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BAKSA V. P.

ANALYTIC VECTOR-FUNCTIONS IN THE UNIT BALL HAVING BOUNDED

L-INDEX IN JOINT VARIABLES

In this paper, we consider a class of vector-functions, which are analytic in the unit ball. For

this class of functions there is introduced a concept of boundedness of L-index in joint variables,

where L = (l1, l2) : B
2 → R

2
+ is a positive continuous vector-function, B

2 = {z ∈ C
2 : |z| =√

|z1|2 + |z2|2 ≤ 1}. We present necessary and sufficient conditions of boundedness of L-index in

joint variables. They describe the local behavior of the maximum modulus of every component of

the vector-function or its partial derivatives.

Key words and phrases: bounded index, bounded L-index in joint variables, analytic function,
unit ball, local behavior, maximum modulus, sup-norm, vector-valued function.

Ivan Franko National University, 1 Universytetska str., 79000, Lviv, Ukraine

E-mail: vitalinabaksa@gmail.com

1 INTRODUCTION

A concept of bounded index for entire function [19] draws attention of many mathematician

(see a full bibliography in [5, 24, 26]) to investigations of these function class and its possible

applications. It is interesting with its connections with value distribution theory, because every

entire function has a bounded value distribution if and only if its derivative has a bounded

index [15]. Also, there are many papers devoted to index boundedness of analytic solutions of

differential equations [12, 13, 18]. It is important because any function of bounded index have

its growth estimates, local behavior of derivatives and some uniform distribution of zeros.

Moreover, some authors [26–33] study connection between p-valence and l-index boundedness

of analytic functions, the existence of solutions of the second order linear differential equations

with polynomial coefficients which are starlike, convex, close-to-convex and of bounded l-

index (l : C → R+ is a continuous function). In other words, they combine analytic and

geometric properties of functions of complex variable. Let us give a main definition introduced

by B. Lepson [19]. An entire function f is said to be of bounded l-index if there exists an integer

m, independent of z, such that for all p and all z ∈ C
| f (p)(z)|

p! ≤ max{ | f (s)(z)|
s! : 0 ≤ s ≤ m}. If

we replace p! by p!lp(z) and s! by s!ls(z) in the definition, respectively, then we obtain the

definition of entire function of bounded l-index [17]. The generalization was proposed by

A.D. Kuzyk and M.M. Sheremeta to go beyond class of entire functions of exponential type

because every entire function of bounded index is of exponential type [15].

Of course, there are papers on analytic curves of bounded l-index. This function class

naturally appears if we consider systems of differential equations and investigate properties

УДК 517.55
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214 BAKSA V. P.

of their analytic solutions. A concept of bounded index for entire curves was introduced with

the sup-norm [16] and with the Euclidean norm [23]. In these papers the authors replaced the

modulus of function by the appropriate norm in the definition. Later there was proposed a

definition of bounded ν-index [22] for entire curves with these norms. In this definition, R. Roy

and S.M. Shah replaced p! by p!|z|p and so on. Also M.T. Bordulyak and M.M. Sheremeta

[14, 25] studied curves of bounded l-index which are analytic in arbitrary bounded domain

on the complex plane. These mathematicians found sufficient conditions providing l-index

boundedness of every analytic solutions for some system of differential equations.

Recently, there was published paper [21] about entire vector-valued bivariate functions hav-

ing bounded index. The authors considered a concept of bounded index with the sup-norm.

We will develop their approach and will investigate vector-valued functions which are analytic

in the unit ball.

Our present investigation has used methods of A.I. Bandura and O.B. Skaskiv developed

them for analytic functions in the unit ball [2–4, 10]. It is known that analytic function with

unbounded multiplicities of zeros is of unbounded l-index for any positive continuous func-

tion l. The similar statement is valid for functions analytic in the unit ball [1]. In other words,

functions with unbounded multiplicities of zero points are not still objects of investigations in

theory of bounded index. But we can replace studying of properties of the function f with

unbounded multiplicities of zero points by studying of properties of the map ( f , 1). Such

approach allows to investigate any analytic functions in theory of bounded index.

2 NOTATIONS AND DEFINITIONS

Here we use some standard notations (see [3–5]). Let R+ = [0;+∞), 0 = (0, 0) ∈ R
2
+,

1 = (1, 1) ∈ R
2
+, R = (r1, r2) ∈ R

2
+, |(z, w)| =

√
|z|2 + |w|2. For A = (a1, a2) ∈ R

2,

B = (b1, b2) ∈ R2, we will use formal notations without assumption of the existence of

these expressions: AB = (a1b1, a2b2), A/B = (a1/b1, a2/b2), AB = (ab1
1 , ab2

2 ), аnd the nota-

tion A < B means that aj < bj, j ∈ {1, 2}; the relation A ≤ B is defined in the similar way.

For K = (k1, k2) ∈ Z
2
+ let us denote K! = k1! · k2!. Addition, multiplication by scalar and con-

jugation in C
2 is defined componentwise. For a = (a1, a2) ∈ C

2, b = (b1, b2) ∈ C
2 we define

〈a, b〉 = a1b1 + a2b2, where b1, b2 is the complex conjugate of b1, b2.

The polydisc {(z, w) ∈ C2 : |z − z0| < r1, |w − w0| < r2} is denoted by D2((z0, w0), R), its

skeleton {(z, w) ∈ C2 : |z − z0| = r1, |w − w0| = r2} is denoted by T2((z0, w0), R), the closed

polydisc {(z, w) ∈ C
2 : |z − z0| ≤ r1, |w − w0| ≤ r2} is denoted by D

2[(z0, w0), R], D
2 =

D
2(0; 1), D = {z ∈ C : |z| < 1}. The open ball {(z, w) ∈ C

2 :
√
|z − z0|2 + |w − w0|2 < r} is

denoted by B2((z0, w0), r), the sphere {(z, w) ∈ C2 :
√
|z − z0|2 + |w − w0|2 = r} is denoted

by S2((z0, w0), r), and the closed ball {(z, w) ∈ C2 :
√
|z − z0|2 + |w − w0|2 ≤ r} is denoted by

B2[(z0, w0), r], B2 = B2(0, 1), D = B1 = {z ∈ C : |z| < 1}.

Let F(z, w) = ( f1(z, w), f2(z, w)) be an analytic vector-function in B
2. Then at a point

(a, b) ∈ B
2 the function F(z, w) has a bivariate vector-valued Taylor expansion:

F(z, w) =
∞

∑
k=0

∞

∑
m=0

Ckl(z − a)k(w − b)m,

where

Ckm =
1

k!m!

(
∂k+m f1(z, w)

∂zk∂wm
,

∂k+m f2(z, w)

∂zk∂wm

) ∣∣∣∣
z=a,w=b

=
1

k!m!
F(k,m)(a, b).
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Let L(z, w) = (l1(z, w), l2(z, w)), where lj(z, w) : B2 → R2
+ are positive continuous func-

tions such that

∀(z, w) ∈ B
2 : lj(z, w) >

β

1 −
√
|z|2 + |w|2

, j ∈ {1, 2}, (1)

where β >

√
2 is a some constant.

Remark 1. Note that from R ∈ R
2
+, |R| =

√
r2

1 + r2
2 < β, (z0, w0) ∈ B

2 and (z, w) ∈
D2[(z0, w0), R/L(z0, w0)] it follows, that (z, w) ∈ B2.

Indeed,

|(z, w)| ≤ |(z, w)− (z0, w0)|+ |(z0, w0)| ≤
√

r2
1

l2
1(z0, w0)

+
r2

2

l2
2(z0, w0)

+ |(z0, w0)|

<
1 − |(z0, w0)|

β

√
r2

1 + r2
2 + |(z0, w0)| ≤

1 − |(z0, w0)|
β

β + |z0, w0| = 1.

The norm for the vector-function F : B2 → C2 is defined as the sup-norm

‖F(z, w)‖ = max{| f1(z, w), | f2(z, w)|}.

We write

F(i,j)(z, w) =
∂i+jF(z, w)

∂zi∂wj
=

(
∂i+j f1(z, w)

∂zi∂wj
,

∂i+j f2(z, w)

∂zi∂wj

)
.

An analytic vector-function F : B
2 → C

2 is said to be of bounded L-index (in joint variables),

if there exists n0 ∈ Z+ such that ∀(z, w) ∈ B
2 ∀(i, j) ∈ Z

2
+ :

‖F(i,j)(z, w)‖
i!j!li

1(z, w)l
j
2(z, w)

≤ max

{
‖F(k,m)(z, w)‖

k!m!lk
1(z, w)lm

2 (z, w)
: k, m ∈ Z+, k + m ≤ n0

}
. (2)

The least such integer n0 is called the L-index in joint variables of the vector-function F and is

denoted by N(F, L, B2). The concept of boundedness of L-index in joint variables was consid-

ered for other classes of analytic functions. They have differed domains of analyticity: the unit

ball [1,3,4,10], the polydisc [7,9], the Cartesian product of the unit disc and complex plane [8],

n-dimensional complex space [1, 6, 11, 12].

Example 1. The function f (z, w) = exp
{

1
(1/

√
2−z)(1/

√
2−w)

}
has a bounded L-index in joint

variables N(F, L, D2((0, 0), R)) = 0 in the bidisk D2((0, 0), R) with R = (1/
√

2, 1/
√

2) and

L(z, w) =
(

1
(1/

√
2−|z|)2(1/

√
2−|w|) ,

1
(1/

√
2−|z|)(1/

√
2−|w|)2

)
(see details in [9]). But |R| = 1, there-

fore, it is easy to see, that the vector-function F(z, w) = ( f (z, w), 1) has the same bounded

L-index in joint variables N(F, L, B
2) = 0 in the unit ball B

2.

Q(B2) stands for the function class of L : B2 → R2
+, which obey inequality (1) and for any

j ∈ {1, 2} and some R = (r1, r2), |R| ≤ β :

sup
(z1,w1),(z2,w2)∈B2

{
lj(z1, w1)

lj(z2, w2)
: |z1 − z2| ≤

r1

min{l1(z1, w1), l1(z2, w2)}
,

|w1 − w2| ≤
r2

min{l2(z1, w1), l2(z2, w2)}

}
< ∞.
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The function class Q(B2) also can be defined as follows: for all R ∈ R2
+, |R| ≤ β, and for

j ∈ {1, 2} the inequality 0 < λ1,j(R) ≤ λ2,j(R) < ∞ holds, where

λ1,j(R) = inf
(z0,w0)∈B2

inf

{
lj(z, w)

lj(z0, w0)
: (z, w) ∈ D

2[(z0, w0), R/L(z0, w0)]

}
, (3)

λ2,j(R) = sup
(z0,w0)∈B2

sup

{
lj(z, w)

lj(z0, w0)
: (z, w) ∈ D

2[(z0, w0), R/L(z0, w0)]

}
. (4)

3 LOCAL BEHAVIOR OF PARTIAL DERIVATIVES OF VECTOR-VALUED BIVARIATE ANALYTIC

FUNCTIONS HAVING BOUNDED L-INDEX IN JOINT VARIABLES

The following theorem is basic in the theory of functions of bounded index. Our proof is

similar to proof of the corresponding theorem [2] for analytic functions from Bn onto C. For

other classes of analytic functions it is proved in [5, 8, 9, 20, 24].

Theorem 1. Let L ∈ Q(B2). An analytic vector-function F : B2 → C2 has a bounded L-index

in joint variables if and only if for every R ∈ R2, |R| ≤ β there exist n0 ∈ Z+, p > 0 such that

for all (z0, w0) ∈ B
2 there exists 2-tuple (k0, m0) ∈ Z

2
+, k0 + m0 ≤ n0, satisfying inequality

max

{ ‖F(k,m)(z, w)‖
k!m!lk

1(z, w)lm
2 (z, w)

: k + m ≤ n0, (z, w) ∈ D
2[(z0, w0), R/L(z0, w0)]

}

≤ p0
‖F(k0,m0)(z0, w0)‖

k0!m0!lk0

1 (z0, w0)lm0

2 (z0, w0)
.

(5)

Proof. Below we repeat considerations from [2], replacing modulus of function by the norm of

vector-function.

Let F be an analytic vector-function of bounded L-index in joint variables with

N = N(F, L, B2) < ∞. For any R ∈ R2
+, |R| < β, we define

q = q(R) = [2(N + 1)(r1 + r2)
2

∏
j=1

(λ1,j(R))−N(λ2,j(R))N+1] + 1,

where [x] stands for the entire part of the real number x. For p ∈ {0, . . . , q} and (z0, w0) ∈ B
2

we denote:

Sp((z0, w0), R)=max
{ ‖F(k,m)(z, w)‖

k!m!lk
1(z, w)lm

2 (z, w)
: k + m ≤ N, (z, w) ∈ D

2
[
(z0, w0),

pR

qL(z0, w0)

]}
,

S∗
p((z0, w0), R)=max

{ ‖F(k,m)(z, w)‖
k!m!lk

1(z0, w0)lm
2 (z0, w0)

: k+m≤N, (z, w)∈D
2
[
(z0, w0),

pR

qL(z0, w0)

]}
.

Using equality (3) and D
2[(z0, w0),

pR
qL(z0,w0)

] ⊂ D
2[(z0, w0),

R
L(z0,w0)

], we have
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Sp((z0, w0), R) =max

{ ‖F(k,m)(z, w)‖
k!m!lk

1(z, w)lm
2 (z, w)

: k+m≤N,(z, w)∈D
2

[
(z0, w0),

pR

qL(z0, w0)

]}

= max

{ ‖F(k,m)(z, w)‖
k!m!lk

1(z0, w0)lm
2 (z0, w0)

· lk
1(z0, w0)l

m
2 (z0, w0)

lk
1(z, w)lm

2 (z, w)
: k + m ≤ N,

(z, w) ∈ D
2[(z0, w0),

pR

qL(z0, w0)
]

}

≤ S∗
p((z0, w0), R)max

{
lk
1(z0, w0), lm

2 (z0, w0, )

lk
1(z, w), lm

2 (z, w)
: k + m ≤ N,

(z, w) ∈ D
2[(z0, w0),

pR

qL(z0, w0)
]

}

≤ S∗
p((z0, w0), R)max{(λ1,1(R))−k(λ1,2(R))−m : k + m ≤ N}

≤S∗
p((z0, w0), R)(λ1,1(R))−N(λ1,2(R))−N ≤S∗

p((z0, w0), R)
2

∏
j=1

(λ1,j(R))−N .

(6)

Taking into account (4), we obtain

S∗
p((z0, w0), R) = max

{
‖F(k,m)(z, w)‖

k!m!lk
1(z, w)lm

2 (z, w)
· lk

1(z, w)lm
2 (z, w)

lk
1(z, w)lm

2 (z0, w0)
: k + m ≤ N,

(z, w) ∈ D
2[(z0, w0),

(pr1, pr2)

qL(z0, w0)
]

}

≤ max

{
‖F(k,m)(z, w)‖

k!m!lk
1(z, w)lm

2 (z, w)
(λ2,1(R))k(λ2,2(R))m : k + m ≤ N,

(z, w) ∈ D
2[(z0, w0),

(pr1, pr2)

qL(z0, w0)
]

}

≤ Sp((z0, w0), R)(λ2,1(R))N(λ2,2(R))N ≤ Sp((z0, w0), R)
2

∏
j=1

(λ1,j(R))N .

(7)

Let (kp, mp) ∈ Z2
+, kp + mp ≤ N and (zp, wp) ∈ D2

[
(z0, w0),

pR
qL(z0,w0)

]
be such that

S∗
p((z0, w0), R) =

‖F(kp,mp)(zp, wp)‖
kp!mp!l

kp

1 (z0, w0)l
mp

2 (z0, w0)
. (8)

Since by the maximum modulus principle we have (zp, wp) ∈ T2
(
(z0, w0),

pR
qL(z0,w0)

)
,

therefore (zp, wp) 6= (z0, w0). We choose

z̃p = z0 +
p − 1

p

(
zp − z0

)
, w̃p = w0 +

p − 1

p

(
wp − w0

)
.

Then we have

|z̃p − z̃0| =
p − 1

p
|zp − z0| =

p − 1

p

pr1

ql1(z0, w0)
, |w̃p − w̃0| =

p − 1

p

pr2

ql2(z0, w0)
,

|z̃p − zp| = |z0 +
p − 1

p
(zp − z0)− zp| =

1

p
|z0 − zp| =

r1

ql1(z0, w0)
; (9)

|w̃p − wp| = |w0 +
p − 1

p
(wp − w0)− wp| =

1

p
|w0 − wp| =

r2

ql2(z0, w0)
. (10)
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We obtain (z̃p, w̃p) ∈ D2
[
(z0, w0),

(p−1)R
q(R)L(z0,w0)

]
and S∗

p−1((z0, w0), R) ≥ ‖F(kp,mp)(z̃p,w̃p)

kp!mp!l
kp
1 (z0,w0)l

mp
2 (z0,w0)

.

From (8) by mean value theorem we have

0 ≤ S∗
p((z0, w0), R)− S∗

p−1((z0, w0), R) ≤ ‖F(kp,mp)(zp, wp)‖ − ‖F(kp,mp)(z̃p, w̃p)‖
kp!mp!l

kp

1 (z0, w0)l
mp

2 (z0, w0)

=
1

kp!mp!l
kp

1 (z0, w0)l
mp

2 (z0, w0)

∫ 1

0

d

dt
‖F(kp,mp)(z̃p + t(zp − z̃p), w̃p + t(wp − w̃p))‖dt

≤ 1

kp!mp!l
kp

1 (z0, w0)l
mp

2 (z0, w0)

∫ 1

0
|z(p) − z̃p|‖F(kp+1,mp)(z̃p + t(zp − z̃p), w̃p + t(wp − w̃p))‖

+ |w(p) − w̃p|‖F(kp,mp+1)(z̃p + t(zp − z̃p), w̃p + t(wp − w̃p))‖dt

=
1

kp!mp!l
kp

1 (z0, w0)l
mp

2 (z0, w0)

[
|z(p) − z̃p|‖F(kp+1,mp)(z̃p + t∗(zp − z̃p), w̃p + t∗(wp − w̃p))‖

+|w(p) − w̃p|‖F(kp ,mp+1)(z̃p + t∗(zp − z̃p), w̃p + t∗(wp − w̃p))‖
]

,

(11)

where 0 ≤ t∗ ≤ 1, and (z̃p + t∗(zp − z̃p), w̃p + t∗(wp − w̃p)) ∈ D
2[(z0, w0),

pR
qL(z0,w0)

]. For

(z, w) ∈ D
2[(z0, w0),

pR
qL(z0,w0)

] and (j1, j2) ∈ Z
2
+: j1 + j2 ≤ N + 1, we have

‖F(j1,j2)(z, w)‖
j1!j2!l

j1
1 (z0, w0)l

j2
2 (z0, w0)

· l
j1
1 (z, w)l

j2
2 (z, w)

l
j1
1 (z, w)l

j2
2 (z, w)

≤ ‖F(j1,j2)(z, w)‖
j1!j2!l

j1
1 (z, w)l

j2
2 (z, w)

max

{
l
j1
1 (z, w)

l
j1
1 (z0, w0)

· l
j2
2 (z, w)

l
j2
2 (z0, w0)

: j1 + j2 ≤ N + 1

}

≤ max

{
‖F(k,m)(z, w)‖

k!m!lk
1(z, w)lm

2 (z, w)
: k + m ≤ N

}
·
(
λ2,1

( pR

q

))N+1 ·
(
λ2,2

( pR

q

))N+1

≤ (λ2,1(R), λ2,2(R))N+1 · max

{
‖F(k,m)(z, w)‖

k!m!lk
1(z, w)lm

2 (z, w)
: k + m ≤ N

}

= (λ2,1(R)λ2,2(R))N+1 · Sp((z0, w0), R)

≤ (λ2,1(R)λ2,2(R))N+1 · S∗
p((z0, w0), R) · (λ1,1(R), λ1,2(R))−N .

Then from (11), (9) and (10) we obtain

0 ≤ S∗
p((z0, w0), R)− S∗

p−1((z0, w0), R)

≤
2

∏
j=1

(λ2,j(R))N+1λ1,j(R))−NS∗
p((z0, w0), R)

×
(
(k(p) + 1)(l1(z0, w0))|z(p)

j − z̃
(p)
j |+ (m(p) + 1)(l2(z0, w0))|w(p)

j − w̃
(p)
j |
)

=
2

∏
j=1

(λ2,j(R))N+1(λ1,j(R))−N
S∗

p((z0, w0), R)

q(R)
((kp + 1)r1 + (mp + 1)r2)

≤
2

∏
j=1

(λ2,j(R))N+1λ1,j(R))−N
S∗

p((z0, w0), R)

q(R)
(N + 1)(r1 + r2) ≤

1

2
S∗

p((z0, w0), R).
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It follows that S∗
p((z0, w0), R) ≤ 2S∗

p−1((z0, w0), R) and in view of (6) and (7) one has

Sp((z0, w0), R) ≤ 2
2

∏
j=1

(λ1,j(R))−NS∗
p−1((z0, w0), R)

≤ 2
2

∏
j=1

(λ1,j(R))−N(λ2,j(R))N Sp−1((z0, w0), R).

Then

max

{
‖F(k,m)(z, w)‖

k!m!lk
1(z, w)lm

2 (z, w)
: k+m≤N, (z, w) ∈ D

2

[
(z0, w0),

qR

qL(z0, w0)

]}

= Sq((z0, w0), R) ≤ 2
2

∏
j=1

(λ1,j(R))−N(λ2,j(R))N Sq−1((z0, w0), R)

≤ . . . ≤ 2
2

∏
j=1

((λ1,j(R))−N(λ2,j(R))N)qS0((z0, w0), R)

= 2
2

∏
j=1

((λ1,j(R))−N(λ2,j(R))N)q max

{
‖F(k,m)(z0, w0)‖

k!m!lk
1(z0, w0)lm

2 (z0, w0)
: k+m≤N

}
.

(12)

This inequality implies (5) with p0 = 2 ∏
2
j=1((λ1,j(R))−N(λ2,j(R))N)q and some k0, m0, such

that k0 + m0 ≤ N. The necessity of condition (5) is proved.

Now we prove the sufficiency. Assume that for every R ∈ R2
+, |R| ≤ β, there exist n0 ∈ Z+,

p0 > 1, such that for every (z0, w0) ∈ B
2
+ and for some (k0, m0) ∈ Z

2
+, (k0 + m0 ≤ n0),

inequality (5) holds. By Cauchy’s integral formula we have (∀(z0, w0) ∈ B
2), (∀(k, m) ∈ Z

2
+),

(∀(s, y) ∈ Z2
+):

F(k+s,m+y)(z0, w0)

s!y!
=

1

(2πi)2

∫

T2
(
(z0,w0),

R
L(z0,w0)

)
F(k,m)(z, w)

(z − z0)s+1(w − w0)y+1
dzdw.

Hence, in view of (5), we obtain that

‖F(k+s,m+y)(z0, w0)‖
s!y!

≤ 1

(2π)2

∫

T2
(
(z0,w0),

R
L(z0,w0)

)
‖F(k,m)(z, w)‖

|z − z0|s+1|w − w0|y+1
|dz‖dw|

≤
∫

T2((z0,w0),
R

L(z0,w0)
)
‖F(k,m)(z, w)‖ ls+1

1 (z0, w0)l
y+1
2 (z0, w0)

(2π)2rs+1
1 r

y+1
2

|dz‖dw|

≤
∫

T2((z0,w0),
R

L(z0,w0)
)
‖F(k,m)(z0, w0)‖

k!m!p0 λk
2,1(R)λm

2,2(R)

(2π)2k0!m0!rs+1
1 r

y+1
2

× ls+k+1
1 (z0, w0)l

y+m+1
2 (z0, w0)

lk0
1 (z0, w0)l

m0
2 (z0, w0)

|dz‖dw|

= ‖F(k,m)(z0, w0)‖
k!m!p0λk

2,1(R)λm
2,2(R)ls+k

1 (z0, w0)l
y+m
2 (z0, w0)

k0!m0!rs
1r

y
2 lk0

1 (z0, w0)l
m0
2 (z0, w0)

= ‖F(k,m)(z0, w0)‖
k!m!p0 ∏

2
j=1 λn0

2,j(R)ls+k
1 (z0, w0)l

y+m
2 (z0, w0)

k0!m0!rs
1r

y
2 lk0

1 (z0, w0)l
m0
2 (z0, w0)

.
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It follows that

‖F(k+s,m+y)(z0, w0)‖
(k + s)!(m + y)!lk+s

1 (z0, w0)l
m+y
2 (z0, w0)

≤
∏

2
j=1 λn0

2,j(R)k!m!p0‖F(k0,m0)(z0, w0)‖s!y!

rs
1r

y
2(k + s)!(m + y)!k0!m0lk0

1 (z0, w0)l
m0
2 (z0, w0)

.

(13)

It is obvious that k!s!
(k+s)!

= s!
(k+1)·...·(k+s)

≤ 1,
m!y!

(m+y)!
= y!

(m+1)·...·(m+y)
≤ 1. We choose rj ∈

(1, β/
√

2], j ∈ {1, 2}. Then |R| =
√

∑
2
j=1 r2

j ≤ β. Thus,
p0λk

2,1(R)λm
2,2(R)

rs
1r

y
2

→ 0 as s + y → ∞,

k + m ≤ n0.

Therefore, there exists s0 such that for every (s, y) ∈ Z
2
+ with s + y ≥ s0 the inequality

holds
p0k!m!s!y!λk

2,1(R)λm
2,2(R)

(k + s)!(m + y)!rs
1r

y
2

=
p0k!m!s!y! ∏

2
j=1 λn0

2,j(R)

(k + s)!(m + y)!rs
1r

y
2

≤ 1.

Then, in view of (13), one has

‖F(k+s,m+y)(z0, w0)‖
(k + s)!(m + y)!lk+s

1 (z0, w0)l
m+y
2 (z0, w0)

≤ ‖F(k0,m0)(z0, w0)‖
k0!m0!lk0

1 (z0, w0)l
m0
2 (z0, w0)

.

It implies that for all (j1, j2) ∈ Z2
+

‖F(j1,j2)(z0, w0)‖
j1!j2!l

j1
1 (z0, w0)l

j2
2 (z0, w0)

≤ max

{
‖F(k,m)(z0, w0)‖

k!m!lk
1(z0, w0)l

m
2 (z0, w0)

: k + m ≤ s0 + n0

}
,

where s0 and n0 do not depend on (z0, w0). Then the analytic vector-function F in B
2 has

bounded L-index in joint variables N(F, L, B
2) ≤ s0 + n0.

Note that instead of sup-norm ‖F(z, w)‖ = max1≤j≤2{| fj(z, w)|} one can consider the Eu-

clidean norm ‖F(z, w)‖E =
√
| f1(z, w)|2 + | f2(z, w)|2.

Theorem 1 implies the following corollary.

Corollary 1. Let L ∈ Q(B2). An analytic vector-function F : B2 → C2 has a bounded L-index

in joint variables in sup-norm if and only if it has a bounded L-index in joint variables in the

Euclidean norm.

Proof. Obviously, that for all (k, s) ∈ Z2
+ and for all (z, w) ∈ B2 we obtain

‖F(k,s)(z, w)‖ ≤ ‖F(k,s)(z, w)‖E ≤
√

2‖F(k,s)(z, w)‖.

Using the given double inequality and repeating arguments from Theorem 1 for the case of

the Euclidean norm we can verify the equivalence of these norms for vector-functions having

bounded L-index in joint variables.

Further, we will use only the sup-norm.

The following proposition was obtained for entire curves in [14]. Here we deduce it for

vector-functions which are analytic in the unit ball.
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Proposition 1. Let L be a positive continuous function in B2 satisfying condition (1) and each

component fj of an analytic vector-function F : B2 → C2 is of bounded L-index in joint vari-

ables. Then F is of bounded L-index in joint variables by the sup-norm with N(L; F) ≤
max{N(ls, fs) : 1 ≤ s ≤ 2} and F is of bounded L∗-index by the Euclidean norm with

L∗(z, w) ≥
√

2L(z, w) and

N(L∗, F) ≤ max{N(ls, fs) : 1 ≤ s ≤ 2}.

Proof. For all i + j ≥ N = max{N(L, fs) : 1 ≤ s ≤ 2} we have

‖F(i,j)(z, w)‖
i!j!li

1(z, w)l
j
2(z, w)

=
max{| f (i,j)1 (z, w)|, | f (i,j)2 (z, w)|}

i!j!li
1(z, w)l

j
2(z, w)

≤ max

{
| f (k,m)

s (z, w)|
k!m!lk

1(z, w)lm
2 (z, w)

: 0 ≤ k + m ≤ N, 1 ≤ s ≤ 2

}

≤ max

{
‖F(k,m)(z, w)‖

k!m!lk
1(z, w)lm

2 (z, w)
: 0 ≤ k + m ≤ N

}
,

that is, N(L; F) ≤ N = max{N(L; fs) : 1 ≤ s ≤ 2}. Also

‖F(i,j)(z, w)‖E

i!j!li
1(z, w)l

j
2(z, w)

=

√
∑

2
s=1 | f

(i,j)
s (z, w)|2

i!j!li
1(z, w)l

j
2(z, w)

≤

√√√√ 2

∑
s=1

(
max

{
| f (k,m)

s (z, w)|
k!m!lk

1(z, w)lm
2 (z, w)

: 0 ≤ k + m ≤ N

})2

≤
√

2 max

{
| f (k,m)

s (z, w)|
k!m!lk

1(z, w)lm
2 (z, w)

: 0 ≤ k + m ≤ N, 0 ≤ s ≤ 2

}

≤
√

2 max

{
‖F(k,m)(z, w)‖E

k!m!lk
1(z, w)lm

2 (z, w)
: 0 ≤ k + m ≤ N

}

and, thus, for i + j ≥ N + 1

‖F(i,j)(z, w)‖E

i!j!li
∗1(z, w)l

j
∗2(z, w)

≤ 1
√

2
N+1

‖F(i,j)(z, w)‖E

i!j!li
1(z, w)l

j
2(z, w)

≤ 1
√

2
N

max

{
‖F(k,m)(z, w)‖E

k!m!lk
1(z, w)lm

2 (z, w)
: 0 ≤ k + m ≤ N

}

≤ max

{
‖F(k,m)(z, w)‖

k!m!lk
∗1(z, w)lm

∗2(z, w)
: 0 ≤ k + m ≤ N

}
,

that is, N(L∗, F) ≤ max{N(L, fj) : 1 ≤ j ≤ 2}. Proposition is proved.

Theorem 2. Let L ∈ Q(B2). In order that an analytic vector-function F : B2 → C2 be of

bounded L-index in joint variables it is necessary that for all R ∈ R
2, |R| ≤ β there exist

n0 ∈ Z+, p ≥ 1 such that for all (z0, w0) ∈ B
2 there exists (k0, m0) ∈ Z

2
+, k0 + m0 ≤ n0,

satisfying inequality

max{‖F(k0,m0)(z, w)‖ : (z, w) ∈ D
2[(z0, w0), R/L(z0, w0)]}≤ p‖F(k0 ,m0)(z0, w0)‖ (14)
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and it is sufficiently that for all R ∈ R2, |R| ≤ β there exist n0 ∈ Z+, p ≥ 1 ∀(z0, w0) ∈ B2

∃k0
1 = (k0

1, 0), ∃m0
2 = (0, m0

2): k0
1 ≤ n0, m0

2 ≤ n0, and

max{‖F(k0
1,0)(z0, w0)‖ : (z, w) ∈ D

2[(z0, w0), R/L(z0, w0)]} ≤ p‖F(k0
1 ,0)(z0, w0)‖ (15)

max{‖F(0,m0
2)(z, w)‖ : (z, w) ∈ D

2[(z0, w0), R/L(z0, w0)]} ≤ p‖F(0,m0
2)(z0, w0)‖. (16)

Proof. Then by Theorem 1 inequality (5) is obeyed for some tuple (k0, m0). We obtain

p0

k0!m0!

‖F(k0,m0)(z0, w0)‖
lk0
1 (z0, w0)l

m0
2 (z0, w0)

≥ max

{ ‖F(k0,m0)(z, w)‖
k0!m0!lk0

1 (z, w)lm0
2 (z, w)

: (z, w) ∈ D
2 [(z0, w0), R/L(z0, w0)]

}

= max

{‖F(k0,m0)(z, w)‖
k0!m0!

lk0
1 (z0, w0)l

m0
2 (z0, w0)

lk0
1 (z0, w0)l

m0
2 (z0, w0)l

k0
1 (z, w)lm0

2 (z, w)
:

(z, w) ∈ D
2[(z0, w0), R/L(z0, w0)]

}

= max

{‖F(k0,m0)(z, w)‖
k0!m0!

∏
2
j=1(λ2,j(R))−n0

lk0
1 (z0, w0)l

m0
2 (z0, w0)

: (z, w) ∈ D
2 [(z0, w0), R/L(z0, w0)]

}
.

From this inequality it follows

p0(λ2,1(R))n0(λ2,2(R))n0

k0!m0!
· ‖F(k0,m0)(z0, w0)‖

lk0
1 (z0, w0)l

m0
2 (z0, w0)

≥ max

{
‖F(k0,m0)(z, w)‖

k0!m0!lk0
1 (z0, w0)l

m0
2 (z0, w0)

: (z, w) ∈ D
2 [(z0, w0), R/L(z0, w0)]

}
.

From inequality (14) it follows (5) with p = p0(λ2,1(R))n0(λ2,2(R))n0 . The necessity of condi-

tion (14) is proved.

Now we prove the sufficiency of (15) and (16). Suppose that for each R ∈ R2, |R| ≤ β there

exist n0 ∈ Z+, p ≥ 1 such that for every (z0, w0) ∈ B2 and some k0
1 ∈ Z+, m0

2 ∈ Z+ with

k0
1 ≤ n0, m0

2 ≤ n0 inequalities (15) and (16) hold.

Let us write the Cauchy formula in the form ∀(z0, w0) ∈ B
2 ∀(s, y) ∈ Z

2
+

F(k0
1+s,y)(z0, w0)

s!y!
=

1

(2πi)2

∫

T2((z0,w0),R/L(z0,w0))

F(k0
1,0)(z, w)dzdw

(z − z0)s+1(w − w0)y+1
,

F(s,m0
2+y)(z0, w0)

s!y!
=

1

(2πi)2

∫

T2((z0,w0),R/L(z0,w0))

F(0,m0
2)(z, w)dzdw

(z − z0)s+1(w − w0)y+1
.

We obtain that

‖F(k0
1+s,y)(z0, w0)‖

s!y!
≤ 1

(2π)2

∫

T2((z0,w0),R/L(z0,w0))

‖F(k0
1,0)(z, w)‖

|z−z0|s+1|w−w0|y+1
|dz||dw|

≤ 1

(2π)2
max

{
‖F(k0

1,0)(z, w)‖ : (z, w) ∈ D
2 [(z0, w0), R/L(z0, w0)]

}

× ls+1
1 (z0, w0)l

y+1
2 (z0, w0)

rs+1
1 r

y+1
2

∫

T2((z0,w0),R/L(z0,w0))
|dz||dw|

= max
{
‖F(k0

1,0)(z, w)‖ : (z, w) ∈ D
2[(z0, w0), R/L(z0, w0)]

} ls
1(z0, w0)l

y
2(z0, w0)

rs
1r

y
2

,
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‖F(s,m0
2+y)(z0, w0)‖

s!y!
≤ 1

(2π)2

∫

T2((z0,w0),R/L(z0,w0))

‖F(0,m0
2)(z, w)‖

|z − z0|s+1|w−w0|y+1
|dz||dw|

≤ 1

(2π)2
max

{
‖F(0,m0

2)(z, w)‖ : (z, w) ∈ D
2 [(z0, w0), R/L(z0, w0)]

}

× ls+1
1 (z0, w0)l

y+1
2 (z0, w0)

rs+1
1 r

y+1
2

∫

T2((z0,w0),R/L(z0,w0))
|dz||dw|

= max
{
‖F(0,m2

2)(z, w)‖ : (z, w)∈D
2 [(z0, w0), R/L(z0, w0)]

} ls
1(z0, w0)l

y
2(z0, w0)

rs
1r

y
2

.

Put R =
(

β√
2
,

β√
2

)
. In view of (15) and (16) we have

‖F(k0
1+s,y)(z0, w0)‖

s!y!

≤ ls
1(z0, w0)l

y
2(z0, w0)

(β/
√

2)
s+y max

{
‖F(k0

1,0)(z, w)‖ : (z, w) ∈ D
2 [(z0, w0), R/L(z0, w0)]

}

≤ pls
1(z0, w0)l

y
2(z0, w0)

(β/
√

2)
s+y ‖F(k0

1,0)(z0, w0)‖,

(17)

‖F(s,m0
2+y)(z0, w0)‖

s!y!

≤ ls
1(z0, w0)l

y
2 (z0, w0)

(β/
√

2)
s+y max

{
‖F(0,m0

2)(z, w)‖ : (z, w) ∈ D
2 [(z0, w0), R/L(z0, w0)]

}

≤ pls
1(z0, w0)l

y
2 (z0, w0)

(β/
√

2)
s+y ‖F(0,m0

2)(z0, w0)‖.

(18)

We choose s, y ∈ Z
2
+ such that s + y ≥ s0, where

p

(β/
√

2)s0
≤ 1.

Then from (17) and (18) we obtain as k0
1 ≤ n0, m0

2 ≤ n0

‖F(k0
1+s,y)(z0, w0)‖

l
k0

1+s

1 (z0, w0)l
y
2 (z0, w0)(k0

1 + s)!y!
≤ p

(β/
√

2)s+y
· s!y!k0

1 !

(s + k0
1)!y!

· ‖F(k0
1,0)(z0, w0)‖

l
k0

1
1 (z0, w0)k0

1!

≤ ‖F(k0
1,0)(z0, w0)‖

l
k0

1
1 (z0, w0)k

0
1!

,

‖F(s,m0
2+y)(z0, w0)‖

ls
1(z0, w0)l

m0
2+y

2 (z0, w0)s!(m0
2 + y)!

≤ p

(β/
√

2)s+y
· s!y!m0

2!

s!(m0
2 + y)!

· ‖F(0,m0
2)(z0, w0)‖

l
m0

2
2 (z0, w0)m

0
2!

≤ ‖F(0,m0
2)(z0, w0)‖

l
m0

2
2 (z0, w0)m0

2!
.

Therefore, N(F, L, B2) ≤ n0 + s0.

Lemma 1. Let L1, L2 ∈ Q(B2) and for every point (z, w) ∈ B2 one has L1(z, w) ≤ L2(z, w). If

an analytic vector-function F in B
2 has a bounded L1-index in joint variables, then the vector-

function F has a bounded L2-index in joint variables and N(F, L2, B
2) ≤ 2N(F, L1, B

2).
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Proof. Let N(F, L1, B2) = n0. In view of (2) we obtain that

‖F(i,j)(z, w)‖
i!j!L

i,j
2 (z, w)

=
‖F(i,j)(z, w)‖

i!j!li
2,1(z, w)l

j
2,2(z, w)

=
li
1,1(z, w)l

j
1,2(z, w)

li
2,1(z, w)l

j
2,2(z, w)

· ‖F(i,j)(z, w)‖
i!j!li

1,1(z, w)l
j
1,2(z, w)

≤
li
1,1(z, w)l

j
1,2(z, w)

li
2,1(z, w)l

j
2,2(z, w)

max

{
‖F(k,m)(z, w)‖

k!m!lk
1,1(z, w)lm

1,2(z, w)
: (k, m)∈Z

2
+, k+m ≤ n0

}

≤
li
1,1(z, w)l

j
1,2(z, w)

li
2,1(z, w)l

j
2,2(z, w)

× max

{
lk
2,1(z, w)lm

2,2(z, w)

lk
1,1(z, w)lm

1,2(z, w)

‖F(k,m)(z, w)‖
k!m!lk

2,1(z, w)lm
2,2(z, w)

: (k, m) ∈ Z
2
+, k + m ≤ n0

}

≤ max
k+m≤n0

{(
l1,1(z, w)

l2,1(z, w)

)i−k

·
(

l1,2(z, w)

l2,2(z, w)

)j−m
}

× max

{
‖F(k,m)(z, w)‖

k!m!lk
2,1(z, w)lm

2,2(z, w)
: (k, m) ∈ Z

2
+, k + m ≤ n0

}
.

Since L1(z, w) ≤ L2(z, w), for all i + j ≥ 2n0 we have

‖F(i,j)(z, w)‖
i!j!li

2,1(z, w)l
j
2,2(z, w)

≤ max

{
‖F(k,m)(z, w)‖

k!m!lk
2,1(z, w)lm

2,2(z, w)
: (k, m) ∈ Z

2
+, k + m ≤ n0

}
.

Therefore, the vector-function F has a bounded L2-index in joint variables and

N(F, L2, B
2) ≤ 2N(F, L1, B

2).

The notation L ≍ L̃ means that there exist θ1 ∈ R+, θ2 ∈ R+ such that for all z ∈ B2 and

for each j ∈ {1, 2} we have

θ1 l̃j(z) ≤ lj(z) ≤ θ2 l̃j(z).

Lemma 2. Let L ∈ Q(B2), L ≍ L̃, β(Θ1) > 1. An analytic vector-function F in B
2 has a

bounded L̃-index in joint variables if and only if it has a bounded L-index in joint variables.

Proof. It is easy to prove that with L ∈ Q(B2) and L ≍ L̃ corresponding function L̃ ∈ Q(B2).

Let N(F, L̃, B
2) = ñ0 < +∞. Then by Theorem 1 for each R̃ = (r̃1, r̃2) ∈ R

2
+, |R| ≤ β there

exists p̃ ≥ 1 such that for all (z0, w0) ∈ B
2 and some (k0, m0) with k0 + m0 ≤ ñ0 inequality (5)
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is true with L̃ and R̃ instead of L and R, respectively. Hence, we have

p̃

k0!m0!

‖F(k0,m0)(z0, w0)‖
lk0
1 (z0, w0)l

m0
2 (z0, w0)

=
p̃

k0!m0!

θk0+m0
2

θk0+m0
2

‖F(k0,m0)(z0, w0)‖
lk0
1 (z0, w0)l

m0
2 (z0, w0)

≥ p̃

k0!m0!

‖F(k0,m0)(z0, w0)‖
θk0+m0

2 l̃1
k0
(z0, w0)l̃2

m0
(z0, w0)

≥ 1

θk0+m0
2

max

{
‖F(k,m)(z, w)‖

k!m!l̃1
k0
(z, w)l̃2

m0
(z, w)

: k + m ≤ ñ0, (z, w) ∈ D
2 [(z0, w0), R/L(z, w)]

}

≥ 1

θk0+m0
2

max

{
θk+m

1

‖F(k,m)(z, w)‖
k!m!lk

1(z, w)l2
m(z, w)

: k + m ≤ ñ0, (z, w) ∈ D
2
[
(z0, w0), θ1R̃/L(z, w)

]}

≥ min{1, θn0
1 }

max{1, θn0
2 } max

{
‖F(k,m)(z, w)‖

k!m!lk
1(z,w)l2

m(z,w)
: k+m≤ ñ0, (z, w)∈D

2
[
(z0, w0), θ1R̃/L̃(z, w)

]}
.

By Theorem 1 we conclude that the vector-function F has a bounded L-index in joint variables.

Theorem 3. Let L ∈ Q(B2), β > 2. An analytic vector-function F : B
2 → C

2 has a bounded

L-index in joint variables if and only if there exist R ∈ R2
+, |R| ≤ β, n0 ∈ Z2

+ and p0 > 0 such

that for all (z0, w0) ∈ B2 and for some (k0, m0) ∈ Z2
+, k0 + m0 ≤ n0 inequality (5) is valid.

Proof. The necessity of this theorem follows from the necessity of Theorem 1.

Now we prove the sufficiency. From the proof of Theorem 1 with R =
(

β√
2
,

β√
2

)
we have

that N(F, L, B
2) < +∞.

Let L∗(z, w) = R0L(z,w)
R , that is

(
l∗1 (z, w) =

r0
1l1(z,w)

r1
, l∗2 (z, w) =

r0
2l2(z,w)

r2

)
, where R0 =

= (r0
1, r0

2) =
(

β√
2
,

β√
2

)
. In the general case, with validity of (5) for F, L and R = (r1, r2)

such that |R| ≤ β, R 6= R0, we get

max

{
‖F(k,m)(z, w)‖

k!m!(l∗1 (z, w))k(l∗2 (z, w))m
: k + m ≤ n0, (z, w) ∈ D

2 [(z0, w0), R0/L∗(z, w)]

}

=max

{
‖F(k,m)(z, w)‖

k!m!(r0
1 l1(z, w)/r1)k(r0

2l2(z, w)/r2)m
: k+m≤n0, (z, w)∈D

2

[
(z0, w0),

R0

R0L(z, w)/R

]}

≤ max

{
2

k+m
2 ‖F(k,m)(z, w)‖

k!m!lk
1(z, w)lm

2 (z, w)
: k + m ≤ n0, (z, w) ∈ D

2 [(z0, w0), R/L(z0, w0)]

}

≤ p0

k0!m0!

2n0/2‖F(k0,m0)(z0, w0)‖
lk0
1 (z0, w0)l

m0
2 (z0, w0)

=
2n0/2(β/

√
2)k0+m0

rk0
1 rm0

2 k0!m0!

‖F(k0,m0)(z0, w0)‖
(r0

1l1(z, w)/r1)k0(r0
2l2(z, w)/r2)m0

≤ 2
n0
2 p0 max

{
(β/

√
2)k0+m0

rk0
1 rm0

2

: k0 + m0 ≤ n0

}
‖F(k0,m0)(z0, w0)‖

k0!m0!(l∗1 (z, w))k0(l∗2 (z, w))m0
,

i.e. (5) is true for F, L∗ and R0 = (β/
√

2, β/
√

2). Hence, by Theorem 1 the vector-function F

is of bounded L∗-index in joint variables. By Lemma 2 the vector-function F has a bounded

L-index in joint variables.
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Бакса В.П. Аналiтичнi в одичнiй кулi вектор-функцiї обмеженого L-iндексу за сукупнiстю змiнних

// Карпатськi матем. публ. — 2019. — Т.11, №2. — C. 213–227.

У цiй статтi ми розглядаємо клас вектор-функцiй, аналiтичних в одиничнiй кулi. Для цього

класу функцiй введено поняття обмеженостi L-iндексу за сукупнiстю змiнних, де L = (l1, l2) :

B2 → R2
+ — додатна неперервна вектор-функцiя, B2 = {z ∈ C2 : |z| =

√
|z1|2 + |z2|2 ≤ 1}. На-

ми отримано необхiднi й достатнi умови обмеженостi L-iндексу за сукупнiстю змiнних. Вони

описують локальне поводження максимуму модуля кожного компонента вектор-функцiї чи

її частинних похiдних.

Ключовi слова i фрази: обмежений iндекс, обмежений L-iндекс за сукупнiстю змiнних, аналi-

тична функцiя, одинична куля, локальне поводження, максимум модуля, sup-норма, вектор-

нозначна функцiя.
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THE NONLOCAL BOUNDARY VALUE PROBLEM WITH PERTURBATIONS OF

MIXED BOUNDARY CONDITIONS FOR AN ELLIPTIC EQUATION WITH

CONSTANT COEFFICIENTS. I

In this article we investigate a problem with nonlocal boundary conditions which are multipoint

perturbations of mixed boundary conditions in the unit square G using the Fourier method.

The properties of a generalized transformation operator R : L2(G) → L2(G) that reflects nor-

malized eigenfunctions of the operator L0 of the problem with mixed boundary conditions in the

eigenfunctions of the operator L for nonlocal problem with perturbations, are studied. We construct

a system V(L) of eigenfunctions of operator L. Also, we define conditions under which the system

V(L) is total and minimal in the space L2(G), and conditions under which it is a Riesz basis in

the space L2(G). In the case if V(L) is a Riesz basis in L2(G), we obtain sufficient conditions under

which nonlocal problem has a unique solution in form of Fourier series by system V(L).

Key words and phrases: differential equation with partial derivatives, eigenfunctions, Riesz basis.
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1 INTRODUCTION

The fundamentals of the theory of linear differential equations in partial derivatives with

constant coefficients were established by L. Ehrenpreis, L. Hermander, V. Malgrange, I. Petro-

vsky.

Boundary value problems in bounded domains for certain classes of differential equations

with constant coefficients have been studied in [1–13]. This paper is a continuation of the

investigations that were begun in [3–6].

For our investigation we will use the following notations. Let G := {x := (x1, x2) ∈ R
2 :

0 < x1, x2 < 1}, D1, D2 are the operators of differentiation by the variables x1, x2 respec-

tively; H0 := L2(0, 1), H1 := L2(G); H2 := W2n
2 (G) be a Sobolev space with a scalar product

and norm respectively

(u, v; H2) := (u, v; H1) + (D2n
1 u, D2n

1 v; H1) + (D2n
2 u, D2n

2 v; H1), ‖u; H2‖ :=
√

(u, u; H2);

W := {v ∈ C[0, 1] : v(s) ∈ C[0, 1], s = 1, . . . , 2n − 1, v(2n) ∈ H0};

H0,s := {u(t) ∈ H0 : u(t) ≡ (−1)su(1 − t)}, s ∈ {0, 1};

УДК 517.927.5
2010 Mathematics Subject Classification: 34G10, 34K10, 34K30, 34L10.
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Wr := W ∩ H0,r, r = 0, 1; and [H0] be a set of linear continuous operators on the space H0. Let

us consider the boundary value problem

L(−D2
1,−D2

2)u :=
n

∑
j=0

ajD
2j
1 D

2n−2j
2 u = f (x), x ∈ G, (1)

ℓs,1u := D2s−2
1 u|x1=0 + D2s−2

1 u|x1=1 + ℓ
0
s,1u = 0, (2)

ℓn+s,1u := D2s−2
1 u|x1=0 − D2s−2

1 u|x1=1 = 0, (3)

ℓs,2u := D2s−2
2 u|x1=0 + D2s−2

2 u|x1=1 = 0, (4)

ℓn+s,2u := D2s−1
2 u|x2=0 + D2s−1

2 u|x2=1 = 0, s = 1, . . . , n, (5)

where

ℓ
0
s,1u :=

ks,1

∑
q=0

n1

∑
r=0

bs,q,rD
q
1u|x1=x1,r , s = 1, . . . , n, (6)

0 = x1,1 < x1,2 < · · · < x1,n1
≤ 1, aj, bs,q,r ∈ R,

q = 0, 1, . . . , ks,1, ks,1 < 2n, r = 0, 1, . . . , n1, s = 1, . . . , n, j = 0, 1, . . . , n.

Let L : H1 → H1 be the operator of the problem (1)–(6) and

Lu := L(−D2
1,−D2

2)u, u ∈ D(L),

D(L) := {u ∈ H2 : ℓs,ju = 0, s = 1, . . . , 2n, j = 1, 2}.

Definition. The function y ∈ D(L), that satisfies equality ‖L(−D2
1 ,−D2

2)y − f ; H1‖ = 0, is

called a solution of problem (1)–(6).

Let us consider the following assumptions and theorems, that are necessary for further

investigation.

1. Assumption P1: bs,q,r = −(−1)qbs,q,n1−r, x1,r = 1 − x1,n1−r, r = 0, 1, . . . , n1, s = 1, . . . , n.

2. Assumption P2: ks,1 ≤ 2s − 2, s = 1, . . . , n.

3. Assumption P3: for any real numbers µ1, µ2 the positive number C1(L) exists, that the

inequality C1(L)|µ|2n ≤ |L(µ1, µ2)|, µ := (µ1, µ2), |µ|2 := |µ1|2 + |µ2|2, holds.

Theorem 1. Let Assumption P1 holds. Then, for an arbitrary aq ∈ R, q = 0, 1, . . . , n, bs,q,r ∈ R,

the operator L has a set of eigenvalues

σ := {λk,m := L(µ1,k, µ2,m), µ1,k = π2k2, µ2,m = π2(2m − 1)2, k ∈ N, m ∈ N}, (7)

and the system V (L) of eigenfunctions, which is complete and minimal in the space H1.

Theorem 2. Let Assumptions P1–P3 hold. Then, the operator L has the system V (L) of eigen-

functions, which is the Riesz basis of the space H1.

Theorem 3. Let Assumptions P1–P3 hold. Then, for arbitrary function f ∈ H1 the unique

solution of problem (1)–(6) exists.
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Let A0 be the operator of boundary problem in the space H0 :

−z(2)(t) = g(t), t ∈ (0, 1), z(0) = z(1) = 0;

A0z := −z(2)(t), z(t) ∈ D(A0), D(A0) := {z ∈ W2
2 (0, 1) : z(0) = z(1) = 0};

T1 := {τ1,s,k(t) ∈ H0 : τ1,s,k(t) :=
√

2 sin ρs,kt, ρs,k = π(2k + s − 1), k ∈ N, s = 0, 1};

T1,s := {τ1,s,k(t) ∈ H0,s, k ∈ N}, s = 0, 1;

σ(A0) := {µ1,k = π2k2, k ∈ N}.

Lemma 1. The operator A0 has the point spectrum σ(A0) and system of eigenfunctions T1.

Proof. A direct substitution proves that the elements of system T1 are the eigenfunctions of

operator A0, which correspond to the eigenvalues σ (A0) .

Taking into account that the subsystem of eigenfunctions T1,s of the operator A0 is an or-

thonormal basis of spaces H0,s, s = 0, 1, we obtain the statement of the lemma.

Let Θ = {θk}∞
k=1 be any sequence of real numbers. We consider the operator AΘ : H0 →

H0, which has a set of eigenvalues σ (A0) , and the system of eigenfunctions

V(AΘ) := {vs,k(t, AΘ) ∈ H0 : v0,k(t, AΘ) := τ1,0,k(t),

v1,k(t, AΘ) := τ1,1,k(t) + θk

√
2 cos 2kπt, k ∈ N}.

Lemma 2. For an arbitrary sequence Θ the system of functions V(AΘ) is complete and mini-

mal in the space H0. The system of functions V(AΘ) is the Riesz basis of this space if and only

if the sequence Θ is bounded.

Proof. Suppose that the system V(AΘ) is not complete in the space H0.

Let us suppose that there exist functions f = f0 + f1 ∈ H0, and fs ∈ H0,s, s = 0, 1, for

which the conditions of orthogonality hold:

( f , vs,k(t, AΘ); H0) = 0, s = 0, 1, k ∈ N .

Taking into account, that the system of functions τ1,0,q(t) = v0,q(t, AΘ), q ∈ N, is an orthonor-

mal basis of the space H0,0 with respect to the condition of orthogonality, we obtain f0 = 0.

Thus f = f1 ∈ H0,1.

According to the condition of orthogonality we have the relation

( f , v1,k(t, AΘ); H0) = ( f , τ1,1,k(t); H0) = 0, k ∈ N.

Taking into account the totality of the system of functions V1(L0) = T1,1 in the space H0,1,

we have f = f1 ≡ 0. Thus the system V(AΘ) is total (complete) in the space H0. Therefore, the

operator AΘ is defined on a dense set of the space H0.

In the space H0 let us define the operators

R(AΘ) := E + S(AΘ), S(AΘ)τ1,0,q(t) := 0, S(AΘ)τ1,1,q(t) := θq

√
2 cos 2qπt ∈ H0,0, q ∈ N.

According to equality S2(AΘ) = 0 we get the relation R−1(AΘ) = E − S(AΘ). Therefore, the

system of functions V(AΘ) is minimal in the space H0. Let us prove the second part of the

lemma.
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Necessity. We choose any bounded sequence Θ and show that S(AΘ) : H0 → H0 is a

bounded operator.

Let us expand an arbitrary function h ∈ H0 into Fourier series

h =
∞

∑
k=1

1

∑
j=0

hj,kτ1,j,k(t).

Consider S(AΘ)h =
∞

∑
k=1

θmh1,k

√
2 cos 2kπt.

Taking into account that the system of functions {1, cos 2kπt, k ∈ N} is an orthonormal

basis of H0,0 and using Cauchy’s inequality, we obtain

‖S(AΘ)h; H0‖2 ≤ C1‖h; H0‖2, C1 = max |θk|2.

Thus S(AΘ) ∈ [H0].

Taking into account the relation R−1(AΘ) = E − S(AΘ), we obtain an estimate

‖R−1(AΘ); [H0]‖2 ≤ C2, C2 = 2 + 2C1.

Thus the system V(AΘ) is the Riesz basis by definition.

Sufficiency. Let V(AΘ) be the Riesz basis in the space H0. Therefore, this system is almost

normalized. Thus, for any positive numbers C3 ≤ C4 the next inequality holds:

C3 ≤ ‖vs,m(t, AΘ); H0‖ ≤ C4 < ∞, m ∈ N.

Taking into account the equalities

‖v0,k(t, AΘ); H0‖ = 1, ‖v1,m(t, AΘ); H0‖ = 1 + |θm|, k = 0, 1, . . . , m ∈ N,

we obtain the proof of sufficiency.

Let B0 be the operator of spectral problem

−z(2)(t) = µz(t), µ ∈ C,

ℓ1z := z(0) + z(1) = 0,

ℓ2z := z(1) (0) + z(1)(1) = 0,

B0z := −z(2)(t), z(t) ∈ D(B0), D(B0) := {z ∈ W2
2 (0, 1) : ℓsz = 0, s = 1, 2},

T2 := {τ2,r,m(t) ∈ H0 : τ2,0,m(t) :=
√

2 sin π(2m − 1)t, τ2,1,m(t) :=
√

2 cos π(2m − 1)t, m ∈ N},

σ(B0) := {µ2,m = π2(2m − 1)2, m ∈ N}.

Lemma 3. The operator B0 has the point spectrum σ(B0) and system of eigenfunctions T2.

Proof. After performing a direct substitution we obtain that

τ2,r,m(t) ∈ D (B0) , −τ
(2)
2,r,m(t) = µ2,mτ2,r,m(t), r = 0, 1, m ∈ N.

Thus operator L0 has the system of eigenfunctions V(L0), which corresponds to the set of

eigenvalues σ.
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For the equation (1) we consider the boundary conditions ℓ0,s,ju = 0, s = 1, . . . , 2n, j = 1, 2,

which are the partial case of boundary conditions (2)–(6) for ℓ1
s,1u = 0, s = 1, . . . , n.

Let L0 : H1 → H1 be the operator of the obtained problem

L0u := L
(

−D2
1,−D2

2

)

u, u ∈ D(L0), D (L0) := {u ∈ H2 : ℓ0,s,ju = 0, s = 1, . . . , 2n, j = 1, 2},

and

V(L0) := {vr,s,k,m(x, L0) ∈ H1 : vr,s,k,m(x, L0) := τ1,s,k(x1)τ2,r,m(x2), r, s ∈ {0, 1}, m, k ∈ N}

be the orthonormal basis of the space H1.

Considering the ratio L0 = (−1)n
n

∑
s=0

As
0Bn−s

0 , we obtain the following statement.

Lemma 4. The operator L0 has eigenvalues (7) and the system of eigenfunctions V(L0).

2 THE NON SELF-AJOINT PROBLEM FOR A DIFFERENTIAL EQUATION OF EVEN ORDER

For any fixed p ∈ {1, . . . , n} we consider the problem

L(−D2
1,−D2

2)u :=
n

∑
s=0

asD2s
1 D2n−2s

2 u(x) = λu(x), x ∈ G, λ ∈ C, (8)

ℓ1,s,1u := D2s−2
1 u|x1=0 + D2s−2

1 u|x1=1 = 0, s 6= p, s = 1, . . . , n, (9)

ℓ1,p,1u := D
2p−2
1 u|x1=0 + D

2p−2
1 u|x1=1 + ℓ

0
p,1u = 0, (10)

ℓ1,n+s,1u := D2s−2
1 u|x1=0 − D2s−2

1 u|x1=1 = 0, s 6= p, s = 1, . . . , n, (11)

ℓ1,s,2u := D2s−2
2 u|x2=0 + D2s−2

2 u|x2=1 = 0, s = 1, . . . , n, (12)

ℓ1,n+s,2u := D2s−1
2 u|x2=0 + D2s−1

2 u|x2=1 = 0, s = 1, . . . , n. (13)

Let L1,p be the operator of the problem (8)–(13):

L1,pu := L(−D2
1,−D2

2)u, u ∈ D
(

L1,p

)

,

D
(

L1,p

)

:=
{

u ∈ H2 : ℓ1,r,ju = 0, r = 1, . . . , 2n, j = 1, 2
}

,

and V
(

L1,p

)

be the system of eigenfunctions of the operator L1,p.

For any fixed m ∈ N let’s consider the solutions of problem (8)–(13) in the form of product

u(x) := z (x1) τ2,s,m (x2) , s ∈ {0, 1}.

To determine the unknown function z(x1), we obtain the problem for eigenvalues

n

∑
q=0

aq(−1)n−sµ
n−q
2,m z(2q)(x1) = λz(x1), x1 ∈ (0, 1), λ ∈ C, (14)

l1
s,1z := z(2s−2)(0) + z(2s−2)(1) = 0, s 6= p, s = 1, . . . , n, (15)

l1
p,1z := z(2p−2)(0) + z(2p−2)(1) + l0

p,1z = 0, (16)
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l1
n+s,1z := z(2s−2)(0)− z(2s−2)(1) = 0, s = 1, . . . , n, (17)

where

l0
p,1z :=

kp,1

∑
q=0

n1

∑
r=0

bp,q,rz
(q)(x1,r), p = 1, . . . , n. (18)

Let L1,p,m be the operator of problem (14)–(18):

L1,p,mz :=
n

∑
s=0

as(−1)m−sµn−s
2,m z(2s), z ∈ D

(

L1,p,m

)

,

D
(

L1,p,m

)

:=
{

z ∈ W : l1
j,1z = 0, j = 1, . . . , 2n

}

.

Lemma 5. Let Assumption P1 holds. Therefore, for any aq ∈ R, bp,q,r ∈ R, q = 0, 1, . . . , kp,1,

r = 0, 1, . . . , n1, m, p ∈ N, the operator L1,p,m has the set of eigenvalues σm := {λk,m ∈ σ,

k ∈ N}, and the system of eigenfunctions V
(

L1,p,m

)

, which is complete and minimal in the

space H0.

Proof. The solutions ωr,m (λ) , r = 1, . . . , n, of equation
n

∑
s=0

as(−1)n−sµn−s
2,m ω2s = λ, which is

characteristic for equations (14), we choose to fulfill the conditions

Re ωn,m (λ) ≤ Re ωn−1,m (λ) ≤ · · · ≤ Re ω1,m (λ) ≤ 0.

Let us determine the functions

zq,m (x1, λ) :=
1

2
(exp ωq,m (λ) x1 + exp ωq,m (λ) (1 − x1)) ∈ H0,0, q = 1, . . . , n,

zn+q,m (x1, λ) :=
1

2
(exp ωq,m (λ) x1 − exp ωq,m (λ) (1 − x1)) ∈ H0,1, q = 1, . . . , n,

zm(x1) =
2n

∑
j=1

cjzj,m (x1, λ) , cj ∈ R. (19)

Substituting expression (19) into boundary conditions (15)–(17), we obtain an equation for de-

termining of eigenvalues for operator L1,p,m :

∆m(λ) = det(l1
q,1zj,m (x, λ))2n

j,q=1 = 0.

According to the relations zrn+q,m (x1, λ) ∈ H0,r, l1
q+sn ∈ W∗

s , s, r ∈ {0, 1}, l0
p,1 ∈ W∗

1 , we

obtain

l1
n+q,1zj,m (x1, λ) = 0, l1

q,1zn+j,m (x1, λ) = 0, j, q = 1, . . . , n,

∆m(λ) = ∆0,m(λ)∆1,m(λ),

∆m(λ) =
n

∏
q=1

(1 − e2ωq,m(λ)) ∏
1≤j<q≤n

(ωj,m (λ)− ωq,m (λ))2 = 0. (20)

Let ωr,k,m be roots of the equation (20) for λ = λk,m, which are selected so that

ω1,k,m = ıπk, Re ωn,k,m ≤ Re ωn−1,k,m ≤ · · · ≤ Re ω1,k,m ≤ 0, k ∈ N. Substituting ex-

pression (19) in boundary conditions (15)–(17), we can find the eigenfunctions of the operator

L1,p,m :

v0,k

(

x1, L1,p,m

)

=
√

2 sin ρ0,kx1, ρ0,k = π(2k − 1), k ∈ N. (21)
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Let us define the system of functions

z1,1,k,m (x1) =
√

2 cos ρ1,kx1, ρ1,k = 2kπ, k ∈ N, (22)

z1,q,k,m(x1) :=
1

2
(1 + exp ωq,k,m)

−1(exp ωq,k,mx1 + exp ωq,k,m(1 − x1)), k ∈ N, (23)

and a square matrix of order n, elements of which we define by the following rule: pth row is

defined by functions (22), (23), and elements of other rows is defined by numbers

ϑq,r,k,m := ρ2−2r
1,k l1,r,1z1,q,k,m, vq,r,k,m = ρ2−2r

1,k ω2r−2
q,k,m, q = 2, 3, . . . , n, r 6= p, r = 1, . . . , n.

ϑ1,r,k,m = 2
√

2, r 6= p, = 2, 3, . . . , n, k ∈ N.

Determinant of the given matrix is denoted by z2,p,k,m(x1), k ∈ N.

Remark 1. For any fixed m ∈ N and k → ∞, we obtain the relation

δ1,k,m := ω1,k,mρ−1
1,k = ı,

δq,k,m := ρ−1
1,k ωq,k,m = εq

(

1 + O
(

k−1
))

,

where εq are the solutions of equation (−1)n(ε)2n = 1, ε1 = ı, Im εq < 0, q = 2, 3, . . . , n.

Substituting function z2,p,k,m(x1) in boundary conditions (14)–(17), we obtain the equalities

ℓ1,s,1z2,p,k,m = 0, s 6= p, l1,p,1z2,p,k,m := cp,k,m, s = 1, . . . , 2n, k ∈ N,

where cp,k,m =
√

22ρ
2p−2
1,k Wk,m, Wk,m = W

(

δ2
1,k,m, . . . , δ2

n,k,m

)

is Vandermonde determinant of

order n, which is constructed by numbers δ2
q,k,m, q = 1, . . . , n.

Remark 2. For arbitrary m ∈ N and k → ∞ the number sequence {Wk,m}∞
k=1 converges to

Vandermonde determinant W
(

ε2
1, ε2

2, . . . , ε2
n

)

, which is constructed by numbers ε2
1, . . . , ε2

n.

Therefore, ϑq,r,k,m = ε2r−2
q (1 + O(1

k )), k → ∞, q = 1, . . . , n.

Thus, the positive numbers C5, C6 exist such that the following inequality holds:

0 < C5 ≤
∣

∣cp,k,m

∣

∣ ρ
2−2p
1,k ≤ C6 < ∞, k ∈ N.

Let us choose the functions

z3,p,k,m(x1) := W−1
k,mz2,p,k,m(x1), k ∈ N. (24)

Taking into account equalities (24), we obtain the relations

ℓ
1
1,sz3,p,k,m = 0, s 6= p, ℓ1

1,pz3,p,k,m(x1) = 2
√

2ρ
2p−2
1,k , s = 1, . . . , n. (25)

Let ∆j,s,k,m := det(ϑq,r,k,m)
q 6=j,r 6=s

q,r=1,n
. Consider the functions yp,k,m(x1) := ∆−1

1,1,k,mz3,p,k,m(x1),

yp,k,m(x1) = z1,1,k,m (x1) +
n

∑
j=2

γj,p,k,mz1,j,k,m (x1) , k ∈ N, (26)

where γj,p,k,m = ∆−1
1,p,k,m∆j,p,k,m, j = 2, 3, . . . , n.
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From formulas (24)–(26) we obtain

yp,k,m(x1) = c1,p,k,mz2,p,k,m(x1),

where

c1,p,k,m = W−1
k,m∆1,p,k,m, C7 < c1,p,k,m < C8 < ∞.

Therefore,

l1
1,pyp,k,m(x1) = c1,p,k,m2

√
2ρ

2p−2
1,k , l1

1,syp,k,m(x1) = 0, s 6= p, s = 1, . . . , n.

The eigenfunctions v1,k

(

x1, L1,p,m

)

of the operator L1,p,m we define by the equality

v1,k(x1, L1,p,m) := τ1,1,k(x1) + ηp,k,myp,k,m(x1), k ∈ N. (27)

To determine the unknown parameters ηp,k,m, we substitute the expression (27) in the

boundary conditions (16), (17).

Taking into account (24), we obtain

ηp,k,m = (−1)p
√

8−1c−1
1,p,k,mρ

2−2p
1,k l1

1,pτ1,1,k, k ∈ N. (28)

Thus, the operator L1,p,m has the system V
(

L1,p,m

)

of eigenfunctions (21), (24), (28).

The completeness of the system of functions V
(

L1,p,m

)

in the space H0 is proved from the

opposite, like in the proof of the Lemma 2.

Let us consider the operators

R(L1,p,m), S(L1,p,m) : H0 → H0, R(L1,p,m) = E + S(L1,p,m),

R(L1,p,m)τ1,0,k(x1) := τ1,0,k(x1), R(L1,p,m)τ1,1,k(x1) := v1,k(x1, L1,p,m), k ∈ N.

From the definition of operator S(L1,p,m) we obtain S(L1,p,m) : H0,0 → 0, S(L1,p,m) : H0,1 →
H0,0, S2(L1,p,m) = 0, R−1(L1,p,m) = E−S(L1,p,m). Therefore, the system of functions V

(

L1,p,m

)

is minimal in the space H0. Lemma 5 is proved.

Let θk = ηp,k,m, then Ap,m := AΘ, k, m ∈ N, p ∈ {1, . . . , n}.

Lemma 6. If {ηp,k,m}∞
k=1 is a bounded sequence, then the system of functions V(L1,p,m) is the

Riesz basis in the space H0.

Proof. Taking into account the definition of the function yp,k,m(x1) and the choice of numbers

ωq,k,m, q = 1, . . . , n, we can conclude: if θk = ηp,k,m, k ∈ N, p ∈ {1, . . . , n}, is a bounded

sequence, then the systems of functions V(L1,p,m), V
(

Ap,m
)

are quadratically approximate for

every m ∈ N, p ∈ {1, . . . , n}.

Therefore, taking into account the Lemma 5 and the theorem N.K. Bari [10], we obtain the

statement of Lemma 6.

Let us choose an arbitrary sequence of real numbers Θ = {θk}∞
k=1, and define the operator

AΘ,p,m : H0 → H0, which has the set of eigenvalues σ1,m = {λk,m ∈ σ, k ∈ N} and the system

V(AΘ,p,m) := {vs,k,m(x1, AΘ,p,m) ∈ H0 : s = 0, 1, k ∈ N} of eigenfunctions

v0,k,m(x1, AΘ,p,m) := τ1,0,k(x1), v1,k,m(x1, AΘ,p,m) := τ1,1,k(x1) + θkyp,k,m(x1), k ∈ N. (29)
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Consider the operators

R(AΘ,p,m) := E + S(AΘ,p,m),

S(AΘ,p,m)τ1,0,k(x1) := 0,

S(AΘ,p,m)τ1,1,k(x1) := θkyp,k,m(x1), k ∈ N.

Let Γ1,p(L0,m) be the set of operators, which have purely point spectrum σ1,m and the system

of eigenfunctions (29).

We define on Γ1,p(L0,m) the commutative multiplication operation

R(AΘ1 ,p,m)R(AΘ2 ,p,m) = E + S(AΘ1,p,m) + S(AΘ2,p,m) = R(AΘ2 ,p,m)R(AΘ1 ,p,m),

AΘ2,p,m, AΘ1,p,m ∈ Γ1,p(L0),

and inverse operator R−1(AΘ,p,m) = E − S(AΘ,p,m), AΘ,p,m ∈ Γ1(L0,m).

Lemma 7. For any real numbers θq ∈ R, q ∈ N, the system of functions V(AΘ,p,m) is complete

and minimal in the space H0. The system of functions V(AΘ,p,m) is the Riesz basis in H0 if and

only if the sequence Θ is bounded.

Proof. The lemma can be proved by the schema of proof the Lemma 2.

We define by the formulas

vs,r,k,m

(

x, L1,p

)

:= vs,k

(

x1, L1,p,m

)

τ2,r,m (x2) , s, r ∈ {0, 1}, k, m ∈ N, (30)

the eigenfunctions of operator L1,p.

Lemma 8. Suppose that the Assumption P1 holds. Then, for arbitrary as ∈ R, bp,q,r ∈ R,

the operator L1,p has the point spectrum σ, and the system of eigenfunctions V
(

L1,p

)

:=

{vs,r,k,m

(

x, L1,p

)

, s, r ∈ {0, 1}, k, m ∈ N}, which is complete and minimal in H1.

If the Assumptions P1–P3 hold, then the system of functions V
(

L1,p

)

is the Riesz basis in

the space H1.

Proof. Substituting functions (30) into the equations (8)–(13) makes sure that the numbers

λk,m ∈ σ are eigenvalues, if k, m ∈ N.

In the space H1 we define the operator R
(

L1,p

)

:= E + S
(

L1,p

)

, which maps the system of

functions V (L0) into V
(

L1,p

)

.

The operator R
(

L1,p

)

has the form

R
(

L1,p

)

:= ∑
r,m

R(L1,p,m)× π2,r,m,

where π2,r,m is the orthoprojector into the one-dimensional proper subspace in H0, which cor-

responds to eigenfunction τ2,r,m(x2) of operator B0.

We consider the operator Ap : H1 → H1, which has purely point spectrum σ(Ap) :=

{λk,m ∈ R : λk,m = µ1,k + µ2,m, k, m ∈ N} and the system of eigenfunctions

V(Ap) := {vs,r,k,m

(

x1, x2, Ap

)

:= vs,k

(

x1, Ap,m
)

τ2,r,m (x2) , s, r ∈ {0, 1}, k, m ∈ N}.

Let R(Ap) := ∑
r,m

R(Ap,m)× π2,r,m.
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According to the Lemma 5, for an arbitrary m ∈ N the system of functions W
(

L1,p,m

)

exists,

and it is biorthogonal to the system V
(

L1,p,m

)

.

Therefore, we can define the elements of system W
(

L1,p

)

, which is biorthogonal to system

V
(

L1,p

)

in the space H1 :

ws,r,k,m(x1, x2, L1,p) = ws,k(x1, L1,p,m)τ2,r,m(x2), s, r ∈ {0, 1}, k, m ∈ N.

Thus, the system V
(

L1,p

)

is complete and minimal in H1.

Therefore, when the Assumptions P2 and P3 hold, then we obtain the inequality |ηp,k,m| ≤
C9 < ∞, for arbitrary m, k ∈ N. Taking into account the estimates ‖R(Ap); [H1]‖2 ≤ C10, we

obtain the statement: eigenfunctions (30) of operator Ap are almost normalized, and system

V
(

Ap

)

is the Riesz basis of the space H1.

We consider the operator R(L1,p) = E + S(L1,p) = (E + Q)(E + S(Ap)). Then the operator

Qp := S(L1,p)− S(Ap) is completely continuous, because the systems of functions V(L1,p,m),

V(Ap,m) are quadratically approximate and the operator Qp,m := S(L1,p,m)− S(Ap,m) is idem-

potent: Q2
p,m = 0.

According to the definition of function vs,r,k,m(x, L0), we obtain

‖Qpvs,r,k,m(x, L0); H1‖ = O(m + k)−3, m, k → ∞.

Then, for an arbitrary h = ∑
s,r,m,k

hs,r,k,mvs,r,k,m(x, L0) ∈ H1, from Cauchy’s inequality we can

get the inequality

‖Qph; H1‖2 = ‖ ∑
s,r,k,m

hs,r,k,mQpvs,r,k,m(x, L0); H1‖2 ≤ C11‖h; H1‖2.

Thus ‖Qp; [H1]‖2<∞, (L1,p)=Qp + R(A1,p)∈ [H1], R(L1,p)
−1=(E − S(Ap)(E − Q)∈ [H1].

Proof. Proof of the Theorem 1. Let R(L) :=
n

∏
p=1

R(L1,p). The eigenfunctions of operator L we

can define in the form

vs,r,k,m(x, L) := R(L)vs,r,k,m(x, L0), r, s ∈ {0, 1}, k, m ∈ N.

Taking into account, that operators R(L1,p) are elements of the group Γ1,p(L0), we obtain

R(L) = E + S(L), R−1(L) = E − S(L), S(L) :=
n

∑
p=1

S(L1,p).

Therefore, the system of eigenfunctions V (L) is complete and minimal in H1.

Proof. Proof of the Theorem 2. Let the Assumptions P1–P3 hold, then the system of eigenfunc-

tions V
(

L1,p

)

is the Riesz basis in the space H1, and R(L) =
n

∏
p=1

R(L1,p) ∈ [H1]. Therefore,

taking into account the theorem N.K. Bari [10], we obtain the statement of the theorem.

Let us define the elements of system W(L), which is biorthogonal to system V (L) in the

space H1:

ws,r,k,m(x, L) := R(L)τ1,s,k(x1)τ2,r,m(x2), s, r ∈ {0, 1}, k, m ∈ N.
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Remark 3. The positive numbers C1(L), C2(L) exist, such that for function

f (x) = ∑
s,r,k,m

fs,r,k,mvs,r,k,m(x1, x2, L), fs,r,k,m := ( f , ws,r,k,m(x1, x2, L); H1)

the following inequality holds

C2(L)‖ f ; H1‖2 ≤ ∑
s,r,k,m

| fs,r,k,m|2, C3(L)‖ f ; H1‖2. (31)

Proof. Proof of the Theorem 3. We will use a solution of the problem (1)–(6) in the form of

series

u(x) = ∑
s,r,k,m

us,r,k,mvs,r,k,m(x1, x2, L). (32)

If we substitute series (31), (32) into equation (1), we obtain

us,r,k,m = λ−1
k,m fs,r,k,m.

Taking into account the Assumption P3 and inequality λ−1
k,m ≤ 1, we can get

‖u; H1‖2 ≤ C5(L)‖ f ; H1‖2, C5(L) = C2(L)−1(L)C3(L)C−2
1 (L),

‖D2n
1 u; H1‖2 ≤ C5(L)‖ f ; H1‖2,

‖D2n
2 u; H1‖2 ≤ C5(L)‖ f ; H1‖2.

Therefore, ‖u; H2‖2 ≤ 3C5(L)‖ f ; H1‖2.
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Баранецький Я.О., Каленюк П.I., Копач М.I., Соломко А.В. Нелокальна крайова задача зi збурен-

нями мiшаних крайових умов для елiптичного рiвняння зi сталими коефiцiєнтами. I // Карпатськi

матем. публ. — 2019. — Т.11, №2. — C. 228–239.

У роботi в одиничному квадратi G методом Фур’є дослiджується задача з нелокальними

умовами, якi є багатоточковими збуреннями мiшаних крайових умов. Вивчено властивостi

узагальненого оператора перетворення R : L2(G) → L2(G), який вiдображає нормованi власнi

функцiї оператора L0 задачi iз мiшаними крайовими умовами у власнi функцiї оператора L

збуреної нелокальної задачi. Побудовано систему V(L) власних функцiй оператора L. Визна-

чено умови, при яких система V(L) повна та мiнiмальна в просторi L2(G), та умови, при яких

вона є базисом Рiсса у просторi L2(G). У випадку, якщо система V(L) є базисом Рiсса в просторi

L2(G), встановлено достатнi мови, при яких нелокальна задача має єдиний розв’язок у виглядi

ряду Фур’є за системою V(L).

Ключовi слова i фрази: диференцiальне рiвняння з частинними похiдними, кореневi фун-

кцiї, базис Рiсса.
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ON COMPARISON OF THE PRINCIPLES OF EQUIVALENT UTILITY AND ITS

APPLICATIONS

An insurance premium principle is a way of assigning to every risk, represented by a non-

negative bounded random variable on a given probability space, a non-negative real number. Such

a number is interpreted as a premium for the insuring risk. In this paper the implicitly defined

principle of equivalent utility is investigated. Using the properties of the quasideviation means,

we characterize a comparison in the class of principles of equivalent utility under Rank-Dependent

Utility, one of the important behavioral models of decision making under risk. Then we apply this

result to establish characterizations of equality and positive homogeneity of the principle. Some

further applications are discussed as well.

Key words and phrases: insurance premium, quasideviation mean, comparison, equality, positive
homogeneity, risk loading.
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1 INTRODUCTION

Assume that X+ is a family of risks, represented by non-negative bounded random vari-

ables on a non-atomic probability space (Ω,F , P). An insurance premium principle is a way

of assigning to every X ∈ X+ a non-negative real number H(X). The number H(X) is in-

terpreted as a premium for insuring X. There are many methods of defining the principles.

In what follows we deal with the principle of equivalent utility. The principle, postulating a

fairness in terms of utility, has been introduced in [2]. Under the Expected Utility model the

premium for a risk X ∈ X+ is defined through the equation

E[u(w + H(w,u)(X)− X)] = u(w), (1)

where w ∈ [0, ∞) is an initial wealth level and u : R → R is a continuous and strictly increasing

function such that u(0)=0. In general, (1) has no explicit solution. However, in some cases the

premium can be expressed in an explicit way. In particular, if u is linear, then

H(w,u)(X) = E[X] for X ∈ X+,

i.e. the principle of equivalent utility becomes the net premium principle. If u(x) = a(1− e−cx)

for x ∈ R, with some a, c > 0, then from (1) we deduce that the principle of equivalent utility

reduces to the exponential principle

H(w,u)(X) =
1

c
ln E[ecX ] for X ∈ X+.

УДК 519.812
2010 Mathematics Subject Classification: 91B16, 91B30, 39B22.

c©Chudziak M., 2019
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Note that in both cases the premium for a given risk does not depend on an initial wealth

level. Some properties of the principle of equivalent utility defined by (1) can be found e.g

in [1, 2, 6, 13].

In this paper we deal with the principle of equivalent utility under Rank-Dependent Utility,

one of the behavioral models of decision making under risk. In this setting the principle has

been introduced and investigated in [7]. In order to define it, recall that if g : [0, 1] → [0, 1]

is a probability distortion function, that is a non-decreasing function such that g(0) = 0 and

g(1) = 1 then, for any bounded random variable X on (Ω,F , P), the Choquet integral with

respect to g is given by

Eg[X] =
∫ 0

−∞
(g(P(X > t))− 1) dt +

∫ ∞

0
g(P(X > t)) dt. (2)

The premium for a risk X ∈ X+ under the Rank-Dependent Utility model is defined as a

solution of the equation

Eg[u(w + H(w,u,g)(X)− X)] = u(w). (3)

It is known (cf. [4, Remark 1]) that if g is a continuous probability distortion function and u :

R → R is a continuous strictly increasing function with u(0) = 0 then, for every X ∈ X+, the

number H(w,u,g)(X) is uniquely determined by (3). Some properties of the premium defined

by (3) have been investigated in [7] under the assumption that g is convex and u is concave and

differentiable.

The main result of this paper provides a characterization of a comparison in the class of the

principles of equivalent utility. Applying this result we establish characterizations of further

natural properties of the principle, namely equality and positive homogeneity. Some results

concerning the risk loading property of the principle of equivalent utility are presented as

well.

It turns out that an effective tool for dealing with this issue is a notion of a quasideviation

mean. Therefore, in the next section we present a definition of the mean and a result concern-

ing a comparison of quasideviation means.

2 QUASIDEVIATION MEANS

The notion of the quasideviation mean has been introduced in [10]. In order to recall the

notion, assume that I ⊆ R is an open interval. A function D : I2 → R is called a quasideviation

if it satisfies the following three conditions:

(i) D(x, x) = 0 for x ∈ I and (x − y)D(x, y) > 0 for x, y ∈ I with x 6= y;

(ii) for every x ∈ I, the function I ∋ t → D(x, t) is continuous;

(iii) for every x, y ∈ I, with x < y, the function (x, y) ∋ t → D(y,t)
D(x,t)

is strictly increasing.

Let

∆n := [0, ∞)n \ {0}.

In [10] it has been proved that, if D : I2 → R is a quasideviation, then for every n ∈ N,

x = (x1, ..., xn) ∈ In and λ = (λ1, ..., λn) ∈ ∆n, equation

n

∑
i=1

λiD(xi, t) = 0 (4)
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has a unique solution t0. Moreover

min{xi : i ∈ {1, .., n}} ≤ t0 ≤ max{xi : i ∈ {1, .., n}}.

Thus, equation (4) defines a mean, called a D-quasideviation mean of x weighted by λ. Fol-

lowing [10], we denote the mean by M̃D(x; λ). Several properties of quasideviation means

have been proved in [11]. In our considerations we will need the following result, which is a

particular case of [11, Theorem 7].

Theorem 1. Assume that I ⊆ R is an open interval and D1, D2 : I2 → R are quasideviations.

Then the following statements are equivalent:

(i) M̃D1
((x1, x2); (λ, 1 − λ)) ≤ M̃D2

((x1, x2); (λ, 1 − λ)) for x1, x2 ∈ I, λ ∈ [0, 1];

(ii) there exists a function A : I → (0, ∞) such that

D1(x, y) ≤ A(y)D2(x, y) for x, y ∈ I.

3 PRELIMINARY REMARKS

Remark 1. Let g be a probability distortion function. It is known (cf. [5, Proposition 5.1])

that the Choquet integral is monotone and positively homogeneous. Furthermore, for every

bounded random variable X on (Ω, Σ, P), we get

Eg[X + c] = Eg[X] + c for c ∈ R (5)

and

Eg[−X] = −Eḡ[X], (6)

where ḡ : [0, 1] → [0, 1], given by

ḡ(p) = 1 − g(1 − p) for p ∈ [0, 1], (7)

is the probability distortion function conjugated to g.

Remark 2. Note that if g is the identity on [0, 1] then Eg[X] = E[X] for every bounded random

variable X on (Ω, Σ, P). Therefore, applying [5, Proposition 5.2 (iii)], we conclude that:

• if g(p) ≤ p for p ∈ [0, 1] then Eg[X] ≤ E[X] for every bounded random variable X on

(Ω, Σ, P);

• if g(p) ≥ p for p ∈ [0, 1] then Eg[X] ≥ E[X] for every bounded random variable X on

(Ω, Σ, P).

Remark 3. Let g be a continuous probability distortion function. Since the Choquet integral is

monotone, for every X ∈ X+, the function

R ∋ t → Eg[u(w + t − X)]− u(w)

is nondecreasing. Furthermore, H(w,u,g)(X) is its unique zero.
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Remark 4. In view of (3) the premium for a given risk depends only on a probability distribu-

tion of the risk. Thus, we identify the risks with their probability distributions. Note also (cf.

e.g. [12, Lemma 2.7.1]) that, as the probability space (Ω, Σ, P) is non-atomic, for every x, y ∈ R,

with x < y, and every p ∈ (0, 1), there exists a random variable X on (Ω, Σ, P) such that

P(X = x) = p and P(X = y) = 1 − p. Denote any such a random variable by 〈x, y; 1 − p, p〉.

Furthermore, let X (2) be a family of all such random variables and

X
(2)
+ := {〈x, y; 1 − p, p〉 ∈ X (2) : x ≥ 0}.

Remark 5. If X = 〈x1, x2; 1 − p, p〉 ∈ X (2) then, in view of (2), we get (cf. [8])

Eg[X] = (1 − g(p))x1 + g(p)x2 .

Remark 6. Assume that w ∈ [0, ∞), g is a continuous probability distortion function and

u : R → R is a strictly increasing continuous function such that u(0) = 0. Then, taking

X = 〈x, y; p, 1 − p〉 ∈ X
(2)
+ , we obtain

u(w + H(w,u,g)(X)− X) = 〈(u(w + H(w,u,g)(X)− y), u(w + H(w,u,g)(X)− x)); 1 − p, p〉.

Therefore, applying Remark 5, from (3) we derive that H(w,u,g)(X) is a unique solution of the

equation

(1 − g(p))(u(w + H(w,u,g)(X)− y) + g(p)u(w + H(w,u,g)(X)− x) = u(w). (8)

4 RESULTS

The following theorem is the main result of this paper.

Theorem 2. Let w1, w2 ∈ [0, ∞). Assume that g is a continuous probability distortion function

and u, v : R → R are strictly increasing continuous functions such that u(0) = v(0) = 0. Then

the following statements are pairwise equivalent:

(i)

H(w1,v,g)(X) ≤ H(w2,u,g)(X) for X ∈ X
(2)
+ ; (9)

(ii)

H(w1,v,g)(X) ≤ H(w2,u,g)(X) for X ∈ X+; (10)

(iii) there exists c ∈ (0, ∞) such that

u(x) ≤ cv(x + w1 − w2) + u(w2)− cv(w1) for x ∈ R. (11)

Proof. Let D1, D2 : (0, ∞)2 → R be given by

D1(x, y) = v(w1)− v(w1 + y − x) for x, y ∈ (0, ∞), (12)

and

D2(x, y) = u(w2)− u(w2 + y − x) for x, y ∈ (0, ∞), (13)
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respectively. Then, as one can easily check, D1 and D2 are quasideviations. Furthermore, since

g is continuous with g(0) = 0 and g(1) = 1, for every λ ∈ (0, 1) there exists (not necessarily

unique) pλ ∈ (0, 1) such that

g(pλ) = λ. (14)

First we show that (i) =⇒ (iii). Assume that (9) holds. Let x1, x2 ∈ (0, ∞) and λ ∈ [0, 1].

We claim that

M̃D1
((x1, x2); (λ, 1 − λ)) ≤ M̃D2

((x1, x2); (λ, 1 − λ)). (15)

If x1 = x2 or λ = 1, then both sides of (15) are equal to x1. Moreover, if λ = 0, then both

sides of (15) are equal to x2. So, assume that λ ∈ (0, 1) and x1 6= x2, say x1 < x2. Let

X = 〈x1, x2; pλ, 1 − pλ〉, where pλ ∈ (0, 1) satisfies (14). Then X ∈ X
(2)
+ whence, taking into

account (8) and (12), we get

λD1(x1, H(w1,v,g)(X)) + (1 − λ)D1(x2, H(w1,v,g)(X))

=g(pλ)(v(w1)− v(w1 + H(w1,v,g)(X)− x1))+(1 − g(pλ))(v(w1)− v(w1+H(w1,v,g)(X)−x2))

=v(w1)− ((1 − g(pλ))v(w1 + H(w1,v,g)(X)− x2) + g(pλ)v(w1 + H(w1,v,g)(X)− x1)) = 0.

Thus

H(w1,v,g)(X) = M̃D1
((x1, x2); (λ, 1 − λ)).

The similar arguments show that

H(w2,u,g)(X) = M̃D2
((x1, x2); (λ, 1 − λ)).

Hence, in view of (9), we get (15). In this way we have proved that (15) holds for every x1, x2 ∈

(0, ∞) and λ ∈ [0, 1]. Therefore, applying Theorem 1 and making use of (12)-(13), we obtain

that there exists a function A : (0, ∞) → (0, ∞) such that

v(w1)− v(w1 + y − x) ≤ A(y)(u(w2)− u(w2 + y − x)) for x, y ∈ (0, ∞).

Since u and v are strictly increasing with u(0) = v(0) = 0, replacing in the last inequality x by

y − x, we get

v(w1)− v(w1 + x) ≤ A(y)(u(w2)− u(w2 + x)) for x ∈ R, y ∈ (max{0, x}, ∞).

Thus
u(w2)− u(w2 + x)

v(w1)− v(w1 + x)
≤

1

A(y)
for x ∈ (0, ∞), y > x (16)

and
u(w2)− u(w2 + x)

v(w1)− v(w1 + x)
≥

1

A(y)
for x ∈ (−∞, 0], y ∈ (0, ∞). (17)

Hence, taking

c := sup

{

1

A(y)
: y ∈ (0, ∞)

}

,

we conclude that 0 < c < ∞. Moreover, it follows from (16) that the inequality

u(w2 + x) ≤ cv(w1 + x) + u(w2)− cv(w1) (18)
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holds for all x ∈ (0, ∞). Furthermore, taking in (17) the supremum over all y ∈ (0, ∞), we

obtain

c = sup

{

1

A(y)
: y ∈ (0, ∞)

}

≤
u(w2)− u(w2 + x)

v(w1)− v(w1 + x)
for x ∈ (−∞, 0],

which implies (18) for x ∈ (−∞, 0]. Therefore, (18) holds for all x ∈ R. Replacing in (18) x by

x − w2, we obtain (11). So, (i) ⇒ (iii).

Now, assume that (11) is satisfied. Then, as the Choquet integral is monotone and positively

homogeneous, in view of (3) and (5), for every X ∈ X+, we have

Eg[u(w2 + H(w1,v,g)(X)− X)]− u(w2) ≤ c(E[v(w1 + H(w1,v,g)(X)− X)]− v(w1)) = 0.

Moreover, according to Remark 3, for every X ∈ X+, the function

R ∋ t → Eg[u(w2 + t − X)]− u(w2)

is nondecreasing and H(w2,u,g)(X) is its unique zero. Hence, (10) is valid. In this way we have

proved that (iii) ⇒ (ii).

The implication (ii) ⇒ (i) is obvious.

From Theorem 2 we derive the following characterization of equality in the class of princi-

ples of equivalent utility under the Rank-Dependent Utility model.

Corollary 1. Let w1, w2 ∈ [0, ∞). Assume that g is a continuous probability distortion function

and u, v : R → R are strictly increasing continuous functions such that u(0) = v(0) = 0. Then

the following statements are pairwise equivalent:

(i)

H(w1,v,g)(X) = H(w2,u,g)(X) for X ∈ X
(2)
+ ; (19)

(ii)

H(w1,v,g)(X) = H(w2,u,g)(X) for X ∈ X+;

(iii) there exists c ∈ (0, ∞) such that

u(x) = cv(x + w1 − w2) + u(w2)− cv(w1) for x ∈ R. (20)

Proof. Assume that (19) holds. Then, according to Theorem 2, there exist c, c̃ ∈ (0, ∞) such that

(11) is valid and

v(x) ≤ c̃u(x + w2 − w1) + v(w1)− c̃u(w2) for x ∈ R.

Hence

u(x)− u(w2) ≤ c(v(x + w1 − w2)− v(w1)) ≤ c̃c(u(x)− u(w2)) for x ∈ R.

Therefore, since v is strictly increasing, we get cc̃ = 1 and so (20) is valid. This proves that

(i) ⇒ (iii).

If (20) holds then, replacing x by x + w2 − w1, we get

v(x) =
1

c
u(x + w2 − w1) + v(w1)−

1

c
u(w2) for x ∈ R. (21)

Taking into account (20) and (21), from Theorem 2 we derive (19). Thus (iii) ⇒ (ii). Obviously,

we have also (ii) ⇒ (i).
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Applying Corollary 1 we are going to characterize the positive homogeneity of the principle

of equivalent utility. Recall that the principle H(w,u,g) is positively homogeneous provided, for

every X ∈ X+ and λ ∈ (0, ∞), it holds

H(w,u,g)(λX) = λH(w,u,g)(X). (22)

If (22) holds for every X ∈ X
(2)
+ and λ ∈ (0, ∞), then the principle H(w,u,g) is said to be posi-

tively homogeneous on X
(2)
+ . The positive homogeneity of H(w,u,g) in the case w = 0 has been

characterized in [7]. It is proved there that if g is convex and u is concave and differentiable

then H(0,u,g) is positively homogeneous if and only if u is linear.

Theorem 3. Assume that w ∈ [0, ∞), g is a continuous probability distortion function and

u : R → R is a strictly increasing continuous function with u(0) = 0. Then the following

statements are pairwise equivalent:

(i) H(w,u,g) is positively homogeneous on X
(2)
+ ;

(ii) H(w,u,g) is positively homogeneous;

(iii) there exist a, b, r ∈ (0, ∞) and γ ∈ R such that

u(x) =

{

−a(w − x)r + γ for x ∈ (−∞, w],

b(x − w)r + γ for x ∈ (w, ∞).
(23)

Proof. Assume that (i) holds. For every t ∈ (0, ∞), define ut : R → R as follows

ut(x) = u(w + tx)− u(w) for x ∈ R. (24)

Then, taking into account (3) and (5), for every X ∈ X
(2)
+ and t ∈ (0, ∞), we get

Eg[ut(H(w,u,g)(X)− X)] = Eg[u(w + tH(w,u,g)(X)− tX)]− u(w)

= Eg[u(w + H(w,u,g)(tX)− tX)]− u(w) = 0 = ut(0) = Eg[ut(H(0,ut,g)(X)− X)].

