (0, 0,7(415 —1)), ift € (1/4,1/2),
Xc = .
(c((Gk — RN 2 (hia(B), i EE€ Ay kEN, je{L,... k),
(0, ) otherwise.

Note that x, € (L«)? and, taking into account estimations (4), (8) and the inequality
(c((G, k- j))kaH)l/k < 4a, we obtain
24a 4a
AV )
Since 0 < M < 1, it follows that 4a/M? < 4a/M?> < 24a/M>3. Therefore, ||xc||co2 < 24a/M>.
Let us show that Ry, (x;) = c(n) for every n € Z2 \ {(0,0)}. Consider the case n = (n1,1,) €
IN2. In this case, taking into account (5),

Ry (xe :/ 44))M 0" d / 0" (v, (4F — 1))"2 dt Ykl /k
(xc) (0/1/4)(05( ) + a1 (o ( +ZZ )"

[ o2 < max{

x / (g hie(£))" <z<]-,kf]->,2<hj,k<t>>)”2 it
A]/k

_1
’n’2|n|+1

—22 IR R (zg) = (e((m,ma) 211

Jok+1
= ((”1/”2))-
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Consider the case n = (1,0), where I € IN. In this case, taking into account (6) and (7),

R :/ a) dt / o' dt
n(xc) (0,1/4)(05( ) dt + o

o k
£ 1 1 (ellik =R [ (2 aliy(6))
k=1j=1

Ajk

_1
4oy

co k
. . 1/k 1
(Ug(t))l dt + kzl ;(C((],k — ]>>k2k+1) k2k+1 R(I,O) (Z(]-,k,]-)>
=1j=

1 S : : 1/k 1
=46t kzl Z;(c((],k — j))k2k+L) R0 (Za-p) = c((1,0)).
= ]:

Analogically, in the case n = (0,1), where I € IN, we have R, (x.) = ¢((0,1)). This completes
the proof. O

Corollary 1. Let A be a topological algebra of complex-valued functions on (L« )2, which con-
tains the algebra Ps((L«)?) as a dense subalgebra. Let A be such that for each x € Lo the
point-evaluation functional , is continuous on A. Let ¢ : A — C be a continuous linear
multiplicative functional. Then ¢ is a point-evaluation functional if and only if

sup  [@(Ry)[V" < +oo.
neZ3\{(00)}

Proof. Let ¢ : A — C be a continuous linear multiplicative functional such that

sup  |@(Ry)|Y!" < +oo.
nez2\{(0,0)}

By Theorem 2, there exists x € (Lo)? such that R, (x) = ¢(Ry,) for every n € Z3 \ {(0,0)},
that is, 6x(R,) = @(Ry,) for every n € Z2% \ {(0,0)}. Since both 6, and ¢ are linear and mul-
tiplicative, it follows that dy(P) = ¢(P) for every P € Ps((Lw)?). Since both dy and ¢ are
continuous and Ps((L«)?) is dense in A, it follows that 5 = ¢.

Let ¢ = &y for some x = (x1,%2) € (Lwo)? By (1), for every n = (n1,n2) € 7%\ {(0,0)},
9(Ru)] = [Ru(x)] < [|¥]I". Consequently,

sup  |@(Ra)[V " < 1]
neZ2\{(0,0)}
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Biaomo, 1110 KOKeH HellepepBHMI CMeTpUYHMI (IHBapiaHTHII BIAHOCHO Ail KoMmo3uiiii arpy-
MeHTa 3 6yAb-SIKOI0 BUMIpHOIO 3a AeferoM 6iexuiero Biapiska [0, 1], sixa 36epirae mipy Aebera Bu-
MipHMX MHOXWH) ITOAIHOM Ha AeKapTOBOMY CTeIleHi KOMIIAEKCHOTO 6aHaxoBOTro MPOCTOpy Lo BCix
BUMIpHIIX 3a AeferoMm CcyTTeBO O6MeKeHNX KOMIIAKCHO3HAYHMX (pyHKiA Ha Biapisky [0, 1] Moxe
Oy Ty e AVIHVM UMHOM IIOAQHO SIK aATebpaluHy KOMbiHalIiio, TO6TO AiHIHY KOM6IHAII0 AOGYTKIB, TaK
3BaHMX €AeMEeHTapHMX CUMeTPUYHMX IOAIHOMIB. fIK HacAiAOK, KOKeH HellepepBHMUI KOMIIA@KCHO-
3HAUHVI AIHIVHWI MYABTUIIAIKATUBHVIT (PYHKITIOHAA (XapaKTep) AOBIABHOI TOITIOAOTIUHOI aATe6py
dyHKIII Ha AeKapTOBOMY CTelleHi POCTOPY Lo, SIKa MiCTUTD aATebpY HellepepBHMX CHMETPUIHIX
IIOAIHOMIB Ha AeKapTOBOMY CTelleHi IPOCTOPY Leo 5K ITiABHY MiAaATebpy, OAHO3HAYHO BU3HAYAE-
ThCsl CBOIMM 3HaYeHHHSIMM Ha eAeMeHTapHMX CMMeTPUYHMX IoAiHOMax. ToMy 3aaava ommcy crie-
KTpa (MHOXMHM BCiX XapaKTepiB) Takoi aATe6py eKBiBaAeHTHa AO 3aAadi OIMICY MHOXIH BUIIe3ra-
AAHMX 3HaUYeHb XapaKTepiB Ha eAeMeHTapHMX CMMeTPUYHMX MOAIHOMAX.

B aaHiit poboTi po3p’sI3aHO 3apady OIMMCY MHOXMH 3Ha4UeHb XapakTepis, sIki € dpyHKIIiOHaAa-
MM O6UMCAEHHS 3HAUeHHs B TOUKaX, Ha eAeMEeHTapHMX CMETPUYHIMX IIOAIHOMAaX Ha A€KapTOBOMY
KBaApaTi MpocTopy Leo. [TokaszaHo, 110 MHOXMHY 3HaYeHb (PYHKITIOHAAIB OOUMCACHHS 3HAUEHHS B
TOUKax Ha eAeMeHTapHMX CMMEeTPUYHMX MOAIHOMaX 3aA0BOABHSIOTH AeSIKY TPUMPOAHY yMOBYy. Ta-
KOXX IOKa3aHo, IO AASI KOXKHOI MHOXVHM ¢ KOMIIA@KCHMX YMCe), KA 3aA0BOABHsIE BUIIE3TaAaHy
YMOBY, iCHy€ eAeMeHT X AeKapTOBOTO KBaApaTa IPOCTOPY Lo, Takmii, II0 3HaUeHHsI (PYHKIIOHAAA
ObUNICAEHHSI 3HaUeHHS B TOUIll X Ha eAeMeHTapHMX CMMETPUYHMX ITOATHOMaX 36iraroThest 3 BiAmlo-
BiAHMMM eAeMeHTaMI MHOXVHMA C.

Kntouosi cnosa i ppasu: cMMeTpUIHMIL TOAIHOM, PYHKITIOHAA O6UMCAHHS 3HAUEHHS B TOUII].