Therefore,

H(0,ut,g)(X) = H(w,u,g)(X) for X ∈ X
(2)
+ , t ∈ (0, ∞)

and so, applying Corollary 1 with w1 = 0, w2 = w and v = ut, we conclude that for every

t ∈ (0, ∞) there exists c(t) ∈ (0, ∞) such that

u(x) = c(t)ut(x − w) + u(w) for x ∈ R.

Hence, replacing x by x + w, in view of (24), we get

ut(x) =
1

c(t)
u1(x) for x ∈ R, t ∈ (0, ∞).

Moreover, it follows from (24) that

ut(x) = u1(tx) for x ∈ R, t ∈ (0, ∞).
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Thus, we have

u1(tx) =
1

c(t)
u1(x) for x ∈ R, t ∈ (0, ∞). (25)

Since u1(x) > 0 for x ∈ (0, ∞), applying (25) with x = 1, we obtain

c(t) =
u1(1)

u1(t)
for t ∈ (0, ∞).

Hence (25) becomes

ū(tx) = ū(t)ū(x) for x ∈ R, t ∈ (0, ∞), (26)

where ū : R → R is given by

ū(x) =
u1(x)

u1(1)
for x ∈ R. (27)

Note that as u is strictly increasing and continuous, so is ū. Moreover, it follows from (26) that

ū(tx) = ū(t)ū(x) for x, t ∈ (0, ∞).

Thus, according to [9, Theorem 13.3.8], there exist β, r ∈ (0, ∞) such that

ū(x) = βxr for x ∈ (0, ∞).

Furthermore, replacing in (26) x and t by −1 and −x, respectively, we get

ū(x) = ū(−1)ū(−x) for x ∈ (−∞, 0).

Therefore, as u(0) = 0 and, in view of (24),

u(x) = u1(x − w) + u(w) for x ∈ R,

taking into account (27), we obtain (23) with a := −βu1(−1) > 0, b := βu1(1) > 0 and

γ := u(w). In this way we have proved that (i) ⇒ (iii).

If u is of the form (23) with some a, b, r ∈ (0, ∞) and γ ∈ R then, for every x ∈ R and

λ ∈ (0, ∞), we have

u(w + λx) = λru(w + x) + (1 − λr)γ = λru(w + x) + (1 − λr)u(w).

Thus, as the Choquet integral is positively homogeneous, in view of (3) and (5), for every

X ∈ X+ and λ ∈ (0, ∞), we obtain

Eg[u(w + λH(w,u,g)(X)−λX)] = λrEg[u(w + H(w,u,g)(X)− X)] + (1 − λr)u(w)

=λru(w) + (1 − λr)u(w) = u(w) = Eg[u(w + H(w,u,g)(λX)− λX)].

Hence

H(w,u,g)(λX) = λH(w,u,g)(X) for X ∈ X+, λ ∈ (0, ∞).

This means that H(w,u,g) is positively homogeneous and shows that (iii) ⇒ (ii).

The implication (ii) ⇒ (i) is obvious.

Corollary 2. Assume that w ∈ [0, ∞), g is a continuous probability distortion function and

u : R → R is a strictly increasing continuous function with u(0) = 0. Then the following

statements are pairwise equivalent:
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(i)

H(w,u,g)(X) ≥ Eḡ[X] for X ∈ X
(2)
+ ;

(ii)

H(w,u,g)(X) ≥ Eḡ[X] for X ∈ X+; (28)

(iii) there exists c ∈ (0, ∞) such that

u(x) ≤ c(x − w) + u(w) for x ∈ R. (29)

Proof. Let v be the identity on R. Then, taking into account (3) and (5)-(6), for every X ∈ X+,

we get

w = v(w) =Eg[v(w + H(w,v,g)(X)− X)]

=Eg[w + H(w,v,g)(X)− X] = w + H(w,v,g)(X)− Eḡ[X]

which implies that

H(w,v,g)(X) = Eḡ[X] for X ∈ X+.

Therefore, applying Theorem 2, we get the assertion.

The next result concerns the risk loading property of the principle of equivalent utility

under the Rank-Dependent Utility model. Let us recall that the principle H(w,u,g) has the risk

loading property, provided

H(w,u,g)(X) ≥ E[X] for X ∈ X+. (30)

Corollary 3. Assume that w ∈ [0, ∞) and u : R → R is a strictly increasing continuous function

with u(0) = 0. Let g be a continuous probability distortion function such that

g(p) ≥ p for p ∈ [0, 1]. (31)

If the premium principle H(w,u,g) has the risk loading property, then there exists c ∈ (0, ∞)

such that (29) holds.

Proof. It follows from (7) and (31) that ḡ(p) ≤ p for p ∈ [0, 1]. Therefore, if H(w,u,g) has the risk

loading property then, applying Remark 2, we get (28). Hence, according to Corollary 2, (29)

is valid with some c ∈ (0, ∞).

Remark 7. Suppose that g(p) ≤ p for p ∈ [0, 1]. Then ḡ(p) ≥ p for p ∈ [0, 1] and so, according

to Remark 2, we have

E[X] ≤ Eḡ[X] for X ∈ X+.

Hence, if (29) is valid, then using a monotonicity of the Choquet integral, in view of (3) and

(5)-(6), for every X ∈ X+, we get

Eg[u(w + E[X] − X)] ≤ Eg[u(w + Eḡ[X]− X)] ≤ c(Eg[Eḡ[X]− X]) + u(w) = u(w).

Therefore, applying Remark 3, we conclude that (30) holds, that is H(w,u,g) has the risk loading

property.

We complete the paper with a result which is a direct consequence of Corollary 3 and

Remark 7. In fact, it is a slight generalization of [3, Theorem 7].

Corollary 4. Assume that w ∈ [0, ∞), g is the identity on [0, 1] and u : R → R is a strictly

increasing continuous function with u(0) = 0. Then the premium principle H(w,u,g) has the

risk loading property if and only if there exists c ∈ (0, ∞) such that (29) holds.
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Худзяк М. Порiвняння принципiв еквiвалентної корисностi та його застосування // Карпатськi

матем. публ. — 2019. — Т.11, №2. — C. 240–249.

Принцип страхової винагороди є способом поставити у вiдповiднiсть кожному ризику, зо-

браженому за допомогою невiд’ємної обмеженої випадкової величини на заданому ймовiрнi-

сному просторi, деяке дiйсне невiд’ємне число. Таке число можна iнтерпретувати як вина-

городу за страховий ризик. У цiй статтi дослiджено неявно заданий принцип еквiвалентної

корисностi. Використовуючи властивостi середнього квазiвiдхилення ми характеризуємо по-

рiвняння в класi принципiв еквiвалентної корисностi за ранг-залежною кориснiстю, однiєю з

важливих поведiнкових моделей прийняття рiшення в умовах ризику. Ми використовуємо

цей результат для встановлення рiвностi i додатної однорiдностi цього принципу. Також ви-

свiтлено деякi iншi застосування.

Ключовi слова i фрази: страхова винагорода, середне квазiвiдхилення, порiвняння, рiвнiсть,

додатна однорiднiсть, ризик.
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Let L be an algebra over a field F with the binary operations + and [·, ·]. Then L is called a left

Leibniz algebra if it satisfies the left Leibniz identity [[a, b], c] = [a, [b, c]]− [b, [a, c]] for all a, b, c ∈ L.
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Let L be an algebra over a field F with the binary operations + and [·, ·]. Then L is called a

left Leibniz algebra if it satisfies the left Leibniz identity

[[a, b], c] = [a, [b, c]]− [b, [a, c]]

for all a, b, c ∈ L.

Leibniz algebras appeared first in the papers of A.M. Bloh [5–7], in which he called them the

D-algebras. However, a real interest to Leibniz algebras rose after the paper of J.-L. Loday [25]

(see also [26, Section 10.6]), who rediscovered these algebras and used the term Leibniz algebras

since it was G.W. Leibniz who discovered and proved the Leibniz rule for differentiation of

functions.

Note that the Leibniz algebras have many connections with some areas of mathematics such

as differential geometry, homological algebra, classical algebraic topology, algebraic K-theory,

loop spaces, non- commutative geometry, and physics (see, for example, [8, 12, 13]).

The theory of Leibniz algebras has been developing intensively but very sporadic. On the

one hand, many analogues of important results from the theory of Lie algebras were proven

(see, for example, a survey [18]). On the other hand, many natural questions about the struc-

ture of Leibniz algebras are not considered. For example, we can note the situation about the

structure of finite-dimensional Leibniz algebras. The first natural step in the study of all types

of algebras is the description of algebras having small dimensions. Unlike the simpler cases

of 1- and 2-dimensional Leibniz algebras, the structure of 3- dimensional Leibniz algebras is

more complex, as well as it is more complex than the structure of 3- dimensional Lie algebras.

The study of Leibniz algebras, having dimension 3, has been conducted in the papers [1,2,9,11]
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for the fields of characteristic 0, moreover for the field C of complex numbers or algebraically

closed fields of characteristic 0. In [33], Yashchuk V.S. considered the opposite situation. She

described the structure of Leibniz algebras of dimension 3 over finite fields. In some cases, the

structure of such algebras essentially depends on the characteristic of the field. In other words,

it depends on the solvability of specific equations in the fields, and so on. It is also worth men-

tioning here that the description of Leibniz algebras of dimension 3 is very different from the

description of Lie algebras of dimension 3, which indicates a significant difference between

these types of algebras.

Note that if L is a Lie algebra, then [[a, b], c] + [[b, c], a] + [[c, a], b] = 0. It follows that

[[a, b], c] =− [[b, c], a]− [[c, a], b]

=[a, [b, c]] + [b, [c, a]]

=[a, [b, c]]− [b, [a, c]],

which shows that every Lie algebra is a Leibniz algebra.

Conversely, suppose that [a, a] = 0 for all elements a ∈ L. Then for arbitrary elements

a, b ∈ L we have 0 = [a + b, a + b] = [a, a] + [a, b] + [b, a] + [b, b] = [a, b] + [b, a]. It follows that

[a, b] = −[b, a]. Then

0 = [[a, b], c]− [a, [b, c]] + [b, [a, c]]

= [[a, b], c] + [[b, c], a]− [[a, c], b]

= [[a, b], c] + [[b, c], a] + [[c, a], b]

for all a, b, c ∈ L. In other words, Lie algebras can be characterized as Leibniz algebras in which

[a, a] = 0 for every element a ∈ L.

Recall some basic definitions.

A Leibniz algebra L is called abelian if [a, b] = 0 for all elements a, b ∈ L. Thus, an abelian

Leibniz algebra is a Lie algebra.

Let L be a Leibniz algebra over a field F. If A, B are subspaces of L, then [A, B] will denote

a subspace generated by all elements [a, b], where a ∈ A, b ∈ B. A subspace A of L is called a

subalgebra of L, if [x, y] ∈ A for every x, y ∈ A. It follows that [A, A] 6 A.

Let L be a Leibniz algebra over a field F, M be a non-empty subset of L, then 〈M〉 denote

the subalgebra of L generated by M.

A subalgebra A of L is called a left (respectively right) ideal of L, if [y, x] ∈ A (respectively

[x, y] ∈ A) for every x ∈ A, y ∈ L. In other words, if A is a left (respectively right) ideal, then

[L, A] 6 A (respectively [A, L] 6 A).

A subalgebra A of L is called an ideal of L (more precisely, two-sided ideal) if it is both a left

ideal and a right ideal, that is [y, x], [x, y] ∈ A for every x ∈ A, y ∈ L.

If A is an ideal of L, we can consider a factor-algebra L/A. It is not hard to see that this

factor-algebra also is a Leibniz algebra.
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Denote by Leib(L) the subspace, generated by the elements [a, a], a ∈ L. Note that Leib(L)

is an ideal of L, which is called the Leibniz kernel of algebra L.

The left (respectively right) center ζ le f t(L) (respectively ζright(L)) of a Leibniz algebra L is

defined by the rule:

ζ le f t(L) = {x ∈ L| [x, y] = 0 for each element y ∈ L}

(respectively,

ζright(L) = {x ∈ L| [y, x] = 0 for each element y ∈ L}).

It is not hard to prove that the left center of L is an ideal, but it is not true for the right center.

The right center is a subalgebra of L, and in general, the left and right centers are different.

Moreover, they even may have different dimensions as shows an example 2.1 from [19].

The center ζ(L) of L is the intersection of the left and right centers, that is

ζ(L) = {x ∈ L| [x, y] = 0 = [y, x] for each element y ∈ L}.

Clearly, the center ζ(L) is an ideal of L. In particular, we can consider the factor-algebra

L/ζ(L).

Now we define the upper central series

〈0〉 = ζ0(L) 6 ζ1(L) 6 . . . ζα(L) 6 ζα+1(L) 6 . . . ζγ(L) = ζ∞(L)

of a Leibniz algebra L by the following rule: ζ1(L) = ζ(L) is the center of L, and recursively,

ζα+1(L)/ζα(L) = ζ(L/ζα(L)) for all ordinals α, and ζλ(L) =
⋃

µ<λ
ζµ(L) for the limit ordinals

λ. By definition, each term of this series is an ideal of L. The last term ζ∞(L) of this series is

called the upper hypercenter of L. A Leibniz algebra L is said to be hypercentral if it coincides

with the upper hypercenter.

Let L be a Leibniz algebra. Define the lower central series

L = γ1(L) > γ2(L) > . . . γα(L) > γα+1(L) > . . . γδ(L)

of L by the following rule: γ1(L) = L, γ2(L) = [L, L], and recursively γα+1(L) = [L, γα(L)] for

all ordinals α and γλ(L) =
⋂

µ<λ
γµ(L) for the limit ordinals λ. For the last term γδ(L) we have

γδ(L) = [L, γδ(L)].

The introduced here concepts of the upper and lower central series for Leibniz algebras are

an analogous of others similar concepts, which became standard in several algebraic struc-

tures. They play an important role, for example, in Lie algebras and groups. Following

this analogy, we say that a Leibniz algebra L is called nilpotent, if there exists a positive in-

teger k such that γk(L) = 〈0〉. More precisely, L is said to be nilpotent of nilpotency class c if

γc+1(L) = 〈0〉, but γc(L) 6= 〈0〉.

We note that in [22] Kurdachenko L.A., Subbotin I.Ya. and Semko N.N. proved a series of

results, which connected with (locally) nilpotent and hypercentral Leibniz algebras. In partic-

ular, these results are analogues of well-known group-theoretical results.

It is a well-known that in nilpotent Lie algebras and nilpotent groups the lower and the

upper central series have the same length. The same result is also true for Leibniz algebras

(see, for example, [19]).
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Let L be a Leibniz algebra. Let us define the lower derived series

L = δ0(L) > δ1(L) > . . . δα(L) > δα+1(L) > . . . δν(L)

of L by the following rule: δ0(L) = L, δ1(L) = [L, L], and recursively δα+1(L) = [δα(L), δα(L)]

for all ordinals α and δλ(L) =
⋂

µ<λ
δµ(L) for the limit ordinals λ. For the last term δν(L) we

have δν(L) = [δν(L), δν(L)]. If δn(L) = 〈0〉 for some positive integer n, then we say that L is a

soluble Leibniz algebra.

One of the first questions that naturally arises in the study of any algebraic structure is

the question of the structure of its cyclic substructures. Unlike Lie algebras, associative al-

gebras, groups, etc., cyclic Leibniz algebras are no necessarily abelian. In [10, Theorem 1.1]

Chupordia V.A., Kurdachenko L.A. and Subbotin I.Ya. described the structure of such Leibniz

algebras. This description made it possible to obtain a structure of the Leibniz algebras, whose

proper subalgebras are Lie algebras. Such algebras are either Lie algebras, or nilpotent cyclic

algebras, or they can be represented as a direct sum of an abelian ideal (from the left center of

algebra) and Lie subalgebra of dimension 1 with some additional properties [10, Theorem 1.2].

As a corollary it was described Leibniz algebras whose proper subalgebras are abelian [10,

Corollary 1.1]. This result implies that a description of Leibniz algebras, whose proper sub-

algebras are abelian, can be deduced to the case of Lie algebras, whose proper subalgebras

are abelian. Such Lie algebras are either simple, or soluble. Soluble minimal non-abelian Lie

algebras (even soluble minimal non-nilpotent Lie algebras) were described in [16, 30, 31]. Sim-

ple minimal non-abelian Lie algebras were studied in [14, 15], but their complete description

remains an open problem.

Another natural question concerns the relationship of the subalgebras and ideals. In partic-

ular, what is a structure of Leibniz algebras, all of whose subalgebras are ideals? It is not hard

to prove that a Lie algebra, all of whose subalgebras are ideals, is abelian. For groups the sit-

uation is different: there exists non-abelian groups, all of whose subgroups are normal. Such

groups have been described in [3]. For Leibniz algebras the situation is quite diverse. Recall

that a Leibniz algebra L is called an extraspecial algebra if it satisfies the following condition:

ζ(L) is non-trivial and has dimension 1, and L/ζ(L) is abelian. It is important to observe that

there are extraspecial Leibniz algebras in which not every subalgebra is an ideal. In [20] Kur-

dachenko L.A., Semko N.N. and Subbotin I.Ya. proved that if L is a Leibniz algebra over a field

F, all of whose subalgebras are ideals and L is non-abelian, then L = E ⊕ Z where Z 6 ζ(L),

and E is an extraspecial subalgebra such that [a, a] 6= 0 for every element a 6∈ ζ(E).

Consider now some other natural questions of the general theory of Leibniz algebras. Note

that the relation “to be a subalgebra of a Leibniz algebra” is transitive. However, the relation

“to be an ideal” is not transitive even for Lie algebras. Therefore it is natural to ask the question

about the structure of Leibniz algebras, in which the relation “to be an ideal” is transitive. In

this context, the following important type of subalgebras naturally arises. A subalgebra A of

a Leibniz algebra L is called a left (respectively right) subideal of L, if there is a finite series of

subalgebras A = A0 6 A1 6 . . . 6 An = L such that Aj−1 is a left (respectively, right) ideal of

Aj, 1 6 j 6 n.

Similarly, a subalgebra A of a Leibniz algebra L is called a subideal of L, if there is a finite

series of subalgebras A = A0 6 A1 6 . . . 6 An = L such that Aj−1 is an ideal of Aj, 1 6 j 6 n.

We note the following property of nilpotent Leibniz algebras (see, for example [18]): if L is

a nilpotent Leibniz algebra over a field F, then every subalgebra of L is a subideal of L.
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A Leibniz algebra L is called a T-algebra, if a relation “to be an ideal” is transitive. In other

words, if A is an ideal of L and B is an ideal of A, then B is an ideal of L. It follows that

in a Leibniz T-algebra every subideal is an ideal. Lie algebras, in which a relation “to be an

ideal” is transitive have been studied by I. Stewart [28] and A.G. Gejn and Yu.N. Muhin [17].

In particular, soluble T-algebras and finite dimensional T-algebras over a field of characteristic

0 has been described. As in the mentioned above cases, the situation in Leibniz algebras is

much more complex and diverse than it was in Lie algebras (see, for examples [18]). The

description of Leibniz T-algebras has been obtained by Kurdachenko L.A., Subbotin I.Ya. and

Yashchuk V.S. in the paper [24].

Consider now some new approach in Leibniz algebra theory. Two ideals are naturally as-

sociated with each subalgebra A of a Leibniz algebra L: the ideal AL which is the intersection

of all ideals including A (that is an ideal, generated by A); and the ideal CoreL(A) which is

the sum of all ideals that are contained in A. A subalgebra A of L is called an contraideal of

L, if AL = L. From the definition it follows that the contraideals are natural antipodes to the

concepts of ideals. Therefore, the study of Leibniz algebras whose subalgebras are either ideals

or contraideals is very natural. The description of such Leibniz algebras was obtained by Kur-

dachenko L.A., Subbotin I.Ya. and Yashchuk V.S. in the paper [23]. As a corollary, the authors

obtained the structure of Lie algebras, whose subalgebras are either ideals or contraideals [23].

As we noted above, the fact that γc+1(L) = 〈0〉 is equivalent to the fact that ζc(L) = L, i.e.

the lower and the upper central series in nilpotent Leibniz algebras have the same length. The

next natural step is the consideration of the case, when the upper (respectively lower) central

series has finite length. For this case the question about the relationships between L/ζk(L) and

γk+1(L) naturally appears.

If L is a Lie algebra such that L/ζk(L) is finite-dimensional, then γk+1(L) is also finite-

dimensional [29]. A corresponding result for groups has been obtained early by R. Baer [4].

Kurdachenko L.A., Otal J. and Pypka A.A. in the paper [19] obtained the following analog of

these theorems: if L is a Leibniz algebra over a field F and codimF(ζk(L)) = d is finite for some

positive integer k, then γk+1(L) has finite dimension; moreover dimF(γk+1(L)) 6 2k−1dk+1.

An important specific case here is the case when the center of a Leibniz algebra L has finite

codimension. For Lie algebras the following result is well known (see, for example [32]). A

corresponding result for groups was proved much earlier: if G is a group and C is a subgroup

of the center ζ(G) such that G/C is finite, then the derived subgroup [G, G] is finite. In this

formulation, for the first time it appears in the paper of B.H. Neumann [27]. This theorem was

obtained also by R. Baer [4].

For Leibniz algebras the following analog of these results was proved by Kurdachenko L.A.,

Otal J. and Pypka A.A. in [19]: if L is a Leibniz algebra over a field F, codimF(ζ
le f t(L)) = d and

codimF(ζ
right(L)) = r are finite, then [L, L] has finite dimension; moreover, dimF([L, L]) 6

d(d + r).

In this connection, the following question appears: suppose that only codimF(ζ
le f t(L))

is finite. Is dimF([L, L]) finite? The Example 3.1 from [19] gives a negative answer on this

question. However, if L is a Leibniz algebra over a field F and codimF(ζ(L)) = d is finite, then

[L, L] has finite dimension; in particular, dimF([L, L]) 6 d2 [19]. Moreover, if L is a Leibniz

algebra over a field F and codimF(ζ(L)) = d is finite, then the Leibniz kernel of L has finite

dimension at most 1
2 d(d − 1) [19].

Finally, we note that in [21] Kurdachenko L.A., Semko N.N. and Subbotin I.Ya. introduced
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the concepts of anticenter of Leibniz algebras and antinilpotent Leibniz algebras. Let L be a

Leibniz algebra. Put

α(L) = {z ∈ L|[a, z] = −[z, a] for each element a ∈ L}.

This subset is called the anticenter of a Leibniz algebra L. Note that the anticenter is an ideal

of L. Note also that we must consider the case, when char(F) 6= 2, because in the case when

char(F) = 2 anticenter in general is not ideal [21].

For this concept the above authors proved some analogs of result from Leibniz algebra

theory. In particular, in [21] they proved that if L is a Leibniz algebra over a field F and the

anticenter of L has finite codimension d, then the Leibniz kernel of L has finite dimension at

most d2.

Starting from the anticenter, we define the upper anticentral series

〈0〉 = α0(L) 6 α1(L) 6 . . . αλ(L) 6 αλ+1(L) 6 . . . αγ(L) = α∞(L)

of a Leibniz algebra L by the following rule: α1(L) = α(L) is the anticenter of L, and recursively,

αλ+1(L)/αλ(L) = α(L/αλ(L)) for all ordinals λ,and αµ(L) =
⋃

ν<µ
αν(L) for the limit ordinals µ.

By definition, each term of this series is an ideal of L. The last term α∞(L) of this series is called

the upper hyperanticenter of L. A Leibniz algebra L is said to be hyperanticentral if it coincides

with the upper hyperanticenter. Denote by al(L) the length of upper anticentral series of L. If

L is hyperanticentral and al(L) is finite, then L is said to be antinilpotent.

If U, V the ideals of L, then we denote by (U, V) a subspace, generated by all elements

[u, v] + [v, u], u ∈ U, v ∈ V. Note that [u, v] + [v, u] ∈ ζ le f t(L) and (U, V) is an ideal of L [21].

Define the lower anticentral series of L

L = κ1(L) > κ2(L) > . . . κα(L) > κα+1(L) > . . . κδ(L)

by the following rule: κ1(L) = L, κ2(L) = (L, L), and recursively κλ+1(L) = (L, κλ(L)) for

all ordinals λ and κµ(L) =
⋂

ν<µ
κν(L) for the limit ordinals µ. For the last term κδ(L) we have

κδ(L) = (L, κδ(L)).

As we noted above in nilpotent Lie algebras and nilpotent groups the lower and the upper

central series have the same length. For antinilpotent Leibniz algebras Kurdachenko L.A.,

Semko N.N. and Subbotin I.Ya. [21] proved the analog of this statement: if L is an antinilpotent

Leibniz algebra, then the length of the lower anticentral series coincides with the length of the

upper anticentral series; moreover, the length of these two series is the smallest among the

lengths of all anticentral series of L.
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Чупордя В.А., Пипка О.О., Семко М.М., Ящук В.С. Алгебри Лейбнiца: короткий огляд сучасних

результатiв // Карпатськi матем. публ. — 2019. — Т.11, №2. — C. 250–257.

Нехай L – алгебра над полем F з двома бiнарними операцiями + та [·, ·]. Тодi L називати-

мемо лiвою алгеброю Лейбнiца, якщо вона задовольняє лiву тотожнiсть Лейбнiца [[a, b], c] =

[a, [b, c]]− [b, [a, c]] для всiх a, b, c ∈ L. Дана стаття є коротким оглядом деяких сучасних резуль-

татiв, пов’язаних зi скiнченновимiрними та нескiнченновимiрними алгебрами Лейбнiца.

Ключовi слова i фрази: алгебра Лейбнiца, циклiчна алгебра Лейбнiца, iдеал, субiдеал,

контраiдеал, центр, верхнiй (нижнiй) центральний ряд, скiнченновимiрна алгебра Лейбнiца,

нiльпотентна алгебра Лейбнiца, T-алгебра Лейбнiца, антицентр, антинiльпотентна алгебра

Лейбнiца.
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SOME DISTANCE BASED INDICES OF GRAPHS BASED ON FOUR NEW

OPERATIONS RELATED TO THE LEXICOGRAPHIC PRODUCT

For a (molecular) graph, the Wiener index, hyper-Wiener index and degree distance index are

defined as W(G) = ∑{u,v}⊆V(G) dG(u, v), WW(G) = W(G) + ∑{u,v}⊆V(G) dG(u, v)2, and DD(G) =

∑{u,v}⊆V(G) dG(u, v)(d(u/G) + d(v/G)), respectively, where d(u/G) denotes the degree of a ver-

tex u in G and dG(u, v) is distance between two vertices u and v of a graph G. In this paper, we

study Wiener index, hyper-Wiener index and degree distance index of graphs based on four new

operations related to the lexicographic product, subdivision and total graph.

Key words and phrases: Wiener index, degree distance index, hyper-Wiener index, lexicographic
product, subdivision, total graph.
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INTRODUCTION

In this paper G is a simple and connected graph with vertex set V = V(G) and edge set E =

E(G). The degree of a vertex v in G is the number of edges incident to v and denoted by d(v/G).

The distance dG(u, v) between any two vertices u and v of a graph G is equal to the length of a

shortest path connecting them. A line graph, L(G), is the graph whose vertices correspond to

the edges of G and two vertices of L(G) are adjacent if and only if the corresponding edges in

G are adjacent.

In chemical graph theory, a graphical invariant is a number related to a graph which is

structurally invariant. These invariant numbers are also known as the topological indices.

The well-known Zagreb indices are one of the oldest graph invariants firstly introduced by

Gutman and Trinajstić [18], where they examined the dependence of total π-electron energy

on molecular structures, and this was elaborated on in [17]. For a (molecular) graph G, the first

Zagreb index M1(G) and the second Zagreb index M2(G), are:

M1(G) = ∑
v∈V(G)

d(v/G)2 = ∑
uv∈E(G)

[d(u/G) + d(v/G)],

and

M2(G) = ∑
uv∈E(G)

d(u/G)d(v/G).

УДК 519.17
2010 Mathematics Subject Classification: 05C07, 05C12, 05C76.
Corresponding author: Dehgardi N.

c©Dehgardi N., Sheikholeslami S.M., Soroudi M., 2019



SOME DISTANCE BASED INDICES OF GRAPHS 259

For properties of the two Zagreb indices see [4–6] and the papers cited therein. In re-

cent years, some novel variants of Zagreb indices have been put forward, such as Zagreb

coindices [2, 10, 15], reformulated Zagreb indices [20, 24], Zagreb hyper index [3, 25], multi-

plicative Zagreb indices [13, 30], multiplicative sum Zagreb index [11, 28], and multiplicative

Zagreb coindices [29], etc. The Zagreb coindices are defined as:

M1(G) = ∑
uv 6∈E(G)

[d(u/G) + d(v/G)],

and

M2(G) = ∑
uv 6∈E(G)

d(u/G)d(v/G).

The Wiener index of G is denoted by W(G) and is defined by

W(G) = ∑
{u,v}⊆V(G)

dG(u, v). (1)

The name Wiener index or Wiener number for the quantity defined in Equation (1) is usual in

chemical literature, since Harold Wiener [27] in 1947 seems to be the first who considered it.

Wiener himself conceived W only for acyclic molecules and defined it in a slightly different-yet

equivalent-manner; the definition of the Wiener index in terms of distances between vertices

of a graph, such as in Equation (1), was first given by Hosoya [19]. Eliasi et. al [12], determined

the Wiener index of some graph operations.

The hyper-Wiener index of G is denoted by WW(G), and is defined as

WW(G) = W(G) + ∑
{u,v}⊆V(G)

dG(u, v)2.

Lukovits [23] derived formulas for the hyper-Wiener index of chains and trees which contain

one trivalent or tetravalent branching vertex, and this index is studied by several authors in

[1, 8, 16, 22]. Khalifeh et. al [21], determined the hyper-Wiener index of graph operations.

The degree distance of a graph G, DD(G), was introduced by Dobrynin and Kochetova [9]

and Gutman [14] as a weighted version of the Wiener index, and is defined as

DD(G) = ∑
{u,v}⊆V(G)

dG(u, v)(d(u/G) + d(v/G)).

In this paper, we study of the Wiener, hyper-Wiener and degree distance indices of graphs

based on operations related to the lexicographic, subdivision and total graph. For this purpose,

we recall some operations on graphs in the following.

The composition or lexicographic product of two connected graphs G1 and G2, denoted by G1[G2],

is a graph with vertex set V(G1) × V(G2) and two vertices u = (u1, v1) and v = (u2, v2) of

G1[G2] are adjacent if and only if either u1 is adjacent to u2 or u1 = u2 and v1 is adjacent with

v2. For a connected graph G, there are four related graphs as follows:

(i) S(G) is the graph obtained by inserting an additional vertex in each edge of G. Equiva-

lently, each edge of G is replaced by a path of length 2;

(ii) R(G) is the graph obtained from G by adding a new vertex corresponding to each edge

of G and joining each new vertex to the end vertices of the corresponding edge;
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(iii) Q(G) is the graph obtained from G by inserting a new vertex into each edge of G and

joining those pairs of new vertices on adjacent edges of G;

(iv) T(G) is the graph with vertex set V(G) ∪ E(G) and adjacency in T(G) is defined as adja-

cency or incidence for the corresponding elements of G.

The graphs S(G) and T(G) are called the subdivision graph and the total graph of G, respec-

tively.

Based on the lexicographic product of two connected graphs G1 and G2, Sarala et al. [26],

introduced four new operations on these graphs.

Let F ∈ {S, R, Q, T}. The F-product of G1 and G2, denoted by G1[G2]F, is defined by

F(G1)[G2] − E∗, where E∗ = {(u, v1)(u, v2) ∈ E(F(G1)[G2]) : u ∈ V(F(G1)) − V(G1) and

v1v2 ∈ E(G2)}, i.e., G1[G2]F is a graph with the vertex set V(G1[G2]F) = (V(G1) ∪ E(G1)) ×

V(G2) and two vertices u = (u1, v1) and v = (u2, v2) of G1[G2]F are adjacent if and only if

either [u1 = u2 ∈ V(G1) and v1v2 ∈ E(G2)] or [u1u2 ∈ E(F(G1)) and v1, v2 ∈ V(G2)].

Sarala et al. [26] determined the Zagreb indices of F-product of G1 and G2 where F ∈

{S, R, Q, T}, and Dehgardi et. al [7] computed the leap Zagreb indices of these graphs.

We will use the following results.

Theorem 1 ([7]). Let G1 and G2 be two connected graphs, and let G = G1[G2]F be the F-product

of G1 and G2. Then

dG((u, x), (v, y)) =



















1 if u = v ∈ V(G1), xy ∈ E(G2)

2 if u = v ∈ V(G1), xy 6∈ E(G2)

2 if u = v ∈ V(F(G1))− V(G1)

dF(G1)
(u, v) if u 6= v.

Theorem 2 ([15]). Let G be a graph with n vertices and m edges. Then

M1(G) + M1(G) = 2m(n − 1).

Theorem 3 ([15]). Let G be a graph with n vertices and m edges. Then

M2(G) + M2(G) = 2m2 −
1

2
M1(G).

Theorem 4 ([31]). Let G be a graph. Then for any v, v′ ∈ V(G),

1

2
dS(G)(v, v′) = dT(G)(v, v′) = dR(G)(v, v′) = dQ(G)(v, v′)− 1 = dG(v, v′).

Theorem 5 ([31]). Let G be a graph. Then for any e, e′ ∈ E(G),

1

2
dS(G)(e, e′) = dT(G)(e, e′) = dR(G)(e, e′)− 1 = dQ(G)(e, e′) = dL(G)(e, e′).

1 WIENER, HYPER WIENER, AND DEGREE DISTANCE INDICES FOR F-PRODUCT OF GRAPHS

In this section, we consider F ∈ {S, Q, R, T}, and compute the Wiener, hyper Wiener, and

degree distance indices for F-product of two connected graphs G1 and G2. Let |V(Gi)| = ni,

and |E(Gi)| = ε i for i = 1, 2. Throughout this section we assume that

∑1 := ∑{(u,x),(v,y)}⊆V(G),u=v∈V(G1),xy∈E(G2),

∑2 := ∑{(u,x),(v,y)}⊆V(G),u=v∈V(G1),xy/∈E(G2),

∑3 := ∑{(u,x),(v,y)}⊆V(G),u=v∈V(F(G1))−V(G1),x,y∈V(G2), and

∑4 := ∑{(u,x),(v,y)}⊆V(G),u 6=v,x,y∈V(G2).
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1.1 Wiener index and hyper Wiener index

Theorem 6. Let G1 and G2 be two connected graphs, and let G = G1[G2]F. Then

W(G) = n1n2(n2 − 1)− n1ε2 + ε1n2(n2 − 1) + n2
2W(F(G1)).

Proof. By Theorem 1, we have

W(G) = ∑{(u,x),(v,y)}⊆V(G) dG((u, x), (v, y))

= ∑1 1 + ∑2 2 + ∑3 2 + ∑4 dF(G1)
(u, v)

= n1ε2 + 2n1(
n2(n2−1)

2 − ε2) + 2ε1
n2(n2−1)

2 + n2
2W(F(G1))

= n1n2(n2 − 1)− n1ε2 + ε1n2(n2 − 1) + n2
2W(F(G1)).

Theorem 7. Let G1 and G2 be two connected graphs, and let G = G1[G2]F. Then

WW(G) = −4n1ε2 + 3n2(n2 − 1)(n1 + ε1) + n2
2WW(F(G1)).

Proof. By Theorem 1, we have

WW(G) = ∑{(u,x),(v,y)}⊆V(G)}[dG((u, x), (v, y)) + d2
G((u, x), (v, y))]

= ∑1 2 + ∑2 6 + ∑3 6 + ∑4[dF(G1)
(u, v) + d2

F(G1)
(u, v)]

= 2n1ε2 + 6n1(
n2(n2−1)

2 − ε2) + 6ε1
n2(n2−1)

2 + n2
2WW(F(G1))

= −4n1ε2 + 3n2(n2 − 1)(n1 + ε1) + n2
2WW(F(G1)).

1.2 Degree distance index

1.2.1 The case F=S

Theorem 8 ([26]). If G1 and G2 are two connected graphs of orders n1 and n2, respectively, and

G = G1[G2]S, then

d((u, x)/G) =

{

n2d(u/G1) + d(x/G2) if u ∈ V(G1),

2n2 if u ∈ V(S(G1))− V(G1).

Theorem 9. Let Gi be a connected graph of order ni, and size ε i for i = 1, 2, and let G = G1[G2]S.

Then

DD(G) = 2(n2 − 1)(4ε1n2
2 + ε2n1)− 4n2ε1ε2 + n1M1(G2) + 2n3

2DD(G1)

+ 4n2(ε2 − n2
2)W(G1) + 4n2

2(n
2
2 − ε2)W(L(G1)) + (2n2ε2 + 2n3

2)W(S(G1))

+ n3
2 ∑u∈V(G1),v∈V(S(G1))−V(G1)

d(u/G1)dS(G1)
(u, v).

Proof. Let eu be the corresponding edge to the new vertex u. We deduce from Theorems 1, 2,

3, 4, 5 and 8, that

DD(G) = ∑{(u,x),(v,y)}⊆V(G)[d((u, x)/G) + d((v, y)/G)]dG ((u, x), (v, y))

= ∑1[d((u, x)/G) + d((u, y)/G)]

+ 2 ∑2[d((u, x)/G) + d((u, y)/G)]

+ 2 ∑3[d((u, x)/G) + d((u, y)/G)]

+ ∑4[(d((u, x)/G) + d((v, y)/G))dS(G1 )
(u, v)],
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and

∑1[d((u, x)/G) + d((u, y)/G)] = ∑1[2n2d(u/G1) + d(x/G2) + d(y/G2)]

= 4n2ε2ε1 + n1M1(G2).

2 ∑2[d((u, x)/G) + d((u, y)/G)] = 2 ∑2[2n2d(u/G1) + d(x/G2) + d(y/G2)]

= 4n2
2ε1(n2 − 1)− 8n2ε1ε2 + 2n1M1(G2).

2 ∑3[d((u, x)/G) + d((u, y)/G)] = 2 ∑3 4n2 = 4n2
2ε1(n2 − 1).

∑
4

[(d((u, x)/G) + d((v, y)/G))dS(G1 )
(u, v)]

= ∑u 6=v,u,v∈V(G1),x,y∈V(G2)
[n2(d(u/G1) + d(v/G1)) + d(x/G2) + d(y/G2)]dS(G1)

(u, v)

+∑u 6=v,u,v∈V(S(G1))−V(G1),x,y∈V(G2)
4n2dS(G1)

(u, v)

+∑u∈V(G1),v∈V(S(G1))−V(G1),x,y∈V(G2)
[n2d(u/G1) + d(x/G2) + 2n2]dS(G1)

(u, v)

= 2n3
2DD(G1) + 2W(G1)(2M1(G2) + 2M1(G2) + 4ε2)

+ 4n3
2 ∑eu,ev∈V(L(G1))

2dL(G1)
(eu, ev) + n3

2 ∑u∈V(G1),v∈(V(S(G1))−V(G1))
d(u/G1)dS(G1)

(u, v)

+ (2n2ε2 + 2n3
2)∑u∈V(G1),v∈V(S(G1))−V(G1)

dS(G1)
(u, v)

= 2n3
2DD(G1) + 8ε2n2W(G1) + 8n3

2W(L(G1))

+ n3
2 ∑u∈V(G1),v∈V(S(G1))−V(G1)

d(u/G1)dS(G1)
(u, v)

+ (2n2ε2 + 2n3
2)[W(S(G1))− 2W(G1)− 2W(L(G1))].

Therefore

DD(G) = 2(n2 − 1)(4ε1n2
2 + ε2n1)− 4n2ε1ε2 + n1M1(G2) + 2n3

2DD(G1)

+ 4n2(ε2 − n2
2)W(G1) + 4n2

2(n
2
2 − ε2)W(L(G1)) + (2n2ε2 + 2n3

2)W(S(G1))

+ n3
2 ∑u∈V(G1),v∈V(S(G1))−V(G1)

d(u/G1)dS(G1)
(u, v).

1.2.2 The case F=R

Theorem 10 ([26]). If G1 and G2 are two connected graphs of orders n1 and n2, respectively,

and let G = G1[G2]R. Then

d((u, x)/G) =

{

2n2d(u/G1) + d(x/G2) if u ∈ V(G1)

2n2 if u ∈ V(R(G1))− V(G1).

Theorem 11. Let Gi be a connected graph of order ni, and size ε i for i = 1, 2, and let G =

G1[G2]R. Then

DD(G) = 2(n2 − 1)(6ε1n2
2 + ε2n1)− 8n2ε1ε2 + n1(M1(G2) + 2n3

2DD(G1)

+ 4ε2n2W(G1) + 4ε2) + 4n3
2[W(L(G1)) +

ε1(ε1−1)
2 ]

+ (2n2ε2 + 2n3
2)[W(R(G1))− W(G1)− W(L(G1))−

ε1(ε1−1)
2 ]

+ 2n3
2 ∑u∈V(G1),v∈V(R(G1))−V(G1)

d(u/G1)dR(G1)
(u, v).
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Proof. Let eu be the corresponding edge to the new vertex u. By Theorems 1, 2, 3, 4, 5 and 10,

DD(G) = ∑{(u,x),(v,y)}⊆V(G)[d((u, x)/G) + d((v, y)/G)]dG ((u, x), (v, y))

= ∑1[d((u, x)/G) + d((u, y)/G)]

+ 2 ∑2[d((u, x)/G) + d((u, y)/G)]

+ 2 ∑3[d((u, x)/G) + d((u, y)/G)]

+ ∑4[(d((u, x)/G) + d((v, y)/G))dR(G1 )
(u, v)],

and

∑1[d((u, x)/G) + d((u, y)/G)] = ∑1[4n2d(u/G1) + d(x/G2) + d(y/G2)]

= 8n2ε2ε1 + n1M1(G2),

2 ∑2[d((u, x)/G) + d((u, y)/G)] = 2 ∑2[4n2d(u/G1) + d(x/G2) + d(y/G2)]

= 8n2
2ε1(n2 − 1)− 16n2ε1ε2 + 2n1M1(G2),

2 ∑3[d((u, x)/G) + d((u, y)/G)] = 2 ∑3 4n2 = 4n2
2ε1(n2 − 1),

∑
4

[(d((u, x)/G) + d((v, y)/G))dR(G1 )
(u, v)]

= ∑u 6=v,u,v∈V(G1),x,y∈V(G2)
[2n2(d(u/G1) + d(v/G1)) + d(x/G2) + d(y/G2)]dR(G1)

(u, v)

+ ∑u 6=v,u,v∈V(R(G1))−V(G1),x,y∈V(G2)
4n2dR(G1)

(u, v)

+ ∑u∈V(G1),v∈V(R(G1))−V(G1),x,y∈V(G2)
[2n2d(u/G1) + d(x/G2) + 2n2]dR(G1)

(u, v)

= 2n3
2DD(G1) + W(G1)(2M1(G2) + 2M1(G2) + 4ε2)

+4n3
2 ∑eu,ev∈V(L(G1))

(dL(G1)(eu, ev) +1)+ 2n3
2 ∑u∈V(G1),v∈V(R(G1))−V(G1)

d(u/G1)dR(G1)(u, v)

+ (2n2ε2 + 2n3
2)∑u∈V(G1),v∈V(R(G1))−V(G1)

dR(G1)
(u, v)

= 2n3
2DD(G1) + 4ε2n2W(G1) + 4n3

2[W(L(G1)) +
ε1(ε1 − 1)

2
]

+ 2n3
2 ∑u∈V(G1),v∈V(R(G1))−V(G1)

d(u/G1)dR(G1)
(u, v)

+ (2n2ε2 + 2n3
2)[W(R(G1))− W(G1)− W(L(G1))−

ε1(ε1 − 1)

2
].

Then

DD(G) = 2(n2 − 1)(6ε1n2
2 + ε2n1)− 8n2ε1ε2 + n1M1(G2) + 2n3

2DD(G1)

+ 4ε2n2W(G1) + 4n3
2[W(L(G1)) +

ε1(ε1−1)
2 ]

+ (2n2ε2 + 2n3
2)[W(R(G1))− W(G1)− W(L(G1))−

ε1(ε1−1)
2 ]

+ 2n3
2 ∑u∈V(G1),v∈V(R(G1))−V(G1) d(u/G1)dR(G1)(u, v).

1.2.3 The case F=T

Theorem 12 ([26]). If G1 and G2 are two connected graphs of order n1, and n2, respectively,

and let T(G1) be the defined graph of G1 such that u is the new vertex corresponding to the

edge eu = ww′. Then in graph G = G1[G2]T we have

d((u, x)/G) =

{

n2d(u/G1) + d(x/G2) if u ∈ V(G1),

n2d(eu) if u ∈ V(T(G1))− V(G1).
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Theorem 13. Let Gi be a connected graph of order ni, and size ε i for i = 1, 2, and let G =

G1[G2]T . Then

DD(G) = 2(n2 − 1)(2ε1n2
2 + ε2n1)− 4n2ε1ε2 + n1M1(G2) + 2n2

2(n2 − 1)M1(G1)

+ n3
2DD(G1) + 4[ε2n2W(G1) + W(L(G1))] + n3

2DD(L(G1))

+ 2n2ε2[W(T(G1))− W(G1)− W(L(G1))]

+ n3
2 ∑u∈V(G1),v∈(V(T(G1))−V(G1))

[d(u/G1) + d(eu)]dT(G1)
(u, v).

Proof. Let eu be the corresponding edge to the new vertex u. We deduce from Theorems 1, 2,

3, 4, 5 and 12, that

DD(G) = ∑{(u,x),(v,y)}⊆V(G)[d((u, x)/G) + d((v, y)/G)]dG ((u, x), (v, y))

= ∑1[d((u, x)/G) + d((u, y)/G)]

+ 2 ∑2[d((u, x)/G) + d((u, y)/G)]

+ 2 ∑3[d((u, x)/G) + d((u, y)/G)]

+ ∑4[(d((u, x)/G) + d((v, y)/G))dT(G1 )
(u, v)].

and

∑1[d((u, x)/G) + d((u, y)/G)] = ∑1[2n2d(u/G1) + d(x/G2) + d(y/G2)]

= 4n2ε2ε1 + n1M1(G2).

2 ∑2[d((u, x)/G) + d((u, y)/G)] = 2 ∑2[2n2d(u/G1) + d(x/G2) + d(y/G2)]

= 4n2
2ε1(n2 − 1)− 8n2ε1ε2 + 2n1M1(G2).

2 ∑3[d((u, x)/G) + d((u, y)/G)] = 2 ∑3 2n2d(eu)

= 2n2
2(n2 − 1)M1(G1).

∑
4

[(d((u, x)/G) + d((v, y)/G))dT(G1 )
(u, v)]

= ∑u 6=v,u,v∈V(G1),x,y∈V(G2)
[n2(d(u/G1) + d(v/G1)) + d(x/G2) + d(y/G2)]dT(G1)

(u, v)

+∑u 6=v,u,v∈V(T(G1))−V(G1),x,y∈V(G2)
[n2(d(eu) + d(ev))dT(G1)

(u, v)]

+∑u∈V(G1),v∈V(T(G1))−V(G1),x,y∈V(G2)
[n2d(u/G1) + d(x/G2) + n2d(ev)]dT(G1)

(u, v)

= n3
2DD(G1) + W(G1)(2M1(G2) + 2M1(G2) + 4ε2)

+ n3
2 ∑u 6=v,u,v∈V(T(G1))−V(G1)

[d(eu/L(G1)) + d(ev/L(G1)) + 4]dL(G1)
(eu, ev)

+ n3
2 ∑u∈V(G1),v∈V(T(G1))−V(G1)

[d(u/G1) + d(eu)]dT(G1)
(u, v)

+ 2n2ε2 ∑u∈V(G1),v∈V(T(G1))−V(G1)
dT(G1)

(u, v)

= n3
2DD(G1) + n3

2DD(L(G1)) + 4[ε2n2W(G1) + W(L(G1))]

+ n3
2 ∑u∈V(G1),v∈V(T(G1))−V(G1)

[d(u/G1) + d(eu)]dT(G1)
(u, v)

+ 2n2ε2[W(T(G1))− W(G1)− W(L(G1))].

Hence

DD(G) = 2(n2 − 1)(2ε1n2
2 + ε2n1)− 4n2ε1ε2 + n1M1(G2) + 2n2

2(n2 − 1)M1(G1)

+ n3
2DD(G1) + 4[ε2n2W(G1) + W(L(G1))] + n3

2DD(L(G1))

+ 2n2ε2[W(T(G1))− W(G1)− W(L(G1))]

+ n3
2 ∑u∈V(G1),v∈(V(T(G1))−V(G1))

[d(u/G1) + d(eu)]dT(G1)
(u, v).
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1.2.4 The case F=Q

Theorem 14 ([26]). If G1 and G2 are two connected graphs of order n1 and n2, respectively, and

let Q(G1) be the graph obtained from G1 by inserting a new vertex into each edge of G1, then

joining with edges those pairs of new vertices on adjacent edges of G1. Suppose that u is the

new vertex inserted at the edge eu = ww′. Then in graph G = G1[G2]Q we have

d((u, x)/G) =

{

n2d(u/G1) + d(x/G2) if u ∈ V(G1),

n2d(eu) if u ∈ V(Q(G1))− V(G1).

Theorem 15. Let Gi be a connected graph of order ni, and size ε i for i = 1, 2, and let G =

G1[G2]Q. Then

DD(G) = 2(n2 − 1)(2ε1n2
2 + ε2n1)− 4n2ε1ε2 + n1M1(G2) + 2n2

2(n2 − 1)M1(G1)

+ n3
2(DD(G1) + M1(G1)) + 2ε2n2(2W(G1) + n2(n2 − 1)) + n3

2DD(L(G1))

+ 4W(L(G1)) + 2n2ε2[W(Q(G1))− W(G1)− W(L(G1))−
n1(n1−1)

2 ]

+ n3
2 ∑u∈V(G1),v∈V(Q(G1))−V(G1)

[(d(u/G1) + d(eu))dQ(G1)
(u, v)].

Proof. Let eu be the corresponding edge to the new vertex u. By Theorems 1, 2, 3, 4, 5 and 14,

DD(G) = ∑{(u,x),(v,y)}⊆V(G)[d((u, x)/G) + d((v, y)/G)]dG ((u, x), (v, y))

= ∑1[d((u, x)/G) + d((u, y)/G)] + 2 ∑2[d((u, x)/G) + d((u, y)/G)]

+ 2 ∑3[d((u, x)/G) + d((u, y)/G)]

+ ∑4[(d((u, x)/G) + d((v, y)/G))dQ(G1 )
(u, v)]

and

∑1[d((u, x)/G) + d((u, y)/G)] = ∑1[2n2d(u/G1) + d(x/G2) + d(y/G2)]

= 4n2ε2ε1 + n1M1(G2).

2 ∑2[d((u, x)/G) + d((u, y)/G)] = 2 ∑2[2n2d(u/G1) + d(x/G2) + d(y/G2)]

= 4n2
2ε1(n2 − 1)− 8n2ε1ε2 + 2n1M1(G2).

2 ∑
3

[d((u, x)/G) + d((u, y)/G)] = 2 ∑
3

2n2d(eu) = 2n2
2(n2 − 1)M1(G1).

∑
4

[(d((u, x)/G) + d((v, y)/G))dQ(G1 )
(u, v)]

= ∑u 6=v,u,v∈V(G1),x,y∈V(G2)
[n2(d(u/G1) + d(v/G1)) + d(x/G2) + d(y/G2)]dQ(G1)

(u, v)

+∑u 6=v,u,v∈V(Q(G1))−V(G1),x,y∈V(G2)
[n2(d(eu) + d(ev))dQ(G1)

(u, v)]

+∑u∈V(G1),v∈V(Q(G1))−V(G1),x,y∈V(G2)
[n2d(u/G1) + d(x/G2) + n2d(ev)]dQ(G1)

(u, v)

= n3
2(DD(G1) + M1(G1)) + (W(G1) +

n2(n2 − 1)

2
)(2M1(G2) + 2M1(G2) + 4ε2)

+ n3
2 ∑u 6=v,u,v∈V(T(G1))−V(G1)

[d(eu/L(G1)) + d(ev/L(G1)) + 4]dL(G1)
(eu, ev)

+ n3
2 ∑u∈V(G1),v∈V(Q(G1))−V(G1)

[(d(u/G1) + d(ev))dQ(G1)
(u, v)]

+ 2n2ε2 ∑u∈V(G1),v∈V(Q(G1))−V(G1)
dQ(G1)

(u, v)

= n3
2(DD(G1) + M1(G1)) + 2ε2n2(2W(G1) + n2(n2 − 1)) + n3

2DD(L(G1)) + 4W(L(G1))

+ n3
2 ∑u∈V(G1),v∈V(Q(G1))−V(G1)

[(d(u/G1) + d(eu))dQ(G1)
(u, v)]

+ 2n2ε2[W(Q(G1))− W(G1)− W(L(G1))−
n1(n1 − 1)

2
].
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Hence,

DD(G) = 2(n2 − 1)(2ε1n2
2 + ε2n1)− 4n2ε1ε2 + n1M1(G2) + 2n2

2(n2 − 1)M1(G1)

+ n3
2(DD(G1) + M1(G1)) + 2ε2n2(2W(G1) + n2(n2 − 1)) + n3

2DD(L(G1))

+ 4W(L(G1)) + 2n2ε2[W(Q(G1))− W(G1)− W(L(G1))−
n1(n1−1)

2 ]

+ n3
2 ∑u∈V(G1),v∈V(Q(G1))−V(G1)

[(d(u/G1) + d(eu))dQ(G1)
(u, v)].
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[2] Ashrafi A., Došlić T., Hamzeh A. The Zagreb coindices of graph operations. Discrete Appl. Math. 2010, 158,

1571–1578.

[3] Basavanagoud B., Patil S. A note on hyper-zagreb index of graph operations. Iran. J. Math. Chem. 2016, 7, 89–92.

doi:10.22052/IJMC.2016.12405

[4] Borovicanin B., Das K.C., Furtula B., Gutman I. Bounds for Zagreb indices. MATCH Commun. Math. Comput.

Chem. 2017, 78, 17–100.

[5] Das K.C., Gutman I. Some properties of the second Zagreb index. MATCH Commun. Math. Comput. Chem.

2004, 52, 103–112.

[6] Das K.C., Gutman I. The first Zagreb index 30 years after. MATCH Commun. Math. Comput. Chem. 2004, 50,

83–92.

[7] Dehgardi N., Sheikholeslami S.M., Soroudi M. On the leap Zagreb indices of graphs. (submitted).

[8] Diudea M. V., Parv B. Molecular topology. 25. HyperпїЅWiener index of dendrimers. J. Chem. Inf. Comput. Sci.

1995, 35, 1015–1018.

[9] Dobrynin A. A., Kochetova A. A. Degree Distance of a Graph: A Degree Analogue of the Wiener Index. J. Chem.

Inf. Comput. Sci. 1994, 34, 1082–1086.
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Дегардi Н, Шейхолесламi С.М., Сороудi М. Деякi дистанцiйнi iндекси графiв, що ґрунтуються

на чотирьох нових операцiях, якi вiдносяться до лексикографiчного добутку // Карпатськi матем.

публ. — 2019. — Т.11, №2. — C. 258–267.

Для (молекулярного) графу iндекс Вiнера, гiпервiнерiвський iндекс i iндекс степеневої вiд-

станi визначаються як W(G) = ∑{u,v}⊆V(G) dG(u, v), WW(G) = W(G) + ∑{u,v}⊆V(G) dG(u, v)2 i

DD(G) = ∑{u,v}⊆V(G) dG(u, v)(d(u/G) + d(v/G)) вiдповiдно. d(u/G) позначає степiнь верши-

ни u в G i dG(u, v) — вiдстань мiж двома вершинами u i v в графi G. У цiй статтi ми вивчаємо

iндекс Вiнера, гiпервiнерiвський iндекс i iндекс степеневої вiдстанi у графах, що ґрунтуються

на чотирьох нових операцiях, якi вiдносяться до лексикографiчного добутку, пiдроздiльностi

та тотального графу.

Ключовi слова i фрази: iндекс Вiнера, iндекс степеневої вiдстанi, гiпервiнерiвський iндекс,

лексикографiчний добуток, пiдроздiльнiсть, тотальний граф.
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PROPERTIES OF INTEGRALS WHICH HAVE THE TYPE OF DERIVATIVES OF

VOLUME POTENTIALS FOR ONE KOLMOGOROV TYPE ULTRAPARABOLIC

ARBITRARY ORDER EQUATION

In weighted Hölder spaces it is studied the smoothness of integrals, which have the structure

and properties of derivatives of volume potentials which generated by fundamental solutions of

the Cauchy problem for one ultraparabolic arbitrary order equation of the Kolmogorov type. The

coefficients in this equation depend only on the time variable. Special distances and norms are used

for constructing of the weighted Hölder spaces.

The results of the paper can be used for establishing of the correct solvability of the Cauchy prob-

lem and estimates of solutions of the given non-homogeneous equation in corresponding weighted

Hölder spaces.

Key words and phrases: ultraparabolic Kolmogorov type arbitrary order equation, an integral
which have the type of derivatives of the volume potential, weight Hölder norm, Hölder space of
increasing functions.
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INTRODUCTION

Properties of the corresponding volume potentials are very important when the fundamen-

tal solution is being constructed and investigated, correct solvability of the Cauchy problem is

being established and estimates of solutions for parabolic equations are being obtained. Such

properties have been established for parabolic equations in the sense of Petrovsky and for
−→
2b-

parabolic equations in the sense of Eidelman without any degenerations in works [5, 6, 8] and

for equations with degenerations on the initial hyperplane in works [6, 7, 10, 12, 13]. Volume

potentials for the degenerated arbitrary order parabolic equations of the Kolmogorov type

(ultraparabolic equations of the Kolmogorov type) were studied in [1–4, 6] and properties of

volume potentials with density from Hölder spaces of bounded functions which are increasing

as |x| → ∞ were established only for the second order equations.

It is convenient to obtain such properties if the statements about properties of integrals

which have the type of derivatives of volume potentials are proved first at all. These properties

are described by belonging such integrals to corresponding functional spaces according to the

type of spaces which density and kernel of the integral belong to. Statesments of such type are

УДК 517.956.4
2010 Mathematics Subject Classification: 35K70.
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proved in works [6, 8, 9, 11] for parabolic equations in the sense of Petrovsky and for parabolic

equations in the sense of Eidelman. By the way they have their own value.

In this paper there is an attempt to prove the corresponding statements in case of the Kol-

mogorov type parabolic equations. The major part of these equations are parabolic in the sense

of Petrovsky with respect to basic indepedent variables.

1 NOTATIONS AND ASSUMPTIONS

Let b, n1, n2, n3 be given positive integer numbers such that 1 ≤ n3 ≤ n2 ≤ n1, n :=

n1 + n2 + n3; x := (x1, x2, x3) ∈ R
n, xl := (xl1, . . . , xlnj

) ∈ R
nl , l ∈ L := {1, 2, 3}; T is a positive

number; if k1 := (k11, . . . , k1n1
) ∈ Z

n1
+ is a n1-dimensional index, then |k1| := k11 + . . . + k1n1

,

∂k1
x1

:= ∂k11
x11

· . . . · ∂
k1n1
x1n1

.

The paper is concerned with the study of properties of integrals of the type

u(t, x) :=

t
∫

0

dτ
∫

Rn

M(t, x; τ, ξ) f (τ, ξ)dξ, (t, x) ∈ Π(0,T] := (0, T]× R
n. (1)

The kernel M is a complex-valued function which has properties of the derivatives of the

fundamental solution G of the Cauchy problem for the equation

(∂t −
n2

∑
j=1

x1j∂x2j
−

n3

∑
j=1

x2j∂x3j
− ∑

|k1|≤2b

ak1
(t)∂k1

x1
)u(t, x) = f (t, x), (t, x) ∈ Π(0,T]. (2)

In the equation (2) ∂t − ∑
|k1|≤2b

ak1
(t)∂k1

x1
is parabolic by Petrovsky differential expression, and

coefficients ak1
are continuous on [0, T] functions.

The equation (2) belongs to a class of ultraparabolic equations arbitrary order 2b and it gen-

eralize known equation of A.N.Kolmogorov of diffusion with inertia. In [6] it was established

a structure and properties of the function G and its derivatives.

Let us describe properties of the kernel M of integral (1). For the purpose we denote:

q := 2b/(2b − 1), N := (n1 + (2b + 1)n2 + (4b + 1)n3)/(2b), ∆x′
x f (t, x) := f (t, x) − f (t, x′),

ρ(t, x, ξ) := t1−q
n1

∑
j=1

|x1j−ξ1j|
q + t1−2q

n2

∑
j=1

|x2j + tx1j − ξ2j |
q + t1−3q

n3

∑
j=1

|x3j + tx2j + 2−1t2x1j − ξ3j |
q,

d(x; x′) :=
3

∑
l=1

|xl − x′l|
1/(2b(l−1)+1), d1(x; x′; λ) := |x1 − x′1|

λ +
3

∑
l=2

|xl − x′l |
(λ+1)/(2b(l−1)+1),

d2(x; x′; λ) := |x1 − x′1|
λ + |x2 − x′2|

(λ+1)/(2b+1) + |x3 − x′3|
(λ+2b+1)/(4b+1), if t ∈ (0, T],

{x, x′, ξ} ⊂ R
n, λ ∈ (0, 1].

Note, that if d(x; x′) < 1, then

d2(x; x′; λ) ≤ d1(x; x′; λ) ≤ 41−λd(x; x′)λ, {x, x′} ⊂ R
n, λ ∈ (0, 1].

As the kernel of the integral (1), let us take the function M, which can be represented in the

form

M(t, x; τ, ξ) := (t − τ)−ν−NΩ(t, x; τ, ξ), 0 ≤ τ < t ≤ T, {x, ξ} ⊂ R
n, (3)

where ν ∈ (0, 2b + 1/(2b)], and the function Ω, with the values in C, is continuous and it

satisfies the conditions below with some numbers c > 0 and γ ∈ (0, 1]:
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A1. ∀{t, τ} ⊂ (0, T], τ < t, ∀x ∈ Rn :

∫

Rn

Ω(t, x; τ, ξ)dξ = 0 for ν ∈ (1 − 1/(2b), 1],

∫

R
n2+n3

Ω(t, x; τ, ξ)dξ2dξ3 = 0 for ν ∈ (1, 1 + 1/(2b)], (4)

∫

R
n3

Ω(t, x; τ, ξ)dξ3 = 0 for ν ∈ (1 + 1/(2b), 2b + 1/(2b)];

A2. ∃C > 0 ∀{t, τ} ⊂ (0, T], τ < t, ∀{x, ξ} ⊂ Rn :

|Ω(t, x; τ, ξ)| ≤ C exp{−cρ(t − τ, x, ξ}; (5)

A3. ∃C > 0 ∀{t, τ} ⊂ (0, T], τ < t, ∀{x, x′, ξ} ⊂ Rn, d(x; x′) < (t − τ)1/(2b) :

|∆x′
x Ω(t, x; τ, ξ)| ≤ C(d(x; x′))γ(t − τ)−γ/(2b) exp{−cρ(t − τ, x, ξ)}. (6)

The definition of the function M contains the number ν, c, and γ, which assume are consid-

ered to be given. By M(ν, c, γ) we denote a set of all functions M determined by formula (3),

in which the function Ω satisfies conditions A1 – A3 with given γ ∈ (0, 1], ν ∈ (0, 2b + 1/(2b)],

c ∈ R+.

It should be noted that for ν ∈ [1, 2b+ 1/(2b)] integral (1) with the function M ∈ M(ν, c, γ)

is treated as the limit

lim
h→0

t−h
∫

0

dτ
∫

Rn

M(t, x; τ, ξ) f (τ, ξ)dξ,

which exists for suitable f , because of condition A1.

Let us define spaces to which the functions f and u belong. They are the spaces of functions

which are continuous or satisfy Hölder condition and which have certain restrictions as |x| →

∞. Their behavior as |x| → ∞ will be described by the functions

ϕ(t, x) := exp
3

∑
l=1

kl(t, al)|xl |
q

or

ψ(t, x) := exp
3

∑
l=1

sl(t)|xl |
q, t ∈ [0, T], x ∈ R

n.

Here for a fixed number c0 from the interval (0, c), where c is the constant from conditions

A2 and A3, and for a set a := (a1, a2, a3) of non-negative numbers al , l ∈ L, such that T <

min
l∈L

(c0/al)
(2b−1)/(2b(l−1)+1):

kl(t, al) := c0al(c
2b−1
0 − a2b−1

l t2b(l−1)+1)1−q, l ∈ L;

s1(t) := k1(t, a1) + 2q−1tqk2(t, a2) + 2q−2t2qk3(t, a3),

s2(t) := 2q−1k2(t, a2) + 4q−1tqk3(t, a3), s3(t) := 4q−1k3(t, a3), t ∈ [0, T].
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The functions k(t) := (k1(t, a1), k2(t, a2), k3(t, a3)) and s(t) := (s1(t), s2(t), s3(t)), t ∈ [0, T],

have the following properties [6]:

k(0) = a, al ≤ kl(τ, al) < kl(t, al) < sl(t), 0 ≤ τ < t ≤ T, l ∈ L; (7)

kl(t − τ, kl(τ, al)) ≤ kl(t, al), 0 ≤ τ < t ≤ T, l ∈ L; (8)

−c0ρ(t − τ, x, ξ) +
3

∑
l=1

al |ξl |
q ≤

3

∑
l=1

kl(t, al)|x̄l(t)|
q ≤

3

∑
l=1

sl(t)|xl |
q,

0 ≤ τ < t ≤ T, {x, ξ} ⊂ R
n, (9)

where x̄l(t) := (x̄l1(t), x̄l2(t), . . . , x̄lnl
(t)), l ∈ L; x̄1j(t) := x1j, j ∈ {1, . . . , n1}; x̄2j(t) := x2j +

tx1j, j ∈ {1, . . . , n2}; x̄3j(t) := x3j + tx2j + 2−1t2x1j, j ∈ {1, . . . , n3}.

From these properties it is follows that

ϕ(τ, X1(t − τ)) ≤ ϕ(t, X1(t)) ≤ ψ(t, x),

exp{−c0ρ(t − τ, x, ξ)}ϕ(τ, ξ) ≤ ψ(t, x), 0 ≤ τ < t ≤ T, {x, ξ} ⊂ R
n, (10)

where X1(t) := (x̄1(t), x̄2(t), x̄3(t)).

For a given number λ ∈ (0, 1] we denote by C0, Cλ
ϕ, Cλ

1,ϕ and Cλ
2,ϕ spaces of continuous

functions u : Π[0,T] → C, for which the corresponding norms ||u||0ϕ , ||u||λϕ := ||u||0ϕ + [u]λϕ,

||u||λ1,ϕ := ||u||0ϕ + [u]λ1,ϕ and ||u||λ2,ϕ := ||u||0ϕ + [u]λ2,ϕ, where

||u||0ϕ := sup
(t,x)∈Π[0,T]

|u(t, x)|

ϕ(t, x)
,

[u]λϕ := sup
{(t,x),(t,x′)}⊂Π[0,T]

(t,x) 6=(t,x′)

|∆x′
x u(t, x)|

(d(x; x′))λ(ϕ(t, x) + ϕ(t, x′))
,

[u]λ1,ϕ := sup
{(t,x),(t,x′)}⊂Π[0,T]

(t,x) 6=(t,x′)

|∆x′
x u(t, x)|

d1(x; x′; λ)(ϕ(t, x) + ϕ(t, x′))
,

[u]λ2,ϕ := sup
{(t,x),(t,x′)}⊂Π[0,T]

(t,x) 6=(t,x′)

|∆x′
x u(t, x)|

d2(x; x′; λ)(ϕ(t, x) + ϕ(t, x′))

are finite.

Except these spaces we will use the space Cλ
ψ. The definition of this space is obtained if in

the definition of the space Cλ
ϕ the function ϕ replace by the function ψ.

2 MAIN THEOREM

Let us formulate the main results of this paper.
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Theorem. Let M ∈ M(ν, c, γ) and function u is determined by formula (1). Then the following

statements are valid:

a) if ν ≤ 1 − 1/(2b) and f ∈ C0, then u ∈ C
γ
ψ and

||u||γψ ≤ C|| f ||0ϕ ; (11)

b) if ν ∈ (1 − 1/(2b), 1] and f ∈ Cλ
ϕ, λ ∈ (0, 1], then with ν + (γ − λ)/(2b) < 1 we have

u ∈ C
γ
ψ and

||u||γψ ≤ C|| f ||λϕ , (12)

and with ν + (γ − λ)/(2b) > 1 we have u ∈ Cλ
ψ and

||u||λψ ≤ C|| f ||λϕ ; (13)

c) if ν ∈ (1, 1 + 1/(2b)] and f ∈ Cλ
1,ϕ, λ ∈ (0, 1], then with ν + (γ − 1 − λ)/(2b) < 1 we

have u ∈ C
γ
ψ and

||u||γψ ≤ C|| f ||λ1,ϕ , (14)

and with ν + (γ − 1 − λ)/(2b) > 1 we have u ∈ Cλ
ψ and

||u||λψ ≤ C|| f ||λ1,ϕ ; (15)

d) if ν ∈ (1 + 1/(2b), 2b + 1/(2b)] and f ∈ Cλ
2,ϕ, λ ∈ (0, 1], then with ν + 1 − 2b + (γ − 1 −

λ)/(2b) < 1 we have u ∈ C
γ
ψ and

||u||γψ ≤ C|| f ||λ2,ϕ , (16)

and with ν + 1 − 2b + (γ − 1 − λ)/(2b) > 1 we have u ∈ Cλ
ψ and

||u||λψ ≤ C|| f ||λ2,ϕ . (17)

The constants C in inequalities (11)–(17) depend only on the constant C from conditions A2

and A3, and also they depend on the numbers n1, n2, n3, b, ν, c, γ and λ.

Proof. Below various constants we will denote by same letters if we have no interest in con-

stant’s values.

a) Using the equality [6]
∫

Rn

(t − τ)−N exp{−c′ρ(t − τ, x, ξ)}dξ = C, 0 < τ < t ≤ T, x ∈ R
n, c′ > 0, (18)

with the help of (3), (5), (10) and of the definition of the norm || f ||0ϕ we have

|u(t, x)| ≤ C

t
∫

0

(t − τ)−ν−Ndτ
∫

Rn

exp{−cρ(t − τ, x, ξ)}| f (τ, ξ)|dξ = C

t
∫

0

(t − τ)−ν−Ndτ

∫

Rn

exp{−c0ρ(t − τ, x, ξ)}ϕ(τ, ξ)
| f (τ, ξ)|

ϕ(τ, ξ)
exp{−(c − c0)ρ(t − τ, x, ξ)}dξ

≤ Cψ(t, x)

t
∫

0

(t − τ)−νdτ|| f ||0ϕ = Cψ(t, x)t1−ν|| f ||0ϕ , (t, x) ∈ Π(0,T].

(19)
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Let x and x′ be arbitrary fixed points from Rn and d := d(x; x′). Let us estimate the differ-

ence ∆x′
x u.

When d2b
> t, with the help of estimate (19) we obtain

|∆x′
x u(t, x)| ≤ |u(t, x)|+ |u(t, x′)| ≤ C(ψ(t, x) + ψ(t, x′))t1−ν|| f ||0ϕ

≤ C(ψ(t, x) + ψ(t, x′))(d(x; x′))γt1−ν−γ/(2b)|| f ||0ϕ , t ∈ (0, T], {x, x′} ⊂ R
n, γ ∈ (0, 1].

(20)

Let us consider the case d2b
< t. We have

|∆x′
x u(t, x)| ≤

t
∫

0

dτ
∫

Rn

|∆x′
x M(t, x; τ, ξ)| | f (τ, ξ)|dξ, t ∈ (0, T], {x, x′} ⊂ R

n. (21)

Let us prove for the difference ∆M := ∆x′
x M(t, x; τ, ξ) the inequality

|∆M| ≤ Cdγ(t − τ)−γ/(2b)−ν−N exp{−cρ(t − τ, x, ξ)}. (22)

We shall distinguish the following cases: 1) d2b ≥ t − τ, 2) d2b
< t − τ.

In the first case, we obtain estimate (22) immediately from (3), (5) and from the inequality

|∆M| ≤ |M(t, x; τ, ξ)|+ |M(t, x′; τ, ξ)|. In case 2) note that

∆M = (t − τ)−ν−N∆x′
x Ω(t, x; τ, ξ).

Because of (6) we have estimate (22) in case 2).

With the help of (10), (18), (21) and (22) we get

|∆x′
x u(t, x)| ≤ C(ψ(t, x) + ψ(t, x′))dγt1−ν−γ/(2b)|| f ||0ϕ ,

t ∈ (0, T], {x, x′} ⊂ R
n, γ ∈ (0, 1 − 1/(2b)].

(23)

From (20) and (23) the estimate

[u]γψ ≤ C|| f ||0ϕ

follows and by this result and (19) the estimate (11) holds.

b) Let ν ∈ (1 − 1/(2b), 1]. Because of the first condition from (4) we represent integral (1)

in the form

u(t, x) =

t
∫

0

dτ
∫

Rn

M(t, x; τ, ξ)∆
X1(t−τ)
ξ f (τ, ξ)dξ, (t, x) ∈ Π(0,T], (24)

where X1(t) := (x̄1(t), x̄2(t), x̄3(t)) as in (10).

With the help of (3), (5) and (7)–(10) we get

|u(t, x)| ≤ C

t
∫

0

(t − τ)−ν−Ndτ
∫

Rn

exp{−(c − c0)ρ(t − τ, x, ξ)} exp{−c0ρ(t − τ, x, ξ)}

× (ϕ(τ, ξ) + ϕ(τ, X1(t − τ)))
|∆

X1(t−τ)
ξ f (τ, ξ)|

ϕ(τ, ξ) + ϕ(τ, X1(t − τ))
dξ ≤ C

t
∫

0

(t − τ)−ν−Ndτ

×
∫

Rn

exp{−(c − c0)ρ(t − τ, x, ξ)}(d(ξ, X1(t − τ)))λdξψ(t, x)[ f ]λϕ .
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Now let us use the inequality [6]

(d(ξ, X1(t − τ)))λ exp{−c̄ρ(t − τ, x, ξ)} ≤ C(t − τ)λ/(2b) exp{−c̄1ρ(t − τ, x, ξ)},

0 ≤ τ < t ≤ T, {x, ξ} ⊂ R
n, 0 < c̄1 < c̄, λ ∈ (0, 1].

(25)

For c̄ = c − c0 with the help of (18) we have

|u(t, x)| ≤ C

t
∫

0

(t − τ)−ν−N+λ/(2b)dτ
∫

Rn

exp{−c̄1ρ(t − τ, x, ξ)}dξψ(t, x)[ f ]λϕ

= Cψ(t, x)[ f ]λϕ

t
∫

0

(t − τ)−ν+λ/(2b)dτ = Cψ(t, x)[ f ]λϕt1−ν+λ/(2b), (t, x) ∈ Π(0,T].

(26)

Then

||u||0ψ ≤ C[ f ]λϕ . (27)

Let us estimate the difference ∆x′
x u. If d2b ≥ t, where d := d(x; x′), then under condition

(26) we have the estimate

|∆x′
x u(t, x)| ≤ C(ψ(t, x) + ψ(t, x′))[ f ]λϕt1−ν+λ/(2b), t ∈ (0, T], {x, ξ} ⊂ R

n.

We obtain

|∆x′
x u(t, x)| ≤ C(ψ(t, x) + ψ(t, x′))[ f ]λϕdλt1−ν

≤ C(ψ(t, x) + ψ(t, x′))dλ[ f ]λϕ , t ∈ (0, T], {x, ξ} ⊂ R
n;

(28)

and with ν + (γ − λ)/(2b) < 1 we receive

|∆x′
x u(t, x)| ≤ C(ψ(t, x) + ψ(t, x′))[ f ]λϕ t1−ν−(γ−λ)/(2b)tγ/(2b)

≤ C(ψ(t, x) + ψ(t, x′))[ f ]λϕ t1−ν−(γ−λ)/(2b)dγ

≤ C(ψ(t, x) + ψ(t, x′))dγ[ f ]λϕ , t ∈ (0, T], {x, ξ} ⊂ R
n.

(29)

It is sufficient to consider the case, where d2b
< t. By the first condition from (4) like (24)

we write

∆x′
x u(t, x) =

t−d2b
∫

0

dτ
∫

Rn

∆x′
x M(t, x; τ, ξ)∆

X1(t−τ)
ξ f (τ, ξ)dξ

+

t
∫

t−d2b

dτ
∫

Rn

M(t, x; τ, ξ)∆
X1(t−τ)
ξ f (τ, ξ)dξ

−

t
∫

t−d2b

dτ
∫

Rn

M(t, x′; τ, ξ)∆
X′

1(t−τ)
ξ f (τ, ξ)dξ =:

3

∑
l=1

Kl ,

where X′
1(t) := X1(t)|x=x′ .

Using (3), (6), the second inequality from (9), (10), we get

|K1| ≤ C

t−d2b
∫

0

(t − τ)−ν−Ndτ
∫

Rn

(d(x; x′))γ(t − τ)−γ/(2b) exp{−cρ(t − τ, x, ξ)}
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×(ϕ(τ, ξ) + ϕ(τ, X1(t − τ)))
|∆

X1(t−τ)
ξ f (τ, ξ)|

ϕ(τ, ξ) + ϕ(τ, X1(t − τ))
dξ ≤ C

t−d2b
∫

0

(t − τ)−ν−N−γ/(2b)dτ

×
∫

Rn

ψ(t, x) exp{−(c − c0)ρ(t − τ, x, ξ)}(d(ξ; X1(t − τ)))λdξdγ[ f ]λϕ .

Now let us use the inequality (25) and equality (18). We get

|K1| ≤ Cdγ

t−d2b
∫

0

(t − τ)−ν−(γ−λ)/(2b)dτψ(t, x)[ f ]λϕ . (30)

If ν + (γ − λ)/(2b) < 1, then from (30) we obtain

|K1| ≤ Cdγψ(t, x)[ f ]λϕ(t − τ)1−ν−(γ−λ)/(2b)|0
τ=t−d2b

= Cdγψ(t, x)[ f ]λϕ(t
1−ν−(γ−λ)/(2b)− d2b(1−ν)−γ+λ) ≤ Cdγψ(t, x)[ f ]λϕ .

If ν + (γ − λ)/(2b) > 1, then from (30) we obtain

|K1| ≤ Cdγψ(t, x)[ f ]λϕ(t − τ)1−ν−(γ−λ)/(2b)|t−d2b

τ=0 = Cdγψ(t, x)[ f ]λϕ(d
2b(1−ν)−γ+λ)

−t1−ν−(γ−λ)/(2b)) ≤ Cd2b(1−ν)+λψ(t, x)[ f ]λϕ = Cdλψ(t, x)[ f ]λϕ .

Let us estimate K2. With the help of (3), (9), (10) and (25) we obtain

|K2| ≤ C

t
∫

t−d2b

(t − τ)−ν−Ndτ
∫

Rn

(d(ξ; X1(t − τ)))λ exp{−cρ(t − τ, x, ξ)}

×(ϕ(τ, ξ) + ϕ(τ, X1(t − τ)))dξ[ f ]λϕ ≤ C

t
∫

t−d2b

(t − τ)−ν−Ndτ

×
∫

Rn

(d(ξ; X1(t − τ)))λ exp{−(c − c0)ρ(t − τ, x, ξ)}ψ(t, x)dξ[ f ]λϕ

≤ C

t
∫

t−d2b

(t − τ)−ν−N+λ/(2b)dτ
∫

Rn

exp{−c̄1ρ(t − τ, x, ξ)}ψ(t, x)dξ[ f ]λϕ .

Using (18) with c′ = c̄1, we have

|K2| ≤ C

t
∫

t−d2b

(t − τ)−ν+λ/(2b)dτψ(t, x)[ f ]λϕ .

Since −ν + λ/(2b) > −1, we obtain

|K2| ≤ C(t − τ)1−ν+λ/(2b)|t−d2b

τ=t ψ(t, x)[ f ]λϕ = Cd2b(1−ν)+λψ(t, x)[ f ]λϕ (31)

and thus, we have

|K2| ≤ Cdλd2b(1−ν)ψ(t, x)[ f ]λϕ ≤ Cdλψ(t, x)[ f ]λϕ ,
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if ν + (γ − λ)/(2b) > 1. In case, where ν + (γ − λ)/(2b) < 1, we receive from (31) the

following inequality

|K2| ≤ Cdγd2b(1−ν)+λ−γψ(t, x)[ f ]λϕ ≤ Cdγψ(t, x)[ f ]λϕ .

By the similar way we obtain

|K3| ≤ Cdλψ(t, x′)[ f ]λϕ

in case, where ν ∈ (1 − 1/(2b), 1], and

|K3| ≤ Cdγψ(t, x′)[ f ]λϕ

in case, where ν ∈ (1 − 1/(2b), 1] and ν − (γ − λ)/(2b) < 1.

From (27), (28), (29) and from the estimates for Kl, l ∈ L, the estimates (12) and (13) follow

with ν ∈ (1 − 1/(2b), 1].

c) Let ν ∈ (1, 1 + 1/(2b)]. Because of the second condition from (4) we represent integral

(1) in the form

u(t, x) =

t
∫

0

dτ
∫

R
n1

(

∫

R
n2+n3

(t − τ)−ν−NΩ(t, x; τ, ξ)∆
X2(t−τ)
ξ f (τ, ξ)dξ2 dξ3

)

dξ1,

(t, x) ∈ Π(0,T],

(32)

where X2(t) := (ξ1, x̄2(t), x̄3(t)), with x̄l(t), l ∈ {2, 3}, which were determined in (9).

With the help of (3), (5) and (7)–(10) we get

|u(t, x)| ≤ C

t
∫

0

(t − τ)−ν−Ndτ
∫

Rn

exp{−(c − c0)ρ(t − τ, x, ξ)}

× exp{−c0ρ(t − τ, x, ξ)}(ϕ(τ, ξ) + ϕ(τ, X2(t − τ))
|∆

X2(t−τ)
ξ f (τ, ξ)|

ϕ(τ, ξ) + ϕ(τ, X2(t − τ))
dξ

≤ C

t
∫

0

(t − τ)−ν−Ndτ
∫

Rn

exp{−(c − c0)ρ(t − τ, x, ξ)}d1(ξ; X2(t − τ); λ)dξψ(t, x)[ f ]λ1,ϕ .

The inequality below follows from definitions of d, d1 and X2.

d1(ξ; X2(t − τ); λ) =
3

∑
l=2

|ξl − x̄l(t − τ)|(λ+1)/(2b(l−1)+1)

≤ C

(

3

∑
l=2

|ξl − x̄l(t − τ)|1/(2b(l−1)+1

)λ+1

= C (d(ξ; X2(t − τ)))λ+1 ,

0 ≤ τ < t ≤ T, {x, ξ} ⊂ R
n, λ ∈ (0, 1].

Here C > 0 is some constant. Then taking into account inequality (25) we have

d1(ξ; X2(t − τ); λ) exp{−c̄ρ(t − τ, x, ξ)} ≤ C(d(ξ; X2(t − τ)))1+λ exp{−c̄ρ(t − τ, x, ξ)}

≤ C(t − τ)(1+λ)/(2b) exp{−c̄1ρ(t − τ, x, ξ)},

0 ≤ τ < t ≤ T, {x, ξ} ⊂ R
n, 0 < c̄1 < c̄, λ ∈ (0, 1].

(33)
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For c̄ = c − c0 with the help of (18) we have

|u(t, x)| ≤ C

t
∫

0

(t − τ)−ν−N+(1+λ)/(2b)dτ
∫

Rn

exp{−c̄1ρ(t − τ, x, ξ)}dξψ(t, x)[ f ]λ1,ϕ

= Cψ(t, x)[ f ]λ1,ϕ

t
∫

0

(t − τ)−ν+(1+λ)/(2b)dτ

= Cψ(t, x)[ f ]λ1,ϕt1−ν+(1+λ)/(2b), (t, x) ∈ Π(0,T].

(34)

Then

||u||0ψ ≤ C[ f ]λ1,ϕ . (35)

Let us estimate the difference ∆x′
x u. If d2b ≥ t, where d := d(x; x′), then under estimate (34)

we have the inequality

|∆x′
x u(t, x)| ≤ C(ψ(t, x) + ψ(t, x′))[ f ]λ1,ϕdλt1−ν+1/(2b)

≤ C(ψ(t, x) + ψ(t, x′))dλ[ f ]λ1,ϕ , t ∈ (0, T], {x, ξ} ⊂ R
n,

and with ν + (γ − 1 − λ)/(2b) < 1 we receive

|∆x′
x u(t, x)| ≤ C(ψ(t, x) + ψ(t, x′))[ f ]λ1,ϕt1−ν−(γ−1−λ)/(2b)tγ/(2b)

≤ C(ψ(t, x) + ψ(t, x′))[ f ]λ1,ϕt1−ν−(γ−1−λ)/(2b)dγ

≤ C(ψ(t, x) + ψ(t, x′))dγ[ f ]λ1,ϕ , t ∈ (0, T], {x, ξ} ⊂ R
n.

(36)

It is sufficient to consider the case, where d2b
< t. By the second condition from (4) like (32)

we write

∆x′
x u(t, x) =

t−d2b
∫

0

dτ
∫

R
n1

(

∫

R
n2+n3

∆x′
x M(t, x; τ, ξ)∆

X2(t−τ)
ξ f (τ, ξ)dξ2 dξ3

)

dξ1

+

t
∫

t−d2b

dτ
∫

R
n1

(

∫

R
n2+n3

M(t, x; τ, ξ)∆
X2(t−τ)
ξ f (τ, ξ)dξ2dξ3

)

dξ1

−

t
∫

t−d2b

dτ
∫

R
n1

(

∫

R
n2+n3

M(t, x′; τ, ξ)∆
X′

2(t−τ)
ξ f (τ, ξ)dξ2 dξ3

)

dξ1 =:
3

∑
l=1

K′
l ,

(37)

where X′
2(t) := X2(t)|x=x′ .

Using (3), (6), the second inequality from (9), (10), we get

|K′
1| ≤ C

t−d2b
∫

0

(t − τ)−ν−Ndτ
∫

Rn

(d(x; x′))γ(t − τ)−γ/(2b) exp{−cρ(t − τ, x, ξ)}

× (ϕ(τ, ξ) + ϕ(τ, X2(t − τ)))
|∆

X2(t−τ)
ξ f (τ, ξ)|

ϕ(τ, ξ) + ϕ(τ, X2(t − τ))
dξ ≤ C

t−d2b
∫

0

(t − τ)−ν−N−γ/(2b)dτ

×
∫

Rn

ψ(τ, x) exp{−(c − c0)ρ(t − τ, x, ξ)}d1(ξ; X2(t − τ); λ)dξdγ [ f ]λ1,ϕ .
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Now let us use the inequalities (33) and equality (18). We get

|K′
1| ≤ Cdγ

t−d2b
∫

0

(t − τ)−ν−N−γ/(2b)+(1+λ)/(2b)dτ
∫

Rn

ψ(τ, x) exp{−c̄1ρ(t − τ, x, ξ)}dξ

×dγ[ f ]λ1,ϕ = Cdγ

t−d2b
∫

0

(t − τ)−ν−(γ−1−λ)/(2b)dτψ(t, x)[ f ]λ1,ϕ .

If ν + (γ − 1 − λ)/(2b) > 1, then

|K′
1| ≤ Cdγψ(t, x)[ f ]λ1,ϕ(t − τ)1−ν−(γ−1−λ)/(2b)|t−d2b

τ=0 = Cdγψ(t, x)[ f ]λ1,ϕ(d
2b(1−ν)−γ+1+λ

−t1−ν−(γ−1−λ)/(2b)) ≤ Cd2b(1−ν)+1+λψ(t, x)[ f ]λ1,ϕ ≤ Cdλψ(t, x)[ f ]λ1,ϕ .

If ν + (γ − 1 − λ)/(2b) < 1, then

|K′
1| ≤ Cdγψ(t, x)[ f ]λ1,ϕ(t − τ)1−ν−(γ−1−λ)/(2b)|0

τ=t−d2b = Cdγψ(t, x)[ f ]λ1,ϕ

×(t1−ν−(γ−1−λ)/(2b)− d2b(1−ν)−γ+1+λ) ≤ Cdγψ(t, x)[ f ]λ1,ϕ .

Let us estimate K′
2. With the help of (3), (9), (10) and (33) we obtain

|K′
2| ≤ C

t
∫

t−d2b

(t − τ)−ν−Ndτ
∫

Rn

d1(ξ; X2(t − τ); λ) exp{−cρ(t − τ, x, ξ)}

×(ϕ(τ, ξ) + ϕ(τ, X2(t − τ)))dξ[ f ]λ1,ϕ ≤ C

t
∫

t−d2b

(t − τ)−ν−Ndτ

×
∫

Rn

d1(ξ; X2(t − τ); λ) exp{−(c − c0)ρ(t − τ, x, ξ)}ψ(t, x)dξ[ f ]λ1,ϕ

≤ C

t
∫

t−d2b

(t − τ)−ν−N+(1+λ)/(2b)dτ
∫

Rn

exp{−c̄1ρ(t − τ, x, ξ)}ψ(t, x)dξ[ f ]λ1,ϕ .

Using (18) with c′ = c̄1, we have

|K′
2| ≤ C

t
∫

t−d2b

(t − τ)−ν+(1+λ)/(2b)dτψ(t, x)[ f ]λ1,ϕ .

Since ν − (1 + λ)/(2b) < 1, we obtain

|K′
2| ≤ C(t − τ)1−ν+(1+λ)/(2b)|t−d2b

τ=t ψ(t, x)[ f ]λ1,ϕ = Cd2b(1−ν)+1+λψ(t, x)[ f ]λ1,ϕ . (38)

The estimate

|K′
2| ≤ Cdγd2b(1−ν)+1+λ−γψ(t, x)[ f ]λ1,ϕ ≤ Cdγψ(t, x)[ f ]λ1,ϕ



PROPERTIES OF INTEGRALS WHICH HAVE THE TYPE OF DERIVATIVES OF VOLUME POTENTIALS 279

follow from (38) if ν + (γ − 1 − λ)/(2b) < 1, and the estimate

|K′
2| ≤ Cdλd2b(1−ν)+1ψ(t, x)[ f ]λ1,ϕ ≤ Cdλψ(t, x)[ f ]λ1,ϕ

if ν + (γ − 1 − λ)/(2b) > 1.

By the similar way we obtain

|K′
3| ≤ Cdγψ(t, x′)[ f ]λ1,ϕ

in case, where ν + (γ − 1 − λ)/(2b) < 1, and

|K′
3| ≤ Cdλψ(t, x′)[ f ]λ1,ϕ

in the case, where ν + (γ − 1 − λ)/(2b) > 1.

From (35), (36), (37) and from estimates for K′
l , l ∈ L, the estimates (14) and (15) follow.

d) This case can be proved by the similar way as the case c). We must use the third equality

from (4); representation of the integral (1) in the form

u(t, x) =

t
∫

0

dτ
∫

R
n1+n2

(

∫

R
n3

(t − τ)−ν−NΩ(t, x; τ, ξ)∆
X3(t−τ)
ξ f (τ, ξ)dξ3

)

dξ1dξ2, (t, x) ∈ Π(0,T],

where X3(t) := (ξ1, ξ2, x̄3(t)), with x̄3(t), which was determined in (9); and estimates

d2(ξ; X3(t − τ); λ) exp{−c̄ρ(t − τ, x, ξ)} ≤ C(d(ξ; X3(t − τ)))1+2b+λ exp{−c̄ρ(t − τ, x, ξ)}

≤ C(t − τ)(1+2b+λ)/(2b) exp{−c̄1ρ(t − τ, x, ξ)},

0 ≤ τ < t ≤ T, {x, ξ} ⊂ R
n,

0 < c̄1 < c̄, λ ∈ (0, 1].

These estimates are obtained in the same way as estimates (33).
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Дронь В.С., Iвасишен С.Д., Мединський I.П. Властивостi iнтегралiв типу похiдних вiд об’ємного

потенцiалу для одного ультрапараболiчного рiвняння типу Колмогорова довiльного порядку // Кар-

патськi матем. публ. — 2019. — Т.11, №2. — C. 268–280.

Розглядаються iнтеграли, якi мають структуру та властивостi, подiбнi до похiдних вiд

об’ємних потенцiалiв, породжених фундаментальним розв’язком задачi Кошi для ультрапа-

раболiчного рiвняння типу Колмогорова довiльного порядку. Коефiцiєнти цього рiвняння

залежать тiльки вiд часової змiнної. Встановлюється належнiсть цих iнтегралiв до вiдповiдних

вагових просторiв Гельдера, залежно вiд того, до яких просторiв належить густина та ядро

iнтеграла.

Для побудови просторiв Гельдера використовуються спецiальнi вiдстанi та ваговi норми.

Вiдстанi враховують анiзотропнiсть за просторовими змiнними рiвняння, яке породжує iнте-

грали, що розглядаються. Ваговими функцiями є експоненти, якi необмежено зростають при

|x| → ∞ i тип їх зростання спецiальним способом залежить вiд змiнної t.

Результати роботи можуть бути використанi для встановлення коректної розв’язностi за-

дачi Кошi та оцiнок розв’язкiв даного неоднорiдного рiвняння у вiдповiдних вагових просто-

рах Гельдера.

Ключовi слова i фрази: ультрапараболiчне рiвняння типу Колмогорова довiльного порядку,

iнтеграл типу похiдних вiд об’ємного потенцiалу, вагова гельдерова норма, простiр Гельдера

зростаючих функцiй.
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ESTIMATES OF APPROXIMATIVE CHARACTERISTICS OF THE CLASSES BΩ
p,θ OF

PERIODIC FUNCTIONS OF SEVERAL VARIABLES WITH GIVEN MAJORANT OF

MIXED MODULI OF CONTINUITY IN THE SPACE Lq

In this paper, we continue the study of approximative characteristics of the classes BΩ
p,θ of peri-

odic functions of several variables whose majorant of the mixed moduli of continuity contains both

exponential and logarithmic multipliers. We obtain the exact-order estimates of the orthoprojec-

tive widths of the classes BΩ
p,θ in the space Lq, 1 ≤ p < q < ∞, and also establish the exact-order

estimates of approximation for these classes of functions in the space Lq by using linear operators

satisfying certain conditions.

Key words and phrases: orthoprojective width, mixed modulus of continuity, linear operator,
Vallée-Poussin kernel, Fejér kernel.
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INTRODUCTION

Let R
d, d ≥ 1 denote d-dimensional space with elements

x = (x1, . . . , xd), (x, y) = x1y1 + . . . + xdyd

and let Lp(πd), 1 ≤ p < ∞, be the space of functions f (x) = f (x1, . . . , xd), which are 2π-

periodic in each variable and summable in degree p on the cube πd =
d

∏
j=1

[0; 2π] for which the

norm is defined as follows:

‖ f‖Lp(πd)
= ‖ f‖p =

(
(2π)−d

∫

πd

| f (x)|p dx

) 1
p

.

Respectively, L∞(πd) is the space of essentially bounded functions f (x) = f (x1, . . . , xd),

which are 2π- periodic in each variable, with the norm

‖ f‖L∞ (πd)
= ‖ f‖∞ = ess sup

x∈πd

| f (x)|.

Further, we assume that, for functions f ∈ Lp(πd), the following additional condition holds:

∫ 2π

0
f (x)dxj = 0 j = 1, d.

УДК 517.51
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For f ∈ Lp(πd), 1 ≤ p ≤ ∞, and t = (t1, . . . , td), tj ≥ 0, j = 1, d, we consider the mixed

modulus of continuity of the order l

Ωl( f , t)p = sup
|hj|≤tj

j=1,d

‖∆l
h f (·)‖p ,

where l ∈ N, ∆l
h f (x) = ∆l

h1
. . . ∆l

hd
f (x) = ∆l

hd
(. . . (∆l

h1
f (x))) is a mixed difference of the order

l with a vector step h = (h1, . . . , hd), and the difference of the lth order with a step hj in the

variable xj is defined as follows:

∆l
hj

f (x) =
l

∑
n=0

(−1)l−nCn
l f (x1, . . . , xj−1, xj + nhj, xj+1, . . . , xd).

Let Ω(t) = Ω(t1, . . . , td) be a given function of the type of a mixed modulus of continuity

of the order l, which satisfies the following conditions:

1) Ω(t) > 0, tj > 0, j = 1, d; Ω(t) = 0,
d

∏
j=1

tj = 0;

2) Ω(t) is nondecreasing in each variable;

3) Ω(m1t1, . . . , mdtd) ≤

(
d

∏
j=1

mj

)l

Ω(t), mj ∈ N, j = 1, d;

4) Ω(t) is continuous for tj ≥ 0, j = 1, d.

We assume that Ω(t) satisfies also the conditions (S) and (Sl), which are called the Bari-

Stechkin conditions [1]. This means the following.

A function of one variable ϕ(τ) ≥ 0 satisfies the condition (S) if ϕ(τ)/τα almost increases

for some α > 0, i.e., there exists a constant C1 > 0 independent of τ1 and τ2 and such that

ϕ(τ1)

τα
1

≤ C1
ϕ(τ2)

τα
2

, 0 < τ1 ≤ τ2 ≤ 1.

A function ϕ(τ) ≥ 0 satisfies the condition (Sl) if ϕ(τ)/τγ almost decreases for some

0 < γ < l, i.e., there exists a constant C2 > 0 independent of τ1 and τ2 and such that

ϕ(τ1)

τ
γ
1

≥ C2
ϕ(τ2)

τ
γ
2

, 0 < τ1 ≤ τ2 ≤ 1.

We say that Ω(t) satisfies the conditions (S) and (Sl) if Ω(t) satisfies these conditions in

each variable tj for fixed ti, i 6= j.

Thus, let 1 ≤ p ≤ ∞, 1 ≤ θ ≤ ∞, and let Ω(t) be a given function of the type of a mixed

modulus of continuity of the order l. Then the classes BΩ
p,θ are defined in the following way [21]:

BΩ
p,θ =

{
f ∈ Lp(πd) : ‖ f‖BΩ

p,θ
≤ 1

}
,

where

‖ f‖BΩ
p,θ

=

{ ∫

πd

(
Ωl( f , t)p

Ω(t)

)θ d

∏
j=1

dtj

tj

} 1
θ

, 1 ≤ θ < ∞,
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‖ f‖BΩ
p,∞

= sup
t>0

Ωl( f , t)p

Ω(t)
,

(the expression t > 0 for t = (t1, . . . , td) is equivalent to tj > 0, j = 1, d).

We note that, for θ = ∞, the classes BΩ
p,θ coincide with the classes HΩ

p , which were consid-

ered by N.N. Pustovoitov in [13].

In the subsequent, it will be convenient to use the equivalent (to within absolute constants)

definition of the classes BΩ
p,θ. For this purpose, we need the corresponding notations.

To every vector s = (s1, . . . , sd), sj ∈ N, j = 1, d, we put the set

ρ(s) =
{

k = (k1, . . . , kd) : 2sj−1 ≤ |kj| < 2sj , kj ∈ Z, j = 1, d
}

in correspondence, and, for f ∈ Lp(πd), 1 < p < ∞, we denote

δs( f ) := δs( f , x) = ∑
k∈ρ(s)

f̂ (k)ei(k,x),

where

f̂ (k) = (2π)−d
∫

πd

f (t)e−i(k,t)dt

are the Fourier coefficients of the function f .

Let 1 < p < ∞, 1 ≤ θ ≤ ∞ and let Ω(t) be a given function of the type of a mixed modulus

of continuity of the order l that satisfies the conditions 1 – 4, (S) and (Sl). Then, to within

absolute constants, the classes BΩ
p,θ can be defined as follows [21]:

BΩ
p,θ =

{
f ∈ Lp(πd) : ‖ f‖BΩ

p,θ
=

(

∑
s

Ω−θ(2−s)‖δs( f )‖θ
p

) 1
θ

≤ 1

}
(1)

for 1 ≤ θ < ∞ and

BΩ
p,∞ =

{
f ∈ Lp(πd) : ‖ f‖BΩ

p,∞
= sup

s

‖δs( f )‖p

Ω(2−s)
≤ 1

}
. (2)

Here and below, Ω(2−s) = Ω(2−s1 , . . . , 2−sd), sj ∈ N, j = 1, d.

The given definitions of the classes BΩ
p,θ can be extended also to the extreme values p = 1

and p = ∞, by modifying the "blocks" δs( f ) in (1) and (2). Let Vn(t) stand for a Vallée-Poussin

kernel of the order 2n − 1, i.e.,

Vn(t) = 1 + 2
n

∑
k=1

cos kt + 2
2n−1

∑
k=n+1

(
1 −

k − n

n

)
cos kt.

To every vector s = (s1, . . . , sd), sj ∈ N, j = 1, d, we put the polynomial

As(x) =
d

∏
j=1

(
V

2
sj (xj)− V

2
sj−1(xj)

)

in correspondence. For f ∈ Lp(πd), 1 ≤ p ≤ ∞, by As( f ) we denote the convolution

As( f ) := As( f , x) = ( f ∗ As)(x).
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Then, to within absolute constants, the classes BΩ
p,θ, 1 ≤ p ≤ ∞, can be defined as follows:

BΩ
p,θ =

{
f ∈ Lp(πd) : ‖ f‖BΩ

p,θ
=

(

∑
s

Ω−θ(2−s)‖As( f )‖θ
p

) 1
θ

≤ 1

}
(3)

for 1 ≤ θ < ∞ and

BΩ
p,∞ =

{
f ∈ Lp(πd) : ‖ f‖BΩ

p,∞
= sup

s

‖As( f )‖p

Ω(2−s)
≤ 1

}
. (4)

We note that relations (3) and (4) were obtained in works [18] and [13], respectively.

We note also that, for Ω(t) =
d

∏
j=1

t
rj

j , 0 < rj < l, the classes BΩ
p,θ are analogs of the well-

known Besov Br
p,θ, 1 ≤ θ < ∞, and Nikol’skii Br

p,∞ = Hr
p classes (see, e.g., [8]).

In what follows, we study the classes BΩ
p,θ that are defined by the function Ω(t):

Ω(t) = Ω(t1, . . . , td) =





d

∏
j=1

tr
j

(
log 1

tj

)bj

+

, if tj > 0, j = 1, d;

0, if
d

∏
j=1

tj = 0.

(5)

Here and below, we consider the logarithms with base 2, and

(
log

1

tj

)

+

= max

{
1, log

1

tj

}
.

In addition, we assume that bj ∈ R, j = 1, d, and 0 < r < l. Hence, properties 1–4 and the

conditions (S) and (Sl) are satisfied for the function Ω(t) of the form (5).

In the present paper we obtain the exact-order estimates of orthoprojective widths of the

classes BΩ
p,θ in the space Lq, 1 ≤ p < q < ∞. We recall that the notion of orthoprojective width

was introduced by V. N. Temlyakov [23].

Let {ui}
M
i=1 be an orthonormalized system of functions ui ∈ L∞(πd), f ∈ Lq(πd),

1 ≤ q ≤ ∞. We set

( f , ui) = (2π)−d
∫

πd

f (x)ui(x)dx,

where ui is the function complex conjugate to the function ui.

To every function f ∈ Lq(πd), 1 ≤ q ≤ ∞, we put an approximation of the form
M

∑
i=1

( f , ui)ui

in correspondence, i.e., the orthogonal projection of the function f onto the subspace generated

by the system of functions {ui}
M
i=1. Then, for the functional class F ⊂ Lq(πd), the quantity

d⊥M(F, Lq) = inf
{ui}

M
i=1

sup
f∈F

∥∥∥∥ f −
M

∑
i=1

( f , ui)ui

∥∥∥∥
q

(6)

is called the orthoprojective width (the Fourier-width) of this class in the space Lq(πd).

In addition to orthoprojective widths, we study the quantities dB
M(F, Lq) introduced by V.N.

Temlyakov [22]). They are defined as follows:
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dB
M(F, Lq) = inf

G∈LM(B)q

sup
f∈F∩D(G)

‖ f − G f‖q . (7)

Here, LM(B)q stands for a set of linear operators satisfying the conditions:

a) the domain of definition D(G) of these operators contains all trigonometric polynomials,

and their domain of values is contained in a subspace with dimension M of the space

Lq(πd);

b) there exists a number B ≥ 1 such that, for all vectors k = (k1, . . . , kd), kj ∈ Z, j = 1, d, the

inequality
∥∥∥Gei(k,·)

∥∥∥
2
≤ B holds.

We note that LM(1)2 contains the operators of orthogonal projection onto the spaces with

dimension M and the operators that are set on an orthonormalized system of functions with

the help of the multiplier defined by a sequence {λm} such that |λm| ≤ 1 for all m.

From (6) and (7), it is easy to see that the quantities d⊥M(F, Lq) and dB
M(F, Lq) are connected

with each other by the inequality

dB
M(F, Lq) ≤ d⊥M(F, Lq). (8)

At present, a lot of works are known, in which the quantities d⊥M(F, Lq) and dB
M(F, Lq) were

studied for various classes of functions. We mention works [14, 16, 17, 22, 24], where the quan-

tities (6) and (7) were considered for the classes of functions of many variables Wr
p,α, Hr

p, Br
p,θ,

and HΩ
p (see also numerous references therein). The quantities d⊥M(BΩ

p,θ, Lq) and dB
M(BΩ

p,θ, Lq)

for the classes of functions of many variables with a given function Ω(t) of the form (5) under

the condition bj < r, j = 1, d, were considered in works [4–7].

1 AUXILIARY ASSERTIONS

We now give several known assertions, which are used in the subsequent considerations.

As was noted above, Ω(t) is a function of the form (5). For a natural N, we set

χ(N) =
{

s = (s1, . . . , sd) : sj ∈ N, j = 1, d, Ω(2−s) ≥
1

N

}
,

Q(N) =
⋃

s∈χ(N)

ρ(s).

We note that the approximation of certain classes of periodic functions of many variables

with mixed generalized smoothness by trigonometric polynomials with "numbers" of harmon-

ics from the sets that are analogs of Q(N) was started in work [15]. Later, the approximations

by trigonometric polynomials with "numbers" of harmonics from the sets Q(N) were studied

in works [4], [19], [20] and other ones.

The following proposition is true.

Lemma 1 ([14]). For the number of elements of the set Q(N), the following ordinal equalities

hold:

|Q(N)| ≍ N
1
r
(

log N
)− b1

r −...− bν
r +ν−1

,
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if b1 ≤ . . . ≤ bν < r < bν+1 ≤ . . . ≤ bd;

|Q(N)| ≍ N
1
r
(

log N
)− b1

r ,

if r ≤ b1 ≤ . . . ≤ bd, b2 > r.

Here and below, the notation µ1 ≪ µ2 for positive functions µ1(N) and µ2(N) means that

there exists a constant C > 0 such that, ∀N ∈ N, the inequality µ1(N) ≤ Cµ2(N) holds.

The relation µ1 ≍ µ2 holds if µ1 ≪ µ2 and µ1 ≫ µ2. We note also that all constants Ci, i =

1, 2, . . . , which are used in what follows, can depend only on parameters that are contained in

the definitions of a class and a dimension d of the space R
d.

To formulate the following assertions, we note that, according to (5), the definition of a set

χ(N) takes the form

χ(N) =
{

s = (s1, . . . , sd) : sj ∈ N, j = 1, d,
d

∏
j=1

2rsjs
bj

j ≤ N
}

.

Therefore,

χ⊥(N) = N
d \ χ(N).

Let

Θ(N) =
{

s = (s1, . . . , sd) : sj ∈ N, j = 1, d,
1

2l N
≤ Ω(2−s) <

1

N

}
.

In work [11], it was established that the number of elements of the set Θ(N) satisfies the

ordinal equality

|Θ(N)| ≍ (log N)d−1.

Lemma 2 ([14]). For the function Ω(t) defined by equality (5) for 0 < β < r, 0 < p < ∞ the

relation

∑
s∈χ⊥(N)

(
Ω(2−s)2‖s‖1β

)p
≪ ∑

s∈Θ(N)

(
Ω(2−s)2‖s‖1β

)p

holds, where ‖s‖1 = s1 + . . . + sd, sj ∈ N.

Lemma 3 ([14]). If γ1 ≤ . . . ≤ γν < 1 < γν+1 ≤ . . . ≤ γd, then

∑
s∈Θ(N)

d

∏
j=1

s
−γj

j ≍
(

log N
)−γ1−...−γν+ν−1

.

If 1 ≤ γ1 ≤ . . . ≤ γd, γ2 > 1, then

∑
s∈Θ(N)

d

∏
j=1

s
−γj

j ≍
(

log N
)−γ1.

Lemma 4 ([22]). Let 1 ≤ p < q < ∞ and f ∈ Lp(πd). Then

‖ f‖
q
q ≪ ∑

s

(
‖δs( f )‖p 2

‖s‖1

(
1
p−

1
q

))q

.
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Lemma 5 ([24]). Let A be the linear operator given by the equality

Aei(k,x) =
M

∑
m=1

ak
mψm(x),

where
{

ψm(x)
}M

m=1
is the set of functions for which

‖ψm(·)‖2 ≤ 1, m = 1, . . . , M.

Then, for any trigonometric polynomial t, the following inequality holds:

min
y=x

Re At(x − y) ≤

(
M

M

∑
m=1

∑
k

|ak
m t̂(k)|2

) 1
2

.

Theorem 1 ([10]). Let Tn be a trigonometric polynomial of the order n = (n1, . . . , nd), i.e.,

Tn(x) = ∑
|k1|≤n1

. . . ∑
|kd|≤nd

ck1,...,kd
ei(k,x),

where nj, j = 1, d are natural numbers, and ck1,...,kd
are any coefficients. Then, for 1 ≤ p < q ≤

∞ the inequality

‖Tn‖q ≤ 2d

( d

∏
j=1

nj

) 1
p−

1
q

‖Tn‖p (9)

holds.

Inequality (9) was established by S. M. Nikol’skii and is called the "inequality of different

metrics". In the one-dimensional case for p = ∞, the corresponding inequality was proved by

D. Jackson [3].

Theorem 2 (Littlewood-Paley theorem; see, e.g., [9], p. 65). Let p ∈ (1, ∞). Then there exist

positive numbers C3(p) and C4(p) such that, for every function f ∈ Lp(πd), the following

relations are true:

C3(p)|| f ||p ≤

∥∥∥∥∥

(
∑

s

|δs( f )|2
) 1

2

∥∥∥∥∥
p

≤ C4(p)‖ f‖p .

2 MAIN RESULTS

Passing to the statement of the propositions and their proof, we assume that M = |Q(N)|.

First, we consider case b1 ≤ . . . ≤ bν < r < bν+1 ≤ . . . ≤ bd. Then, according to Lemma 1, we

have

M ≍ N
1
r
(

log N
)− b1

r −...− bν
r +ν−1

,

log M ≍ log N, N ≍ Mr
(

log M
)b1+...+bν−(ν−1)r

.

The following theorem is true.
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Theorem 3. Let 1 ≤ p < q < ∞, q < θ < ∞, and let Ω(t) be a function of the form (5). Then,

for 1
p −

1
q < r < l, b1 ≤ . . . ≤ bν <

r
q
p−1

< bν+1 ≤ . . . ≤ bd, the relations

d⊥M(BΩ
p,θ, Lq) ≍ dB

M(BΩ
p,θ , Lq) ≍ M

−r+ 1
p−

1
q
(

log M
)−b1−...−bν+(ν−1)

(
r− 1

p+
2
q−

1
θ

)

(10)

hold.

Proof. First, we establish the upper bounds in (10). According to (8), it is sufficient to obtain

the upper bound for the orthoprojective width d⊥M(BΩ
p,θ , Lq).

For this purpose, we consider an approximation of the functions f ∈ BΩ
p,θ by trigonometric

polynomials tQ(N) of the form

tQ(N)(x) = ∑
s∈χ(N)

δs( f , x).

Let q0 be any number that satisfies the condition p < q0 < q.

Then, using Lemma 4, and the relation

‖δs( f )‖q0 ≍ ‖As( f )‖q0 , 1 < q0 < ∞,

for f ∈ BΩ
p,θ we have

‖ f − tQ(N)‖q =

∥∥∥∥ f − ∑
s∈χ(N)

δs( f )

∥∥∥∥
q

=

∥∥∥∥ ∑
s∈χ⊥(N)

δs( f )

∥∥∥∥
q

≪


 ∑

s∈χ⊥(N)

‖δs( f )‖
q
q0

2
‖s‖1

(
1

q0
− 1

q

)
q




1
q

≍


 ∑

s∈χ⊥(N)

‖As( f )‖
q
q0

2
‖s‖1

(
1

q0
− 1

q

)
q




1
q

= I1.

Then, applying to As( f ) the Nikol’skii inequality of different metrics, we continue the esti-

mate as follows:

I1 ≪


 ∑

s∈χ⊥(N)

‖As( f )‖
q
p2

‖s‖1(
1
p−

1
q0
)q

2
‖s‖1

(
1

q0
− 1

q

)
q




1
q

=


 ∑

s∈χ⊥(N)

‖As( f )‖
q
p2

‖s‖1

(
1
p−

1
q

)
q




1
q

=


 ∑

s∈χ⊥(N)

Ω−q(2−s)‖As( f )‖
q
pΩq(2−s)2

‖s‖1

(
1
p−

1
q

)
q




1
q

= I2.

Using first the Hölder inequality with index θ
q and then Lemma 2, we get

I2 ≤


 ∑

s∈χ⊥(N)

Ω−θ(2−s)‖As( f )‖θ
p




1
θ

·


 ∑

s∈χ⊥(N)

(
Ω(2−s)2

‖s‖1

(
1
p−

1
q

)) θq
θ−q




θ−q
θq

≪ ‖ f‖BΩ
p,θ


 ∑

s∈χ⊥(N)

(
Ω(2−s)2

‖s‖1

(
1
p−

1
q

)) θq
θ−q




θ−q
θq
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≪


 ∑

s∈Θ(N)

(
Ω(2−s)2

‖s‖1

(
1
p−

1
q

)) θq
θ−q




θ−q
θq

≤ N−1


 ∑

s∈Θ(N)

2
‖s‖1

(
1
p−

1
q

)
θq

θ−q




θ−q
θq

= I3.

Taking into account that, for s ∈ Θ(N),

2‖s‖1 ≍ N
1
r

d

∏
j=1

s
−

bj
r

j ,

and using Lemma 3, we have

I3 ≍ N−1


 ∑

s∈Θ(N)

N
1
r (

1
p−

1
q )

θq
θ−q

d

∏
j=1

s
−

bj
r

(
1
p−

1
q

)
θq

θ−q

j




θ−q
θq

= N
−1+ 1

r

(
1
p−

1
q

)

 ∑

s∈Θ(N)

d

∏
j=1

s
−

bj
r

(
1
p−

1
q

)
θq

θ−q

j




θ−q
θq

≍ N
−1+ 1

r

(
1
p−

1
q

)(
log N

)(− b1
r −...− bν

r

)(
1
p−

1
q

)
+(ν−1)

(
1
q−

1
θ

)

≍

(
Mr
(

log M
)b1+...+bν−(ν−1)r

)−1+ 1
r

(
1
p−

1
q

)
(

log M
)(− b1

r −...− bν
r )
(

1
p−

1
q

)
+(ν−1)

(
1
q−

1
θ

)

= M
−r+ 1

p−
1
q
(

log M
)−b1−...−bν+(ν−1)

(
r− 1

p+
2
q−

1
θ

)

.

Thus, in view of the definition of orthoprojective width, the above reasoning gives the upper

bound for d⊥M(BΩ
p,θ , Lq), and, respectively, for the quantity dB

M(BΩ
p,θ , Lq).

Let us find the lower bounds in (10). Since inequality (8) holds, it is sufficient to obtain the

lower bound for the quantity dB
M(BΩ

p,θ , Lq).

With the help of the reasoning analogous to that in [12], we can prove the existence of a set

Θ1(N) ⊂ Θ(N) such that, for s = (s1, . . . , sd) ∈ Θ1(N), the following relations are satisfied:

sj ≍ log N, j = 1, d and |Θ1(N)| ≍
(

log N
)d−1

.

Also we can assert that there exists a set

Θ
(ν)
1 (N) = {s ∈ Θ(N) : sj ≍ log N, j = 1, . . . , ν, sj = 1, j = ν + 1, . . . , d}

such that

|Θ
(ν)
1 (N)| ≍

(
log N

)ν−1
.

Consider the set Q̃(N) =
⋃

s∈Θ
(ν)
1 (N)

ρ(s). By T(Q̃(N)) we denote the set of trigonometric

polynomials with the "numbers" of harmonics from Q̃(N).

Let Kn be the Fejér kernel of the order n, i.e.,

Kn(t) = ∑
|k|≤n

(
1 −

|k|

n + 1

)
eikx.
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We set

g1(x) = ∑
s∈Θ

(ν)
1 (N)

K
(ν)
s (x)

d

∏
j=ν+1

eixj ,

where

K
(ν)
s (x) =

ν

∏
j=1

e
ik

sj
j xj K

2
sj−2(xj),

k
sj

j =

{
2sj−1 + 2sj−2, sj ≥ 2;

1, sj = 1, j = 1, ν.

Suppose that the operator G belongs to LM(B)q, 1 < q < ∞. Consider the operator A =

SQ̃(N)G, where SQ̃(N) is the operator of taking partial Fourier sum corresponding to the set

Q̃(N). Then A ∈ LM(B)q and the domain of values of the operator A is a subspace AM of

the space T(Q̃(N)), whose dimension dim AM = M ≤ M. It follows from Theorem 2 that for

f ∈ T(Q̃(N)), the following relation is satisfied:

‖ f − A f‖q ≪ ‖ f − G f‖q .

Consider the quantity

I = sup
y

‖g1(x − y)− Ag1(x − y)‖∞.

Obviously,

I ≥ g1(0)− min
y=x

ReAg1(x − y).

Using Lemma 5, we obtain

min
y=x

ReAg1(x − y) ≤ M
1
2 B

(
∑
k

|ĝ1(k)|
2

) 1
2

≪ M
1
2 B|Q̃(N)|

1
2 . (11)

Further, taking into account the relation

|Θ
(ν)
1 (N)| ≍

(
log N

)ν−1
,

as well as

|ρ(s)| = 2||s||1 ≍ N
1
r
(

log N
)− b1

r −...− bν
r , s ∈ Θ

(ν)
1 (N),

we can write

|Q̃(N)| ≍ N
1
r
(

log N
)− b1

r −...− bν
r +ν−1

. (12)

On the other hand,

g1(0) ≍ N
1
r
(

log N
)− b1

r −...− bν
r +ν−1

≍ |Q̃(N)|. (13)

Using (11) and (12), we can chose a number N so that |Q̃(N)| ≍ M and the right-hand side

of (13) will be at least twice as large as the right-hand side of (11).

For some y∗ = (y∗1 , . . . , y∗d), for this N we have

‖g1(x − y∗)− Ag1(x − y∗)‖∞ ≫ M. (14)
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Consider the function

g2(x) = C5N−1
(

N
1
r
(

log N
)− b1

r −...− bν
r

) 1
p−1(

log N
)− ν−1

θ g1(x), C5 > 0.

We now show that, at the corresponding choice of the constant C5, this function belongs to the

class BΩ
p,θ. Indeed, since

||Kn||p ≍ n
1− 1

p 1 ≤ p ≤ ∞,

for the Fejér kernel, we have

∥∥∥K(ν)
s

∥∥∥
p
≍ 2

‖s‖1

(
1− 1

p

)
1 ≤ p ≤ ∞.

Thus, we can write

‖g2‖BΩ
p,θ

=

(

∑
s

Ω−θ(2−s)‖As(g2)‖
θ
p

) 1
θ

≪ N−1
(

N
1
r
(

log N
)− b1

r −...− bν
r

) 1
p−1(

log N
)− ν−1

θ ·


 ∑

s∈Θ
(ν)
1 (N)

Ω−θ(2−s)‖As(g1)‖
θ
p




1
θ

≪
(

N
1
r
(

log N
)− b1

r −...− bν
r

) 1
p−1(

log N
)− ν−1

θ ·


 ∑

s∈Θ
(ν)
1 (N)

2
‖s‖1

(
1− 1

p

)
θ




1
θ

= I4.

(15)

Taking into account the fact that, for s ∈ Θ
(ν)
1 (N) ⊂ Θ(N)

2‖s‖1 ≍ N
1
r

d

∏
j=1

s
−

bj
r

j ,

and

sj ≍ log N, j = 1, . . . , ν, sj = 1, j = ν + 1, . . . d, |Θ
(ν)
1 (N)| ≍

(
log N

)ν−1
,

we get

I4 ≍
(

N
1
r
(

log N
)− b1

r −...− bν
r

) 1
p−1(

log N
)− ν−1

θ

×
(

N
1
r
(

log N
)− b1

r −...− bν
r

)1− 1
p
|Θ

(ν)
1 (N)|

1
θ ≍

(
log N

)− ν−1
θ
(

log N
) ν−1

θ = 1.

(16)

By comparing (15) and (16), we may conclude that g2 ∈ BΩ
p,θ with the corresponding constant

C5 > 0.

It was established in work [14] that for t ∈ T(Q̃(N)), the following estimate is satisfied:

‖t‖∞ ≪ ‖t‖q

(
N

1
r
(

log N
)− b1

r −...− bν
r

) 1
q (

log N
)(ν−1)

(
1− 1

q

)

.
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Taking into account the last relation and using estimate (14), we get

‖g2(x − y∗)− Gg2(x − y∗)‖q

≫ N−1
(

N
1
r
(

log N
)− b1

r −...− bν
r

) 1
p−1(

log N
)− ν−1

θ ‖g1(x − y∗)− Gg1(x − y∗)‖q

≫ N−1
(

N
1
r
(

log N
)− b1

r −...− bν
r

) 1
p−1(

log N
)− ν−1

θ ‖g1(x − y∗)− Ag1(x − y∗)‖q

≫ N−1
(

N
1
r
(

log N
)− b1

r −...− bν
r

) 1
p−1(

log N
)− ν−1

θ

×
(

N
1
r
(

log N
)− b1

r −...− bν
r

)− 1
q (

log N
)−(ν−1)

(
1− 1

q

)

‖g1(x − y∗)− Ag1(x − y∗)‖∞

≫ N−1
(

N
1
r
(

log N
)− b1

r −...−
bd
r +d−1

) 1
p−

1
q−1(

log N
)(d−1)

(
− 1

p+
2
q−

1
θ

)

M

≍ M−r
(

log M
)−b1−...−bν+(ν−1)r

M
1
p−

1
q−1(

log M
)(ν−1)

(
− 1

p+
2
q−

1
θ

)

M

= M
−r+ 1

p−
1
q
(

log M
)−b1−...−bν+(ν−1)

(
r− 1

p+
2
q−

1
θ

)
.

The lower bounds in (10) are established. Theorem 3 is proved.

In the following proposition, we consider other relations for the numbers r, b1, . . . , bd. Let

r ≤ b1 ≤ . . . ≤ bd, b2 > r. In this case, by Lemma 1, we obtain

M ≍ N
1
r
(

log N
)− b1

r ,

log M ≍ log N, N ≍ Mr
(

log M
)b1 .

Assume that

b1 = . . . = bν < bν+1 ≤ . . . ≤ bd.

Then, for ν = 1, the inequality r ≤ b1 < b2 holds. But ν ≥ 2, then b1 > r.

Theorem 4. Let 1 ≤ p < q < ∞, q < θ < ∞, and let Ω(t) be a function of the form (5). Then,

for 1
p −

1
q < r < l, b2 >

r
q
p−1

, the order estimates

d⊥M(BΩ
p,θ , Lq) ≍ dB

M(BΩ
p,θ , Lq) ≍ M

−r+ 1
p−

1
q
(

log M
)−b1 (17)

hold.

Proof. For q < θ < ∞, the embedding BΩ
p,θ ⊂ HΩ

p , is valid. Therefore, the upper bounds in (17)

follow from the corresponding estimate d⊥M(HΩ
p , Lq), proved in [14].

To get the lower bounds in (17), it is sufficient to get the corresponding lower bound for the

quantity dB
M(BΩ

p,θ , Lq).

We choose a vector s̃ = (s̃1, . . . , s̃d) ∈ Θ(N) so that

s̃1 ≍ log N, s̃2 = . . . = s̃d = 1,

and set

g3(x) = Ks̃(x) = ei(ks̃,x)K2s̃1−2(x1),
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where ks̃ = (2s̃1−1 + 2s̃1−2, 1, . . . , 1).

Suppose that the operator G belongs to LM(B)q, 1 < q < ∞. Consider the operator A =

Sρ(s̃)G, where Sρ(s̃) is the operator of taking partial Fourier sum corresponding to the set ρ(s̃).

Taking into account that

2‖s̃‖1 ≍ N
1
r
(

log N
)− b1

r ,

and using lemma 5, we get

min
y=x

ReAg3(x − y) ≤ M
1
2 B

(
∑

k

|ĝ3(k)|
2

) 1
2

≪ M
1
2
(
2‖s̃‖1

) 1
2 ≍ M

1
2 N

1
r
(

log N
)− b1

r . (18)

On the other hand,

g3(0) ≍ 2‖s̃‖1 ≍ N
1
r
(

log N
)− b1

r . (19)

Therefore, we can chose a number N so that |Q(N)| ≍ M and the right-hand side of (19)

will be at least twice as large as the right-hand side of (18). For some y∗ = (y∗1 , . . . , y∗d), for this

N we have

‖g3(x − y∗)− Ag3(x − y∗)‖∞ ≫ M. (20)

Consider the function

g4(x) = C6N−12
||s̃||1

(
1
p−1
)

g3(x), C6 > 0.

We now show that, at the corresponding choice of the constant C6, the function g4 belongs to

the class BΩ
p,θ.

Indeed, in view of the properties of the Fejér kernel, we have

‖g4‖BΩ
p,θ

=

(

∑
s

Ω−θ(2−s)‖As(g4)‖
θ
p

) 1
θ

≪ N−12
||s̃||1

(
1
p−1
) (

Ω−θ(2−s̃)‖As̃(g3)‖
θ
p

) 1
θ

≪ 2
||s̃||1

(
1
p−1
)
‖As̃(g3)‖p ≍ 2

||s̃||1
(

1
p−1
)

2
||s̃||1

(
1− 1

p

)
= 1.

Hence, g4 ∈ BΩ
p,θ with the corresponding constant C6 > 0.

It was established in work [14] that for a trigonometric polynomial t with "numbers" of

harmonics from the set ρ(s̃), the following relation is satisfied:

‖t‖∞ ≪ ‖t‖q2
‖s̃‖1

q .

Taking into account the last relation and using estimate (20), we get

‖g4(x − y∗)− Gg4(x − y∗)‖q ≫ N−12
||s̃||1

(
1
p−1
)
‖g3(x − y∗)− Gg3(x − y∗)‖q

≫ N−12
||s̃||1

(
1
p−1
)
‖g3(x − y∗)− Ag3(x − y∗)‖q

≫ N−12
||s̃||1

(
1
p−1
)

2
−

‖s̃‖1
q ‖g3(x − y∗)− Ag3(x − y∗)‖∞

≫ M−r
(

log M
)−b1 M

1
p−

1
q−1

M = M
−r+ 1

p−
1
q
(

log M
)−b1 .

The lower bounds in (17) are established. Theorem 4 is proved.
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Remark 1. Results, corresponding to Theorems 3 and 4, but for the classes BΩ
p,θ in the space

L∞, are obtained in [2].

Remark 2. The analogues of Theorems 3 and 4 for the classes HΩ
p are obtained by N.N. Pus-

tovoitov in [14]. Moreover, if the conditions of Theorem 4 are satisfied, the ordinal relations

d⊥M(BΩ
p,θ , Lq) ≍ dB

M(BΩ
p,θ, Lq) ≍ d⊥M(HΩ

p , Lq) ≍ dB
M(HΩ

p , Lq)

hold. In other words, the orders of the quantities d⊥M(BΩ
p,θ, Lq) and dB

M(BΩ
p,θ, Lq) are indepen-

dent on the parameter θ.
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Федуник-Яремчук О.В., Гембарська С.Б. Оцiнки апроксимативних характеристик класiв BΩ
p,θ пе-

рiодичних функцiй багатьох змiнних iз заданою мажорантою мiшаних модулiв неперервностi у про-

сторi Lq // Карпатськi матем. публ. — 2019. — Т.11, №2. — C. 281–295.

В роботi продовжується вивчення апроксимативних характеристик класiв BΩ
p,θ перiоди-

чних функцiй багатьох змiнних, мажоранта мiшаних модулiв неперервностi яких мiстить як

степеневi, так i логарифмiчнi множники. Oдержано точнi за порядком оцiнки ортопроекцiй-

них поперечникiв класiв BΩ
p,θ у просторi Lq, 1 ≤ p < q < ∞, а також встановлено точнi за

порядком оцiнки наближення цих класiв функцiй у просторi Lq за допомогою лiнiйних опе-

раторiв, якi пiдпорядкованi певним умовам.

Ключовi слова i фрази: ортопроекцiйний поперечник, мiшаний модуль неперервностi, лi-

нiйний оператор, ядро Валле-Пуссена, ядро Фейєра.
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ON INVERSE SUBMONOIDS OF THE MONOID OF ALMOST MONOTONE

INJECTIVE CO-FINITE PARTIAL SELFMAPS OF POSITIVE INTEGERS

In this paper we study submonoids of the monoid I �ր
∞ (N) of almost monotone injective co-

finite partial selfmaps of positive integers N. Let Iր
∞ (N) be a submonoid of I �ր

∞ (N) which con-

sists of cofinite monotone partial bijections of N and CN be a subsemigroup of I �ր
∞ (N) which is

generated by the partial shift n 7→ n + 1 and its inverse partial map. We show that every automor-

phism of a full inverse subsemigroup of Iր
∞ (N) which contains the semigroup CN is the identity

map. We construct a submonoid IN
[1]
∞ of I �ր

∞ (N) with the following property: if S is an inverse

submonoid of I �ր
∞ (N) such that S contains IN

[1]
∞ as a submonoid, then every non-identity congru-

ence C on S is a group congruence. We show that if S is an inverse submonoid of I �ր
∞ (N) such

that S contains CN as a submonoid then S is simple and the quotient semigroup S/Cmg, where

Cmg is the minimum group congruence on S, is isomorphic to the additive group of integers. Also,

we study topologizations of inverse submonoids of I �ր
∞ (N) which contain CN and embeddings of

such semigroups into compact-like topological semigroups.

Key words and phrases: inverse semigroup, isometry, partial bijection, congruence, bicyclic semi-
group, semitopological semigroup, topological semigroup, discrete topology, embedding, Bohr
compactification.
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1 INTRODUCTION AND PRELIMINARIES

In this paper all spaces will be assumed to be Hausdorff. Furthermore we shall follow the

terminology of [14, 16, 20, 35, 39]. We shall denote the set of all positive integers by N, the first

infinite ordinal by ω and the cardinality of the set A by |A|. If A is a subset of a semigroup S,

then by 〈A〉 we shall denote a subsemigroup of S generated by the elements of the set A.

An algebraic semigroup S is called inverse if for any element x ∈ S there exists a unique

x−1 ∈ S such that xx−1x = x and x−1xx−1 = x−1. The element x−1 is called the inverse of

x ∈ S. If S is an inverse semigroup, then the function inv: S → S which assigns to every

element x of S its inverse element x−1 is called an inversion.

A congruence C on a semigroup S is called non-trivial if C is distinct from universal and

identity congruences on S, and a group congruence if the quotient semigroup S/C is a group. If

C is a congruence on a semigroup S then by C♯ we denote the natural homomorphism from S

onto the quotient semigroup S/C.

If S is a semigroup, then we shall denote the subset of all idempotents in S by E(S). If S is

an inverse semigroup, then E(S) is closed under multiplication and we shall refer to E(S) a as

УДК 512.534
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band (or the band of S). Then the semigroup operation on S determines the following partial

order 4 on E(S): e 4 f if and only if e f = f e = e. This order is called the natural partial order

on E(S). A semilattice is a commutative semigroup of idempotents.

An inverse subsemigroup T of an inverse semigroup S is called full if E(S) = E(T).

By (P<ω(λ),∪) we shall denote the free semilattice with identity over a set of cardinality

λ > ω, i.e., (P<ω(λ),∪) is the set of all finite subsets (with the empty set) of λ with the

semilattice operation “union”.

If S is a semigroup, then we shall denote the Green relations on S by R, L , J , D and H

(see [16]). A semigroup S is called simple if S does not contain proper two-sided ideals and

bisimple if S has only one D-class.

A (semi)topological semigroup is a topological space with a (separately) continuous semi-

group operation. An inverse topological semigroup with continuous inversion is called a topo-

logical inverse semigroup.

A topology τ on a semigroup S is called:

semigroup if (S, τ) is a topological semigroup;

semigroup inverse if S is an inverse semigroup and (S, τ) is a topological inverse semigroup;

shift-continuous if (S, τ) is a semitopological semigroup.

The bicyclic semigroup (or the bicyclic monoid) C (p, q) is the semigroup with the identity 1

generated by two elements p and q, subject only to the condition pq = 1.

The bicyclic semigroup is bisimple and every one of its congruences is either trivial or a

group congruence. Moreover, every homomorphism h of the bicyclic semigroup is either an

isomorphism or the image of C (p, q) under h is a cyclic group (see [16, Corollary 1.32]). The

bicyclic semigroup plays an important role in algebraic theory of semigroups and in the the-

ory of topological semigroups. For example a well-known Andersen’s result [1] states that a

(0–)simple semigroup with an idempotent is completely (0–)simple if and only if it does not

contain an isomorphic copy of the bicyclic semigroup. The bicyclic monoid admits only the

discrete semigroup Hausdorff topology. Bertman and West in [13] extended this result for the

case of Hausdorff semitopological semigroups. Stable and Γ-compact topological semigroups

do not contain the bicyclic monoid [3, 33]. The problem of embedding of the bicyclic monoid

into compact-like topological semigroups was studied in [5, 6, 28]. Independently to Eberhart-

Selden results on topolozabilty of the bicyclic semigroup, in [41] Taimanov constructed a com-

mutative semigroup Aκ of cardinality κ which admits only the discrete semigroup topology.

Also, Taimanov [42] gave sufficient conditions for a commutative semigroup to have a non-

discrete semigroup topology. In the paper [23] it was showed that for the Taimanov semigroup

Aκ from [41] the following conditions hold: every T1-topology τ on the semigroup Aκ such that

(Aκ , τ) is a topological semigroup is discrete; Aκ is closed in any T1-topological semigroup con-

taining Aκ and every homomorphic non-isomorphic image of Aκ is a zero-semigroup.

Non-discrete topologizations of some bicyclic-like semigroups were studied in [7, 8, 9, 10,

11, 12, 22, 25, 34, 36, 40]. In particular in [21] it is proved that the discrete topology is the unique

shift-continuous Hausdorff topology on the extended bicyclic semigroup CZ. We observe that

for many (0-)bisimple semigroups S the following statement holds: every shift-continuous Haus-

dorff Baire (in particular locally compact) topology on S is discrete (see [15, 24, 26, 27, 29, 30]).

Let Iλ denote the set of all partial one-to-one transformations of a set X of cardinality λ

together with the following semigroup operation:

x(αβ) = (xα)β if x ∈ dom(αβ) = {y ∈ dom α | yα ∈ dom β}, for α, β ∈ Iλ.
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The semigroup Iλ is called the symmetric inverse semigroup over the set X (see [16]). The sym-

metric inverse semigroup was introduced by Wagner [43] and it plays a major role in the theory

of semigroups.

Remark 1. We observe that the bicyclic semigroup is isomorphic to the semigroup CN, which

is generated by partial transformations α and β of the set of positive integers N, defined as

follows:

dom α = N, ran α = N \ {1}, (n)α = n + 1

and

dom β = N \ {1}, ran β = N, (n)β = n − 1

(see Exercise IV.1.11(ii) in [38]).

Let N be the set of all positive integers. We shall denote the semigroup of monotone, non-

decreasing, injective partial transformations ϕ of N such that the sets N \ dom ϕ and N \

rank ϕ are finite by Iր
∞ (N). Obviously, Iր

∞ (N) is an inverse subsemigroup of the semigroup

Iω. The semigroup Iր
∞ (N) is called the semigroup of cofinite monotone partial bijections of N.

In [29] Gutik and Repovš studied the semigroup Iր
∞ (N). They showed that the semigroup

Iր
∞ (N) has algebraic properties similar to the bicyclic semigroup: it is bisimple and all of its

non-trivial group homomorphisms are either isomorphisms or group homomorphisms. Also,

they proved that every locally compact inverse semigroup topology τ on Iր
∞ (N) is discrete

and described the closure of (Iր
∞ (N), τ) in a topological semigroup.

Doroshenko in [18, 19] studied the semigroups of endomorphisms of linearly ordered sets

N and Z and their subsemigroups of cofinite endomorphisms O f in(N) and O f in(Z). In [19]

he described the Green relations, groups of automorphisms, conjugacy, centralizers of ele-

ments, growth, and free subsemigroups in these subgroups. Especially in [19] it is proved that

the group of automorphisms consists only of the identity mapping, whereas the groups of au-

tomorphisms of O f in(Z) is isomorphic to the semigroup of integers with operation of addition

and consist only of inner automorphisms. In [18] there was shown that both these semigroups

do not admit an irreducible system of generators. In their subsemigroups of cofinite functions

all irreducible systems of generators are described there. Also, here the last semigroups are

presented in terms of generators and relations.

A partial map α : N ⇀ N is called almost monotone if there exists a finite subset A of N such

that the restriction α |N\A : N \ A ⇀ N is a monotone partial map.

By I �ր
∞ (N) we shall denote the semigroup of monotone, almost non-decreasing, injective

partial transformations of N such that the sets N \ dom ϕ and N \ rank ϕ are finite for all

ϕ ∈ I �ր
∞ (N). Obviously, I �ր

∞ (N) is an inverse subsemigroup of the semigroup Iω and the

semigroup Iր
∞ (N) is an inverse subsemigroup of I �ր

∞ (N) too. The semigroup I �ր
∞ (N) is

called the semigroup of co-finite almost monotone partial bijections of N.

In the paper [15] the semigroup I �ր
∞ (N) is studied. It was shown that the semigroup

I �ր
∞ (N) has algebraic properties similar to the bicyclic semigroup: it is bisimple and all of

its non-trivial group homomorphisms are either isomorphisms or group homomorphisms.

Also it was proved that every Baire shift-continuous T1-topology τ on I �ր
∞ (N) is discrete,

described the closure of (I �ր
∞ (N), τ) in a topological semigroup and constructed non-discrete

Hausdorff semigroup topologies on I �ր
∞ (N).
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A partial transformation α : (X, d) ⇀ (X, d) of a metric space (X, d) is called isometric or a

partial isometry, if d(xα, yα) = d(x, y) for all x, y ∈ dom α. It is obvious that the composition

of two partial isometries of a metric space (X, d) is a partial isometry, and the converse partial

map to a partial isometry is a partial isometry. Hence the set of partial isometries of a metric

space (X, d) with the operation of composition of partial isometries is an inverse submonoid

of the symmetric inverse monoid over the set X.

Let IN∞ be the set of all partial cofinite isometries of the set of positive integers N with

the usual metric d(n, m) = |n − m|, n, m ∈ N. Then IN∞ with the operation of composition of

partial isometries is an inverse submonoid of Iω. The semigroup IN∞ of all partial co-finite

isometries of positive integers is studied in [32]. There we describe the Green relations on

the semigroup IN∞, its band and proved that IN∞ is a simple E-unitary F-inverse semigroup.

Also in [32], the least group congruence Cmg on IN∞ is described and proved that the quotient-

semigroup IN∞/Cmg is isomorphic to the additive group of integers Z(+). An example of a

non-group congruence on the semigroup mathb f IN∞ is presented. Also we proved that a

congruence on the semigroup IN∞ is group if and only if its restriction onto an isomorphic

copy of the bicyclic semigroup in IN∞ is a group congruence.

In this paper we show that every automorphism of a full inverse subsemigroup of Iր
∞ (N)

which contains the semigroup CN is the identity map. We construct a submonoid IN
[1]
∞ of

I �ր
∞ (N) with the following property: if S be an inverse subsemigroup of I �ր

∞ (N) such that

S contains IN
[1]
∞ as a submonoid, then every non-identity congruence C on S is a group con-

gruence. We show that if S is an inverse submonoid of I �ր
∞ (N) such that S contains CN as

a subsubmonoid then S is simple and the quotient semigroup S/Cmg, where Cmg is the mini-

mum group congruence on S, is isomorphic to the additive group of integers. Also, we study

topologizations of inverse submonoids of I �ր
∞ (N) which contain CN and embeddings of such

semigroups into compact-like topological semigroups.

2 MAIN ALGEBRAIC RESULTS

We recall for a semigroup S a homomorphism Φ : S → S is called an endomorphism of S

and every bijective endomorphism (isomorphism) Φ : S → S is called an automorphism of S.

We observe that in the case when S is a monoid with the unit 1S, then an endomorphism

Φ : S → S with (1S)Φ = 1S is called a monoid endomorphism. It is obvious that (1S)Φ = 1S for

any automorphism Φ : S → S of a monoid with the unit 1S.

Recall [37] a semigroup S is combinatorial if it has no non-trivial subgroups. A regular (an

inverse) semigroup S is combinatorial if all its H -classes are singleton. It is obvious that any

subsemigroup of a combinatorial semigroup is combinatorial.

Lemma 1. Let Ψ : S → S be an automorphism of a combinatorial inverse semigroup S. If

(e)Ψ = e for all e ∈ E(S), then Ψ is the identity map.

Proof. Fix an arbitrary s ∈ S \ E(S). Then (ss−1)Ψ = ss−1 and (s−1s)Ψ = s−1s. Since in

any inverse semigroup the following condition hold: xH y if and only if xx−1 = yy−1 and

x−1x = y−1y (see [35, Section 3.2, p. 82]), we have that

(s)Ψ(s−1)Ψ = (ss−1)Ψ = ss−1 and (s−1)Ψ(s)Ψ = (s−1s)Ψ = s−1s,

and hence (s)ΨH s. Since S is a combinatorial inverse semigroup, (s)Ψ = s.
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For any positive integer i by ε(i) we denote the identity map of the set N \ {i}. It is obvious

that ε(i) ∈ E(IN∞) for any positive integer i.

Lemma 2. Let S be a full inverse submonoid of Iր
∞ (N) and Φ : S → S be an automorphism.

Then (ε(1))Φ = ε(1).

Proof. Since Φ : S → S is an automorphism, (I)Φ = I. Suppose to the contrary that (ε(1))Φ 6=

ε(1). Since the restriction Φ|E(S)\{I} : E(S) \ {I} → E(S) \ {I} of the automorphism Φ onto

E(S) \ {I} is an automorphism, there exist (not necessary distinct) idempotents ι, υ ∈ S \

{I, ε(1)} such that (ε(1))Φ = υ, (ι)Φ = ε(1) and |N \ dom υ| = |N \ dom ι| = 1.

We shall show that 1 ∈ dom ϕ ∩ ran ϕ and moreover (1)ϕ = 1 for any ϕ ∈ 〈(α)Φ, (β)Φ〉.

Our assumption implies that ε(1)) = βα and hence

(1)(βα)Φ = 1 = (1)(αβ)Ψ = (1)(I)Φ = (1)I = 1.

This implies that 1 ∈ dom(α)Φ and 1 ∈ dom(β)Φ. If (1)(β)Φ 6= 1, then the monotonicity of β

implies that 1 /∈ dom(α)Φ, and hence 1 /∈ dom(αβ)Φ = N, a contradiction. Since α is inverse

of β in S, the equality (1)(β)Φ = 1 implies that 1 = (1)(βα)Φ = ((1)(β)Φ)(α)Ψ = (1)(α)Φ.

This implies that (1)(βiαj)Φ = 1 for all non-negative integers i and j.

By Remark 1, 〈α, β〉 is a submonoid of Iր
∞ (N) which is isomorphic to the bicyclic monoid,

and since Φ : S → S is an automorphism, 〈(α)Φ, (β)Φ〉 is isomorphic to the bicyclic monoid,

too. By Lemma 2.6 of [29] for every idempotent ε ∈ Iր
∞ (N) there exists a positive integer nε

such that ε · βnαn = βnαn for any positive integer n > nε. Then there exists a positive integer

nι such that ιβnαn = βnαn and hence (ιβnαn)Φ = (βnαn)Φ for all n > nι. Since (ι)Φ = βα we

have that (ιβnαn)Φ = (ι)Φ(βnαn)Φ = ε(1)(βnαn)Φ and hence 1 /∈ dom βα for all n > nι. This

contradicts the previous part of the proof. The obtained contradiction implies the statement of

the lemma.

Lemma 3. Let S be a full inverse submonoid of Iր
∞ (N) and Φ : S → S be an automorphism.

Then (βiαj)Φ = βiαj for all non-negative integers i and j.

Proof. By Lemma 2, (βα)Φ = (ε(1))Φ = ε(1) = βα and since (I)Φ = I, we have that

(β)Φ(α)Φ = βα and (α)Φ(β)Φ = I.

By Proposition 2.1(iii) from [29] the semigroup Iր
∞ (N) is combinatorial and hence S is com-

binatorial, too. Then the arguments presented in the proof of Lemma 1 imply that (β)Φ = β

and (α)Φ = α. Therefore we get

(βiαj)Φ = (βi)Φ(αj)Φ = ((β)Φ)i((α)Φ)j = βiαj

for all non-negative integers i and j.

Lemma 4. Let S be a full inverse submonoid of Iր
∞ (N) and Φ : S → S be an automorphism.

Then (ε)Φ = ε for each idempotent ε ∈ S.

Proof. Since the restriction Φ|E(S)\{I} : E(S) \ {I} → E(S) \ {I} of Φ onto E(S) \ {I} is an

automorphism, the equality (ι)Φ = υ for ι, υ ∈ E(S) \ {I, ε(1)} implies that |N \ dom υ| =

|N \ dom ι|. Fix so elements ι, υ ∈ E(S) \ {I, ε(1)} with |N \ dom υ| = |N \ dom ι| = 1. Then
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there exist positive integers k and l such that υ = ε(k) and ι = ε(l). Suppose to the contrary

that ι 6= υ. If k > l > 1 then,

βlαl = (βlαl)Φ = (βlαl · ε(l))Φ = βlαl · (ε(l))Φ = βlαl · (ε(l))Φ = βlαl · ε(k) 6= βlαl .

If l > k > 1, then

βkαk = (βkαk)Φ−1 = (βkαk · ε(k))Φ−1 = βkαk · (ε(k))Φ−1

= βkαk · (ε(k))Φ−1 = βkαk · ε(l) 6= βkαk.

The obtained contradictions and Lemma 3 imply that (ι)Φ = ι for every ι ∈ E(S) with

|N \ dom ι| = 1.

By Proposition 2.1 of [29] for every idempotent ε ∈ Iր
∞ (N) there exists a finite subset

{n1, . . . , nk} of positive integers such that ε is the identity map of N \ {n1, . . . , nk}. This implies

that ε = ε(n1) · · · ε(nk). Hence we get that

(ε)Φ = (ε(n1) · · · ε(nk))Φ = (ε(n1))Φ · · · (ε(nk))Φ = ε(n1) · · · ε(nk) = ε,

which completes the proof of the lemma.

It is well known that every automorphism Φ of the bicyclic semigroup C (p, q) is trivial.

i.e., Φ is the identity map of C (p, q). The following theorem shows that every full inverse

subsemigroup of Iր
∞ (N) which contains the semigroup CN has such property.

Theorem 1. Let S be a full inverse submonoid of Iր
∞ (N) which contains the semigroup CN.

Then every automorphism of S is the identity map.

Proof. By Lemma 4 for each automorphism Φ : S → S the band E(Iր
∞ (N)) is the set of fixed

points of Φ. By Proposition 2.1 of [29], Iր
∞ (N) is combinatorial inverse semigroup, and hence

by Proposition 3.2.11 of [35] so is S. Next we apply Lemma 1.

Theorem 1 implies the following two corollaries.

Corollary 1. Every automorphism of the semigroup Iր
∞ (N) is trivial.

Corollary 2. Every automorphism of the semigroup IN∞ is trivial.

Remark 2. By Lemma 1.1 from [15] the band of the monoid Iր
∞ (N) is isomorphic to the free

semilattice (P<ω(ω),∪). Next we identify N with ω. Then every bijective transformation

of N extends to an automorphism of the free semilattice (P<ω(ω),∪). This implies that the

monoid Iր
∞ (N) contains a full inverse subsemigroup which has c distinct automorphisms.

An example of a non-group congruence on the semigroup IN∞ is presented in [32]. Later

we shall establish what submonoids of I �ր
∞ (N) admit only a group non-identity congruence.

For an arbitrary positive integer n0 we denote [n0) = {n ∈ N : n > n0}. Since the set of all

positive integers is well ordered, the definition of the semigroup I �ր
∞ (N) implies that for every

α ∈ I �ր
∞ (N) there exists the smallest positive integer nd

α ∈ dom α such that the restriction

α|[nd
α) of the partial map α : N ⇀ N onto the set

[

nd
α

)

is an element of the semigroup CN, i.e.,

α|[nd
α) is a some partial shift of

[

nd
α

)

. For every α ∈ I �ր
∞ (N) we put −→α = α|[nd

α), i.e.

dom−→α =
[

nd
α

)

, (x)−→α = (x)α for all x ∈ dom−→α and ran−→α =
(

dom−→α
)

α.
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Also, we put

nd
α = min {j ∈ N : j ∈ dom α} for α ∈ I �ր

∞ (N),

and

nd
α = max

{

j ∈ dom α : j < nd
α

}

for α ∈ I �ր
∞ (N) \ CN.

It is obvious that nd
α 6 nd

α when α ∈ I �ր
∞ (N) and nd

α 6 nd
α < nd

α when α ∈ I �ր
∞ (N) \ CN.

The following theorem is proved in [32].

Theorem 2 ([32, Theorem 9]). Let C be a congruence on the semigroup IN∞. Then the follow-

ing conditions are equivalent:

(1) C is a group congruence;

(2) there exists a subsemigroup S of IN∞ which is isomorphic to the bicyclic semigroup and

S contains two distinct C-equivalent elements;

(3) every subsemigroup of IN∞, which is isomorphic to the bicyclic semigroup, has two

distinct C-equivalent elements.

The following lemma completes the statements of Theorem 2.

Lemma 5. Let C be a congruence on the semigroup IN∞, ε ∈ E(CN), ι ∈ E(IN∞) \ E(CN) and

ι 6 ε. Then εCι implies that C is a group congruence on IN∞.

Proof. The assumptions of the lemma imply that nd
ι < nd

ε . Put εnd
ι +1 : N ⇀ N and εnd

ι
: N ⇀

N are identity maps of the sets
[

nd
ι + 1

)

and
[

nd
ι

)

, respectively. It is obvious that εnd
ι +1, εnd

ι
∈

E(CN),

εnd
ι
= εnd

ι
· εnd

ι +1 = εnd
ι
· ι = εnd

ι +1 · ι and εnd
ι +1 = εnd

ι +1 · ε,

and hence εnd
ι +1Cεnd

ι
. Then Theorem 2 and Corollary 1.32 [16] imply that C is a group congru-

ence on IN∞.

Definition 1. Put IN
[1]
∞ =

{

α∈Iր
∞ (N) : the restriction α|dom α\{nd

α}
is a partial isometry of N

}

.

It is obvious that IN
[1]
∞ is an inverse submonoid of the inverse monoid Iր

∞ (N), IN∞ is an

inverse submonoid of IN
[1]
∞ and E(IN∞) = E(IN

[1]
∞ ) = E(Iր

∞ (N)) = E(I �ր
∞ (N)).

Lemma 6. Let S be an inverse subsemigroup of I �ր
∞ (N) such that S contains IN

[1]
∞ as a sub-

monoid. Let C be a congruence on S such that two distinct idempotents ε and ι of IN
[1]
∞ are

C-equivalent. Then C is a group congruence on S.

Proof. If ε and ι are idempotents of the subsemigroup CN of I �ր
∞ (N), then the statement of

our lemma follows from Theorem 2. Hence, we assume that at least one of idempotents ε and

ι does not belong to CN.

We consider two cases: 1) nd
ε = nd

ι ; and 2) nd
ε 6= nd

ι .

Suppose case nd
ε = nd

ι holds. Since ε 6= ι without loss of generality we may assume that

there exists a positive integer n0 < nd
ε such that n0 ∈ dom ε \ dom ι. Then n0 = nd

ε − (k + 1)

for some positive integer k.
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For every positive integer j < nd
ε − 1 we define a partial bijection αj : N ⇀ N in the follow-

ing way:

dom αj = {j} ∪
{

n ∈ N : n > nd
ε

}

, ran αj = {j + 1} ∪
{

n ∈ N : n > nd
ε

}

and

(n)αj =

{

n, if n > nd
ε ;

n + 1, if n = j.

Simple verifications show that

εnd
ε −1 = α−1

nd
ε −2

· · · α−1
n0+1α−1

n0
εαn0 αn0+1 · · · αnd

ε −2

and

εnd
ε
= α−1

n0
ιαn0 = α−1

n0+1α−1
n0

ιαn0 αn0+1 = . . . = α−1
nd

ε −2
· · · α−1

n0+1α−1
n0

ιαn0 αn0+1 · · · αnd
ε −2

are identity maps of the sets
{

n ∈ N : n > nd
ε − 1

}

and
{

n ∈ N : n > nd
ε

}

, respectively, and

hence εnd
ε −1 and εnd

ε
are distinctC-equivalent idempotents of the subsemigroup CN in I �ր

∞ (N).

By Theorem 2 all idempotents of the sebsemigroup IN∞ are C-equivalent, and hence C is a

group congruence on the semigroup S, because E(IN∞) = E(S) = E(I �ր
∞ (N)).

Suppose case nd
ε 6= nd

ι holds. Without loss of generality we may assume that nd
ε > nd

ι .

Put εnd
ι −1 : N ⇀ N is the identity map of the set

{

n ∈ N : n > nd
ε − 1

}

. Simple verifications

show that εnd
ι −1 = εnd

ι −1ε and −→ι = εnd
ι −1ι are distinct C-equivalent idempotents of the sub-

semigroup CN in I �ր
∞ (N). By Theorem 2 all idempotents of the sebsemigroup IN∞ are C-

equivalent, and hence C is a group congruence on the semigroup S, because E(IN∞) = E(S) =

E(I �ր
∞ (N)).

Theorem 3. Let S be an inverse subsemigroup of I �ր
∞ (N) such that S contains IN

[1]
∞ as a

submonoid. Then every non-identity congruence C on S is a group congruence.

Proof. Let α and β be two distinct C-equivalent elements of the semigroup S.

We consider two cases:

(i) αH β in S;

(ii) α and β belong to distinct two H -classes in S.

Suppose that αH β in S. Then Proposition 1.1(ix) of [15] and Proposition 3.2.11 of [35]

imply that dom α = dom β and ran α = ran β, and hence there exists a positive integer

n0 ∈ dom α such that (n0)α 6= (n0)β. Let εn0 : N ⇀ N be the identity map of the set

{n0} ∪ {n ∈ N : n > m0}, where m0 ∈ dom α is an arbitrary positive integer such that m0 >

n0 + nd
α . By Proposition 3(i) of [32] and Proposition 3(i) of [15], E(IN∞) = E(I �ր

∞ (N)) and

hence εn0 ∈ E(S). Since S is an inverse semigroup Proposition 2.3.4 from [35] and αCβ imply

that α−1Cβ−1, and hence we have that (α−1εn0 α)C(β−1εn0 β). Then the definition of εn0 implies

that α−1εn0 α and β−1εn0 β are distinct idempotents of the semigroup S, and hence by Lemma 6,

C is a group congruence on S.

If case (ii) holds then at least one of the following conditions holds

αα−1 6= ββ−1 or α−1α 6= β−1β.

Then by Proposition 2.3.4 of [35] the semigroup S has two distinct C-equivalent idempotents.

Next we apply Lemma 6.
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Every inverse semigroup S admits the least group congruence Cmg (see [38, Section III]):

sCmgt if and only if there exists an idempotent e ∈ S such that se = te.

Later we shall describe the least group congruence on any inverse subsemigroup S of

I �ր
∞ (N) such that S contains CN as a submonoid.

Definitions of inverse semigroups CN, I �ր
∞ (N) and the congruence Cmg imply the follow-

ing lemma.

Lemma 7. Let S be an inverse subsemigroup of I �ր
∞ (N) such that S contains CN as a sub-

monoid. Then the following conditions hold:

(i) αCmg
−→α for every α ∈ S;

(ii) if α and β are elements of S such that α = −→α and β =
−→
β , then αCmgβ if and only if

(n)α = (n)β for all n ∈ dom α ∩ dom β.

Theorem 4. Let S be an inverse subsemigroup of I �ր
∞ (N) such that S contains CN as a sub-

monoid. Then the quotient semigroup S/Cmg is isomorphic to the additive group of integers

Z(+).

Proof. We define a map F : S → Z(+), α 7→ iα in the following way. Put iα = (n)−→α − n,

where n ∈ dom−→α . Simple verification implies that so defined map F is correct and it is a

homomorphism. Also, Lemma 7 implies that αCmgβ if and only if (α)F = (β)F for α, β ∈ S.

Theorems 3 and 4 imply the following corollary.

Corollary 3. Let S be an inverse subsemigroup of I �ր
∞ (N) such that S contains IN

[1]
∞ as a

submonoid. Then for any non-injective homomorphism F : S → T into an arbitrary semigroup

T there exists a unique homomorphism H : Z(+) → T such that the following diagram

S
F

//

C
♯
mg

��

T

Z(+)
H

<<②②②②②②②②

commutes.

The semigroups CN, Iր
∞ (N) and I �ր

∞ (N) are bisimple (see [16], [29], [15]). But the semi-

group IN∞ is not bisimple whereas it is simple. A very amazing property about some inverse

subsemigroups of I �ր
∞ (N) illustrates the following theorem.

Theorem 5. Let S be an inverse subsemigroup of I �ր
∞ (N) such that S contains CN as a sub-

monoid. Then S is simple.

Proof. Since α = αI = Iα for any element α of S, it is sufficient to show that for every β ∈ S

there exist γ, δ ∈ S such that γβδ = I.

Fix an arbitrary element β in S. Simple verifications show that β
−→
β −1 =

−→
β
−→
β −1 and β

−→
β −1

is an idempotent of S, where
−→
β −1 is inverse of

−→
β in S, because

−→
β and

−→
β −1 are elements of

the sebsemigroup CN in S. Next we define a partial maps γ : N ⇀ N in the following way

dom γ = N, ran γ =
{

n ∈ N : n > nd
γ

}

and (i)γ = i − 1 + nd
γ for i ∈ dom γ.

Then γβ(
−→
β −1γ−1) = I.
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3 ON SHIFT-CONTINUOUS TOPOLOGIES ON INVERSE SUBSEMIGROUPS OF I �ր
∞ (N)

A subset A of a topological space X is said to be co-dense in X if X \ A is dense in X.

We recall that a topological space X is said to be:

compact if every open cover of X contains a finite subcover;

countably compact if each closed discrete subspace of X is finite;

feebly compact if each locally finite open cover of X is finite;

pseudocompact if X is Tychonoff and each continuous real-valued function on X is

bounded;

locally compact if each point of X has an open neighbourhood with the compact closure;

Čech-complete if X is Tychonof and there exists a compactifcation cX of X such that the

remainder cX \ c(X) is an Fσ-set in cX;

a Baire space if for each sequence A1, A2, . . . , Ai, . . . of nowhere dense subsets of X the

union
⋃

∞

i=1 Ai is a co-dense subset of X.

According to Theorem 3.10.22 of [20], a Tychonoff topological space X is feebly compact if and

only if X is pseudocompact. Also, a Hausdorff topological space X is feebly compact if and

only if every locally finite family of non-empty open subsets of X is finite. Every compact

space is countably compact and every countably compact space is feebly compact (see [4]).

Also, every compact space is locally compact, every locally compact space is Čech-complete,

and every Čech-complete space is a Baire space (see [20]).

By the Eberhart-Selden theorem every Hausdorff semigroup topology on the bicyclic semi-

group is discrete. It is natural to ask: Do there exists non-discrete semigroup topology on the semi-

group IN∞?

Theorem 6. Let S be an inverse subsemigroup of I �ր
∞ (N) such that S contains CN as a sub-

monoid. Then every Baire shift-continuous Hausdorff topology τ on S is discrete.

Proof. If no point in S is isolated, then since the space (S, τ) is Hausdorff, it follows that {α}

is nowhere dense for all α ∈ S. But, if this is the case, then since the semigroup S is countable

it cannot be a Baire space. Hence the space (S, τ) contains an isolated point µ. If γ ∈ S is

arbitrary, then by Theorem 5, there exist α, β ∈ S such that α · γ · β = µ. The map f : χ 7→

α · χ · β is continuous and so the full preimage ({µ}) f−1 is open. By Proposition 1.2 from [15]

for every α, β ∈ I �ր
∞ (N), both sets {χ ∈ I �ր

∞ (N) | α · χ = β} and {χ ∈ I �ր
∞ (N) | χ · α = β}

are finite, and hence the same holds for the subsemigroup S of I �ր
∞ (N). This implies that the

set ({µ}) f−1 is finite and since (S, τ) is Hausdorff, {γ} is open, and hence isolated.

Since every Čech complete space (and hence every locally compact space) is Baire, Theo-

rem 6 implies Corollary 4.

Corollary 4. Let S be an inverse subsemigroup of I �ր
∞ (N) such that S contains CN as a sub-

monoid. Then every Hausdorff Čech complete (locally compact) shift-continuous topology τ

on S is discrete.
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The following example shows that there exists a non-discrete Tychonoff inverse semigroup

topology τW on the semigroup IN∞.

Example 1. We define a topology τW on the semigroup IN∞ as follows. For every α ∈ IN∞

we define a family

BW(α) = {Uα(F) | F is a finite subset of dom α} ,

where

Uα(F) = {β ∈ IN∞ | dom β ⊆ dom α and (x)β = (x)α for all x ∈ F} .

It is straightforward to verify that {BW(α)}
α∈Iր

∞ (Z)
forms a basis for a topology τW on the

semigroup IN∞.

Proposition 1. (IN∞, τW) is a Tychonoff topological inverse semigroup.

Proof. Let α and β be arbitrary elements of the semigroup IN∞. We put γ = α · β and let

F = {n1, . . . , ni} be a finite subset of dom γ. We denote m1 = (n1)α, . . . , mi = (ni)α and

k1 = (n1)γ, . . . , ki = (ni)γ. Then we get that (m1)β = k1, . . . , (mi)β = ki. Hence we have that

Uα({n1, . . . , ni}) · Uβ({m1, . . . , mi}) ⊆ Uγ({n1, . . . , ni})

and
(

Uγ({n1, . . . , ni})
)−1

⊆ Uγ−1({k1, . . . , ki}).

Therefore the semigroup operation and the inversion are continuous in (IN∞, τW).

Let N = N ∪ {a} for some a /∈ N. Then NN with the operation composition is a semigroup

and the map Ψ : IN∞ → NN defined by the formula

(x)(α)Ψ =

{

(x)α, if x ∈ dom α;

a, if x /∈ dom α

is a monomorphism. Hence NN is a topological semigroup with the product topology if N has

the discrete topology. Obviously, this topology generates topology τW on IN∞. Therefore by

Theorem 2.3.11 from [20] topological space NN is Tychonoff and hence by Theorem 2.1.6 from

[20] so is (IN∞, τW). This completes the proof of the proposition.

Theorem 7. Let S be an inverse subsemigroup of I �ր
∞ (N) such that S contains CN as a sub-

monoid. Let T be a T1 semitopological semigroup which contains S as a dense discrete sub-

semigroup. If I = T \ S 6= ∅ then I is an ideal of T.

Proof. By Lemma 3 [31], S is an open subspace of the topological space T.

Fix an arbitrary element y ∈ I. If x · y = z /∈ I for some x ∈ S then there exists an

open neighbourhood U(y) of the point y in the space T such that {x} · U(y) = {z} ⊂ S. By

Proposition 1.2 from [15] the open neighbourhood U(y) should contain finitely many elements

of the semigroup S which contradicts our assumption. Hence x · y ∈ I for all x ∈ S and y ∈ I.

The proof of the statement that y · x ∈ I for all x ∈ S and y ∈ I is similar.

Suppose to the contrary that x · y = w /∈ I for some x, y ∈ I. Then w ∈ S and the separate

continuity of the semigroup operation in T yields open neighbourhoods U(x) and U(y) of the

points x and y in the space T, respectively, such that {x} · U(y) = {w} and U(x) · {y} = {w}.

Since both neighbourhoods U(x) and U(y) contain infinitely many elements of the semigroup

S, equalities {x} ·U(y) = {w} and U(x) · {y} = {w} do not hold, because {x} · (U(y) ∩ S) ⊆ I.

The obtained contradiction implies that x · y ∈ I.
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Theorem 7 implies the following corollary.

Corollary 5. Let T be a T1 semitopological semigroup which contains IN∞ as a dense discrete

submonoid. If I = T \ IN∞ 6= ∅, then I is an ideal of T.

Proposition 2. Let S be an inverse subsemigroup of I �ր
∞ (N) such that S contains CN as a

submonoid. Let T be a Hausdorff topological semigroup which contains S as a dense discrete

subsemigroup. Then for every γ ∈ S the set

Dγ = {(χ, ς) ∈ S × S | χ · ς = γ}

is a closed-and-open subset of T × T.

Proof. Since S is a discrete subspace of T by Lemma 3 [31] we have that Dγ is an open subset

of T × T.

Suppose that there exists γ ∈ S such that Dγ is a non-closed subset of T × T. Then there

exists an accumulation point (α, β) ∈ T × T of the set Dγ. The continuity of the semigroup

operation in T implies that α · β = γ. But S × S is a discrete subspace of T × T and hence by

Theorem 7, the points α and β belong to the ideal I = T \ S and hence α · β ∈ T \ S cannot be

equal to γ.

Theorem 8. Let S be an inverse subsemigroup of I �ր
∞ (N) such that S contains CN as a sub-

monoid. If a T1 topological semigroup T contains S as a dense discrete subsemigroup then the

square T × T cannot be feebly compact.

Proof. By Proposition 2, for every c ∈ S the square T × T contains an open-and-closed discrete

subspace Dc. If we identify the elements of the semigroup CN with the elements the bicyclic

monoid C (p, q) by an isomorphism h : C (p, q) → CN, then the subspace Dc contains an infinite

subset
{(

(qi)h, (pi)h
)

: i ∈ N0

}

and hence the set Dc is infinite. This implies that the square S × S is not feebly compact.

A topological semigroup S is called Γ-compact if for every x ∈ S the closure of the set

{x, x2, x3, . . .} is compact in S (see [33]). The results obtained in [3], [5], [6], [28], [33] imply the

following

Corollary 6. Let S be an inverse subsemigroup of I �ր
∞ (N) such that S contains CN as a sub-

monoid. If a Hausdorff topological semigroup T satisfies one of the following conditions:

(i) T is compact;

(ii) T is Γ-compact;

(iii) T is a countably compact topological inverse semigroup;

(iv) the square T × T is countably compact;

(v) the square T × T is a Tychonoff pseudocompact space,
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then T does not contain the semigroup S and for every homomorphism h : S → T the image

(S)h is a cyclic subgroup of T. Moreover, for every homomorphism h : S → T there exists a

unique homomorphism uh : Z(+) → T such that the following diagram

S
h

//

C
♯
mg

��

T

Z(+)

uh

<<②②②②②②②②

commutes.

Recall [17] that a Bohr compactification of a topological semigroup S is a pair (β, B(S)) such

that B(S) is a compact topological semigroup, β : S → B(S) is a continuous homomorphism,

and if g : S → T is a continuous homomorphism of S into a compact semigroup T, then there

exists a unique continuous homomorphism f : B(S) → T such that the diagram

S
β

//

g
��❂

❂❂
❂❂

❂❂
❂ B(S)

f
}}④④
④④
④④
④④

T

commutes. Then Corollary 6 and Proposition 2 from [2] imply the following:

Corollary 7. Let S be an inverse subsemigroup of I �ր
∞ (N) such that S contains CN as a sub-

monoid. The Bohr compactification of the discrete semigroup S is topologically isomorphic to

the Bohr compactification of discrete group Z(+).
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Гутiк O.В., Савчук A.C. Про iнверснi пiдмоноїди моноїда майже монотонних iн’єктивних коскiн-

ченних часткових перетворень натуральних чисел // Карпатськi матем. публ. — 2019. — Т.11,

№2. — C. 296–310.

У працi вивчаються iнверснi пiдмоноїди моноїда I �ր
∞ (N) майже монотонних iн’єктивних

коскiнченних часткових перетворень множини натуральних чисел N. Нехай Iր
∞ (N) — пiд-

моноїд в I �ր
∞ (N), який складається з коскiнченних монотонних часткових бiєкцiй множини

N i CN — пiдмоноїд в I �ր
∞ (N), який породжений частковим зсувом n 7→ n + 1 натураль-

них чисел i до його оберненим частковим вiдображенням. Доведено, що кожен автоморфiзм

повної iнверсної пiднапiвгрупи моноїда Iր
∞ (N), який мiстить напiвгрупу CN є тотожнiм вiд-

ображенням. Побудовано пiднапiвгрупу IN
[1]
∞ моноїда I �ր

∞ (N) з такою властивiстю: якщо

S — iнверсна пiднапiвгрупа в I �ր
∞ (N), що мiстить напiвгрупу IN

[1]
∞ , як пiдмоноїд, то кожна

вiдмiнна вiд тотожної конгруенцiя C на S є груповою. Доведено, якщо S — iнверсна пiднапiв-

група в I �ր
∞ (N), що мiстить CN як пiдмоноїд, то напiвгрупа S є простою i фактор-напiвгрупа

S/Cmg, де Cmg – найменша групова конгруенцiя на S, iзоморфна адитивнiй групi цiлих чисел.

Також дослiджуються топологiзацiї iнверсних пiднапiвгруп напiвгрупи I �ր
∞ (N), як мiстять

напiвгрупу CN i занурення таких напiвгруп у близькi до компактних топологiчнi напiвгрупи.

Ключовi слова i фрази: iнверсна напiвгрупа, iзометрiя, часткова бiєкцiя, конгруенцiя, бiци-

клiчна напiвгрупа, напiвтопологiчна напiвгрупа, топологiчна напiвгрупа, дискретна тополо-

гiя, занурення, компактифiкацiя Бора.
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SPECTRA OF SOME ALGEBRAS OF ENTIRE FUNCTIONS OF BOUNDED TYPE,

GENERATED BY A SEQUENCE OF POLYNOMIALS

In this work, we investigate the properties of the topological algebra of entire functions of bo-

unded type, generated by a countable set of homogeneous polynomials on a complex Banach space.

Let X be a complex Banach space. We consider a subalgebra HbP(X) of the Fréchet algebra of

entire functions of bounded type Hb(X), generated by a countable set of algebraically independent

homogeneous polynomials P. We show that each term of the Taylor series expansion of entire func-

tion, which belongs to the algebra HbP(X), is an algebraic combination of elements of P. We gener-

alize the theorem for computing the radius function of a linear functional on the case of arbitrary

subalgebra of the algebra Hb(X) on the space X. Every continuous linear multiplicative functional,

acting from HbP(X) to C is uniquely determined by the sequence of its values on the elements of

P. Consequently, there is a bijection between the spectrum (the set of all continuous linear multi-

plicative functionals) of the algebra HbP(X) and some set of sequences of complex numbers. We

prove the upper estimate for sequences of this set. Also we show that every function that belongs

to the algebra HbP(X), where X is a closed subspace of the space ℓ∞ such that X contains the space

c00, can be uniquely analytically extended to ℓ∞ and algebras HbP(X) and HbP(ℓ) are isometrically

isomorphic. We describe the spectrum of the algebra HbP(X) in this case for some special form of

the set P.

Results of the paper can be used for investigations of the algebra of symmetric analytic functions

on Banach spaces.

Key words and phrases: n-homogeneous polynomial, analytic function, spectrum of algebra.
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INTRODUCTION

The theory of analytic functions is an important section of nonlinear functional analysis.

In many modern investigations topological algebras of analytic functions and spectra of such

algebras are studied.

The existence of algebraic basis plays an important role in the description of the spectrum

(the set of all continuous complex-valued linear multiplicative functionals) of the algebra, since

every continuous linear multiplicative functional is uniquely defined by its values on elements

of the algebraic basis.

The problem of description of spectra of algebras of analytic functions of bounded type was

considered by many authors (see, e.g., [2,3,10]). In the general case the problem of description

of spectra of algebras with the countable algebraic bases is not solved. However for some of
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these algebras descriptions of spectra were constructed. Algebras of symmetric analytic func-

tions of bounded type on spaces with symmetric structures are typical examples of algebras

generated by countable sets of polynomials and were studied in [1, 4–8].

We generalize the theorem [2] for computing the radius function of a linear functional

on case of arbitrary subalgebra of the Fréchet algebra of entire functions of bounded type

Hb(X) with the topology of uniform convergence on a complex Banach space X. We consider

the subalgebra HbP(X) of the algebra Hb(X) of entire functions, generated by a countable

set of algebraically independent polynomials P = {P1, P2, . . . , Pn, . . .}, such that Pn is an n-

homogeneous polynomial for every n ∈ N. We show that each term of the Taylor series

expansion of entire function, which belongs to the algebra HbP(X), is an algebraic combination

of elements of P. Accordingly, every f ∈ HbP(X) can be uniquely represented in the form

f (x) = f (0) +
∞

∑
n=1

∑
k1+2k2+···+nkn=n

ak1,k2,...,kn
(P1(x))k1(P2(x))k2 · · · (Pn(x))kn ,

where x ∈ X, ak1,k2,...,kn
∈ C and k1, k2, . . . , kn are non-negative integers. Therefore every con-

tinuous linear multiplicative functional ϕ acting from HbP(X) to C is uniquely determined by

the sequence (ϕ(P1), ϕ(P2), . . . , ϕ(Pn)) of its values on elements of P. Consequently, the spec-

trum of the algebra HbP(X) is in one-to-one correspondence with some set of sequences of

complex numbers. We prove the upper estimate for sequences of this set. Also we show that

every function that belongs to the algebra HbP(X), where X is a closed subspace of the space

ℓ∞ such that X contains the space c00, can be uniquely analytically extended to ℓ∞ and algebras

HbP(X) and HbP(ℓ∞) are isometrically isomorphic. We describe the spectrum of the algebra

HbP(X) in this case for the set P = {P1, P2, . . . , Pn, . . .} such that

Pn((x1, x2, . . . , xn, . . .)) = xn
n

for n ∈ N.

In the first section we recall some basic notions on the theory of analytic functions on a Ba-

nach space and the theory of the Fréchet algebras which are necessary for a full comprehension

of the paper.

In the second section we generalize the theorem for computing the radius function of a

linear functional on case of arbitrary subalgebra of the Fréchet algebra of entire functions of

bounded type Hb(X) on a complex Banach space X. We also prove that every term of the Taylor

series expansion of entire function, generated by the countable set of algebraically independent

polynomials, is an algebraic combination of these polynomials.

In the third section of the paper we describe spectra of the Fréchet algebras of entire func-

tions, generated by the sequence of polynomials P on complex spaces, which are the closed

subspaces of the space ℓ∞ and contain the linear space c00.

1 PRELIMINARIES

In this section we will review the formal definition of polynomial on a Banach space and

introduce the necessary background. To begin with, we establish some notation. Throughout

the whole article the letter X will always stand for a complex Banach space. The set of all posi-

tive integers will be denoted by N, whereas the set N ∪ {0} will be denoted by N0. We denote
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by Q+ the set of all positive rationals. We also denote by ℓ∞ the complex Banach space of all

bounded sequences x = (x1, x2, . . .) of complex numbers with the norm ‖x‖∞ = supi∈N |xi|

and by c00 the linear space of eventually zero sequences x = (x1, x2, . . . , xn, 0, . . .) of complex

numbers with the norm ‖x‖ = supi∈N |xi|.

Definition 1. For n ∈ N a mapping P : X → C is said to be an n-homogeneous polynomial if

there exists some n-linear form AP : Xn → C such that P(x) = AP(x, . . . , x︸ ︷︷ ︸
n

) for every x ∈ X.

We shall denote by Pn(X) the vector space of all n-homogeneous polynomials from X to C.

Also let P0(X) be the vector space of all constant mappings from X to C. For each P ∈ Pn(X)

we shall set

‖P‖ = sup{|P(x)| : x ∈ X, ‖x‖ ≤ 1}.

It is known that a polynomial P ∈ Pn(X) is continuous if and only if ‖P‖ < ∞.

Definition 2. A mapping P : X → C is said to be a polynomial of degree at most n, where

n ∈ N0, if it can be represented as a sum P = P0 + P1 + · · ·+ Pn, where Pj ∈ P j(X) for j = 0, n.

Definition 3. Polynomials P1, P2, . . . , where Pj ∈ P j(X), j ∈ N, are called algebraically inde-

pendent polynomials, when for all n ∈ N and every polynomial q : Cn → C if the equality

q(P1(x), P2(x), . . . , Pn(x)) = 0 holds for every x ∈ X, then q ≡ 0.

Definition 4. A polynomial P : X → C is called an algebraic combination of elements of

P = {P1, P2, . . .} if there exists n ∈ N and a polynomial q : Cn → C such that P(x) =

q(P1(x), . . . , Pn(x)) for every x ∈ X.

Let us denote by B(a, r) and B̄(a, r) an open and a closed balls of radius r and center a ∈ X

respectively.

Definition 5. Let U be the open subset of X. A mapping f : U → C is said to be holomorphic

or analytic on U if for each a ∈ U there exists an open ball B(a; r) ⊂ U and a sequence of

polynomials f0, f1, . . . , where f0 ∈ C and fj is a j-homogeneous polynomial for each j ∈ N,

such that

f (x) =
∞

∑
n=0

fn(x − a)

uniformly for x ∈ B(a; r).

Note that the power series ∑
∞
n=0 fn(x − a) is called the Taylor series of the function f at the

point a. If U = X the function f is called an entire function.

According to [9, p. 47, Corollary 7.3] the terms of the Taylor series of an entire function

f : X → C can be found using the Cauchy’s integral formula

fn(x) =
1

2πi

∫

|ζ|=r

f (ζx)

ζn+1
dζ, where r > 0. (1)

Also recall that the radius of convergence ρa of the power series ∑
∞
n=0 fn(x − a) is the supre-

mum of all r ≥ 0 such that the series converges uniformly on the ball B(a, r). According to [4,

p. 27, Theorem 4.3], the radius of convergence of the power series is given by the Cauchy-

Hadamard formula
1

ρa
= lim sup

n→∞

‖ fn‖
1
n
1 .
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Denote by Hb(X) the algebra of C-valued entire functions of bounded type on X, that is,

the space of all entire mappings from X to C, which are bounded on bounded subsets. We

endow the algebra Hb(X) with the system of uniform norms

‖ f‖r = sup{| f (x)| : x ∈ X, ‖x‖ < r}, where r ∈ Q+.

It is known that the topology on a countably-normed space can be given by some metric.

Note that the algebra Hb(X) is complete with respect to this metric. Hence Hb(X) is a Frechet

algebra.

Let H
(0)
b (X) be an arbitrary subalgebra of Hb(X). For every continuous linear functional

ϕ ∈
(

H
(0)
b (X)

)∗
there exists r ∈ Q+ such that ϕ is continuous with respect to the norm ‖ · ‖r,

where
(

H
(0)
b (X)

)∗
is the space of all continuous linear functionals on H

(0)
b (X).

Analogically to [2, Section 2] let us define the radius function on
(

H
(0)
b (X)

)∗
as follows.

Definition 6. For ϕ ∈
(

H
(0)
b (X)

)∗
let the radius function R(ϕ) be the infimum of all r > 0

such that ϕ is continuous with respect to the norm ‖ · ‖r.

Thus,

0 ≤ R(ϕ) < ∞.

For n ∈ N0 let P̃n(X) = Pn(X)
⋂

H
(0)
b (X) denote the space of n-homogeneous polynomi-

als on X, which belong to H
(0)
b (X). For each P ∈ P̃n(X) we shall set

‖P‖ = ‖P‖1 = sup{|P(x)| : x ∈ X, ‖x‖ ≤ 1}.

Each f ∈ H
(0)
b (X) has a Taylor series expansion

f =
∞

∑
n=0

fn, (2)

where fn ∈ P̃n(X) for n ∈ N0, and the series (2) converges in H
(0)
b (X), that is, the series (2)

converges uniformly to f on each bounded subset of X.

Let ϕ ∈
(

H
(0)
b (X)

)∗
. Taking into account the continuity and the linearity of ϕ, we obtain

ϕ( f ) =
∞

∑
n=0

ϕ( fn). (3)

We denote by ϕn the restriction of ϕ ∈
(

H
(0)
b (X)

)∗
to P̃n(X). Then ϕn is continuous. Its norm

on P̃n(X) will be denoted by

‖ϕn‖ = sup{|ϕ(P)| : P ∈ P̃n(X), ‖P‖ ≤ 1}.

Definition 7. The spectrum of the topological algebra A is the set of all continuous complex-

valued linear multiplicative functionals = continuous complex-valued homomorphisms =

continuous characters.
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2 ALGEBRAS, GENERATED BY A COUNTABLE SET OF POLYNOMIALS

Let PP(X) be the algebra, consisting of all polynomials, which are algebraic combinations

of elements of the set P. Let us denote by HbP(X) the closure of PP(X) in the metric of the

algebra Hb(X). It can be checked that HbP(X) is a subalgebra of Hb(X) and that HbP(X) is a

Frechet algebra with respect to the metric of the algebra Hb(X).

Proposition 1. Each term of the Taylor series of a function f ∈ HbP(X) can be uniquely repre-

sented as an algebraic combination of elements of the set P. Consequently,

f (x) = f (0) +
∞

∑
n=1

∑
k1+2k2+···+nkn=n

ak1,k2,...,kn
(P1(x))k1(P2(x))k2 · · · (Pn(x))kn ,

where x ∈ X, ak1,k2,...,kn
∈ C and k1, k2 . . . , kn ∈ N0.

Proof. For n ∈ N let fn be the nth term of the Taylor series of f . Let us show that fn can be

uniquely represented as an algebraic combination of polynomials P1, . . . , Pn.

Let us denote by Pn
Pn
(X) the space of all n-homogeneous polynomials, which are alge-

braic combinations of polynomials P1, . . . , Pn. Note that the set of polynomials of the form

Pk1
1 Pk2

2 . . . Pkn
n , where k1, k2, . . . , kn ∈ N0 and k1 + 2k2 + . . . + nkn = n, is a Hamel basis for the

space Pn
Pn
(X). Since there is a finite number of such polynomials the space Pn

Pn
(X) is a finite-

dimensional. Therefore Pn
Pn
(X) is complete with respect to each of the norms. In particular

Pn
Pn
(X) is complete with respect to the norm ‖ · ‖1.

Since HbP(X) is the closure of the algebra PP(X), then there exists a sequence {al}
∞
l=1 ⊂

PP(X), which converges to the function f with respect to the metric of Hb(X). Let aln be

the nth member of the Taylor series of the polynomial al . Note that aln ∈ Pn
Pn
(X) for each

l ∈ N. Let us show that the sequence {aln}
∞
l=1 converges to fn with respect to the norm ‖ · ‖1.

According to the Cauchy’s integral formula (1), in which we take r = 1,

fn(x) =
1

2πi

∫

|ζ|=1

f (ζx)

ζn+1
dζ and aln(x) =

1

2πi

∫

|ζ|=1

al(ζx)

ζn+1
dζ.

Therefore

| fn(x)− aln(x)| =

∣∣∣∣
1

2πi

∫

|ζ|=1

f (ζx) − al(ζx)

ζn+1
dζ

∣∣∣∣

≤
1

2π

∫

|ζ|=1

| f (ζx) − al(ζx)|

|ζ|n+1
dζ =

1

2π

∫

|ζ|=1
| f (ζx) − al(ζx)| dζ.

When x ∈ X is such that ‖x‖ ≤ 1 and ζ ∈ C is such that |ζ| = 1, we obtain ‖ζx‖ ≤ 1. So when

‖x‖ ≤ 1 we have

| f (ζx) − al(ζx)| ≤ ‖ f − al‖1.

It follows that

‖ fn − aln‖1 = sup
‖x‖≤1

| fn(x)− aln(x)| ≤
1

2π
‖ f − al‖1

∫

|ζ|=1
dζ = ‖ f − al‖1.

Since al → f as l → ∞, then ‖ f − al‖1 → 0 as l → ∞. Therefore ‖ fn − aln‖1 → 0 as l → ∞.

Hence aln → fn as l → ∞ with respect to the norm ‖ · ‖1. Since Pn
Pn
(X) is complete with

respect to the norm ‖ · ‖1, then fn ∈ Pn
Pn
(X). Hence fn can be represented as an algebraic

combination of polynomials P1, P2, . . . , Pn. Such representation is unique, since polynomials

P1, P2, . . . , Pn are algebraic independent.
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Let MbP be the spectrum of the algebra HbP(X). According to the Proposition 1 every func-

tion f ∈ HbP(X) can be uniquely represented in the form

f =
∞

∑
n=0

fn = f (0) +
∞

∑
n=1

∑
k1+2k2+...+nkn=n

ak1,k2...,kn
Pk1

1 Pk2
2 · · · Pkn

n ,

where ak1,k2...,kn
∈ C and k1, k2 . . . , kn ∈ N0. Consequently, for every non-trivial character ϕ ∈

MbP, taking into account that ϕ(1) = 1, we have the following:

ϕ( f ) = f (0) +
∞

∑
n=1

∑
k1+2k2+...+nkn=n

ak1,k2...,kn
(ϕ(P1))

k1(ϕ(P2))
k2 · · · (ϕ(Pn))

kn .

Thus we can see that ϕ is completely defined by its values on polynomials Pj, where j ∈ N.

Hence we can identify every ϕ ∈ MbP with the sequence {ϕ(Pj)}
∞
j=1.

Let us prove the following analog of [2, Theorem 2.3] on case of arbitrary subalgebra

H
(0)
b (X) of algebra Hb(X). Let us recall that we denote by ϕn the restriction of ϕ ∈

(
H

(0)
b (X)

)∗

to P̃n(X), where P̃n(X) = Pn(X) ∩ H
(0)
b (X).

Theorem 1. The radius function R on
(

H
(0)
b (X)

)∗
is given by

R(ϕ) = lim sup
n→∞

‖ϕn‖
1
n .

Proof. Suppose that 0 < t < lim supn→∞ ‖ϕn‖
1
n . Then there is a sequence of homogeneous

polynomials Pj of degree nj → ∞ such that ‖Pj‖ = 1 and |ϕ(Pj)| > tnj . If 0 < r < t, then by

homogeneity, ‖Pj‖r = rnj , so that

|ϕ(Pj)| >
( t

r

)nj
‖Pj‖r,

and ϕ is not continuous with respect to the norm of uniform convergence on rB. It follows that

R(ϕ) ≥ r, and on account of the arbitrary choices of r and t we obtain R(ϕ) ≥ lim sup
n→∞

‖ϕn‖
1
n .

For the reverse inequality, let s be strictly larger than the supremum above, so that

‖ϕn‖ ≤ sn for n large. Then there is c ≥ 1 such that ‖ϕn‖ ≤ csn, n ≥ 0. Let r > s is arbi-

trary, and a function f ∈ H
(0)
b has Taylor series (2). Then the Cauchy estimates yield

rn‖ fn‖ = ‖ fn‖r ≤ ‖ f‖r , n ≥ 0.

Hence, |ϕ( fn)| ≤ ‖ϕn‖‖ fn‖ ≤ csn

rn ‖ f‖r , so that in view of (3) we obtain

|ϕ( f )| ≤ c
( ∞

∑
n=0

sn

rn

)
‖ f‖r .

Thus ϕ is continuous with respect to the norm of uniform convergence on the ball rB and

R(ϕ) ≤ r. On account of the arbitrary choices of s and r, we can see that

R(ϕ) ≤ lim sup
n→∞

‖ϕn‖
1
n .
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Proposition 2. For every ϕ ∈ MbP there exists r ∈ Q+, such that the estimate

|ϕ(Pn)| ≤ rn‖Pn‖1

holds for all Pn ∈ Pn
Pn
(X).

Proof. Each ϕ ∈ MbP is continuous with respect to the norm of uniform convergence on some

ball in X. Let ϕ be continuous with respect to the norm ‖ · ‖r, where r ∈ Q+. Since the norm

of every non-trivial continuous complex valued homomorphism is equal to 1, the estimate

|ϕ(Pn)| ≤ ‖Pn‖r, Pn ∈ Pn
Pn
(X)

holds for all r > R(ϕ).

So, |ϕ(Pn)| ≤ sup
‖x‖≤r

|Pn(x)|. Let us make the following replacement x = ry. Thus we obtain

|ϕ(Pn)| ≤ rn sup
‖y‖≤1

|Pn(y)|, |ϕ(Pn)| ≤ rn‖Pn‖1.

3 THE CASE OF SUBSPACE X, c00 ⊂ X ⊂ ℓ∞

Let X be a closed subspace of ℓ∞ such that X contains c00 and P be a sequence of continuous

polynomials P1, . . . , Pn, . . . such that

1. Pn is an n-homogeneous polynomial;

2. Pn’s are algebraically independent;

3. every Pn depends only on a finite number of coordinates.

Lemma 1. Let us define the mapping J : HbP(ℓ∞) → HbP(X) by J(g) = g|X , where g ∈

HbP(ℓ∞). Let gn ∈ HbP(ℓ∞) be an n-homogeneous polynomial. Then the following equality

holds:

‖gn‖1 = ‖J(gn)‖1.

Proof. According to the Proposition 1 each term of the Taylor series gn can be uniquely rep-

resented as an algebraic combination of polynomials P1, . . . , Pn. Since in our case every poly-

nomial Pn depends on a finite number of coordinates, then polynomials gn depend on a finite

number of variables. Let us denote by κ(j) the maximum among indices of elements of the

sequence x on which the polynomial Pj depends on, j = 1, n, n ∈ N. Obviously, κ(j) ∈ N.

Also let us denote by κmax = max{κ(j) : 1 ≤ j ≤ n}. Then we can write down the following

chain of equalities:

‖gn‖1 = sup{|gn(x)| : x = (x1, . . . , xm, . . .) ∈ ℓ∞, xm = 0 ∀m > κmax, m ∈ N, ‖x‖ ≤ 1}

= sup{|gn(x)| : x ∈ c00, ‖x‖ ≤ 1}.

Thinking analogically we obtain the following chain of equalities for norms of J(gn) ∈ HbP(X):

‖J(gn)‖1 = sup{|J(gn(x))| : x = (x1, . . . , xm, . . .) ∈ X, ‖x‖ ≤ 1}

= sup{|gn(x)| : x = (x1, . . . , xm, . . .) ∈ X, ‖x‖ ≤ 1}

= sup{|gn(x)| : x = (x1, . . . , xm, . . .) ∈ X, xm = 0 ∀m > κmax, m ∈ N, ‖x‖ ≤ 1}

= sup{|gn(x)| : x ∈ c00, ‖x‖ ≤ 1}.

Thus the equality ‖gn‖1 = ‖J(gn)‖1 is established.
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Theorem 2. Every function that belongs to HbP(X) can be uniquely analytically extended to

ℓ∞ and algebras HbP(X) and HbP(ℓ∞) are isometrically isomorphic.

Proof. Let us consider a mapping J : HbP(ℓ∞) → HbP(X) such that J( f ) = f |X for every

function f ∈ HbP(ℓ∞). It is easy to check that J is a homomorphism from HbP(ℓ∞) onto

HbP(X).

Next we will show that the mapping J is a bijection. Firstly, let us prove that for all f1, f2 ∈

HbP(ℓ∞) whenever J( f1) = J( f2), then f1 = f2, that is J is an injection. Let us consider g ∈

HbP(ℓ∞) such that g = f1 − f2 and g has a Taylor series representation g = ∑
∞
n=0 gn. By

assumption, J( f1) = J( f2), and so J(g) = J( f1 − f2) = J( f1)− J( f2) = 0. On the other hand,

J(g) = J(
∞

∑
n=0

gn) =
∞

∑
n=0

J(gn)

and the Cauchy estimate yields ‖J(gn)‖1 ≤ ‖J(g)‖1, n ∈ N0. Since J(g) = 0, then ‖J(g)‖1 = 0

and ‖J(gn)‖1 = 0. According to Lemma 1 we have ‖gn‖1 = ‖J(gn)‖1. Therefore ‖gn‖1 = 0 and

it follows that gn(x) = 0 for all x ∈ ℓ∞.

Thus we obtain the chain of equalities

f1(x)− f2(x) = g(x) =
∞

∑
n=0

gn(x) = 0

for all x ∈ ℓ∞. It follows that f1 = f2. Hence, the mapping J is injective.

Now let us show that J is a surjection, that is for every h ∈ HbP(X) there is at least one

h̃ ∈ HbP(ℓ∞), such that J(h̃) = h. Since h ∈ HbP(X), it has a Taylor series representation

h = ∑
∞
n=0 hn with the radius of convergence

ρ0(h) =
1

lim supn→∞ ‖hn‖
1
n
1

= ∞

for all x ∈ X. Let us show that the last equality also holds for all x ∈ ℓ∞. According to

Proposition 1 each term hn of the Taylor series of h can be uniquely represented as an alge-

braic combination of polynomials P1, . . . , Pn. Since every polynomial Pn depends on a finite

number of coordinates, then polynomials hn depend on a finite number of variables. Let

us denote by κ(j) the maximum among indices of elements of the sequence x on which the

polynomial Pj depends on, j = 1, n, n ∈ N. Obviously, κ(j) ∈ N. Also let us denote by

κmax = max{κ(j) : 1 ≤ j ≤ n}. Then we have the following chain of equalities

‖hn‖1 = sup{|hn(x)| : x = (x1, . . . , xk, . . .) ∈ X, ‖x‖ ≤ 1}

= sup{|hn(x)| : x = (x1, . . . , xk, . . .) ∈ X, xk = 0 ∀k > κmax, k ∈ N, ‖x‖ ≤ 1}

= sup{|hn(x)| : x ∈ c00, ‖x‖ ≤ 1}

= sup{|hn(x)| : x = (x1, . . . , xk, . . .) ∈ ℓ∞, xk = 0 ∀k > κmax, k ∈ N, ‖x‖ ≤ 1}

= sup{|hn(x)| : x = (x1, . . . , xk, . . .) ∈ ℓ∞, ‖x‖ ≤ 1} = ‖h̃n‖1.

Therefore lim supn→∞ ‖h̃n‖
1
n
1 = 0 and respectively ρ0(h̃) =

1

lim supn→∞ ‖h̃n‖
1
n
1

= ∞ for all x ∈ ℓ∞.

Hence every function h ∈ HbP(X) can be uniquely analytically extended to ℓ∞. This extension

is a desired function h̃. Thus the mapping J is surjective.
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It remains to prove that the given function J is an isometry between algebras HbP(ℓ∞) and

HbP(X). For this it is sufficient to show that for all h ∈ HbP(X), h̃ ∈ HbP(ℓ∞) such that J(h̃) =

h, and r ∈ Q+ the following equality ‖J(h̃)‖r = ‖h̃‖r holds, that is ‖h‖r = ‖h̃‖r.

Let h = ∑
∞
n=0 hn and h̃ = ∑

∞
n=0 h̃n be the Taylor series representations of the functions h ∈

HbP(X) and h̃ ∈ HbP(ℓ∞) respectively. Also let Sn+1 = h0 + . . . + hn and S̃n+1 = h̃0 + . . . + h̃n

be the partial sums of the given Taylor series. Then the following equalities hold:

lim
n→∞

‖h − Sn+1‖r = 0, (4)

lim
n→∞

‖h̃ − S̃n+1‖r = 0. (5)

Besides, by the continuity of a norm we have the following inequalities:

|‖h‖r − ‖Sn+1‖r| ≤ ‖h − Sn+1‖r, (6)

|‖h̃‖r − ‖S̃n+1‖r| ≤ ‖h̃ − S̃n+1‖r. (7)

Taking into account (4) and (6) we obtain

lim
n→∞

‖Sn+1‖r = ‖h‖r .

Analogically, by (5) and (7) we have

lim
n→∞

‖S̃n+1‖r = ‖h̃‖r.

Therefore limn→∞ ‖Sn+1‖r = limn→∞ ‖S̃n+1‖r and so ‖h‖r = ‖h̃‖r. Thus, the mapping J is the

isometry and the algebras HbP(X) and HbP(ℓ∞) are isometrically isomorphic.

Theorem 3. Let Pn : ℓ∞ → C be defined by

Pn(x) = xn
n

for x = (x1, x2, . . .) ∈ ℓ∞ and ‖Pn‖ = 1, n ∈ N. Then the spectrum MbP of the algebra HbP(ℓ∞)

coincides with the set of all point-evaluation functionals at points of ℓ∞.

Proof. Let ϕ ∈ MbP be a character that belongs to the spectrum of the algebra HbP(ℓ∞). Let us

denote by δx the point-evaluation functional at a point x ∈ ℓ∞. Let us show that ϕ = δx for

some x ∈ ℓ∞.

Every ϕ ∈ MbP is uniquely determined by the sequence (ϕ(P1), ϕ(P2), . . . , ϕ(Pn), . . .). Let

us put x = (ϕ(P1),
2
√

ϕ(P2), . . . , n
√

ϕ(Pn), . . .). Since ‖Pn‖ = 1, n ∈ N, then according to the

Proposition 2 the sequence (ϕ(P1), ϕ(P2), . . . , ϕ(Pn), . . .) grows no faster than some geometric

progression. Thus the sequence x = (ϕ(P1),
2
√

ϕ(P2), . . . , n
√

ϕ(Pn), . . .) is bounded and so,

x ∈ l∞.

Besides, the following chain of equalities holds

δx(Pn) = Pn(x) = xn
n = ( n

√
ϕ(Pn))

n = ϕ(Pn).

Hence ϕ = δx and every character ϕ ∈ MbP is a point-evaluation functional at some point

of ℓ∞.

Corollary 1. Let c00 ⊂ X ⊂ ℓ∞ polynomials Pn : X → C be defined by

Pn(x) = xn
n

for every x = (x1, x2, . . .) ∈ X. Then the spectrum MbP of the algebra HbP(X) coincides with

the set of all point-evaluation functionals at points of ℓ∞.
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Галущак С.I. Спектри алгебр цiлих функцiй породжених деякою послiдовнiстю полiномiв // Кар-

патськi матем. публ. — 2019. — Т.11, №2. — C. 311–320.

У данiй роботi дослiджено властивостi топологiчної алгебри цiлих функцiй, породженої

злiченною множиною однорiдних полiномiв на комплексному банаховому просторi.

Нехай X є комплексним банаховим простором. Розглянуто пiдалгебру HbP(X) алгебри

Фреше цiлих функцiй обмеженого типу Hb(X), породжену злiченною множиною алгебраїчно

незалежних однорiдних полiномiв P. Показано, що кожен член ряду Тейлора цiлої функцiї,

яка належить алгебрi HbP(X), є алгебраїчною комбiнацiєю елементiв P. Узагальнено теорему

про обчислення радiус функцiї лiнiйного функцiонала на випадок довiльної пiдалгебри алге-

бри Hb(X) на просторi X. Кожен неперервний лiнiйний мультиплiкативний функцiонал, який

дiє з HbP(X) у C однозначно визначається послiдовнiстю своїх значень на елементах P. Як

наслiдок, iснує взаємно однозначна вiдповiднiсть мiж спектром (множиною всiх неперервних

лiнiйних мультиплiкативних функцiоналiв) алгебри HbP(X) та деякою множиною послiдов-

ностей комплексних чисел. Встановлено оцiнку зверху для послiдовностей з цiєї множини.

Також доведено, що кожну функцiю, яка належить алгебрi HbP(X), де X є замкненим пiдпро-

стором простору ℓ∞ i мiстить простiр c00, можна єдиним чином аналiтично продовжити на ℓ∞

i алгебри HbP(X) та HbP(ℓ∞) є iзометрично iзоморфними. Описано спектр алгебри HbP(X) у

даному випадку для деякого спецiального вигляду елементiв множини P.

Результати даної роботи можуть бути використанi для дослiдження алгебри симетричних

аналiтичних функцiй на банахових просторах.

Ключовi слова i фрази: n-однорiдний полiном, аналiтична функцiя, спектр алгебри.
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HRABOVA U.Z., KAL’CHUK I.V.

APPROXIMATION OF THE CLASSES Wr
β,∞ BY THREE-HARMONIC POISSON

INTEGRALS

In the paper, we solve one extremal problem of the theory of approximation of functional classes

by linear methods. Namely, questions are investigated concerning the approximation of classes

of differentiable functions by λ-methods of summation for their Fourier series, that are defined

by the set Λ = {λδ(·)} of continuous on [0, ∞) functions depending on a real parameter δ. The

Kolmogorov-Nikol’skii problem is considered, that is one of the special problems among the ex-

tremal problems of the theory of approximation. That is, the problem of finding of asymptotic

equalities for the quantity E(N; Uδ)X = sup
f∈N

‖ f (·)− Uδ ( f ; ·; Λ)‖X, where X is a normalized space,

N ⊆ X is a given function class, Uδ ( f ; x; Λ) is a specific method of summation of the Fourier series.

In particular, in the paper we investigate approximative properties of the three-harmonic Poisson

integrals on the Weyl-Nagy classes. The asymptotic formulas are obtained for the upper bounds

of deviations of the three-harmonic Poisson integrals from functions from the classes Wr
β,∞. These

formulas provide a solution of the corresponding Kolmogorov-Nikol’skii problem. Methods of in-

vestigation for such extremal problems of the theory of approximation arised and got their devel-

opment owing to the papers of A.N. Kolmogorov, S.M. Nikol’skii, S.B. Stechkin, N.P. Korneichuk,

V.K. Dzyadyk, A.I. Stepanets and others. But these methods are used for the approximations by

linear methods defined by triangular matrices. In this paper we modified the mentioned above

methods in order to use them while dealing with the summation methods defined by a set of func-

tions of a natural argument.

Key words and phrases: Kolmogorov-Nikol’skii problem, three-harmonic Poisson integral, Weyl-
Nagy classes.
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1 INTRODUCTION

Let L be a space of 2π-periodic summable on a period functions f equipped with the norm

‖ f‖L =
π∫

−π

| f (t)|dt; C be a space of 2π-periodic continuous functions f in which the norm

is set by means of the equality ‖ f‖C = max
t

| f (t)|; L∞ be a space of 2π-periodic measurable

essentially bounded functions f with the norm ‖ f‖∞ = ess sup
t

| f (t)|.

Assume that f ∈ L and S[ f ] = a0
2 +

∞

∑
k=1

(ak cos kx + bk sin kx) is the corresponding Fourier

series. Let, further, r > 0 and β ∈ R. If the series

∞

∑
k=1

kr
(

ak cos
(

kx +
βπ

2

)
+ bk sin

(
kx +

βπ

2

))

УДК 517.5
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is the Fourier series of a summable function ϕ, then we call the function ϕ a (r, β)-derivative

of f in the Weyl–Nagy sense and denote it by f r
β (see, e.g., [14], p. 130). A set of functions for

which this condition is satisfied is denoted by Wr
β. If f ∈ Wr

β and, besides,
∥∥ f r

β(·)
∥∥

∞
≤ 1, then

f belongs to the class Wr
β,∞.

Let f ∈ L, δ > 0. Functions of the following form

P1(δ; f ; x) =
a0

2
+

∞

∑
k=1

e−
k
δ (ak cos kx + bk sin kx) ,

P2(δ; f ; x) =
a0

2
+

∞

∑
k=1

(
1 +

k

2
(1 − e−

2
δ )
)

e−
k
δ (ak cos kx + bk sin kx) ,

P3(δ; f ; x) =
a0

2
+

∞

∑
k=1

(
1 +

1

4
(3 − e−

2
δ )(1 − e−

2
δ )k +

1

8
(1 − e−

2
δ )2k2

)
e−

k
δ
(
ak cos kx + bk sin kx

)
,

are called the Poisson integral [10], the biharmonic Poisson integral [16] and the three-harmo-

nic Poisson integral [2] of the function f , respectively.

The paper is devoted to investigation of asymptotic behavior as δ → ∞ of the quantity

E(Wr
β,∞; P3(δ))C = sup

f∈Wr
β,∞

‖ f (·) − P3(δ; f ; ·)‖C . (1)

If the function ϕ(δ) is found in an explicit form, such that E(Wr
β,∞; P3(δ))C = ϕ (δ) +

o (ϕ (δ)) as δ → ∞, then according to Stepanets [14, p. 198] we say that the Kolmogorov-

Nikol’skii problem is solved for the class Wr
β,∞ and the three-harmonic Poisson integral in the

uniform metric.

The Kolmogorov-Nikol’skii problem for the Poisson integral on classes of differentiable

functions have been solved in [7,9,12,15,18,19]. The papers [5,11,20] are devoted to an investi-

gation of analogous problem for the biharmonic Poisson integral. Asymptotic properties of the

three-harmonic Poisson integrals were considered in [2], [17]. Nevertheless, the Kolmogorov-

Nikol’skii problem have not been solved for the three-harmonic Poisson integral on the classes

Wr
β,∞. Therefore a question arose of finding asymptotic equalities for the quantities (1).

2 ASYMPTOTIC EQUALITIES FOR UPPER BOUNDS OF DEVIATIONS OF THREE-HARMONIC

POISSON INTEGRALS FROM FUNCTIONS FROM THE CLASS Wr
β,∞ .

For the three-harmonic Poisson integral, analogous to the relation (6) from [8], let us

rewrite a sum function τ(u) in the following form

τ(u) =

{ (
1 −

(
1 + γu + θu2

)
e−u

)
δr, 0 ≤ u ≤ 1

δ ,(
1 −

(
1 + γu + θu2

)
e−u

)
u−r, u ≥ 1

δ ,
(2)

where γ = γ(δ) = 1
4(3 − e−

2
δ )(1 − e−

2
δ )δ, θ = θ(δ) = 1

8(1 − e−
2
δ )2δ2, δ > 0.

The following statement is true.

Theorem 1. Let 0 < r ≤ 3. Then the asymptotic equality holds as δ → ∞

E(Wr
β,∞; P3(δ))C =

1

δr
A(τ) + O

(
1

δ3
+

1

δr+1

)
,
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where the quantity A(τ) is defined by

A(τ) =
1

π

∞∫

−∞

∣∣∣∣
∞∫

0

τ(u) cos
(

ut +
βπ

2

)
du

∣∣∣∣dt (3)

and the estimate

A(τ) =

{
O(1), 0 < r < 3,

O(ln δ), r = 3,
(4)

takes place.

Proof. To conduct the proof let us use theorem A from [1]. We now check if its conditions are

fulfilled. For that reason let us show a summability of the Fourier transform τ̂β(t) of function

τ(u) of the form

τ̂β(t) =
1

π

∞∫

0

τ(u) cos
(

ut +
βπ

2

)
du, (5)

i.e., a convergence of integral A(τ) of the form (3). According to theorem 1 from [1], for prov-

ing a convergence of the integral (3) it is necessary and sufficient to show that the following

integrals are convergent

1
2∫

0

u
∣∣dτ′(u)

∣∣ ,

∞∫

1
2

|u − 1|
∣∣dτ′(u)

∣∣ ,

∞∫

0

|τ(u)|

u
du,

1∫

0

|τ(1 − u)− τ(1 + u)|

u
du. (6)

As while investigating the first integral of (10) from [6] let us estimate the first integral of

(6) on each segment
[
0, 1

δ

]
and

[
1
δ , 1

2

]
(assume, that δ > 3). Taking into account that τ′′(u) ≥ 0

if u ∈
[
0, 1

δ

]
, δ > 3, and the inequalities

e−u ≤ 1, e−u ≤ 1 − u +
u2

2
, u ≥ 0, (7)

we get
1
δ∫

0

u
∣∣dτ′(u)

∣∣ =
(
uτ′(u)− τ(u)

) ∣∣∣
1
δ

0
≤ δr

(
1

δ2
(

1

2
− θ) +

1

δ3
(

γ

2
+ θ)

)
.

In view of estimates 1
2 − θ ≤ 1

δ , γ
2 + θ ≤ 3

2 , we obtain

1
δ∫

0

u
∣∣dτ′(u)

∣∣ = O

(
1

δ3−r

)
as δ → ∞. (8)

Let further u ∈
[

1
δ , 1

2

]
. We set

τ1(u) =

(
1 − (1 + γu + θu2)e−u −

4

3δ2
u −

1

δ
u2 −

1

6
u3

)
u−r,

τ2(u) =
4

3δ2
u1−r +

1

δ
u2−r +

1

6
u3−r,

(9)
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then τ(u) = τ1(u) + τ2(u) and

1
2∫

1
δ

u
∣∣dτ′(u)

∣∣ ≤

1
2∫

1
δ

u
∣∣dτ′

1(u)
∣∣+

1
2∫

1
δ

u
∣∣dτ′

2(u)
∣∣ . (10)

To estimate the first integral from the right-hand side of inequality (10), we first investigate

the following function

µ̃(u) = 1 − (1 + γu + θu2)e−u −
4

3δ2
u −

1

δ
u2 −

1

6
u3. (11)

Taking into account, that

µ̃′(u) = (1 + γ + θu2)e−u − (γ + 2θu)e−u −
4

3δ2
−

2

δ
u −

1

2
u2,

µ̃′′(u) = −(1 + γ + θu2)e−u − 2(γ + 2θu)e−u − 2θe−u −
2

δ
− u,

µ̃(0) = 0, µ̃′(0) = 1 − γ −
4

3δ2
< 0,

we can show that if u ≥ 0, then

µ̃(u) ≤ 0, µ̃′(u) < 0, µ̃′′(u) < 0. (12)

In view of (12) and the inequalities (7) and

e−u ≤ 1 − u +
u2

2
−

u3

6
+

u4

24
, e−u ≥ 1 − u +

u2

2
−

u3

6
, e−u ≥ 1 − u, u ≥ 0,

we have

|µ̃(u)| ≤ u
(

γ − 1 +
4

3δ2

)
+ u2

(1

2
− γ + θ +

1

δ

)
+ u3

(γ

2
− θ

)
+ u4

( 1

24
+

θ

2

)
,

∣∣µ̃′(u)
∣∣ ≤

(
γ − 1 +

4

3δ2

)
+ 2u

(1

2
− γ + θ +

1

δ

)
+ 3u2

(γ

2
− θ

)
+ u3

(1

6
+ 2θ

)
,

∣∣µ̃′′(u)
∣∣ ≤ 2

(1

2
− γ + θ +

1

δ

)
+ 6u

(γ

2
− θ

)
+ u2

(1

2
+ 6θ

)
.

Further, using the estimates

γ − 1 +
4

3δ2
≤

3

δ3
,

1

2
− γ + θ +

1

δ
≤

3

δ2
,

γ

2
− θ ≤

2

δ
,

1

24
+

θ

2
≤ 1,

1

2
+ 6θ ≤ 3,

1

6
+ 2θ ≤ 2,

we obtain

|µ̃(u)| ≤
3

δ3
u +

3

δ2
u2 +

2

δ
u3 + u4,

∣∣µ̃′(u)
∣∣ ≤ 3

δ3
+

6

δ2
u +

6

δ
u2 + 2u3,

∣∣µ̃′′(u)
∣∣ ≤ 6

δ2
+

12

δ
u + 3u2.

(13)
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Taking into account (9), (11) and relation (13), in the case u ≥ 1
δ we get

1
2∫

1
δ

u|dτ′
1(u)| ≤

1
2∫

1
δ

( 6

δ2
+

12

δ
u + 3u2

)
u1−rdu + r

1
2∫

1
δ

( 6

δ3
+

12

δ2
u +

12

δ
u2 + 4u3

)
u−rdu

+ r(r + 1)

1
2∫

1
δ

( 3

δ3
u +

3

δ2
u2 +

2

δ
u3 + u4

)
u−r−1du ≤ K1.

(14)

One can easily verify that the estimate

1
2∫

1
δ

u|dτ′
2(u)| = O(1) as δ → ∞ (15)

is true. Combining (14) and (15), we have

1
2∫

0

u|dτ′(u)| = O(1) as δ → ∞. (16)

Now we move to an estimation of the second integral from (6). If u ≥ 1
δ from a representa-

tion of function τ(u) of the form (2) we obtain

τ′′(u) = e−u
(
(2γ − 2θ − 1) + u(4θ − γ)− θu2))u−r − 2re−u

(
(1 − γ) + u(γ − 2θ)

+ θu2
)
u−r−1 + r(r + 1)(1 − (1 + γu + θu2)e−u)u−r−2.

(17)

The relaton (17) yields

∞∫

1
2

|u − 1||dτ′(u)| ≤

∞∫

1
2

u|dτ′(u)| ≤

∞∫

1
2

e−u
(
(2γ − 2θ − 1) + u(4θ − γ)− θu2))u1−rdu

+ 2r

∞∫

1
2

e−u
(
(1 − γ) + u(γ − 2θ) + θu2

)
u−rdu + r(r + 1)

∞∫

1
2

(1 − (1 + γu + θu2))e−uu−r−1du.

(18)

Further, taking into account the following estimates for u ≥ 0

1 − (1 + γu + θu2)e−u ≤ 1,

ue−u((1 − γ) + u(γ − 2θ) + θu2) ≤ 2,

(2γ − 2θ − 1) + u(4θ − γ)− θu2 ≤ 8,

(19)

from (18) we have
∞∫

1
2

|u − 1||dτ′(u)| = O(1) as δ → ∞. (20)
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Let us estimate the third integral from (6) on each segment [0, 1
δ ], [1

δ , 1] and [1, ∞). In view

of (2) and the inequality

1 − e−u − γue−u − θu2e−u ≤
2

δ2
u +

2

δ
u2 + u3, u ≥ 0, (21)

we get

1
δ∫

0

|τ(u)|

u
du = δr

1
δ∫

0

(1 − e−u − γue−u − θu2e−u)
du

u
≤ δr

1
δ∫

0

(
2

δ2
+

2

δ
u + u2

)
du ≤

K1

δ3−r
. (22)

From relations (2), (11), (13) we obtain

∣∣∣∣
1∫

1
δ

τ(u)

u
du −

4

3δ2

1∫

1
δ

u−rdu −
1

δ

1∫

1
δ

u1−rdu −
1

6

1∫

1
δ

u2−rdu

∣∣∣∣

≤

1∫

1
δ

|µ̃(u)|

u
du ≤

1∫

1
δ

(
3

δ3
+

3

δ2
u +

2

δ
u2 + u3

)
u−r−1du ≤

{
K1, r < 3,

K2 ln δ, r = 3.

Therefore

1∫

1
δ

|τ(u)|

u
du =

4

3δ2

1∫

1
δ

u−rdu +
1

δ

1∫

1
δ

u1−rdu +
1

6

1∫

1
δ

u2−rdu +

{
O(1), r < 3,

O(ln δ), r = 3,

=

{
O(1), r < 3,

O(ln δ), r = 3,
as δ → ∞.

(23)

Taking into account the formula (2) and the first inequality from (19), we get

∞∫

1

τ(u)

u
du =

∞∫

1

(1 − (1 + γu + θu2)e−u)u−r−1du ≤

∞∫

1

u−r−1du =
1

r
. (24)

From (22)–(24) the estimate follows

∞∫

0

|τ(u)|

u
du =

{
O(1), r < 3,

O(ln δ), r = 3,
as δ → ∞. (25)

Now we estimate the fourth integral from (6). Similarly as to obtain the formula (39) form

[3], we can get the equalities

1∫

0

|τ(1 − u)− τ(1 + u)|

u
du =

1∫

0

|λ(1 − u)− λ(1 + u)|

u
du + O (H(τ)) , (26)

where H(τ) is defined by equality

H(τ) = |τ(0)| + |τ(1)| +

1
2∫

0

u
∣∣dτ′(u)

∣∣+
∞∫

1
2

|u − 1|
∣∣dτ′(u)

∣∣ , (27)



APPROXIMATION OF THE CLASSES Wr
β,∞ BY THREE-HARMONIC POISSON INTEGRALS 327

and λ(u) = (1 + γu + θu2)e−u. Taking into account, that
1∫

0

|λ(1 − u)− λ(1 + u)| du
u = O(1)

and using the estimates (16), (20), we have

1∫

0

|τ(1 − u)− τ(1 + u)|

u
du = O(1), δ → ∞. (28)

Therefore, in view of theorem 1 from [1], integral A(τ) of the form (3) is convergent. Using

inequalities (2.14) and (2.15) from [1] and the formulas (16), (20), (25) and (28) we obtain the

estimate (4).

Hence, we proved that for the function τ(u) defined by (2) the conditions of theorem A

from [1] are fulfilled. Then, as δ → ∞, the equality

E(Wr
β,∞; P3(δ))C =

1

δr
A(τ) + O

( 1

δr
a(τ)

)
(29)

holds, where

a(τ) =
∫

|t|≥ δπ
2

∣∣τ̂β(t)
∣∣dt. (30)

Let us estimate the integral (30). First, we represent a transform τ̂β(t) in the form

τ̂β(t) =
1

π

( 1
δ∫

0

+

∞∫

1
δ

)
τ(u) cos

(
ut +

βπ

2

)
du. (31)

Integrating both integrals from the right-hand side of the equality (31) twice by parts and

taking into account that τ(0) = 0 and lim
u→∞

τ(u) = lim
u→∞

τ′(u) = 0, we have

τ̂β(t) = −
1

πt2

(
(1 − γ)δr cos

βπ

2
− rδr+1

(
1 − (1 +

γ

δ
+

θ

δ2
)e−

1
δ

)
cos

( t

δ
+

βπ

2

)

+

1
δ∫

0

τ′′(u) cos
(

ut +
βπ

2

)
du +

∞∫

1
δ

τ′′(u) cos
(

ut +
βπ

2

)
du

)
.

Further, in view of inequalities (21) and 1 − γ ≤ 2
δ2 , we obtain

∣∣τ̂β(t)
∣∣ ≤ K1

t2δ2−r
+

1

πt2

( 1
δ∫

0

+

1∫

1
δ

+

∞∫

1

)
|τ′′(u)|du. (32)

Taking into account that τ′′(u) ≥ 0 if u ∈ [0, 1
δ ] (δ > 3) and using inequalities γ − 2θ ≤ 3

δ ,

θ ≤ 1
2 , we get

1
δ∫

0

|τ′′(u)|du = δre−
1
δ

(
(1 − γ) +

γ − 2θ

δ
+

θ

δ2

)
− δr(1 − γ) ≤

K2

δ2−r
. (33)
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Let u ∈ [1
δ , 1]. Repeating the argumentations used to estimate the first integral from (6) on

the segment [1
δ , 1

2 ], we can easily verify that the estimate

1∫

1
δ

|τ′′(u)|du = O

(
1 +

1

δ2−r

)
, δ → ∞, (34)

holds.

Consider now u ∈ [1, ∞). Taking into account the relation (17), we get

∞∫

1

|τ′′(u)|du ≤

∞∫

1

e−uu−r((2γ − 2θ − 1) + u(4θ − γ)− θu2)du

+2r

∞∫

1

e−uu−r−1((1 − γ) + u(γ − 2θ) + θu2)du

+r(r + 1)

∞∫

1

(1 − (1 + γu + θu2)e−u)u−r−2du.

In view of the first and the third inequalities from (19) and the inequality

e−u((1 − γ) + u(γ − 2θ) + θu2) ≤ 2, u ≥ 1,

the last relation yields
∞∫

1

|τ′′(u)|du ≤ K3. (35)

Combining formulas (32)–(35), we obtain

∣∣τ̂β(t)
∣∣ = O

(
1 +

1

δ2−r

)
1

t2
.

Therefore,

a(τ) =
∫

|t|≥ δπ
2

|τ̂β(t)|dt = O

(
1

δ
+

1

δ3−r

)
as δ → ∞. (36)

From the relations (29) and (36) the equality follows. Theorem 1 is proved.

Theorem 2. If r > 3 the following asymptotic equality holds as δ → ∞

E
(

Wr
β,∞; P3(δ)

)
C
=

1

δ3
sup

f∈Wr
β,∞

∥∥∥∥
4

3
f
(1)
0 (·) + f

(2)
0 (·) +

1

6
f
(3)
0 (·)

∥∥∥∥
C

+ O(Υ(δ; r)), (37)

where f
(r)
0 , r = 1, 2, 3, are (r, β)-derivatives in the Weyl-Nagy sense for β = 0, and

Υ(δ; r) =





1
δr , 3 < r < 4,
ln δ
δ4 , r = 4,
1
δ4 , r > 4.
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Proof. As in the paper [4], let us represent function τ(u) defined by the relation (2) in the form

τ(u) = ϕ(u) + µ(u), where

ϕ(u) =

{
( 4

3δ2 u + 1
δ u2 + 1

6 u3)δr, 0 ≤ u ≤ 1
δ ,(

4
3δ2 u + 1

δ u2 + 1
6 u3

)
u−r, u ≥ 1

δ ,
(38)

µ(u) =





(
1 − (1 + γu + θu2)e−u − 4

3δ2 u − 1
δ u2 − 1

6u3
)

δr, 0 ≤ u ≤ 1
δ ,(

1 − (1 + γu + θu2)e−u − 4
3δ2 u − 1

δ u2 − 1
6u3

)
u−r, u ≥ 1

δ .
(39)

Now we show a convergence of the integrals A (ϕ) and A (µ) of the form (3).

To prove a convergence of the integral A (ϕ), in view of theorem 1 from [1], let us show a

convergence of the integrals

1
2∫

0

u
∣∣dϕ′(u)

∣∣ ,

∞∫

1
2

|u − 1|
∣∣dϕ′(u)

∣∣ ,

∞∫

0

|ϕ(u)|

u
du,

1∫

0

|ϕ(1 − u)− ϕ(1 + u)|

u
du (40)

and find their upper estimates.

From (38) we get that for u ∈
[
0, 1

δ

]
, δ > 2,

1
δ∫

0

u|dϕ′(u)| = δr

1
δ∫

0

(
2

δ
u + u2

)
du ≤

K1

δ3−r
. (41)

Since

1
2∫

1
δ

u|dϕ′(u)| ≤
∞∫
1
δ

u|dϕ′(u)| and
∞∫
1
2

|u − 1||dϕ′(u)| ≤
∞∫
1
δ

u|dϕ′(u)|, then it is sufficient to

get an estimate of the integral
∞∫
1
δ

u|dϕ′(u)|. If u ≥ 1
δ we have

∞∫

1
δ

u|dϕ′(u)|du ≤

∞∫

1
δ

(
2

δ
+ u

)
u−r+1du + 2r

∞∫

1
δ

(
4

3δ2
+

2

δ
u +

1

2
u2

)
u−rdu

+ r(r + 1)

∞∫

1
δ

(
4

3δ2
u +

1

δ
u2 +

1

6
u3

)
u−r−1du ≤

K2

δ3−r
.

(42)

Combining (41) and (42), we get

1
2∫

0

u|dϕ′(u)| = O

(
1

δ3−r

)
,

∞∫

1
2

|u − 1||dϕ′(u)| = O

(
1

δ3−r

)
as δ → ∞. (43)

From (38) we easily derive that

1
δ∫

0

|ϕ(u)|

u
du = δr

1
δ∫

0

(
4

3δ2
+

1

δ
u +

1

6
u2

)
du ≤

K3

δ3−r
,
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∞∫

1
δ

|ϕ(u)|

u
du =

∞∫

1
δ

(
4

3δ2
+

1

δ
u +

1

6
u2

)
u−rdu ≤

K4

δ3−r
.

Hence,
∞∫

0

|ϕ(u)|

u
du = O

(
1

δ3−r

)
as δ → ∞.

Analogous to (26), the formula

1∫

0

|ϕ(1 − u)− ϕ(1 + u)|

u
du =

1∫

0

|λ(1 − u)− λ(1 + u)|

u
du + O(H(ϕ)) (44)

is true, where λ(u) = 1 − 4
3δ2 u − 1

δ u2 − 1
6 u3, and H(ϕ) is defined by formula (27). In view of

the relation
1∫

0

|λ(1−u)−λ(1+u)|
u du = O(1) and (43), from (44) we have

1∫

0

|ϕ(1 − u)− ϕ(1 + u)|

u
du = O

(
1

δ3−r

)
as δ → ∞.

Therefore, all integrals from (40) are convergent. Further, applying Theorem 1 from the

paper [1] we conclude that the integral A(ϕ) converges and the estimate

A(ϕ) = O
( 1

δ3−r

)
as δ → ∞

holds.

Now we prove a convergence of the integral A (µ). For this reason, according to Theorem 1

from [1], let us show a convergence of the integrals

1
2∫

0

u
∣∣dµ′(u)

∣∣ ,

∞∫

1
2

|u − 1|
∣∣dµ′(u)

∣∣ ,

∞∫

0

|µ(u)|

u
du,

1∫

0

|µ(1 − u)− µ(1 + u)|

u
du. (45)

Repeating the argumentations used to estimate the first integral of (24) from [4], we divide

the segment [0, 1
2 ] into two parts: [0, 1

δ ] and [1
δ , 1

2 ], δ > 2. From the representation (39) of

function µ(u), for u ∈ [0, 1
δ ] we have µ′′(u) = µ̃′′(u)δr , where µ̃(u) is defined by equality (11).

Then, taking into account the third inequality from (13), we get

1
δ∫

0

u|dµ′(u)|≤ δr

1
δ∫

0

(
6

δ2
u +

12

δ
u2 + 3u3

)
du =

K1

δ4−r
. (46)

Analogous to (14), we obtain

1
2∫

1
δ

u|dµ′(u)| =





O(1), 3 < r < 4,

O
(

ln δ
)
, r = 4,

O
(

1
δ4−r

)
, r > 4,

as δ → ∞. (47)
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Combining (46) and (47) we get the estimate

1
2∫

0

u|dµ′(u)| =





O(1), 3 < r < 4,

O
(

ln δ
)
, r = 4,

O
(

1
δ4−r

)
, r > 4,

as δ → ∞. (48)

Let us move to an estimation of the second integral from (45). In view of (39), for u ≥ 1
δ

holds

|µ′′(u)| ≤
r(r + 1)|µ̃(u)|

ur+2
+

2r|µ̃′(u)|

ur+1
+

|µ̃′′(u)|

ur
. (49)

To make further estimations, we take into account inequalities (12) and

e−u ≤ 1, e−u ≤ 1 − u +
u2

2
, e−u ≥ 1 − u, u ≥ 0,

and, hence, get

|µ̃(u)| ≤ u
(
− 1 + γ +

4

3δ2

)
+ u2

(1

2
− γ + θ +

1

δ

)
+ u3

(γ

2
+

1

6

)
,

|µ̃′(u)| ≤
(
− 1 + γ +

4

3δ2

)
+ u

(
1 − 2γ + 2θ +

2

δ

)
+ u2

(3

2
γ + θ +

1

2

)
,

|µ̃′′(u)| ≤
(
1 − 2γ + 2θ +

2

δ

)
+ u

(
3γ + 1

)
+

(
θu2 + 4θu

)
e−u.

Then, using estimates

−1 + γ +
4

3δ2
≤

2

δ2
,

1

2
− γ + θ +

1

δ
≤

2

δ
,

γ

2
+

1

6
≤ 1,

3

2
γ + θ +

1

2
≤ 4,

3γ + 1 ≤ 6,
(
4θu + θu2

)
e−u ≤ 2u, u ≥ 0,

we obtain

|µ̃(u)| ≤
2

δ2
u +

2

δ
u2 + u3, |µ̃′(u)| ≤

2

δ2
+

4

δ
u + 4u2, |µ̃′′(u)| ≤

4

δ
+ 8u, u ≥ 0. (50)

In view of (49), (50), we have

∞∫

1
2

|u − 1||dµ′(u)| ≤

∞∫

1
2

u|dµ′(u)| ≤ r(r + 1)

∞∫

1
2

(
2

δ2
u+

2

δ
u2+ u3

)
u−r−1du

+ 2r

∞∫

1
2

(
2

δ2
+

4

δ
u + 4u2

)
u−rdu +

∞∫

1
2

(
4

δ
+ 8u

)
u−r+1du ≤ K1, r > 3.

(51)

Let us estimate the third integral from (45). We devide the segment [0, ∞) into three parts:

[0, 1
δ ], [

1
δ , 1], [1, ∞). From formula (11) using the first inequality from (13) and (50) we obtain

1
δ∫

0

|µ(u)|

u
du = δr

1
δ∫

0

|µ̃(u)|
du

u
≤ δr

1
δ∫

0

(
3

δ3
+

3

δ2
u +

2

δ
u2 + u3

)
du ≤

K1

δ4−r
;



332 HRABOVA U.Z., KAL’CHUK I.V.

1∫

1
δ

|µ(u)|

u
du≤

1∫

1
δ

(
3

δ3
+

3

δ2
u+

2

δ
u2+ u3

)
u−rdu≤





K2, 3 < r < 4,

K3 ln δ, r = 4,
K4

δ4−r , r > 4,

∞∫

1

|µ(u)|

u
du ≤

∞∫

1

(
2

δ2
+

2

δ
u + u2

)
u−rdu ≤ K5, r > 3.

Combining last relations, we have

∞∫

0

|µ(u)|

u
du =





O(1), 3 < r < 4,

O(ln δ), r = 4,

O( 1
δ4−r ), r > 4,

as δ → ∞. (52)

To estimate the fourth integral from (45) we use the formula

1∫

0

|µ(1 − u)− µ(1 + u)|
du

u
=

1∫

0

|λ(1 − u)− λ(1 + u)|
du

u
+ O(H(µ)), (53)

where λ(u) = e−u(1 + γu + θu2) + 4
3δ2 u + 1

δ u2 + 1
6 u3, and H(µ) is defined by formula (27).

In view of
1∫

0

|λ(1 − u)− λ(1 + u)| du
u = O(1), using relations (48) and (51), from (53) we get

1∫

0

|µ(1 − u)− µ(1 + u)|
du

u
=





O(1), 3 < r < 4,

O(ln δ), r = 4,

O( 1
δ4−r ), r > 4,

as δ → ∞. (54)

Hence, taking into account Theorem 1 from [1], according to formulas (48), (51), (52) and

(54) we can verify that the integral A(µ) is convergent and the following estimate holds

A(µ) =





O(1), 3 < r < 4,

O(ln δ), r = 4,

O( 1
δ4−r ), r > 4,

as δ → ∞. (55)

In view of the fact, that the Fourier transform τ̂β(t) of the form (5) is summable on a whole

real axis, for an arbitrary function f ∈ Wr
β,∞ and x ∈ R the equality

f (x)− P3(δ; f ; x) = δ−r

∞∫

−∞

f r
β

(
x +

t

δ

)
τ̂β(t)dt, δ > 0, (56)

is true.

Using (56), (38), (39), for the quantity (1) we get

E
(

Wr
β,∞; P3(δ)

)
C
= sup

f∈Wr
β,∞

∥∥∥∥∥δ−r

∞∫

−∞

f r
β

(
x +

t

δ

)
τ̂β(t)dt

∥∥∥∥∥
C

= sup
f∈Wr

β,∞

∥∥∥∥∥δ−r

∞∫

−∞

f r
β

(
x +

t

δ

)
(ϕ̂β(t) + µ̂β(t))dt

∥∥∥∥∥
C

= sup
f∈Wr

β,∞

∥∥∥∥∥δ−r

∞∫

−∞

f r
β

(
x +

t

δ

)
ϕ̂β(t)dt

∥∥∥∥∥
C

+ O
(
δ−r A(µ)

)
.

(57)
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It is easy to show, that the Fourier series of a continuous function

fϕ(x) =

∞∫

−∞

f r
β

(
x +

t

δ

)
ϕ̂β(t)dt

takes the form

S
[

fϕ

]
=

∞

∑
k=1

ϕ
( k

δ

)
kr(ak( f ) cos kx + bk( f ) sin kx

)
, (58)

(see speculations used in proving Theorem 1.3.1 from the paper of A.I. Stepanets [13], p. 54).

Due to (58), taking into account (38), we obtain the equality

S
[

fϕ

]
=

1

δ3−r

∞

∑
k=1

(
4

3
k + k2 +

1

6
k3

)
(ak( f ) cos kx + bk( f ) sin kx).

On the other hand,

S

[
4

3
f
(1)
0 (x) + f

(2)
0 (x) +

1

6
f
(3)
0 (x)

]
=

1

δ3−r

∞

∑
k=1

(
4

3
k + k2 +

1

6
k3

)
(ak( f ) cos kx + bk( f ) sin kx).

In view of (58), we get for all x ∈ R

∞∫

−∞

f r
β

(
x +

t

δ

)
ϕ̂β(t)dt =

1

δ3−r

(
4

3
f
(1)
0 (x) + f

(2)
0 (x) +

1

6
f
(3)
0 (x)

)
. (59)

Therefore, from (57), in view of formulas (55) and (59), we get the equality (37). Theorem 2

is proved.
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Грабова У.З., Кальчук I.В. Наближення класiв Wr
β,∞ тригармонiйними iнтегралами Пуассона //

Карпатськi матем. публ. — 2019. — Т.11, №2. — C. 321–334.

Робота присвячена розв’язанню однiєї з екстремальних задач теорiї наближення функцiо-

нальних класiв лiнiйними методами, а саме дослiдженню питань про наближення класiв ди-

ференцiйовних функцiй λ-методами пiдсумовування їх рядiв Фур’є, заданими сукупнiстю

Λ = {λδ(·)} неперервних на [0, ∞) функцiй, залежних вiд дiйсного параметра δ. Розгляну-

то задачу Колмогорова-Нiкольського, що займає особливе мiсце серед екстремальних задач

теорiї наближення, тобто задачу про знаходження асимптотичних рiвностей для величини

E(N; Uδ)X = sup
f∈N

‖ f (·)− Uδ ( f ; ·; Λ)‖X, де X — нормований простiр, N ⊆ X — заданий клас

функцiй, Uδ ( f ; x; Λ) — конкретний метод пiдсумовування рядiв Фур’є. Зокрема, в роботi

дослiджуються апроксимативнi властивостi тригармонiйних iнтегралiв Пуассона на класах

Вейля-Надя. Отримано асимптотичнi формули для верхнiх граней вiдхилень тригармонiйних

iнтегралiв Пуассона вiд функцiй з класiв Wr
β,∞, якi забезпечують розв’язок вiдповiдної зада-

чi Колмогорова-Нiкольського. Методи дослiдження екстремальних задач наближення такого

типу виникли i отримали свiй розвиток завдяки роботам А.М. Колмогорова, С.М. Нiкольсько-

го, С.Б. Стечкина, М.П. Корнейчука, В.К. Дзядика, О.I. Степанця та iнших, але вони викори-

стовуються для наближень лiнiйними методами пiдсумовування, що задаються трикутними

числовими матрицями. В данiй же роботi згаданi методи модифiковано для методiв пiдсумо-

вування, що задаються множиною функцiй натурального аргументу.

Ключовi слова i фрази: задача Колмогорова-Нiкольського, тригармонiйний iнтеграл Пуас-

сона, класи Вейля-Надя.
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Let X be a weighted direct sum of infinity many copies of complex spaces ℓ1
⊕

ℓ1. We consider

an algebra consisting of polynomials on X which are supersymmetric on each term ℓ1
⊕

ℓ1. Point
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INTRODUCTION AND PRELIMINARIES

Let X be a complex Banach space and (Pα) a family of continuous complex valued polyno-

mials on X. Often, it is interesting to consider algebras of analytic functions on X, generated

by the family of polynomials (see e. g. [6, 12, 16]). If the family (Pα) does not separate points of

X, then the same is true for any function, generated by (Pα). So, we have a natural relation of

equivalence on X: z ∼ w if and only if Pα(z) = Pα(w) for every α. If X is finite-dimensional,

then from the Algebraic Geometry is well known that the quotient set X/ ∼ is dens in an alge-

braic variety. The same is true for infinite-dimensional case, if the family (Pα) is finite [2]. But

in the general case, the situation may be more complicated.

Let S be the group of all permutations on the set of natural numbers N. A polynomial

P : ℓ1 → C is said to be symmetric if P(σ(x)) = P(x) for every X ∈ ℓ1 and σ ∈ S. It is known [15]

that polynomials

Fk(X) =
∞

∑
n=1

xk
n, k = 1, 2, . . . ,

form an algebraic basis in the algebra of all continuous symmetric polynomialsPs(ℓ1). In other

words, {Fk}
∞
k=1 are algebraically independent and Ps(ℓ1) is the minimal unital algebra contain-

ing {Fk}
∞
k=1. In [1] it was shown that two vectors with finite supports x, y ∈ ℓ1 are equivalent

in the means Fk(x) = Fk(y) for every k, if and only if x = σ(y) for some σ ∈ S. Some algebraic

operations on ℓ1/ ∼ which form a semi-ring structure [4] were considered in [5, 7]. Composi-

tion operators, associated with these operations, on analytic functions were investigated in [8].

Algebras of analytic functions generated by symmetric polynomials on ℓp were investigated

in [1, 3, 5–7, 13, 14].

УДК 517.98
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c© Jawad F., Karpenko H., Zagorodnyuk A., 2019



336 JAWAD F., KARPENKO H., ZAGORODNYUK A.

Let X = ℓ1
⊕

ℓ1. We represent each element z of X by z = (y|x), x, y ∈ ℓ1. Let us consider

polynomials Tm : X → C,

Tm(z) = Fm(x)− Fm(y) =
∞

∑
k=1

(xm
k − ym

k ).

Polynomials Tm, m ∈ N are algebraically independent and form an algebraic basis on the

algebra of supersymmetric polynomials on X. In [11] the algebra of supersymmetric polynomials

was investigated and a commutative ring structure on the corresponding quotient set X/ ∼

was described.

For a given complex Banach space E with an unconditional basis {en}∞
n=0 we denote by ℓ

(E)
1

a Banach space defined by the following way. If x ∈ ℓ
(E)
1 , then

x = (x(0), x(1), . . . , x(n), . . .), (1)

where each x(n) = (x
(n)
1 , . . . , x

(n)
k , . . .) ∈ ℓ1 and

∞

∑
n=0

‖x(n)‖ℓ1
en ∈ E with ‖x‖

ℓ
(E)
1

=

∥∥∥∥∥
∞

∑
n=0

‖x(n)‖ℓ1
en

∥∥∥∥∥
E

.

A polynomial P on ℓ
(E)
1 is separately symmetric [10] if for every sequence of permutations on

N, σ = (σ0, σ1, . . . , σn, . . .), σn ∈ S we have P(σ(x)) = P(σ0(x(0)), . . . , σn(x(n)), . . .) = P(x) for

all x ∈ ℓ
(E)
1 . Polynomials

F
(j)
m (x) =

∞

∑
k=1

(x
(j)
k )m, j ∈ Z+, m ∈ N

are separately symmetric and algebraically independent.

In this paper we consider a complex Banach space X which is a weighted direct sum of

infinity copies of ℓ1
⊕

ℓ1 and polynomials which are supersymmetric on each term of this sum.

We show that under some assumptions, X/ ∼ is a real locally convex algebra which contains a

normed subalgebra. This is an extension of results on supersymmetric polynomials, obtained

in [11]. For details about analytic mappings on Banach spaces we refer the reader to [9].

1 THE RING Mω

Let ω be a positive number, 0 < ω ≤ 1. We denote by ℓω
1,∞ a “weighted” version of the

space ℓE
1 . Namely, if x ∈ ℓω

1,∞, then

x = (x(0), x(1), . . . , x(n), . . .), x(n) = (x
(n)
k ) ∈ ℓ1

and

‖x‖ = ‖x‖ℓω
1,∞

= max

(
∞

∑
n=1

ωn‖x(n)‖ℓ1
, sup

n,k

|x
(n)
k |

)
.

We denote by Λω
1 the direct sum of two copies of ℓω

1,∞, Λω
1 = ℓω

1,∞

⊕
ℓω

1,∞. Elements of Λω
1

will be denoted by (y|x), y ∈ ℓω
1,∞, x ∈ ℓω

1,∞ and ‖(y|x)‖ = ‖y‖ℓω
1,∞

+ ‖x‖ℓω
1,∞

. In other words,
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any element z ∈ Λω can be represented as

z = (y|x) =




. . . y
(0)
k . . . y

(0)
1 | x

(0)
1 . . . x

(0)
k . . .

. . . | . . .

. . . y
(n)
k . . . y

(n)
1 | x

(n)
1 . . . x

(n)
k . . .

. . . | . . .




or

z =
∞

∑
n=0

∞

∑
k=1

x
(n)
k e

(n)
k +

∞

∑
n=0

∞

∑
k=1

y
(n)
k e

−(n)
k , (2)

where

x
(n)
k e

(n)
k =




. . . 0 . . . 0 | 0 . . . 0 . . .

. . . | . . .

. . . 0 . . . 0 | 0 . . . 0 x
(n)
k 0 . . .

. . . 0 . . . 0 | 0 . . . 0 . . .

. . . | . . .




and

y
(n)
k e

−(n)
k =




. . . 0 . . . 0 | 0 . . . 0 . . .

. . . | . . .

. . . 0 y
(n)
k 0 . . . 0 | 0 . . . 0 . . .

. . . 0 . . . 0 | 0 . . . 0 . . .

. . . | . . .




.

Note that the expansion (2) is formal, that is, the series on the right is not convergent in general.

We denote by Λω+
1 and Λω−

1 subspaces {(0|x) : x ∈ ℓω
1,∞} and {(y|0) : y ∈ ℓω

1,∞} respec-

tively. If z = (y|x) we will use also notations z+ = x and z− = y when it will be convenient.

Let us define the following polynomials on Λω
1

Tω
m (y|x) =

∞

∑
n=0

ωnF
(n)
m (x(n))−

∞

∑
n=0

ωnF
(n)
m (y(n))

=
∞

∑
n=0

ωn
∞

∑
k=1

(x
(n)
k )m −

∞

∑
n=0

ωn
∞

∑
k=1

(y
(n)
k )m, (y|x) ∈ Λω

1 .

(3)

Proposition 1. For every m ∈ N the polynomial Tω
m is continuous on Λω

1 and ‖Tm‖ = 1.

Proof. Let ‖(y|x)‖ ≤ 1. Then ‖y‖ℓω
1
+ ‖x‖ℓω

1
≤ 1, and

∣∣x(n)k

∣∣ ≤ 1 and
∣∣y(n)k

∣∣ ≤ 1 for all k ∈ N

and n ∈ Z+. Thus

|Tω
m (x)| ≤

∞

∑
n=0

ωn
∞

∑
k=1

(∣∣x(n)k

∣∣m +
∣∣y(n)k

∣∣m) ≤
∞

∑
n=0

ωn
∞

∑
k=1

(∣∣x(n)k

∣∣+
∣∣y(n)k

∣∣) ≤ ‖(y|x)‖.

So ‖Tm‖ ≤ 1. Let now (y|x) be such that y = 0, x(0) = (1, 0, 0, . . .), x(n) = 0 for n > 0. Then

‖(y|x)‖ = 1 and Tm(y|x) = 1. Thus ‖Tm‖ = 1.

Definition 1. Let us say that a polynomial P : Λω
1 → C is ω-supersymmetric if it is an algebraic

combination of polynomials Tω
m , m ∈ N. We denote by Pω

s = Pω
s (Λω

1 ) the algebra of all ω-

supersymmetric polynomials on Λω
1 .
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Theorem 1. Let ω = 1/N for some N ∈ N, N > 1. For every number a ∈ R there exists

z{a} ∈ Λω
1 such that

‖z{a}‖ =

{
|a| if |a| ≥ 1

1 if |a| < 1

and Tω
m (z{a}) = a for every m ∈ N.

Proof. Let a > 0. Then we can write

a =
∞

∑
j=0

aj

N j
, aj ∈ N, (4)

that is, a0 = [a] the integer part of a and (0.a1a2 . . .)N is the representation of a − [a] in the

positional base N numeral system. Let z{a} be of the form z{a} = (0|x{a}), where

x{a} =
∞

∑
n=0

x
(n)
{a}

and

x
(n)
{a}

= (1, . . . , 1︸ ︷︷ ︸
an

, 0, 0, . . .) = e
(n)
1 + e

(n)
2 + · · ·+ e

(n)
an , n = 0, 1, 2, . . . .

Then for |a| ≥ 1,

‖z{a}‖ = max

(
∞

∑
n=0

an

Nn
, 1

)
=

∞

∑
n=0

an

Nn
= Tω

m (z{a}) = a, m ∈ N

and ‖z{a}‖ = 1 for |a| < 1. If a < 0 we can consider b = −a > 0. By the same way, using (4)

for b, we can find the vector x{b}. Let us define now z{a} = (x{b}|0). Then

‖z{a}‖ =

{
µ = |a| if |a| ≥ 1,

1 if |a| < 1,

and Tω
m (z{a}) = a for every m ∈ N.

Let us recall that two operations on ℓ1 “•” and “⋄” which preserve symmetric polynomials

were introduced in [7] and [5]. Namely, let x = (x1, x2, . . . , xk, . . .) and x = (y1, y2, . . . , yk, . . .)

are in ℓ1, then

x • y = (x1, y1, x2, y2, . . . , xk, yk, . . .)

and x ⋄ y is the resulting sequence of ordering the set {xiyj : i, j ∈ N} with one single index

in some fixed order. It is easy to check that for every symmetric polynomial P on ℓ1 and

fixed y ∈ ℓ1, polynomials P(x • y) and P(x ⋄ y) are symmetric. In [11] these operations were

extended to ℓ1
⊕

ℓ1 with preserving supersymmetric polynomials. Now we propose natural

extensions of these operations to Λω
1 .

Definition 2. Let z = (z−|z+) and r = (r−|r+) are in Λω
1 . We say that h = z • r if h

(n)
− =

z
(n)
− • r

(n)
− and h

(n)
+ = z

(n)
+ • r

(n)
+ for every n ∈ Z+. We also say that s = z ⋄ r if

s
(n)
+ =(z

(0)
+ ⋄ r

(n)
+ )• (z

(1)
+ ⋄ r

(n−1)
+ )• · · · • (z

(n)
+ ⋄ r

(0)
+ )• (z

(0)
− ⋄ r

(n)
− )• (z

(1)
− ⋄ r

(n−1)
− )• · · · • (z

(n)
− ⋄ r

(0)
− )

and

s
(n)
− =(z

(0)
+ ⋄ r

(n)
− ) • (z

(1)
+ ⋄ r

(n−1)
− ) • · · · • (z

(n)
+ ⋄ r

(0)
− ) • (z

(0)
− ⋄ r

(n)
+ ) • (z

(1)
− ⋄ r

(n−1)
+ ) • · · · • (z

(n)
− ⋄ r

(0)
+ ).
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Proposition 2. Tω
m (z • r) = Tω

m (z) + Tω
m (r) and Tω

m (z ⋄ r) = Tω
m (z)Tω

m (r) for all z, r ∈ Λω
1 and

m ∈ N.

Proof. The first equality directly follows from the definition of Tω
m (3). Also, in [5] it is proved

that Fm(x ⋄ y) = Fm(x)Fm(y), x, y ∈ ℓ1, m ∈ N. So, using (3) and Definition 2, we have for

s = z ⋄ r

Tω
m (s) = Tω

m (z ⋄ r) =
∞

∑
n=0

ωnF
(n)
m (s

(n)
+ )−

∞

∑
n=0

ωnF
(n)
m (s

(n)
− )

=
∞

∑
n=0

ωn

(
n

∑
j=0

F
(n)
m (z

(j)
+ ⋄ r

(n−j)
+ ) +

n

∑
j=0

F
(n)
m (z

(j)
− ⋄ r

(n−j)
− )

)

−
∞

∑
n=0

ωn

(
n

∑
j=0

F
(n)
m (z

(j)
+ ⋄ r

(n−j)
− ) +

n

∑
j=0

F
(n)
m (z

(j)
− ⋄ r

(n−j)
+ )

)

=
∞

∑
n=0

ωn

(
n

∑
j=0

F
(j)
m (z

(j)
+ )F

(n−j)
m (r

(n−j)
+ ) +

n

∑
j=0

F
(j)
m (z

(j)
− )F

(n−j)
m (r

(n−j)
− )

)

−
∞

∑
n=0

ωn

(
n

∑
j=0

F
(j)
m (z

(j)
+ )F

(n−j)
m (r

(n−j)
− ) +

n

∑
j=0

F
(j)
m (z

(j)
− )F

(n−j)
m (r

(n−j)
+ )

)

=

(
∞

∑
n=0

ωnF
(n)
m (z

(n)
+ )−

∞

∑
n=0

ωnF
(n)
m (z

(n)
− )

)(
∞

∑
n=0

ωnF
(n)
m (r

(n)
+ )−

∞

∑
n=0

ωnF
(n)
m (r

(n)
− )

)

= Tω
m (z)Tω

m (r).

Corollary 1. Let P(z) ∈ Pω
s . Then, for every fixed r ∈ Λω

1 polynomials P(z • r) and P(z ⋄ r) are

in Pω
s .

For a given z = (y|x) ∈ Λω
1 we denote z− = (x|y). Clearly, the map z 7→ z− is a continuous

involution in r ∈ Λω
1 and Tω

m (z−) = −Tω
m (z).

Let us introduce the following relation of equivalence on Λω
1 . We say that z ∼ r if and only

if Tω
m (z) = Tω

m (r) for every m ∈ N. Let us denote by Mω the quotient set Λω
1 / ∼ and by [z]

the class of equivalence which contains z.

Proposition 3. The following operations [z] + [r] := [z • r]; [z][r] := [z ⋄ r], z, r ∈ Λω
1 , of addi-

tion and multiplication are well-defined on Mω ×Mω and (Mω ,+, ·) is a unital commutative

ring.

Proof. Let z′ ∈ [z] and r′ ∈ [r]. By Proposition 2 and the definition of the equivalence we have

that for every m ∈ N,

Tω
m (z) + Tω

m (r) = Tω
m (z′) + Tω

m (r′) = Tω
m (z′ • r′)

and

Tω
m (z)Tω

m (r) = Tω
m (z′)Tω

m (r′) = Tω
m (z′ ⋄ r′).

So the operations on Mω do not depend on representatives. Let [u] = [z]([r] + [s]) and [v] =

[z][r] + [z][s]. Since for every m ∈ N

Tω
m (u) = Tω

m (z)(Tω
m (r) + Tω

m (s)) = Tω
m (z)Tω

m (r) + Tω
m (z)Tω

m (s) = Tω
m (v),
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so [u] = [v] and we have the distributive law. Clearly that the associativity and commutativity

of the addition and multiplication can be proved by the same way. Also, −[z] = [z−] and

I = [e
(0)
1 ] is the identity. Thus Mω is a unital commutative ring.

For any λ ∈ C and z ∈ Mω we set λ ∗ [z] = [λz]. Since, Tω
m (λz) = λmTω

m (z), the operation

“∗” is well defined on C ×Mω . But (Mω ,+, ∗) is not a linear space. Indeed, if z ∈ Λω
1 and

z 6= 0, then [z] + [z] = [z • z] 6= 2 ∗ [z] because Tω
m ([z • z]) = 2Tω

m (z) but Tω
m (2z) = 2mTω

m (z).

2 OPERATORS AND SEMINORMS ON M1/N

For a given z = (y|x) ∈ Λω
1 , we denote by supp z the support of z, that is, the following pair

of sets of indexes

supp z = ({i ∈ N, j ∈ Z+ : y
(j)
i 6= 0}, {k ∈ N, n ∈ Z+ : x

(n)
k 6= 0}).

Let us define the following maps on Λ1/N
1 :

S
+(n,m)
k (z) = (z − x

(n)
k e

(n)
k ) • (x

(m)
k e

(m)
k • · · · • (x

(m)
k e

(m)
k︸ ︷︷ ︸

Nm−n

)

and

S
−(n,m)
k (z) = (z − y

(n)
k e

−(n)
k ) • (y

(m)
k e

−(m)
k • · · · • (y

(m)
k e

−(m)
k︸ ︷︷ ︸

Nm−n

),

where m ≥ n and z = (y|x) ∈ Λ1/N
1 for some N ∈ N, N > 1. Let σ : N → N be a permutation.

We denote by S
+(i)
σ and S

−(i)
σ linear operators on Λ1/N

1 such that

S
+(i)
σ (e

(j)
k ) = e

(i)
σ(k)

if i = j and S
+(i)
σ (e

±(j)
k ) = e

±(j)
k otherwise,

and

S
−(i)
σ (e

−(i)
k ) = e

−(i)
σ(k)

if i = j and S
−(i)
σ (e

±(j)
k ) = e

±(j)
k otherwise.

Lemma 1. For every z = (y|x) ∈ Λ1/N
1 , permutation σ on N and m ≥ n we have

[z] = [S
+(i)
σ (z)] = [S

−(i)
σ (z)] = [S

+(n,m)
k (z)] = [S

−(n,m)
k (z)].

Proof. The proof follows from the definitions and direct calculations.

Proposition 4. Let z = (y|x) ∈ Λ1/N
1 for some N ∈ N, N > 1 and z has a finite support.

If [z] = [0], then there is a number j ∈ N and a composition S of a finite set of mappings

{S
±(n,m)
k , S

±(j)
σ } defined above such that

S(z) = (y′|x′) =




. . . 0 . . . 0 | 0 . . . 0 . . .

. . . | . . .

. . . 0 . . . 0 | 0 . . . 0 . . .

. . . y
′(j)
k . . . y

′(j)
1 | x

′(j)
1 . . . x

′(j)
k . . .

. . . 0 . . . 0 | 0 . . . 0 . . .

. . . | . . .




=
∞

∑
k=1

x
′(j)
k e

(j)
k +

∞

∑
k=1

y
′(j)
k e

−(j)
k (5)

and x
′(j)
k = y

′(j)
k for every k ∈ N.
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Proof. Let j be a minimal number such that x
(j)
k = 0 and y

(j)
k for every k ∈ N. Using a finite

number of mappings S
±(n,m)
k and Lemma 1 we can find z′ = (y′|x′), z′ ∼ z which satisfies (5).

So, for every m ∈ N
∞

∑
k=1

(
y
′(j)
k

)m
=

∞

∑
k=1

(
x
′(j)
k

)m
.

From [1] it follows that vectors
(

y
′(j)
k

)
k

and
(

x
′(j)
k

)
k

coincide up to a permutation σ of coordi-

nates (x1, . . . , xk, . . .). So, applying S
(j)
σ to z′ we have x

′(j)
k = y

′(j)
k for every k ∈ N.

Corollary 2. Let z = (y|x) ∈ Λ1/N
1 for some N ∈ N, N > 1, and z has a finite support. Then

there is an element z′ = (y′|x′) ∈ Λ1/N
1 such that z ∼ z′ and z′ has the following property:

if y′
(j)
i 6= 0, then x′

(n)
k 6= y′

(j)
i for all k ∈ N, n ∈ Z+.

Proof. To get a proof it is enough to apply Proposition 4 to z • z′− = (y • x′|x • y′).

Due to Theorem 1, we can introduce an alternative multiplication by real constants in Mω ,

at least for the case ω = 1/N, N ∈ N, N > 1.

Theorem 2. Let N ∈ N, N > 1. Then M1/N is a real linear commutative unital algebra with

respect to the operations of addition and multiplication defined in Proposition 3 and the fol-

lowing multiplication by constants:

a[z] := [z{a}][z] = [z{a} ⋄ z], a ∈ R,

where z{a} is as in Theorem 1.

Proof. Note first that from Theorem 1 and Proposition 2 it follows that for every m ∈ N,

Tω
m (z{a} ⋄ z) = aTω

m (z). So I = z{1} is the unity in M1/N and [z{a1+a2}] = [z{a1}
] + [z{a2}],

a1, a2 ∈ R. Thus,

a([z] + [r]) = a[z] + a[r] and (a1 + a2)[z] = a1[z] + a2[z],

where a, a1, a2 ∈ R and [z], [r] ∈ M1/N .

Let us denote by Ω the class of functions γ : C → C such that the mappings Φγ : Λω
1 → Λω

1

defined by

Φγ(z) = Φγ(y|x) =




. . . γ(y
(0)
k ) . . . γ(y

(0)
1 ) | γ(x

(0)
1 ) . . . γ(x

(0)
k ) . . .

. . . | . . .

. . . γ(y
(n)
k ) . . . γ(y

(n)
1 ) | γ(x

(n)
1 ) . . . γ(x

(n)
k ) . . .

. . . | . . .




are well defined and z ∼ z′ implies Φγ(z) = Φγ(z′). Such class is nonempty, for example,

γ(t) = tm ∈ Ω, m ∈ N.

Theorem 3. Let γ ∈ Ω. Then Φγ generates a linear operator Φ̂γ : M1/N → M1/N defined by

Φ̂γ([z]) = Φγ(z).
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Proof. From the definition of Ω it follows that Φ̂γ is well defined. Also, it is clear

Φ̂γ([z] + [r]) = Φγ(z • r) = Φγ(z) • Φγ(r) = Φ̂γ([z]) + Φ̂γ([r]),

z, r ∈ Λ1/N
1 . Let now z{a} = (y{a}|x{a}) be as in Theorem 1, that is,

x{a} =
∞

∑
n=0

an

∑
i=1

e
(n)
i , y{a} = 0 if a ≥ 0 and y{a} =

∞

∑
n=0

an

∑
i=1

e
−(n)
i , x{a} = 0 if a < 0,

where

|a| =
∞

∑
j=0

aj

N j
, aj ∈ N.

If a ≥ 0, then [z{a}][z] = a[z], a ∈ R, z = (y|x) ∈ Λ1/N
1 and

Φγ(z{a} ⋄ z) = Φγ

(
(z • . . . • z︸ ︷︷ ︸

a0

) ⋄ e
(0)
1 • . . . • (z • . . . • z︸ ︷︷ ︸

an

) ⋄ e
(n)
1 • . . .

)

=
(

Φγ(z) • . . . • Φγ(z)︸ ︷︷ ︸
a0

)
⋄ e

(0)
1 • . . . •

(
Φγ(z) • . . . • Φγ(z)︸ ︷︷ ︸

an

)
⋄ e

(n)
1 • . . . = z{a} ⋄ Φγ(z).

If a < 0, we have to replace e
(n)
1 by e

−(n)
1 , n ∈ Z+. So Φ̂γ

(
a[z]
)
= aΦ̂γ

(
[z]
)
. Therefore, Φ̂γ is a

linear operator.

Let us denote τm
(
[z]) = T1/N

m (z), [z] ∈ M1/N , m ∈ N. Clearly, τm are complex valued

real-linear and multiplicative functions, that is, τm are homomorphisms from M1/N to C. By

the definition of M1/N we have that functionals τm : m ∈ N separate points of M1/N . Let

us denote by z̄ = Φγ(z), where γ(t) = t̄ is the complex conjugate of t. It is easy to check

that τm

(
[z̄]
)
= τm

(
[z]
)

and so γ(t) = t̄ belongs to Ω. So [z] 7→ τm

(
[z̄]
)

is a complex valued

functional for every m ∈ N. Thus τm + τm and −i
(
τm − τm

)
are real valued linear functionals

on M1/N .

Corollary 3. If γ ∈ Ω is multiplicative, then Φ̂γ is an algebra homomorphism.

Proof. Let [z], [r] ∈ M1/N ,

z =
∞

∑
n=0

∞

∑
k=1

z
(n)
+k e

(n)
k +

∞

∑
n=0

∞

∑
k=1

z
(n)
−k e

−(n)
k

and

r =
∞

∑
n=0

∞

∑
k=1

r
(n)
+k e

(n)
k +

∞

∑
n=0

∞

∑
k=1

r
(n)
−k e

−(n)
k .

Since Φγ

(
z
(n)
+k e

(n)
k

)
= γ

(
z
(n)
+k

)
e
(n)
k , we have

Φγ

(
z
(n)
±k e

±(n)
k ⋄ r

(j)
±ie

±(j)
i

)
= γ

(
z
(n)
±k r

(j)
±i

)
e
±(n)
k ⋄ e

±(j)
i ,

k, i ∈ N, n, j ∈ Z+. From the linearity and multiplicativity of τm it follows

τm
(
Φ̂γ([z])

)
τm
(
Φ̂γ([r])

)
= τm

(
Φ̂γ([z])Φ̂γ([r])

)
= τm

(
Φ̂γ([z][r])

)
.

Since it is true for every m, we have

Φ̂γ([z])Φ̂γ([r]) = Φ̂γ([z][r]).
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Proposition 5. Let γ ∈ Ω and γ(0) = 0. Then the following formula defines a seminorm on

M1/N :

pγ

(
[z]
)
= inf

(y|x)∈[z]

∞

∑
n=0

1

Nn

∞

∑
k=1

(∣∣γ
(

x
(n)
k

)∣∣+
∣∣γ
(
y
(n)
k

)∣∣
)

.

Proof. Since the infimum is taken over all representations (y|x) ∈ [z], the norm is well defined.

It is easy to check that pγ is nonnegative and satisfies the triangle inequality and is homoge-

neous.

Definition 3. Let us define the following seminorms on M1/N :

pm

(
[z]
)
= pγm

(
[z]
)

for γn(t) = tm.

It is clear that
∣∣τm
(
[z]
)∣∣ ≤ pm

(
[z]
)
, [z] ∈ M1/N and so, if [z] 6= 0, then there is m ∈ N such

that pm

(
[z]
)
> 0.

Let us denote
(
M1/N , (pm)

)
the linear space M1/N endowed with the projective topology,

generated by seminorms (pm). So we have the following proposition.

Proposition 6. The space
(
M1/N , (pm)

)
is a locally convex metrisable topological vector space

and each functional τm is continuous on
(
M1/N , (pm)

)
.

Let us denote by D the following subset of M1/N :

D =
{

u ∈ M1/N : there is z ∈ u such that
∣∣z(n)k

∣∣ ≤ 1, n ∈ Z+, k ∈ N

}
.

Theorem 4. D is a subalgebra in M1/N and the restriction of the topology of
(
M1/N , (pn)

)
to

D is generated by a norm on D.

Proof. From the definition of addition and multiplication in M1/N it follows that u + v ∈ D

and uv ∈ D for all u, v ∈ D. Also, for every a ∈ R, [z{a}] ∈ D and so au = [z{a}]u ∈ D. Hence,

D is a subalgebra in M1/N . Note that for every u ∈ D and m ∈ N, pm(u) ≤ p1(u). Also, p1 is

a norm on D. Indeed, if u 6= 0, then there is m ∈ N such that τm(u) 6= 0. So

0 6= |τm(u)| ≤ pm(u) ≤ p1(u).

So (D, p1) is a normed space and all pm are continuous with respect to p1. So the restriction of

topology of
(
M1/N , (pn)

)
to D coincides with the norm topology of (D, p1).
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Нехай X — зважена пряма сума нескiнченної кiлькостi копiй комплексного простору

ℓ1
⊕

ℓ1. Ми розглядаємо алгебру, яка складається з полiномiв на X, котрi є суперсиметрични-

ми на кожному доданку ℓ1
⊕

ℓ1. Функцiонали значень в точках на цiй алгебрi задають вiдно-

шення еквiвалентностi ‘∼’ на X. У роботi дослiджено фактор-множину X/ ∼ i показано, що

за деяких умов на цiй множинi є структура дiйсної топологiчної алгебри.

Ключовi слова i фрази: симетричнi i суперсиметричнi полiноми на банахових просторах, ал-

гебри аналiтичних функцiй на банахових просторах, спектри алгебр аналiтичних функцiй.
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KARAKAŞ A.

A NEW FACTOR THEOREM FOR GENERALIZED ABSOLUTE RIESZ SUMMABILITY

The aim of this paper is to consider an absolute summability method and generalize a theorem

concerning |N̄, pn|k summability of infinite series to ϕ− | N̄, pn; δ |k summability of infinite series by

using almost increasing sequence. Furthermore, it is explained that a well known result dealing with

|N̄, pn|k summability is obtained when this generalization is restricted under special conditions.

Key words and phrases: summability factors, almost increasing sequence, infinite series, Hölder
inequality, Minkowski inequality.
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INTRODUCTION

A positive sequence (zn) is said to be almost increasing if there exists a positive increasing

sequence (dn) and two positive constants L and M such that Ldn ≤ zn ≤ Mdn (see [1]).

Let ∑ an be a given infinite series with partial sums (sn). Let (pn) be a sequence of positive

numbers such that

Pn =
n

∑
v=0

pv → ∞ as n → ∞, (P−i = p−i = 0, i ≥ 1).

The sequence-to-sequence transformation

wn =
1

Pn

n

∑
v=0

pvsv

defines the sequence (wn) of the (N̄, pn) means of the sequence (sn), generated by the sequence

of coefficients (pn) (see [8]). The series ∑ an is said to be summable | N̄, pn |k, k ≥ 1, if (see [2])

∞

∑
n=1

(

Pn

pn

)k−1

| wn − wn−1 |
k
< ∞.

Let (ϕn) be any sequence of positive real numbers. The series ∑ an is said to be summable

ϕ − | N̄, pn; δ |k, k ≥ 1 and δ ≥ 0, if (see [16])

∞

∑
n=1

ϕδk+k−1
n | wn − wn−1 |k< ∞.

If we take ϕn = Pn
pn

, then ϕ − | N̄, pn; δ |k summability is the same as | N̄, pn; δ |k summability

(see [4]). Also, if we take ϕn = Pn
pn

and δ = 0, then we get |N̄, pn|k summability.

УДК 517.521.7
2010 Mathematics Subject Classification: 26D15, 40D15, 40F05, 40G99.
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1 THE KNOWN RESULT

A well known theorem dealing with | N̄, pn |k summability factors of infinite series is given

below.

Theorem 1 ([3]). Let (Xn) be a positive non-decreasing sequence and suppose that there exists

sequences (λn) and (βn) such that

| ∆λn |≤ βn, (1)

βn → 0 as n → ∞, (2)

∞

∑
n=1

n | ∆βn | Xn < ∞, (3)

| λn | Xn = O(1) as n → ∞. (4)

If

m

∑
n=1

1

n
| sn |k= O(Xm) as m → ∞ (5)

and (pn) is a sequence such that

Pn = O(npn), (6)

Pn∆pn = O(pn pn+1), (7)

then the series ∑
∞
n=1 an

Pnλn
npn

is summable | N̄, pn |k, k ≥ 1.

2 THE MAIN RESULT

Some works dealing with generalized absolute summability methods have been done (see

[5–7, 9, 10, 13–19]). The aim of this paper is to generalize Theorem 1 to ϕ − |N̄, pn; δ|k summa-

bility using almost increasing sequence in place of positive non-decreasing sequence.

Theorem 2. Let (ϕn) be a sequence of positive real numbers such that

ϕn pn = O(Pn), (8)

m+1

∑
n=v+1

ϕδk−1
n

1

Pn−1
= O(ϕδk

v
1

Pv
) as m → ∞. (9)

Let (Xn) be an almost increasing sequence. If conditions (1)–(4), (6)–(7) of the Theorem 1 and

m

∑
n=1

ϕδk
n
| sn |k

n
= O(Xm) as m → ∞ (10)

are satisfied, then the series ∑
∞
n=1 an

Pnλn
npn

is summable ϕ − |N̄, pn; δ|k, k ≥ 1 and 0 ≤ δk < 1.
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We need the following lemmas for the proof of Theorem 2.

Lemma 1 ([11]). Under the conditions on (Xn), (βn) and (λn) as taken in the statement of the

theorem, we have that

nXnβn = O(1) as n → ∞, (11)

∞

∑
n=1

βnXn < ∞. (12)

Lemma 2 ([12]). If the conditions (6) and (7) of Theorem 1 are satisfied, then ∆
(

Pn
npn

)

= O( 1
n ).

Remark 1 ([3]). It should be noted that, from the hypotheses of Theorem 1, (λn) is bounded

and ∆λn = O(1/n).

3 PROOF OF THEOREM 2

Proof. Let (Jn) indicate (N̄, pn) means of the series ∑
∞
n=1 an

Pnλn
npn

. Then, for n ≥ 1, we obtain

∆̄Jn =
pn

PnPn−1

n

∑
v=1

Pv−1
avPvλv

vpv
.

Applying Abel’s formula, we get

∆̄Jn =
snλn

n
+

pn

PnPn−1

n−1

∑
v=1

Pv+1Pv∆λv

(v + 1)pv+1
sv +

pn

PnPn−1

n−1

∑
v=1

Pvλvsv∆(
Pv

vpv
)−

pn

PnPn−1

n−1

∑
v=1

Pvλvsv
1

v

= Jn,1 + Jn,2 + Jn,3 + Jn,4.

For the proof of Theorem 2, it is sufficient to show that
∞

∑
n=1

ϕδk+k−1
n | Jn,r |

k
< ∞, f or r = 1, 2, 3, 4.

By using Abel’s formula, we have

m

∑
n=1

ϕδk+k−1
n | Jn,1 |

k = O(1)
m

∑
n=1

ϕδk+k−1
n

1

nk
|λn|

k−1|λn||sn|
k = O(1)

m

∑
n=1

ϕδk
n |λn|

|sn|k

n

= O(1)
m−1

∑
n=1

∆|λn|
n

∑
v=1

ϕδk
v
|sv|k

v
+ O(1)|λm |

m

∑
n=1

ϕδk
n
|sn|k

n

= O(1)
m−1

∑
n=1

βnXn + O(1)|λm|Xm = O(1) as m → ∞,

by virtue of (1), (4), (6), (8), (10) and (12).

Now, using Hölder’s inequality and (1), (6), (8), we obtain

m+1

∑
n=2

ϕδk+k−1
n | Jn,2 |

k = O(1)
m+1

∑
n=2

ϕδk+k−1
n (

pn

PnPn−1
)k

(

n−1

∑
v=1

Pv |∆λv| |sv|

)k

= O(1)
m+1

∑
n=2

ϕδk−1
n

1

Pk
n−1

(

n−1

∑
v=1

Pv |∆λv| |sv|

)k

= O(1)
m+1

∑
n=2

ϕδk−1
n

1

Pn−1

(

n−1

∑
v=1

Pvβv |sv|
k

)

×

(

1

Pn−1

n−1

∑
v=1

Pvβv

)k−1

.
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Again, using Abel’s formula and (3), (9)–(12), we have

m+1

∑
n=2

ϕδk+k−1
n | Jn,2 |

k = O(1)
m+1

∑
n=2

ϕδk−1
n

1

Pn−1

n−1

∑
v=1

Pvβv |sv|
k = O(1)

m

∑
v=1

Pvβv|sv|
k

m+1

∑
n=v+1

ϕδk−1
n

1

Pn−1

= O(1)
m

∑
v=1

ϕδk
v
|sv|k

v
vβv = O(1)

m−1

∑
v=1

∆(vβv)
v

∑
r=1

ϕδk
r
|sr|k

r

+ O(1)mβm

m

∑
v=1

ϕδk
v
|sv|k

v
= O(1)

m−1

∑
v=1

∆(vβv)Xv + O(1)mβmXm

= O(1)
m−1

∑
v=1

v|∆βv |Xv + O(1)
m−1

∑
v=1

βvXv + O(1)mβmXm = O(1) as m → ∞.

Since ∆
(

Pv
vpv

)

= O( 1
v ), as in Jn,1, we obtain

m+1

∑
n=2

ϕδk+k−1
n | Jn,3 |

k = O(1)
m+1

∑
n=2

ϕδk+k−1
n (

pn

PnPn−1
)k

(

n−1

∑
v=1

Pv |sv| |λv|
1

v

)k

= O(1)
m+1

∑
n=2

ϕδk−1
n

1

Pk
n−1

(

n−1

∑
v=1

Pv

pv
pv |sv| |λv|

1

v

)k

= O(1)
m+1

∑
n=2

ϕδk−1
n

1

Pn−1

(

n−1

∑
v=1

(
Pv

vpv
)k pv |sv|

k |λv|
k

)(

1

Pn−1

n−1

∑
v=1

pv

)k−1

= O(1)
m+1

∑
n=2

ϕδk−1
n

1

Pn−1

n−1

∑
v=1

(
Pv

vpv
)k−1 Pv

vpv
pv |sv|

k |λv|
k

= O(1)
m

∑
v=1

Pv

vpv
pv |sv|

k |λv|
k

m+1

∑
n=v+1

ϕδk−1
n

1

Pn−1

= O(1)
m

∑
v=1

Pv

vpv
pv |sv|

k |λv|
k−1 |λv| ϕδk

v
1

Pv

= O(1)
m

∑
v=1

ϕδk
v
|sv|k

v
|λv| = O(1) as m → ∞,

by means of (1), (4), (6), (8)–(10) and (12).

Finally, as in Jn,3, we have

m+1

∑
n=2

ϕδk+k−1
n | Jn,4 |

k = O(1)
m+1

∑
n=2

ϕδk+k−1
n (

pn

PnPn−1
)k

(

n−1

∑
v=1

Pv |sv| |λv|
1

v

)k

= O(1) as m → ∞,

in view of (1), (4), (6), (8)–(10) and (12).

Thus, the proof of Theorem 2 is completed.

4 CONCLUSION

If we take (Xn) as a positive non-decreasing sequence, ϕn = Pn
pn

and δ = 0 in Theorem 2,

then we get Theorem 1. In this case, condition (10) reduces to condition (5). Also, the condi-

tions (8) and (9) are automatically satisfied.
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[7] Bor H., Özarslan H. S. A note on absolute summability factors. Adv. Stud. Contemp. Math. (Kyungshang) 2003,

6 (1), 1–11.

[8] Hardy G. H. Divergent Series. Oxford University Press, Oxford, 1949.
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Каракас А. Нова факторизацiйна теорема для узагальненого абсолютного пiдсумовування за Рiсом

// Карпатськi матем. публ. — 2019. — Т.11, №2. — C. 345–349.

Метою цiєї статтi є розгляд методу абсолютного пiдсумовування i узагальнення теоре-

ми про |N̄, pn|k сумовнiсть нескiнченного ряду до ϕ− | N̄, pn; δ |k сумовностi, використовую-

чи майже зростаючi послiдовностi. Бiльше того, показано, що добре вiдомi результати для

|N̄, pn|k сумовностi випливають з цих узагальнень за деяких обмежень.

Ключовi слова i фрази: сумовнi дiльники, майже зростаюча послiдовнiсть, ряди, нерiвнiсть

Гьольдера, нарiвнiсть Мiнковського.
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MAMALYHA KH.V., OSYPCHUK M.M.

ON SINGLE-LAYER POTENTIALS FOR A CLASS OF PSEUDO-DIFFERENTIAL

EQUATIONS RELATED TO LINEAR TRANSFORMATIONS OF A SYMMETRIC

α-STABLE STOCHASTIC PROCESS

In this article an arbitrary invertible linear transformations of a symmetric α-stable stochastic

process in d-dimensional Euclidean space R
d are investigated. The result of such transformation

is a Markov process in R
d whose generator is the pseudo-differential operator defined by its sym-

bol (−(Qξ, ξ)α/2)ξ∈Rd with some symmetric positive definite d × d-matrix Q and fixed exponent

α ∈ (1, 2). The transition probability density of this process is the fundamental solution of some

parabolic pseudo-differential equation. The notion of a single-layer potential for that equation is

introduced and its properties are investigated. In particular, an operator is constructed whose role

in our consideration is analogous to that the gradient in the classical theory. An analogy to the

classical theorem on the jump of the co-normal derivative of the single-layer potential is proved.

This result can be applied for solving some boundary-value problems for the parabolic pseudo-

differential equations under consideration. For α = 2, the process under consideration is a linear

transformation of Brownian motion, and all the investigated properties of the single-layer potential

are well known.

Key words and phrases: pseudo-differential equation, single-layer potential, α-stable stochastic
process, jump theorem.
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E-mail: mamalygakhrystyna@gmail.com (Mamalyha Kh.V.), myosyp@gmail.com (Osypchuk M.M.)

INTRODUCTION

Let us consider a symmetric α-stable process (x0(t))t≥0 in the d-dimensional Euclidean

space R
d (we denote by (·, ·) the inner product in this space), that is, a Markov process with its

transition probability density given by the equality

g0(t, x, y) =
1

(2π)d

∫

Rd
ei(ξ,x−y)−t|ξ|α dξ, t > 0, x ∈ R

d, y ∈ R
d,

where the exponent α ∈ (1, 2) is fixed. The class of all symmetric α-stable processes can be ob-

tained from the process (x0(t))t≥0 by multiplying it on some positive constants. More complex

processes can be obtained in the following way.
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Let P be some invertible d × d-matrix and x(t) = Px0(t), t ≥ 0. This process is obviously

Markov process and its transition probability density is given by the equality

g(t, x, y) =
1

(2π)d

∫

Rd
ei(ξ,x−y)−t(Qξ,ξ)α/2

dξ, t > 0, x ∈ R
d, y ∈ R

d, (1)

where Q = PPT. It is clear that the process (x(t))t≥0 is stochastically equivalent to the Markov

process (Lx0(t))t≥0, where L is some lower triangular matrix which satisfies the equality Q =

LLT.

The function g is the fundamental solution of the pseudo-differential equation

∂u(t, x)

∂t
= Au(t, ·)(x), t > 0, x ∈ R

d, (2)

where operator A is a pseudo-differential operator whose symbol is given by the function

(−(Qξ, ξ)α/2)ξ∈Rd . The operator A is the generator of Markov process (x(t))t≥0.

For a given surface S, which separates R
d into two open sets D− and D+ (Rd = D− ∪ S ∪

D+) and a given continuous function (ψ(t, x))t≥0,x∈S, we consider a function

v(t, x) =
∫ t

0
dτ

∫

S
g(t − τ, x, y)ψ(τ, y)dσy , t > 0, x ∈ R

d,

where the inner integral is a surface one. The function v is called a single-layer potential on

the surface S with the density ψ for equation (2).

In this article, we determine the existence conditions of the single-layer potential and inves-

tigate its properties. The case of Q = c2/α I (c > 0 and I is a unit d × d-matrix) was considered

in article [3]. We will use several methods from [3]. In the case of α = 2, the theory of single-

layer potentials is well-known (see, for example, [2]).

1 SOME AUXILIARY RESULTS

1.1 The function g

The function g defined above by formula (1) is continuous on the domain t > 0, x ∈ R
d,

y ∈ R
d, and is uniformly continuous on each set of the type (t, x, y) ∈ [τ,+∞)× R

d × R
d with

τ > 0. The following estimations of g and its derivatives are known (see [1, Ch.4]):

|Dkg(t, ·, y)(x)| ≤ Nk
t

(t1/α + |y − x|)d+α+k
, t > 0, x ∈ R

d, y ∈ R
d; (3)

|Dκg(t, ·, y)(x)| ≤ Ñκ

1

(t1/α + |y − x|)d+κ

, t > 0, x ∈ R
d, y ∈ R

d.

Here Dk means a differential operator of the order k (k = 0, 1, 2, ...), Dκ means a pseudo-

differential operator with a homogeneous symbol (pκ(ξ))ξ∈Rd of the order κ which has all

derivatives of the orders l < M with some M ≥ 2d +κ + α + 1 and |p(l)κ (ξ)| ≤ CM|ξ|κ−1 with

some constant CM ≥ 0 for all ξ 6= 0, and Nk and Ñκ are some positive constants.
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1.2 The operator A

An action of the operator A defined in Introduction on a smooth (with at least Lipschitz

continuous gradient) and bounded together with its derivatives function ϕ(x)x∈Rd is given by

the expression

Aϕ(x) =
qα

(det Q)1/2

∫

Rd
(ϕ(x + y)− ϕ(x)− (∇ϕ(x), y))(Q−1y, y)−(d+α)/2dy, (4)

where

qα =
αΓ((3 − α)/2)Γ((d + α)/2)

π(d+1)/2Γ(2 − α)
.

The value of the constant qα can be obtained by applying the operator A to the function ϕξ(x) =

ei(ξ,x), x ∈ R
d with some fixed ξ ∈ R

d.

1.3 An operator B

Let us introduce the operator B using its symbol (i(Qξ, ξ)α/2−1ξ)ξ∈Rd . Some simple cal-

culations lead us to the relation A = (∇, QB). The action of the operator B on a bounded

Lipschitz continuous function (ϕ(x))x∈Rd is defined by the following formula

Bϕ(x) =
qα

α(det Q)1/2

∫

Rd
(ϕ(x + y)− ϕ(x))(Q−1y, y)−(d−α)/2Q−1ydy,

where qα has the above meaning.

Let ν be some fixed ort in R
d. Consider the operator Bν = 2(Qν, B). We denote the re-

sult of its action on the function g with respect to the second argument by gν(t, x, y). Using

representation (1) of the function g and the integration by parts, it is easy to obtain the relation

gν(t, x, y) =
2

α

(y − x, ν)

t
g(t, x, y), t > 0, x ∈ R

d, y ∈ R
d. (5)

1.4 A surface of the class H1+γ

Let some surface S in R
d (a manifold of dimension d − 1) divide the set R

d into two open

sets: outer D+ and inner D− (i.e., R
d = D− ∪ S ∪ D+). Suppose that this surface has a tangent

hyperplane at each point x ∈ S. We will denote ν(x) the unit vector of the outer normal to

the surface S at the point x ∈ S. Choose the point x ∈ S and consider a local orthogonal

coordinate system with the origin at this point, such that ν(x) is the ort of its last axis. Assume

the surface S is such that for some δ > 0 each part Sδ(x) = S ∩ Bδ(x), x ∈ S, of the surface

S (here Bδ(x) is a ball with the radius δ > 0 and the center at the point x) can be described

in the mentioned above local coordinate system by the equation yd = Fx(y1, ..., yd−1) with a

single-valued function Fx.

The bounded closed surface S belongs to the class H1+γ if the function Fx has all partial

derivatives ∂Fx
∂yk

, k = 1, 2, ..., d − 1, satisfy Hölder’s condition with a power γ ∈ (0; 1) and the

constant does not dependent on x.

Among the properties of the surface S which belongs to the class H1+γ we will use the

following one (see [2, Ch.5]): there are some positive numbers δ0 and r0, and a finite set of

points x1, x2,..., xm on the surface S, such that S \ Sr0/2(x) ⊂ ∪k∈Ix
Sr0/2(xk) for each x ∈ S, and

mink∈Ix
infy∈Sr0/2(xk)

|y − x| ≥ δ0, where Ix is some subset of the indices {1, 2, ..., m}.
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2 A SINGLE-LAYER POTENTIAL

2.1 Existence conditions

Let S be a bounded closed surface of the class H1+γ with some γ ∈ (0; 1). Consider some

continuous function (ψ(t, x))t≥0,x∈S and define the function (v(t, x))t≥0,x∈Rd by the following

equality

v(t, x) =
∫ t

0
dτ

∫

S
g(t − τ, x, y)ψ(τ, y)dσy , t > 0, x ∈ R

d, y ∈ R
d, (6)

where an inner integral is a surface one. This function is called a single-layer potential on the

surface S with the density ψ. The following statement contains the conditions under which a

single-layer potential is well defined.

Lemma 1. Let S be a bounded closed surface of the class H1+γ with some γ ∈ (0; 1) and

(ψ(t, x))t≥0,x∈S be a continuous function, which satisfies the inequality |ψ(t, x)| ≤ CTt−β in

each set of (t; x) ∈ (0; T]× S with some constants β < 1 and CT > 0 (the last one can depend

on T > 0). Then, the single-layer potential (6) is finite for all t > 0 and x ∈ R
d.

Proof. Estimation (3) with k = 0 and the fact that (see [3])

∫

S

dσy

(t1/α + |y − x|)d+α
≤ Kt−1−1/α, t > 0, x ∈ R

d

with some constant K > 0 imply to the inequality

|v(t, x)| ≤ KN0CT

∫ t

0

dτ

τβ(t − τ)1/α
= KN0CTB(1 − β, 1 − 1/α)t1−β−1/α

for all t ∈ (0; T], x ∈ R
d and each T > 0.

2.2 Properties of the single-layer potential

Classically (when α = 2), a single-layer potential satisfies the appropriate parabolic differ-

ential equation in the domain (0;+∞) × (Rd \ S) (see [2, Ch.5] ). Let us prove an analogous

statement in our case (1 < α < 2).

Theorem 1. Let S be a bounded closed surface of the class H1+γ with some γ ∈ (0; 1), and

(ψ(t, x))t≥0,x∈S be a continuous function satisfying the inequality |ψ(t, x)| ≤ CTt−β in each set

of (t; x) ∈ (0; T]× S with some constants β < 1 and CT > 0 (the last one can depend on T > 0).

Then the single-layer potential (3) satisfies the equation

∂v(t, x)

∂t
= Av(t, ·)(x), t > 0, x ∈ R

d

in the domain (t; x) ∈ (0; ∞)× (Rd \ S).

Proof. It has already been mentioned that the function g is the fundamental solution of equa-

tion (2), and therefore, for all t > 0, x ∈ R
d, y ∈ R

d the equality
∂g(t,x,y)

∂t = Ag(t, ·, y)(x) holds

true. So, we only have to prove that the operator A with respect to the variable x can be moved

under the integral symbol in the right-hand part of (6) and the equality
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lim
ε→0+

∫

S
g(ε, x, y)ψ(t, y)dσy = 0,

holds true for t > 0, x ∈ R
d \ S. The last is due to estimation (3) with k = 0 and the inequality

∣

∣

∣

∣

∫

S
g(ε, x, y)ψ(t, y)dσy

∣

∣

∣

∣

≤ N0ε
|S|

(ρ(x, S))d+α
CTt−β,

where |S| is the area of the surface S, and ρ(x, S) is the distance from the point x to the surface

S.

Next, we will take presentation (4) of the operator A and prove the possibility to change

the order of integrating in the integral
∫ t

0
dτ

∫

S
ψ(τ, y)dσy

∫

Rd

g(t − τ, x + z, y)− g(t − τ, x, y)− (∇g(t − τ, ·, y)(x), z)

(Q−1z, z)(d+α)/2
dz.

Take into account that the following inequalities 1
M |z|2 ≤ (Q−1z, z) ≤ M|z|2 hold true with

some constant M > 0 for all x ∈ R
d. Divide the last integral into the sum of two integrals I1

and I2 taken from the same function: the first of them is by (0; t) ∈ S × Bε, and another is by

(0; t) ∈ S × (Rd \ Bε), where Bε is a ball of some small enough radius ε > 0 centered at the

origin.

Since for 0 < τ < t, x ∈ R
d, y ∈ S, z ∈ Bε the following equality

g(t − τ, x + z, y)− g(t − τ, x, y)− (∇g(t − τ, ·, y)(x), z) =
1

2

d

∑
i,j=1

∂2g(t − τ, x + θz, y)

∂xi∂xj
zizj

is true, where θ = θ(τ; y) ∈ (0; 1), the absolute value of the integrand in I1 is estimated by the

expression

Ctτ
−β 1

2
d2N2

t − τ

((t − τ)1/α + |y − x − θz|)d+α+2
|z|2 M(d+α)/2|z|−d−α,

where estimation (3) for k = 2 is used. Take a sufficiently small ε > 0 such that the inequality

infy∈S,z∈Bε,θ∈(0,1) |y − x − θz| = ρ0 > 0 holds true. Therefore, I1 is absolutely convergent.

The absolute value of the integrand in I2 is estimated by the expression (estimation (3) is

also taken into account)

Ctτ
−βM(d+α)/2|z|−d−α

(

N0(t − τ)

((t − τ)1/α + |y − x − z|)d+α
+

N0(t − τ)

((t − τ)1/α + |y − x|)d+α

+
N1(t − τ)

((t − τ)1/α + |y − x|)d+α+1
|z|

)

≤ Ctτ
−βM(d+α)/2|z|−d−α

(

N0(t − τ)

((t − τ)1/α + |y − x − z|)d+α
+

N0(t − τ)

(ρ(x, S))d+α
+

N1(t − τ)

(ρ(x, S))d+α+1
|z|
)

.

Observe that the second and the third terms in this expression are integrable. Consider

the integral of the first term and change the variable z into u using the equality y − x − z =

(t − τ)1/αu. We have got

N0CtM
(d+α)/2

∫ t

0

(t − τ)1+d/α

τβ
dτ

∫

S
dσy

∫

D(τ,y)
|y − x − (t − τ)1/αu|−d−α(1 + |u|)−d−αdu,

where D(τ, y) = {u ∈ R
d : |y − x − (t − τ)1/αu| > ε}. Surely, this integral converges, and for

completing the proof of the theorem, we have to use the Fubini’s theorem.
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2.3 The jump theorem

In a classical theory (with α = 2) of a single-layer potential the jump theorem takes an

essential place. It is the theorem on the jump of the co-normal derivative of a single-layer

potential. This section is devoted to an analogue of that theorem in our situation (1 < α < 2).

Lemma 2. Let the surface S and the function (ψ(t, x))t≥0,x∈S satisfy the conditions of Theo-

rem 1. Then for each t > 0 and x ∈ S the following integral
∫ t

0
dτ

∫

S
Bν(x)g(t − τ, ·, y)(x)ψ(τ, y)dσy (7)

is finite.

Proof. By equality (5), we can rewrite integral (7) in the following form

2

α

∫ t

0

dτ

t − τ

∫

S
(y − x, ν(x))g(t − τ, x, y)ψ(τ, y)dσy .

Taking into account estimation (3) and the properties of the surface S (see Section 1.1), we can

obtain for τ < t, x ∈ S, the inequality
∣

∣

∣

∣

∫

S
(y − x, ν(x))g(t − τ, x, y)ψ(τ, y)dσy

∣

∣

∣

∣

≤Ctτ
−βK((t − τ)γ/2+((t − τ)1/2+ δ0)

−d−α+1(t − τ))

≤ consttτ
−β((t − τ)γ/2 + (t − τ)),

where K > 0 is some constant and constt is some positive constant, which probably depends

on t. Hence the statement of the lemma is proved.

Remark 1. Integral (7) is called a direct value of the action result of the operator Bν(x), x ∈ S

on single-layer potential (6) at the point x ∈ S. We will denote it by B
(dv)
ν(x)

v(t, ·)(x).

The next statement is the jump theorem mentioned above.

Theorem 2. Let S be a bounded closed surface of the class H1+γ with some γ ∈ (0; 1) in

R
d, and (ψ(t, x))t≥0,x∈S be a continuous function satisfying the inequality |ψ(t, x)| ≤ CTt−β,

0 < t ≤ T, x ∈ S with some constants β < 1 and CT > 0 (the last one can depend on T) for

each T > 0. Then for each t ≥ 0, x ∈ S the following equality

lim
y→x±

Bν(x)v(t, ·)(y) = ∓ψ(t, x) + B
(dv)
ν(x)

v(t, ·)(x),

holds true, where y → x± means that y approaches x staying in some closed bounded cone

K ⊂ R
d with the vertex at the point x and K ⊂ D± ∪ {x}.

Proof. Similar to the classic case it is sufficient to consider only the case of y = x + δν(x) and

δ → 0±. Therefore, taking into account formula (5) we will obtain

Bν(x)v(t, ·)(y) =
2

α

∫ t

0

dτ

t − τ

∫

S
(z − x, ν(x))g(t − τ, y, z)ψ(τ, z)dσz

− δ
2

α

∫ t

0

dτ

t − τ

∫

S
g(t − τ, y, z)ψ(τ, z)dσz

= B
(dv)
ν(x)

v(t, ·)(x) +
2

α

∫ t

0

dτ

t − τ

∫

S
(z − x, ν(x))(g(t − τ, y, z)− g(t − τ, x, z))ψ(τ, z)dσz

− δ
2

α

∫ t

0

dτ

t − τ

∫

S
g(t − τ, y, z)ψ(τ, z)dσz .
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Denote the integrals on the right-hand side of this equality by I1 and I2 accordingly.

First, let us prove that limδ→0 I1 = 0. In order to get this proof, rewrite I1 in the form of the

sum of the following expressions

J
(1)
1 =

2

α

∫ t−ρ

0

dτ

t − τ

∫

S
(z − x, ν(x))(g(t − τ, x + δν(x), z)− g(t − τ, x, z))ψ(τ, z)dσz ,

J
(1)
2 =

2

α

∫ t

t−ρ

dτ

t − τ

∫

Sr0/2
(x)

(z − x, ν(x))(g(t − τ, x + δν(x), z)− g(t − τ, x, z))ψ(τ, z)dσz ,

J
(1)
3 =

2

α

∫ t

t−ρ

dτ

t − τ

∫

S\Sr0/2
(x)

(z − x, ν(x))(g(t − τ, x + δν(x), z)− g(t − τ, x, z))ψ(τ, z)dσz ,

where 0 < ρ < t is some constant (t is fixed), which should be chosen. We estimate each of

these expressions. Taking into account the properties of the surface S, we can obtain |(z −
x, ν(x))| ≤ |z − x|1+γ for z ∈ Sr0/2

(x). As a result, we have

|J(1)2 | ≤ Ct
2

α

∫ t

t−ρ

dτ

τβ

∫

Sr0/2
(x)

|z − x|1+γ

((t − τ)1/α + |z − x − δν(x)|)d+α
dσz

+Ct
2

α

∫ t

t−ρ

dτ

τβ

∫

Sr0/2
(x)

|z − x|1+γ

((t − τ)1/α + |z − x|)d+α
dσz.

Let z̃ be the orthogonal projection of the point z ∈ Sr0/2
(x) on the tangent hyperplane to S at the

point x. Hence, taking into account the inequalities |z − x| ≥ |z̃ − x|, |z − x − δν(x)| ≥ |z̃ − x|,
|z − x| ≥ const|z̃ − x|, where const is some positive constant that does not depend on the point

x (see [2, Ch.5]), we will obtain to the inequalities

|J(1)2 | ≤ Ĉt
2

α

∫ t

t−ρ

dτ

τβ

∫

△Kr0/2
(x)

|z̃|dz̃

((t − τ)1/α + |z̃|)d+α
dσz ≤

C̃t

(t − ρ)β
ργ/2,

where Ĉt, C̃t are positive constants that probably depend on t, and △r0/2
(x) ⊂ R

d−1 is some

bounded set. It means that △r0/2
(x) is the orthogonal projection of Sr0/2

(x) on the tangent

hyperplane to S at the point x ∈ S in the coordinate system of this hyperplane.

Next, we will estimate J
(1)
3 :

|J(1)3 | ≤ Ct

∫ t

t−ρ

dτ

τβ

∫

S\Sr0/2
(x)

|z − x|
((t − τ)1/α + |z − x − δν(x)|)d+α

dσz

+ Ct

∫ t

t−ρ

dτ

τβ

∫

S\Sr0/2
(x)

|z − x|
((t − τ)1/α + |z − x|)d+α

dσz.

Taking into account that for z ∈ S \ Sr0/2
(x) the inequalities |z − x| ≥ δ0, |z − x − δν(x)| ≥

|z − x| − |δ| ≥ δ0 − |δ| are true (choose δ to be the one that |δ| < δ0), we will have

|J3
(1)| ≤ Ĉt(δ0 − |δ|)−d−α

∫ t

t−ρ

dτ

τβ
.

Thus, the sum J
(1)
2 + J

(1)
3 can be made as small as we want by choosing ρ > 0.
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Now, consider J
(1)
1 . Since the function g(t− τ, x, z) is uniformly continuous in the sets of the

type (τ, x, z) ∈ [0; t − ρ]× K1 × K2, where K1 and K2 are some compacta in R
d, and taking into

account the integrability of the function ψ on [0; t − ρ]× S and the boundary of the function

(z − x, ν(x)) as the function of z on S, we will obtain that limδ→0 J
(1)
1 = 0. Therefore, I1 → 0 as

δ → 0.

Now, consider the behavior of I2 as δ → 0. Put I2 in the form of the sum of the following

expressions

J
(2)
1 =

2

α
δψ(t, x)

∫ t

t−ρ

dτ

t − τ

∫

Sε(x)
g(t − τ, x + δν(x), z)dσz ,

J
(2)
2 =

2

α
δ
∫ t

t−ρ

dτ

t − τ

∫

Sε(x)
g(t − τ, x + δν(x), z)(ψ(τ, z) − ψ(t, x))dσz ,

J
(2)
3 =

2

α
δ
∫ t−ρ

0

dτ

t − τ

∫

Sε(x)
g(t − τ, x + δν(x), z)ψ(τ, z)dσz ,

J
(2)
4 =

2

α
δ
∫ t

0

dτ

t − τ

∫

S\Sε(x)
g(t − τ, x + δν(x), z)ψ(τ, z)dσz ,

where ρ > 0, ε > 0 are rather small constants.

Let us estimate each of these terms. We start with the last one. Taking into account the

properties of the surface S, there are numbers l0 (natural) and p0 > 0, such that we can find

points xk ∈ S \ Sε(x), k = 1, 2 . . . , l0 that S \ Sε(x) ⊂ ∪l0
k=1Sr0/2

(xk) and

inf|ξ|≤|δ| infz∈Sr0/2
(xk)

|z − x − ζν(x)| ≥ p0. Then estimation (3) implies

|J(2)4 | ≤ 2

α
CtN0|S|l0|δ|

∫ t

0
τ−β((t − τ)1/α + p0)

−d−αdτ → 0, δ → 0.

Similarly, using inequality (3) we will get

|J(2)3 | ≤ 2

α
|δ|Ct N0

∫ t−ρ

0

dτ

tβ

∫

Sε(x)

dσz

((t − τ)1/α + |z − x − δν(x)|)d+α

≤ 2

α
|δ|Ct N0|S|

∫ t−ρ

0

dτ

tβ(t − τ)1+d/α
→ 0, δ → 0.

Here |S| means the area of the surface S like mentioned above.

Now, prove the existence of a limit of J
(2)
1 as δ → 0. By the way, it means that by choosing

ρ > 0 and ε > 0 the term J
(2)
2 can be made as small as you like. It is sufficiently to note that the

function ψ is uniformly continuous on the set [t − ρ; t]× Sε(x). Denote the tangent hyperplane

to the surface S at the point x ∈ S by Πx, and consider

R =
2

α
δ
∫ t

t−ρ

dτ

t − τ

∫

Πx

g(t − τ, x + δν(x), z)dσz .

To prove that limδ→0(J
(2)
1 − ψ(t, x)R) = 0, consider

δ
∫ ρ

0

dτ

τ

(

∫

Sε(x)
−

∫

Πx

)

g(τ, x + δν(x), z)dσz

= δ
∫ ρ

0

dτ

τ

(

∫

Sε(x)
−

∫

Πx

)

g(τ, x + δν(x), z)dσz

− δ
∫ ρ

0

dτ

τ

∫

Πx\Πε(x)
g(τ, x + δν(x), z)dσz

= J ′ + J ′′,
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where Πε(x) is the orthogonal projection Sε(x) on Πx. Taking into account the properties of

the surface S, it is easy to see that there is a constant θ > 0 such that for all z ∈ Πx \ Πε(x) the

inequality |z| ≥ θ is true. Therefore the following estimation

|J ′′| ≤ C|δ|ρ
∫ ∞

θ

rd−2dr

(δ2 + r2)(d+α)/2
= Cρ

∫ ∞

θ/|δ|

rd−2

(1 + r2)(d+α)/2

dr

|δ|α

holds true with some constant C > 0. As a result, taking L’Hôpital’s rule, we will obtain that

J ′′ → 0 as δ → 0.

In order to estimate J ′ let us transfer it to the local coordinate system with its origin at the

point x and the vector ν(x) as the ort of its last axis. We have

Sε(x) = {u ∈ R
d : ud = Fx(u

<d>), u<d> ∈ Dε(x) ⊂ R
d−1},

Πε(x) = {u ∈ R
d : ud = 0, u<d> ∈ Dε(x) ⊂ R

d−1},

where Dε(x) is some bounded closed set depended only on properties of the surface S, u<d>

is the vector (u1, u2, ..., ud−1), and Fx is some single-valued function with Hölder continuous

gradient (see Section 1.1) with power γ ∈ (0; 1). Talking into account inequality (3), it is not

difficult to state that

|J ′| ≤ K|δ|
∫ ρ

0

dτ

τ

∫

Dε(x)

τ|u|γ(1 + |u|γ)du

(τ1/α + k
√

|u|2 + δ2)d+α

≤ K̂|δ|
∫ ρ

0
dτ

∫ ε0

0

rd−2+γdr

(τ1/α + k
√

r2 + δ2)d+α
,

where K > 0, K̂ > 0, k > 0, ε0 > 0 are some constants. Changing the order of integration in the

last integral and taking into account the equality
∫ ∞

0
dτ

(τ1/α+a)d+α = αB(d, α)a−d that is correct

for all a > 0, we will obtain the estimation

|J ′| ≤ K̃|δ|
∫ ε0

0

rd−2+γdr

(
√

r2 + δ2)d
≤ K̃

∫ ∞

0

rd−2+γdr

(
√

r2 + 1)d
|δ|δ

with some constant K̃ > 0. Therefore J ′ → 0 as δ → 0 and limδ→0(J
(2)
1 − ψ(t, x)R) = 0. Thus,

we have to prove the existence of limδ→0± R and to find it. In order to prove this we will take

the equality proved in [3] (ν̂ is a fixed ort in R
d)

∫

Π
hd(x + λν̂)dσx =

1

π

∫ ∞

0
e−crα

cos λrdr, (8)

where λ ∈ R
d, Π = {x ∈ R

d : (x, ν̂) = 0} and hd(x) = (2π)−d
∫

Rd ei(x;ξ)−c|ξ|αdξ, x ∈ R
d.

Therefore, after simple transformations related with the changing of the variables in the sur-

face integral, we will obtain the equality

I =
∫

Πx

g(t, x + δν(x), y)dσy = t−1/α
∫

Π
hd(z − δt−1/αν̂)dσz,

where Π = {z ∈ R
d : (z, ν̂) = 0}, ν̂ is some ort in R

d. Equality (8) implies
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I = t−1/α 1

π

∫ ∞

0
e−crα

cos rδt−1/αdr =
1

π

∫ ∞

0
e−ctrα

cos rδdr.

Thus,

R =
2

απ
δ
∫ t

t−ρ

dτ

t − τ

∫ ∞

0
e−c(t−τ)rα

cos δrdr.

By changing the order of integration in this integral, we obtain the equality

R = signδ − 2

π

∫ ∞

0
e−cρrα sin δr

r
dr

and, therefore, we have that limδ→0± R = ±1. Hence, limδ→0± J
(2)
1 = ±ψ(t, x), t > 0, x ∈ S

and the theorem has been proved.

2.4 The single-layer potential with a hyperplane as a carrier

Let S be a hyperplane defined by the equation (x, ν) = r, where ν ∈ R
d is some unit

vector, and r ∈ R is a fixed real number. Let the function (ψ(t, x))t≥0,x∈S be continuous as

mentioned above, and the inequality |ψ(t, x)| ≤ CTt−β be true for all 0 < t ≤ T, x ∈ S and

each T > 0. Here the constant CT > 0 probably depends on T and β < 1. Taking into account

inequality (3), we obtain the estimation
∫

S g(t, x, y)dσy ≤ Kt−1/α, t > 0, x ∈ R
d and for the

fixed x ∈ R
d \ S we have

∫

S g(t, x, y)dσy ≤ Mt, t > 0, where K > 0 is some constant, and

M > 0 is the constant depending on x. This, is analogous to the previous, one can state that

the statements of Lemma 1 and Theorem 1 are true in this case (S is a hyperplane) as well.

Furthermore, formula (5) shows that gν(t, x, y) = 0 for all t > 0, x ∈ R
d, y ∈ R

d. Therefore,

the equality B
(dv)
ν(x)

v(t, ·)(x) = 0, t > 0, x ∈ S holds true. Thus, an analogue of Theorem 2 is

valid.

Theorem 3. Let S be a hyperplane with a unit normal vector ν ∈ R
d and (ψ(t, x))t≥0,x∈S be a

continuous function satisfying the following inequality |ψ(t, x)| ≤ CTt−β, 0 < t ≤ T, x ∈ S

with some constants β < 1 and CT > 0 (the last one can depend on T) for each T > 0. Then

for all t > 0, x ∈ S the following relations

lim
y→x±

Bνv(t, ·)(y) = ∓ψ(t, x)

hold true, where y → x+, (or y → x−) means that y → z in the way that (y − x, ν) > 0 (or

(y − x, ν) < 0).

Proof. The proof of this theorem repeats the proof of Theorem 2 with some simplification.
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Мамалига Х.В., Осипчук М.М. Потенцiали простого шару для одного класу псевдодиференцiальних

рiвнянь пов’язаних з лiнiйними перетвореннями симетричного α-стiйкого випадкового процесу //

Карпатськi матем. публ. — 2019. — Т.11, №2. — C. 350–360.

Стаття присвячена дослiдженню невиродженого лiнiйного перетворення симетричного α-

стiйкого випадкового процесу в евклiдовому просторi R
d. Результат цього перетворення є

процесом Маркова в R
d, чий твiрний оператор задається символом (−(Qξ, ξ)α/2)ξ∈Rd з де-

якою симетричною додатно визначеною d × d-матрицею Q та фiксованим α ∈ (1, 2). Щiль-

нiсть ймовiрностi переходу цього процесу є фундаментальним розв’язком деякого параболi-

чного псевдодиференцiального рiвняння. Вводиться поняття потенцiалу простого шару та

дослiджуються його властивостi. Зокрема встановлено оператор, який вiдiграє роль градiєнта

в класичнiй теорiї. Доведено аналог класичної теореми про стрибок конормальної похiдної

потенцiалу простого шару. Ця властивiсть потенцiалу простого шалу може бути використана

для побудови розв’язкiв деяких крайових задач для розглянутих параболiчних псевдодифе-

ренцiальних рiвнянь. Якщо α = 2, розглянутий процес є лiнiйним перетворенням процесу

броунiвського руху i всi дослiдженi властивостi потенцiалу простого шару добре вiдомi.

Ключовi слова i фрази: псевдодиференцiальне рiвняння, потенцiал простого шару, α-стiйкий

випадковий процес, теорема про стрибок.
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FILTERING OF MULTIDIMENSIONAL STATIONARY SEQUENCES WITH MISSING

OBSERVATIONS

The problem of mean-square optimal linear estimation of linear functionals which depend on

the unknown values of a multidimensional stationary stochastic sequence is considered. Estimates

are based on observations of the sequence with an additive stationary stochastic noise sequence

at points which do not belong to some finite intervals of a real line. Formulas for calculating the

mean-square errors and the spectral characteristics of the optimal linear estimates of the functionals

are proposed under the condition of spectral certainty, where spectral densities of the sequences are

exactly known. The minimax (robust) method of estimation is applied in the case where spectral

densities are not known exactly while some sets of admissible spectral densities are given. For-

mulas that determine the least favorable spectral densities and minimax spectral characteristics are

proposed for some special sets of admissible densities.
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INTRODUCTION

The problem of estimation of the unknown values of stochastic processes is of constant in-

terest in the theory and applications of stochastic processes. The formulation of the estimation

problems (interpolation, extrapolation and filtering) for stationary stochastic sequences with

known spectral densities and reducing these problems to the corresponding problems of the

theory of functions belongs to Kolmogorov [17]. Effective methods of solution of the estimation

problems for stationary stochastic sequences and processes were developed by Wiener [41] and

Yaglom [42,43]. Further results are described in the books by Rozanov [38], Hannan [12], Box et

al. [3], Brockwell and Davis [4]. The crucial assumption of most of the methods developed for

estimating the unobserved values of stochastic processes is that the spectral densities of the in-

volved stochastic processes are exactly known. In practice, however, complete information on

the spectral densities is impossible in most cases. In this situation one finds parametric or non-

parametric estimates of the unknown spectral densities and then apply one of the traditional

estimation methods provided that the selected spectral densities are true. This procedure can

result in significant increasing of the value of the error of estimate as Vastola and Poor [40] have

demonstrated with the help of some examples. To avoid this effect one can search estimates

which are optimal for all densities from a certain given class of admissible spectral densities.

These estimates are called minimax since they minimize the maximum value of the error of

УДК 519.21
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c©Masyutka O.Yu., Moklyachuk M.P., Sidei M.I., 2019
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estimates. The paper by Grenander [11] was the first one where this approach to extrapola-

tion problem for stationary processes was proposed. Several models of spectral uncertainty

and minimax-robust methods of data processing can be found in the survey paper by Kas-

sam and Poor [16]. Franke [7, 8], Franke and Poor [9] investigated the minimax extrapolation

and filtering problems for stationary sequences with the help of convex optimization methods.

This approach makes it possible to find equations that determine the least favorable spectral

densities for some classes of admissible densities.

In the papers by Moklyachuk [23, 25, 26] results of investigation of the extrapolation, in-

terpolation and filtering problems for functionals which depend on the unknown values of

stationary processes and sequences are described. The problem of estimation of functionals

which depend on the unknown values of multivariate stationary stochastic processes is the

aim of the papers by Moklyachuk and Masyutka [28, 29]. In the book by Moklyachuk and

Golichenko [27] results of investigation of the interpolation, extrapolation and filtering prob-

lems for periodically correlated stochastic sequences are proposed. In their papers Luz and

Moklyachuk [18–22] deal with the problems of estimation of functionals which depend on

the unknown values of stochastic sequences with stationary increments. Prediction problem

for stationary sequences with missing observations is investigated in papers by Bondon [1, 2],

Cheng, Miamee and Pourahmadi [5], Cheng and Pourahmadi [6], Kasahara, Pourahmadi and

Inoue [15], Pourahmadi, Inoue and Kasahara [35], Pelagatti [34]. In papers by Moklyachuk and

Sidei [30–33] an approach is developed to investigation of the interpolation, extrapolation and

filtering problems for stationary stochastic sequences with missing observations.

In this paper we investigate the problem of the mean-square optimal estimation of the func-

tional A~ξ = ∑
j∈ZS

~a(j)⊤~ξ(−j) which depends on the unknown values of a multidimensional sta-

tionary sequence {~ξ(j), j ∈ Z} from the observations of the sequence {~ξ(j) +~η(j)} at points

j ∈ Z−\S, where {~η(j), j ∈ Z} is uncorrelated with {~ξ(j), j ∈ Z} multidimensional stationary

sequence, S =
s
⋃

l=1
{−(Ml + Nl), . . . ,−Ml}, ZS = {1, 2, . . .}\S+, S+ =

s
⋃

l=1
{Ml , . . . , Ml + Nl},

M0 = 0, N0 = 0. The problem is investigated in the case where both spectral densities of the

sequences {~ξ(j), j ∈ Z} and {~η(j), j ∈ Z} are known. In this case we derive formulas for

calculating the spectral characteristic and the mean-square error of the optimal estimate using

the method of projection in the Hilbert space of random variables with finite second moments

proposed by Kolmogorov (see, for example, selected works by Kolmogorov [17]). In the case of

spectral uncertainty, where the spectral densities of the sequences are not exactly known while

a set of admissible spectral densities is given, the minimax method is applied. Formulas that

determine the least favorable spectral densities and the minimax-robust spectral characteristics

of the optimal estimates of the functional are proposed for some specific classes of admissible

spectral densities.

1 HILBERT SPACE PROJECTION METHOD OF FILTERING

Consider multidimensional stationary stochastic sequences ~ξ(j) = {ξk(j)}T
k=1 , j ∈ Z, and

~η(j) = {ηk(j)}T
k=1 , j ∈ Z, with absolutely continuous spectral functions and correlation func-
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tions of the form

Rξ(n) = E~ξ(j + n)(~ξ(j))∗ =
1

2π

π
∫

−π

einλF(λ)dλ,

Rη(n) = E~η(j + n)(~η(j))∗ =
1

2π

π
∫

−π

einλG(λ)dλ,

where F(λ) = { fkl(λ)}
T
k,l=1, G(λ) = {gkl(λ)}

T
k,l=1 are the spectral densities of the sequences

{~ξ(j), j ∈ Z} and {~η(j), j ∈ Z} respectively. We will suppose that the spectral densities F(λ)

and G(λ) satisfy the minimality condition

π
∫

−π

Tr (F(λ) + G(λ))−1 dλ < ∞. (1)

This condition is necessary and sufficient in order that the error-free filtering of unknown

values of the sequences is impossible (see, for example, Rozanov [38]).

The stationary stochastic sequences {~ξ(j)} and {~η(j)} admit the following spectral decompo-

sition (see, for example, Gikhman and Skorokhod [10]; Karhunen [14])

ξ(j) =

π
∫

−π

eijλZξ(dλ), η(j) =

π
∫

−π

eijλZη(dλ),

where Zξ(dλ) and Zη(dλ) are orthogonal stochastic measures defined on [−π, π) such that

the following relations hold true

EZξ(∆1)(Zξ(∆2))
∗ =

1

2π

∫

∆1∩∆2

F(λ)dλ,

EZη(∆1)(Zη(∆2))
∗ =

1

2π

∫

∆1∩∆2

G(λ)dλ.

Suppose that we have observations of the sequence {~ξ(j)+~η(j)} at points j ∈ Z−\S, where

S =
s
⋃

l=1
{−(Ml + Nl), . . . ,−Ml}. The problem is to find the mean-square optimal linear esti-

mate of the functional

A~ξ = ∑
j∈ZS

~a(j)⊤~ξ(−j),

which depends on the unknown values of the sequence {~ξ(j)}, ZS = {1, 2, . . .}\S+,

S+ =
s
⋃

l=1
{Ml , . . . , Ml + Nl}.

Suppose that coefficients {~a(j), j = 0, 1, . . .} defining the functional A~ξ satisfy the condition

∑
j∈ZS

T

∑
k=1

|ak(j)| < ∞.

This condition ensures that the functional A~ξ has a finite second moment, since

E |Aξ|2 ≤ max
1≤k≤T

E |ξk(0)|
2



 ∑
j∈ZS

T

∑
k=1

|ak(j)|





2

.
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It follows from the spectral decomposition of the sequence {~ξ(j)} that the functional A~ξ

can be represented in the following form

A~ξ =

π
∫

−π

(A(eiλ))⊤Zξ(dλ), A(eiλ) = ∑
j∈ZS

~a(j)e−ijλ.

Consider values ξk(j), k = 1, . . . , T; j ∈ Z and ηk(j), k = 1, . . . , T; j ∈ Z as elements of

the Hilbert space H = L2(Ω,F , P) generated by random variables ξ with zero mathematical

expectations, Eξ = 0, finite variations, E|ξ|2 < ∞, and the inner product (ξ, η) = Eξη. Denote

by Hs(ξ + η) the closed linear subspace generated by elements {ξk(j) + ηk(j) : j ∈ Z−\S, k =

1, T} in the Hilbert space H.

Denote by L2(F + G) the Hilbert space of vector-valued functions~a(λ) = {ak(λ)}
T
k=1 such

that
∫ π

−π
~a(λ)⊤ (F(λ) + G(λ))~a(λ)dλ < ∞.

Denote by Ls
2(F + G) the subspace of L2(F + G) generated by functions of the form

einλδk, δk = {δkl}
T
l=1 , k = 1, . . . , T, n ∈ Z−\S,

where δkl are Kronecker symbols.

The mean square optimal linear estimate Â~ξ of the functional A~ξ from observations of the

sequence {~ξ(j) +~η(j)} can be represented in the form

Â~ξ =

π
∫

−π

(h(eiλ))⊤(Zξ(dλ) + Zη(dλ)),

where h(eiλ) =
{

hk(e
iλ)
}T

k=1
∈ Ls

2(F + G) is the spectral characteristic of the estimate.

The mean square error ∆(h; F, G) of the estimate Â~ξ is given by the formula

∆(h; F, G) = E
∣

∣

∣
A~ξ − Â~ξ

∣

∣

∣

2
=

1

2π

π
∫

−π

(

A(eiλ)− h(eiλ)
)⊤

F(λ)(A(eiλ)− h(eiλ))dλ

+
1

2π

π
∫

−π

(

h(eiλ)
)⊤

G(λ)(h(eiλ))dλ.

The Hilbert space projection method proposed by Kolmogorov [17] makes it possible to

find the spectral characteristic h(eiλ) and the mean square error ∆(h; F, G) of the optimal lin-

ear estimate of the functional A~ξ in the case where spectral densities F(λ) and G(λ) of the

sequences are exactly known and the minimality condition (1) is satisfied. According to this

method the optimal estimation of the functional A~ξ is a projection of the element A~ξ of the

space H on the space Hs(ξ + η). It can be found from the following conditions:

1)Â~ξ ∈ Hs(ξ + η),

2)A~ξ − Â~ξ⊥Hs(ξ + η).

It follows from the second condition that the spectral characteristic h(eiλ) for any j ∈ Z−\S

satisfies the equation

1

2π

π
∫

−π

(

A(eiλ)− h(eiλ)
)⊤

F(λ)e−ijλdλ −
1

2π

π
∫

−π

(h(eiλ))⊤G(λ)e−ijλdλ =~0.
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The last relation is equivalent to equations

1

2π

π
∫

−π

[

(A(eiλ))⊤F(λ)− (h(eiλ))⊤(F(λ) + G(λ))
]

e−ijλdλ =~0, j ∈ Z−\S.

Hence the function
[

(A(eiλ))⊤F(λ)− (h(eiλ))⊤(F(λ) + G(λ))
]

is of the form

(A(eiλ))⊤F(λ)− (h(eiλ))⊤(F(λ) + G(λ)) = (C(eiλ))⊤,

where

C(eiλ) = ∑
j∈S

~c(j)eijλ +
∞

∑
j=0

~c(j)eijλ.

Here~c(j), j ∈ U = S ∪ {0, 1, 2, . . .} are unknown coefficients that we have to find.

From the last relation we deduce that the spectral characteristic of the optimal linear esti-

mate Â~ξ is of the form

(h(eiλ))⊤ = (A(eiλ))⊤F(λ)(F(λ) + G(λ))−1 − (C(eiλ))⊤(F(λ) + G(λ))−1.

It follows from the first condition, Â~ξ ∈ Hs(ξ + η), which determine the optimal linear

estimate of the functional A~ξ, that the Fourier coefficients of the function h(eiλ) are equal to

zero for k ∈ U, namely

1

2π

π
∫

−π

(

(A(eiλ))⊤F(λ)(F(λ)+G(λ))−1 − (C(eiλ))⊤(F(λ)+G(λ))−1

)

e−ikλdλ =~0, k ∈ U.

We will use the last equality to find equations which determine the unknown coefficients

~c(j), j ∈ U. After disclosing the brackets we get the relation

∑
j∈ZS

~a(j)⊤
1

2π

π
∫

−π

F(λ)(F(λ) + G(λ))−1e−i(k+j)λdλ − ∑
j∈S

~c(j)⊤
1

2π

π
∫

−π

(F(λ)

+ G(λ))−1e−i(k−j)λdλ −
∞

∑
j=0

~c(j)⊤
1

2π

π
∫

−π

(F(λ) + G(λ))−1e−i(k−j)λdλ =~0, k ∈ U.

(2)

For the functions

(F(λ) + G(λ))−1, F(λ)(F(λ) + G(λ))−1, F(λ)(F(λ) + G(λ))−1G(λ)

we introduce the Fourier coefficients

B(k, j) =
1

2π

π
∫

−π

(F(λ) + G(λ))−1e−i(k−j)λdλ,

R(k, j) =
1

2π

π
∫

−π

F(λ)(F(λ) + G(λ))−1e−i(k+j)λdλ,
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Q(k, j) =
1

2π

π
∫

−π

F(λ)(F(λ) + G(λ))−1G(λ)e−i(k−j)λdλ.

Using the introduced notations we can verify that the equality (2) is equivalent to the fol-

lowing system of equations:

∑
j∈ZS

R(k, j)~a(j) = ∑
j∈S

B(k, j)~c(j) +
∞

∑
j=0

B(k, j)~c(j), k ∈ U.

Let us introduce notations~a(j) = ~0, j ∈ S, ~a(0) = ~0 and ~a(j) = ~0, j ∈ S+. Thus, we can

write

∑
j∈U

R(k, j)~a(j) = ∑
j∈S

B(k, j)~c(j) +
∞

∑
j=0

B(k, j)~c(j), k ∈ U.

The last equations can be rewritten in the following form

R~a = B~c, (3)

where ~c is a vector constructed from the unknown coefficients ~c(j), j ∈ U, vector ~a has the

same with the vector~c dimension, it is of the form

~a⊤ = (~0⊤0 ,~a⊤1 ,~0⊤1 ,~a⊤2 ,~0⊤2 , . . .~a⊤i ,~0⊤i , . . . ,~a⊤s ,~0⊤s ,~a⊤s+1),

where~00 is the vector which consists of (|S|+ 1)T zeros, where |S| =
s

∑
k=1

(Nk + 1) is the amount

of missing values, vectors~0i, i = 1, 2, . . . , s, consist of (Ni + 1)T zeros, vectors

~a⊤1 = (~a(1)⊤, . . . ,~a(M1 − 1)⊤),

~a⊤i = (~a(Mi−1 + Ni−1 + 1)⊤, . . . ,~a(Mi − 1)⊤), i = 2, . . . , s,

~a⊤s+1 = (~a(Ms + Ns + 1)⊤,~a(Ms + Ns + 2)⊤, . . .),

are constructed from the coefficients that determine the functional A~ξ.

Here B is a linear operator in the space ℓ2 which is defined by the matrix

B =















Bs,s Bs,s−1 . . . Bs,1 Bs,n

Bs−1,s Bs−1,s−1 . . . Bs−1,1 Bs−1,n
...

...
. . .

...
...

B1,s B1,s−1 . . . B1,1 B1,n

Bn,s Bn,s−1 . . . Bn,1 Bn,n















,

where elements in the last column and the last row are compound matrices constructed from

the block-matrices

Bl,n(k, j) = B(k, j), l = 1, 2, . . . , s, k = −Ml − Nl , . . . ,−Ml, j = 0, 1, 2, . . . ,

Bn,m(k, j) = B(k, j), m = 1, 2, . . . , s, k = 0, 1, 2, . . . , j = −Mm − Nm, . . . ,−Mm,

Bn,n(k, j) = B(k, j), k, j = 0, 1, 2, . . .
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and other elements of matrix B are the compound matrices with elements of the form

Bl,m(j, k) = B(k, j), l, m = 1, 2, . . . , s,

k = −Ml − Nl , . . . ,−Ml , j = −Mm − Nm, . . . ,−Mm.

The linear operator R in the space ℓ2 is defined by the corresponding matrix in the same

manner.

The unknown coefficients~c(k), k ∈ U, which are defined by the equations (3), can be calcu-

lated by the formula

~c(k) = (B−1R~a)(k),

where (B−1R~a)(k) is the k-th component of the vector B−1R~a. (see paper by Salehi [39] for

more details).

The formula for calculating the spectral characteristic h(eiλ) of the estimate Â~ξ is of the

form

(h(eiλ))⊤ = (A(eiλ))⊤F(λ)(F(λ) + G(λ))−1

−

(

∑
k∈U

(B−1R~a)(k)eikλ

)⊤

(F(λ) + G(λ))−1.
(4)

The mean square error of the estimate Â~ξ can be calculated by the formula

∆(F, G) = E
∣

∣

∣
A~ξ − Â~ξ

∣

∣

∣

2
=

1

2π

π
∫

−π

(rG(λ))
⊤F(λ)rG(λ)dλ

+
1

2π

π
∫

−π

(rF(λ))
⊤G(λ)rF(λ)dλ = 〈R~a, B−1R~a〉+ 〈Q~a,~a〉,

(5)

where

(rF(λ))
⊤ =



(A(eiλ))⊤F(λ)−

(

∑
k∈U

(B−1R~a)(k)eikλ

)⊤


 (F(λ) + G(λ))−1,

(rG(λ))
⊤ =



(A(eiλ))⊤G(λ) +

(

∑
k∈U

(B−1R~a)(k)eikλ

)⊤


 (F(λ) + G(λ))−1,

and Q is the linear operator in the space ℓ2 defined by matrix with coefficients Q(k, j), k, j ∈ U

in the same way as the operator B is defined.

Let us summarize the obtained results and present them in the form of a theorem.

Theorem 1. Let {~ξ(j)} and {~η(j)} be uncorrelated multidimensional stationary sequences

with spectral densities F(λ) and G(λ) which satisfy the minimality condition (1). The spectral

characteristic h(eiλ) and the mean square error ∆(F, G) of the optimal linear estimate of the

functional A~ξ which depends on the unknown values of the sequence ~ξ(j) based on obser-

vations of the sequence {~ξ(j) + ~η(j)} at points j ∈ Z−\S can be calculated by formulas (4),

(5).
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Consider the problem of the mean-square optimal linear estimation of the functional A~ξ,

which depends on the unknown values of the sequence {~ξ(j)} from observations of the se-

quence {~ξ(j) + ~η(j)} at points j ∈ Z−\S, S = {−(M + N), . . . ,−M}, ZS = {1, 2, . . .}\S+,

S+ = {M, . . . , M + N}.

From Theorem 1 the following corollary can be derived for this problem.

Corollary 1. Let {~ξ(j)} and {~η(j)} be uncorrelated multidimensional stationary sequences

with spectral densities F(λ) and G(λ) which satisfy the minimality condition (1). The spectral

characteristic h(eiλ) and the mean square error ∆(F, G) of the optimal linear estimate of the

functional A~ξ which depends on the unknown values of the sequence ~ξ(j) based on observa-

tions of the sequence {~ξ(j) +~η(j)} at points j ∈ Z−\S can be calculated by formulas (4), (5),

where B, R, Q are linear operators in the space ℓ2 defined by compound matrices constructed

of coefficients B(k, j), R(k, j), Q(k, j), k, j ∈ U, (U = S ∪ {0, 1, 2, . . .}). For example, the matrix

B is of the form

B =

(

Bs,s Bs,n

Bn,s Bn,n

)

,

where its components are matrices constructed from the block-matrices

Bs,n(k, j) = B(k, j), k = −M − N, . . . ,−M, j = 0, 1, 2, . . . ,

Bn,s(k, j) = B(k, j), k = 0, 1, 2, . . . , j = −M − N, . . . ,−M,

Bn,n(k, j) = B(k, j), k, j = 0, 1, 2, . . . ,

Bs,s(k, j) = B(k, j), k = −M − N, . . . ,−M, j = −M − N, . . . ,−M.

Consider the problem of the mean-square optimal linear estimation of the functional A~ξ

which depends on the unknown values of the sequence {~ξ(j)} from observations of the se-

quence {~ξ(j) +~η(j)} at points j ∈ Z−\{−s}, ZS = {1, 2, . . .}\{s}.

It follows from Theorem 1 that the following corollary holds true.

Corollary 2. Let ~ξ(j) and ~η(j) be uncorrelated multidimensional stationary sequences with

spectral densities F(λ) and G(λ) which satisfy the minimality condition (1). The spectral char-

acteristic h(eiλ) and the mean square error ∆(F, G) of the optimal linear estimate of the func-

tional A~ξ which depends on the unknown values of the sequence ~ξ(j) based on observations

of the sequence ~ξ(j) +~η(j), j ∈ Z−\{−s} can be calculated by formulas (4), (5), where B, R, Q

are linear operators in the space ℓ2 defined by compound matrices constructed of coefficients

B(k, j), R(k, j), Q(k, j), k, j ∈ U, (U = S ∪ {0, 1, 2, . . .}),

B =

(

B(−s,−s) B−s,n

Bn,−s Bn,n

)

,

where elements in the last column and the last row are the matrices with the elements

B−s,n(k, j) = B(k, j), k = −s, j = 0, 1, 2, . . . ,

Bn,−s(k, j) = B(k, j), k = 0, 1, 2, . . . , j = −s,

Bn,n(k, j) = B(k, j), k, j = 0, 1, 2, . . . .

Consider the problem of the mean-square optimal linear estimation of the functional

AN
~ξ = ∑

j∈ZS∩{0,...,N}

~a(j)⊤~ξ(−j),
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which depends on the unknown values of the sequence ~ξ(j) from observations of the sequence
~ξ(j) +~η(j) at points j ∈ Z−\S where S is defined in the introduction. The linear estimate of

the functional AN
~ξ has the representation

ÂN
~ξ =

π
∫

−π

(hN(e
iλ)⊤(Zξ(dλ) + Zη(dλ)).

Define the vector ~aN as follows: elements with indices from the set U ∩ (S ∪ {0, . . . , N})

coincide with the elements of the vector ~a with the same indices and elements with indices

from the set U\(S ∪ {0, . . . , N}) are zeros. B, R, Q are linear operators in the space ℓ2 defined

in the Theorem 1.

The spectral characteristic hN(e
iλ) and the mean square error ∆(hN ; F, G) of the optimal

linear estimate of the functional AN
~ξ can be calculated by formulas (6), (7)

(hN(e
iλ))⊤ = (AN(e

iλ))⊤F(λ)(F(λ) + G(λ))−1

−

(

∑
k∈U

(B−1R~aN)(k)e
ikλ

)⊤

(F(λ) + G(λ))−1,
(6)

∆(hN ; F, G) = 〈R~aN , B−1R~aN〉+ 〈Q~aN ,~aN〉, (7)

where AN(e
iλ) = ∑

j∈ZS∩{0,...,N}

~a(j)e−ijλ.

The following corollary holds true.

Corollary 3. Let ~ξ(j) and ~η(j) be multidimensional uncorrelated stationary sequences with

the spectral densities F(λ) and G(λ) which satisfy the minimality condition (1). The spectral

characteristic hN(e
iλ) and the mean square error ∆(hN ; F, G) of the optimal linear estimate of

the functional AN
~ξ which depends on the unknown values of the sequence ~ξ(j) from obser-

vation of the sequence {~ξ(j) +~η(j)} at points of time j ∈ Z−\S can be calculated by formulas

(6), (7).

2 MINIMAX-ROBUST METHOD OF FILTERING

Theorem 1 and its corollaries can be applied to filtering of the functional in the cases when

spectral densities of the sequences are exactly known. If complete information on the spectral

densities is impossible but the class of admissible densities is given, it is reasonable to apply

the minimax-robust method of filtering which consists in minimizing the value of the mean-

square error for all spectral densities from the given class. For description of minimax method

we propose the following definitions (see Moklyachuk and Masytka [29]).

Definition 1. For a given class of spectral densities D = DF × DG the spectral densities F0(λ) ∈

DF, G0(λ) ∈ DG are called least favorable in the class D for the optimal linear filtering of the

functional A~ξ if the following relation holds true

∆
(

F0, G0
)

= ∆
(

h
(

F0, G0
)

; F0, G0
)

= max
(F,G)∈DF×DG

∆ (h (F, G) ; F, G) .
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Definition 2. For a given class of spectral densities D = DF × DG the spectral characteristic

h0(eiλ) of the optimal linear estimate of the functional A~ξ is called minimax-robust if there are

satisfied conditions

h0(eiλ) ∈ HD =
⋂

(F,G)∈DF×DG

Ls
2(F + G),

min
h∈HD

max
(F,G)∈D

∆ (h; F, G) = max
(F,G)∈D

∆
(

h0; F, G
)

.

From the introduced definitions and formulas derived above we can obtain the following

statement.

Lemma 1. Spectral densities F0(λ) ∈ DF, G0(λ) ∈ DG satisfying the minimality condition (1)

are the least favorable in the class D = DF × DG for the optimal linear filtering of the functional

A~ξ if operators B0, R0, Q0 determined by the Fourier coefficients of the functions

(F0(λ) + G0(λ))−1, F0(λ)(F0(λ) + G0(λ))−1, F0(λ)(F0(λ) + G0(λ))−1G0(λ)

determine a solution to the constrain optimization problem

max
(F,G)∈DF×DG

〈R~a, B−1R~a〉+ 〈Q~a,~a〉 = 〈R0
~a, (B0)−1R0

~a〉+ 〈Q0
~a,~a〉. (8)

The minimax spectral characteristic h0 = h(F0, G0) is determined by the formula (4) if

h(F0, G0) ∈ HD.

The least favorable spectral densities F0(λ), G0(λ) and the minimax spectral characteristic

h0 = h(F0, G0) form a saddle point of the function ∆ (h; F, G) on the set HD × D. The saddle

point inequalities

∆
(

h; F0, G0
)

≥ ∆
(

h0; F0, G0
)

≥ ∆
(

h0; F, G
)

∀ h ∈ HD, ∀ F ∈ DF, ∀ G ∈ DG

hold true if h0 = h(F0, G0) and h(F0, G0) ∈ HD, where (F0, G0) is a solution to the constrained

optimization problem

sup
(F,G)∈DF×DG

∆
(

h(F0, G0); F, G
)

= ∆
(

h(F0, G0); F0, G0
)

, (9)

where the functional ∆
(

h(F0, G0); F, G
)

is calculated by the formula

∆
(

h(F0, G0); F, G
)

=
1

2π

π
∫

−π

(r0
G(λ))

⊤F(λ)r0
G(λ)dλ +

1

2π

π
∫

−π

(r0
F(λ))

⊤G(λ)r0
F(λ)dλ,

(r0
F(λ))

⊤ =



(A(eiλ))⊤F0(λ)−

(

∑
k∈U

((B0)−1R0
~a)(k)eikλ

)⊤


 (F0(λ) + G0(λ))−1,

(r0
G(λ))

⊤ =



(A(eiλ))⊤G0(λ) +

(

∑
k∈U

((B0)−1R0
~a)(k)eikλ

)⊤


 (F0(λ) + G0(λ))−1.
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The constrained optimization problem (9) is equivalent to the unconstrained optimization

problem (see, for example, Pshenichnyj [36]):

∆D(F, G) = −∆(h(F0 , G0); F, G) + δ((F, G) |DF × DG ) → inf, (10)

where δ((F, G) |DF × DG ) is the indicator function of the set D = DF × DG. Solution of the

problem (10) is characterized by the condition 0 ∈ ∂∆D(F0, G0), where ∂∆D(F0, G0) is the subd-

ifferential of the convex functional ∆D(F, G) at point (F0, G0). This condition makes it possible

to find the least favourable spectral densities in some special classes of spectral densities D (see

books by Ioffe and Tihomirov [13], Pshenichnyj [36], Rockafellar [37]).

Note, that the form of the functional ∆
(

h0; F, G
)

is convenient for application the Lagrange

method of indefinite multipliers for finding solution to the problem (10). Making use the

method of Lagrange multipliers and the form of subdifferentials of the indicator functions

we describe relations that determine least favourable spectral densities in some special classes

of spectral densities (see books by Moklyachuk [24, 25], Moklyachuk and Masyutka [29] for

additional details).

3 LEAST FAVORABLE SPECTRAL DENSITIES IN THE CLASS D = D0 × D2δ

Consider the problem of filtering of the functional A~ξ in the case where spectral densities

F(λ), G(λ) belong to the set of admissible spectral densities D0 × D2δ, where

D1
0 =

{

F(λ)

∣

∣

∣

∣

1

2π

∫ π

−π
Tr F(λ)dλ = p

}

,

D1
2δ =

{

G(λ)

∣

∣

∣

∣

1

2π

∫ π

−π
|Tr(G(λ) − G1(λ))|

2 dλ ≤ δ

}

;

D2
0 =

{

F(λ)

∣

∣

∣

∣

1

2π

∫ π

−π
fkk(λ)dλ = pk, k = 1, T

}

,

D2
2δ =

{

G(λ)

∣

∣

∣

∣

1

2π

∫ π

−π

∣

∣

∣
gkk(λ)− g1

kk(λ)
∣

∣

∣

2
dλ ≤ δk, k = 1, T

}

;

D3
0 =

{

F(λ)

∣

∣

∣

∣

1

2π

∫ π

−π
〈B1, F(λ)〉 dλ = p

}

,

D3
2δ =

{

G(λ)

∣

∣

∣

∣

1

2π

∫ π

−π
|〈B2, G(λ)− G1(λ)〉|

2 dλ ≤ δ

}

;

D4
0 =

{

F(λ)

∣

∣

∣

∣

1

2π

∫ π

−π
F(λ)dλ = P

}

,

D4
2δ =

{

G(λ)

∣

∣

∣

∣

1

2π

∫ π

−π

∣

∣

∣
gij(λ)− g1

ij(λ)
∣

∣

∣

2
dλ ≤ δ

j
i , i, j = 1, T

}

.

Here the spectral density G1(λ)) is known and fixed, p, δ, pk, δk, k = 1, T, δ
j
i , i, j = 1, T, are fixed

numbers, P, B1, B2 are fixed positive definite Hermitian matrices.

The classes Dk
0, k = 1, 4 describe densities with the moment restrictions while the classes

Dk
2δ, k = 1, 4 describe the “δ-neighborhood” models in the space L2 of a fixed bounded spectral

density G1(λ).
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From the condition 0 ∈ ∂∆D(F0, G0) we find the following equations which determine the

least favourable spectral densities for these given sets of admissible spectral densities.

For the first pair D1
0 × D1

2δ we have equations

(r0
G(λ))

∗(r0
G(λ))

⊤ = α2(F0(λ) + G0(λ))2, (11)

(r0
F(λ))

∗(r0
F(λ))

⊤ = β2Tr (G0(λ)− G1(λ))(F0(λ) + G0(λ))2, (12)

1

2π

∫ π

−π
|Tr (G(λ)− G1(λ))|

2 dλ = δ, (13)

where α2, β2 are Lagrange multipliers.

For the second pair D2
0 × D2

2δ we have equations

(r0
G(λ))

∗(r0
G(λ))

⊤ = (F0(λ) + G0(λ))
{

α2
kδkl

}T

k,l=1
(F0(λ) + G0(λ)), (14)

(r0
F(λ))

∗(r0
F(λ))

⊤ = (F0(λ) + G0(λ))
{

β2
k(g0

kk(λ)− g1
kk(λ))δkl

}T

k,l=1
(F0(λ) + G0(λ)), (15)

1

2π

∫ π

−π

∣

∣

∣
gkk(λ)− g1

kk(λ)
∣

∣

∣

2
dλ = δk, k = 1, T, (16)

where α2
k , β2

k are Lagrange multipliers.

For the third pair D3
0 × D3

2δ we have equations

(r0
G(λ))

∗(r0
G(λ))

⊤ = α2(F0(λ) + G0(λ))B⊤
1 (F0(λ) + G0(λ)), (17)

(r0
F(λ))

∗(r0
F(λ))

⊤ = β2
〈

B2, G0(λ)− G1(λ)
〉

(F0(λ) + G0(λ))2, (18)

1

2π

∫ π

−π
|〈B2, G(λ)− G1(λ)〉|

2 dλ = δ, (19)

where α2, β2 are Lagrange multipliers.

For the fourth pair D4
0 × D4

2δ we have equations

(r0
G(λ))

∗(r0
G(λ))

⊤ = (F0(λ) + G0(λ))~α ·~α∗(F0(λ) + G0(λ)), (20)

(r0
F(λ))

∗(r0
F(λ))

⊤ = (F0(λ) + G0(λ))
{

βij(g0
ij(λ)− g1

ij(λ))
}T

i,j=1
(F0(λ) + G0(λ)), (21)

1

2π

∫ π

−π

∣

∣

∣
gij(λ)− g1

ij(λ)
∣

∣

∣

2
dλ = δ

j
i , i, j = 1, T, (22)

where~α, βij are Lagrange multipliers.

The following theorem and corollaries hold true.

Theorem 2. The least favorable spectral densities F0(λ), G0(λ) in the classes Dk
0 × Dk

2δ, k = 1, 4,

for the optimal linear filtering of the functional A~ξ are determined by relations (11) – (13) for

the first pair D1
0 × D1

2δ of sets of admissible spectral densities; (14) – (16) for the second pair

D2
0 × D2

2δ of sets of admissible spectral densities; (17) – (19) for the third pair D3
0 × D3

2δ of sets

of admissible spectral densities; (20) – (22) for the fourth pair D4
0 × D4

2δ of sets of admissible

spectral densities; the minimality condition (1), the constrained optimization problem (8) and

restrictions on densities from the corresponding classes D0 × D2δ. The minimax-robust spec-

tral characteristic of the optimal estimate of the functional A~ξ is determined by the formula

(4).
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Corollary 4. Assume that the spectral density G(λ) is known. Let the function F0(λ) + G(λ)

satisfies the minimality condition (1). The spectral density F0(λ) is the least favorable in the

classes Dk
0, k = 1, 4, for the optimal linear filtering of the functional A~ξ if it satisfies relations

(11), (14), (17), (20), respectively, and the pair (F0(λ), G(λ)) is a solution of the optimization

problem (8). The minimax-robust spectral characteristic of the optimal estimate of the func-

tional A~ξ is determined by formula (4).

Corollary 5. Assume that the spectral density F(λ) is known. Let the function F(λ) + G0(λ)

satisfies the minimality condition (1). The spectral density G0(λ) is the least favorable in the

classes Dk
2δ, k = 1, 4, for the optimal linear filtering of the functional A~ξ if it satisfies relations

(12) – (13), (15) – (16), (18) – (19), (21) – (22), respectively, and the pair (F(λ), G0(λ)) is a solution

of the optimization problem (8). The minimax-robust spectral characteristic of the optimal

estimate of the functional A~ξ is determined by formula (4).

4 LEAST FAVORABLE SPECTRAL DENSITIES IN THE CLASS D = D1δ × DU
V

Consider the problem of filtering of the functional A~ξ in the case where spectral densities

F(λ), G(λ) belong to the set of admissible spectral densities D1δ × DU
V , where

D1
1δ =

{

F(λ)

∣

∣

∣

∣

1

2π

∫ π

−π
|Tr(F(λ)− F1(λ))| dλ ≤ δ

}

,

DU
V

1
=

{

G(λ)

∣

∣

∣

∣

Tr V(λ) ≤ Tr G(λ) ≤ Tr U(λ),
1

2π

∫ π

−π
Tr G(λ)dλ = q

}

,

D2
1δ =

{

F(λ)

∣

∣

∣

∣

1

2π

∫ π

−π

∣

∣

∣
fkk(λ)− f 1

kk(λ)
∣

∣

∣
dλ ≤ δk, k = 1, T

}

,

DU
V

2
=

{

G(λ)

∣

∣

∣

∣

vkk(λ) ≤ gkk(λ) ≤ ukk(λ),
1

2π

∫ π

−π
gkk(λ)dλ = qk, k = 1, T

}

,

D3
1δ =

{

F(λ)

∣

∣

∣

∣

1

2π

∫ π

−π
|〈B1, F(λ)− F1(λ)〉| dλ ≤ δ

}

,

DU
V

3
=

{

G(λ)

∣

∣

∣

∣

〈B2, V(λ)〉 ≤ 〈B2, G(λ)〉 ≤ 〈B2, U(λ)〉 ,
1

2π

∫ π

−π
〈B2, G(λ)〉 dλ = q

}

,

D4
1δ =

{

F(λ)

∣

∣

∣

∣

1

2π

∫ π

−π

∣

∣

∣
fij(λ)− f 1

ij(λ)
∣

∣

∣
dλ ≤ δ

j
i , i, j = 1, T

}

,

DU
V

4
=

{

G(λ)

∣

∣

∣

∣

V(λ) ≤ G(λ) ≤ U(λ),
1

2π

∫ π

−π
G(λ)dλ = Q

}

.

Here the spectral densities F1(λ), V(λ), U(λ) are known and fixed, δ, q, δk, qk, k = 1, T, δ
j
i , i, j =

1, T, are fixed numbers, Q, B1, B2 are fixed positive definite Hermitian matrices.

The classes DU
V

k
, k = 1, 4 describe the “strip” models of spectral densities while the classes

Dk
1δ, k = 1, 4 describe “δ-neighborhood” model in the space L1 of a fixed bounded spectral

density F1(λ).

From the condition 0 ∈ ∂∆D(F0, G0) we find the following equations which determine the

least favourable spectral densities for these sets of admissible spectral densities.
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For the first pair D1
1δ × DU

V
1

we have equations

(r0
G(λ))

∗(r0
G(λ))

⊤ = α2γ(λ)(F0(λ) + G0(λ))2, (23)

1

2π

∫ π

−π

∣

∣

∣Tr (F0(λ)− F1(λ))
∣

∣

∣ dλ = δ, (24)

(r0
F(λ))

∗(r0
F(λ))

⊤ = (β2 + γ1(λ) + γ2(λ))(F0(λ) + G0(λ))2, (25)

where α2, β2 are Lagrange multipliers, |γ(λ)| ≤ 1 and

γ(λ) = sign (Tr (F0(λ)− F1(λ))) : Tr (F0(λ)− F1(λ)) 6= 0,

γ1(λ) ≤ 0 and γ1(λ) = 0 if Tr G0(λ) > Tr V(λ), γ2(λ) ≥ 0 and γ2(λ) = 0 if Tr G0(λ) <

Tr U(λ).

For the second pair D2
1δ × DU

V
2

we have equations

(r0
G(λ))

∗(r0
G(λ))

⊤ = (F0(λ) + G0(λ))
{

α2
kγk(λ)δkl

}T

k,l=1
(F0(λ) + G0(λ)), (26)

1

2π

∫ π

−π

∣

∣

∣
f 0
kk(λ)− f 1

kk(λ)
∣

∣

∣
dλ = δk, k = 1, T, (27)

(r0
F(λ))

∗(r0
F(λ))

⊤ = (F0(λ) + G0(λ))
{

(β2
k + γ1k(λ) + γ2k(λ))δkl

}T

k,l=1
(F0(λ) + G0(λ)), (28)

where α2
k , β2

k are Lagrange multipliers, |γk(λ)| ≤ 1 and

γk(λ) = sign ( f 0
kk(λ)− f 1

kk(λ)) : f 0
kk(λ)− f 1

kk(λ) 6= 0, k = 1, T,

γ1k(λ) ≤ 0 and γ1k(λ) = 0 if g0
kk(λ) > vkk(λ), γ2k(λ) ≥ 0 and γ2k(λ) = 0 if g0

kk(λ) < ukk(λ).

For the third pair D3
1δ × DU

V
3

we have equations

(r0
G(λ))

∗(r0
G(λ))

⊤ = α2γ′(λ)(F0(λ) + G0(λ))B⊤
1 (F0(λ) + G0(λ)), (29)

1

2π

∫ π

−π

∣

∣

∣

〈

B1, F0(λ)− F1(λ)
〉∣

∣

∣ dλ = δ, (30)

(r0
F(λ))

∗(r0
F(λ))

⊤ = (β2 + γ′
1(λ) + γ′

2(λ))(F0(λ) + G0(λ))B⊤
2 (F0(λ) + G0(λ)), (31)

where α2, β2 are Lagrange multipliers, |γ′(λ)| ≤ 1 and

γ′(λ) = sign
〈

B1, F0(λ)− F1(λ)
〉

:
〈

B1, F0(λ)− F1(λ)
〉

6= 0,

γ′
1(λ) ≤ 0 and γ′

1(λ) = 0 if 〈B2, G0(λ〉 > 〈B2, V(λ)〉, γ′
2(λ) ≥ 0 and γ′

2(λ) = 0 if

〈B2, G0(λ〉 < 〈B2, U(λ)〉.

For the fourth pair D4
1δ × DU

V
4

we have equations

(r0
G(λ))

∗(r0
G(λ))

⊤ = (F0(λ) + G0(λ))
{

αijγij(λ))
}T

i,j=1
(F0(λ) + G0(λ)), (32)

1

2π

∫ π

−π

∣

∣

∣
f 0
ij(λ)− f 1

ij(λ)
∣

∣

∣
dλ = δ

j
i , i, j = 1, T, (33)

(r0
F(λ))

∗(r0
F(λ))

⊤ = (F0(λ) + G0(λ))(~β ·~β∗ + Γ1(λ) + Γ2(λ))(F0(λ) + G0(λ)) (34)

where ~β, αij are Lagrange multipliers,
∣

∣γij(λ)
∣

∣ ≤ 1 and

γij(λ) =
f 0
ij(λ)− f 1

ij(λ)
∣

∣

∣
f 0
ij(λ)− f 1

ij(λ)
∣

∣

∣

: f 0
ij(λ)− f 1

ij(λ) 6= 0, i, j = 1, T,

Γ1(λ) ≤ 0 and Γ1(λ) = 0 if G0(λ) > V(λ), Γ2(λ) ≥ 0 and Γ2(λ) = 0 if G0(λ) < U(λ).
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The following theorem and corollaries hold true.

Theorem 3. The least favorable spectral densities F0(λ), G0(λ) in the classes Dk
1δ × DU

V
k
, k =

1, 4, for the optimal linear filtering of the functional A~ξ are determined by relations (23) – (25)

for the first pair D4
1δ × DU

V
1

of sets of admissible spectral densities; (26) – (28) for the second pair

D4
1δ × DU

V
2

of sets of admissible spectral densities; (29) – (31) for the third pair D4
1δ × DU

V
3

of sets

of admissible spectral densities; (32) – (34) for the fourth pair D4
1δ × DU

V
4

of sets of admissible

spectral densities; the minimality condition (1), the constrained optimization problem (8) and

restrictions on densities from the corresponding classes D1δ × DU
V . The minimax-robust spec-

tral characteristic of the optimal estimate of the functional A~ξ is determined by the formula

(4).

Corollary 6. Assume that the spectral density G(λ) is known. Let the function F0(λ) + G(λ)

satisfies the minimality condition (1). The spectral density F0(λ) is the least favorable in the

classes Dk
1δ, k = 1, 4, for the optimal linear filtering of the functional A~ξ if it satisfies relations

(23) – (24), (26) – (27), (29) – (30), (32) – (33), respectively, and the pair (F0(λ), G(λ)) is a solution

of the optimization problem (8). The minimax-robust spectral characteristic of the optimal

estimate of the functional A~ξ is determined by formula (4).

Corollary 7. Assume that the spectral density F(λ) is known. Let the function F(λ) + G0(λ)

satisfies the minimality condition (1). The spectral density G0(λ) is the least favorable in the

classes DU
V

k
, k = 1, 4, for the optimal linear filtering of the functional A~ξ if it satisfies relations

(25), (28), (31), (34), respectively, and the pair (F(λ), G0(λ)) is a solution of the optimization

problem (8). The minimax-robust spectral characteristic of the optimal estimate of the func-

tional A~ξ is determined by formula (4).

5 CONCLUSIONS

In the article we propose methods of the mean-square optimal linear filtering of functionals

which depend on the unknown values of a multidimensional stationary stochastic sequence.

Estimates are based on observations of the sequence with an additive stationary noise se-

quence. We develop methods of finding the optimal estimates of the functionals in the case of

missing observations. The problem is investigated in the case of spectral certainty, where the

spectral densities of the sequences are exactly known. In this case we propose an approach

based on the Hilbert space projection method. We derive formulas for calculating the spec-

tral characteristic and the mean-square error of the optimal estimate of the functionals. In the

case of spectral uncertainty, where the spectral densities of the stationary sequences are not

exactly known while some special sets of admissible spectral densities are given, we apply the

minimax-robust estimation method of estimation. This method allows us to find estimates that

minimize the maximum values of the mean-square errors of the estimates for all spectral den-

sity matrices from a given class of admissible spectral density matrices. We derive formulas

that determine the least favorable spectral densities and the minimax spectral characteristics

for some special sets of admissible spectral densities.

These least favourable spectral density matrices are solutions of the optimization problem

∆D(F, G) = −∆(h(F0, G0); F, G) + δ((F, G) |DF × DG ) → inf, which is characterized by the

condition 0 ∈ ∂∆D(F0, G0), where ∂∆D(F0, G0) is the subdifferential of the convex functional
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∆D(F, G) at point (F0, G0). The form of the functional ∆(h(F0, G0); F, G) is convenient for

application of the Lagrange method of indefinite multipliers for finding solution to the opti-

mization problem. The complexity of solution of the problem is determined by the complexity

of calculating of subdifferentials of the indicator functions δ(( f , g)|D f × Dg) of sets D f × Dg.

Making use of the method of Lagrange multipliers and the form of subdifferentials of the in-

dicator functions we describe relations that determine the least favourable spectral densities

in some special classes of spectral densities. These are: classes D0 of densities with the mo-

ment restrictions, classes D1δ which describe the “δ-neighborhood” models in the space L1 of

a fixed bounded spectral density, classes D2δ which describe the “δ-neighborhood” models in

the space L2 of a fixed bounded spectral density, classes DU
V which describe the “strip” models

of spectral densities.
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Масютка О. Ю., Моклячук М.П., Сiдей М. I. Фiльтрацiя багатовимiрних стацiонарних послiдов-

ностей iз пропусками спостережень // Карпатськi матем. публ. — 2019. — Т.11, №2. — C. 361–378.

Дослiджується задача оптимального в середньоквадратичному сенсi оцiнювання лiнiйних

функцiоналiв, що залежать вiд невiдомих значень багатовимiрних стацiонарних послiдовно-

стей. Оцiнки базуються на спостереженнях послiдовностi з адитивним стацiонарним шумом iз

пропусками спостережень. Знайдено формули для обчислення середньоквадратичних похи-

бок та спектральних характеристик оптимальних оцiнок функцiоналiв у тому випадку, коли

спектральнi щiльностi послiдовностей точно вiдома. Мiнiмаксний (робасиний) метод оцiню-

вання застосовано у тому випадку коли спектральнi щiльностi послiдовностей точно невiдомi

а заданi множини допустимих спектральних щiльностей. Формули, що визначають найменш

сприятливi спектральнi щiльнiстi та мiнiмакснi спектральнi характеристики оптимальних оцi-

нок функцiоналiв, запропонованi для заданих множин допустимих спектральних щiльностей.

Ключовi слова i фрази: стацiонарнi послiдовностi, мiнiмiксна оцiнка, робастна оцiнка, се-

редньоквадратична похибка, найменш сприятлива спектральна щiльнiсть, мiнiмаксна спек-

тральна характеристика.
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PROPERTIES OF SOLUTIONS OF A HETEROGENEOUS DIFFERENTIAL EQUATION

OF THE SECOND ORDER

Suppose that a power series A(z) = ∑
∞
n=0 anzn has the radius of convergence R[A] ∈ [1,+∞].

For a heterogeneous differential equation

z2w′′ + (β0z2 + β1z)w′ + (γ0z2 + γ1z + γ2)w = A(z)

with complex parameters geometrical properties of its solutions (convexity, starlikeness and close-

to-convexity) in the unit disk are investigated. Two cases are considered: if γ2 6= 0 and γ2 = 0. We

also consider cases when parameters of the equation are real numbers. Also we prove that for a

solution f of this equation the radius of convergence R[ f ] equals to R[A] and the recurrent formulas

for the coefficients of the power series of f (z) are found. For entire solutions it is proved that the

order of a solution f is not less then the order of A (̺[ f ] ≥ ̺[A]) and the estimate is sharp. The same

inequality holds for generalized orders (̺αβ[ f ] ≥ ̺αβ[A]). For entire solutions of this equation the

belonging to convergence classes is studied. Finally, we consider a linear differential equation of the

endless order
∞

∑
n=0

an

n!
w(n) = Φ(z), and study a possible growth of its solutions.

Key words and phrases: differential equation, convexity, starlikeness, close-to-convexity, general-
ized order, convergence class.
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INTRODUCTION

An analytic univalent in D = {z : |z| < 1} function

f (z) =
∞

∑
n=0

fnzn (1)

is said to be convex if f (D) is a convex domain. It is well known [4, p.203] that the condition

Re {1 + z f ′′(z)/ f ′(z)} > 0(z ∈ D) is necessary and sufficient for the convexity of f . By

W. Kaplan [7] the function f is said to be close-to-convex in D (see also [4, p. 583]) if there

exists a convex in D function Φ such that Re ( f ′(z)/Φ′(z)) > 0 (z ∈ D). A close-to-convex

function f has a characteristic property that the complement G of the domain f (D) can be

filled with rays L which go from ∂G and lie in G. Every close-to-convex in D function f is

univalent in D and, therefore, f ′(0) 6= 0. Hence it follows that the function f is close-to-convex
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in D if and only if the function ( f (z) − f (0))/ f ′ (0) is close-to-convex in D. Therefore, f is

close-to-convex in D if and only if the function

g(z) = z +
∞

∑
n=2

gnzn (2)

is close-to-convex in D, where gn = fn/ f1. We remark that a function defined by (2) is said

to be starlike in D, if g(D) is a starlike domain with respect to the origin and the condition

Re {zg′(z)/g(z)} > 0 (z ∈ D) is necessary and sufficient for the starlikeness of g. It is clear

that every starlike function is close-to-convex. We remark also that if the function g is starlike,

then the function cg is starlike, where c = const.

S.M. Shah [9] indicated conditions on real parameters β0, β1, γ0, γ1, γ2 of the differential

equation

z2w′′ + (β0z2 + β1z)w′ + (γ0z2 + γ1z + γ2)w = 0

under which there exits a transcendental solution given by (1) such that either all its derivatives

or even derivatives or odd derivatives are close-to-convex functions in D. The investigations

of Shah are continued in the papers [12–15].

Here we consider a heterogeneous differential equation

z2w′′ + (β0z2 + β1z)w′ + (γ0z2 + γ1z + γ2)w =
∞

∑
n=0

anzn, (3)

where parameters β0, β1, γ0, γ1, γ2 are complex and the power series A(z) = ∑
∞
n=0 anzn has

the radius of convergence R[A] ∈ (0, +∞]. We will investigate conditions such that equa-

tion (3) has convex or close-to-convex solutions, and in the case if a solution is entire function

we will study its possible growth and belonging to convergence classes.

1 PRELIMINARY LEMMAS

At first we remark that an analytic in some neighborhood of the origin of coordinates func-

tion given by (1) is a solution of equation (3) if and only if

∞

∑
n=2

n(n − 1) fnzn + β0

∞

∑
n=2

(n − 1) fn−1zn + γ0

∞

∑
n=2

fn−2zn

+ β1

∞

∑
n=1

n fnzn + γ1

∞

∑
n=1

fn−1zn + γ2

∞

∑
n=0

fnzn ≡
∞

∑
n=0

anzn,

i. e.

γ2 f0 = a0, (β1 + γ2) f1 + γ1 f0 = a1 (4)

and for n ≥ 2

(n(n + β1 − 1) + γ2) fn + (β0(n − 1) + γ1) fn−1 + γ0 fn−2 = an. (5)

Lemma 1. If a function defined by (1) is a solution of equation (3) and n(n + β1 − 1) + γ2 6= 0

for all n ≥ 2, then R[ f ] = R[A].
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Proof. Suppose at first that R[A] < +∞. From (5) for n ≥ 2 we have

fn = −
β0(n − 1) + γ1

n(n + β1 − 1) + γ2
fn−1 −

γ0

n(n + β1 − 1) + γ2
fn−2 +

an

n(n + β1 − 1) + γ2
. (6)

Let n0 = n0(R[A]) is such that for all n ≥ n0

R[A]

∣

∣

∣

∣

β0n + γ1

(n + 1)(n + β1) + γ2

∣

∣

∣

∣

≤
1

4
, R[A]2

∣

∣

∣

∣

γ0

(n + 2)(n + β1 + 1) + γ2

∣

∣

∣

∣

≤
1

4
. (7)

Then for each r < R[A]

∞

∑
n=n0

| fn|r
n ≤

∞

∑
n=n0

r

∣

∣

∣

∣

β0(n − 1) + γ1

n(n + β1 − 1) + γ2

∣

∣

∣

∣

| fn−1|r
n−1

+
∞

∑
n=n0

r2

∣

∣

∣

∣

γ0

n(n + β1 − 1) + γ2

∣

∣

∣

∣

| fn−2|r
n−2 +

∞

∑
n=n0

|an|rn

|n(n + β1 − 1) + γ2|

= r
∞

∑
n=n0−1

∣

∣

∣

∣

β0n + γ1

(n + 1)(n + β1) + γ2

∣

∣

∣

∣

| fn|r
n

+ r2
∞

∑
n=n0−2

∣

∣

∣

∣

γ0

(n + 2)(n + β1 + 1) + γ2

∣

∣

∣

∣

| fn|r
n +

∞

∑
n=n0

|an|rn

|n(n + β1 − 1) + γ2|

= r
∞

∑
n=n0

∣

∣

∣

∣

β0n + γ1

(n + 1)(n + β1) + γ2

∣

∣

∣

∣

| fn|r
n + r

∣

∣

∣

∣

β0(n0 − 1) + γ1

n0(n0 − 1 + β1) + γ2

∣

∣

∣

∣

| fn0−1|r
n0−1

+ r2
∞

∑
n=n0

∣

∣

∣

∣

γ0

(n + 2)(n + β1 + 1) + γ2

∣

∣

∣

∣

| fn|r
n + r2

∣

∣

∣

∣

γ0

n0(n0 + β1 − 1) + γ2

∣

∣

∣

∣

| fn0−2|r
n0−2

+ r2

∣

∣

∣

∣

γ0

(n0 + 1)(n0 + β1) + γ2

∣

∣

∣

∣

| fn0−1|r
n0−1 +

∞

∑
n=n0

|an|rn

|n(n + β1 − 1) + γ2|
,

whence
∞

∑
n=n0

(

1 − r

∣

∣

∣

∣

β0n + γ1

(n + 1)(n + β1) + γ2

∣

∣

∣

∣

− r2

∣

∣

∣

∣

γ0

(n + 2)(n + β1 + 1) + γ2

∣

∣

∣

∣

)

| fn|r
n

≤

∣

∣

∣

∣

β0(n0 − 1) + γ1

n0(n0 − 1 + β1) + γ2

∣

∣

∣

∣

| fn0−1|r
n0 +

∣

∣

∣

∣

γ0

n0(n0 + β1 − 1) + γ2

∣

∣

∣

∣

| fn0−2|r
n0

+

∣

∣

∣

∣

γ0

(n0 + 1)(n0 + β1) + γ2

∣

∣

∣

∣

| fn0−1|r
n0+1 +

∞

∑
n=n0

|an|rn

|n(n + β1 − 1) + γ2|
.

In view of (7) hence we obtain

1

2

∞

∑
n=n0

| fn|r
n ≤

∣

∣

∣

∣

β0(n0 − 1) + γ1

n0(n0 − 1 + β1) + γ2

∣

∣

∣

∣

| fn0−1|R[A]n0 +

∣

∣

∣

∣

γ0

n0(n0 + β1 − 1) + γ2

∣

∣

∣

∣

| fn0−2|R[A]n0

+

∣

∣

∣

∣

γ0

(n0 + 1)(n0 + β1) + γ2

∣

∣

∣

∣

| fn0−1|R[A]n0+1 +
∞

∑
n=n0

|an|rn

|n(n + β1 − 1) + γ2|
< +∞,

i. e. R[ f ] ≥ R[A]. On the other hand, from (5) we get

∞

∑
n=2

|an|r
n ≤

∞

∑
n=2

|(n(n + β1 − 1) + γ2)|| fn |r
n

+ r
∞

∑
n=2

|β0(n − 1) + γ1|| fn−1|r
n−1 + r2

∞

∑
n=2

|γ0|| fn−2|r
n−2,
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and, since the convergence of the series
∞

∑
n=n0

| fn|rn implies the convergence of each series in

right-hand side of the last inequality, we have R[A] ≥ R[ f ]. In the case if R[A] < +∞ the

equality R[A] = R[ f ] is proved.

If R[A] = +∞, then the proof of the equality R[A] = R[ f ] is similar. Now it is enough to

choose n0 = n0(R) for every R ∈ (0, +∞) so that inequality (7) holds with R instead of R[A].

Then instead of the inequality R[ f ] ≥ R[A] we obtain the inequality R[ f ] ≥ R, whence in view

of the arbitrariness of R we get the equality R[ f ] = +∞. Lemma 1 is proved.

For the investigation of the convexity and the starlikeness of solutions of differential equa-

tion (3) we will use the following lemma ( [1, 5, 6]).

Lemma 2. If
∞

∑
n=2

n|gn| ≤ 1, then function (2) is starlike, and if
∞

∑
n=2

n2|gn| ≤ 1, then it is convex

in D.

From Lemma 2 the following lemma follows.

Lemma 3. If
∞

∑
n=2

n| fn| ≤ | f1|, then function (1) is close-to-convex, and if
∞

∑
n=2

n2| fn| ≤ | f1|, then

it is convex in D.

From the first equality (4) it is clear that the choice of coefficients fn of solution (1) of equa-

tion (3) depends on the equality of the parameter γ2 to zero.

2 CLOSE-TO-CONVEXITY AND CONVEXITY IN THE CASE γ2 6= 0

From (4) we get f0 = a0/γ2 and (β1 + γ2) f1 = a1 − γ1 f0. Since we find univalent solutions,

f1 must be not equal to zero. In view of (4) two cases are possible:

2a) a1 − γ1 f0 6= 0 and β1 + γ2 6= 0;

2b) a1 − γ1 f0 = β1 + γ2 = 0.

By the conditions 2a) from (4) we get f1 =
a1 − γ1 f0

β1 + γ2
=

γ2a1 − γ1a0

γ2(β1 + γ2)
, and thus the solution

is of the form

f (z) =
a0

γ2
+

γ2a1 − γ1a0

γ2(β1 + γ2)
z +

∞

∑
n=2

fnzn, (8)

where the coefficients fn are defined by the recurrent formula (5). Supposing that

n(n + β1 − 1) + γ2 6= 0 for all n ≥ 2, this formula can be rewritten in the form (6).

Suppose that |β1| < 1 and |γ2|/2 < (1 − |β1|). Then |n(n + β1 − 1) + γ2| ≥

≥ n(n− 1− |β1|)− |γ2| and, since the function x2 − (1+ |β1|)x − |γ2| is increasing on [2,+∞),

we have n(n − 1 − |β1|)− |γ2| ≥ 2(1 − |β1|)− |γ2| > 0 for all n ≥ 2. Therefore, (6) implies

| fn| ≤
|β0|(n − 1) + |γ1|

n(n − 1 − |β1|)− |γ2|
| fn−1|+

|γ0|

n(n − 1 − |β1|)− |γ2|
| fn−2|+

|an|

n(n − 1 − |β1|)− |γ2|
.

(9)
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Hence it follows that

∞

∑
n=2

n| fn | ≤
∞

∑
n=2

n

n − 1

|β0|(n − 1) + |γ1|

n(n − 1 − |β1|)− |γ2|
(n − 1)| fn−1|

+
∞

∑
n=2

n

n − 2

|γ0|

n(n − 1 − |β1|)− |γ2|
(n − 2)| fn−2|+

∞

∑
n=2

n|an|

n(n − 1 − |β1|)− |γ2|

=
∞

∑
n=1

n + 1

n

|β0|n + |γ1|

(n + 1)(n − |β1|)− |γ2|
n| fn|+

∞

∑
n=0

n + 2

n

|γ0|

(n + 2)(n + 1 − |β1|)− |γ2|
n| fn|

+
∞

∑
n=2

n|an|

n(n − 1 − |β1|)− |γ2|
=

∞

∑
n=2

n + 1

n

|β0|n + |γ1|

(n + 1)(n − |β1|)− |γ2|
n| fn|

+ 2
|β0|+ |γ1|

2(1 − |β1|)− |γ2|
| f1|+

∞

∑
n=2

n + 2

n

|γ0|

(n + 2)(n + 1 − |β1|)− |γ2|
n| fn |

+
2|γ0|

2(1 − |β1|)− |γ2|
| f0|+

3|γ0|

3(2 − |β1|)− |γ2|
| f1|+

∞

∑
n=2

n|an|

n(n − 1 − |β1|)− |γ2|
.

(10)

Since for n ≥ 2

n + 1

n

|β0|n + |γ1|

(n + 1)(n − |β1|)− |γ2|
=

|β0|+ |γ1|/n

(n − |β1|)− |γ2|/(n + 1)
≤

|β0|+ |γ1|/2

(2 − |β1|)− |γ2|/3

and

n + 2

n

|γ0|

(n + 2)(n + 1 − |β1|)− |γ2|
=

|γ0|/n

(n + 1 − |β1|)− |γ2|/(n + 2)
≤

|γ0|/2

(3 − |β1|)− |γ2|/4
,

from (10) it follows that

∞

∑
n=2

n| fn| ≤
∞

∑
n=2

|β0|+ |γ1|/2

(2 − |β1|)− |γ2|/3
n| fn|+

∞

∑
n=2

|γ0|/2

(3 − |β1|)− |γ2|/4
n| fn |+

2(|β0|+ |γ1|)| f1|

2(1 − |β1|)− |γ2|

+
2|γ0|

2(1 − |β1|)− |γ2|
| f0|+

3|γ0|

3(2 − |β1|)− |γ2|
| f1|+

∞

∑
n=2

n|an|

n(n − 1 − |β1|)− |γ2|

and by the condition

|β0|+ |γ1|/2

(2 − |β1|)− |γ2|/3
+

|γ0|/2

(3 − |β1|)− |γ2|/4
< 1 (11)

we obtain
(

1 −
|β0|+ |γ1|/2

(2 − |β1|)− |γ2|/3
−

|γ0|/2

(3 − |β1|)− |γ2|/4

) ∞

∑
n=2

n| fn| ≤ 2
|β0|+ |γ1|

2(1 − |β1|)− |γ2|
| f1|

+
2|γ0|

2(1 − |β1|)− |γ2|
| f0|+

3|γ0|

3(2 − |β1|)− |γ2|
| f1|+

∞

∑
n=2

n|an|

n(n − 1 − |β1|)− |γ2|
,

whence

∞

∑
n=2

n| fn| ≤

((

2(|β0|+ |γ1|)

2(1 − |β1|)− |γ2|
+

3|γ0|

3(2 − |β1|)− |γ2|

)

| f1|+
2|γ0|

2(1 − |β1|)− |γ2|
| f0|

+
∞

∑
n=2

n|an|

n(n − 1 − |β1|)− |γ2|

)

(

1 −
|β0|+ |γ1|/2

(2 − |β1|)− |γ2|/3
−

|γ0|/2

(3 − |β1|)− |γ2|/4

)−1

.

(12)
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By Lemma 3 solution (1) of equation (3) is close-to-convex if the right-hand side of (12) is

less than | f1|, i. e.

(

2(|β0|+ |γ1|)

2(1 − |β1|)− |γ2|
+

3|γ0|

3(2 − |β1|)− |γ2|

)

| f1|+
2|γ0|

2(1 − |β1|)− |γ2|
| f0|

+
∞

∑
n=2

n|an|

n(n − 1 − |β1|)− |γ2|
≤

(

1 −
|β0|+ |γ1|/2

(2 − |β1|)− |γ2|/3
−

|γ0|/2

(3 − |β1|)− |γ2|/4

)

| f1|.

(13)

Thus, the following proposition is proved.

Proposition 1. Let γ2 6= 0, a1γ2 − a0γ1 6= 0, β1 + γ2 6= 0, |β1| < 1, |γ2|/2 < (1 − |β1|) and

R[A] ≥ 1. If

∞

∑
n=2

n|an|

n(n − 1 − |β1|)− |γ2|
≤

(

1 −
|β0|+ |γ1|/2

(2 − |β1|)− |γ2|/3
−

|γ0|/2

(3 − |β1|)− |γ2|/4

−
2(|β0|+ |γ1|)

2(1 − |β1|)− |γ2|
−

3|γ0|

3(2 − |β1|)− |γ2|

)

|γ2a1 − γ1a0|

|γ2(β1 + γ2)|
−

2|γ0|

2(1 − |β1|)− |γ2|

|a0|

|γ2|
,

(14)

then there exists a solution given by (8) of differential equation (3) with R[ f ] = R[A], which is

close-to-convex in D. If moreover a0 = 0 it is starlike.

Indeed, the condition (14) is equivalent to condition (13), and (13) implies (11).

We will pass to the convexity. From (9) we get

∞

∑
n=2

n2| fn| ≤
∞

∑
n=2

n2

(n − 1)2

|β0|(n − 1) + |γ1|

n(n − 1 − |β1|)− |γ2|
(n − 1)2| fn−1|

+
∞

∑
n=2

n2

(n − 2)2

|γ0|

n(n − 1 − |β1|)− |γ2|
(n − 2)2| fn−2|+

∞

∑
n=2

n2|an|

n(n − 1 − |β1|)− |γ2|

=
∞

∑
n=1

(n + 1)2

n2

|β0|n + |γ1|

(n + 1)(n − |β1|)− |γ2|
n2| fn|

+
∞

∑
n=0

(n + 2)2

n2

|γ0|

(n + 2)(n + 1 − |β1|)− |γ2|
n2| fn|+

∞

∑
n=2

n2|an|

n(n − 1 − |β1|)− |γ2|

=
∞

∑
n=2

(n + 1)2

n2

|β0|n + |γ1|

(n + 1)(n − |β1|)− |γ2|
n2| fn|+ 4

|β0|+ |γ1|

2(1 − |β1|)− |γ2|
| f1|

+
∞

∑
n=2

(n + 2)2

n2

|γ0|

(n + 2)(n + 1 − |β1|)− |γ2|
n2| fn|+

4|γ0|

2(1 − |β1|)− |γ2|
| f0|

+
9|γ0|

3(2 − |β1|)− |γ2|
| f1|+

∞

∑
n=2

n2|an|

n(n − 1 − |β1|)− |γ2|
.

Since now for n ≥ 2

(n + 1)2

n2

|β0|n + |γ1|

(n + 1)(n − |β1|)− |γ2|
≤

3

2

|β0|+ |γ1|/2

(2 − |β1|)− |γ2|/3

and
(n + 2)2

n2

|γ0|

(n + 2)(n + 1 − |β1|)− |γ2|
≤ 2

|γ0|/2

(3 − |β1|)− |γ2|/4
,
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by the condition
3

2

|β0|+ |γ1|/2

(2 − |β1|)− |γ2|/3
+

|γ0|

(3 − |β1|)− |γ2|/4
< 1,

as above we obtain
(

1 −
3

2

|β0|+ |γ1|/2

(2 − |β1|)− |γ2|/3
−

|γ0|

(3 − |β1|)− |γ2|/4

) ∞

∑
n=2

n2| fn| ≤
4(|β0|+ |γ1|)

2(1 − |β1|)− |γ2|
| f1|

+
4|γ0|

2(1 − |β1|)− |γ2|
| f0|+

9|γ0|

3(2 − |β1|)− |γ2|
| f1|+

∞

∑
n=2

n2|an|

n(n − 1 − |β1|)− |γ2|
,

i. e.

∞

∑
n=2

n2| fn| ≤

(

4(|β0|+ |γ1|)

2(1 − |β1|)− |γ2|
| f1|+

4|γ0|

2(1 − |β1|)− |γ2|
| f0|+

9|γ0|

3(2 − |β1|)− |γ2|
| f1|

+
∞

∑
n=2

n2|an|

n(n − 1 − |β1|)− |γ2|

)

(

1 −
3

2

|β0|+ |γ1|/2

(2 − |β1|)− |γ2|/3
−

|γ0|

(3 − |β1|)− |γ2|/4

)−1

,

(15)

By Lemma 3 a solution given by (1) of equation (3) is convex if the right-hand side of (15) is

less than | f1|, i. e.

4(|β0|+ |γ1|)

2(1 − |β1|)− |γ2|
| f1|+

4|γ0|

2(1 − |β1|)− |γ2|
| f0|+

9|γ0|

3(2 − |β1|)− |γ2|
| f1|

+
∞

∑
n=2

n2|an|

n(n − 1 − |β1|)− |γ2|
≤

(

1 −
3

2

|β0|+ |γ1|/2

(2 − |β1|)− |γ2|/3
−

|γ0|

(3 − |β1|)− |γ2|/4

)

| f1|.

Thus, the following proposition is proved.

Proposition 2. Let γ2 6= 0, a1γ2 − a0γ1 6= 0, β1 + γ2 6= 0, |β1| < 1, |γ2|/2 < (1 − |β1|) and

R[A] ≥ 1. If

∞

∑
n=2

n2|an|

n(n − 1 − |β1|)− |γ2|
≤

(

1 −
3

2

|β0|+ |γ1|/2

(2 − |β1|)− |γ2|/3
−

|γ0|

(3 − |β1|)− |γ2|/4

−
4(|β0|+ |γ1|)

2(1 − |β1|)− |γ2|
−

9|γ0|

3(2 − |β1|)− |γ2|

)

|γ2a1 − γ1a0|

|γ2(β1 + γ2)|
−

4|γ0|

2(1 − |β1|)− |γ2|

|a0|

|γ2|
,

(16)

then there exists a solution defined by (8) of differential equation (3) with R[ f ] = R[A], which

is convex in D.

Uniting Propositions 1 and 2 we get such theorem.

Theorem 1. Let γ2 6= 0, a1γ2 − a0γ1 6= 0, β1 + γ2 6= 0, |β1| < 1, |γ2|/2 < (1− |β1|) and R[A] ≥

1. Then there exists a solution given by (8) of differential equation (3) with R[ f ] = R[A], which

by the condition (14) is close-to-convex and by the condition (16) is convex in D. If a0 = 0 and

(14) holds then (8) is starlike.

The conditions |β1| < 1 and |γ2|/2 < (1 − |β1|) in Theorem 1 can be weakened if β1 and

γ2 are real numbers. We will consider a simple case, when γ2 > 0, β1 > −1 and γ2 + β1 > 0.
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Suppose also that γ2a1 − γ1a0 6= 0. Then from recurrent formula (6) we have

∞

∑
n=2

n| fn| ≤
∞

∑
n=2

n

n − 1

|β0|(n − 1) + |γ1|

n(n + β1 − 1) + γ2
(n − 1)| fn−1|

+
∞

∑
n=2

n

n − 2

|γ0|

n(n + β1 − 1) + γ2
(n − 2)| fn−2|+

∞

∑
n=2

n|an|

n(n + β1 − 1) + γ2

≤
∞

∑
n=2

|β0|+ |γ1|/(n − 1)

(n + β1 − 1) + γ2/n
(n − 1)| fn−1|+

∞

∑
n=2

|γ0|/(n − 2)

(n + β1 − 1) + γ2/n
(n − 2)| fn−2|

+
∞

∑
n=2

n|an|

n(n + β1 − 1) + γ2
≤

∞

∑
n=2

|β0|+ |γ1|/(n − 1)

(n + β1 − 1)
(n − 1)| fn−1|

+
∞

∑
n=2

|γ0|/(n − 2)

(n + β1 − 1)
(n − 2)| fn−2|+

∞

∑
n=2

n|an|

n(n + β1 − 1) + γ2

=
∞

∑
n=1

|β0|+ |γ1|/n

n + β1
n| fn|+

∞

∑
n=0

|γ0|/n

(n + β1 + 1)
n| fn|+

∞

∑
n=2

n|an|

n(n + β1 − 1) + γ2

≤
|β0|+ |γ1|

1 + β1
| f1|+

∞

∑
n=2

|β0|+ |γ1|/2

2 + β1
n| fn |+

|γ0|

β1 + 1
| f0|+

|γ0|

2 + β1
| f1|

+
∞

∑
n=2

|γ0|/2

3 + β1
n| fn|+

∞

∑
n=2

n|an|

n(n + β1 − 1) + γ2
,

whence by the condition
|β0|+ |γ1|/2

2 + β1
+

|γ0|/2

3 + β1
< 1

we obtain
(

1 −
|β0|+ |γ1|/2

2 + β1
−

|γ0|/2

3 + β1

)

∞

∑
n=2

n| fn | ≤
|β0|+ |γ1|

1 + β1
| f1|

+
|γ0|

β1 + 1
| f0|+

|γ0|

2 + β1
| f1|+

∞

∑
n=2

n|an|

n(n + β1 − 1) + γ2
.

(17)

Similarly we get

∞

∑
n=2

n2| fn| ≤
∞

∑
n=2

n

n − 1

|β0|+ |γ1|/(n − 1)

n + β1 − 1
(n − 1)2| fn−1|

+
∞

∑
n=2

n|γ0|/(n − 2)2

(n + β1 − 1)
(n − 2)2| fn−2|+

∞

∑
n=2

n2|an|

n(n + β1 − 1) + γ2

=
∞

∑
n=1

n + 1

n

|β0|+ |γ1|/n

n + β1
n2| fn|+

∞

∑
n=0

(n + 2)|γ0|/n2

(n + β1 + 1)
n2| fn|+

∞

∑
n=2

n2|an|

n(n + β1 − 1) + γ2

≤ 2
|β0|+ |γ1|

1 + β1
| f1|+

∞

∑
n=2

3

2

|β0|+ |γ1|/2

2 + β1
n2| fn|+

2|γ0|

β1 + 1
| f0|+

3|γ0|

2 + β1
| f1|

+
∞

∑
n=2

|γ0|

3 + β1
n2| fn |+

∞

∑
n=2

n2|an|

n(n + β1 − 1) + γ2
,

whence by the condition
3

2

|β0|+ |γ1|/2

2 + β1
+

|γ0|

3 + β1
< 1
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we get
(

1 −
3

2

|β0|+ |γ1|/2

2 + β1
−

|γ0|

3 + β1

)

∞

∑
n=2

n2| fn| ≤ 2
|β0|+ |γ1|

1 + β1
| f1|

+
2|γ0|

β1 + 1
| f0|+

3|γ0|

2 + β1
| f1|+

∞

∑
n=2

n2|an|

n(n + β1 − 1) + γ2
.

(18)

From (17) and (18) we obtain the following proposition.

Proposition 3. Let γ2 > 0, β1 > −1, γ2 + β1 > 0, γ2a1 − γ1a0 6= 0 and R[A] ≥ 1. Then there

exists a solution (8) of differential equation (3) with R[ f ] = R[A], which by the condition
∞

∑
n=2

n|an|

n(n + β1 − 1) + γ2
≤

(

1 −
|β0|+ |γ1|/2

2 + β1
−

|γ0|/2

3 + β1
−

|β0|+ |γ1|

1 + β1

−
|γ0|

2 + β1

)

|γ2a1 − γ1a0|

γ2(β1 + γ2)
−

|γ0|

β1 + 1

|a0|

|γ2|

is close-to-convex (starlike if a0 = 0) and by the condition
∞

∑
n=2

n2|an|

n(n + β1 − 1) + γ2
≤

(

1 −
3

2

|β0|+ |γ1|/2

2 + β1
−

|γ0|

3 + β1
− 2

|β0|+ |γ1|

1 + β1

−
3|γ0|

2 + β1

)

|γ2a1 − γ1a0|

γ2(β1 + γ2)
−

2|γ0|

1 + β1

|a0|

|γ2|

is a convex function in D.

Now we suppose that the condition 2b) holds, that is, γ2 6= 0 and a1 − γ1 f0 = β1 + γ2 = 0.

Then f0 = a0/γ2 and f1 can be arbitrary number, in particular we can choose f1 = 1. Thus, the

solution will have a form

f (z) =
a0

γ2
+ z +

∞

∑
n=2

fnzn, (19)

where the coefficients fn are defined by the recurrent formula

(n − 1)(n + β1) fn + (β0(n − 1) + γ1) fn−1 + γ0 fn−2 = an.

Supposing that n + β1 6= 0 for all n ≥ 2, this formula can be rewritten in the form

fn = −
β0(n − 1) + γ1

(n − 1)(n + β1)
fn−1 −

γ0

(n − 1)(n + β1)
fn−2 +

an

(n − 1)(n + β1)
,

whence by the condition |β1| < 2 we have
∞

∑
n=2

n| fn| ≤
∞

∑
n=2

n

n − 1

(n − 1)|β0|+ |γ1|

(n − 1)(n − |β1|)
(n − 1)| fn−1|

+
∞

∑
n=2

n

n − 2

|γ0|

(n − 1)(n − |β1|)
(n − 2)| fn−2|+

∞

∑
n=2

n|an|

(n − 1)(n − |β1|)

= 2
|β0|+ |γ1|

2 − |β1|
+

∞

∑
n=2

n + 1

n

|β0|+ |γ1|/n

n + 1 − |β1|
n| fn|+

2|γ0|

2 − |β1|
| f0|+

3|γ0|

2(3 − |β1|)

+
∞

∑
n=2

n + 2

n

|γ0|

(n + 1)(n + 2 − |β1|)
n| fn |+

∞

∑
n=2

n|an|

(n − 1)(n − |β1|)

≤
∞

∑
n=2

3

2

|β0|+ |γ1|/2

3 − |β1|
n| fn |+

∞

∑
n=2

2|γ0|

3(4 − |β1|)
n| fn |+ 2

|β0|+ |γ1|

2 − |β1|

+
2|γ0|

2 − |β1|
| f0|+

3|γ0|

2(3 − |β1|)
+

∞

∑
n=2

n|an|

(n − 1)(n − |β1|)
,
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i. e. by the condition
3(2|β0 |+ |γ1|)

4(3 − |β1|)
+

2|γ0|

3(4 − |β1|)
< 1

we get

(

1 −
3(2|β0 |+ |γ1|)

4(3 − |β1|)
−

2|γ0|

3(4 − |β1|)

) ∞

∑
n=2

n| fn|

≤ 2
|β0|+ |γ1|

2 − |β1|
+

2|γ0|

2 − |β1|
| f0|+

3|γ0|

2(3 − |β1|)
+

∞

∑
n=2

n|an|

(n − 1)(n − |β1|)
,

(20)

Similarly,

∞

∑
n=2

n2| fn | ≤
∞

∑
n=2

n2

(n − 1)2

(n − 1)|β0|+ |γ1|

(n − 1)(n − |β1|)
(n − 1)2| fn−1|

+
∞

∑
n=2

n2

(n − 2)2

|γ0|

(n − 1)(n − |β1|)
(n − 2)2| fn−2|+

∞

∑
n=2

n2|an|

(n − 1)(n − |β1|)

= 4
|β0|+ |γ1|

2 − |β1|
+

∞

∑
n=2

(n + 1)2

n2

|β0|+ |γ1|/n

n + 1 − |β1|
n2| fn|+

4|γ0|

2 − |β1|
| f0|+

9|γ0|

2(3 − |β1|)

+
∞

∑
n=2

(n + 2)2

n2

|γ0|

(n + 1)(n + 2 − |β1|)
n2| fn |+

∞

∑
n=2

n2|an|

(n − 1)(n − |β1|)

≤
∞

∑
n=2

9

4

|β0|+ |γ1|/2

3 − |β1|
n2| fn|+

∞

∑
n=2

16

4

|γ0|

3(4 − |β1)|
n2| fn|

+ 4
|β0|+ |γ1|

2 − |β1|
+

4|γ0|

2 − |β1|
| f0|+

9|γ0|

2(3 − |β1|)
+

∞

∑
n=2

n2|an|

(n − 1)(n − |β1|)
,

i. e. by the condition
9(2|β0 |+ |γ1|)

8(3 − |β1|)
+

4|γ0|

3(4 − |β1)|
< 1

we get

(

1 −
9(2|β0 |+ |γ1|)

8(3 − |β1|)
−

4|γ0|

3(4 − |β1|)

) ∞

∑
n=2

n2| fn|

≤ 4
|β0|+ |γ1|

2 − |β1|
+

9|γ0|

2(3 − |β1|)
+

4|γ0|

2 − |β1|

|a0|

|γ2|
+

∞

∑
n=2

n2|an|

(n − 1)(n − |β1|)
.

(21)

In view of Lemma 3 from (20) and (21), as in the proof of Proposition 1, we obtain the following

theorem.

Theorem 2. Let γ2 6= 0, a1γ2 − a0γ1 = β1 + γ2 = 0, |β1| < 2 and R[A] ≥ 1. Then there exists a

solution given by (19) of differential equation (3) with R[ f ] = R[A], which by the condition

∞

∑
n=2

n|an|

(n − 1)(n − |β1|)
≤ 1 −

3(2|β0|+ |γ1|)

4(3 − |β1|)
−

2|γ0|

3(4 − |β1|)

− 2
|β0|+ |γ1|

2 − |β1|
−

3|γ0|

2(3 − |β1|)
−

2|γ0|

2 − |β1|

|a0|

|γ2|



PROPERTIES OF SOLUTIONS OF A HETEROGENEOUS DIFFERENTIAL EQUATION OF THE SECOND ORDER 389

is close-to-convex (if a0 = 0 then starlike) and by the condition

∞

∑
n=2

n2|an|

(n − 1)(n − |β1|)
≤ 1 −

9(2|β0|+ |γ1|)

8(3 − |β1|)
−

4|γ0|

3(4 − |β1|)

− 4
|β0|+ |γ1|

2 − |β1|
−

9|γ0|

2(3 − |β1|)
−

4|γ0|

2 − |β1|

|a0|

|γ2|

is a convex function in D.

In the case of real parameters γ2 and β1 as above it is easy to obtain following statement.

Proposition 4. Let γ2 > 0, a1γ2 − a0γ1 = β1 + γ2 = 0, β1 > −2 and R[A] ≥ 1. Then there

exists a solution given by (19) of differential equation (3) with R[ f ] = R[A], which by the

condition

∞

∑
n=2

n|an|

(n − 1)(n + β1)
≤ 1 −

3

4

2|β0|+ |γ1|

4(3 + β1)
−

2|γ0|

3(4 + β1)
− 2

|β0|+ |γ1|

2 + β1
−

3|γ0|

2(3 + β1)
−

2|γ0||a0|

(2 + β1)γ2

is close-to-convex (starlike if a0 = 0) and by the condition

∞

∑
n=2

n2|an|

(n − 1)(n + β1)
≤ 1−

9

8

2|β0|+ |γ1|

3 + β1
−

(4/3)|γ0 |

4 + β1
− 4

|β0|+ |γ1|

2 + β1
−

(9/2)|γ0 |

3 + β1
−

4|γ0||a0|

(2 + β1)γ2

is a convex function in D.

3 CLOSE-TO-CONVEXITY AND CONVEXITY IN THE CASE γ2 = 0

In this case from (4) it follows that a0 = 0, i. e. f0 can be arbitrary number, and we choose

f0 = 0. Then β1 f1 = a1. Since we are finding univalent solutions f1 6= 0. Therefore, two cases

are possible:

3a) a1 6= 0 and β1 6= 0;

3b) a1 = β1 = 0.

By the condition 3а) a solution of equation (3) has the form

f (z) =
a1

β1
z +

∞

∑
n=2

fnzn, (22)

where the coefficients fn are defined by recurrent formula

n(n + β1 − 1) fn + (β0(n − 1) + γ1) fn−1 + γ0 fn−2 = an,

from which by the condition n + β1 − 1 6= 0 for all n ≥ 2 it follows that

fn = −
β0(n − 1) + γ1

n(n + β1 − 1)
fn−1 −

γ0

n(n + β1 − 1)
fn−2 +

an

n(n + β1 − 1)
,
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whence by the condition |β1| < 1 we get

∞

∑
n=2

n| fn | ≤
∞

∑
n=2

n

n − 1

(n − 1)|β0|+ |γ1|

n(n − |β1| − 1)
(n − 1)| fn−1|

+
∞

∑
n=2

n

n − 2

|γ0|

n(n − |β1| − 1)
(n − 2)| fn−2|+

∞

∑
n=2

|an|

n − |β1| − 1

=
|β0|+ |γ1|

1 − |β1|
| f1|+

∞

∑
n=2

|β0|+ |γ1|/n

n − |β1|
n| fn|+

|γ0|

2 − |β1|
| f1|+

∞

∑
n=2

|γ0|/n

n + 1 − |β1|
n| fn|

+
∞

∑
n=2

|an|

n − |β1| − 1
≤

∞

∑
n=2

|β0|+ |γ1|/2

2 − |β1|
n| fn |+

∞

∑
n=2

|γ0|/2

3 − |β1|
n| fn|

+
|β0|+ |γ1|

1 − |β1|

|a1|

|β1|
+

|a1||γ0|

|β1|(2 − |β1|)
+

∞

∑
n=2

|an|

(n − |β1| − 1)
,

i. e. by the condition
|β0|+ |γ1|/2

2 − |β1|
+

|γ0|/2

3 − |β1|
< 1

we obtain
(

1 −
|β0|+ |γ1|/2

2 − |β1|
−

|γ0|/2

3 − |β1|

) ∞

∑
n=2

n| fn|

≤
|β0|+ |γ1|

1 − |β1|

|a1|

|β1|
+

|a1||γ0|

|β1|(2 − |β1|)
+

∞

∑
n=2

|an|

(n − |β1| − 1)
.

(23)

Similarly,

∞

∑
n=2

n2| fn| ≤
∞

∑
n=2

n2

(n − 1)2

(n − 1)|β0|+ |γ1|

n(n − |β1| − 1)
(n − 1)2| fn−1|

+
∞

∑
n=2

n2

(n − 2)2

|γ0|

n(n − |β1| − 1)
(n − 2)2| fn−2|+

∞

∑
n=2

n|an|

n − |β1| − 1

= 2
|β0|+ |γ1|

1 − |β1|

|a1|

|β1|
+

∞

∑
n=2

n + 1

n

|β0|+ |γ1|/n

n − |β1|
n2| fn |+

3|γ0|

2 − |β1|
| f1|

+
∞

∑
n=2

n + 2

n2

|γ0|

n + 1 − |β1|
n2| fn |+

∞

∑
n=2

n|an|

n − |β1| − 1
≤

∞

∑
n=2

3

4

2|β0|+ |γ1|

2 − |β1|
n2| fn|

+
∞

∑
n=2

|γ0|

3 − |β1|
n2| fn |+ 2

|β0|+ |γ1|

1 − |β1|

|a1|

|β1|
+

3|a1||γ0|

|β1|(2 − |β1|)
+

∞

∑
n=2

n|an|

(n − |β1| − 1)
,

i. e. by the condition
3

4

2|β0|+ |γ1|

2 − |β1|
+

|γ0|

3 − |β1|
< 1

we get
(

1 −
3

4

2|β0|+ |γ1|

2 − |β1|
−

|γ0|

3 − |β1|

) ∞

∑
n=2

n2| fn |

≤ 2
|β0|+ |γ1|

1 − |β1|

|a1|

|β1|
+

3|a1||γ0|

|β1|(2 − |β1|)
+

∞

∑
n=2

n|an|

(n − |β1| − 1)
.

(24)

In view of Lemma 3 from (23) and (24) in the usual way we obtain the following theorem.
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Theorem 3. Let γ2 = 0, a1 6= 0, β1 6= 0, |β1| < 1 and R[A] ≥ 1. Then there exists a solution

given by (22) of differential equation (3) with R[ f ] = R[A], which by the condition

∞

∑
n=2

|an|

(n − |β1| − 1)
≤

(

1 −
|β0|+ |γ1|/2 + |γ0|

2 − |β1|
−

|γ0|/2

3 − |β1|
−

|β0|+ |γ1|

1 − |β1|

)

|a1|

|β1|

is starlike, and by the condition

∞

∑
n=2

n|an|

(n − |β1| − 1)
≤

(

1 −
3

4

2|β0|+ |γ1|+ 4|γ0|

2 − |β1|
−

|γ0|

3 − |β1|
− 2

|β0|+ |γ1|

1 − |β1|

)

|a1|

|β1|

is a convex function in D.

For a real parameter β1 in the usual way we obtain the following proposition.

Proposition 5. Let γ2 = 0, a1 6= 0, β1 6= 0, β1 > −1 and R[A] ≥ 1. Then there exists a solution

given by (22) of differential equation (3) with R[ f ] = R[A], which by the condition

∞

∑
n=2

|an|

(n + β1 − 1)
≤

(

1 −
|β0|+ |γ1|/2 + |γ0|

2 + β1
−

|γ0|/2

3 + β1
−

|β0|+ |γ1|

1 + β1

)

|a1|

|β1|

is starlike, and by the condition

∞

∑
n=2

n|an|

(n + β1 − 1)
≤

(

1 −
3

4

2|β0|+ |γ1|+ 4|γ0|

2 + β1
−

|γ0|

3 + β1
− 2

|β0|+ |γ1|

1 + β1

)

|a1|

|β1|

is a convex function in D.

If the condition 3b) holds then we can choose f1 = 1 and search a solution in a form

f (z) = z +
∞

∑
n=2

fnzn, (25)

where the coefficients fn are defined by recurrent formula

fn = −
β0(n − 1) + γ1

n(n − 1)
fn−1 −

γ0

n(n − 1)
fn−2 +

an

n(n − 1)
. (26)

Then
∞

∑
n=2

n| fn| ≤ |β0|+ |γ1|+
∞

∑
n=2

n|β0|+ |γ1|

n2
n| fn|+

|γ0|

2
+

∞

∑
n=2

|γ0|

(n + 1)n
n| fn|+

∞

∑
n=2

|an|

n − 1

≤
∞

∑
n=2

2|β0|+ |γ1|

4
n| fn|+

∞

∑
n=2

|γ0|

6
n| fn|+ |β0|+ |γ1|+

|γ0|

2
+

∞

∑
n=2

|an|

n − 1

and by the condition (2|β0|+ |γ1|)/4 + |γ0|/6 < 1 we get

(1 − (2|β0|+ |γ1|)/4 − |γ0|/6)
∞

∑
n=2

n| fn| ≤ |β0|+ |γ1|+ |γ0|/2 +
∞

∑
n=2

|an|

n − 1
. (27)

Similarly,

∞

∑
n=2

n2| fn| ≤
∞

∑
n=2

n2 |β0|(n − 1) + |γ1|

n(n − 1)
| fn−1|+

∞

∑
n=2

n2 |γ0|

n(n − 1)
| fn−2|+

∞

∑
n=2

n|an|

n − 1

≤ 2(|β0|+ |γ1|) +
∞

∑
n=2

3

8
(2|β0|+ |γ1|)n

2| fn|+ 3|γ0|/2 +
∞

∑
n=2

|γ0|

3
n2| fn|+

∞

∑
n=2

n|an|

n − 1
,
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i. e. by the condition 3(2|β0|+ |γ1|)/8 + |γ0|/3 < 1

(1 − 3(2|β0|+ |γ1|)/8 − |γ0|/3)
∞

∑
n=2

n2| fn | ≤ 2(|β0|+ |γ1|) + 3|γ0|/2 +
∞

∑
n=2

n|an|

n − 1
. (28)

In view of Lemma 2 from (27) and (28) in the usual way we obtain the following theorem.

Theorem 4. Let γ2 = a0 = β1 = a1 = 0 and R[A] ≥ 1. Then there exists a solution given by

(25) of differential equation (3) with R[ f ] = R[A], which by the condition

∞

∑
n=2

|an|

n − 1
≤ 1 −

3

2
|β0| −

5

4
|γ1| −

2

3
|γ0| (29)

is starlike, and by the condition

∞

∑
n=2

n|an|

n − 1
≤ 1 −

11

4
|β0| −

19

8
|γ1| −

11

6
|γ0| (30)

is a convex function in D.

4 GROWTH OF ENTIRE SOLUTIONS

If n(n + β1 − 1) + γ2 6= 0 for all n ≥ 2 by Lemma 1 a function given by (1) can be an entire

solution of equation (3) only if the function A is entire.

For an entire function (1) let M f (r) = max{| f (z)| : |z| = r}, and for the characteristic of

the growth of M f (r) we will use generalized orders. To give a definition of generalized order

we denote, as in [11], by L a class of continuous nonnegative on (−∞, +∞) functions α such

that α(x) = α(x0) ≥ 0 for x ≤ x0 and α(x) ↑ +∞ as x0 ≤ x → +∞. We say that α ∈ L0,

if α ∈ L and α((1 + o(1))x) = (1 + o(1))α(x) as x → +∞. Finally, α ∈ Lsi, if α ∈ L and

α(cx) = (1 + o(1))α(x) as x → +∞ for each fixed c ∈ (0, +∞), i. e. α is slowly increasing

function. Clearly, Lsi ⊂ L0. The value

̺αβ[ f ] = lim
r→+∞

α(ln M f (r))

β(ln r)
(α ∈ L, β ∈ L)

is called [11] generalized order of f . The following lemma is true.

Lemma 4. If α ∈ Lsi, β ∈ L, β(x + O(1)) = (1 + o(1))β(x) as x → +∞ and f is an entire

transcendental function then ̺αβ[ f
′ ] = ̺αβ[ f ].

Proof. Indeed, from the integral formula of Cauchy it easily follows that M f ′(r) ≤ M f (r + 1),

whence we get ̺αβ[ f
′] ≤ ̺αβ[ f ]. On the other hand, since f (z) − f (0) =

z
∫

0

f ′(t)dt, we have

M f (r) ≤ rM f ′(r)+ | f (0)| and, thus, ln M f (r) ≤ ln M f ′(r)+ ln r+ o(1) = (1+ o(1)) ln M f ′(r)

as r → +∞, because the function f is transcendental. Hence we get ̺αβ[ f ] ≤ ̺αβ[ f
′ ]. Lemma 4

is proved.

We will use the theory of the value distribution of Nevanlinna. For an entire function f we

put

T(r, f ) =
1

2π

2π
∫

0

ln+ | f (reiϕ)|dϕ.

This function is said to be a characteristic function of Nevanlinna. It is known that
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Lemma 5. If α ∈ Lsi, β ∈ L, β(x + O(1)) = (1 + o(1))β(x) as x → +∞ and f is an entire

transcendental function then

̺αβ[ f ] = lim
r→+∞

α(T(r, f ))

β(ln r)
. (31)

Proof. Indeed, in [3, p. 54] it is proved that for 0 < r < r1

T(r, f ) ≤ ln+ M f (r) ≤
r1 + r

r1 − r
T(r1, f ). (32)

Choosing r1 = 2r and using (32), in view of the conditions α ∈ Lsi and β ∈ L0 hence we obtain

lim
r→+∞

α(T(r, f ))

β(ln r)
≤ lim

r→+∞

α(ln M f (r))

β(ln r)
≤ lim

r→+∞

α(3T(2r, f ))

β(ln r)

= lim
r→+∞

α(T(r, f ))

β(ln r − ln 2)
= lim

r→+∞

α(T(r, f ))

β(ln r)
.

Lemma 5 is proved.

Now we prove the following theorem.

Theorem 5. Let α ∈ Lsi, β ∈ L, α(ln x) = o(α(x)), β(x + O(1)) = (1 + o(1))β(x), α(x) =

o(β(x)) as x → +∞ and f be an entire transcendental solution of the differential equation

a0(z)w + a1(z)w
′ + · · ·+ am(z)w

(m) = A(z), (33)

where aj are polynomials, 0 ≤ j ≤ m, and A is an entire function. Then ̺αβ[ f ] ≥ ̺αβ[A].

Proof. If ̺αβ[ f ] = +∞ then theorem is obvious.

So we consider the case ̺αβ[ f ] < +∞. At first we remark that if Pm is a polynomial of

degree m ≥ 1 then [3, p.47] T(r, Pm) = m ln r + O(1) as r → +∞. Further we put

Ωm(z, f ) = a0(z) f (z) + a1(z) f ′(z) + · · ·+ am(z) f (m)(z),

where aj(1 ≤ j ≤ m) are polynomials and f is an entire functions. Using well-known [3, p.44]

inequalities

T

(

r,
q

∏
j=1

fj

)

≤
q

∑
j=1

T(r, fj), T

(

r,
q

∑
j=1

fj

)

≤
q

∑
j=1

T(r, fj) + ln q

we have

T(r, Ωm(·, f )) ≤ T(r, f ) + T(r, f ′) + · · ·+ T(r, f (m)) + O(ln r), r → +∞. (34)

By the lemma about a logarithmic derivative [3, p.122] T(r, f ′/ f ) = Q(r, f ) for each entire

function f , where Q(r, f ) is denoting [3, p.122] an arbitrary function such that:

1) if f has a finite order then Q(r, f ) = O(ln r) as r → +∞;

2) if f has an infinite order then Q(r, f ) = O(ln T(r, f ) + ln r) as r → +∞ outside, possibly,

some set of finite measure.
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Clearly, Q(r, f ) ± Q(r, f ) = Q(r, f ) and AQ(r, f ) = Q(r, f ) [3, p.122]. We remak also that

since f has a finite generalized order then in view of (31) T(r, f ) ≤ α−1(̺β(ln r)) for ̺ > ̺αβ[ f ]

and r ≥ r0. Hence it follows that Q(r, f ) = O(ln α−1(̺β(ln r)) + ln r) as r → +∞ and by

Lemma 4 Q(r, f ′) = O(ln α−1(̺β(ln r)) + ln r) as r → +∞.

Therefore,

T(r, f ′) = T

(

r, f
f ′

f

)

≤ T(r, f ) + T

(

r,
f ′

f

)

= T(r, f ) + Q(r, f )

= T(r, f ) + O(ln α−1(̺β(ln r)) + ln r), r → +∞.

Similarly,

T(r, f ′′) = T

(

r, f ′
f ′′

f ′

)

≤ T(r, f ′) + Q(r, f ′) = T(r, f ) + O(ln α−1(̺β(ln r)) + ln r), r → +∞,

et cetera. As a result from (34) we will get

T(r, Ωm(·, f )) ≤ (m + 1)T(r, f ) + O(ln α−1(̺β(ln r)) + ln r), r → +∞. (35)

Since f is an entire solution of the differential equation (33), we have Ωm(z, f ) ≡ A(z). There-

fore, since α ∈ Lsi, in view of (31) and (35) we obtain

̺αβ[A] = lim
r→+∞

α(T(r, A))

β(ln r)
≤ lim

r→+∞

α((m + 1)T(r, f ) + K1(ln α−1(̺β(ln r)) + ln r))

β(ln r)

≤ lim
r→+∞

α(K2 max{T(r, f ), ln α−1(̺β(ln r)), ln r})

β(ln r)

= lim
r→+∞

α(max{T(r, f ), ln α−1(̺β(ln r)), ln r})

β(ln r)

= lim
r→+∞

max{α(T(r, f )), α(ln α−1(̺β(ln r))), α(ln r)}

β(ln r)

= lim
r→+∞

α(T(r, f )) + α(ln α−1(̺β(ln r))) + α(ln r)

β(ln r)

≤ lim
r→+∞

α(T(r, f ))

β(ln r)
+ lim

r→+∞

α(ln α−1(̺β(ln r)))

β(ln r)
+ lim

r→+∞

α(ln r)

β(ln r)
.

Since α(x) = o(β(x)) as x → +∞ we have
α(ln r)

β(ln r)
→ 0 as r → +∞. Simultaneously,

lim
r→+∞

α(ln α−1(̺β(ln r)))

β(ln r)
= lim

x→+∞

α(ln α−1(̺x))

x
= ̺ lim

x→+∞

α(ln x)

α(x)
= 0.

Therefore, ̺αβ[A] ≤ ̺αβ[ f ] and Theorem 5 is proved.

If we choose α(x) = ln x and β(x) = x for x ≥ x0 then we come to the following statement.

Corollary 1. If function f be an entire transcendental solution of the differential equation (3)

then ̺[ f ] ≥ ̺[A], where ̺[ f ] = lim
r→+∞

ln ln M(r, f )

ln r
is the order of f .
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We remark that the contrary inequality is not true in general. Indeed, if for example β0 =

−1, β1 = γ1 = γ2, −1 ≤ γ0 < 0 and all an = 0, then [13] there exists an entire solution f of

equation (3) such that

ln M(r, f ) =
1 + o(1)

2

(

|β0|+
√

|β0|2 + 4|γ0|2
)

r, r → +∞.

Clearly, in this case ̺[A] = 0 < 1 = ̺[ f ].

Suppose that γ2 = a0 = β1 = a1 = β0 = γ1 = γ0 = 0 and A(z) = ∑
∞
n=2 anzn is an

entire function. Then equation (3) has the form w′′ = ∑
∞
n=2 anzn−2 and the function f (z) =

z + ∑
∞
n=2

an

n(n − 1)
zn is a solution of this equation. Using the formula of Hadamard of the

order it is easy to prove that ̺[A] = ̺[ f ], i. e. the estimate ̺[A] ≤ ̺[ f ] is sharp.

If ̺αβ[ f ] = 0 then for the characteristic of the growth of f it is used the belonging to gener-

alized convergence classes. For α ∈ L and β ∈ L we will say that an entire function f belongs

to generalized convergence class if
∞
∫

r0

α(ln M f (r))

rβ(ln r)
dr < +∞, (36)

Choosing r1 = 2r from (32) we get T(r, f ) ≤ ln+ M f (r) ≤ 3T(2r, f ). On the other hand, in [10]

it is proved that if α ∈ L0 then α is RO-increasing [8], i. e. for every h ∈ [1, a], 1 < a < +∞, and

all x ≥ x0 the inequality α(hx)/α(x) ≤ M(a) < +∞ is true. Therefore, if α ∈ L0, β ∈ L and

β(x + O(1)) = O(β(x)) as x → +∞ then (36) holds if and only if
∞
∫

r0

α(T(r, f ))

rβ(ln r)
dr < +∞. (37)

Using (35) we prove the following theorem.

Theorem 6. Let α ∈ L0, β ∈ L, β(x + O(1)) = O(β(x)) as x → +∞ and
∞
∫

x0

α(ln α−1(β(x)))

β(x)
dx < +∞. (38)

Suppose that f is an entire transcendental solution of the differential equation (33) where aj

are polynomials, 0 ≤ j ≤ m, A is an entire function and ̺αβ[ f ] = 0. Then in order that f

belongs to generalized convergence class, it is necessary that A belongs to this class.

Proof. Since ̺αβ[ f ] = 0, we have Q(r, f ) = O(ln α−1(β(ln r)) + ln r) as r → +∞ and from (35)

as above in view of the condition α ∈ L0 we obtain
∞
∫

r0

α(T(r, A))

rβ(ln r)
dr =

∞
∫

r0

α(T(r, Ωm(·, f )))

rβ(ln r)
dr

≤

∞
∫

r0

α((m + 1)T(r, f ) + K1(ln α−1(β(ln r)) + ln r))

rβ(ln r)
dr

≤

∞
∫

r0

α(K2 max{T(r, f ), ln α−1(β(ln r)), ln r})

β(ln r)

≤ M(K2)

∞
∫

r0

α(T(r, f )) + α(ln α−1(β(ln r))) + α(ln r)

rβ(ln r)
dr.
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Since f is an entire function, from (36) it follows that
∞
∫

r0

α(ln r)

rβ(ln r)
dr < +∞, and in view of (38)

∞
∫

r0

α(ln α−1(β(ln r)))

rβ(ln r)
dr =

∞
∫

x0

α(ln α−1(β(x)))

β(x)
dx < +∞.

Therefore, (37) implies
∞
∫

r0

α(T(r, A))

rβ(ln r)
dr < +∞. Theorem 6 is proved.

For entire functions of the minimal type of the order ̺ ∈ (0, +∞) G. Valiron [16, p.18]

introduced the convergence class by the condition
∞
∫

1

ln M f (r)

r̺+1
dr < +∞. If we choose α(x) = x

and β(x) = e̺x for x ≥ x0, then from Theorem 6 we get the following statement.

Corollary 2. If an entire function f is a solution of the differential equation (3), then in order

that f belongs to the convergence class of Valiron, it is necessary that A belongs to this class.

Clearly, from the belonging of the function A to the convergence class of Valiron the be-

longing of the function f to this class does not follow. On the other hand, an entire solution of

the differential equation z2w′′ = A(z) belongs to the convergence class of Valiron if and only

if A belongs to this class.

Finally we will consider a linear differential equation of the endless order

∞

∑
n=0

an

n!
w(n) = Φ(z), (39)

where the characteristic function ϕ(t) =
∞

∑
n=0

an

n!
tn is entire and has a growth not higher than

the normal type of the first order, and Φ is an entire function.

A.O. Gelfond [2] proved that equation (39) for every θ > 1 has an entire solution f such

that

ln M f (r) ≤ C(θ) ln MΦ(θr), r ≥ r0, (40)

where C(θ) does not depend on r and ln M f (r) = r max

{

ln M f (t)

t
: 1 ≤ t ≤ r

}

. Using this

result we prove the following statement.

Proposition 6. Equation (39) has an entire solution f such that:

1) if α(ex) ∈ Lsi, β ∈ L, β(x + O(1)) ∼ β(x) and α(x) = o(β(ln x)) as x → +∞, then

̺αβ[ f ] ≤ ̺αβ[Φ];

2) if α(ex) ∈ L0, β ∈ L, β(x + O(1)) = O(β(x)) as x → +∞ and
∞
∫

r0

α(r)
rβ(ln r)

dr < +∞, then

the belonging of Φ to the generalized convergence class implies the belonging of f to this

class.
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Proof. Clearly, ln M f (r) ≤ ln M f (r) ≤ r ln M f (r) for r ≥ 1. Therefore, if α(ex) ∈ Lsi and

β(x + O(1)) ∼ β(x) as x → +∞ then from (40) we have

̺αβ[ f ] = lim
r→+∞

α(ln M f (r))

β(ln r)
≤ lim

r→+∞

α(ln M f (r))

β(ln r)
≤ lim

r→+∞

α(C(θ) ln MΦ(θr))

β(ln (θr)− ln θ)

= lim
r→+∞

α(ln MΦ(r))

β(ln r)
≤ lim

r→+∞

α(r ln MΦ(r))

β(ln r)
= lim

r→+∞

α(exp{ln r + ln ln MΦ(r)})

β(ln r)

≤ lim
r→+∞

α(exp{2 max{ln r, ln ln MΦ(r)}})

β(ln r)
= lim

r→+∞

α(exp{max{ln r, ln ln MΦ(r)}})

β(ln r)

= lim
r→+∞

max{α(r), α(ln MΦ(r))}

β(ln r)
≤ lim

r→+∞

α(r) + α(ln MΦ(r))

β(ln r)
= ̺αβ[Φ].

The firs part of Proposition 6 is proved.

Similarly, if α(ex) ∈ L0, β(x + O(1)) = O(β(x)) as x → +∞ and
∞
∫

r0

α(ln MΦ(r))

rβ(ln r)
dr < +∞,

then

∞
∫

r0

α(ln M f (r))

rβ(ln r)
dr ≤

∞
∫

r0

α(C(θ) ln MΦ(θr))

rβ(ln r)
dr ≤ M1

∞
∫

r0

α(r ln MΦ(r))

rβ(ln r)
dr

≤ M1

∞
∫

r0

α(exp{2 max{ln r, ln ln MΦ(r)}})

rβ(ln r)
dr ≤ M1M2

∞
∫

r0

α(r) + α(ln MΦ(r))

rβ(ln r)
dr < +∞,

where M1 = M1(θ) and M2 = M2(2). The proof of Proposition 6 is completed.
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Мулява О.М., Шеремета М.М., Трухан Ю.С. Властивостi розв’язкiв одного неоднорiдного диферен-

цiального рiвняння другого порядку // Карпатськi матем. публ. — 2019. — Т.11, №2. — C. 379–398.

Нехай степеневий ряд A(z) = ∑
∞
n=0 anzn має радiус збiжностi R[A] ∈ [1,+∞]. Для неодно-

рiдного диференцiального рiвняння

z2w′′ + (β0z2 + β1z)w′ + (γ0z2 + γ1z + γ2)w = A(z)

з комплексними коефiцiєнтами вивчаються геометричнi властивостi в одиничному крузi його

розв’язкiв (опуклiсть, зiрковiсть, близькiсть до опуклостi). Розглядається два випадки: γ2 6= 0

i γ2 = 0. Також ми розглядаємо випадки дiйсних параметрiв цього рiвняння. Доведено, що

для розв’язку f цього рiвняння радiус збiжностi R[ f ] дорiвнює R[A] i знайдено рекурентнi

формули для знаходження коефiцiєнтiв степеневого розвинення f (z). Для цiлого розв’язку

доведено, що порядок розв’язку f не менший нiж порядок функцiї A (̺[ f ] ≥ ̺[A]) i оцiнка є

точною. Аналогiчна нерiвнiсть доведена для узагальнених порядкiв (̺αβ[ f ] ≥ ̺αβ[A]). Для цi-

лого розв’язку цього рiвняння вивчено належнiсть до класу збiжностi. Наприкiнцi розглядає-

ться лiнiйне диференцiальне рiвняння нескiнченного порядку
∞

∑
n=0

an

n!
w(n) = Φ(z), i вивчається

можливе зростання його розв’язкiв.

Ключовi слова i фрази: диференцiальне рiвняння, опуклiсть, зiрковiсть, близькiсть до опу-

клостi, узагальнений порядок, клас збiжностi.



ISSN 2075-9827 e-ISSN 2313-0210 http://www.journals.pnu.edu.ua/index.php/cmp

Carpathian Math. Publ. 2019, 11 (2), 399–406 Карпатськi матем. публ. 2019, Т.11, №2, С.399–406

doi:10.15330/cmp.11.2.399-406

PATTABIRAMAN K.1,2

INVERSE SUM INDEG COINDEX OF GRAPHS

The inverse sum indeg coindex ISI(G) of a simple connected graph G is defined as the sum of

the terms dG(u)dG(v)
dG(u)+dG(v)

over all edges uv not in G, where dG(u) denotes the degree of a vertex u of G.

In this paper, we present the upper bounds on inverse sum indeg coindex of edge corona product

graph and Mycielskian graph. In addition, we obtain the exact value of both inverse sum indeg

index and its coindex of a double graph.

Key words and phrases: inverse sum indeg index, edge corona graph, Mycielskian graph, double
graph.
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INTRODUCTION

Let G be a connected graph with vertex set V(G) and edge set E(G). We denote by δ(G)

and ∆(G) the minimum and maximum vertex degrees of G, respectively. A topological index

or molecular descriptor of a graph is a parameter related to the graph; it does not depend on

labeling or pictorial representation of the graph. In theoretical chemistry, molecular structure

descriptors (also called topological indices) are used for modeling physicochemical, pharma-

cologic, toxicologic, biological and other properties of chemical compounds. Several types of

such indices exist, especially those based on vertex and edge distances.

Molecular descriptors, results of functions mapping molecule’s chemical information into a

number [16], have found applications in modeling many physicochemical properties in QSAR

and QSPR studies [8, 6]. A particularly common type of molecular descriptors are those that

are defined as functions of the structure of the underlying molecular graph, such as the Wiener

index [18], the Zagreb indices [4], the Randić index [14] or the Balaban J-index [5]. Damir

Vukicević and Marija Gasperov [17] observed that many of these descritors are defined simply

as the sum of individual bond contributions.

Among the 148 discrete Adriatic indices studied in [17], whose predictive properties were

evaluated against the benchmark datasets of the Internation Academy of Mathematical Chem-

istry [7], 20 indices were selected as significant predictors of physicochemical properties. In

this connection, Sedlar et al. [15] studied the properties of the inverse sum indeg index, the

descriptor that was selected in [17] as a significant predictor of total surface area of octane

isomers and for which the extremal graphs obtained with the help of Math. Chem. have a

particularly simple and elegant structure. The inverse sum indeg index is defined as

ISI(G) = ∑
uv∈E(G)

1
1

dG(u)
+ 1

dG(v)

= ∑
uv∈E(G)

dG(u)dG(v)

dG(u) + dG(v)
.

УДК 519.17
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The first Zagreb index M1(G) is the equal to the sum of the squares of the degrees of the

vertices, and the second Zagreb index M2(G) is the equal to the sum of the products of the

degrees of pairs of adjacent vertices, that is, M1(G) = ∑
u∈V(G)

d2
G(u) = ∑

uv∈E(G)
(dG(u) + dG(v)),

M2(G) = ∑
uv∈E(G)

dG(u)dG(v), where dG(v) is a degree of a vertex v in G. For a connected graph

G, the harmonic index H(G) is defined as H(G) = ∑
uv∈E(G)

2
dG(u)+dG(v)

.

The first and second Zagreb coindices are defined as M1(G) = ∑
uv/∈E(G)

(dG(u) + dG(v)),

M2(G) = ∑
uv/∈E(G)

dG(u)dG(v). Similarly, the harmonic coindex of G is defined as

H(G) = ∑
uv/∈E(G)

2

dG(u) + dG(v)
.

Motivated by the invariants like Zagreb and harmonic indices, we proposed the another

invariant inverse sum indeg coindex as

ISI(G) = ∑
uv/∈E(G)

dG(u)dG(v)

dG(u) + dG(v)
.

Extremal values of inverse sum indeg index across several graph classes, including con-

nected graphs, chemical graphs, trees and chemical trees were determined in [15]. The bounds

of a descriptor are important information of a molecular graph in the sense that they establish

the approximate range of the descriptor in terms of molecular structural parameters. In [2],

some sharp bounds for the inverse sum indeg index of connected graphs are given. The in-

verse sum indeg index of some nanotubes is computed in [3]. Several upper and lower bounds

on the inverse sum indeg index in terms of some molecular structural parameters and relate

this index to various well-known molecular descriptors are presented in [12]. In this paper,

we present the upper bounds on the inverse sum indeg coindex of edge corona product graph

and Mycielskian graph. In addition, we obtain the exact value of both inverse sum indeg index

and its coindex of double graph.

1 EDGE CORONA

Hou and Shiu [5] introduced a kind of new graph operation, namely, edge corona product.

The edge corona product G • H of G and H is defined as the graph obtained by taking one copy

of G and |E(G)| copies of H, and then joining two end vertices of the ith edge of G to every

vertex in the ith copy of H. The computation for some of the topological indices of edge corona

product are resently studied in [1, 13, 5].

Lemma 1 ([9]). Let f be a convex function on the interval I and x1, x2, . . . , xn ∈ I. Then

f
(

x1+x2+...+xn
n

)

≤ f (x1)+ f (x2)+... f (xn)
n , with equality if and only if x1 = x2 = . . . = xn.

Theorem 1. Let G1 and G2 be two graphs with n1, n2 vertices and m1, m2 edges, respectively.
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Then

ISI(G1 • G2) ≤ (n2 + 1)ISI(G1) +
m1

4

(

ISI(G2) + 2H(G2) +
M2(G2)

4
+

M1(G2)

2

+
3n2(n2 − 1)

8
−

3m2

4

)

+
n2(n2 + 1)

4

(

2m1n1 − M1(G)
)

+
(m2 + n2)(n

2
1 − 2m1)

2
+

m1(m1 − 1)n2
2(∆(G2) + 2)2

4(δ(G2) + 2)
.

Proof. Let xij be the jth vertex in the ith copy of H, i ∈ {1, 2, . . . , m1},j ∈ {1, 2, . . . , n2}, and let

yk be the kth in G1,k ∈ {1, 2, . . . , n1}. Also let xj be the jth vertex in G2.

By the definition of edge corona of G1 and G2, for each vertex xij, we have dG1•G2
(xij) =

dG2
(xj) + 2, and for every vertex yk in G1, dG1•G2

(yk) = dG1
(yk)n2 + dG1

(yk) = (n2 + 1)dG1
(yk).

Now, we consider the following four cases of nonadjacent vertex pairs in G1 • G2.

Case 1: The nonadjacent vertex pairs {xij, xih}, 1 ≤ i ≤ m1,1 ≤ j < h ≤ n2, and it is assumed

that xjxh /∈ E(G2).

C1 =
m1

∑
i=1

∑
xijxih /∈E(G1•G2)

dG1•G2
(xij)dG1•G2

(xih)

dG1•G2
(xij) + dG1•G2

(xih)

=
m1

∑
i=1

∑
xjxh /∈E(G2)

(dG2
(xj) + 2)(dG2

(xh) + 2)

dG2
(xj) + dG2

(xh) + 4
.

By Lemma 1, we have 1
dG2

(xj)+dG2
(xh)+4

≤ 1
4(dG2

(xj)+dG2
(xh))

+ 1
16 with equality if and only if

dG2
(xj) + dG2

(xh) = 4. Thus,

C1 ≤
1

4

m1

∑
i=1

∑
xjxh /∈E(G2)

( (dG2
(xj) + 2)(dG2

(xh) + 2)

dG2
(xj) + dG2

(xh)
+

(dG2
(xj) + 2)(dG2

(xh) + 2)

4

)

=
1

4

m1

∑
i=1

(

ISI(G2) + 3
(n2(n2 − 1)

2
− m2

)

+ 2H(G2) +
M2(G2)

4
+

M1(G2)

2

)

=
m1

4
ISI(G2) +

m1

2
H(G2) +

m1

16
M2(G2) +

m1

8
M1(G2) +

3m1n2(n2 − 1)

8
−

3m1m2

4
.

Case 2: The nonadjacent vertex pairs {yk, ys},1 ≤ k < s ≤ n1 and it is assumed that

ykys /∈ E(G1). Thus,

C2 = ∑
ykys /∈E(G1•G2)

dG1•G2
(yk)dG1•G2

(ys)

dG1•G2
(yk) + dG1•G2

(ys)
= ∑

ykys /∈E(G1)

(n2 + 1)2dG1
(yk)dG1

(ys)

(n2 + 1)(dG1
(yk) + dG1

(ys))

= (n2 + 1) ∑
ykys /∈E(G1)

dG1
(yk)dG1

(ys)

dG1
(yk) + dG1

(ys)
= (n2 + 1)ISI(G1).

Case 3: The nonadjacent vertex pairs {xij, yk}, 1 ≤ i ≤ m1,1 ≤ j ≤ n2, 1 ≤ k ≤ n1, and it is

assumed that the ith edge ei 1 ≤ i ≤ m1 in G1 does not pass through yk.

Note that each vertex yk is adjacent to all vertices of dG1
(yk) copies of G2, that is, each yk is

not adjacent to any vertex of m1 − dG1
(yk) copies of G2. Hence

C3 =
n1

∑
k=1

(n1 − dG1
(yk))

n2

∑
j=1

(n2 + 1)(dG2
(xj) + 2)dG1

(yk)

dG2
(xj) + 2 + (n2 + 1)dG1

(yk)
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By Lemma 1, we obtain 1
dG2

(xj)+2+(n2+1)dG1
(yk)

≤ 1
4(dG2

(xj)+2)
+ 1

4(n2+1)dG1
(yk)

. Thus,

C3 ≤
1

4

n1

∑
k=1

(n1 − dG1
(yk))

n2

∑
j=1

( (n2 + 1)(dG2
(xj) + 2)dG1

(yk)

dG2
(xj) + 2

+
(n2 + 1)(dG2

(xj) + 2)dG1
(yk)

(n2 + 1)dG1
(yk)

)

=
1

4

n1

∑
k=1

(n1 − dG(yk))
n2

∑
j=1

(

(n2 + 1)dG1
(yk) + (dG2

(xj) + 2)
)

=
1

4

n1

∑
k=1

(n1 − dG1
(yk))

(

n2(n2 + 1)dG1
(yk) + 2m2 + 2n2

)

=
n2(n2 + 1)

4

(

2m1n1 − M1(G)
)

+
(m2 + n2)(n

2
1 − 2m1)

2
.

Case 4: The nonadjacent vertex pairs {xij, xℓh}, 1 ≤ i < ℓ ≤ m1,1 ≤ j, h ≤ n2.

C4 = ∑
xijxℓh /∈E(G1•G2)

dG1•G2
(xij)dG1•G2

(xℓh)

dG1•G2
(xij) + dG1•G2

(xℓh)
=

m1(m1 − 1)

2

n2

∑
j=1

n2

∑
h=1

(dG2
(xj) + 2)(dG2

(xh) + 2)

dG2
(xj) + dG2

(xh) + 4

Since for any vertex xj ∈ V(G2), δ(G2) ≤ dG2
(xj) ≤ ∆(G2). Hence

C4 ≤
m1(m1 − 1)n2

2(∆(G2) + 2)2

4(δ(G2) + 2)
.

From the above four cases of nonadjacent vertex pairs, we can obtain the desired result. This

completes the proof.

1.1 Mycieskian graph

In a search for triangle-free graphs with arbitrarily large chromatic number, Mycielski [8]

developded an interesting graph transformation as follows: Let G be a connected graph with

vertex set V(G) = {v1, v2, . . . , vn}. The Mycielskian graphµ(G) of G contains G itself as an

isomorphic subgraph, together with n + 1 additional vertices: a vertex ui corresponding to

each vertex vi of G, and another vertex w. Each vertex ui is connected by an edge to w, so

that these vertices form a subgraph in the form of a star K1,n. Some topological indices of

Mycielskian graph were computed in [10, 11].

Lemma 2. Let G be a connected graph on n vertices and m edges. Then for each i ∈ {1, . . . , n},

we have dµ(G)(vi) = 2dG(vi), dµ(G)(ui) = dG(vi) + 1 and dµ(G)(w) = n.

By the definition of Mycielskian graph, for each edge vivj of G, the Mycielskian graph

includes two edges, uivj and viuj. Now we find the upper bound for inverse sum indeg coindex

of Mycielskian graph.

Theorem 2. Let G be a graph on n vertices and m edges. Then

ISI(µ(G)) ≤
n(n − 1)− 2m + 16

8
ISI(G) +

1

4

(n(n − 1)

2
− m

)(M2(G)

2
+

M1(G)

2

+
H(G)

2
+

3n(n − 1)

4
−

3m

2

)

+
m

4

(

ISI(G) +
M2(G)

2
+

H(G)

2
+

3m

2

)

+
m + 4

4
M1(G) +

(n(n − 1)

2
− m

)2∆(G)(∆(G) + 1)

3δG + 1
+

7m

3
+

n(3n + 5)

12
.



INVERSE SUM INDEG COINDEX OF GRAPHS 403

Proof. Let V(µ(G)) = {v1, . . . , vn} and let V(µ(G)) = {v1, . . . , vn, u1, . . . , un, w}. By the struc-

ture of Mycielskian graph, if vivj /∈ E(G), then viuj /∈ E(G), and vjui /∈ E(G).

Now we consider the following cases of nonadjacent vertex pairs in µ(G).

Case 1: The nonadjacent vertex pairs {vi, vj} in µ(G).

C1 = ∑
vivj /∈E(µ(G))

dµ(G)(vi)dµ(G)(vj)

dµ(G)(vi) + dµ(G)(vj)
= ∑

vivj /∈E(G)

4dG(vi)dG(vj)

2dG(vi) + 2dG(vj)
, by Lemma 2

= 2 ∑
vivj /∈E(G)

dG(vi)dG(vj)

dG(vi) + dG(vj)
= 2ISI(G).

Case 2: The nonadjacent vertex pairs {ui, uj} in µ(G).

Case 2.1: uiuj /∈ E(µ(G)) and vivj /∈ E(G).

C′
2 = ∑

uiuj /∈E(µ(G))

dµ(G)(ui)dµ(G)(uj)

dµ(G)(ui) + dµ(G)(uj)
= ∑

vivj /∈E(G)

(dG(vi) + 1)(dG(vj) + 1)

dG(vi) + dG(vj) + 2
, by Lemma 2.

By Lemma 1, we obtain

C′
2 ≤

1

4 ∑
vivj /∈E(G)

(dG(vi) + 1)(dG(vj) + 1)
( 1

dG(vi) + dG(vj)
+

1

2

)

=
1

4 ∑
vivj /∈E(G)

( dG(vi)dG(vj)

dG(vi) + dG(vj)
+

dG(vi)dG(vj)

2
+

dG(vi) + dG(vj)

2
+

1

dG(vi) + dG(vj)
+

3

2

)

=
1

4

(

ISI(G) +
M2(G)

2
+

M1(G)

2
+

H(G)

2
+

3

2

(n(n − 1)

2
− m

))

.

Case 2.2: uiuj /∈ E(µ(G)) and vivj ∈ E(G).

C′′
2 = ∑

uiuj /∈E(µ(G))

dµ(G)(ui)dµ(G)(uj)

dµ(G)(ui) + dµ(G)(uj)
= ∑

vivj∈E(G)

(dG(vi) + 1)(dG(vj) + 1)

dG(vi) + dG(vj) + 2
, by Lemma 2.

Apply Lemma 1, we have

C′′
2 ≤

1

4 ∑
vivj∈E(G)

( dG(vi)dG(vj)

dG(vi) + dG(vj)
+

dG(vi)dG(vj)

2
+

dG(vi) + dG(vj)

2
+

1

dG(vi) + dG(vj)
+

3

2

)

=
1

4

(

ISI(G) +
M2(G)

2
+

M1(G)

2
+

H(G)

2
+

3m

2

)

.

If uiuj /∈ E(µ(G)), then there are m edges vivj ∈ E(G) and n(n−1)
2 − m nonadjacent vertex

pairs {vi, vj} in G as well as µ(G). By Cases 2.1 and 2.2, we have the contribution of nonadjacent

vertex pair of case 2 is given by

C2 =
(n(n − 1)

2
− m

)

C′
2 + mC′′

2

=
1

4

(n(n − 1)

2
− m

)(

ISI(G) +
M2(G)

2
+

M1(G)

2
+

H(G)

2
+

3n(n − 1)

4
−

3m

2

)

+
m

4

(

ISI(G) +
M2(G)

2
+

M1(G)

2
+

H(G)

2
+

3m

2

)

.
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Case 3: The nonadjacent vertex pairs {ui, vi} in µ(G) for each i = 1, 2, . . . , n.

C3 =
n

∑
i=1

dµ(G)(ui)dµ(G)(vi)

dµ(G)(ui) + dµ(G)(vi)
=

n

∑
i=1

2(dG(vi) + 1)dG(vi)

3dG(vi) + 1
, by Lemma 2

≤
1

4

n

∑
i=1

(

2d2
G(vi) + 2dG(vi)

)( 1

3dG(vi)
+ 1

)

, by Lemma 1

=
1

4

(

2M1(G) +
16m

3
+

2n

3

)

.

Case 4: The nonadjacent vertex pairs {ui, vj} in µ(G).

C4 = ∑
uivj /∈E(µ(G))

dµ(G)(ui)dµ(G)(vj)

dµ(G)(ui) + dµ(G)(vj)
= ∑

vivj /∈E(G)

2(dG(vi) + 1)dG(vj)

dG(vi) + 2dG(vj) + 1
, by Lemma 2.

For any vertex vi ∈ V(G), we have δ(G) ≤ dG(vi) ≤ ∆(G). Thus

C4 ≤
(n(n − 1)

2
− m

)2∆(G)(∆(G) + 1)

3δ(G) + 1
.

Case 5: The nonadjacent vertex pairs {w, vi} in µ(G) for each i = 1, 2, . . . , n.

C5 = ∑
viw/∈E(µ(G))

dµ(G)(vi)dµ(G)(w)

dµ(G)(vi) + dµ(G)(w)
= ∑

vi∈V(G)

2(n + 1)dG(vi)

2dG(vi) + (n + 1)
, by Lemma 2

≤
1

4 ∑
vi∈V(G)

2(n + 1)d2
G(vi)

( 1

2dG(vi)
+

1

n + 1

)

, by Lemma 1

=
1

4

(

n(n + 1) + 4m
)

.

From the above five cases of nonadjacent vertex pairs, we can obtain the desired results. This

completes the proof.

1.2 Double graph

Let G be a graph with V(G) = {v1, v2, . . . , vn}. The vertices of the double graph G∗ are

given by the two sets X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn}. Thus for each vertex

vi ∈ V(G), there are two vertices xi and yi in V(G∗). The double graph G∗ includes the initial

edge set of each copies of G, and for any edge vivj ∈ E(G), two more edges xiyj and xjyi are

added. For a given vertex v in G, let DG(v) = ∑
uv/∈E(G)

dG(u)dG(v)
dG(u)+dG(v)

. Now we find the exact value

of the inverse sum indeg index and its coindex for double graph of a given graph.

Theorem 3. The inverse sum indeg index of the double graph G∗ of a graph G is given by

ISI(G∗) = 8 ISI(G).

Proof. From the definition of double graph it is clear that dG∗(xi) = dG∗(yi) = 2dG(vi), where

vi ∈ V(G) and xi, yi ∈ V(G∗) are corresponding clone vertices of vi.
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Thus from the definition of ISI, we have

ISI(G∗) = ∑
uv∈E(G∗)

dG∗(u)dG∗(v)

dG∗(u) + dG∗(v)
= ∑

xixj∈E(G∗)

dG∗(xi)dG∗(xj)

dG∗(xi) + dG∗(xj)

+ ∑
yiyj∈E(G∗)

dG∗(yi)dG∗(yj)

dG∗(yi) + dG∗(yj)
+ ∑

xiyj∈E(G∗)

dG∗(xi)dG∗(yj)

dG∗(xi) + dG∗(yj)

+ ∑
xjyi∈E(G∗)

dG∗(xj)dG∗(yi)

dG∗(xj) + dG∗(yi)
= 4 ∑

vivj∈E(G)

4 dG(vi)dG(vj)

2dG(vi) + 2dG(vj)
= 8 ISI(G).

Theorem 4. Let G be a connected graph with n vertices and m edges. Then ISI(G∗) =

8ISI(G) + 2m.

Proof. Let V(G) = {v1, v2, . . . , vn}. Suppose that xi and yi are the corresponding clone vertices,

in G∗, of vi for each i ∈ {1, 2, . . . , n}. For any given vertex vi in G and its clone vertices xi and

yi, dG∗(xi) = dG∗(yi) = 2dG(vi) by the definition of double graph.

For vi, vj ∈ V(G), if vivj /∈ E(G), then xixj /∈ E(G),yiyj /∈ E(G),xiyj /∈ E(G)and yixj /∈ E(G).

Hence we only consider total contribution of the following three types of nonadjacent ver-

tex pairs to calculate ISI(G).

Case 1: The nonadjacent vertex pairs {xi, xj} and {yi, yj}, where vivj /∈ E(G).

∑
yiyj /∈E(G∗)

dG∗(yi)dG∗(yj)

dG∗(yi) + dG∗(yj)
= ∑

xixj /∈E(G∗)

dG∗(xi)dG∗(xj)

dG∗(xi) + dG∗(xj)
= ∑

vivj /∈E(G)

4dG(vi)dGvj)

2dG(vi) + 2dGvj)

= 2ISI(G).

Case 2: The nonadjacent vertex pairs {xi, yi} for each i ∈ {1, 2, . . . , n}.

n

∑
i=1

dG∗(xi)dG∗(yi)

dG∗(xi) + dG∗(yi)
=

n

∑
i=1

4dG(vi)dG(vi)

2dG(vi) + 2dG(vi)
=

n

∑
i=1

dG(vi) = 2m.

Case 3: The nonadjacent vertex pairs {xi, yj} and {yi, xj}, where vivj /∈ E(G).

For each xi, there exist n − 1− dG(vi) vertices in the set {y1, y2, . . . , yn}, among which every

vertex together with xi compose a nonadjacent vertex pairs of G∗. The total contribution of

these n − 1 − dG(vi) nonadjacent vertex pairs to calculate ISI(G∗) is

∑
xiyj /∈E(G∗)

dG∗(xi)dG∗(yj)

dG∗(xi) + dG∗(yj)
= ∑

vivj /∈E(G∗)

4dG(vi)dG(vj)

2dG(vi) + 2dG(vj)
= 2DG(vi).

Hence

∑
i 6=j, xiyj /∈E(G∗)

dG∗(xi)dG∗(yj)

dG∗(xi) + dG∗(yj)
=

n

∑
i=1

2DG(vi) = 4ISI(G).

Hence

ISI(G∗) = ∑
xixj /∈E(G∗)

dG∗(xi)dG∗(xj)

dG∗(xi) + dG∗(xj)
+ ∑

yiyj /∈E(G∗)

dG∗(yi)dG∗(yj)

dG∗(yi) + dG∗(yj)
+

n

∑
i=1

dG∗(xi)dG∗(yi)

dG∗(xi) + dG∗(yi)

+ ∑
i 6=j, xiyj /∈E(G∗)

dG∗(xi)dG∗(yj)

dG∗(xi) + dG∗(yj)
= 8ISI(G) + 2m.
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Паттабiраман К. Оборотно пiдсумовуючий iндег коiндекс графiв // Карпатськi матем. публ. —

2019. — Т.11, №2. — C. 399–406.

Оборотно пiдсумовуючий iндег коiндекс ISI(G) простого зв’язного графу G визначено як

сума доданкiв
dG(u)dG(v)

dG(u)+dG(v)
по всiх ребрах uv, якi не лежать у G, де dG(u) позначає степiнь верши-

ни u в G. У статтi встановлено верхнi обмеження на оборотно пiдсумовуючий iндег коiндекс

графу добутку вершин корони та графу Мицелскiана. Крiм того отримано точне значення

оборотного пiдсумовуючого iндег iндексу i коiндексу для подвiйного графу.

Ключовi слова i фрази: оборотно пiдсумовуючий iндег iндекс, граф вершин корони, граф

Мицелскiана, подвiйний граф.
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PIRZADA S.1 , GANIE H. A.1 , ALGHAMDI A. M.2

ON THE SUM OF SIGNLESS LAPLACIAN SPECTRA OF GRAPHS

For a simple graph G(V, E) with n vertices, m edges, vertex set V(G) = {v1, v2, . . . , vn} and

edge set E(G) = {e1, e2, . . . , em}, the adjacency matrix A = (aij) of G is a (0, 1)-square matrix

of order n whose (i, j)-entry is equal to 1 if vi is adjacent to vj and equal to 0, otherwise. Let

D(G) = diag(d1, d2, . . . , dn) be the diagonal matrix associated to G, where di = deg(vi), for all i ∈
{1, 2, . . . , n}. The matrices L(G) = D(G)− A(G) and Q(G) = D(G) + A(G) are respectively called

the Laplacian and the signless Laplacian matrices and their spectra (eigenvalues) are respectively

called the Laplacian spectrum (L-spectrum) and the signless Laplacian spectrum (Q-spectrum) of

the graph G. If 0 = µn ≤ µn−1 ≤ · · · ≤ µ1 are the Laplacian eigenvalues of G, Brouwer conjectured

that the sum of k largest Laplacian eigenvalues Sk(G) satisfies Sk(G) =
k

∑
i=1

µi ≤ m + (k+1
2 ) and this

conjecture is still open. If q1, q2, . . . , qn are the signless Laplacian eigenvalues of G, for 1 ≤ k ≤ n,

let S+
k (G) = ∑

k
i=1 qi be the sum of k largest signless Laplacian eigenvalues of G. Analogous to

Brouwer’s conjecture, Ashraf et al. conjectured that S+
k (G) ≤ m + (k+1

2 ), for all 1 ≤ k ≤ n. This

conjecture has been verified in affirmative for some classes of graphs. We obtain the upper bounds

for S+
k (G) in terms of the clique number ω, the vertex covering number τ and the diameter of the

graph G. Finally, we show that the conjecture holds for large families of graphs.

Key words and phrases: signless Laplacian spectra, Brouwer’s conjecture, clique number, vertex
covering number, diameter.
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INTRODUCTION

Let G(V, E) be a simple graph with n vertices, m edges, having vertex set

V(G) = {v1, v2, . . . , vn} and edge set E(G) = {e1, e2, . . . , em}. The adjacency matrix A = (aij)

of G is a (0, 1)-square matrix of order n whose (i, j)-entry is equal to 1 if vi is adjacent to

vj and equal to 0, otherwise. Let D(G) = diag(d1, d2, . . . , dn) be the diagonal matrix associ-

ated to G, where di = deg(vi), for all i ∈ {1, 2, . . . , n}. The matrices L(G) = D(G) − A(G)

and Q(G) = D(G) + A(G) are respectively called the Laplacian and the signless Laplacian

matrices and their spectra (eigenvalues) are respectively called the Laplacian spectrum (L-

spectrum) and the signless Laplacian spectrum (Q-spectrum) of the graph G. These matri-

ces are real symmetric and positive semi-definite. We let 0 = µn ≤ µn−1 ≤ · · · ≤ µ1 and

0 ≤ qn ≤ qn−1 ≤ · · · ≤ q1 to be the L-spectrum and Q-spectrum of G, respectively. It is well
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known that the multiplicity of the Laplacian eigenvalue µn = 0 is equal to the number of con-

nected components of G and also µn−1 > 0 if and only if G is connected. Moreover µi = qi, for

all i ∈ {1, 2, . . . , n}, if and only if G is bipartite [4].

For k ∈ {1, 2, . . . , n}, let Sk(G) =
k

∑
i=1

µi be the sum of k largest Laplacian eigenvalues of G.

Also, let d∗i (G) = |{v ∈ V(G) : dv ≥ i}|, for i ∈ {1, 2, . . . , n}. In 1994, Grone and Merris [12]

observed that for any graph G and for any k ∈ {1, 2, . . . , n},

Sk(G) ≤
k

∑
i=1

d∗i (G).

This observation was proved by Hua Bai [2] and is nowadays called as Grone-Merris theorem.

As an analogue to Grone-Merris theorem, Andries Brouwer [3] conjectured that for a graph G

with n vertices and m edges and for any k ∈ {1, 2, . . . , n},

Sk(G) =
k

∑
i=1

µi ≤ m +

(

k + 1

2

)

.

This conjecture is still open and is presently an active component of research. For the progress

on this conjecture and related results, we refer to [8–11, 14] and the references therein.

For k ∈ {1, 2, . . . , n}, let S+
k (G) = ∑

k
i=1 qi be the sum of k largest signless Laplacian eigen-

values of a graph G. Motivated by the definition of Sk(G) and Brouwer’s conjecture, Ashraf et

al. [1] proposed the following conjecture about S+
k (G).

Conjecture 1. If G is a graph with n vertices and m edges, then

S+
k (G) =

k

∑
i=1

qi ≤ m +

(

k + 1

2

)

,

for all k ∈ {1, 2, . . . , n}.

Using computations on a computer Ashraf et al. [1] verified the truth of this conjecture for

all graphs with at most 10 vertices. For k = 1, the conjecture follows from the well-known

inequality q1(G) ≤ 2m
n−1 + n + 2 and m ≥ n − 1. Also, the cases k = n and k = n − 1 are

straightforward. The conjecture is true for trees. This follows from the fact that Brouwer’s

conjecture holds for trees and that both Laplacian and signless Laplacian eigenvalues are the

same for trees. Ashraf et al. [1] showed that the conjecture is true for all graphs when k = 2 and

is also true for regular graphs. Yang et al. [16] obtained various upper bounds for S+
k (G) and

proved that the conjecture is also true for unicyclic graphs, bicyclic graphs and tricyclic graphs

(except for k = 3). For the progress on this conjecture and related results, we refer to [1, 7, 16]

and the references therein.

A clique of a graph G is the maximum complete subgraph of the graph G. The order of the

maximum clique is called the clique number of the graph G and is denoted by ω. A subset S

of the vertex set V(G) is said to be a covering set of G if every edge of G is incident to at least

one vertex in S. A covering set with minimum cardinality among all covering sets is called

minimum covering set of G and its cardinality, denoted by τ, is called vertex covering number of

G.
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The distance between any two vertices u and v is defined as the length of shortest path

between them and the diameter of a graph G is the maximum distance among all pair of vertices

of G. If H is a subgraph of the graph G, we denote the graph obtained by removing the edges

in H from G by G \ H (that is, only the edges of H are removed from G).

Further, as usual Pn, Kn and Ks,t, respectively, denote the path on n vertices, the complete

graph on n vertices and the complete bipartite graph on s + t vertices. For other undefined

notations and terminology from spectral graph theory, the readers are referred to [4, 13].

The paper is organized as follows. In Section 2, we obtain some upper bounds for S+
k (G)

in terms of the clique number ω, the vertex covering number τ and the diameter of the graph

G. As applications to the results obtained in Section 2, we prove that Conjecture 1 is true for

some new classes of graphs in Section 3.

1 UPPER BOUNDS FOR S+
k (G)

In this section, we obtain the upper bounds for S+
k (G), in terms of the clique number ω, the

vertex covering number τ and the diameter of the graph G.

Yang et al. [16] obtained the following upper bound for S+
k (G), in terms of the clique num-

ber ω and the number of edges m:

S+
k (G) ≤ k(ω − 2) + 2m − ω(ω − 2). (1)

Das et al. [5] obtained an upper for Sk(G) of a graph with n vertices, in terms of the vertex

covering number τ and the number of edges m. Using similar analysis, the following upper

bound can be obtained for S+
k (G), in terms of the vertex covering number τ and the number

of edges m:

S+
k (G) ≤ m + kτ, (2)

with equality if and only if G ∼= K1,n−1.

The following observation is due to Fulton [6].

Lemma 1. Let A and B be two real symmetric matrices of order n. Then for any 1 ≤ k ≤ n,

k

∑
i=1

λi(A + B) ≤
k

∑
i=1

λi(A) +
k

∑
i=1

λi(B),

where λi(X) is the ith eigenvalue of the matrix X.

Let Γ1 be the family of all connected graphs except for the graphs G, where the vertices in

the vertex covering set S = {v1, v2, . . . , vω−1} of the subgraph Kω have the property that there

are pendent vertices incident to some vi ∈ S or any two vertices of S forms a triangle with a

vertex v ∈ V(G) \ C, where C is the vertex covering set of G.

The following theorem gives an upper bound for S+
k (G) in terms of the clique number ω,

the vertex covering number τ and the number of edges m of the graph G. The number of

vertices in a graph G is denoted by n(G) and the number of vertices adjacent to a vertex v is

denoted by N(v).
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Theorem 2. Let G ∈ Γ1 be a connected graph of order n ≥ 2 with m edges having clique

number ω and vertex covering number τ. Then, for 1 ≤ k ≤ n,

S+
k (G) ≤ k(τ − 1) + m − ω(ω − 3)

2
, (3)

with equality if and only if G ∼= Kn.

Proof. If G ∈ Γ1 is a connected graph with clique number ω, vertex cover number τ and mini-

mum vertex covering set C = {v1, v2, . . . , vτ}, then Kω is a subgraph of G. Further, the vertex

covering number of a complete graph on ω vertices is ω − 1. Without loss of generality, let

v1, v2, . . . , vω−1 be the vertices in C, which belong to V(Kω). The signless Laplacian spectrum

of Kω is {2ω − 2, ω − 2[ω−1]}. After removing the edges of Kω from G, the signless Laplacian

matrix of G isdecomposed as

Q(G) = Q(Kω ∪ (n − ω)K1) + Q(G \ Kω),

where G \ Kω is the graph obtained from G by removing the edges of Kω. Using Lemma 1 and

the fact S+
k (Kω ∪ (n − ω)K1) = S+

k (Kω), we have

S+
k (G) =

k

∑
i=1

qi(G) ≤
k

∑
i=1

qi(Kω) +
k

∑
i=1

qi(G \ Kω)

= S+
k (Kω) + S+

k (G \ Kω) = ω(k + 1)− 2k + S+
k (G \ Kω).

To complete the proof, we need to estimate S+
k (G \ Kω). So let Gω, Gω+1, . . . , Gτ be the span-

ning subgraphs of H = G \ Kω corresponding to the vertices vω, vω+1, . . . , vτ of C, having

vertex set same as H and edge sets defined as follows.

E(Gω) = {vωvt : vt ∈ N(vω) \ {v1, v2, . . . , vω−1}}
E(Gω+1) = {vω+1vt : vt ∈ N(vω+1) \ {v1, v2, . . . , vω}}

and in general

E(Gi) = {vivt : vt ∈ N(vi) \ {v1, v2, . . . , vi−1}}, i = ω, ω + 1, . . . , τ.

For i ∈ {ω, ω + 1, . . . , τ}, let mi = |E(Gi)|. Clearly E(H) = E(Gω) ∪ E(Gω+1) ∪ · · · ∪ E(Gτ)

and Gi = K1,mi
∪ (n(H)− mi − 1)K1, for all i ∈ {ω, ω + 1, . . . , τ}. Also, it is clear that

Q(H) = Q(Gω) + Q(Gω+1) + · · ·+ Q(Gτ). (4)

The signless Laplacian spectrum of Gi = K1,mi
∪ (n(H)− mi − 1)K1 is

{mi + 1, 1[n(Gi)−2], 0[n(H)−mi]}.

Therefore,

S+
k (Gi) = mi + k, f or all i = ω, ω + 1, . . . , τ. (5)

Now, applying Lemma 1 to Equation (4) and using Equation (5) and the fact that ∑
τ
j=ω mj =

m(H) = m − ω(ω−1)
2 , we have

S+
k (H) =

k

∑
i=1

qi(H) ≤
τ

∑
j=ω

k

∑
i=1

qi(Gj) =
τ

∑
j=ω

S+
k (Gj)

=
τ

∑
j=ω

(

mj + k
)

= m − ω(ω − 1)

2
+ (τ − ω + 1)k.
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This shows that

S+
k (G \ Kω) = S+

k (H) ≤ m − ω(ω − 1)

2
+ (τ − ω + 1)k.

Therefore, it follows that

S+
k (G) ≤ ω(k + 1)− 2k + S+

k (G \ Kω)

≤ ω(k + 1)− 2k + m − ω(ω − 1)

2
+ (τ − ω + 1)k

= k(τ − 1) + m − ω(ω − 3)

2
.

Equality occurs in (3) if and only if all the inequalities above become equalities. Since G is

connected equality occurs in S+
k (G) ≤ S+

k (Kω) + S+
k (G \ Kω), only if G ∼= Kn. Conversely, if

G ∼= Kn, then τ = n − 1, ω = n, m = n(n−1)
2 and so equality holds in (3), completing the

proof.

Remark 1. For a graph G ∈ Γ1, it is easy to see that the upper bound given by (3) is better than

the upper bound given by (1) for all m ≥ k(τ − ω + 1) + ω(ω−1)
2 . In particular, for the graph

with τ = ω and k ≤ n − ω, the upper bound (3) is better than the upper bound (1).

Remark 2. Clearly for the graph G ∈ Γ1 the upper bound given by (3) is always better than the

upper bound given by (2).

Let Γ2 be the family of all connected graphs except for the graphs G, where the vertices in

the vertex covering set S = {v1, v2, . . . , v⌊ d
2 ⌋
} of the subgraph Pd has the property that there are

pendent vertices incident at some vi ∈ S or any two vertices of S forms a triangle with a vertex

v ∈ V(G) \ C, where C is the vertex covering set of G.

Rocha et al. [15] obtained an upper bound for Sk(G) in terms of diameter of the graph G.

Using similar analysis, the following upper bound can be obtained for S+
k (G), in terms of the

diameter d − 1 of the graph G.

S+
k (G) ≤ 2(m − d) + 1 − n + 4k + p + cos

(

kπ

d

)

+
cos(π

d ) sin( kπ
d ) + sin( kπ

d )

sin(π
d )

, (6)

where p is the number of isolated vertices in the graph obtained by removing the edges of Pd

from G.

The following theorem gives an upper bound for S+
k (G), in terms of the diameter, the num-

ber of edges m and the vertex covering number τ of the graph G.

Theorem 3. Let G ∈ Γ2 be a connected graph of order n ≥ 3 with m edges having diameter

d − 1 and vertex covering number τ. Then for 1 ≤ k ≤ n,

S+
k (G) ≤ (τ − ⌊d

2
⌋+ 2)k + m − d + cos

(

kπ

d

)

+
cos(π

d ) sin( kπ
d ) + sin( kπ

d )

sin(π
d )

, (7)

with equality if and only if G ∼= Pn.



412 PIRZADA S., GANIE H. A., ALGHAMDI A. M.

Proof. Let G be a connected graph with diameter d − 1 and vertex cover number τ and let

C = {v1, v2, . . . , vτ} be a minimum vertex covering set in G. Since the diameter of G is d − 1,

it follows that Pd is a subgraph of G. Also, the vertex covering number of a path graph Pn on

n vertices is ⌊n
2 ⌋. Let v1, v2, . . . , v⌊ d

2 ⌋
be the vertices in C, which belong to V(Pd). The signless

Laplacian spectrum of Pd is {2 − 2 cos(πj
d ), 0 : j ∈ {1, 2, . . . , d − 1}}. If we remove the edges of

Pd from G, the signless Laplacian matrix of G can be decomposed as

Q(G) = Q(Pd ∪ (n − d − 1)K1) + Q(G \ Pd),

where G \ Pd is the graph obtained from G by removing the edges of Pd. Applying Lemma 1

and using the fact that S+
k (Pd ∪ (n − d − 1)K1) = S+

k (Pd), we have

S+
k (G) =

k

∑
i=1

qi(G) ≤
k

∑
i=1

qi(Pd) +
k

∑
i=1

qi(G \ Pd) = S+
k (Pd) + S+

k (G \ Pd)

=
k−1

∑
j=0

(

2 − 2 cos(
π(d − j − 1)

d
)

)

+ S+
k (G \ Pd)

= 2k + cos

(

kπ

d

)

+
cos(π

d ) sin( kπ
d ) + sin( kπ

d )

sin(π
d )

− 1 + S+
k (G \ Pd),

where we have used the well-known equality

k−1

∑
j=0

cos(nj) =
sin(nk) cos(n) + sin(nk)

2 sin(n)
− 1

2
cos(nk) +

1

2
.

In order to establish the result, we need to estimate S+
k (G \ Pd).

Let G⌊ d
2 ⌋+1, G⌊ d

2 ⌋+2, . . . , Gτ be the spanning subgraphs of H = G \ Pd corresponding to

the vertices v⌊ d
2 ⌋+1, v⌊ d

2 ⌋+2, . . . , vτ of C, having vertex set same as H and edge sets defined as

follows.

E(Gi) = {vivt : vt ∈ N(vi) \ {v1, v2, . . . , vi−1}}, i = ⌊d

2
⌋+ 1, ⌊d

2
⌋+ 2, . . . , τ.

Now, proceeding similarly as in Theorem 2, we obtain

S+
k (G \ Pd) ≤ k(τ − ⌊d

2
⌋) + m − d + 1.

Therefore, from above we have

S+
k (G) ≤ 2k + cos

(

kπ

d

)

+
cos(π

d ) sin( kπ
d ) + sin( kπ

d )

sin(π
d )

− 1 + S+
k (G \ Pd)

≤ (τ − ⌊d

2
⌋+ 2)k + m − d + cos

(

kπ

d

)

+
cos(π

d ) sin( kπ
d ) + sin( kπ

d )

sin(π
d )

,

and hence the result follows.

Equality occurs in (7) if and only if all the inequalities above occur as equalities. Since G is

connected, the equality in the inequality S+
k (G) ≤ S+

k (Pd) + S+
k (G \ Pd) can only occur if and

only if G ∼= Pn. Conversely, if G ∼= Pn, then τ = ⌊n
2 ⌋, m = n − 1, d = n − 1 and so it can be

seen that equality holds in (7), completing the proof.
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Remark 3. For the connected graphs G ∈ Γ2, it is easy to see that the upper bound given by

(7) is better than the upper bound given by (6) for all k ≤ m−n−d+1+p

τ−⌊ d
2 ⌋−2

. In particular, if G ∈ Γ2

is such that τ ≤ ⌊ d
2⌋+ 2 and m ≥ n + d − 1 − p, the upper bound (7) is always better than the

upper bound (6).

Let Γ3 be the family of all connected graphs except for the graphs G, where the vertices

in the vertex set S = {v1, v2, . . . , vs1 , u1, u2, . . . us2} of the subgraph Ks1,s2 , s1 ≤ s2, has the

property that there are pendent vertices incident at some vi or uj ∈ S or any two vertices of S

forms a triangle with a vertex v ∈ V(G) \ C, where C is the vertex covering set of G.

Let Ks1,s2 s1 ≤ s2, be the maximal complete bipartite subgraph of a graph G. Using the fact

that the vertex covering number of Ks1,s2 s1 ≤ s2, is s1 and its signless Laplacian spectrum is

{s1 + s2, s
[s2−1]
1 , s

[s1−1]
2 , 0}, and proceeding similarly as in Theorem 2, we obtain the following

upper bound for S+
k (G).

Theorem 4. Let G ∈ Γ3 be a connected graph of order n ≥ 2 with m edges having vertex

covering number τ. If Ks1,s2 s1 ≤ s2, is the maximal complete bipartite subgraph of the graph

G, then

S+
k (G) ≤ k(τ + s2 − s1) + m − s1(s2 − 1), (8)

with equality if and only if G ∼= Ks1,s2 and s1 + s2 = n.

If s1 = s2, for the graphs G ∈ Γ3, it is easy to see that the upper bound (8) is always better

than the upper bound (2).

2 CONJECTURE 1 IS TRUE FOR SOME MORE CLASSES OF GRAPHS

In this section, we show that Conjecture 1 holds for some more classes of graphs.

Theorem 5. If G ∈ Γ1 is a connected graph of order n ≥ 12 with m edges having clique number

ω, then for ω ≥ 3+
√

3n2−14n+9
2 ,

S+
k (G) ≤ m +

k(k + 1)

2
,

for all k ∈ {1, 2, . . . , ⌊n
2⌋}.

Proof. Let G be a connected graph of order n having clique number ω and vertex covering

number τ. If τ = n − 1, clearly G ∼= Kn and so Conjecture 1 always holds (this is due to the fact

that Conjecture 1 holds for all regular graphs). So suppose that τ ≤ n − 2. With this choice of

τ, from inequality (3), we have

S+
k (G) ≤ k(n − 3) + m − ω(ω − 3)

2
≤ m +

k(k + 1)

2
,

if k(2n − 6) ≤ k2 + k + ω(ω − 3). That is, k2 − (2n − 7)k + ω(ω − 3) ≥ 0.

Consider the polynomial f (k) = k2 − (2n − 7)k + ω(ω − 3), k ∈ [1, n − 1]. The roots of this

polynomial are

α =
(2n − 7) +

√

4n2 − 28n + 49 − 4ω(ω − 3)

2
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and

β =
(2n − 7)−

√

4n2 − 28n + 49 − 4ω(ω − 3)

2
.

Thus f (k) ≥ 0, for all k ∈ (−∞, β] ∪ [α,+∞). We will show β ≥ n
2 . We have β ≥ n

2 implies

(2n − 7)−
√

4n2 − 28n + 49 − 4ω(ω − 3)

2
≥ n

2
,

which implies that (n − 7)2 ≥ 4n2 − 28n + 49 − 4ω(ω − 3), and further implies that 4ω2 −
12ω − (3n2 − 14n) ≥ 0, which gives ω ≥ 3+

√
3n2−14n+9

2 .

Since α(3+
√

3n2−14n+9
2 ) = 3n−14

2 ≥ n − 1, for all n ≥ 12, it follows that α(ω) ≥ n − 1, for all

ω ≤ 3+
√

3n2−14n+9
2 . Thus, if ω ≥ 3+

√
3n2−14n+9

2 , we have proved that Conjecture 1 holds for all

k ∈ {1, 2, . . . , ⌊n
2 ⌋}.

Let Ωn be a family of those connected graphs G ∈ Γ1 for which the vertex covering number

τ ∈ {ω − 1, ω, ω + 1}, that is,

Ωn = {G ∈ Γ1 : τ = ω − 1 or ω or ω + 1}.

For the family of graphs Ωn, we have the following observation.

Theorem 6. If G ∈ Ωn, then

Sk(G) ≤ m +
k(k + 1)

2
holds for all k, if τ = ω − 1; holds for all k except for k = ω − 2, ω − 1 if τ = ω; holds for all

k, k ≤ 2ω−1−
√

8ω+1
2 and k ≥ 2ω−1+

√
8ω+1

2 , if τ = ω + 1.

Proof. Let G ∈ Ωn. Then τ ∈ {ω − 1, ω, ω + 1}. If τ = ω − 1, from inequality (3), we have

S+
k (G) ≤ k(ω − 2) + m − ω(ω − 3)

2
≤ m +

k(k + 1)

2
,

if 2k(ω − 2) ≤ k2 + k + ω2 − 3ω, that is,

k2 − (2ω − 5)k + ω2 − 3ω ≥ 0. (9)

For the polynomial f (k) = k2 − (2ω − 5)k + ω2 − 3ω, the discriminant D = (2ω − 5)2 −
4(ω2 − 3ω) = 25 − 8ω < 0, if ω ≥ 4. This shows that (9) holds for all ω ≥ 4. By direct

calculations, it can be seen that (9) holds for ω ≤ 3. Thus, it follows that (9) is true for all k.

If τ = ω, from inequality (3), we have

S+
k (G) ≤ k(ω − 1) + m − ω(ω − 3)

2
≤ m +

k(k + 1)

2

if 2k(ω − 1) ≤ k2 + k + ω2 − 3ω, that is,

k2 − (2ω − 3)k + ω2 − 3ω ≥ 0. (10)

For the polynomial f (k) = k2 − (2ω − 3)k+ ω2 − 3ω, the roots are ω − 3 and ω. It follows that

f (k) < 0, for all k ∈ (ω − 3, ω). Since k and ω are integers and the only integers in (ω − 3, ω)

are ω − 2, ω − 1, it follows that f (k) ≥ 0 for all k except k = ω − 2, ω − 1. Thus, it follows that

(10) holds for all k /∈ {ω − 2, ω − 1}.

If τ = ω + 1, proceeding similarly as above, it can be seen that the conjecture holds for all

k, k ≤ 2ω−1−
√

8ω+1
2 and k ≥ 2ω−1+

√
8ω+1

2 .
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Theorem 7. Let G ∈ Γ2 be a connected graph of order n ≥ 2 with m edges having vertex

covering number τ. Let Ks1,s1 be the maximal complete bipartite subgraph of G. Then Con-

jecture 1 holds for all k, if τ ≤ 1+
√

8s1(s1−1)
2 holds for all k ≤ 2τ−1−

√
(2τ−1)2−8s1(s1−1)

2 and

k ≥ 2τ−1+
√

(2τ−1)2−8s1(s1−1)
2 , if τ ≥ 1+

√
8s1(s1−1)

2 .

Proof. Using s1 = s2 in inequality (8), we have

S+
k (G) ≤ kτ + m − s1(s1 − 1) ≤ m +

k(k + 1)

2
,

if

k2 − (2τ − 1)k + 2s1(s1 − 1) ≥ 0. (11)

The roots of the polynomial f (k) = k2 − (2τ − 1)k + 2s1(s1 − 1) are α = 2τ−1+
√

θ
2 and β =

2τ−1−
√

θ
2 , where θ = (2τ − 1)2 − 8s1(s1 − 1). We have (2τ − 1)2 − 8s1(s1 − 1) ≤ 0, which

implies that 4τ2 − 4τ − (8s2
1 − 8s1 − 1) ≤ 0, which gives τ ≤ 1+

√
8s1(s1−1)

2 . This shows that

the discriminant of the polynomial f (k) is non-positive for all τ ≤ 1+
√

8s1(s1−1)
2 . That is, (11)

holds for all τ ≤ 1+
√

8s1(s1−1)
2 . On the other hand if the discriminant of the polynomial f (k) is

non-negative, then (11) holds for all k ≥ α and for all k ≤ β, completing the proof.

Let G be a connected bipartite graph of order n having the vertex covering number τ. For

bipartite graphs, it is well known that τ ≤ n
2 . With this in mind, we have the following obser-

vation for bipartite graphs.

Theorem 8. Let G ∈ Γ3 be a connected bipartite graph of order n ≥ 4 with m edges having the

vertex covering number τ. If Ks1,s1 , with s1 ≥ n
4 , is the maximal complete bipartite subgraph of

the graph G, then

Sk(G) ≤ m +
k(k + 1)

2

for all k ≤ n
7 − 1 and k ≥ 6n

7 .

Proof. Using s1 = s2 in (8) and the fact that τ ≤ n
2 , for bipartite graphs we have

S+
k (G) ≤ kτ + m − s1(s1 − 1) ≤ k(

n

2
) + m − s1(s1 − 1) ≤ m +

k(k + 1)

2

if

kn ≤ k(k + 1) + 2s1(s1 − 1). (12)

The right hand side of (10) is an increasing function of s1. Therefore, to prove the assertion, it

suffices to consider s1 = n
4 . With this value of s1, from (12), we have

k2 − (n − 1)k +
n(n − 4)

8
≥ 0.

The roots of the polynomial f (k) = k2 − (n − 1)k +
n(n − 4)

8
are

α =
n − 1 +

√
0.5n2 + 1

2
, β =

n − 1 −
√

0.5n2 + 1

2
.

This shows that f (k) ≥ 0, for all k ≥ α; and f (k) ≥ 0, for all k ≤ β. By using elementary

algebra it can be seen that α < 0.8535n and β > 0.1464n − 1. Hence the result follows.
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For graphs with girth g ≥ 5, Rocha et al. [15] showed that Brouwer’s conjecture holds for

all k ≤ ⌊ g
5⌋. Using similar analysis, we have the following observation.

Theorem 9. For connected graphs with girth g ≥ 5, Conjecture 1 holds for all k, 1 ≤ k ≤ ⌊ g
5⌋.

Using Theorem 3, the fact that

cos

(

kπ

d

)

+
cos(π

d ) sin( kπ
d ) + sin( kπ

d )

sin(π
d )

≤ 2k + 1

and proceeding similarly as in above theorems, we arrive at the following observation.

Theorem 10. Let G ∈ Γ2 be a connected graph of order n ≥ 3 with m edges having diameter

d − 1 and vertex covering number τ. Then for 1 ≤ k ≤ n, Conjecture 1 holds for all k, if

τ ≤ 2⌊ d
2 ⌋−7+

√
8(d−1)

2 ; holds for all k,

k ≤
2τ − 2⌊ d

2⌋+ 7 −
√

2τ − 2⌊ d
2⌋+ 7 − 8(d − 1)

2

and

k ≥
2τ − 2⌊ d

2⌋+ 7 +
√

2τ − 2⌊ d
2⌋+ 7 − 8(d − 1)

2
,

if τ ≥ 2⌊ d
2 ⌋−7+

√
8(d−1)

2 .

3 CONCLUDING REMARKS

The aim of this paper is twofold. Firstly, in Section 2, we obtained some upper bounds for

the graph invariant S+
k (G), in terms of clique number ω, the vertex covering number τ and the

diameter of the graph G. These bounds can be used to obtain the upper bounds for the signless

Laplacian energy of the graph G and so can be helpful to obtain the extremal graphs among

various families of the graphs. Secondly, in Section 3, we have used the results of Section 2 to

verify the truth of the Conjecture 1 for some more families of graphs. Although, in Sections 2

and 3, we have restricted ourselves to graphs G ∈ {Γ1, Γ2, Γ3}, the importance of these results

can be realized from the fact that not many families of graphs are known for which Conjecture

1 holds.
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Пiрзада С., Ганi Х.А., Альгамдi А.М. Про суму беззнакових лапласiанiвських спектрiв графiв //

Карпатськi матем. публ. — 2019. — Т.11, №2. — C. 407–417.

Для деякого простого графа G(V, E) з n вершинами i m ребрами, множиною вершин

V(G) = {v1, v2, . . . , vn} i множиною ребер E(G) = {e1, e2, . . . , em}, матриця сумiжностi A = (aij)

графа G — це (0, 1)-квадратна матриця порядку n, для якої елементи з iндексом (i, j) дорiв-

нюють 1, якщо vi сумiжна з vj i 0 у протилежному випадку. Нехай D(G) = diag(d1, d2, . . . , dn)

— дiагональна матриця, асоцiйована з G, де di = deg(vi), для всiх i ∈ {1, 2, . . . , n}. Матрицi

L(G) = D(G)− A(G) i Q(G) = D(G) + A(G) називаються лапласiанiвськi i беззнаковi лапласiа-

нiвськi матрицi, вiдповiдно, а їх спектри (власнi значення), вiдповiдно — лапласiанiвським спе-

ктром (L-спектром) та беззнаковим лапласiанiвським спектром (Q-спектром) графа G. Якщо

0 = µn ≤ µn−1 ≤ · · · ≤ µ1 є лапласiанiвськi власнi значення G, Броувер припустив, що сума k

найбiльших лапласiанiвських значень Sk(G) задовольняє Sk(G) =
k

∑
i=1

µi ≤ m + (k+1
2 ) i це при-

пущення є все ще вiдкритим. Якщо q1, q2, . . . , qn — беззнаковi лапласiанiвськi власнi значення

графа G для 1 ≤ k ≤ n, i нехай S+
k (G) = ∑

k
i=1 qi — сума k найбiльших беззнакових лапласiа-

нiвських власних значень G. Аналогiчно до припущення Броувера, Асхраф та iн. припустили,

що S+
k (G) ≤ m + (k+1

2 ) для всiх 1 ≤ k ≤ n. Це припущення було пiдтверджено для деяких

класiв графiв. Ми отримали верхнє обмеження для S+
k (G) в термiнах клiкових чисел ω, чисел

покриття вершин τ i дiаметра графа G. Зрештою, ми показали, що припущення виконується

для широкої сiм’ї графiв.

Ключовi слова i фрази: беззнаковi лапласiанiвськi спектри, припущення Броувера, клiковi

числа, числа покриття вершин, дiаметр.
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METRIC DIMENSION OF METRIC TRANSFORM AND WREATH PRODUCT

Let (X, d) be a metric space. A non-empty subset A of the set X is called resolving set of the

metric space (X, d) if for two arbitrary not equal points u, v from X there exists an element a from

A, such that d(u, a) 6= d(v, a). The smallest of cardinalities of resolving subsets of the set X is called

the metric dimension md(X) of the metric space (X, d).

In general, finding the metric dimension is an NP-hard problem. In this paper, metric dimension

for metric transform and wreath product of metric spaces are provided. It is shown that the metric

dimension of an arbitrary metric space is equal to the metric dimension of its metric transform.

Key words and phrases: metric dimension, metric transform, wreath product.
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INTRODUCTION

Let (X, d) be a metric space. It is said that a set A is the resolving set of the metric space

(X, d) if A is a non-empty subset of X and for an arbitrary different points u, v from X there

exists an element a in A, such that distances d(u, a) and d(v, a) are not equal. The smallest of

cardinalities of resolving subsets of the set X is called the metric dimension md(X) of the metric

space (X, d).

Definition of the metric dimension for metric spaces was firstly introduced by Blumenthal

in 1953 [4]. 20 years later Harari and Melter in [7] applied it to the graphs. After that the

metric dimension concept found range of applications, like in combinatorial analysis, robotics,

for finding its location, biology, chemistry etc. [14], [9], [13].

In 2013 S. Bau and F. Beardon [2] got the Blumenthal’s ideas and proceeded research of the

metric spaces metric dimension. They has managed to calculate the metric dimension of the

sphere in a k-dimensional Euclidean space. Later, M. Heydarpour and S. Maghsoudi in [8]

calculated the metric dimensions of geometric spaces.

As well as metric dimension, Blumenthal has also described metric transforms [3], which

was studied further by other researchers, like by Schoenberg and von Neumann in scope of

Euclidian subspace metric transforms into Hilbert space subsets [12], [15].

In general, finding of the metric dimension of a finite graph is an NP-hard problem [6].

Following that, metric dimension characterization for a finite metric space is also NP-hard.

This is why there are several ways of conducting metric dimension research. One of those is

researching metric dimension of constructions of two graphs, if we know metric dimensions

of both of them. For example, metric dimensions of wreath products and cartesian products

of two finite graphs characterized in [5], [1].

УДК 519.1
2010 Mathematics Subject Classification: 05C12, 51K05, 54E35.
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In this paper we characterize metric dimensions of the wreath products of metric spaces

which were considered in [11], [10]. This construction of metric spaces was called a wreath

product because the isometry group of the wreath product of metric spaces is isomorphic

to the wreath product of theirs isometry groups. In particular, we will also show that metric

dimension of the metric transform of an arbitrary metric space is equal to the metric dimension

of this space.

1 METRIC TRANSFORM

Denote by R
+ the set of all non-negative real numbers. Let s be a continuous monotone

increasing function and s(0) = 0. Such functions are called scales. Transformation of metric

space (X, dX) is the space (X, s(dX)), where function s(dX) might not follow triangle inequality

[3]. Transformation is called metric, if s(dX) is metric.

Definition 1 ( [3]). If for metric spaces (X, dX) and (Y, dY) there is a bijection g : X → Y, and

scale s that for arbitrary u, v ∈ X holds:

dX(u, v) = s(dY(g(u), g(v))),

then such metric spaces are called isomorphic.

Proposition 1. Let (X, d) be a metric space and let s : R
+ → R

+ be a metric transform. Then

metric basis of X is also the metric basis of the metric transform (X, s(d)).

Proof. Let V = {vi, i ∈ I} be a metric basis of the space (X, d). As follows from the definition

of a metric basis, for every u, w ∈ X there is vj ∈ V, such that

d(u, vj) 6= d(w, vj),

i. e. vj resolves points u and w. The function s is monotone increasing, so, we have

s(d(u, vj)) 6= s(d(w, vj)).

Hence, vj resolves u and w in (X, s(d)). Therefore, V is resolving set of (X, s(d)).

We need to show, that V is minimal cardinality. Assume, that there is vl , such that V \ {vl}

also is a resolving set of (X, s(d)). But V is a minimal resolving set of (X, d). Hence, there are

points u, w ∈ X such that for any vj ∈ V \ {vl} the following condition holds:

d(u, vj) = d(w, vj).

But it means, that s(d(u, vj)) = s(d(w, vj)). Hence, V \ {vl} is not a metric basis of (X, s(d)).

Corollary 1. Metric dimension of a metric space (X, d) is equal to the metric dimension of its

metric transform (X, s(d)) for any scale s.
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2 WREATH PRODUCT

First, we recall the construction of a wreath product of metric spaces.

Definition 2. A metric space (X, d) is called uniformly discrete if for an arbitrary u, v ∈ X

either u = v or there exists a radius r > 0 such that d(u, v) > r.

Let (X, dX) be a uniformly discrete metric space, and (Y, dY) be a bounded metric space.

Since space (X, dX) is uniformly discrete, then there exists r such that for two different arbitrary

points x1, x2 from set X inequality dX(x1, x2) ≥ r holds. Let s(x) be the scale such that

diam(s(Y)) < r. (1)

Let us define a function ρs on the Cartesian product X × Y by:

ρs((x1, y1), (x2, y2)) =

{

dX(x1, x2), if x1 6= x2

s(dY(y1, y2)), if x1 = x2.

Such a metric space is called wreath product of metric spaces (X, dX) and (Y, dY) and denoted

as XwrsY [11]. For different scales s1 and s2 metric spaces Xwrs1Y and Xwrs2Y are isomorphic.

Theorem 1. Let X be a finite metric space and Y be a bounded metric space, md(Y) < ∞. Then,

the dimension of wreath product of metric spaces (X, dX) and (Y, dY) is equal to

md(XwrsY) = |X| ∗ md(Y).

If md(Y) = ∞, then md(XwrsY) = ∞.

Proof. Let v1, . . . , vl be a metric basis of (Y, dY). We assume that X = {x1, . . . , xm}. Define a set

B = {(xj , vi)|1 ≤ j ≤ m, 1 ≤ i ≤ n}.

We need to show that the set B is a basis of XwrsY.

Let (x1, y1) and (x2, y2) be two different points of XwrsY. From the definition of the wreath

product of metric spaces follows, that if x1 6= x2, then points (x1, y1) and (x2, y2) are resolved

by point (x2, v2). Indeed, we will have:

ρ((x1, y1), (x2, y2)) = dX(x1, x2), ρ((x2, y2), (x2, v2)) = s(dY(y2, v2)).

From inequality (1) follows, that

ρ((x1, y1), (x2, y2)) < ρ((x2, y2), (x2, v2))

and therefore points (x1, y1) and (x2, y2) are resolved by (x2, v2).

Let x1 = x2. In this case, since v1, . . . , vn is the metric basis of Y, exists vj that resolves y1

and y2. Then

ρ((x1, y1), (x1, vj)) = s(dY(y1, vj)), ρ((x2, y2), (x1, vj)) = s(dY(y2, vj)).

Since vj resolves y1 and y2, s(dY(y1, vj)) 6= s(dY(y2, vj)). In this case all elements from the

set X are supposed to be included into a basis of the cartesian product.

And now let us show that B is a basis. Assume that B‘ = B/{x1, v1} is a basis. Since

v1, . . . , vn is the basis of the metric space Y, then there exists y1, y2 ∈ Y which are not resolved

by v2, v3, . . . , vn but are resolved by v1 only. Then points (x, y1) and (x, y2) are not resolved by

points from B‘. This means that B is the minimal set, therefore B is a metric basis of the space

XwrsY.

As a result we have that md(XwrsY) = |X|md(Y).

Theorem 1 implies the next statement.

Corollary 2. If the space X is infinite, then md(XwrsY) = ∞.
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Пономарчук Б.С. Метрична розмiрнiсть метричної трансформацiї та вiнцевого добутку // Кар-

патськi матем. публ. — 2019. — Т.11, №2. — C. 418–421.

Для довiльного метричного простору (X, d) множина A ⊂ X називається роздiляючою,

якщо для довiльних рiзних елементiв u, v, що належать множинi X iснує такий елемент a ∈

A, що вiдстанi d(a, u) та d(a, v) є рiзними. Метричною розмiрнiстю md(X) простору (X, d)

називається роздiляюча множина найменшої потужностi.

В загальному випадку пошук метричної розмiрностi є NP–важкою задачею. В роботi оха-

рактеризовано метричну розмiрiнсть метричної трансформацiї та вiнцевого добутку метри-

чних просторiв. Також показано, що метрична розмiрнiсть довiльного метричного простору

спiвпадає з метричною розмiрнiстю його метричної трансформацiї.

Ключовi слова i фрази: метрична розмiрнiсть, метрична трансформацiя, вiнцевий добуток.
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RAKDI M.A., MIDOUNE N.

WEIGHTS OF THE Fq-FORMS OF 2-STEP SPLITTING TRIVECTORS OF RANK 8

OVER A FINITE FIELD

Grassmann codes are linear codes associated with the Grassmann variety G(ℓ, m) of ℓ-dimen-

sional subspaces of an m dimensional vector space F
m
q . They were studied by Nogin for general q.

These codes are conveniently described using the correspondence between non-degenerate [n, k]q
linear codes on one hand and non-degenerate [n, k] projective systems on the other hand. A non-

degenerate [n, k] projective system is simply a collection of n points in projective space P
k−1 satis-

fying the condition that no hyperplane of P
k−1 contains all the n points under consideration. In

this paper we will determine the weight of linear codes C(3, 8) associated with Grassmann varieties

G(3, 8) over an arbitrary finite field Fq. We use a formula for the weight of a codeword of C(3, 8),

in terms of the cardinalities certain varieties associated with alternating trilinear forms on F
8
q. For

m = 6 and 7, the weight spectrum of C(3, m) associated with G(3, m), have been fully determined by

Kaipa K.V, Pillai H.K and Nogin Y. A classification of trivectors depends essentially on the dimen-

sion n of the base space. For n ≤ 8 there exist only finitely many trivector classes under the action

of the general linear group GL(n). The methods of Galois cohomology can be used to determine

the classes of nondegenerate trivectors which split into multiple classes when going from F̄ to F.

This program is partially determined by Noui L and Midoune N and the classification of trilinear

alternating forms on a vector space of dimension 8 over a finite field Fq of characteristic other than 2

and 3 was solved by Noui L and Midoune N. We describe the Fq-forms of 2-step splitting trivectors

of rank 8, where char Fq 6= 3. This fact we use to determine the weight of the Fq-forms.

Key words and phrases: trivector, Grassmannian, weight.
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INTRODUCTION

Let V be an 8-dimensional vector space over a field K and let ∧3V denote the exterior

power of degree 3 over V, the classification of trivectors is the study of the action of general

linear group GL(V) on the space ∧3V defined by f .ω = (∧3 f )(ω). The equivalence classes

are the GL(V)-orbits under this action. As ∧3V∗ ≃ (∧3V)∗, there is no difference between

trilinear alternating forms and trivectors. The support of the trivector ω is the least subspace

F of V such that ω ∈ ∧3F, its dimension is the rank of ω. Let ω be a trilinear alternating form

on V. The set {u ∈ V, ω(u, ·, ·) = 0} is called the radical of ω and will be denoted by Radω. If

Radω = {0}, then ω is called nondegenerate (full rank).

This classification is motivated by many important applications, especially in the theory

of codes. See [2, 4, 5, 7]. Let C(3, 8) be a grassman code (linear code) associated with the

УДК 512.647
2010 Mathematics Subject Classification: 15A69, 20B40.
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Grassmann variety G(3, 8) of 3-dimensional subspaces of an 8-dimensional vector space F
8
q,

where Fq is a finite field with q elements. The parameters n and k of the code C(3, 8) are

n = |C(3, 8)| =
(q8 − 1)(q8−1 − 1)(q8−3+1 − 1)

(q3 − 1)(q3−1 − 1)(q − 1)
,

k =

(

8

3

)

.

The minimum distance of grassmann codes C(3, 8) equals d = q3(8−3) = q15. The weight of

C(3, 7), C(3, 6) and C(2, m) is determined by [2], [5] and [4] respectively. In this paper,we are

interested in the classification of Fq-forms of the 2-step splitting trivectors of rank 8, and in

determining the weights of Fq-forms where Fq is a finite field of characteristic other than 3.

Some undefined terms can be found in references [2, 3, 6] and [5].

1 Fq-FORMS OF 2-STEP SPLITTING TRIVECTORS OF RANK ≤ 8

If ω is a trivector defined over the field K, a K-form of ω is another trivector of the same

type as that of ω, defined over K which is isomorphic to ω over K, the algebraic closure of K.

The element ω of ∧3V is called splitting if there exists a decomposition V = V1 ⊕ V2 such that

ω ∈ V1 ⊗∧2V2. If dimV1 = 2, ω is called 2-step splitting.

Preliminary result

1.1 Degenerate forms

Theorem 1 ([1]). Let V be a vector space of dimension 7 over a finite field Fq. Then any trivector

of rank ≤ 7 in ∧3V is equivalent to one of the trivectors in Table 1.

Table1. Trivectors of rank ≤ 7 over Fq (degenerate forms).

Name Trivector

ω3 e1e2e3

ω5 e1(e2e3 + e4e5)

ω6,1 e1e2e3 + e4e5e6

ω6,1,d1
e1(e3e4 + e5e6) + e2(e3e6 − d1e4e5) if char Fq 6= 2

ω6,1,d2
e1(e2e3 + e4e5) + e6(e2e4 − d2e3e5 + e4e5) if char Fq = 2

ω6,2 e1e2e4 + e2e3e5 + e1e3e6

ω7,1 e1(e2e3 + e4e5 + e6e7)

ω7,2 ω7.1 + e2e4e6

ω7,3 e1e2e3 + e3e4e5 + e5e6e7

ω7,3,d1
e1(e2e5 + e3e7) + e4(e2e3 + d1e5e7) + e6e5e3 if char Fq 6= 2

ω7,3,d2
e1(e2e3 + e4e5) + e6(e2e4 − d2e3e5 + e4e5) + e1e6e7 if char Fq = 2

ω7,4 e1(e2e3 + e4e5) + e2e4e6 + e3e5e7

ω7,5 ω7.2 + e3e5e7

where d1 /∈ (Fq∗)
2, d2 ∈ (Fq∗)

2.
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Main results

1.2 Nondegenerate forms (full rank)

Theorem 2. Let V be a vector space of dimension 8 over a finite field Fq. Then any Fq-form of

2-step splitting trivector of rank 8 in ∧3V is equivalent to one of the Table 2.

Table2. Trivectors of rank 8 over Fq (nondegenerate forms).

Name Trivector

ω8,1 e1(e2e3 + e4e5) + e6e7e8

ω8,2 e1(e2e3 + e4e5 + e6e7) + e5e6e8

ω8,3 e1(e3e4 + e5e6) + e2(e3e5 + e7e8)

ω8,4 e1(e2e5 + e3e6) + e4(e7e2 + e8e3)

ω8,4,d1
e5(e1e2 + e3e4) + e6(e1e3 + d1e2e4) + e7(e1e4) + e8(e2e3) if char Fq 6= 2

ω8,4,d2
e8(e1e4 + e3e2) + e7(e1e4 + e4e2 + d2e1e3) + e6e1e2 + e5e3e4 if char Fq = 2

ω8,5 e1(e2e3 + e4e5) + e6(e2e3 + e7e8)

ω8,5,d1
e7(e1e2 + e3e4 + e5e6) + e8[e1(e4 + d1e5) + e2e6 +

1

d1
e3e5] if char Fq 6= 2

ω8,5,d2
e3(e1e2 + e4e7 + e6e8) + e5(e1e4 + e8e2 + d2e6e7) if char Fq = 2

ω8,5,d3
e1(d3e3e4 + d3e5e6 + e7e8) + e2(e3e5 + e4e7 + e6e8) if char Fq 6= 3

ω8,6 e1(e2e3 + e4e5 + e6e7) + e8(e4e3 + e5e6)

where d1 /∈ (Fq∗)2, d2 ∈ (Fq∗)2, d3 /∈ (Fq∗)3.

Proof. The Fq-forms of 2-step splitting trivectors of rank 8 where Fq is a field of characteristic

other than 2 and 3 has been done in [6], hence, in characteristic 2, it is sufficient to study the

case of orbits of type ω8,i, for i = 4, 5.

In characteristic 2, the trivectors of type ω8,i, for i = 4, 5 are written

ω8,4,d2
= e8(e1e4 + e3e2) + e7(e1e4 + e4e2 + d2e1e3) + e6e1e2 + e5e3e4

ω8,5,d2
= e3(e1e2 + e4e7 + e6e8) + e5(e1e4 + e8e2 + d2e6e7).

If L is the quadratic extension of K, there exists a trivector ωL ∈ ∧3V such that ωL 6≃ ω8,4

and ωL ⊗ L ∈ ∧3(V ⊗K L) is L-isomorphic to ω8,4. We construct ωL as follows: ω8,4 = e1(e2e5 +

e3e6) + e4(e7e2 + e8e3) is a 4-step splitting because ω8,4 = e5u1 + e6u2 + e7u3 + e8u4 where

u1 = e1e2, u2 = e1e3, u3 = e2e4 and u4 = e3e4, thus E = vect{u1, u2, u3, u4} is a subspace of

dimension 4 of ∧4K4. We put ωL = ω8,4,d2
= e5v1 + e6v2 + e7v3 + e8v4, with v1 = e3e4, v2 = e1e2,

v3 = e1e4 + e4e2 + d2e1e3, and v4 = e1e4 + e3e2, where K
′
= K(α), α2 + α = d2, α ∈ K. To each of

the forms ω8,4, ω8,4,d2
, we associate a quadratic form on E [6]: γ2(xu1 + yu2 + zu3 + tu4), then

we get γ2(xu1 + yu2 + zu3 + tu4) = (xt − yz), γ2(xv1 + yv2 + zv3 + tv4) = (y2d2 − x2 + zt)

respectively. The two forms are not equivalent over K but they may become equivalent over

the algebraic closure K. We can also prove that ω8,4 is not equivalent to ω8,4,d2
by using the

arithmetical invariant d1(ω) [6].

Similar arguments apply to the case for ω8,5.

2 FORMULA FOR THE WEIGHT OF A TRIVECTOR

The correspondence between equivalence classes of nondegenerate forms and equivalence

classes of nondegenerate linear [n, k]-codes, is one-to-one. In what follows, we speak by abuse
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of language not only of a weight of a codeword, but also of a weight of hyperplane and a

weight of a form ω ∈ ∧3V. Therefore, the problem on the spectrum of a Grassmann code

(at least, on the weights of the codewords) is closely related to that on the classification of the

elements of ∧3V.

The cardinality of the general linear group GL(8, Fq) will be denoted by [8]q

[8]q = q8(8−1)/2(q8 − 1)(q8−1 − 1) · · · (q − 1).

Given a codeword of C(3, 8), let ω be the corresponding trivector on F
8
q, and let H be the

corresponding hyperplane of P(∧3
F

8
q) . The weight of the codeword ω

wt(ω) = |{Pi : 1 ≤ i ≤ n, Pi /∈ H}|.

We have

[3]q · wt(ω) = |{[v1, v2, v3] : 〈ω, v1 ∧ v2 ∧ v3〉 6= 0}|.

2.1 Weight of a degenerate trivector

If ω is degenerate, let Radω be r-dimensional. We pick a basis {e1, . . . , e8} of V such that

{e8−r+1, . . . , e8} is a basis for Radω. Let W denote the span of {e1, . . . , e8−r}.

Let ω̃ denote the restriction of the form ω to W. Since W ∩ Radω = {0}, it is clear that ω̃ is

a nondegenerate trivector on W. Thus, ω̃ can be thought of as codeword in C(3, 8 − r).

Proposition 1 ([2]). The weight of a degenerate trivector ω in F
8
q is given by

wt(ω) = q3rwt(ω̃).

The proposition shows that in order to calculate the weights of codewords of C(3, 8), it is

enough to know only the weights of nondegenerate codewords of C(3, m) for m ≤ 8.

Lemma 1. The weights of degenerate trivectors are

wt(ω3) = q15

wt(ω5) = q15 + q13

wt(ω6,1) = q15 + q13 + q12 − q10

wt(ω6,1,d) = q15 + q13 + q12 + q10

wt(ω6,2) = q15 + q13 + q12

wt(ω7,1) = q15 + q13 + q11

wt(ω7,2) = q15 + q13 + q12 + q11

wt(ω7,3) = q15 + q13 + q12 + q11 − q10

wt(ω7,3,d) = q15 + q13 + q12 + q11 + q10

wt(ω7,4) = q15 + q13 + q12 + q11

wt(ω7,5) = q15 + q13 + q12 + q11 + q9.

Proof. According to Proposition 1, the weight of a degenerate form ω is q3 times the weight

of ω viewed as a trivector on F
7
q the span of {e1, . . . , e7}. The latter weights were determined

in [2]. We multiply them by q3; we get the weights of ω.
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2.2 Weight varieties of a nondegenerate trivector

Let V be an 8-dimensional vector space over an arbitrary field F.

We consider the map ϕw : V −→ ∧2V∗ sending v 7−→ ιvω where ιv is the operation of the

interior multiplication defined by

〈ιvω, β〉 = 〈ω, v ∧ β〉, for all β ∈ ∧2V.

Here, 〈, 〉 is the pairing between ∧jV∗ and ∧jV for each j.

Given a two-from λ ∈ ∧2V∗, we define certain quantities Pfk(λ) ∈ ∧2kV∗, for each k ≥ 1

which we call the k-th Pfaffian of λ. Let Pf0(λ) = 1. We define Pfk(λ) ∈ ∧2kV∗ inductively by

requiring

ιvλ ∧ Pfk−1(λ) = ιvPfk(λ), for all v ∈ V.

This Pfk(λ) generalizes the forms λk

k! = 1
k!(λ ∧ · · · ∧ λ).

Definition 1 ([2]). Given a nondegenerate trivector ω on F
8
q, the k-th weight variety of ω is the

subvariety of P
7 given by

Xk(ω) = P{x ∈ F
8
q\{0} | Pfk+1(ιxω) = 0}.

We have

∅ = X0(ω) ⊂ X1(ω) ⊂ X2(ω) ⊂ X⌊ 8−1
2 ⌋=3(ω) = P

7.

Lemma 2. Given a nondegenerate trivector ω on F
8
q.

Let

ni := |Xi(ω)| − |Xi−1(ω)|.

The weight wt(ω) is given by

wt(ω) = q6

[

(q9 + q7 + q6 + q5 + q4 + q3 + q2 + 1)−
n2 + n1(1 + q2)

1 + q + q2

]

. (1)

Proof. We use Theorem 7 in [2], we get

wt(ω) =
q2m−4

(q2 − 1)(1 + q + q2)

⌊m−1
2 ⌋

∑
i=1

ni(1 − q−2i),

for the case m = 8, we use n1 + n2 + n3 = |P7|, we get this result in (1).

3 WEIGHT CLASSIFICATION OF TRIVECTORS ON F
8
q

The weights of the nondegenerate forms ω8,i, 1 ≤ i ≤ 6 can be determined from formula

(1) once the cardinalities of the varieties X1(ω8,i) and X2(ω8,i) are known. We recall that

X1(ω) = P{x ∈ F
8
q\{0} | Pf2(ιxω) = 0}

X2(ω) = P{x ∈ F
8
q\{0} | Pf3(ιxω) = 0}.
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Proposition 2. The varieties X1(ω8,i) and their cardinalities for 1 ≤ i ≤ 6 are

ω8,i X1(ω8,i) n1(ω8,i)

ω8,1 P
2 ∪ P

3 q3 + 2q2 + 2q + 2

ω8,2 P
2 ∪

P1 P
3 q3 + 2q2 + q + 1

ω8,3 P
1 ∪ P

1 2q + 2

ω8,4 P
1 × P

1 q2 + 2q + 1

ω8,4,d P
1(Fq2) q2 + 1

ω8,5 P
1 ∪

P0 P
1 2q + 1

ω8,5,d ∅ 0

ω8,6 P
1 q + 1

Proof. Let x = ∑
8
j=1 xjej. We have

Pf2(ιxω) =
8

∑
j=1

x2
j Pf2(ιej

ω) + ∑
i<j

xixj(ιei
ω) ∧ (ιej

ω). (2)

We calculate Pf2(ιxωi) using the above formula (2) and set it equal to zero to determine the

varieties X1(ωi). We begin with ω8,1. The forms ιej
ω8,1 for j = 1 · · · 8 are e2e3 + e4e5, e3e1, e1e2,

e5e1, e1e4, e7e8, e8e6, e6e7, respectively. For j ≥ 2; the forms ιej
ω8,1 are decomposable and hence

Pf2(ιej
ω8,1) = 0, whereas Pf2(ιe1ω8,1) = e2e3e4e5.

We also note that ιe2ω8,1 ∧ ιej
ω8,1 = 0 for all j = 3, 4, 5, and ιe3ω8,1 ∧ ιe4ω8,1 = ιe3ω8,1 ∧

ιe5ω8,1 = ιe4ω8,1 ∧ ιe5ω8,1 = ιe6ω8,1 ∧ ιe7ω8,1 = ιe6ω8,1 ∧ ιe8ω8,1 = ιe7ω8,1 ∧ ιe8ω8,1 = 0. Using

these relations, we get

Pf2(ιxω8,1) = x2
1e2e3e4e5 + x1[x2e4e5e3e1 + x3e4e5e1e2 + x4e2e3e5e1 + x5e2e3e1e4

+ x6(e2e3e7e8 + e4e5e7e8) + x7(e2e3e8e6 + e4e5e8e6 + x8(e2e3e6e7 + e4e5e6e7)]

+ x2(x6e3e1e7e8 + x7e3e1e8e6 + x8e3e1e6e7) + x3(x6e1e2e7e8 + x7e1e2e8e6 + x8e1e2e6e7)

+ x4(x6e5e1e7e8 + x7e5e1e8e6 + x8e5e1e6e7) + x5(x6e1e4e7e8 + x7e1e4e8e6 + x8e1e4e6e7) = 0

Since the coefficient of e2e3e4e5 above is x2
1, x1 = 0 is necessary for Pf2(ιxω8,1) = 0. Setting

x1 = 0 in the above equation, we get

Pf2(ιxω8,1)x1=0 = x2(x6e3e1e7e8 + x7e3e1e8e6 + x8e3e1e6e7) + x3(x6e1e2e7e8

+ x7e1e2e8e6 + x8e1e2e6e7) + x4(x6e5e1e7e8 + x7e5e1e8e6 + x8e5e1e6e7)

+ x5(x6e1e4e7e8 + x7e1e4e8e6 + x8e1e4e6e7) = e1 ∧ (x3e2 − x2e3

+ x5e4 − x4e5) ∧ (x6e7e8 + x7e8e6 + x8e6e7).

Therefore,

X1(ω8,1) = {x1 = 0} ∩ [{x2 = x3 = x4 = x5 = 0} ∪ {x6 = x7 = x8 = 0}]

= P{e6, e7, e8} ∪ P{e2, e3, e4, e5} ≃ P
2 ∪ P

3.

Next, we consider Pf2(ιxω8,2). The coefficients of e2e3e4e5 + e2e3e6e7 + e4e5e6e7, e1e4e6e8,

e7e1e8e5 are x2
1 and x2

5 and x2
6 respectively, x1 = x5 = x6 = 0 is necessary for Pf2(ιxω8,2) = 0. By

Setting x1, x5 and x6 to zero, in the equation, we get
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Pf2(ιxω8,2)x1=x5=x6=0 = e1 ∧ (x3e2 − x2e3) ∧ x8e5e6.

Therefore,

X1(ω8,2) = {x1 = x5 = x6 = 0} ∩ [{x2 = x3 = 0} ∪ {x8 = 0}]

= P{e4, e7, e8} ∪P{e4,e7} P{e2, e3, e4, e7} ≃ P
2 ∪

P1 P
3.

In Pf2(ιxω8,3), the coefficients of e3e4e5e6, e3e5e7e8, e4e1e5e2 and e6e1e2e3 are x2
1, x2

2, x2
3 and x2

5,

respectively. By setting x1, x2, x3 and x5 to zero, Pf2(ιxω8,3) is reduced to e1e2 ∧ (x4e3 + x6e5) ∧

(x8e7 − x7e8).

Therefore, X1(ω8,3) = {x1 = x2 = x3 = x5 = 0} ∩ [{x4 = x6 = 0} ∪ {x7 = x8 = 0}] ≃

P
1 ∪ P

1. Similar arguments apply to the case for X1(ω8,i) for i = 4, . . . , 6.

We now compute the varieties X2(ω) and their cardinalities.

Proposition 3. The varieties X2(ω8,i) and their cardinalities for 1 ≤ i ≤ 6 are

ω8,i X2(ω8,i) |X2(ω8,i)|

ω8,1 P
6 ∪

P3 P
4 |P6|+ |P4| − |P3|

ω8,2 P
6 |P6|

ω8,3 P
5 ∪

P3 P
4 ∪

P3 P
4 |P5|+ 2|P4| − 2|P3|

ω8,4 P
5 ∪

P3 P
5 2|P5| − |P3|

ω8,4,d P
3 |P3|

ω8,5 (P5 ∪
P3 P

4 ∪
P3 P

4) ∪ (Fq)2 |P5|+ 2|P4| − 2|P3|+ q2

ω8,5,d P
5 |P5|

ω8,6 P
5 ∪

P3 P
4 |P5|+ |P4| − |P3|

Proof. Let x = ∑
8
j=1 xjej. We have

Pf3(ιxω) =
8

∑
j=1

x3
j Pf3(ιej

ω) + ∑
i<j

[x2
i xjPf2(ιei

ω) ∧ (ιej
ω) + xix

2
j (ιei

ω) ∧ Pf2(ιej
ω)]. (3)

We calculate Pf3(ιxω8,i) using the above formula (3), and set it equal to zero to determine the

varieties X2(ω8,i). We begin with ω8,1.

For j ≥ 1, Pf3(ιej
ω8,1) = 0 and Pf2(ιe1ω8,1) = e2e3e4e5, we get

Pf3(ιxω8,1) = x2
1x6e2e3e4e5e7e8 + x2

1x7e2e3e4e5e8e6 + x2
1x8e2e3e4e5e6e7.

Since the coefficients of e2e3e4e5e7e8 and e2e3e4e5e8e6 and e2e3e4e5e6e7 above are x2
1x6 and x2

1x7

and x2
1x8, respectively, x1 = 0 or x6 = x7 = x8 = 0 is nececessary for Pf3(ιxω8,1) = 0.

Therefore,

X2(ω8,1) = {x1 = 0} ∪ {x6 = x7 = x8 = 0}

= P{e2, e3, e4, e5, e6, e7, e8} ∪P{e2,e3,e4,e5} P{e1, e2, e3, e4, e5} ≃ P
6 ∪

P3 P
4.

Next, we consider Pf3(ιxω8,2). The coefficient of e2e3e4e5e6e7 is x3
1; moreover, x1 divides

Pf3(ιxω8,2). Therefore,

X2(ω8,2) = {x1 = 0} ≃ P
6.
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For Pf3(ιxω8,3), the coefficients of e3e4e5e6e7e8, e3e4e5e6e8e2, e3e4e5e6e2e7, e3e5e7e8e4e1,

e3e5e7e8e6e1, e7e8e4e1e5e2 and e7e8e6e1e2e3 are x2
1x2, x2

1x7, x2
1x8, x2

2x3, x2
2x5, x2x2

3 and x2x2
5 respec-

tively. Reducing x1x2, x1x7, x1x8, x2x3 and x2x5 to zero is necessary for Pf3(ιxω8,3) = 0.

Therefore,

X2(ω8,3) = {x1 = x2 = 0} ∪ {x2 = x7 = x8 = 0} ∪ {x1 = x3 = x5 = 0}

= P{e3, e4, e5, e6, e7, e8}∪P{e3,e4,e5,e6} P{e1, e3, e4, e5, e6}∪P{e4,e6,e7,e8}P{e2, e4, e6, e7, e8}

≃ P
5 ∪

P3 P
4 ∪

P3 P
4.

Similar arguments apply to the case for X2(ω8,i) for i = 4, . . . , 6.

Theorem 3. The weights of the nondegenerate forms ω8,1, . . . , ω8,6 are

wt(ω8,1) = q15 + q13 + q12 + q11 − q8

wt(ω8,2) = q15 + q13 + q12 + q11

wt(ω8,3) = q15 + q13 + q12 + q11 + q10 − q8

wt(ω8,4) = q15 + q13 + q12 + q11 + q10 − q9

wt(ω8,4,d) = q15 + q13 + q12 + q11 + q10 + q9

wt(ω8,5) = q15 + q13 + q12 + q11 + q10 − q8

wt(ω8,5,d) = q15 + q13 + q12 + q11 + q10 + q8

wt(ω8,6) = q15 + q13 + q12 + q11 + q10.

Proof. We use the formula (1) with n2(ω) + n1(ω) = |X2(ω)|, we get

wt(ω8,i) = q15 + q13 + q12 + q11 + q10 + q9 + q8 + q6 − q6

(

|X2(ω8,i)|+ q2|X1(ω8,i)|

1 + q + q2

)

,

the quantities |X1(ω8,i)| and |X2(ω8,i)| have been computed in Proposition 2 and 3.

For wt(ω8,1),

we have |X1(ω8,1)| = q3 + 2q2 + 2q + 2 and |X2(ω8,1)| = |P6|+ |P4| − |P3| = q6 + q5 +

2q4 + q3 + q2 + q + 1, substituting these in the above equation we find

wt(ω8,1) = q15 + q13 + q12 + q11 + q10 + q9 + q8 + q6

− q6

(

|P6|+ |P4| − |P3|+ q2(q3 + 2q2 + 2q + 2)

1 + q + q2

)

= q15 + q13 + q12 + q11 − q8.

Similarly for the weights wt(ω8,2), . . . , wt(ω8,6).
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Ракдi М.А., Мiдуне Н. Ваги Fq-форм 2-ступiнчастих тривекторiв розщеплення рангу 8 над скiн-

ченним полем // Карпатськi матем. публ. — 2019. — Т.11, №2. — C. 422–430.

Коди Грассмана — це лiнiйнi коди, пов’язанi з многовидом Грассмана G(ℓ, m) ℓ-вимiрного

пiдпростору у m-вимiрному векторному просторi F
m
q . Їх вивчав Й. Ногiн для довiльних q. Цi

коди зручно описати за допомогою вiдповiдностi мiж невиродженими [n, k]q лiнiйними кодами
з одного боку, i невиродженими [n, k] проективними системами з iншого боку. Невироджена
[n, k] проективна система — це просто набiр n точок у проективному просторi P

k−1, який за-

довольняє умови, що жодна гiперплощина P
k−1 не мiстить n точок, що розглядаються. У цiй

роботi ми визначимо вагу лiнiйних кодiв C(3, 8), асоцiйованих iз многовидом Грассмана G(3, 8)

над довiльним скiнченним полем Fq. Ми використовуємо формулу для ваги кодового слова
C(3, 8) у сенсi потужностi певних многовидiв, пов’язаних з чергуванням трилiнiйних форм на
F

8
q. Для m = 6 i 7, звужений спектр C(3, m) асоцiйований з G(3, m), був повнiстю визначений

в роботах К.В. Кайпа, Х.К. Пiлаi i Й. Ногiна. Класифiкацiя тривекторiв iстотно залежить вiд
розмiрностi n базового простору. Для n ≤ 8 iснує тiльки скiнченна кiлькiсть класiв триве-

кторiв пiд дiєю загальної лiнiйної групи GL(n). Методи когомологiї Галуа можуть бути вико-

ристанi для визначення класiв невироджених тривекторiв, якi подiляються на кiлька класiв
при переходi вiд F̄ до F. Ця програма частково визначена Л. Ноуi i Н. Мiдуне. Класифiкацiя
трилiнiйних змiнних форм на векторному просторi розмiрностi 8 над скiнченним полем Fq

характеристик, вiдмiнних вiд 2 i 3, була зроблена у роботах Л. Ноуi i Н. Мiдуне. Ми описа-

ли Fq-форми 2-ступiнчастих тривекторiв розщеплення рангу 8, де char Fq 6= 3. Цей факт ми
використовуємо для визначення ваги Fq-форм.

Ключовi слова i фрази: тривектор, грасманiан, вага.
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THE DERIVATIVE CONNECTING PROBLEMS FOR SOME CLASSICAL

POLYNOMIALS

Given two polynomial sets {Pn(x)}n≥0, and {Qn(x)}n≥0 such that

deg(Pn(x)) = n, deg(Qn(x)) = n.

The so-called the connecting problem between them asks to find the coefficients αn,k in the expres-

sion Qn(x) =
n

∑
k=0

αn,kPk(x). Let {Sn(x)}n≥0 be another polynomial set with deg(Sn(x)) = n. The

general connection problem between them consists in finding the coefficients α
(n)
i,j in the expansion

Qn(x) =
n

∑
i,j=0

α
(n)
i,j Pi(x)Sj(x).

The connection problem for different types of polynomials has a long history, and it is still of interest.

The connection coefficients play an important role in many problems in pure and applied mathe-

matics, especially in combinatorics, mathematical physics and quantum chemical applications. For

the particular case Qn(x) = P′
n+1(x) the connection problem is called the derivative connecting

problem and the general derivative connecting problem associated to {Pn(x)}n≥0.

In this paper, we give a closed-form expression of the derivative connecting problems for well-

known systems of polynomials.

Key words and phrases: connection problem, inversion problem, derivative connecting problem,
connecting coefficients, orthogonal polynomials.
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INTRODUCTION

Given the two polynomial sets {Pn(x)}n≥0, {Qn(x)}n≥0 such that

deg(Pn(x)) = deg(Qn(x)) = n,

for all n. The connection problem between them consists in finding the coefficients αn,k in the

expansion

Qn(x) =
n

∑
k=0

αn,kPk(x).
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Let {Sn(x)}n≥0 be another polynomial sets with deg(Sn(x)) = n. The general connection

problem between them consists in finding the coefficients α
(n)
i,j in the expansion

Qn(x) =
n

∑
i,j=0

α
(n)
i,j Pi(x)Sj(x).

For the particular case Qn(x) = P′
n+1(x) the connection problem is called the derivative

connecting problem and the general derivative connecting problem for the polynomial family

{Pn(x)}n≥0.

The study of such a problem has attracted a lot of interest in the last few years. For in-

stance, the representations of parametric derivatives have been obtained by Froehlich [6] for

Jacobi polynomials, by Koepf [7] for generalized Laguerre polynomials and Gegenbauer poly-

nomials, by Koepf and Schmersau [8] for all the continuous and discrete classical orthogonal

polynomials, in [5, 9, 11, 13] for classic orthogonal polynomials.

The derivative connecting problem is considered for Chebyshev polynomials of the first

and the second types [10], for some Koornwinder polynomials in [1]. In [2, 3] the derivation

connection problem was solved for the Fibonacci, Lucas and Kravchuk polynomials and the

authors use the solutions to produce new combinatorial identities for these polynomials. Also,

the derivative connecting problem is solved in [4] for some hypergeometrical polynomials.

As an example let us consider the sequence of Appel polynomials {An(x)}n≥0 with expo-

nential generating function

G(An(x), z) = A(z)exz =
∞

∑
n=0

An(x)
zn

n!
,

where A(z) is an arbitrary formal power series, A(0) 6= 0.

Then
d

dx
G(An(x), z) = A(z)exz z = G(An(x), z)z =

∞

∑
n=0

An(x)
zn+1

n!
.

On the other side
d

dx
G(An(x), z) =

d

dx

∞

∑
n=0

An(x)
zn

n!
=

∞

∑
n=0

A′
n(x)

zn

n!
.

Equating the coefficients near zn we will find

1

n!
An(x)′ =

1

(n − 1)!
An−1(x),

and will obtain the solution of derivative connecting problem for Appel polynomials:

An(x)′ = n An−1(x).

In the paper we solve these derivative connecting problems for many well-known classes

of polynomials Pn(x).

In Section 2, a general appearance of the decomposition of the derivative of the polyno-

mial P′
n(x) is established, depending on the appearance of the logarithmic derivative of the

generating function. In Section 3, the derivative connecting problem is solved for Lagguerre,

Kravchuk, Charlier, Stirling, Bell, Bernoulii, Euler and Hermite polynomials. In Section 4, the

general derivative connecting problem is solved for Chebyshev, Gegenbauer and Legendre

polynomials.
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1 THE MAIN THEOREM

We propose a method for solving the derivative connecting problem based on the use of

the generating functions of polynomial families. The generation function of the family of poly-

nomials {Pn(x)}n≥0 is the formal functional series

G(Pn(x), z) =
∞

∑
n=0

cnPn(x)zn,

where cn is a certain numerical sequence. For case of cn = 1 the generating function is called as

ordinary generating function, and when cn =
1

n!
we obtain an exponential generating function.

Theorem 1. Let the logarithmic derivative of the ordinary generating function G(Pn(x), z) of

the polynomials family {Pn(x)} can be represented by the following series with rational coef-

ficients

d

dx
lnG(Pn(x), z) =

∞

∑
i=1

aiz
i.

Then

Pn(x)′ =
n

∑
i=1

aiPn−i(x).

Let the logarithmic derivative of the exponential generating function G(x, z) of the polynomi-

als family {Pn(x)} is written as formal series with rational coefficients

dG(x)

dx
=

∞

∑
i=1

ai
zi

n!
.

Then

Pn(x)′ =
n

∑
i=1

ai
n!

(n − i)!
Pn−i(x).

Proof. Assume that the generating function G(Pn(x), z) and its particular derivative

G(Pn(x), z)′x are connected

G(Pn(x), z)′x = G(Pn(x), z)R(z),

where R(z) = a1z + a2z2 + · · · is a formal power series. Then

G(Pn(x), z)′x =
∞

∑
n=0

cnP′
n(x)zn =

(

∞

∑
n=0

cnPn(x)zn

)

(

a1z + a2z2 + · · ·
)

=
∞

∑
n=0

(

n

∑
i=1

aicn−iPn−i(x)

)

zn.

Equating the coefficients at the same powers of z, we obtain that

cnP′
n(x) =

n

∑
i=1

aicn−iPn−i(x) = a1cn−1Pn−1 + a2cn−2Pn−2 + · · ·+ anc0P0(x),
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which will be a solution of the derivative connection problem for the polynomial family Pn(x).

For the case of the ordinary generating function, we have cn = 1 and so

P′
n(x) =

n

∑
i=1

aiPn−i(x).

Similarly, for the exponential generating function for cn = 1
n! we obtain that

Pn(x)′ =
n

∑
i=1

ai
n!

(n − i)!
Pn−i(x).

Proved theorem sets strict requirements for the generating function G(Pn(x), z)-its loga-

rithmic derivative must be a function of the one variable, although the generating function

depends upon of two variables.

Suppose that the logarithmic derivative of the generating function is not a function of the

variable and it has the following expansion

d

dx
lnG(Pn(x), z) =

∞

∑
i=1

ai(x)zi ,

where ai(x) – some polynomial. In this case for polynomials Sn(x) their degree is equal n so

they form the basis of the vector space of all polynomials from the variable x. Therefore the

polynomials ai(x) can be expanded on this basis:

ai(x) =
i

∑
j=0

αi,jSj(x).

The following Theorem 1 may be proved similarly

Theorem 2. Let the logarithmic derivative of the generating function G(Pn(x), z) of the poly-

nomials family {Pn(x)} can be written as formal series

d

dx
lnG(Pn(x), z) =

∞

∑
i=1

ai(x)zi ,

and

ai(x) =
i

∑
j=0

αi,jSj(x),

for some coefficients αi,j. Then

Pn(x)′ =
n

∑
i=1

i

∑
j=0

αi,jQj(x)Pn−i(x).

2 THE DERIVATIVE CONNECTING PROBLEM

Let apply the proved theorems for solving of the derivative connecting problems for some

types of the classical polynomials.
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2.1 The Laguerre polynomials Lλ
n(x)

The Laguerre polynomials are defined by the following formula

L
(λ)
n (x) =

n

∑
i=0

(−1)i

(

n + λ

n − i

)

xi

i!

with ordinary generating function

G(Lλ
n(x), z) = (1 − z)−λ−1 e

− xz

1 − z

We find the derivatives by parameters

d

dx
G(Lλ

n(x), z) = − (1 − z)−2−λ ze
−

xz

1 − z =
z G(Lλ

n(x), z)

z − 1
,

and

d

dλ
G(Lλ

n(x), z) = − (1 − z)−λ−1 e
−

xz

1 − z ln (1 − z) .

Therefore, the logarithmic derivative has following form

d

dx
lnG(Lλ

n(x), z) =
z

z − 1
= −

∞

∑
i=1

zi,

d

dλ
lnG(Lλ

n(x), z) = − ln(1 − z) =
∞

∑
i=1

1

i
zi.

so we proved the theorem:

Theorem 3.

d

dx
Lλ

n(x) = −
n−1

∑
i=0

Lλ
i (x),

d

dλ
Lλ

n(x) =
n

∑
i=1

1

i
Lλ

n−i(x).

This coincides with results [8] and [13] obtained by other methods.

2.2 The Kravchuk polynomials

The Kravchuk polynomials are defined such formula

K
(p)
n (x, N) =

n

∑
j=0

(−1)j(p − 1)k−j

(

x

j

)(

N − x

n − j

)

,

and have following generating function

G(K(p)
n (x, N), z) = (1 + (p − 1) z)N−x (1 − z)x .
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Theorem 4.

d

dx
K
(p)
n (x, N) =

n

∑
i=1

(−1)i(p − 1)i − 1

i
K
(p)
n−i(x, N),

d

dN
K
(p)
n (x, N) =

n

∑
i=1

(−1)i+1 (p − 1)i

i
K
(p)
n−i(x, N),

d

dp
K
(p)
n (x, N) = (N − x)

n

∑
i=1

(−1)i−1 (p − 1)i−1 K
(p)
n−i(x, N).

Proof. We find derivatives of the generating function for Kravchuk polynomials with respect

to parameters x, N, p :

d

dx
G(K(p)

n (x, N), z) = (1 + (p − 1) z)N−x (1 − z)x (ln (1 − z)− ln (1 + (p − 1) z))

= G(K(p)
n (x, N), z) ln

(

1 − z

1 + (p − 1) z

)

,

d

dN
G(K(p)

n (x, N), z) = (1 + (p − 1) z)N−x ln (1 + (p − 1) z) (1 − z)x ,

d

dp
G(K(p)

n (x, N), z) =
(1 + (p − 1) z)N−x (N − x) z (1 − z)x

1 + (p − 1) z
.

So

d

dx
G(K(p)

n (x, N), z) = G(K(p)
n (x, N), z) ln

(

1 − z

1 + (p − 1) z

)

,

d

dN
G(K(p)

n (x, N), z) = G(K(p)
n (x, N), z) ln (1 + (p − 1) z) ,

d

dp
G(K(p)

n (x, N), z) = G(K(p)
n (x, N), z)

(N − x) z

1 + (p − 1) z
.

From here we find expansion of a logarithmic derivative in a formal series

d

dx
lnG(K(p)

n (x, N), z) = ln

(

1 − z

1 + (p − 1) z

)

=
∞

∑
i=1

(−1)i(p − 1)i − 1

i
zi,

d

dN
lnG(K(p)

n (x, N), z) = ln (1 + (p − 1) z) =
∞

∑
i=1

(−1)i+1 (p − 1)i

i
zi,

d

dp
lnG(K(p)

n (x, N), z) =
(N − x) z

1 + (p − 1) z
= (N − x)

∞

∑
i=1

(−1)i−1 (p − 1)i−1 zi.

Applying the Theorem 1 we get the required result.

For a particular case p = 2 the problem is solved in [3].

2.3 The Charlier polynomials c
(a)
n (x)

The Charlier polynomials c
(a)
n (x)have such an exponential generating function

G(c(a)
n (x), z) = ez

(

1 − z

a

)x
.
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From here it’s easy to get that

d

dx
lnG(c(a)

n (x), z) = ln
(

1 − z

a

)

= −
∞

∑
i=1

zi

i ai
,

d

da
lnG(c(a)

n (x), z) =
xz

a2

(

1 − z

a

)−1
=

∞

∑
i=1

x

ai+1
zi.

Therefore, the following theorem holds.

Theorem 5.

d

dx
c
(a)
n (x) = −

n

∑
i=1

n!

(n − i)! i ai
c
(a)
n−i(x),

d

da
c
(a)
n (x) = a(c

(a)
1 (x)− 1)

n

∑
i=1

n!

(n − i)! ai+1
c
(a)
n−i(x).

2.4 The Stirling and Bell polynomials.

The Stirling and Bell polynomials Sn(x) ( see [12]) are defined by the exponential generating

function
(

z

1 − e−z

)x+1

=
∞

∑
i=0

Si(x)
zi

i!
.

We have that the logarithmic derivatives is equal to

d

dx
ln

(

z

1 − e−z

)x+1

= ln

(

z

1 − e−z

)

.

Let’s expand to series the function

h(z) = ln

(

z

1 − e−z

)

,

preliminary differentiating it.

We have

d

dz
(ln(h(z))) =

h′(z)
h(z)

=
1

z
− e−z

1 − e−z
=

ez − 1 − z

z2
· z

ez − 1
=

∞

∑
n=0

zn

(n + 2)!
·

∞

∑
n=0

Bnzn

n!

=
∞

∑
n=0

(

n

∑
k=0

Bk

(n − i + 2)!i!

)

zn =
∞

∑
n=0

zn

(n + 2)!

n

∑
k=0

(

n + 2

k

)

Bk =
1

2
−

∞

∑
n=1

Bn+1

(n + 1)!
zn.

Here we used the known identity
n−1

∑
i=0

(

n

i

)

Bi = 0,

and the fact that the generating function for the Bernoulli numbers Bi is equal to

z

ez − 1
=

n

∑
i=1

Bi
zi

i!
.

Note that the function h(z) has a removable gap point at z = 0 and

h(0) = lim
z→0

h(z) = lim
z→0

1

(1 − e−z)′
= 1.
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Therefore, by integrating, taking into account that h(0) = 1, we get

h(z) =
∫

(

1

2
−

∞

∑
n=1

Bn+1

(n + 1)!
zn

)

dz =
z

2
−

∞

∑
n=1

Bn+1

n(n + 1)!
zn+1.

Consequently, we have proved the theorem.

Theorem 6.
d

dx
Sn(x) =

n

∑
i=1

(

n

i

)

Bi

i
Sn−i(x).

The Bell polynomials ϕn(x) are determined through the Stirling numbers of second type

ϕn(x) =
n

∑
i=0

S(n, i)xn

and have the generating function

ex(ez−1).

In the same way as in the case of Stirling polynomials the following statement is proved.

Theorem 7.

d

dx
ϕn(x) =

n

∑
i=1

(

n

i

)

ϕn−i(x).

2.5 Generalized Bernoulli, Euler and Hermite polynomials

Generalized Bernoulli B
(a)
n (x), Euler E

(a)
n (x) and Hermite H

(a)
n (x) polynomials are defined

by the following exponential generating function

exz

(

z

ez − 1

)a

=
∞

∑
i=0

B
(a)
n (x)

zn

n!
,

exz

(

2

ez + 1

)a

=
∞

∑
i=0

E
(a)
n (x)

zn

n!
,

exze−at2
=

∞

∑
i=0

H
(a)
n (x)

zn

n!
.

With respect to the variable x these polynomials are the Appel polynomials, see [12], there-

fore for all three types of polynomials the following is performed

d

dx
B
(a)
n (x) = nB

(a)
n−1(x),

d

dx
E
(a)
n (x) = nE

(a)
n−1(x),

d

dx
H

(a)
n (x) = nH

(a)
n−1(x).

Let’s find the logarithmic derivatives by parameter a:

d

da
ln B

(a)
n (x) = ln

(

z

ez − 1

)

= − z

2
+ (−1)n+1

∞

∑
i=2

Bi

i · i!
zi,

d

da
ln E

(a)
n (x) = ln

(

2

ez + 1

)

=
1

2

n

∑
i=1

Ei−1(1)

i!
zi,

d

da
ln H

(a)
n (x) = −z2,
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here Bi, Ei(1) – are the Bernoulli numbers and Euler numbers respectively. Expansion

ln

(

z

ez − 1

)

= − z

2
+

∞

∑
i=2

(−1)n+1Bi

i · i!
zi

is obtained in the same way as expansion in subsection 2.4.

So, the following statement takes place.

Theorem 8.

d

da
B
(a)
n (x) = −n

2
B
(a)
n−1(x) +

n

∑
i=2

(−1)n+1Bi

i

(

n

i

)

B
(a)
n−i(x),

d

da
E
(a)
n (x) =

1

2

n

∑
i=1

(

n

i

)

Ei−1(1)E
(a)
n−i(x),

d

da
H

(a)
n (x) = −n(n − 1)H

(a)
n−2(x).

3 A GENERALIZED DERIVATIVE CONNECTING PROBLEM

3.1 The Chebyshev polynomials

The Chebyshev polynomials Tn(x) of the first kind and the Chebyshev polynomials Un(x)

of the second kind are determined by such ordinary generating function

G(Tn(x), z) =
1 − xz

1 − 2xz + z2
, G(Un(x), z) =

1

1 − 2xz + z2
.

The following theorem take place.

Theorem 9.

d

dx
Tn(x) = T0(x)Tn−1(x)+3T1(x)Tn−2(x)

+
∞

∑
i=3

(

T0(x)T1(x)i−1+2
i−1

∑
k=1

Tk(x)T1(x)i−1−k

)

Tn−i(x),

d

dx
Un(x) = 2

n

∑
i=1

Ui−1(x)Un−1−i(x).

Proof. We have

d

dx
lnG(Tn(x), z) =

z
(

z2 − 1
)

(1 − xz) (1 − 2 xz + z2)

= T0(x)z + 3T1(x)z2 +
∞

∑
i=3

(

T0(x)T1(x)i−1 + 2
i−1

∑
k=1

Tk(x)T1(x)i−1−k

)

zi.

For the Chebyshev polynomials Un(x) of the second kind we have

d

dx
lnG(Un(x), z) =

2z

1 − 2xz + z2
= 2

∞

∑
i=1

Ui−1(x)zi.

Therefore

Un(x)′ = 2
n

∑
i=1

Ui−1(x)Un−1−i(x).
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3.2 The Gegenbauer and Legendre polynomials

The Gegenbauer polynomials Cλ
n (x) are determined by ordinary generating function

G(Cλ
n (x), z) =

1

(1 − 2xz + z2)λ
.

It is logarithmic derivative is expressed through Chebyshev polynomials

d

dx
lnG(Cλ

n (x), z) =
2λz

1 − 2xz + z2
= 2λ

∞

∑
i=1

Ui−1(x)zi,

d

dλ
lnG(Cλ

n (x), z) = − ln
(

1 − 2 xz + z2
)

= 2
∞

∑
i=1

1

i
Ti(x)zi.

Theorem 10.

d

dx
Cλ

n (x) = 2λ
∞

∑
i=1

Ui−1(x)Cλ
n−i(x),

d

dλ
Cλ

n (x) = 2
n

∑
i=1

1

i
Ti(x)C

(λ)
n−i(x).

In [13] another expressions for the Gegenbauer polynomials were obtained. The Legendre

polynomials Pn(x) are determined by generating function

G(Pn(x), z) =
1√

1 − 2xz + z2
.

We have
d

dx
lnG(Pn(x), z) =

z

1 − 2 xz + z2
=

∞

∑
i=1

Ui−1(x)zi .

Therefore there is the following assertion.

Theorem 11.
d

dx
Pn(x) =

∞

∑
i=1

Ui−1(x)Pn−i(x).
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Рамський А.О., Самарук Н.М., Поплавська О.А. Задачi диференцiальної зв’язностi для деяких

класичних многочленiв // Карпатськi матем. публ. — 2019. — Т.11, №2. — C. 431–441.

Нехай дано двi множини многочленiв {Pn(x)}n≥0 та {Qn(x)}n≥0 таких, що

deg(Pn(x)) = n, deg(Qn(x)) = n.

Так звана задача диференцiальної зв’язностi мiж ними полягає у знаходженнi коефiцiєнтiв

αn,k у виразi Qn(x) =
n

∑
k=0

αn,kPk(x).

Нехай {Sn(x)}n≥0 − це iнша множина порядку deg(Sn(x)) = n. Узагальнена задача зв’яз-

ностi мiж ними полягає у знаходженнi коефiцiєнтiв α
(n)
i,j у виразi

Qn(x) =
n

∑
i,j=0

α
(n)
i,j Pi(x)Sj(x).

Задача зв’язностi для рiзних типiв многочленiв має довгу iсторiю, проте залишається

цiкавою i тепер. Коефiцiєнти зв’язностi грають важливу роль у багатьох задачах класичної та

прикладної математики, особливо в комбiнаторицi, а також у математичнiй фiзицi та

прикладних застосуваннях квантової хiмiї. Для часткового випадку, коли Qn(x) = P′
n+1(x),

задачу зв’язностi називають диференцiальною задачею зв’язностi i вiдносять її до множини

{Pn(x)}n≥0.

У статтi наведено вирази у замкнутiй формi задач диференцiальної зв’язностi для вiдомих

систем многочленiв.

Ключовi слова i фрази: задача зв’язностi, обернена задача, задача диференцiальної зв’язнос-

тi, коефiцiєнти звя’зностi, гiпергеометричнi функцiї, гiпергеометричнi многочлени.
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RAVSKY A.

A NOTE ON COMPACT-LIKE SEMITOPOLOGICAL GROUPS

We present a few results related to separation axioms and automatic continuity of operations

in compact-like semitopological groups. In particular, is provided a semiregular semitopological

group G which is not T3. We show that each weakly semiregular compact semitopological group is

a topological group. On the other hand, constructed examples of quasiregular T1 compact and T2 se-

quentially compact quasitopological groups, which are not paratopological groups. Also we prove

that a semitopological group (G, τ) is a topological group provided there exists a Hausdorff topol-

ogy σ ⊃ τ on G such that (G, σ) is a precompact topological group and (G, τ) is weakly semiregular

or (G, σ) is a feebly compact paratopological group and (G, τ) is T3.

Key words and phrases: semitopological group, paratopological group, compact-like semitopo-
logical group, compact-like paratopological group, continuity of the inverse, joint continuity, sepa-
ration axioms, countably compact paratopological group, feebly compact topological group, count-
ably compact topological group.

Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, 3b Naukova str., 79060, Lviv, Ukraine

E-mail: alexander.ravsky@uni-wuerzburg.de

1 PRELIMINARIES

In this paper the word "space" means "topological space".

1.1 Topologized groups

A topologized group (G, τ) is a group G endowed with a topology τ. It is called a semi-

topological group provided the multiplication map G × G → G, (x, y) 7→ xy is separately con-

tinuous. Moreover, if the multiplication is continuous then G is called a paratopological group.

A semitopological group with the continuous inversion map G → G, x 7→ x−1 is called a qua-

sitopological group. A topologized group which is both paratopological and quasitopological is

called a topological group.

Whereas investigation of topological groups already is one of fundamental branches of

topological algebra (see, for instance, [11, 29] and [5]), other topologized groups are not so

well-investigated and have more variable structure.

Basic properties of semitopological or paratopological groups are described in book [5] by

Arhangel’skii and Tkachenko, in author’s PhD thesis [32] and papers [30,31]. New Tkachenko’s

survey [40] presents recent advances in this area.

УДК 512.546.82, 512.546.8, 512.546
2010 Mathematics Subject Classification: 22A15, 54H99, 54H11.
This work was supported by the budget program of Ukraine "Support for the development of priority research

areas" (CPCEC 6451230).
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1.2 Separation axioms

These axioms describe specific structural properties of a space. Basic separation axioms

and relations between them are considered in [16, Section 1.5]. For more specific cases and

topics, also related to semitopological and paratopological groups, see [7, 31], [40, Section

2], [22, 41].

All spaces considered in the present paper are not supposed to satisfy any of the separation

axioms, if otherwise is not stated. We recall separation axioms which we use in our paper. A

space X is

• T0, if for any distinct points x, y ∈ X there exists an open set U ⊂ X, which contains

exactly one of the points x, y,

• T1, if for any distinct points x, y ∈ X there exists an open set x ∈ U ⊂ X \ {y},

• T2 or Hausdorff, if any distinct points x, y ∈ X have disjoint neighborhoods,

• T3, if any closed set F ⊂ X and any point x ∈ X\F have disjoint neighborhoods,

• regular, if it is T1 and T3,

• quasiregular, if any nonempty open subset A of X contains the closure of some nonempty

open subset B of X,

• weakly semiregular, if X has a base consisting of regular open sets, that is such sets U that

U = int U,

• semiregular, if it is weakly semiregular and T2,

• functionally T2 of functionally Hausdorff, if for any distinct points x, y ∈ X there exists a

continuous function f : X → R such that f (x) 6= f (y),

• T3 1
2

or completely regular, if it is T1 and for any closed set F ⊂ X and any point x ∈ X \ F

there exists a continuous function f : X → R such that f (x) = 0 and f (F) ⊂ {1}.

Remark that each T3 space is quasiregular and weakly semiregular, so each regular space

is semiregular.

1.3 Separation axioms in semitopological groups

It is easy to show that each topological group is T3. Near 1936 Pontrjagin showed that each

T0 topological group is completely regular and T1.

On the other hand, simple examples shows that for paratopological groups neither of the

implications T0 ⇒ T1 ⇒ T2 ⇒ T3 is necessary (see [30, Examples 1.6-1.8] and page 5 in any of

papers [31] or [40]) and there are only a few backwards implications between different sepa-

ration axioms, see [31, Section 1] or [40, Section 2]. Moreover, in 2014 Banakh and the author

of the present paper similarly to Pontrjagin’s proof showed that each T1 weakly semiregular

paratopological group is T3 1
2

and each T2 paratopological group is functionally T2 [7]. On the

other hand, Banakh’s announcement for a seminar for 28 November 2016 (see [39]) claims on

an example of a regular quasitopological group which is not functionally Hausdorff.
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It is easy to show that each weakly semiregular paratopological group is T3 [31, Proposition

1.5], but there exists a semiregular semitopological group G which is not T3, see Example 1.

On the other hand, in Proposition 1 we shall prove that each T0 weakly semiregular semitopo-

logical group is semiregular.

Given a topological space (X, τ) Stone [38] and Katĕtov [18] considered the topology τsr on

X generated by the base consisting of all regular open sets of the space (X, τ). This topology is

called the semiregularization of the topology τ. If (X, τ) is a semitopological group then (X, τsr)

is a weakly semiregular semitopological group (see [31, p. 96]). If (X, τ) is a paratopological

group then (X, τsr) is a T3 paratopological group [31, Ex. 1.9], [32, p. 31], and [32, p. 28].

1.4 Compact-like spaces

Different classes of compact-like spaces and relations between them provide a well-known

investigation topic of general topology, see, for instance, basic [16, Chap. 3] and general [13,

23,25,37,42] works. The including relations between the classes are often visually represented

by arrow diagrams, see, [25, Diag. 3 at p.17], [12, Diag. 1 at p. 58] (for completely regular

spaces), [37, Diag. 3.6 at p. 611], and [17, Diag. at p. 3].

We recall the definitions of compact-like spaces with which we shall deal in the paper. A

space X is called

• sequentially compact, if each sequence of X contains a convergent subsequence,

• countably compact, if each countable open over of X has a finite subcover,

• feebly compact, if each locally finite family of nonempty open subsets of the space X is

finite,

• pseudocompact, if X is T1 completely regular and each continuous real-valued function on

X is bounded.

It is well-known and easy to show that each (sequentially) compact space is countable com-

pact and each countable compact space is feebly compact. Moreover, by [16, Theorem 3.10.22]

a T1 completely regular space is feebly compact iff it is pseudocompact.

1.5 Automatic continuity of operations in semitopological groups

It turned out that if a space of a semitopological (resp. paratopological) group satisfies

some conditions (sometimes with some conditions imposed on the group) then the multi-

plication (resp. inversion) in the group is continuous, that is the group is topological (resp.

paratopological). Investigation of these conditions is one of main branches of the theory of

paratopological groups, and, as far as the author knows, the firstly developed that. It turned

out that automatic continuity essentially depends on compact-like properties and separation

axioms of the space of a semitopological group. An interested reader can find known results

and references on this subject in the survey Section 5.1 of [32] and in Section 3 of the survey [40]

(both for semitopological and paratopological groups), and in Introduction of [1], [8, Section

1.6](for paratopological groups).

We briefly recall the history of the topic. In 1936 Montgomery [26] showed that every com-

pletely metrizable paratopological group is a topological group. In 1953 Wallace [43] asked

whether every locally compact regular semitopological group a topological group. In 1957 Ellis
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obtained a positive answer of the Wallace question (see [14,15]) (remark that later the author of

the present paper showed that regularity condition can be relaxed, see Proposition 5.5 in [32] or

its counterpart in English in [33]). In 1960 Zelazko used Montgomery’s result and showed that

each completely metrizable semitopological group is a topological group. Since both locally

compact and completely metrizable topological spaces are C̆ech-complete (recall that C̆ech-

complete spaces are Gδ-subspaces of Hausdorff compact spaces), this suggested Pfister [28] in

1985 to ask whether each C̆ech-complete semitopological group a topological group. In 1996

Bouziad [9] and Reznichenko [36], as far as the author knows, independently answered affir-

matively to the Pfister’s question. To do this, it was sufficient to show that each C̆ech-complete

semitopological group is a paratopological group since earlier, Brand [10] had proved that

every C̆ech-complete paratopological group is a topological group. Brand’s proof was later

improved and simplified in [28]. For recent advances in this topic see Moors’ paper [27] and

references there.

If G is a paratopological group which is a T1 space and G × G is countably compact (in par-

ticular, if G is sequentially compact) then G is a topological group, see [34]. On the other hand,

we cannot weaken T1 to T0 here, because there exists a sequentially compact T0 paratopo-

logical group which is not a topological group, see Example 5.27 from [8]. Also we cannot

weaken countable compactness of G × G to that of G because under additional axiomatic as-

sumptions there exists a countably compact (free abelian) paratopological group which is not

a topological group, see [8, Example 3.22]. Also there exists a functionally Hausdorff second

countable feebly compact paratopological group G which is not a topological group, see [8, Ex-

ample 3.30]. On the other hand, by Proposition 3.15 from [8] each feebly compact quasiregular

paratopological group is a topological group. In particular, each pseudocompact paratopolog-

ical group is a topological group, see also [4, Theorem 1.7] and [2, Theorem 2.1].

According to [24, Corollary 6.3], a subgroup of a compact Hausdorff semitopological semi-

group is a topological group. On the other hand, The group of integers (Z,+) endowed with

the cofinite topology is a T1 compact semitopological group which is not a paratopological

group. On the other hand, it is easy to check that each T1 regular countably compact space

is strongly Baire (see, [19, p.158] for definition), so by [19, Theorem 2], each T1 regular count-

ably compact semitopological group G is a topological group. Nevertheless, there exists a

pseudocompact quasitopological group G of period 2, which is not a paratopological group,

(see [20, 21] and also [5, p.124-127]). On the other hand, Reznichenko in [35, Theorem 2.5]

showed that each semitopological group G ∈ N is a topological group, where N is a family of

all pseudocompact spaces X such that (X, X) is a Grothendieck pair, that is if each continuous

image of X in Cp(Y) has the compact closure in Cp(Y). In particular, a pseudocompact space X

belongs to N provided X has one of the following properties: countable compactness, count-

able tightness, separability, X is a k-space, see [35]. Also is known that every pseudocompact

semitopological group of countable π-character is a compact metrizable topological group,

see [5, Corollary 5.7.27]. Arhangel’skii, Choban, and Kenderov proved in [3, Proposition 8.5]

that a T2 locally countably compact semitopological group containing a compact of countable

character is a paracompact locally compact topological group.

In the present paper we show that each weakly semiregular compact semitopological group

G is a topological group, see Theorem 1. On the other hand, we construct examples of quasireg-

ular T1 compact and T2 sequentially compact quasitopological groups, which are not paratopo-

logical groups, see Examples 2 and 3, respectively.
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2 RESULTS

Example 1. There exists a semiregular semitopological group G which is not T3. Put G =

(R2,+) and B = {Un : 0 < n ∈ N}, where Un = {0} ∪ {(x, y) ∈ R2 : |y| < |x| < 1/n} for

each n. Put τ = {V ⊂ G : (∀x ∈ V)(∃U ∈ B) : x + U ⊂ V}. It is easy to check that (G, τ) is a

semitopological semigroup and B is its base at the unit. Let σ be the standard topology of R2.

Since τ ⊃ σ, the group (G, τ) is T2. Since intø U
σ
= U for each U ∈ B, the group (G, τ) has a

base {x + U : x ∈ G, U ∈ B}, consisting of regular open sets. But the group (G, τ) is not T3,

because U1 6⊃ Un
τ

for each n.

Let G be a semitopological group and H ⊂ G be a normal subgroup of G. It is easy to check

that the quotient group G/H endowed with the quotient topology with respect to the quotient

map π : G → G/H is a semitopological group.

Lemma 1. (see, [41, Theorem 3.1 and Corollary 3.2]) Let (G, τ) be a semitopological group,

N =
⋂
{U : e ∈ U ∈ τ} and K = N ∩ N−1. Then K is a normal subgroup of the group G

and T0G = G/K is a T0 semitopological group. Moreover, let π : G → G/K be the quotient

homomorphism. Then U = π−1π(U) for each open set U ⊂ G and hence the map π is clopen.

Lemma 2. A semitopological group G is a paratopological group iff T0G is a paratopological

group.

Proof. The sufficiency is evident. The necessity follows from Lemma 1.

Lemma 3. Let (X, τ) be a weakly semiregular space, (Y, σ) be a space and π : X → Y be a

continuous clopen surjection. Then Y is a weakly semiregular space.

Proof. Let y ∈ Y be any point and V ∈ σ be any open neighborhood of y. Pick a point x ∈
π−1(y). Since π−1(V) is a neighborhood of x and X is a weakly semiregular space, there exists

a regular open neighborhood U of the point x, contained in a set π−1(V). Then y = π(x) ∈
π(U) ⊂ π(U) ⊂ π(U) ⊂ ππ−1(V) = V (the third inclusion here holds because the map π is

closed). Therefore a canonical open set V′ = int π(U) is closed and y ∈ V′ ⊂ π(U) ⊂ V.

Lemma 4. Let (G, τ) be a weakly semiregular semitopological group. Put N =
⋂
{U : e ∈ U ∈

τ}. Then N is a closed normal subgroup of the group G and

N =
⋂
{U : e ∈ U ∈ τ} =

⋂
{UU−1 : e ∈ U ∈ τ} =

⋂
{U−1 : e ∈ U ∈ τ}.

Proof. Put N′ =
⋂
{U : e ∈ U ∈ τ} and N′′ =

⋂
{UU−1 : e ∈ U ∈ τ}. The set N′ is a closed

subset of the group G. Since for any V ⊂ G, V =
⋂
{VU−1 : e ∈ U ∈ τ}, we have N′ = N′′.

Moreover, it is easy to see that N−1 =
⋂
{U−1 : e ∈ U ∈ τ}, N ⊂ N′, N ⊂ N′′ and N−1 ⊂ N′′.

Let U ∈ τ be any open neighborhood of the unit of the group G and x be any element of the

set U. There exists an open neighborhood V ∈ τ the of unit of the group G such that xV ⊂ U.

Then xN′ ⊂ xV ⊂ U. Since this inclusion holds for an arbitrary element x of the set U, we

see that UN′ ⊂ U. But UN′ is an open subset of a group G and hence N′ ⊂ UN′ ⊂ int U.

Then N′ ⊂
⋂
{int U : e ∈ U ∈ τ} =

⋂
{U : e ∈ U ∈ τ} = N (the first equality holds because

G is a weakly semiregular space). At last, since N−1 ⊂ N′′ = N′ ⊂ N, we have the inclusion

N ⊂ N−1.
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Let x, y be arbitrary elements of N and U ∈ τ be an arbitrary open neighborhood of the

unit of the group G. Then x ∈ N ⊂ U. There exists an open neighborhood V ∈ τ of the unit of

the group G such that xV ⊂ U. Then y ∈ N ⊂ V. Hence xy ∈ xV ⊂ U. Since this holds for an

arbitrary open neighborhood U ∈ τ of the unit of the group G, xy ∈
⋂
{U : e ∈ U ∈ τ} = N.

So N is a subsemigroup of the group G. Since N = N−1, N is a group.

Let g be an arbitrary element of the group G, and U ∈ τ be an arbitrary open neighborhood

of the unit of the group G. There exists an open neighborhood V ∈ τ of the unit of the group

G such that g−1Vg ⊂ U. Then g−1Ng ⊂ g−1Vg ⊂ U. Since this holds for an arbitrary open

neighborhood U ∈ τ of the unit of the group G, g−1Ng ⊂
⋂
{U : e ∈ U ∈ τ} = N. So N is a

normal subsemigroup of the group G.

Proposition 1. Each T0 weakly semiregular semitopological group (G, τ) is semiregular.

Proof. Put N =
⋂
{U : e ∈ U ∈ τ}. Since G is a T0 space, N ∩ N−1 = {e}. But by Lemma 4,

N−1 = N =
⋂
{UU−1 : e ∈ U ∈ τ} = N′′. Therefore N′′ = {e} and the group G is T2.

Lemma 1, Lemma 3 and Proposition 1 imply the following

Proposition 2. If G is a weakly semiregular semitopological group then T0G is a semiregular

semitopological group.

We remark that Proposition 2 cannot be generalized for arbitrary quotient groups even

of regular paratopological groups, because in [6] Taras Banakh and the author constructed a

countable regular abelian paratopological group G containing a closed discrete subgroup H

such that the quotient G/H is T2 but not T3. The group G/H is even not weakly semiregular,

because by [31, Proposition 1.5] each weakly semiregular paratopological group is T3.

Lemma 5. [35, Theorem 0.5] A T2 compact semigroup with separately continouous multipli-

cation and two-sides cancellations is a topological group.

Lemma 6. (see [32, Lemma 5.4], [41, Proposition 3.2], or [8, Proposition 3.2]) Each compact

paratopological group is a topological group.

Theorem 1. Each weakly semiregular compact semitopological group G is a topological group.

Proof. By Proposition 2, T0G is a semiregular compact semitopological group. By Lemma 5,

T0G is a topological group. By Lemma 2, G is a paratopological group. By Lemma 6, G is a

topological group.

Let us illustrate the topic by the following simple

Proposition 3. Let G be a group endowed with the cofinite topology, that is a set U ⊂ G is

open in G iff U = ∅ or a set G \ U is finite. Then G is a T1 semitopological group and the

following conditions are equivalent.

1. The group G is a paratopological group.

2.1. The group G is T2.

2.2. The group G is weakly semiregular.
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2.3. The group G is quasiregular.

3. The group G is finite.

Proof. The continuity of shifts on the group G and implications 3 ⇒ ∗ are obvious, implications

2.∗ ⇒ 3 follows from the fact that if the group G is infinite then each nonempty open subset

of G is dense in G. It remains to show an implication 1 ⇒ 3. Suppose to the contrary that G

is an infinite paratopological group. Pick an element x ∈ G \ {e}. Since the multiplication at

the unit of G is continuous, there exists a finite set F ⊂ G \ {e} such that (G \ F)2 ⊂ G \ {x}.

Since the group G is infinite, there exists a point y ∈ G \ (F ∪ xF−1). Then y(G \ F) ∋ x, a

contradiction.

Example 2. There exists a T1 quasiregular compact quasitopological group G, which is not a

paratopological group. Let G = T = {z ∈ C : |z| = 1} be the unit circle. We define an open

base B at the unit of a topology of a semitopological group on G by putting B = {Un : 0 < n ∈
Z}, where Un = {z ∈ C \ {(−1, 0)} : arg z ∈ (−1/n, 1/n) ∪ (π − 1/n, π + 1/n)}.�

Example 3. There exists a T2 quasiregular sequentially compact quasitopological group G,

which is not a paratopological group. Let

G = Σω1Z2 = {x ∈ Z
ω1
2 : |{α : xα 6= 0}| ≤ ω}.

Put B = {UA \ S : A is a finite subset of ω1}, where

UA = {x ∈ G : xα = xβ for each α, β ∈ A}

and

S = {x ∈ G : x0 = 1 and xγ ≥ xδ for each γ < δ < ω1}.

We claim that the family B satisfies Pontrjagin conditions (see [30, Proposition 1]). Indeed,

the one non-evident of these conditions for the family B is: for each U ∈ B and for each point

x ∈ U there exists U′ ∈ B such that x + U′ ⊂ U. Let’s check this. Let B ∋ U = UA \ S, where

A is a finite subset of ω1 and x ∈ U. If x = 0 then it suffices to put U′ = U. If x 6= 0 then there

exists an index γ′ ∈ ω1 such that xγ′ = 1. Since x ∈ Σω1Z2, there exists an index γ′
< δ′ < ω1

such that xδ′ = 0. Since x 6∈ S, there exist indexes γ′′, δ′′ ∈ ω1, γ′′
< δ′′ such that xγ′′ = 0 and

xδ′′ = 1. Put A′ = A ∪ {γ′, γ′′, δ′, δ′′} and U′ = UA′ . Then x + U′ ⊂ U. Hence the family B is

an open base at the unit of a topology of a semitopological group on G. Denote this topology

as τ. Since UA′ ⊃ UA′ \ S, the group (G, τ) is quasiregular. Since the set UA is a group for any

subset A of ω1 and
⋂
{UA : A is a finite subset of ω1} = {0}, the group (G, τ) is T2. Since

the topology τ is weaker than the sequentially compact topology on the set Σω1Z2, induced

from the Tychonoff product, the group (G, τ) is sequentially compact too. At last, to show that

(G, τ) is not a paratopological group, it suffices to show that for any finite set A ⊂ ω1 there

exist points x, y ∈ UA \ S such that x + y ∈ S. Fix arbitrary two indexes α, β ∈ ω1 such that

sup A < α < β. For each γ ∈ ω1 put xγ = 1 if γ ∈ {α, β} and xγ = 0 otherwise. For each

γ ∈ ω1 put yγ = 1 if α 6= γ ≤ β and yγ = 0 otherwise.

Recall that a topological group G is precompact if for each neighborhood U of the unit of G

there exists a finite subset F of G such that FU = G (or, equivalently UF = G).
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Theorem 2. Let (G, σ) be a T2 precompact topological group, (G, τ) be a weakly semiregular

semitopological group and τ ⊂ σ. Then (G, τ) is a topological group.

Proof. Let (Ĝ, σ̂) be a Raı̌kov completion of the group (G, σ). Since the group G is a dense pre-

compact subset of the group (Ĝ, σ̂), by Corollary 3.7.6 from [5], the group (Ĝ, σ̂) is precompact.

Since the group (Ĝ, σ̂) is Raı̌kov complete, by Theorem 3.7.15 from [5] it is compact.

In this proof as · we denote the closure with respect to the topology σ̂.

Put N =
⋂
{U : e ∈ U ∈ τ}. We claim that N is a normal subgroup of the group (Ĝ, σ̂).

Indeed, let x, y be any elements of N, U ∈ τ be an any open neighborhood of the unit of the

group G, and Ŵ = (Ŵ)−1 ∈ σ̂ be any symmetric open neighborhood of the unit of the group

Ĝ. Then there exists an element u ∈ U ∩ Ŵx. There exists an open neighborhood V ∈ τ of

the unit of the group G such that uV ⊂ U. Then there exists an element v ∈ V ∩ yŴ. Then

xy ∈ ŴuvŴ ⊂ ŴUŴ. Since this holds for any symmetric open neighborhood Ŵ = (Ŵ)−1 ∈
σ̂ of the unit of the group Ĝ, xy ∈ U. Since this holds for any open neighborhood U ∈ τ of

the unit of the group G, xy ∈
⋂
{U : e ∈ U ∈ τ} = N. So N is a closed subsemigroup of a

T2 compact topological group (Ĝ, σ̂). By Lemma 5, N is a group. Let g be any element of the

group G and U ∈ τ be any open neighborhood of the unit of the group G. Since (G, τ) is a

semitopological group and g−1eg = e there exists an open neighborhood V ∈ τ of the unit

of the group G such that g−1Vg ⊂ U. By continuity of multiplication on the group (Ĝ, σ̂),

g−1Ng ⊂ g−1Vg ⊂ U. Since this holds for any open neighborhood U ∈ τ of the unit of the

group G, g−1Ng ⊂
⋂
{U : e ∈ U ∈ τ} = N. Now suppose that there exists an element

ĝ of the group Ĝ such that (ĝ)−1Nĝ 6⊂ N. Then there exists an element x ∈ N such that

(ĝ)−1xĝ 6∈ N. Since N is a closed subset of the group (Ĝ, σ̂) and the multiplication on the

group (Ĝ, σ̂) is continuous, there exists a symmetric open neighborhood Ŵ = (Ŵ)−1 ∈ σ̂ of

the unit of the group Ĝ such that Ŵ(ĝ)−1xĝŴ ∩ N = ∅. Since the group (G, σ) is dense in its

completion (Ĝ, σ̂), there exists an element g ∈ G ∩ ĝŴ. But then g−1xg ∈ Ŵ(ĝ)−1xĝŴ 6∈ N,

a contradiction. Therefore (ĝ)−1Nĝ ⊂ N for each element (ĝ) ∈ Ĝ. Thus N is a normal

subgroup of the group Ĝ.

Define a topology σ̂N on the group Ĝ by putting σ̂N = {ŴN : Ŵ ∈ σ̂}. It is easy to check

that (Ĝ, σ̂N) is a topological group. We claim that σ̂N |G = τ. Let’s check this.

(σ̂N |G ⊂ τ) Let Ŵ ∈ σ̂ be any non-empty set and x ∈ ŴN ∩ G be any point. Then e ∈
x−1ŴN, so

⋂
{U : e ∈ U ∈ τ} = N ⊂ x−1ŴN. Since x−1ŴN is an open subset of the compact

group (Ĝ, σ̂N), there exists a set e ∈ U ∈ τ such that U ⊂ x−1ŴN. Then xU is a neighborhood

of the point x in the topology τ and xU ⊂ ŴN ∩ G.

(σ̂N |G ⊃ τ) Let U ∈ τ be any open neighborhood of the unit of the group G. We claim

that UN ⊂ U. Indeed, let x be any element of the set U. There exists an open neighborhood

of V ∈ τ the unit of the group G such that xV ⊂ U. Then xN ⊂ xV ⊂ U. Since this inclusion

holds for any element x of the set U, we see that UN ⊂ U. Let y be any element of the set

N. Then Uy ⊂ U and U ⊂ Uy−1. Since the set Uy−1 is closed in the group (Ĝ, σ̂N), we see

that U ⊂ Uy−1. At last, since this inclusion holds for any element y of the set N, we see that

UN ⊂ U. Since σ̂|G ⊃ τ, there exists an open neighborhood Ŵ ∈ σ̂ of the unit of the group

G such that Ŵ ∩ G ⊂ U. Since the set G is dense in the space (Ĝ, σ̂), Ŵ ⊂ Ŵ ∩ G ⊂ U. Then

ŴN ⊂ UN ⊂ U. But ŴN ∩ G ∈ τ, because σ̂N |G ⊂ τ. Therefore ŴN ∩ G ⊂ intτ(U ∩ G) ⊂
intτ U

τ
(we have U ∩G ⊂ U

τ
, because σ̂|G ⊃ τ). At last, since U ∈ τ is any open neighborhood

of the unit of the weakly semiregular group G, we have that (σ̂N |G ⊃ τ).
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Thus, since σ̂N |G = τ, (G, τ) is a topological group.

Theorem 3. Let (G, σ) be a T2 feebly compact paratopological group, (G, τ) be a T3 semitopo-

logical group and τ ⊂ σ. Then (G, τ) is a topological group.

Proof. The group G endowed with the topology σsr is a feebly compact T2 and T3 paratopo-

logical group. By [8, Proposition 3.15], (G, σsr) is a feebly compact topological group. Hence

the group (G, σsr) is precompact. Let U ∈ τ be an arbitrary set and x ∈ U be an arbitrary

point. Since topology τ is T3, there exists an open neighborhood V ∈ τ of the point x such that

V
τ
⊂ U. Since τ ⊂ σ, V ∈ σ. Then x ∈ V = intτ V ⊂ intτ V

σ
⊂ intσ V

σ
⊂ intσ V

τ
⊂ V

τ
⊂ U.

Since intσ V
σ
∈ σsr, τ ⊂ σsr, and (G, σsr) is a weakly semiregular space, by Theorem 2, (G, τ) is

a topological group.
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Равський О.В. Дещо про компактоподiбнi напiвтопологiчнi групи // Карпатськi матем. публ. —

2019. — Т.11, №2. — C. 442–452.

Отримано деякi результати пов’язанi з аксiомами вiдокремлення та автоматичною непе-

рервнiстю у компактоподiбних напiвтопологiчних групах. Зокрема, наведена напiврегулярна

напiвтопологiчна група G, котра не є T3. Показано, що кожна слабко напiврегулярна ком-

пактна напiвтопологiчна група є топологiчною групою. З iншого боку, побудованi приклади

квазiрегулярних T1 компактної та T2 секвенцiально компактної квазiтопологiчних груп, котрi

не є паратопологiчними групами. Також показано, що напiвтопологiчна група (G, τ) є топо-

логiчною групою за умови iснування такої гаусдорфової топологiї σ ⊃ τ на G, що (G, σ) є

прекомпактною топологiчною групою i (G, τ) є слабко напiврегулярною або (G, σ) є слабко

компактною паратопологiчною групою i (G, τ) є T3.

Ключовi слова i фрази: напiвтопологiчна група, паратопологiчна група, компактоподiбна

напiвтопологiчна група, компактоподiбна паратопологiчна група, неперервнiсть оберненого,

сукупна неперервнiсть, аксiоми вiдокремлення, злiченно-компактна паратопологiчна група,

слабко компактна паратопологiчна група, злiченно-компактна топологiчна група.
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INTRODUCTION

All through this paper, R denotes an associative ring (not necessarily with unity). A map-

ping d : R → R is called a derivation of R if for any x, y ∈ R

d(x + y) = d(x) + d(y) (1)

and d(xy) = d(x)y + xd(y). (2)

If d satisfies (2) but not necessarily (1), then d is called a multiplicative derivation of R (see

[3]). In [2] Bergen extended the notion of a derivation by introducing semi derivation of a ring.

Accordingly, a semi derivation (d, g) of a ring R is an additive mapping d : R → R associated

with a ring endomorphism g of R such that d(xy) = d(x)y + g(x)d(y) = d(x)g(y) + xd(y)

and d(g(x)) = g(d(x)) for all x, y ∈ R. Clearly, every derivation is a semi derivation but the

converse is not true always. We denote the Lie commutator xy − yx by the symbol [x, y]. A

non-zero element e ∈ R is said to be idempotent if e2 = e and by a non-trivial idempotent we

mean an idempotent element e different from the multiplicative identity of R. Let M be an

R−bimodule and e1 ∈ R be a non-trivial idempotent element. For any x ∈ M ∪ R we shall

write x(1 − e1) instead of x − xe1, (1 − e1)x instead of x − e1x and e2 instead of (1 − e1). Then

we set Rij = eiRej and Mij = eiMej, where i, j ∈ {1, 2}. Therefore, R and M can be factorized as

follows: R = R11
⊕

R12
⊕

R21
⊕

R22 and M = M11
⊕

M12
⊕

M21
⊕

M22. This representation

of R and M is called Peirce decomposition relative to e1 (see [ [5], pg. 48]). Further, the following

are some well-known facts related to this decomposition of R:

(i) RijRjk ⊆ Rik, where i, j, k ∈ {1, 2}.

(ii) RijRkl = 0, where j 6= k, and i, j, k, l ∈ {1, 2}.
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(iii) x2
ij = 0 for all xij ∈ Rij, where i 6= j and i, j ∈ {1, 2}.

The structure of rings is tightly connected with the additive mapping like isomorphisms,

derivations, centralizers etc. Therefore, the problem of exploring the conditions under which

these mappings become additive on rings (or algebras) has naturally grown as a fascinating

area of research and has been attracted many algebraists for the last six decades. In this direc-

tion, Martindale [8] considered the so called problem “When a multiplicative mapping is addi-

tive?" He gave a remarkable technique and established a set of conditions on a ring that forces

a multiplicative isomorphism to be additive. In particular, every multiplicative isomorphism

from a prime ring containing a non-trivial idempotent onto any ring is additive. Inspired by

this, Daif [3] obtained the additivity of multiplicative derivations of rings and consequently

introduced the notion of multiplicative derivations. After that a number of results has been

obtained in associative as well as alternative rings and algebras (see [4, 6, 7, 9–11]) and refer-

ences therein). Recently, Wang [11] explored the additivity of n−multiplicative isomorphisms

and n−multiplicative derivations of rings. As a consequence, one may deduce the theorem of

Martindale and theorem of Daif from corollary 3.1 and 3.3 of [11] respectively. In this paper,

we will continue the study of analogue problems for some derivable mappings on associative

rings.

1 MAIN RESULTS

1.1 Additivity of multiplicative derivations

In view of Peirce decomposition, we see that any mapping δ : R → M can be expressed as

δ(x) = δ11(x) + δ12(x) + δ21(x) + δ22(x)

for all x ∈ R, where δij : R → Mij be a mapping defined as x 7→ eixej for all i, j ∈ {1, 2}. For

any x, y ∈ R, we have x = x11 + x12 + x21 + x22 and y = y11 + y12 + y21 + y22. Further,

xy = (x11y11 + x12y21) + (x11y12 + x12y22) + (x21y11 + x22y21) + (x21y12 + x22y22).

Now, we extend the notion of multiplicative derivation of a ring R as follows:

Definition 1. Let R be a ring (not necessarily with unity) and M be a bimodule over R. A

mapping d : R → M (not necessarily additive) is said to be a multiplicative derivation of R into

M if d(xy) = d(x)y + xd(y) for all x, y ∈ R.

Since d(e1) ∈ M11
⊕

M21
⊕

M12
⊕

M22 i.e., d(e1) = m11 + m12 + m21 + m22, where mij ∈

Mij for all i, j ∈ {1, 2}. Also d(e1) = d(e2
1) = d(e1)e1 + e1d(e1). By using the value of d(e1)

we obtain that m11 = 0 = m22 and hence d(e1) ∈ M12
⊕

M21. For some fixed x ∈ M and

z ∈ R, we define a function f : R → M by a 7→ [z, x]a + a[x, z]. Clearly, f is a derivation. Fix

x = m12 + m21 and z = e1. Re-defining f as a 7→ [e1, m12 + m21]a + a[m12 + m21, e1]. Thus, we

have

f (e1) = [e1, m12 + m21]e1 + e1[m12 + m21, e1]

= (m12 − m21)e1 + e1(m12 − m21) = −m12 − m21 = −d(e1).
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Hence, ( f + d)(e1) = 0. We set f + d = D. That means D(e1) = 0. Now, we have the following

relations:

D11(xy) = D11(x)y11 + x11D11(y) + D12(x)y21 + x12D21(y), (3)

D12(xy) = D11(x)y12 + D12(x)y22 + x11D12(y) + x12D22(y), (4)

D21(xy) = x21D11(y) + D21(x)y11 + x22D21(y) + D22(x)y21,

D22(xy) = x21D12(y) + D21(x)y12 + D22(x)y22 + x22D22(y).

Further, it is easy to check that Dij(e1) = 0 and Dij(xy) = Dij(x)y + xDij(y) for all i, j ∈ {1, 2}.

Lemma 1. Let R be a ring (not necessary with unity) and M be a bimodule over R. Suppose

that R contains a non-trivial idempotent e1 such that for any m ∈ M, the following are satisfied:

(H1) e1me1R12 = (0) implies e1me1 = 0,

(H2) e1me2R22 = (0) implies e1me2 = 0,

(H3) e1me2R21 = (0) implies e1me2 = 0.

Then D11 and D12 are additive.

Proof. Firstly, we shall show that D11 is additive on R11
⊕

R12
⊕

R22 and that D12 is additive

on R11
⊕

R12
⊕

R21. We begin with

D11(x11 + x12 + x21 + x22) = e1D(x11 + x12 + x21 + x22)e1 = e1D((x11 + x12 + x21 + x22)e1)e1

= e1D(x11 + x21)e1 = D11(x11 + x21).

That is

D11(x11 + x12 + x21 + x22) = D11(x11 + x21). (5)

In particular, we have

D11(x11 + x12 + x22) = D11(x11). (6)

For any y12 ∈ R12, we have D11(x12)y12 = D11(x12y12) − x12D11(y12) = 0. That means

D11(x12)R12 = (0). By (H1), we obtain D11(x12) = 0 for all x12 ∈ R12. Likewise D11(x22)R12

= (0) for all x22 ∈ R22. Again by (H1), we find D11(x22) = 0 for all x22 ∈ R22. Now, we can

rewrite (6) as

D11(x11 + x12 + x22) = D11(x11) + D11(x12) + D11(x22).

It means that D11 is additive on R11
⊕

R12
⊕

R22. On the other hand, for any r ∈ R, we find

that

(D12(x11 + x12 + x21 + x22)− D12(x12 + x22))r

= D12(x11 + x12 + x21 + x22)r − D12(x12 + x22)r

= D12(x11 + x12 + x21 + x22)(r21 + r22)− D12(x12 + x22)(r21 + r22)

= D12((x11 + x12 + x21 + x22)(r21 + r22))− (x11 + x12 + x21 + x22)

D12(r21 + r22)− D12((x12 + x22)(r21 + r22)) + (x12 + x22)D12(r21 + r22)

= −(x11 + x21)D12(r21 + r22) = −(x11 + x21)e1D12(r21 + r22)

= −(x11 + x21)D12(e1(r21 + r22)) + (x11 + x21)D12(e1)(r21 + r22) = 0.
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Hence (D12(x11 + x12 + x21 + x22)− D12(x12 + x22))R = (0). In particular, (D12(x11 + x12 +

x21 + x22)− D12(x12 + x22))R22 = (0). By (H2), we find

D12(x11 + x12 + x21 + x22) = D12(x12 + x22).

Consequently

D12(x11 + x12 + x21) = D12(x12). (7)

Now, for any z22 ∈ R22, we get D12(x11)z22 = D12(x11z22)− x11D12(z22) = −x11e1D12(z22) =

−x11D12(e1z22) + x11D12(e1)z22 = 0. That is D12(x11)R22 = (0) for all x11 ∈ R11. Thus we may

apply hypothesis (H2), which forces that D12(x11) = 0 for all x11 ∈ R11. In the similar manner,

we find that D12(x21)R22 = (0) for all x21 ∈ R21. Again applying (H2), we get D12(x21) = 0 for

all x21 ∈ R21. Thus expression (7) assures that D12 is additive on R11
⊕

R12
⊕

R21.

We now proceed to show that D11 is additive on R21 and D12 is additive on R22. For any

x, y ∈ R, we have

D11(xy) = D11((x11 + x12 + x21 + x22)(y11 + y12 + y21 + y22))

= D11((x11y11 + x12y21) + (x21y11 + x22y21) + (x11y12 + x12y22)

+(x21y12 + x22y22)) = D11((x11y11 + x12y21) + (x21y11 + x22y21))( using (5) ).

and

D11(x)y11 + x11D11(y) + D12(x)y21 + x12D21(y) = D11(x11 + x21)y11

+ x11D11(y11 + y21) + D12(x12 + x22)y21 + x12D21(y11 + y21).

Now, relation (3) can be expressed as

D11((x11y11 + x12y21) + (x21y11 + x22y21)) = D11(x11 + x21)y11

+ x11D11(y11 + y21) + D12(x12 + x22)y21 + x12D21(y11 + y21).
(8)

In particular, putting x11 = 0 = x12 in (8), we obtain

D11(x21y11 + x22y21) = D11(x21)y11 + D12(x22)y21. (9)

It follows that

D11(x21y11) = D11(x21)y11, D11(x22y21) = D12(x22)y21. (10)

Thus, (9) can be written as

D11(x21y11 + x22y21) = D11(x21y11) + D11(x22y21). (11)

Replacing y11 by x12y21 and x22 by z21x12 in (11), we get

D11(x21x12y21 + z21x12y21) = D11(x21x12y21) + D11(z21x12y21),

D11((x21 + z21)x12y21) = D11((x21)(x12y21)) + D11((z21)(x12y21)).

Application of (10) yields that

D11(x21 + z21)x12y21 = D11(x21)(x12y21) + D11(z21)(x12y21).
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That is,

(D11(x21 + z21)− D11(x21)− D11(z21))R12R21 = (0).

Application of (H3) and (H1) respectively yields

D11(x21 + z21) = D11(x21) + D11(z21) for all x21, z21 ∈ R21.

From (10), we have D12(x22)y21 = D11(x22y21). Therefore

D12(x22 + z22)y21 = D11((x22 + z22)y21) = D11(x22y21 + z22y21)

= D11(x22y21) + D11(z22y21) = D12(x22)y21 + D12(z22)y21.

It implies that

(D12(x22 + z22)− D12(x22)− D12(z22))R21 = (0).

We may apply (H3) in order to obtain D12(x22 + z22) = D12(x22) + D12(z22). Hence, D12 is

additive on R22.

Next, we shall show that D11 is additive on R11 and D12 is additive on R11. It is straight

forward to check that, for any x12, y12 ∈ R12

(D11(x12 + y12)− D11(x12)− D11(y12))R12 = (0).

Thus, hypothesis (H1) forces D11(x12 + y12) = D11(x12) + D11(y12). Let r12 ∈ R12. Then

D11(x11 + y11)r12 = D11((x11 + y11)r12)− (x11 + y11)D11(r12) = D11(x11r12 + y11r12)

− x11D11(r12)− y11D11(r12) = D11(x11r12) + D11(y11r12)− x11D11(r12)− y11D11(r12)

= D11(x11)r12 + D11(y11)r12.

That is (D11(x11 + y11)− D11(x11)− D11(y11))r12 = 0 for all r12 ∈ R12. Again we apply (H1) in

order to obtain

D11(x11 + y11) = D11(x11) + D11(y11) for all x11, y11 ∈ R11.

In like manner, for any r21 ∈ R21, we see (D12(x11 + y11)− D12(x11)− D12(y11))r21 = 0. Thus

(D12(x11 + y11) − D12(x11) − D12(y11))R21 = (0). On utilizing (H3), D12 is additive on R11.

Further, we consider

(D12(x12 + y12)− D12(x12)− D12(y12))r21 = D12(x12 + y12)r21 − D12(x12)r21 − D12(y12)r21

= D12(x12r21 + y12r21)− D12(x12r21)− D12(y12r21) = 0.

Therefore, we obtain (D12(x12 + y12) − D12(x12) − D12(y12))R21 = (0). Hypothesis (H3)

yields

D12(x12 + y12) = D12(x12) + D12(y12).

Now, we are well occupied to prove that D11 and D12 are additive on R. Observe that, as

per the results derived above it is enough to show that D11(x11 + x21) = D11(x11) + D11(x21)

and D12(x12 + x22) = D12(x12) + D12(x22).

Firstly, note that

D21(y) = D21(y11 + y12 + y21 + y22) = e2D(y11 + y12 + y21 + y22)e1

= e2D((y11 + y12 + y21 + y22)e1)e1 = e2D(y11 + y21)e1 = D21(y11 + y21).
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and

(D22(x11 + x12 + x21 + x22)− D22(x12 + x22))r

= D22(x11 + x12 + x21 + x22)(r21 + r22)− D22(x12 + x22)(r21 + r22)

= D22((x11 + x12 + x21 + x22)(r21 + r22))− (x11 + x12 + x21 + x22)D22(r21

+r22)− D22((x12 + x22)(r21 + r22)) + (x12 + x22)D22(r21 + r22) = 0.

Let us rewrite expression (4) as

D12((x11y12 + x12y22) + (x21y12 + x22y22)) = D11(x11 + x21)y12

+ D12(x12 + x22)y22 + x11D12(y12 + y22) + x12D22(y12 + y22).
(12)

In particular, we put x12 = 0 = x21 in (12), we find

D12(x11y12 + x22y22) = D11(x11)y12 + D12(x22)y22 + x11D12(y12 + y22). (13)

On substituting x11 = e1, y12 = z12y22 in (13), we get

D12((z12 + x22)y22) = D11(e1)z12y22 + D12(x22)y22 + e1D12(z12y22 + y22)

= D12(x22)y22 + D12(e1(z12y22 + y22))− D12(e1)(z12y22 + y22)

= D12(x22)y22 + D12(z12y22) = D12(x22)y22 + D12(z12)y22.

That gives

D12((z12 + x22)y22) = D12(z12)y22 + D12(x22)y22. (14)

We next put y12 = 0 = x11 in (12), we get

D12((x12 + x22)y22) = D12(x12 + x22)y22 + x12D22(y22). (15)

On combining (14) and (15), it follows that

D12(x12 + x22)y22 + x12D22(y22) = (D12(z12) + D12(x22))y22.

On substituting y22 = y21t12 in the above expression in order to obtain

(D12(z12) + D12(x22))y21t12 = D12(x12 + x22)y21t12 + x12D22(y21t12)

= D12(x12 + x22)y21t12 + x12D22(y21)t12 + x12y21D22(t12) = D12(x12 + x22)y21t12.

That is (D12(x12 + x22) − D12(z12)− D12(x22))y21t12 = 0 for all y21 ∈ R21 and t12 ∈ R12.

Thus (D12(x12 + x22) − D12(z12) − D12(x22))R21R12 = (0). An application of (H1) and (H3)

successively yields D12(z12 + x22) = D12(z12) + D12(x22). Moreover, we put x12 = 0 = y22 in

(14) in order to obtain

D11(x11 + x21)y12 + x11D12(y12) = D12(x11y12 + x21y12)

= D12(x11y12) + D12(x21y12).
(16)

It follows that

D12(x11y12) = D11(x11)y12 + x11D12(y12), D12(x21y12) = D11(x21)y12. (17)

By utilizing (17) in (16), we find (D11(x11 + x21)− D11(x11)− D11(x21))y12 = 0 for all y12 ∈ R12.

That means (D11(x11 + x21)− D11(x11)− D11(x21))R12 = (0). By (H1), we get D11(x11 + x21) =

D11(x11) + D11(x21).
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Analogously, we can prove the following lemma:

Lemma 2. Let R be a ring (not necessary with unity) and M be a bimodule over R. Suppose

that R contains a non-trivial idempotent e1 such that for any m ∈ M, the following are satisfied:

(H4) e2me2R21 = (0) implies e2me2 = 0,

(H5) e2me1R11 = (0) implies e2me1 = 0,

(H6) e2me1R12 = (0) implies e2me2 = 0.

Then D21 and D22 are additive.

Since D = D11 + D12 + D21 + D22, Lemma 1 and Lemma 2 proves our main result:

Theorem 1. Let R be a ring and M be a bimodule over R. If e1 is a non-trivial idempotent in R

such that for all m ∈ M the conditions (H1)-(H6) hold. Then every multiplicative-derivation

d : R → M is additive.

Recall that R is said to be a prime ring if aRb = (0) implies either a = 0 or b = 0 and

is called semiprime if aRa = (0) for all a ∈ R. Let R be a semiprime ring and Q be the two

sided Martindale quotient ring of R. The maximal left ring of quotients (also called left Utumi

quotient ring) of R is denotes by Qml . The center C of Q is called the extended centroid of R. If

R happens to be prime, then C is a field. Moreover, the extended centroid C of R coincides with

the center of Qml and is reduced in the sense that C does not have nonzero nilpotent elements.

For more information of these objects, we refer the reader to [1]. As an application of Theorem

1, we obtain the following consequent results:

Corollary 1. Let R be a semiprime ring containing a non-trivial idempotent e. Suppose that for

any a ∈ Qml the following holds:

(I) e1ae1Re2 = (0) implies e1ae1 = 0,

(II) e2ae2Re1 = (0) implies e2ae2 = 0.

Then any multiplicative-derivation d : R → Qml is additive.

Proof. Let a ∈ Qml be an element such that eiaejRek = (0) for all i, j, k ∈ {1, 2}. We have the

following possible cases:

Case 1. If i = k, then we have (eiaejRei)aej = 0. It yields that eiaej = 0 for all i, j ∈ {1, 2}.

Case 2. Suppose that j = k. In the view of proposition 2.1.7 (ii) of [1], there exist a dense left

ideal D of R such that Deia ⊆ R. It implies that (Deiaej)R(Deiaej) ⊆ (Deiaej)Rej = (0). It

follows that Deiaej = (0) for all i, j ∈ {1, 2}. With the aid of proposition 2.1.7 (iii) of [1], we

obtain eiaej = 0 for all i, j ∈ {1, 2}.

Case 3. In latter case i = j. By our hypothesis eiaeiRek = (0) implies eiaei = 0 for all i ∈ {1, 2}.

Now, we see that the condition (H1)-(H6) hold here. Therefore, d is additive by Theorem 1.

In case R is a prime ring, every derivation d : R → Qml is additive automatically, since if

for any q1, q2 ∈ Qml , q1Rq2 = (0) implies q1 = 0 or q0 = 0. Thus, we obtain

Corollary 2. Let R be a prime ring containing a non-trivial idempotent e. Then every multipli-

cative-derivation d : R → Qml is additive.
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1.2 Additivity of multiplicative semi-derivations

In [8] Martindale give a set of conditions that are sufficient for the additivity of ring iso-

morphisms. Precisely, he proved that “Let R be a ring containing a family {eλ : λ ∈ Λ} of

idempotents satisfying (Martindale’s conditions)

(I) xR = (0) implies x = 0,

(II) If for each λ ∈ Λ, eλRx = (0), then x = 0 (hence Rx = (0) implies x = 0),

(III) If eλxeλR(1 − eλ) = (0) for each λ ∈ Λ, then eλxeλ = 0.

Then any multiplicative isomorphism of R onto an arbitrary ring S is additive”. It is natural

to think of a unified notion of multiplicative derivation and a semi derivation. In view of this

idea, we now give the notion of multiplicative semi-derivation, as follows:

Definition 2. Let R be a ring. A mapping g : R → R (not necessarily additive) defined by

g(xy) = g(x)g(y) for all x, y ∈ R is called a multiplicative homomorphism of R. Then the

mapping δ : R → R (not necessarily additive) together with g is called multiplicative semi-

derivation of R if

δ(xy) = δ(x)g(y) + xδ(y) = δ(x)y + g(x)δ(y).

holds for all x, y ∈ R.

Example 1. Let R = {

(

u v

0 w

)

: u, v, w ∈ R}, where R denotes the field of real numbers.

Define a mapping g : R → R by g

(

u v

0 w

)

=





u 0

0 det

(

u v

0 w

)



 , which is clearly a

ring endomorphism of R. Now, it can be easily verified that δ = g − I is the multiplicative

semi-derivation of R.

In this section, our aim is to obtain the additivity of multiplicative semi-derivations of rings

under certain conditions. Precisely, we obtain the following result:

Theorem 2. Let R be a ring satisfying Martindale’s conditions (I)-(III). If d : R → R is a

multiplicative semi-derivation of R associated with a multiplicative isomorphism g : R → R,

then d is additive.

Let us define a function ϕ : R × R → R that ϕ(x, y) = d(x + y) − d(x) − d(y), where d is

a multiplicative semi-derivation of R. Clearly, ϕ is a well-define mapping and ϕ(x, 0) = 0 =

ϕ(0, x) for all x ∈ R. Now, it is clear that d is additive if and only if ϕ = 0. This observation

motivated the technique opted in this paper. We prove Theorem 2 through a sequence of

lemmas.

Lemma 3. For any x, y, k ∈ R, kϕ(x, y) = ϕ(kx, ky) and ϕ(x, y)k = ϕ(xk, yk).

Proof. In the view of [ [8], Theorem], g must be additive on R. For any x, y, k ∈ R, we have

ϕ(kx, ky) = d(k(x + y)) − d(kx) − d(ky) = d(k)g(x + y) + kd(x + y) − d(k)g(x) − kd(x) −

d(k)g(y) − kd(y) = k(d(x + y)− d(x) − d(y)) = kϕ(x, y). On the other hand, let us consider

ϕ(xk, yk) = d((x + y)k) − d(xk) − d(yk) = d(x + y)k + g(x + y)d(k) − d(x)k − g(x)d(k) −

d(y)k − g(y)d(k) = (d(x + y)− d(x)− d(y))k = ϕ(x, y)k.
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Lemma 4. ϕ(xii, xjk) = 0 = ϕ(xjk, xii); j 6= k, where i, j, k ∈ {1, 2}.

Proof. In case i = j. For any ril ∈ Ril, we find ϕ(xii, xjk)ril = ϕ(xiiril, xjkril) = ϕ(zil , 0) = 0 for

all i, j, , k, l ∈ {1, 2}, by Lemma 3. For any rkl ∈ Rkl, we have ϕ(xii, xjk)rkl = ϕ(xiirkl, xjkrkl) =

ϕ(0, wjl) = 0 for all i, j, k, l ∈ {1, 2}. Since i = j 6= k, it implies ϕ(xii, xjk) R = (0). By

hypothesis (I), we obtain ϕ(xii, xjk) = 0. In the latter case, we assume i 6= j. For any rmi ∈ Rmi,

we have rmi ϕ(xii, xjk) = ϕ(rmixii, rmixjk) = ϕ(zmi, 0) = 0 for all i, j, k, m ∈ {1, 2}. Similarly,

we may infer that rmj ϕ(xii, xjk) = 0 for all rmj ∈ Rmj and i, j, k, m ∈ {1, 2}. Combining these

relation, we get Rϕ(xii, xjk) = (0). By hypothesis (II), we get ϕ(xii, xjk) = 0. Hence, we conclude

that ϕ(xii, xjk) = 0 for all j 6= k and i, j, k ∈ {1, 2}. Analogously, we obtain ϕ(xjk, xii) = 0 for all

j 6= k and i, j, k ∈ {1, 2}.

Lemma 5. ϕ(x12, y12) = 0.

Proof. Clearly, e1ϕ(x12, y12) = ϕ(e1x12, e1y12) = ϕ(x12, y12) and ϕ(x12, y12)e1 = ϕ(x12e1, y12

e1) = ϕ(0, 0) = 0. It implies that ϕ(x12, y12) ∈ R12. Therefore, ϕ(x12, y12)a11 = 0 and

ϕ(x12, y12)a12 = 0 for all a11 ∈ R11, a12 ∈ R12. Now for any a21 ∈ R21, we have

ϕ(x12, y12)a21 = ϕ(x12a21, y12a21) = ϕ(x12(a21 + y12a21), e1(a21 + y12a21))

= ϕ(x12, e1)(a21 + y12a21) = 0 (using Lemma 4).

In the similar way, we can show that ϕ(x12, y12)a22 = 0 for all a22 ∈ R22. Combining all these

relations, we get ϕ(x12, y12)R = (0). Hence, ϕ(x12, y12) = 0 by condition (I).

Lemma 6. ϕ(x11, y11) = 0.

Proof. Under the influence of Lemma 3, it is easy to see that ϕ(x11, y11) ∈ R11. For any a12 ∈

R12, we have ϕ(x11, y11)a12 = ϕ(x11a12, y11a12) = ϕ(y12, z12) = 0 by Lemma 5. That means

ϕ(x12, y12)R12 = (0). (18)

Since ϕ(x11, y11) ∈ R11, so ϕ(x11, y11) = e1ϕ(x11, y11)e1. From Eq. (18), we get ϕ(x11, y11)R12

= e1ϕ(x11, y11)e1R(1 − e1) = (0). By condition (III), we obtain e1 ϕ(x11, y11)e1 = 0 and hence

ϕ(x11, y11) = 0.

Lemma 7. ϕ(x11 + x12, y11 + y12) = 0.

Proof. For any a11 ∈ R11 and a12 ∈ R12 we see that ϕ(x11 + x12, y11 + y12)a11 = ϕ(x11a11, y11

a11) = 0 by Lemma 6, and ϕ(x11 + x12, y11 + y12)a12 = ϕ(x11a12, y11a12) = 0 by Lemma 5. By

repeating same arguments and utilization of Lemma 5, 6 we get ϕ(x11 + x12, y11 + y12)a21 = 0

for all a21 ∈ R21 and ϕ(x11 + x12, y11 + y12)a22 = 0 for all a22 ∈ R22. Add up all these equations

in order to find ϕ(x11 + x12, y11 + y12)R = (0). Hence, ϕ(x11 + x12, y11 + y12) = 0 by hypothesis

(I).

Proof of Theorem 2: By Lemma 7, ϕ(u, v) = 0 for all u, v ∈ e1R. For any x, y, r ∈ R, we have

e1rϕ(x, y) = ϕ(e1rx, e1ry) = 0. Since e1 was arbitrary member chosen from the family {eλ :

λ ∈ Λ}, so we must have eλRϕ(x, y) = (0) for all λ ∈ Λ. By our hypothesis (II), we find that

ϕ(x, y) = 0 for all x, y ∈ R.
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d(x)y + xd(y) для всiх x, y ∈ R. У цiй статтi ми намагаємось встановити адитивнiсть d при

деяких додаткових обмеженнях. Крiм того ми вводимо мультиплiкативне напiвдиференцiю-

вання кiльця i обговорюємо його адитивнiсть.
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THE NONLOCAL BOUNDARY VALUE PROBLEM FOR ONE-DIMENSIONAL

BACKWARD KOLMOGOROV EQUATION AND ASSOCIATED SEMIGROUP

This paper is devoted to a partial differential equation approach to the problem of construction

of Feller semigroups associated with one-dimensional diffusion processes with boundary condi-

tions in theory of stochastic processes. In this paper we investigate the boundary-value problem for

a one-dimensional linear parabolic equation of the second order (backward Kolmogorov equation)

in curvilinear bounded domain with one of the variants of nonlocal Feller-Wentzell boundary con-

dition. We restrict our attention to the case when the boundary condition has only one term and it

is of the integral type. The classical solution of the last problem is obtained by the boundary inte-

gral equation method with the use of the fundamental solution of backward Kolmogorov equation

and the associated parabolic potentials. This solution is used to construct the Feller semigroup cor-

responding to such a diffusion phenomenon that a Markovian particle leaves the boundary of the

domain by jumps.

Key words and phrases: parabolic potential, boundary integral equation method, Feller semi-
group, nonlocal boundary condition.
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INTRODUCTION

Let Π[0, T] = {(s, x) : 0 ≤ s ≤ T, x ∈ R} and let St ⊂ Π[0, T] be the curvilinear domain

St = {(s, x) : 0 ≤ s < t ≤ T, r1(s) < x < r2(s)},

where T is a fixed positive number, and r1, r2 are given functions defined on [0, T]. Denote by

Ds the interval (r1(s), r2(s)) and by St and Ds the closure of St and Ds respectively. Denote

also by Ci the curves {(s, ri(s)) : s ∈ [0, T]} (i = 1, 2) and let C = C1 ∪ C2.

In Π[0, T] we consider the parabolic operator of the second order with bounded continuous

coefficients

∂

∂s
+ Ls ≡

∂

∂s
+

1

2
b(s, x)

∂2

∂x2
+ a(s, x)

∂

∂x
.

The main problem is to find a classical solution u(s, x, t) of equation

∂u

∂s
+ Lsu = 0, (s, x) ∈ St, (1)
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c© Shevchuk R.V., Savka I.Ya., Nytrebych Z.M., 2019



464 SHEVCHUK R.V., SAVKA I.YA., NYTREBYCH Z.M.

which satisfies the “initial” condition

lim
s↑t

u(s, x, t) = ϕ(x), x ∈ Dt, (2)

and two boundary conditions

∫

Ds

[u(s, ri(s), t)− u(s, y, t)]µi(s, dy) = 0, 0 ≤ s ≤ t ≤ T, i = 1, 2, (3)

where ϕ is the given function and µi(s, ·) (s ∈ [0, T], i = 1, 2) are given finite nonnegative

measures on Ds, s ∈ [0, T].

The problem (1)-(3) appears, in particular, in the theory of stochastic processes while study-

ing the diffusion processes with boundary conditions. Recall that the most general form of

boundary conditions for one-dimensional diffusion processes was established in works of W.

Feller [2] and A. D. Wentzell [12] (see also [13], where the multidimensional case is consid-

ered). From the assertions proved there, it follows that if the ordinary differential operator

of the second order is a generator of the Feller semigroup in C[r1, r2] (r1, r2 are fixed, −∞ <

r1 < r2 < ∞), then its domain of definition consists of functions satisfying nonlocal boundary

conditions. In the general case, these boundary conditions contain the values of the function

and its first-order derivatives with respect to the time variable and with respect to the spatial

variable at points ri, i = 1, 2, and the nonlocal component of the integral type that correspond,

respectively, to such properties of process after it reaches the boundary point ri as its termina-

tion, delay, reflection and jump out of ri.

In the present paper we shall establish the classical solvability of problem (1)-(3) by the

boundary integral equation method with the use of the fundamental solution of the equation

(1) and the associated parabolic potentials, and prove that its solution u(s, x, t) ≡ Tst ϕ(x) can

be treated as the two parameter semigroup of operators describing an inhomogeneous Feller

process in R which trajectories are located in curvilinear domain ST. It is easy to understand

that the trajectories of this process in ST \ C can be treated as the trajectories of the diffusion

process generated by the operator Ls and at the points of curves Ci (i = 1, 2) their behavior is

determined by Feller-Wentzell boundary conditions in (3). The conditions in (3) correspond to

jump discontinuity of trajectories of process which is caused by inward jump of a Markovian

particle from the boundary.

It is necessary to note that the scheme we shall use to solve the problem (1)-(3) is partially

presented in work [6], where the similar problem was investigated in the case when the back-

ward Kolmogotov equation is given in ∪2
i=1S

(i)
t = ∪2

i=1{(s, x) : 0 ≤ s < t ≤ T, (−1)i(x −
r(s)) > 0} and, at the common boundary x = r(s) of domains S

(1)
t and S

(2)
t , the Feller-

Wentzell conjugation condition, which, in addition to the integral term, contains also the lo-

cal term corresponding to the termination of process, is imposed. We should also mention

works [8], [11], which give the results concerning the construction of diffusion processes with

nonlocal boundary conditions of the integral type by the methods of stochastics [8] and func-

tional analysis [11].

We need the following conditions:

I. The operator ∂/∂s + Ls is uniformly parabolic in Π[0, T], i.e., there exist constants b and

B such that 0 < b ≤ b(s, x) ≤ B < ∞ for all (s, x) ∈ Π[0, T].
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II. The coefficients of Ls are bounded and continuous functions in Π[0, T] which belong

to Hölder class H
α
2 ,α(Π[0, T]), 0 < α < 1 (to recall the definitions of Hölder classes

see [7, p.16]).

III. The function ϕ in (2) is assumed to be defined on R and belongs to the space of bounded

continuous functions on R, which we will denote by Cb(R). The norm in this space is

defined by the equality ‖ϕ‖ = sups∈R
|ϕ(x)|. Furthermore, two fitting conditions

∫

Dt

[ϕ(ri(t))− ϕ(y)]µi(t, dy) = 0, i = 1, 2, hold.

IV. The nonnegative measures µi in (3) are such that µi(s, Ds) = 1, s ∈ [0, T] and for all

f ∈ Cb(R) the integrals ∫

Ds

f (y)µi(s, dy), i = 1, 2,

belong to H
1+α

2 ([0, T]) as functions of s.

V. The functions ri(s), i = 1, 2, are continuous and belong to H
1+α

2 ([0, T]).

Conditions I, II ensure the existence of the fundamental solution of the parabolic operator

∂/∂s + Ls in Π[0, T] (see [7, Ch.IV, §15], [9, Ch.II, §3]), i.e., a function G(s, x, t, y) defined for all

(s, x) and (t, y) in Π[0, T], s < t, satisfying the following condition:

for any ϕ ∈ Cb(R), the function

u0(s, x, t) =
∫

R

G(s, x, t, y)ϕ(y)dy (4)

satisfies the equation (1) if 0 ≤ s < t ≤ T, x ∈ R and the condition (2) if t ∈ (0, T], x ∈ R.

Note that the function G admits the representation

G(s, x, t, y) = Z0(s, x, t, y) + Z1(s, x, t, y), i = 1, 2,

where

Z0(s, x, t, y) = [2πb(t, y)(t − s)]−
1
2 exp

{
− (y − x)2

2b(t, y)(t − s)

}
,

Z1(s, x, t, y) =

t∫

s

dτ
∫

R

Z0(s, x, τ, z)Q(τ, z, t, y)dz,

and the function Q(s, x, t, y) is the solution of some singular Volterra integral equation of the

second kind. Note also that

∣∣Dr
sD

p
x Z0(s, x, t, y)

∣∣ ≤ C(t − s)−
1+2r+p

2 exp

{
−c

(y − x)2

t − s

}
, (5)

∣∣Dr
sD

p
x Z1(s, x, t, y)

∣∣ ≤ C(t − s)−
1+2r+p−α

2 exp

{
−c

(y − x)2

t − s

}
(6)
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(0 ≤ s < t ≤ T, x, y ∈ R), and that for the function u0 defined by (4) (ϕ ∈ Cb(R)) which is

called the Poisson potential in the theory of parabolic equations, the inequality

∣∣Dr
sD

p
x u0(s, x, t)

∣∣ ≤ C‖ϕ‖(t − s)−
2r+p

2 , 0 ≤ s < t ≤ T, x ∈ R, (7)

holds. Here C and c are positive constants (we shall subsequently denote various positive

constants by symbols C or c without specifying their values), r and p are the nonnegative

integers for which 2r + p ≤ 2, Dr
s is the partial derivative with respect to s of order r, D

p
x is the

partial derivative with respect to x of order p.

In addition to the integral u0(s, x, t) we need to consider two more integrals

ui1(s, x, t) =

t∫

s

G(s, x, τ, ri(τ))Vi(τ, t)dτ, i = 1, 2,

where 0 ≤ s < t ≤ T, x ∈ R and V1, V2 are some functions. The function ui1 is called

the parabolic simple-layer potential. If we assume that the density Vi(τ, t) is continuous for

τ ∈ [s, t) and admits a weak singularity with an exponent of not less than −1
2 when τ = t,

then the function ui1(s, x, t), i = 1, 2, is bounded continuous in 0 ≤ s ≤ t ≤ T, x ∈ R and

satisfies the equation (1) in (s, x) ∈ [0, t)× (R \ ri(s)) with the initial condition: ui1(s, x, t) → 0

if s ↑ t (x ∈ R, i = 1, 2).

The important property of the function ui1 is reflected in the so-called theorem on the jump

of conormal derivative of parabolic simple-layer potential (see, e.g. [3, Ch.V, §2], [7, Ch.IV,

§15]). In the present paper this assertion is not used, and therefore we do not formulate it.

1 SOLVING THE PARABOLIC BOUNDARY VALUE PROBLEM

We shall find a solution u of problem (1)-(3) as a sum of Poisson potential u0 and two

simple-layer potentials u11 and u21, namely:

u(s, x, t) =
∫

R

G(s, x, t, y)ϕ(y)dy +
2

∑
j=1

t∫

s

G(s, x, τ, rj(τ))Vj(τ, t)dτ, (s, x) ∈ St. (8)

Here ϕ is the function in (2) and Vi, i = 1, 2, are the unknown densities to be determined.

Note that since µi(s, Ds) = 1 for every s ∈ [0, T] (see the condition IV), the conditions (3)

and the fitting conditions in III can be reduced to

u(s, ri(s), t)−
∫

Ds

u(s, y, t)µi(s, dy) = 0, 0 ≤ s ≤ t ≤ T, i = 1, 2, (9)

and

ϕ(ri(t))−
∫

Dt

ϕ(y)µi(t, dy) = 0, i = 1, 2, (10)

respectively.
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Substituting (8) into (9), we get the system of two Volterra integral equations of the first

kind for the unknowns Vi, i = 1, 2, namely

2

∑
j=1

t∫

s

Kij(s, τ)Vj(τ, t)dτ = Φi(s, t), 0 ≤ s < t ≤ T, i = 1, 2, (11)

where

Kij(s, τ) = G(s, ri(s), τ, rj(τ))−
∫

Ds

G(s, y, τ, rj(τ))µi(s, dy),

Φi(s, t) =
∫

Ds

u0(s, y, t)µi(s, dy)− u0(s, ri(s), t).

Using Holmgren’s method [4] (see also [5]) we shall reduce (11) to an equivalent system

of Volterra integral equations of the second kind. For this purpose we consider the integro-

differential operator

E(s, t) f =

√
2

π

∂

∂s

t∫

s

(ρ − s)−
1
2 f (ρ, t)dρ, 0 ≤ s < t ≤ T

and apply it to the both sides of each equation in (11).

The application of the operator E to the left-hand side of (11) gives the expression which

after interchanging the order of integration takes on the form

Ii(s, t) ≡
2

∑
j=1

√
2

π

∂

∂s

t∫

s

Vj(τ, t)dτ

τ∫

s

(ρ − s)−
1
2 Kij(ρ, τ)dρ.

Write Kij as Kij(ρ, τ) = K
(1)
ij (ρ, τ) + K

(2)
ij (ρ, τ)− K

(3)
ij (ρ, τ), where

K
(1)
ij (ρ, τ) = Z0(ρ, ri(τ), τ, rj(τ)),

K
(2)
ij (ρ, τ) = Z1(ρ, ri(τ), τ, rj(τ)) + [G(ρ, ri(ρ), τ, rj(τ))− G(ρ, ri(τ), τ, rj(τ))],

K
(3)
ij (ρ, τ) =

∫

Dρ

Z0(ρ, y, τ, rj(τ))µi(ρ, dy) +
∫

Dρ

Z1(ρ, y, τ, rj(τ))µi(ρ, dy),

and denote by Jij(s, τ) the integral
τ∫
s
(ρ − s)−

1
2 Kij(ρ, τ)dρ, and by J

(k)
ij (s, τ) the integral

τ∫
s
(ρ − s)−

1
2 K

(k)
ij (ρ, τ)dρ, k = 1, 2, 3.

Note that J
(1)
ij (s, τ) is equal to

1√
2πb(τ, ri(τ))

τ∫

s

(τ − ρ)−
1
2 (ρ − s)−

1
2 dρ =

√
π

2b(τ, ri(τ))
,

when i = j, and tends to zero as s ↑ τ when i 6= j. Note also that application of the mean value

theorem to difference G(ρ, ri(ρ), τ, rj(τ)) − G(ρ, ri(τ), τ, rj(τ)) together with the condition V

and the estimates (5), (6) lead to the estimate

|K(2)
ij (ρ, τ)| ≤ |Z1(ρ, ri(τ), τ, rj(τ))|+ |D1

xG(ρ, x0, τ, rj(τ))| · |ri(τ)− ri(ρ)| ≤ C(τ − ρ)−
1
2+

α
2
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(x0 is a point in the open interval with endpoints ri(τ) and ri(ρ)) from which it follows that

J
(2)
ij (s, τ) → 0 as s ↑ τ.

Hence,

I
(k)
ij (s, t) ≡

√
2

π

∂

∂s

t∫

s

Vj(τ, t)J
(k)
ij (s, τ)dτ =

√
2

π

t∫

s

Vj(τ, t)
∂

∂s
J
(k)
ij (s, τ)dτ (12)

if k = 1, i 6= j or if k = 2. If k = 1 and i = j, then I
(k)
ij (s, t) = − Vi(s,t)√

b(s,ri(s))
.

Let us show that the relation (12) is true also for k = 3. For this it suffices to prove that

lim
s↑τ

J
(3)
ij (s, τ) = 0. (13)

Let us denote by K
(31)
ij the first term in the expression for K

(3)
ij and by J

(31)
ij the integral J

(3)
ij with

K
(3)
ij replaced by K

(31)
ij . In view of (5) and (6), we may verify (13) only for J

(31)
ij .

Write J
(31)
ij in the form J

(31)
ij (s, τ) = L

(1)
ij (s, τ)+ L

(2)
ij (s, τ)+ L

(3)
ij (s, τ), i = 1, 2, j = 1, 2, where

L
(1)
ij (s, τ) =

1√
2πb(τ, rj(τ))

τ∫

s

(ρ − s)−
1
2 (τ − ρ)−

1
2 dρ

[ ∫

Dρ

exp

{
−

(y − rj(τ))
2

2b(τ, rj(τ))(τ − ρ)

}
µi(ρ, dy)

−
∫

Ds

exp

{
−

(y − rj(τ))
2

2b(τ, rj(τ))(τ − ρ)

}
µi(s, dy)

]
,

L
(2)
ij (s, τ) =

1√
2πb(τ, rj(τ))

∫

Ds

[
exp

{
−

(y − rj(τ))
2

2b(τ, rj(τ))(τ − s)

}

− exp

{
−

(y − rj(s))
2

2b(τ, rj(τ))(τ − s)

}]
Rj(s, τ, y)µi(s, dy),

L
(3)
ij (s, τ) =

1√
2πb(τ, rj(τ))

∫

Ds

exp

{
−

(y − rj(s))
2

2b(τ, rj(τ))(τ − s)

}
Rj(s, τ, y)µi(s, dy),

and Rj(s, τ, y) denotes the integral

Rj(s, τ, y) =

τ∫

s

(ρ − s)−
1
2 (τ − ρ)−

1
2 exp

{
−

(y − rj(τ))
2

2b(τ, rj(τ))(τ − s)
· ρ − s

τ − ρ

}
dρ,

which after the change of variables z = ρ−s
τ−ρ takes on the form

Rj(s, τ, y) =

∞∫

0

z−
1
2 (z + 1)−1 exp

{
−

(y − rj(τ))
2

2b(τ, rj(τ))(τ − s)
· z

}
dz,

and so

|Rj(s, τ, y)| ≤ C. (14)
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From this and IV it follows immediately that

|L(1)
ij (s, τ)| ≤ C(τ − s)

1+α
2 , (15)

|L(3)
ij (s, τ)| ≤ C

(
µi(s, Uδ(rj(s))) + exp

{
− δ2

2B(τ − s)

})
, (16)

where Uδ(rj(s)) = {y ∈ Ds : |y − rj(s)| < δ}, δ is any positive constant, B is the constant

from I. Applying the mean value theorem to the difference of exponents within the braces in

the expression for L
(2)
ij , we get, after using the condition V as well as the estimate (14) and the

inequality σν exp{−cσ} ≤ C (0 ≤ σ < ∞, 0 ≤ ν < ∞),

|L(2)
ij (s, τ)| ≤ C(τ − s)

α
2 . (17)

The estimates (15)–(17) imply that J
(31)
ij (s, τ) → 0 as s ↑ τ. This completes the proof of (13).

Thus, the relation (12) holds also for k = 3.

Let us apply the operator E to the right-hand side of (11). In order to simplify the expression

for Υi(s, t) ≡ E(s, t)Φi(s, t) we need to prove the following two relations:

Φi(s, t) → 0 as s ↑ t, (18)

|Φi(s, t)− Φi(s̃, t)| ≤ C‖ϕ‖(t − s)−
1+α

2 (s − s̃)
1+α

2 , 0 ≤ s̃ < s < t ≤ T. (19)

Passing to the limit as s ↑ t in the expression for Φi (i = 1, 2), and recalling that the Poisson

potential u0 satisfies the condition (2), we get the expression which equals the left side of (10)

taken with the opposite sign and which therefore vanishes. Thus (18) holds.

We proceed to prove (19). Write the difference Φi(s, t)− Φi(s̃, t) in the form

Φi(s, t)− Φi(s̃, t) =
∫

Ds

[u0(s, y, t)− u0(s̃, y, t)]µi(s, dy)

+

[ ∫

Ds

u0(s̃, y, t)µi(s, dy)−
∫

Ds̃

u0(s̃, y, t)µi(s̃, dy)

]

+ [u0(s̃, ri(s̃), t)− u0(s, ri(s̃), t)] + [u0(s, ri(s̃), t)− u0(s, ri(s), t)]

(20)

and note that for s̃ < s

|u0(s, y, t)− u0(s̃, y, t)| = |u0(s, y, t)− u0(s̃, y, t)| 1+α
2 |u0(s, y, t)− u0(s̃, y, t)| 1−α

2

≤
∣∣∣∣∣
∂u0(ŝ, y, t)

∂ŝ

∣∣∣∣
ŝ=s̃+θ(s−s̃)

· (s − s̃)

∣∣∣∣∣

1+α
2

(|u0(s, y, t)|+ |u0(s̃, y, t)|) 1−α
2

≤ C‖ϕ‖
[
(t − s̃ − θ(s − s̃))−1(s − s̃)

] 1+α
2

≤ C‖ϕ‖
[
((t − s)+(s − s̃)(1 − θ))−1(s − s̃)

] 1+α
2

≤ C‖ϕ‖(t − s)−
1+α

2 (s − s̃)
1+α

2 , 0 < θ < 1.

Using this inequality for differences u0(s, y, t)− u0(s̃, y, t), u0(s̃, ri(s̃), t)− u0(s, ri(s̃), t) and the

condition IV to estimate the difference of integrals in the second line of the expression (20)
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as well as the Lagrange formula together with the condition V and the inequality (7) (with

r = 0, p = 1) to estimate the last term u0(s, ri(s̃), t)− u0(s, ri(s), t) in (20), we arrive at (19).

Taking into account (18) and (19) we see thus that the application of the operator E to the

function Φi gives

Υi(s, t) =
1√
2π

t∫

s

(ρ − s)−
3
2 [Φi(ρ, t)− Φi(s, t)]dρ −

√
2

π
(t − s)−

1
2 Φi(s, t). (21)

Having considered the action of the operator E on both sides of (11), we can now write the

system of Volterra integral equations of the second kind for the unknowns Vi, i = 1, 2, which

is equivalent to (11) and has the form

Vi(s, t) =
2

∑
j=1

Nij(s, τ)Vj(τ, t)dτ + Ψi(s, t), 0 ≤ s < t ≤ T, i = 1, 2, (22)

where

Ψi(s, t) = −
√

b(s, ri(s))Υi(s, t),

Nii(s, τ) =

√
2b(s, ri(s))

π

∂

∂s

(
J
(2)
ii (s, τ)− J

(3)
ii (s, τ)

)
, i = j,

Nij(s, τ) =

√
2b(s, ri(s))

π

∂

∂s
Jij(s, τ), i 6= j.

Note that from (21), (19) and (7) (with r = p = 0), it follows that

|Ψi(s, t)| ≤ C‖ϕ‖(t − s)−
1
2 .

Unfortunately, the kernels Nij do not have a weak singularity. We can not find the estimate for

Nij(s, τ) better than C(τ − s)−1. However this difficulty arises due to only one term

∫

Uδ(rj(s))

∂

∂y
Z0(s, y, τ, rj(τ))µi(s, dy)

which appears after writing ∂
∂s J

(31)
ij (s, τ) in the form

∂

∂s
J
(31)
ij (s, τ) =

∂

∂s

τ∫

s

(ρ − s)−
1
2

( ∫

Dρ

Z0(ρ, y, τ, rj(τ))µi(ρ, dy)

−
∫

Ds0

Z0(ρ, y, τ, rj(τ))µi(s0, dy)

)∣∣∣∣
s0=s

+
∂

∂s

τ∫

s

(ρ − s)−
1
2 dρ

∫

Ds0

Z0(ρ, y, τ, rj(τ))µi(s0, dy)

∣∣∣∣
s0=s

and then taking the derivative of the last term in this expression. Namely,
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∂

∂s

τ∫

s

(ρ − s)−
1
2 dρ

∫

Ds0

Z0(ρ, y, τ, rj(τ))µi(s0, dy)

∣∣∣∣
s0=s

=
1√

2πb(τ, rj(τ))

× ∂

∂s

∫

Ds0

exp

{
−

(y − rj(τ))
2

2b(τ, rj(τ))(τ − s)

}
Rj(s, τ, y)µi(s0, dy)

∣∣∣∣
s0=s

=
1√

2πb(τ, rj(τ))

× ∂

∂s

∫

Ds0

µi(s0, dy)

∞∫

0

z−
1
2 (z + 1)−1 exp

{
−

(y − rj(τ))
2

2b(τ, rj(τ))(τ − s)
· (z + 1)

}
dz

∣∣∣∣
s0=s

=

√
πb(τ, rj(τ))

2

∫

Ds

∂

∂y
Z0(s, y, τ, rj(τ))µi(s, dy) =

√
πb(τ, rj(τ))

2

×
( ∫

Uδ(rj(s))

∂

∂y
Z0(s, y, τ, rj(τ))µi(s, dy) +

∫

Ds\Uδ(rj(s))

∂

∂y
Z0(s, y, τ, rj(τ))µi(s, dy)

)
.

All other terms in the expression for Nij can be estimated by C(δ)(τ − s)−1+ α
2 , where C(δ)

is the positive constant depending on δ.

Despite the strong singularity of kernels Nij, the system of equations (22) has a solution

and this solution can be found by the method of successive approximations:

Vi(s, t) =
∞

∑
n=0

V
(n)
i (s, t), 0 ≤ s < t ≤ T, i = 1, 2, (23)

where

V
(0)
i (s, t) = Ψi(s, t), V

(n)
i (s, t) =

2

∑
j=1

t∫

s

Nij(s, τ)V
(n−1)
j (τ, t)dτ, n = 1, 2, . . . .

The convergence of series (23) and so the existence of the function Vi follows from the next

inequality

|V(n)
i (s, t)| ≤ C‖ϕ‖(t − s)−

1
2

n

∑
k=0

Ck
na(n−k)mk, 0 ≤ s < t ≤ T, i = 1, 2, (24)

where

a(k) =

(
2C(δ0)T

α
2 Γ(α

2 )
)k

Γ(1
2 )

Γ
(

1+kα
2

) , k = 0, 1, . . . , n,

m = max
s∈[0,T]

{ 2

∑
j=1

µi(s, Uδ0
(rj(s))), i = 1, 2

}

and the constant δ = δ0 is chosen to be sufficiently small so that m < 1. One can prove the

estimate (24) by induction and by using the scheme analogous to those used in the proofs of

(15), (16) and (17). Note also that the similar scheme was used in [10] in the study of the system

of Volterra integral equations of the second kind with strong singularity in the kernels.
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From (24) it also follows that the function Vi(s, t), i = 1, 2, satisfies the inequality

|Vi(s, t)| ≤ C‖ϕ‖(t − s)−
1
2 . (25)

Thus, the formula (23) represents the unique solution of (22), which is continuous in the

domain 0 ≤ s < t ≤ T and satisfies the inequality (25).

From estimates (5) (with r = p = 0) and (25) it follows that there exist the simple-layer

potentials ui1(s, x, t), i = 1, 2, in (8), and for them the condition ui1(s, x, t) → 0 if s ↑ t and the

inequality

|ui1(s, x, t)| ≤ C‖ϕ‖, (s, x) ∈ St, (26)

hold. It is obvious (see (7)) that the same inequality is also true for the Poisson potential

u0(s, x, t) in (8) and thus for the function u(s, x, t) as well. Recalling that u0(s, x, t) → ϕ(x) if

s ↑ t and that the functions u0(s, x, t) and ui1(s, x, t) satisfy equation (1) in the domain (s, x) ∈
St we conclude that u(s, x, t) is the desired classical solution of problem (1)-(3).

Let us prove the uniqueness of the solution of the problem (1)-(3). Suppose that the prob-

lem (1)-(3) has two solutions u1(s, x, t) and u2(s, x, t) which are continuous in St. Then the

function u ≡ u1 − u2 satisfies equation (1), the initial condition (2) with ϕ ≡ 0 and two bound-

ary conditions

u(s, ri(s), t) = gi(s, t), 0 ≤ s < t ≤ T, i = 1, 2,

where

gi(s, t) =
∫

Ds

u(s, y, t)µi(s, dy).

The above problem is the first boundary value problem and since the function gi is continuous

in s, it has a unique classical solution, continuous in St, which can be represented in the form

(8) with ϕ ≡ 0. Thus, the function u can be expressed in the form (8) where there are no Poisson

potential and Vi are the unknown functions, continuous in s ∈ [0, t), which are determined by

gi(s, t). Further, if we repeat the considerations of this section concerning the construction of

solution of the problem (1)-(3), we obtain the system (22) with Ψi ≡ 0 for the unknowns Vi.

Then Vi ≡ 0 and hence u ≡ 0. This completes the proof of the uniqueness.

Thus we have proved the following theorem:

Theorem 1. Let conditions I-V hold. Then problem (1)-(3) has a unique classical solution,

continuous in St for all t ∈ (0, T]. Furthermore, this solution has the form (8) and satisfies the

inequality (26).

2 FELLER SEMIGROUP

Suppose that the conditions I-V hold and consider the two-parameter family of linear op-

erators Tst, 0 ≤ s < t ≤ T, acting on the function ϕ ∈ Cb(R) by the rule:

Tst ϕ(x) =
∫

R

G(s, x, t, y)ϕ(y)dy +
2

∑
j=1

t∫

s

G(s, x, τ, rj(τ))Vj(τ, t)dτ, (27)

where the pair of functions (V1, V2) is the solution of (22). Recall that the function Vi (i = 1, 2)

has the form (23) and satisfy the inequality (25).
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We introduce the subspace C0(R) of Cb(R) which consists of all functions ϕ ∈ Cb(R) for

which the fitting conditions in III holds. Since the subspace C0(R) is closed in Cb(R), it is a

Banach space. Furthermore, it is invariant under the operators Tst, i.e.,

ϕ ∈ C0(R) =⇒ Tst ϕ ∈ C0(R).

Let us study properties of the family of operators Tst in C0(R).

First we note that if the sequence ϕn ∈ Cb(R) is such that lim
n→∞

ϕn(x) = ϕ(x) for all x ∈ R

and, in addition, sup
n

‖ϕn‖ < ∞, then lim
n→∞

Tst ϕn(x) = Tst ϕ(x) for all 0 ≤ s < t ≤ T, x ∈ Ds.

The proof of this property is based on well known assertions of calculus on passage of the

limit under the summation and integral signs (here this concerns series (23) and integrals on

the right-hand side of (8)). This property allows us to prove the following properties of the

operator family Tst without loss of generality, under the assumption that the function ϕ has a

compact support.

Now we prove that the operators Tst, 0 ≤ s < t ≤ T, remain the cone of nonnegative

functions invariant.

Lemma 1. If ϕ ∈ C0(R) and ϕ(x) ≥ 0 for all x ∈ R, then Tst ϕ(x) ≥ 0 for all x ∈ Ds,

0 ≤ s < t ≤ T.

Proof. Let ϕ be any nonnegative function in C0(R) with a compact support. Denote by γ the

minimum of Tst ϕ(x) in St and assume that γ < 0. From the minimum principle [3, Ch.II]

it follows that the value γ may be attained only when s ∈ (0, t) and x = ri(s), i = 1, 2. Fix

s0 ∈ (0, t) and i0 ∈ {1, 2} for which Ts0t ϕ(ri0(s0)) = γ. But then
∫

Ds0

[Ts0t ϕ(ri0(s0))− Ts0t ϕ(y)]µi0(s0, dy) < 0

which contradicts (3). Therefore γ ≥ 0 and the assertion of the lemma follows.

Note also that Tst ϕ0(x) = 1 for all 0 ≤ s < t ≤ T, x ∈ Ds if ϕ0 ≡ 1. This property together

with the assertion of lemma 1 allow us to assert that operators Tst are contractive, i.e.,

‖Tst ϕ‖ ≤ ‖ϕ‖
for all 0 ≤ s < t ≤ T.

Finally, we show that the operator family Tst has the semigroup property

Tst = TsτTτt, 0 ≤ s < τ < t ≤ T.

This property is a consequence of the assertion of uniqueness of the solution of the problem

(1)-(3). Indeed, to find u(s, x, t) = Tst ϕ(x), when it is given that u(s, x, t) → ϕ(x) as s ↑ t,

one can solve the problem first in time interval [τ, t] and then solve it in the time interval [s, τ]

with that initial function u(τ, x, t) = Tτt ϕ(x) which was obtained; in other words, Tst ϕ(x) =

Tsτ(Tτt ϕ)(x), ϕ ∈ C0(R) or Tst = TsτTτt.

The above properties of operators Tst imply the following assertion (see [1, Ch.II, §1]).

Theorem 2. Let conditions I-V hold. Then the two-parameter family of operators Tst, 0 ≤
s < t ≤ T, defined by formula (27) describes the inhomogeneous Feller process in R which

trajectories are located in curvilinear domain ST. In ST \ C , the trajectories of this process can

be treated as the trajectories of the diffusion process generated by the operator Ls and at the

points of curves Ci (i = 1, 2) they behave according to boundary conditions in (3).
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Шевчук Р.В., Савка I.Я., Нитребич З.М. Нелокальна крайова задача для одновимiрного оберненого

рiвняння Колмогорова i пов’язана з нею напiвгрупа операторiв // Карпатськi матем. публ. — 2019.

— Т.11, №2. — C. 463–474.

Стаття присвячена вивченню методами теорiї диференцiальних рiвнянь в частинних по-

хiдних проблеми побудови напiвгруп Феллера, якi описують одновимiрнi дифузiйнi проце-

си в областях iз заданими крайовими умовами. У цiй статтi ми дослiджуємо крайову задачу

для одновимiрного лiнiйного параболiчного рiвняння другого порядку (оберненого рiвнян-

ня Колмогорова) у криволiнiйнiй обмеженiй областi з одним iз варiантiв нелокальної крайо-

вої умови типу Феллера-Вентцеля. Ми зосереджуємо увагу на випадку, коли крайова умо-

ва Феллера-Вентцеля мiстить лише компоненту iнтегрального типу. Класичну розв’язнiсть

останньої задачi одержано нами методом граничних iнтегральних рiвнянь з використанням

фундаментального розв’язку оберненого рiвняння Колмогорова i породжених ним параболi-

чних потенцiалiв. Цей розв’язок використано для побудови напiвгрупи Феллера, яка описує

явище дифузiї в обмеженiй областi з властивiстю повернення дифундуючої частинки в сере-

дину областi стрибками.

Ключовi слова i фрази: параболiчний потенцiал, метод граничних iнтегральних рiвнянь, на-

пiвгрупа Феллера, нелокальна крайова умова.
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A NEW GENERALIZATION OF α-TYPE ALMOST-F-CONTRACTIONS AND α-TYPE

F-SUZUKI CONTRACTIONS IN METRIC SPACES AND THEIR FIXED POINT

THEOREMS

In this paper a new generalization of α-type almost-F-contractions and an extension of α-type

F-Suzuki contractions are given. Moreover, some new fixed point theorems of them are discussed.

Some examples and applications in order to illustrate the main results are presented. The results of

this article can be considered as improvements of some well-known results appeared in the litera-

ture.
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1 INTRODUCTION

After innovation of the Banach contraction principle [2], fixed point theory, which was one

of the most celebrated tool in nonlinear analysis, acquires a distinguished role in research ac-

tivity. Due to its applications in the nonlinear integro-differential equations, nonlinear Volterra

integral equations, game theory etc, existence of a fixed point for contraction type mappings

in metric spaces have been considered by many authors. see, for instance, [4,12,13,17,19,22,23]

and the references therein.

During the past decades, scholars extend this principle towards different contractions. Spe-

cially, in 2012, Wardowski [24] generalized it interestingly by introducing a new type of con-

tractions called F-contractions. After presentation of F-contractions, many authors extended

them in various forms. Some extensions and generalizations are obtained in [1,6–11,14–21,25].

Wardowski and Van Dung [25] (also independently Minak et al. [14]) with using Ćirić-type

generalized contraction [5] in definition of F-contractions, introduced the notion of F-weak

contractions and utilize the same to generalize the main result of [24].

Very recently (in 2016) Gopal et al. [7] generalized it by introducing the concept of α-type

F-contraction. On the other hand, In 2014 Piri and Kumam [16] extended the results of War-

dowski [24] by introducing the concept of an F-Suzuki contraction. Also, in the same year,

Minak et al. [14] introduced a new concept of an almost-F-contraction. Most recently (in 2016)

Budhia et al. [3] introduced the new concepts of an α-type almost-F-contraction and an α-type

F-Suzuki contraction and proved some fixed point theorems concerning such contractions. In

this research, we extended the results of [7] and [3], by introducing a new type of contractions

that is called α-type almost-F-weak contraction and an α-type F-weak Suzuki contraction.

УДК 517.988.523
2010 Mathematics Subject Classification: 47H10, 54H25, 37C25.

c© Taheri A., Farajzadeh A.P., 2019
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2 PRELIMINARIES

Here, we express a series of definitions of some fundamental notions.

First, let us, following [24], denote with F the family of all functions F : (0,+∞) → R that

satisfy the following conditions:

(F1) F is strictly increasing,

(F2) for every sequence {αn} in (0,+∞), we have limn→∞ F(αn) = −∞ iff limn→∞ αn = 0,

(F3) there exists a number k ∈ (0, 1) such that limα→0+ αkF(α) = −∞.

And following [20], denote by G the collection of all functions F : (0,+∞) → R satisfying the

following conditions:

(G1) F is strictly increasing,

(G2) there exists a sequence {αn} in (0,+∞) such that limn→∞ F(αn) = −∞, or inf F = −∞,

(G3) F is a continuous map.

Example 1 ([3]). The following functions belong to F :

F(α) = ln α, F(α) = ln α + α, F(α) = − 1√
α

,

and the following functions F : (0,+∞) → R belongs to G :

F(α) = ln α, F(α) = −1

α
+ α, F(α) = −1

α
.

Definition 1 ([24]). Let (X, d) be a metric space. The mapping T : X → X is called an

F-contraction, if there exist F ∈ F and τ > 0 such that, for all x, y ∈ X with d(Tx, Ty) > 0, we

have

τ + F(d(Tx, Ty)) ≤ F(d(x, y)).

Example 2 ([24], Example 2.1). It is easy to verify that every Banach contraction is an

F-contraction with F(t) = ln t and τ = ln r. For more details and examples see [24].

Definition 2 ([25]). Let (X, d) be a metric space. The mapping T : X → X is called an F-weak

contraction on X if there exist F ∈ F and τ > 0 such that, for all x, y ∈ X with d(Tx, Ty) > 0,

we have

τ + F(d(Tx, Ty)) ≤ F(m(x, y)),

where

m(x, y) = max

{

d(x, y), d(x, Tx), d(y, Ty),
d(x, Ty) + d(y, Tx)

2

}

.

Remark 1. Every F-contraction is an F-weak contraction but converse is not necessarily true

[25].

Definition 3 ([25]). Let (X, d) be a metric space and α : X × X → (0,+∞) ∪ {−∞} be a

symmetric function. The mapping T : X → X is called an α-type F-contraction on X if there

exist F ∈ F and τ > 0 such that, for all x, y ∈ X with d(Tx, Ty) > 0, we have

τ + α(x, y)F(d(Tx, Ty)) ≤ F(d(x, y)).
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Definition 4 ([25]). Let (X, d) be a metric space and α : X × X → (0,+∞) ∪ {−∞} be a

symmetric function. The mapping T : X → X is called an α-type F-weak contraction on X if

there exist F ∈ F and τ > 0 such that, for all x, y ∈ X with d(Tx, Ty) > 0, we have

τ + α(x, y)F(d(Tx, Ty)) ≤ F(m(x, y)),

where

m(x, y) = max

{

d(x, y), d(x, Tx), d(y, Ty),
d(x, Ty) + d(y, Tx)

2

}

.

Remark 2. Every α-type F-contraction is an α-type F-weak contraction but the converse is not

necessarily true.

Remark 3. It is clear that every F-weak contraction is an α-type F-weak contraction with

α(x, y) = 1, for all x, y ∈ X. But every α-type F-weak contraction is not necessarily an F-weak

contraction. For example, see ([25], Example 3.4).

Definition 5 ([14]). Let (X, d) be a metric space. The mapping T : X → X is said to be an

almost-F-contraction, if there exist F ∈ F , τ > 0 and L ≥ 0 such that for all x, y ∈ X,

d(Tx, Ty) > 0 ⇒ τ + F(d(Tx, Ty)) ≤ F(d(x, y) + Ld(y, Tx))

and

d(Tx, Ty) > 0 ⇒ τ + F(d(Tx, Ty)) ≤ F(d(x, y) + Ld(x, Ty)).

Remark 4. Every F-contraction is an almost-F-contraction with L = 0, but the converse is not

necessarily true [14]. Also, it is obvious that every F-weak contraction is an α-type F-weak

contraction with α(x, y) = 1, for all x, y ∈ X, but the converse is not necessarily true. For

examples, see [14].

Definition 6 ([3]). Let (X, d) be a metric space. The mapping T : X → X is said to be an α-type

almost-F-contraction, if there exist F ∈ F and τ > 0 and L ≥ 0 such that for all x, y ∈ X,

d(Tx, Ty) > 0 ⇒ τ + F(d(Tx, Ty)) ≤ F(d(x, y) + Ld(y, Tx))

and

d(Tx, Ty) > 0 ⇒ τ + F(d(Tx, Ty)) ≤ F(d(x, y) + Ld(x, Ty)).

Remark 5. Every almost-F-contraction is an α-type almost-F-contraction with α(x, y) = 1, for

all x, y ∈ X. But the converse is not necessarily true. For some examples, see [3, Example 3.1].

Definition 7 ([16]). Let (X, d) be a metric space. A mapping T : X → X is said to be an

F-Suzuki contraction if there exist F ∈ G and τ > 0 such that for all x, y ∈ X with Tx 6= Ty

1

2
d(x, Tx) ≤ d(x, y) implies that τ + F(d(Tx, Ty)) ≤ F(d(x, y)).

Definition 8 ([3]). Let (X, d) be a metric space and α : X × X → (0,+∞) ∪ {−∞} be a sym-

metric function. The mapping T : X → X is said to be an α-type F-Suzuki contraction if there

exist F ∈ G and τ > 0 such that for all x, y ∈ X with Tx 6= Ty

1

2
d(x, Tx) ≤ d(x, y) implies that τ + α(x, y)F(d(Tx, Ty)) ≤ F(d(x, y)).
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Remark 6. Every α-type F-Suzuki contraction is an F-Suzuki contraction with α(x, y) = 1, for

all x, y ∈ X. But the converse is not necessarily true. For example, see [3, Example 3.2].

Definition 9 ([19]). Let α : X × X → (0,+∞) be a given mapping. The mapping T : X → X is

said to be an α-admissible, whenever α(Tx, Ty) ≥ 1 provided α(x, y) ≥ 1 and x, y ∈ X.

Definition 10. An α-admissible map T is said to have the K-property, if for each sequence

{xn} ⊆ X with α(xn, xn+1) ≥ 1, for all n ∈ N, there exists a natural number k such that

α(Txn, Txm) ≥ 1, for all m > n ≥ k.

We state the following lemmas which are useful in proving our main results.

Lemma 1 ([16]). Let F : (0,+∞) → R be an increasing function and {αn} be a sequence of

positive real numbers. Then, the following holds:

(a) if limn→∞ F(αn) = −∞, then limn→∞ αn = 0,

(b) if inf F = −∞ and limn→∞ αn = 0, then limn→∞ F(αn) = −∞.

Lemma 2 ([4]). Let (X, d) be a metric space, and {xn} be a sequence in X such that

limn→∞ d(xn, xn+1) = 0. If {xn} is not a Cauchy sequence then there exists ε > 0 and two

sequences of positive integers {nk} and {mk} with nk > mk > k such that d(xmk
, xnk

) > ε,

d(xmk
, xnk−1) < ε and

(1) limk→∞ d(xmk
, xnk

) = ε,

(2) limk→∞ d(xmk−1, xnk
) = ε,

(3) limk→∞ d(xmk
, xnk+1) = ε,

(4) limk→∞ d(xmk−1, xnk+1) = ε.

3 MAIN RESULTS

In this section, two new contractions are introduced. In the first part of this section, the

concept of an α-type almost-F-weak contraction is defined in metric spaces. And in the second

part the concept of an α-type F-weak Suzuki contraction is introduced. Some fixed point the-

orems for these contractions are proved and suitable examples are furnished to demonstrate

the validity of the hypotheses of our results and reality of our generalizations.

We commence our main result with the following definition.

Definition 11. Let (X, d) be a metric space and α : X × X → (0,+∞) ∪ {−∞} be a symmetric

function. The mapping T : X → X is said to be an α-type almost-F-weak contraction (for

simplicity we write almost-α F-weak contraction), if there exist F ∈ F , τ > 0 and L ≥ 0 such

that d(Tx, Ty) > 0 implies that

τ + α(x, y)F(d(Tx, Ty)) ≤ F(m(x, y) + LN1(x, y)),

where

m(x, y) = max

{

d(x, y), d(x, Tx), d(y, Ty),
d(x, Ty) + d(y, Tx)

2

}

,

and

N1(x, y) = min{d(x, Ty), d(y, Tx)}.
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Example 3. Let X = {(0, 0), (0, 4), (5, 0), (4, 5)} be endowed with the metric d defined by

d

(

(x1, x2), (y1, y2)

)

= |x1 − y1|+ |x2 − y2| .

It is easy to see that (X, d) is a complete metric space.

Suppose that T : X → X is defined as follows :

T(0, 0) = T(5, 0) = T(0, 4) = (0, 0), T(4, 5) = (5, 0).

Furthermore, suppose α((x1, x2), (y1, y2)) = 1, for all (x1, x2), (y1, y2) ∈ X. It is easily verified

that, for each F ∈ F , the mapping T is not an α-type almost-F-contraction. Indeed, for any

τ > 0 and F ∈ F , we have

τ + α

(

(0, 4), (4, 5)

)

F

(

d

(

T(0, 4), T(4, 5)

))

= τ + F

(

d

(

(0, 0), (5, 0)

))

= τ + F(5).

On the other hand, we have

F

(

d

(

(0, 4), (4, 5)

)

+ Ld

(

(4, 5), T(0, 4)

))

= F(5).

And τ + F(5) > F(5). So, T is not an α-type almost-F-contraction. But, one can easily see that,

for 0 < τ < ln 6
5 and F(t) = ln t, if d

(

T(x1, x2), T(y1, y2)

)

> 0 then

τ + α

(

(x1, x2), (y1, y2)

)

F

(

d

(

T(x1, x2), T(y1, y2)

))

≤ F

(

m

(

(x1, x2), (y1, y2)

)

+

LN1

(

(x1, x2), (y1, y2)

))

,

(1)

where

m

(

(x1, x2), (y1, y2)

)

= max

{

d

(

(x1, x2), (y1, y2)

)

, d

(

(x1, x2), T(x1, x2)

)

,

d

(

(y1, y2), T(y1, y2)

)

,

d

(

(x1,x2),T(y1,y2)

)

+d

(

(y1,y2),T(x1,x2)

)

2

}

,

and

N1

(

(x1, x2), (y1, y2)

)

= min

{

d

(

(x1, x2), T(y1, y2)

)

, d

(

(y1, y2), T(x1, x2)

)}

.

For example d

(

T(0, 4), T(4, 5)

)

= d

(

(0, 0), (5, 0)

)

= 5 > 0 and

m

(

(0, 4), (4, 5)

)

= max

{

d

(

(0, 4), (4, 5)

)

, d

(

(0, 4), T(0, 4)

)

, d

(

(4, 5), T(4, 5)

)

,

d

(

(0,4),T(4,5)

)

+d

(

(4,5),T(0,4)

)

2

}

= max{5, 4, 6, 9+9
2 } = 9,
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and we have

τ + α

(

(0, 4), (4, 5)

)

F

(

d

(

T(0, 4), T(4, 5)

))

= τ + F(5) < ln
6

5
+ ln 5 = ln 6.

On the other hand, we have

F

(

m

(

(0, 4), (4, 5)

)

+ LN1

(

(0, 4), (4, 5)

))

= F(9) = ln 9.

Hence,

τ + α

(

(0, 4), (4, 5)

)

F

(

d

(

T(0, 4), T(4, 5)

))

< F

(

m

(

(0, 4), (4, 5)

)

+ LN1

(

(0, 4), (4, 5)

))

.

Or for (5, 0) and (4, 5), we have d

(

T(5, 0), T(4, 5)

)

= d

(

(0, 0), (5, 0)

)

= 5 > 0 and

m

(

(5, 0), (4, 5)

)

= max

{

d

(

(5, 0), (4, 5)

)

, d

(

(5, 0), T(5, 0)

)

, d

(

(4, 5), T(4, 5)

)

,

d

(

(5,0),T(4,5)

)

+d

(

(4,5),T(5,0)

)

2

}

= max{6, 5, 6, 0+9
2 } = 6,

and we have

τ + α

(

(5, 0), (4, 5)

)

F

(

d

(

T(5, 0), T(4, 5)

))

= τ + F(5) < ln
6

5
+ ln 5 = ln 6.

On the other hand, we have

F

(

m((5, 0), (4, 5)) + LN1((5, 0), (4, 5))

)

= F(6) = ln 6.

Hence,

τ + α

(

(5, 0), (4, 5)

)

F

(

d

(

T(5, 0), T(4, 5)

))

≤ F

(

m

(

(5, 0), (4, 5)

)

+ LN1

(

(5, 0), (4, 5)

))

.

In the same manner, we can easily check that (1) is satisfied for (0, 0) and (4, 5). Therefore, T

is an almost-α F-weak contraction.

Now, we present our first result.

Theorem 1. Let (X, d) be a complete metric space, α : X × X → (0,+∞)∪ {−∞} be a symmet-

ric function, F ∈ F and T : X → X be an almost-α F-weak contraction satisfying the following

conditions:

(i) T is α-admissible,

(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1,

(iii) if {xn} is a sequence in X such that xn → x as n → ∞ and α(xn, xn+1) ≥ 1, for all n ∈ N,

then α(xn, x) ≥ 1, for all n ∈ N.
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Then, if T or F is continuous then T has a fixed point.

Proof. Let x0 ∈ X be such that α(x0, Tx0) ≥ 1. For any n ∈ N, define:

xn+1 = T(xn).

If xn0+1 = xn0 for some n0 ∈ N then xn0 is a fixed point of T. So, we can assume that xn+1 6= xn,

for each n ∈ N. Since T is α-admissible, one can easily obtain that

α(xn, xn+1) ≥ 1, ∀n ∈ N. (2)

Now since T is an almost-αF − weak contraction, there exist τ > 0 and L ≥ 0 such that if

d(Tx, Ty) > 0, then

τ + α(x, y)F(d(Tx, Ty)) ≤ F(m(x, y) + LN1(x, y)). (3)

Therefore, by (2) and (3)

τ + F(d(Txn , Txn+1)) ≤ τ + α(xn, xn+1)F(d(Txn , Txn+1))

≤ F(m(xn, xn+1) + LN1(xn, xn+1)) ≤ F(m(xn, xn+1) + Ld(xn+1, Txn))

= F(m(xn, xn+1) + 0) = F(m(xn, xn+1)).

Hence, we have

τ + F(d(xn+1, xn+2)) ≤ F(m(xn, xn+1)). (4)

But

m(xn, xn+1) = max

{

d(xn, xn+1), d(xn, Txn), d(xn+1, Txn+1),
d(xn,Txn+1)+d(xn+1,Txn)

2

}

= max

{

d(xn, xn+1), d(xn+1, xn+2),
d(xn,xn+2)

2

}

≤ max

{

d(xn, xn+1), d(xn+1, xn+2),
d(xn,xn+1)+d(xn+1,xn+2)

2

}

≤ max{d(xn , xn+1), d(xn+1, xn+2)}.

Now, if d(xn0+1, xn0+2) ≥ d(xn0 , xn0+1) for some n0 ∈ N, then

m(xn0 , xn0+1) ≤ d(xn0+1, xn0+2),

and since F is strictly increasing,

F(m(xn0 , xn0+1)) ≤ F(d(xn0+1, xn0+2)),

so, it follow from (4)

τ + F(d(xn0+1, xn0+2)) ≤ F(d(xn0+1, xn0+2)).

So, τ ≤ 0 is a contradiction. Consequently,

d(xn+1, xn+2) < d(xn, xn+1), ∀n ∈ N. (5)
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Hence, from (4) and (5), we have

τ + F(d(xn+1, xn+2)) ≤ F(d(xn, xn+1)),

or

F(d(xn+1, xn+2)) ≤ F(d(xn, xn+1))− τ.

In general, one can get

F(d(xn+1, xn+2)) ≤ F(d(x0, x1))− nτ. (6)

Hence limn→∞ F(d(xn , xn+1)) = −∞. So, from (F2) we have,

lim
n→∞

d(xn, xn+1) = 0.

Therefore, with notice to (F3), there exists k ∈ (0, 1) such that

lim
n→∞

(d(xn, xn+1))
kF(d(xn , xn+1)) = 0.

Now, (6) implies that

(d(xn , xn+1))
kF(d(xn , xn+1)) ≤ (d(xn , xn+1))

k(F(d(x0 , x1))− nτ).

Then, it can be easily seen that

lim
n→∞

n(d(xn, xn+1))
k = 0.

So, there exists n0 ∈ N such that

d(xn, xn+1) ≤
1

n
1
k

, ∀n ≥ n0.

Consequently, if m > n > n0, then

d(xn, xm) ≤ ∑
m
i=n d(xi, xi+1) ≤ ∑

m
i=n

1

i
1
k

≤ ∑
∞
i=n0

1

i
1
k

.

Since k ∈ (0, 1), the series ∑
∞
i=n0

1

i
1
k

is convergent. Therefore, {xn} is a Cauchy sequence, and

since X is complete, there exists u ∈ X such that xn → u as n → ∞. We claim that u is a fixed

point of T.

To prove the claim, at first suppose that T is continuous, then we have

u = lim
n→∞

xn+1 = lim
n→∞

Txn = T(u),

and so u is a fixed point of T. Now, suppose that F is continuous and in contrary, suppose

that Tu 6= u. Without lose of generality, one can assume that there exists n0 ∈ N such that

Txn 6= Tu, for all n ≥ n0. (Indeed, if xn+1 = Txn = Tu for infinite values of n, then uniqueness

of the limit concludes that Tu = u).

From (iii) and (4), we have

τ + F(d(Txn , Tu)) ≤ τ + α(xn, u)F(d(Txn , Tu)) ≤ F(m(xn, u) + LN1(xn, u))

≤ F(m(xn, u) + Ld(Txn, u)) = F(m(xn, u) + Ld(xn+1, u))
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And since F is continuous, as n → ∞ we get

τ + F(d(u, Tu)) ≤ F( lim
n→∞

(m(xn, u) + Ld(xn+1, u))), (7)

where

m(xn, u) = max

{

d(xn, u), d(xn, xn+1), d(u, Tu),
d(xn, Tu) + d(u, xn+1)

2

}

,

so,

lim
n→∞

m(xn, u) = max

{

0, 0, d(u, Tu),
d(u, Tu) + 0

2

}

= d(u, Tu).

Also, we have

lim
n→∞

Ld(xn+1, u) = 0.

Therefore, from (7) we have

τ + F(d(u, Tu)) ≤ F(d(u, Tu)),

which is contradicted by positivity of τ . So, d(u, Tu) = 0 i.e. Tu = u.

The next result establishes a sufficient condition for uniqueness of fixed point.

Theorem 2. Let (X, d) be a complete metric space and T : X → X be a mapping for which

there exist F ∈ F and τ > 0 and L ≥ 0 such that d(Tx, Ty) > 0 implies that

τ + α(x, y)F(d(Tx, Ty)) ≤ F(m(x, y) + LN2(x, y)), (8)

where m(x, y) is defined as in Definition 11 and

N2(x, y) = min{d(x, Tx), d(x, Ty), d(y, Tx)}.

We further assume that α(x, y) ≥ 1, for each x, y ∈ Fix(T). Then if T is satisfies the conditions

(i), (ii) and (iii) of Theorem 1 and T or F is continuous, then T has a unique fixed point.

Proof. It is clear that T is an almost-α F-weak contraction. So, by Theorem 1, T has a fixed

point.

Now, suppose that u and v are two fixed point of T. If u 6= v, then d(Tu, Tv) > 0. Also

α(u, v) ≥ 1, because u, v ∈ Fix(T), hence (8) implies that

τ + F(d(u, v)) = τ + F(d(Tu, Tv)) ≤ τ + α(u, v)F(d(Tu, Tv))

≤ F(m(u, v) + LN2(u, v)) ≤ F(m(u, v) + Ld(u, Tu))

= F(m(u, v) + 0) = F(m(u, v)),

where

m(u, v) = max

{

d(u, v), d(u, Tu), d(v, Tv), d(u,Tv)+d(v,Tu)
2

}

= max{d(u, v), 0, 0, d(u,v)+d(v,u)
2 } = d(u, v).

So, we have

τ + F(d(u, v)) ≤ F(d(u, v)),

which is contradicted by positivity of τ. So, u = v.
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Corollary 1 ([3], Theorem 3.1). Let (X, d) be a complete metric space and T : X → X be an

α-type almost-F-contraction, where F ∈ F , satisfying the following conditions:

(i) T is α-admissible,

(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1,

(iii) if {xn} is a sequence in X such that xn → x as n → ∞ and α(xn, xn+1) ≥ 1 for all n ∈ N,

then α(xn, x) ≥ 1, for all n ∈ N.

Then, T has a fixed point.

Proof. It is enough to notice that T is an almost-α F-weak contraction in which m(x, y) =

d(x, y). One can prove this corollary by applying the proof of Theorem 1, without needing

to continuity of T or F.

The following corollaries are some obvious results of Theorem 1.

Corollary 2. Let (X, d) be a complete metric space and T : X → X be an almost F-contraction.

Then, T has a fixed point.

Proof. In Theorem 1, put α(x, y) = 1, for each x, y ∈ X.

Corollary 3. Let (X, d) be a complete metric space and T : X → X be an F-contraction. Then,

T has a unique fixed point.

Proof. In the Theorem 1, put α(x, y) = 1, for each x, y ∈ X, and L = 0.

The following example shows that Theorem 1 is a generalization of the Theorem 3.1 in [3].

Example 4. In the Example 3, we observed that the mapping T is not an α-type almost-F-

contraction. So, T does not satisfy to Theorem 3.1 in [3]. But T is an almost-α F-weak contrac-

tion, and we can easily see that T satisfies all conditions of Theorem 1 and (0, 0) is a fixed point

of T. Also, all conditions of the Theorem 2 are satisfied and (0, 0) is the unique fixed point of

the map T.

Here, to obtain our next results, we first introduce the following definition.

Definition 12. Let (X, d) be a metric space and α : X × X → (0,+∞) ∪ {−∞} be a symmetric

function. The mapping T : X → X is said to be an α-type F-weak Suzuki contraction (for

simplicity we write α F-weak Suzuki contraction) if there exists F ∈ G and τ > 0 such that for

all x, y ∈ X with Tx 6= Ty,

1

2
d(x, Tx) ≤ d(x, y) implies that τ + α(x, y)F(d(Tx, Ty)) ≤ F(m(x, y)),

where m(x, y) is defined as in Definition 11.

Example 5. Let X = {0, 1, 2} be endowed with the metric d defined by

d(x, y) = |x − y|.



A NEW GENERALIZATION OF α-TYPE ALMOST-F-CONTRACTIONS 485

And T : X → X is defined as follows

T(1) = T(2) = 1 and T(0) = 2.

Furthermore, suppose that α(x, y) = 1, for all x, y ∈ X. It is easily verified that, for each F ∈ F ,

the mapping T is not an α-type F-Suzuki contraction. Indeed, for any τ > 0 and F ∈ F , we

have
1

2
d(0, T0) =

1

2
d(0, 2) = 1 = d(0, 1),

and

τ + α(0, 1)F(d(T0, T1)) = τ + F(d(2, 1)) = τ + F(1).

On the other hand, we have

F(d(0, 1)) = F(1).

And τ + F(1) > F(1). So, T is not an α-type F-Suzuki contraction. But one can easily see that,

for 0 < τ ≤ ln 2 and F(t) = ln t, if d(Tx, Ty) 6= 0 then

1

2
d(x, Tx) ≤ d(x, y) implies that τ + α(x, y)F(d(Tx, Ty)) ≤ F(m(x, y)), (9)

where m(x, y) is defined as in Definition 11. For example, d(T(0), T(1)) = d(2, 1) = 1 and

m(0, 1) = max

{

d(0, 1), d(0, T0), d(1, T1),
d(0, T1) + d(1, T0)

2

}

= 2,

and we have

τ + α(0, 1)F(d(T0, T1)) = τ + F(1) ≤ ln 2 + ln 1 = ln 2.

On the other hand, we have

F(m(0, 1)) = F(2) = ln 2.

Hence,

τ + α(0, 1)F(d(T0, T1)) ≤ F(m(0, 1)).

In the same manner, we can easily check that (9) is satisfied for x = 0, y = 2. Therefore, (9) is

satisfied for any x, y ∈ X which d(Tx, Ty) 6= 0. So, T is an α F-weak Suzuki contraction.

Theorem 3. Let (X, d) be a complete metric space and T : X → X be an α F-weak Suzuki

contraction, satisfying the following conditions:

(i) T is α-admissible,

(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1,

(iii) if {xn} is a sequence in X such that xn → x as n → ∞ and α(xn, xn+1) ≥ 1, for all

n ∈ N ∪ {0}, then α(xn, x) ≥ 1, for all n ∈ N ∪ {0},

(iv) T has the K-property.

Then, T has a fixed point in X.
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Proof. Let x0 ∈ X be such that α(x0, Tx0) ≥ 1. For any n ∈ N ∪ {0}, define:

xn+1 = T(xn).

Since T is α-admissible, one can easily obtain that

α(xn, xn+1) ≥ 1, ∀n ∈ N ∪ {0}. (10)

If xn0+1 = xn0 for some n0 ∈ N ∪ {0}, then xn0 is a fixed point of T. So, we can assume that

xn+1 6= xn for each n ∈ N ∪ {0}, i.e. d(xn, xn+1) > 0 and so

1

2
d(xn, Txn) =

1

2
d(xn, xn+1) < d(xn, xn+1). (11)

Now, since T is an α F-weak Suzuki contraction, there exist F ∈ G and τ > 0 such that if

d(Tx, Ty) > 0, then

1

2
d(x, Tx) ≤ d(x, y) implies that τ + α(x, y)F(d(Tx, Ty)) ≤ F(m(x, y)), (12)

where m(x, y) is defined as in Definition 11.

Therefore, by (11) and (12)

τ + F(d(Txn , Txn+1)) ≤ τ + α(xn, xn+1)F(d(Txn , Txn+1))

≤ F(m(xn, xn+1)),
(13)

in which

m(xn, xn+1) = max

{

d(xn, xn+1), d(xn, Txn), d(xn+1, Txn+1),
d(xn,Txn+1)+d(xn+1,Txn)

2

}

= max

{

d(xn, xn+1), d(xn+1, xn+2),
d(xn,xn+2)

2

}

≤ max

{

d(xn, xn+1), d(xn+1, xn+2),
d(xn,xn+1)+d(xn+1,xn+2)

2

}

≤ max{d(xn , xn+1), d(xn+1, xn+2)}.

Now, if d(xn0+1, xn0+2) ≥ d(xn0 , xn0+1) for some n0 ∈ N ∪ {0}, then

m(xn0 , xn0+1) ≤ d(xn0+1, xn0+2),

and since F is strictly increasing,

F(m(xn0 , xn0+1)) ≤ F(d(xn0+1, xn0+2)).

Therefore by (13)

τ + F(d(xn0+1, xn0+2)) ≤ F(d(xn0+1, xn0+2)).

So, τ ≤ 0 a contradiction. Consequently,

d(xn+1, xn+2) < d(xn, xn+1), ∀n ∈ N. (14)
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Therefore,

m(xn, xn+1) ≤ d(xn, xn+1), ∀n ∈ N ∪ {0}. (15)

So, from (13) and (14) one can obtain that

τ + F(d(xn+1, xn+2)) ≤ F(d(xn, xn+1)),

or

F(d(xn+1, xn+2)) ≤ F(d(xn, xn+1))− τ.

In general, one can get

F(d(xn+1, xn+2)) ≤ F(d(x0, x1))− nτ.

Hence,

lim
n→∞

F(d(xn , xn+1)) = −∞,

which together with (G2) and Lemma 1, gives

lim
n→∞

d(xn, xn+1) = 0.

Now, we claim that {xn} is a Cauchy sequence. If it is not true, then by Lemma 2, there exists

ε0 > 0 and two sequences of positive integers {nk} and {mk} with nk > mk > k such that

d(xmk
, xnk

) > ε0, d(xmk
, xnk−1) < ε0 and

(L1) limk→∞ d(xnk
, xmk

) = ε0,

(L2) limk→∞ d(xnk
, xmk−1) = ε0,

(L3) limk→∞ d(xnk+1, xmk
) = ε0,

(L4) limk→∞ d(xnk+1, xmk−1) = ε0.

Therefore, with notice to definition of m(x, y) we have:

lim
k→∞

m(xnk
, xmk−1) = lim

k→∞
max

{

d(xnk
, xmk−1), d(xnk

, xnk+1), d(xmk−1, xmk
),

d(xnk
,xmk

+d(xmk−1,xnk+1))

2

}

= max{ε0, 0, 0, ε0+ε0
2 } = ε0.

So

lim
k→∞

m(xnk
, xmk−1) = ε0. (16)

On the other hand, since limk→∞ d(xnk
, xmk−1) = ε0 > 0, and limk→∞ d(xnk

, xnk+1) = 0, by

considering a subsequence if necessary, one can assume that, there exists k1 ∈ N such that for

any k > k1 and nk > mk > k

d(xnk
, xnk+1) ≤ d(xnk

, xmk−1).

So, it is clear that

1

2
d(xnk

, Txnk
) =

1

2
d(xnk

, xnk+1) < d(xnk
, xmk−1), ∀k > k1 and nk > mk > k. (17)
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Also, using the K-property, there exists k2 ∈ N such that

α(xnk
, xmk−1) ≥ 1, ∀k > k2. (18)

Let k ≥ max{k1, k2}, then from (18), (17) and (12) we have

τ + F(d(Txnk
, xmk−1)) ≤ τ + α(xnk

, xmk−1)F(d(Txnk
, Txmk−1))

≤ F(m(xnk
, xmk−1)).

Letting n → ∞, since F is continuous, by (L1) and (16) we have

τ + F(ε0) ≤ F(ε0),

which is a contradiction, as τ > 0. Consequently, {xn} is a Cauchy sequence in the complete

metric space X. So, there exists u ∈ X such that xn → u, as n → ∞. To complete the proof, we

show that u is a fixed point of T. At first, we claim that, for all n ≥ 0

1

2
d(xn, xn+1) ≤ d(xn, u) or

1

2
d(xn+1, xn+2) ≤ d(xn+1, u). (19)

In fact, if for some n0 ≥ 0, both of them are false then we will have

1

2
d(xn0 , xn0+1) > d(xn0 , u) and

1

2
d(xn0+1, xn0+2) > d(xn0+1, u).

So, with notice of (14) we have

d(xn0 , xn0+1) ≤ d(xn0 , u) + d(u, xn0+1) <
1
2 d(xn0 , xn0+1) +

1
2 d(xn0+1, xn0+2)

≤ 1
2 d(xn0 , xn0+1) +

1
2 d(xn0 , xn0+1) = d(xn0 , xn0+1).

Which is a contradiction and the claim is proved.

Well, let us begin with the first part of (19), i.e. suppose that

1

2
d(xn, xn+1) ≤ d(xn, u),

and in contrary, assume that Tu 6= u. Without lose of generality, one can assume that Txn 6= Tu,

for all n ∈ N. (Indeed, if xn+1 = Txn = Tu for infinite values of n, then uniqueness of the limit

concludes that Tu = u). Then, from (14) and (iii) we get

τ + F(d(xn+1, Tu)) = τ + F(d(Txn , Tu))

≤ τ + α(xn, u)F(d(Txn , Tu)) ≤ F(m(xn, u)),

and since F is continuous on (0,+∞) and d(u, Tu) > 0 as n → ∞, we get

τ + F(d(u, Tu)) ≤ F( lim
n→∞

m(xn, u)). (20)

But

m(xn, u) = max

{

d(xn, u), d(xn, xn+1), d(u, Tu),
d(xn, Tu) + d(u, xn+1)

2

}

.

So, we have

lim
n→∞

m(xn, u) = max

{

0, 0, d(u, Tu),
d(u, Tu) + 0

2

}

= d(u, Tu).
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Therefore, if d(u, Tu) 6= 0 then from (20) we have

τ + F(d(u, Tu)) ≤ F(d(u, Tu)),

which is contradicted by positivity of τ. So, d(u, Tu) = 0, i.e. Tu = u. Finally, if we assume

that the second part of (19) is true, i.e.

1

2
d(xn+1, xn+2) ≤ d(xn+1, u).

Then, as the same manner, we can prove that d(u, Tu) = 0, i.e. Tu = u.

The next result establishes a sufficient condition for uniqueness of fixed point of an α F-

weak Suzuki contraction.

Theorem 4. Suppose that all the conditions of Theorem 3 are satisfied. In addition, assume

that α(x, y) ≥ 1, for all x, y ∈ Fix(T). Then, T has a unique fixed point.

Proof. Suppose that u and v are two fixed point of T. If u 6= v, then d(Tu, Tv) > 0. Also

α(u, v) ≥ 1, because u, v ∈ Fix(T). Also, it is clear that 1
2 d(u, Tu) = 0 < d(u, v). Hence, (12)

implies that

τ + F(d(u, v)) = τ + F(d(Tu, Tv)) ≤ τ + α(u, v)F(d(Tu, Tv)) ≤ F(m(u, v)),

where

m(u, v) = max

{

d(u, v), d(u, Tu), d(v, Tv), d(u,Tv)+d(v,Tu)
2

}

= max{d(u, v), 0, 0, d(u,v)+d(v,u)
2 } = d(u, v).

So, we have

τ + F(d(u, v)) ≤ F(d(u, v)),

which is a contradiction, as τ > 0. So, u = v.

Since each α-type F-Suzuki contraction is obviously an α F-weak Suzuki contraction, the

following two corollaries are elementary results of Theorems 3 and 4 respectively.

Corollary 4 ([3], Theorem 3.3). Let (X, d) be a complete metric space and T : X → X be an α-

type F-Suzuki contraction, satisfying the conditions (i)–(iv) of Theorem 3. Then, T has a fixed

point.

Corollary 5 ([3], Theorem 3.4). If in the Corollary 4, we further assume that α(x, y) ≥ 1, for all

x, y ∈ Fix(T), then T has a unique fixed point.

The following example shows that Theorem 3 is a generalization of Theorem 3.3 in [3].

Example 6. In the Example 5, we saw that the mapping T is not an α-type F-Suzuki contraction.

So, T does not satisfy to Theorem 3.3 in [3]. But T is an α F-weak Suzuki contraction, and we

can easily see that T satisfies all conditions of Theorem 3. And u = 1 is a fixed point of T. Also,

all conditions of Theorem 4 are satisfied and u = 1 is the unique fixed point of T.
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4 CONSEQUENCES

In this section, one of the consequences of our research in metric spaces with graph is

introduced. First, we remind a series of definitions and notions in graph theory.

Let (X, d) be a metric space and ∆ = {(x, x), x ∈ X}. Suppose that G is a graph, V(G) is

the set of all its vertices and E(G) is the set of all edges of G. We say that G has no parallel

edge, if (x, y), (y, x) ∈ E(G) implies that x = y. Also G is directed if the edges have a direction

associated with them. We denoted by G(X) the set of all directed graph G with no parallel

edge in which V(G) = X and ∆ ⊆ E(G).

Definition 13 ([9]). The mapping T : X → X is called G-continuous, if for each sequence

{xn}∞
n=1 in X that (xn, xn+1) ∈ E(G) ∀n ∈ N and xn → x as n → ∞ one can conclude that

Txn → Tx as n → ∞.

Theorem 5. Let (X, d) be a complete metric space endowed with a graph G ∈ G(X) and

T : X → X be a mapping with the following conditions:

(i) for all x, y ∈ X, (x, y) ∈ E(G) ⇒ (Tx, Ty) ∈ E(G),

(ii) there exists x0 ∈ X such that (x0, Tx0) ∈ E(G),

(iii) for any sequence {xn}∞
n=1 ⊆ X and x ∈ X if limn→∞ xn = x and (xn, xn+1) ∈ E(G), for

all n ∈ N, then (xn, x) ∈ E(G), for all n ∈ N,

(iv) there exist F ∈ F , and τ > 0 and L ≥ 0 such that if (x, y) ∈ E(G) and d(Tx, Ty) > 0 then

τ + F(d(Tx, Ty)) ≤ F(m(x, y) + LN1(x, y)), (21)

where m(x, y) and N1(x, y) are defined as in Definition 11.

Then, if T is G-continuous or F is continuous, then T has a fixed point.

Proof. Define α : X × X → (0,+∞) ∪ {−∞} by

α(x, y) =

{

1, if (x, y) ∈ E(G),

−∞, otherwise.

We show that all condition of Theorem 1 are satisfied. First, prove that T is α-admissible, it is

enough to notice that if α(x, y) ≥ 1, then (x, y) ∈ E(G) and it follows from (i) that (Tx, Ty) ∈
E(G). Hence, α(Tx, Ty) ≥ 1. By (ii) there exists x0 ∈ X such that (x0, Tx0) ∈ E(G) i.e.

α(x0, Tx0) ≥ 1. Now, suppose that {xn}∞
n=1 ⊆ X is a sequence in X such that xn → x as n → ∞

and α(xn, xn+1) ≥ 1, for all n ∈ N, Then, (xn, xn+1) ∈ E(G) and it follows from (iv) that

(xn, x) ∈ E(G), for all n ∈ N, i.e. α(xn, x) ≥ 1, for all n ∈ N ∪ {0}. Finally, we show that T

is an almost-α F-weak contraction on X. For this, suppose that x, y ∈ X and d(Tx, Ty) > 0. If

(x, y) /∈ E(G), then α(x, y) = −∞ and so we have

τ + α(x, y)F(d(Tx, Ty)) ≤ F(m(x, y) + LN1(x, y)).

If (x, y) ∈ E(G), then α(x, y) = 1 and it follows from (21) that

τ + α(x, y)F(d(Tx, Ty)) = τ + F(d(Tx, Ty)) ≤ F(m(x, y) + LN1(x, y)).

Thus, T is an almost-α F-weak contraction on X. It follow from all the conditions of Theorem

1 are satisfied and T has a fixed point in X.
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The following result is immediately deduced from Theorem 5.

Corollary 6 ([6], Theorem 4.1). Let (X, d) be a complete metric space endowed with a graph

G ∈ G(X) and T : X → X be a mapping with the following conditions:

(i) for all x, y ∈ X, (x, y) ∈ E(G) ⇒ (Tx, Ty) ∈ E(G),

(ii) there exists x0 ∈ X such that (x0, Tx0) ∈ E(G),

(iii) for any sequence {xn}∞
n=1 ⊆ X and x ∈ X if limn→∞ xn = x and (xn, xn+1) ∈ E(G), for

all n ∈ N, then (xn, x) ∈ E(G), for all n ∈ N or T is G-continuous.

(iv) there exist F ∈ F , τ > 0 and L ≥ 0 such that if (x, y) ∈ E(G) and d(Tx, Ty) > 0 then

τ + F(d(Tx, Ty)) ≤ F(d(x, y) + LN1(x, y)).

Then, T has a fixed point.
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Тахерi А., Фараджаде А.П. Нова характеризацiя майже-F-стиску α-типу i F-Сузукi стиску α-

типу в метричних просторах i теореми про фiксовану точку для них // Карпатськi матем. публ.

— 2019. — Т.11, №2. — C. 475–492.

У цiй статтi запропоновано нове узагальнення майже-F-стиску α-типу i продовження F-

Сузукi стиску α-типу. Крiм того, доведено деякi новi теореми про фiксовану точку для цих

випадкiв. Наведено приклади i застосування, якi iлюструють основнi результати. Результати

цiєї статтi покращують результати, якi добре вiдомi у лiтературi.

Ключовi слова i фрази: майже-F-стиск α-типу, F-Сузукi стиск α-типу.
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VASYLYSHYN T.V.

POINT-EVALUATION FUNCTIONALS ON ALGEBRAS OF SYMMETRIC FUNCTIONS

ON (L∞)2

It is known that every continuous symmetric (invariant under the composition of its argument

with each Lebesgue measurable bijection of [0, 1] that preserve the Lebesgue measure of measur-

able sets) polynomial on the Cartesian power of the complex Banach space L∞ of all Lebesgue mea-

surable essentially bounded complex-valued functions on [0, 1] can be uniquely represented as an

algebraic combination, i.e., a linear combination of products, of the so-called elementary symmet-

ric polynomials. Consequently, every continuous complex-valued linear multiplicative functional

(character) of an arbitrary topological algebra of the functions on the Cartesian power of L∞, which

contains the algebra of continuous symmetric polynomials on the Cartesian power of L∞ as a dense

subalgebra, is uniquely determined by its values on elementary symmetric polynomials. There-

fore, the problem of the description of the spectrum (the set of all characters) of such an algebra is

equivalent to the problem of the description of sets of the above-mentioned values of characters on

elementary symmetric polynomials.

In this work the problem of the description of sets of values of characters, which are point-

evaluation functionals, on elementary symmetric polynomials on the Cartesian square of L∞ is com-

pletely solved. We show that sets of values of point-evaluation functionals on elementary symmetric

polynomials satisfy some natural condition. Also we show that for any set c of complex numbers,

which satisfies the above-mentioned condition, there exists the element x of the Cartesian square of

L∞ such that values of the point-evaluation functional at x on elementary symmetric polynomials

coincide with the respective elements of the set c.

Key words and phrases: symmetric polynomial, point-evaluation functional.
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INTRODUCTION

In general, the problem of the description of the spectrum (the set of continuous complex-

valued linear multiplicative functionals, or characters) of a topological algebra of analytic func-

tions on a Banach space is unsolved. But if a topological algebra or its dense subalgebra has

a countable algebraic basis (the subset B of the algebra A is called an algebraic basis of A, if

every element of A can be uniquely represented as an algebraic combination (a linear com-

bination of products) of elements of B), then the problem of the description of the spectrum

simplifies, because in this case every character is uniquely determined by the sequence of its

values on elements of the algebraic basis and, consequently, the problem of the description of

the spectrum is equivalent to the problem of the description of the set of such sequences. For
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example, in [2] it was constructed an algebraic basis of the algebra of all continuous symmet-

ric (see definition below) polynomials on the complex Banach space L∞ of all complex-valued

Lebesgue measurable essentially bounded functions on [0, 1]. Also, using this result, in [2] it

was described the spectrum of the Fréchet algebra Hbs(L∞) of all entire symmetric functions

of bounded type on L∞ and it was shown that every character of Hbs(L∞) is a point-evaluation

functional.

Firstly algebraic bases of algebras of symmetric continuous polynomials on real Banach

spaces of Lebesgue measurable integrable in a power p functions on [0, 1] and [0,+∞), where

1 ≤ p < +∞, were studied by Nemirovskii and Semenov in [7]. Some of their results were

generalized to real separable rearrangement invariant Banach spaces of Lebesgue measurable

functions on [0, 1] and [0,+∞) by González, Gonzalo and Jaramillo in [4]. Symmetric polyno-

mials and symmetric analytic functions on the complex Banach spaces of all complex-valued

Lebesgue measurable essentially bounded functions on [0, 1] and [0,+∞) were studied in [2]

and [3] respectively. Symmetric polynomials on Cartesian products of some Banach spaces

were studied in [6, 8–12]. In particular, in [10] it was constructed a countable algebraic basis of

the algebra of continuous symmetric polynomials on the Cartesian power of L∞.

In this work the problem of the description of sequences of values of point-evaluation func-

tionals on the elements of the algebraic basis of the algebra of continuous symmetric polyno-

mials on the Cartesian square of L∞ is completely solved. We show that the above-mentioned

sequences satisfy some natural condition. Also we show that for any sequence c of complex

numbers, which satisfies this condition, there exists an element x of the Cartesian square of L∞

such that the sequence of values of the point-evaluation functional at x coincides with c. We

generalize the results of [11].

1 PRELIMINARIES

We denote by N the set of all positive integers and by Z+ the set of all nonnegative integers.

A mapping P : X → C, where X is a Banach space with norm ‖ · ‖X , is called an N-

homogeneous polynomial, where N ∈ N, if there exists an N-linear mapping AP : XN → C such

that

P(x) = AP

(
x, . . . , x
︸ ︷︷ ︸

N

)

for every x ∈ X. It is known that an N-homogeneous polynomial P : X → C is continuous if

and only if

‖P‖ = sup
‖x‖X≤1

|P(x)| < +∞.

Consequently, if P is a continuous N-homogeneous polynomial, then

|P(x)| ≤ ‖P‖‖x‖N
X (1)

for every x ∈ X.

A mapping P = P0 + P1 + . . . + PN, where P0 ∈ C and Pj is a j-homogeneous polynomial

for every j ∈ {1, . . . , N}, is called a polynomial of degree at most N.

Let L∞ be the complex Banach space of all Lebesgue measurable essentially bounded com-

plex-valued functions x on [0, 1] with norm

‖x‖∞ = ess supt∈[0,1]|x(t)|.
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Let (L∞)2 be the Cartesian square of L∞ with norm

‖x‖∞,2 = max
{
‖x1‖∞, ‖x2‖∞

}

where x = (x1, x2) ∈ (L∞)2.

Let Ξ be the set of all bijections σ : [0, 1] → [0, 1] such that both σ and σ−1 are measurable

and preserve the Lebesgue measure. A function f : (L∞)2 → C is called symmetric if

f (x ◦ σ) = f (x)

for every x = (x1, x2) ∈ (L∞)2 and for every σ ∈ Ξ, where x ◦ σ = (x1 ◦ σ, x2 ◦ σ).

For every multi-index k = (k1, k2) ∈ Z2
+ \ {(0, 0)} let us define a mapping Rk : (L∞)2 → C

by

Rk(x) =
∫

[0,1]

2

∏
s=1
ks>0

(xs(t))
ks dt, (2)

where x = (x1, x2) ∈ (L∞)2. Note that Rk is a continuous symmetric |k|-homogeneous poly-

nomial, where |k| = k1 + k2, and ‖Rk‖ = 1. By [10, Theorem 2], the set of polynomials
{

Rk : k ∈ Z
2
+ \ {(0, 0)}

}
is an algebraic basis of the algebra Ps((L∞)2) of all continuous

symmetric polynomials on (L∞)2.

Let A be an algebra of functions f : D → C, where the set D is such that D ⊃ (L∞)2. For

x ∈ (L∞)2, let the mapping δx : A → C be defined by

δx( f ) = f (x),

where f ∈ A. The mapping δx is called a point-evaluation functional at the point x. Note that

a point-evaluation functional is linear and multiplicative.

We shall use the following result.

Theorem 1. (see [2, Section 3]) For every sequence ξ = {ξn}∞
n=1 ⊂ C such that

sup
n∈N

n

√

|ξn| < +∞,

there exists vξ ∈ L∞ such that
∫

[0,1]
(vξ(t))

n dt = ξn

for every n ∈ N and ‖xξ‖∞ ≤ 2
M supn∈N

n
√

|ξn|, where

M =
∞

∏
n=1

cos

(
π

2

1

n + 1

)

. (3)

2 THE MAIN RESULT

Theorem 2. For every mapping c : Z2
+ \ {(0, 0)} → C such that

sup
n∈Z2

+\{(0,0)}
|c(n)|1/|n|

< +∞

there exists a function xc ∈ (L∞)2 such that Rn(xc) = c(n) for every n ∈ Z
2
+ \ {(0, 0)} and

‖xc‖∞,2 ≤
24

M3
sup

n∈Z2
+\{(0,0)}

|c(n)|1/|n| ,

where M is defined by (3).
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Proof. Let εk be the kth Rademacher function, that is, εk(t) = sign(sin 2kπt). It is well known

(see, e.g., [1, p. 162] or [5, Chapter 3]) that the series ∑
∞
k=1 εk(t)uk is convergent almost every-

where on [0, 1] if and only if the series ∑
∞
k=1 |uk|2 converges. Consequently, the series ∑

∞
k=1

εk(t)
k+1

converges almost everywhere on [0, 1].

For every n = (n1, n2) ∈ N
2 let us define a function pn : [0, 1] → C

2 by

pn(t) =

(

exp
( iπ

2n1

∞

∑
k=1

ε2k−1(t)

k + 1

)

, exp
( iπ

2n2

∞

∑
k=1

ε2k(t)

k + 1

))

.

Note that the function pn belongs to the space (L∞[0, 1])2 and ||pn|| = 1.

The sequence of the functions
{

p
(l)
n

}∞

l=1
, where

p
(l)
n (t) =

(

exp
( iπ

2n1

l

∑
k=1

ε2k−1(t)

k + 1

)

, exp
( iπ

2n2

l

∑
k=1

ε2k(t)

k + 1

))

,

converges pointwise to pn. Therefore, for every m = (m1, m2) ∈ N2, according to the domi-

nated convergence theorem,

Rm(pn) = lim
l→∞

Rm
(

p
(l)
n

)
.

Note that

Rm
(

p
(l)
n

)
=

∫

[0,1]
exp

( iπ

2n1
m1

l

∑
k=1

ε2k−1(t)

k + 1

)

exp
( iπ

2n2
m2

l

∑
k=1

ε2k(t)

k + 1

)

dt

= exp
( iπ

2n1
m1

1

2

) ∫

[0, 1
2 ]

exp
( iπ

2n1
m1

l

∑
k=2

ε2k−1(t)

k + 1

)

exp
( iπ

2n2
m2

l

∑
k=1

ε2k(t)

k + 1

)

dt

+ exp
( iπ

2n1
m1

−1

2

) ∫

[ 1
2 ,1]

exp
( iπ

2n1
m1

l

∑
k=2

ε2k−1(t)

k + 1

)

exp
( iπ

2n2
m2

l

∑
k=1

ε2k(t)

k + 1

)

dt

= cos
(πm1

2n1

1

2

) ∫

[0, 1
2 ]

exp
( iπ

2n1
m1

l

∑
k=2

ε2k−1(t)

k + 1

)

exp
( iπ

2n2
m2

l

∑
k=1

ε2k(t)

k + 1

)

dt

= 4 cos
(πm1

2n1

1

2

)

cos
(πm2

2n2

1

2

)

×
∫

[0, 1
4 ]

exp
( iπ

2n1
m1

l

∑
k=2

ε2k−1(t)

k + 1

)

exp
( iπ

2n2
m2

l

∑
k=2

ε2k(t)

k + 1

)

dt

= 42 cos
(πm1

2n1

1

2

)

cos
(πm2

2n2

1

2

)

cos
(πm1

2n1

1

3

)

cos
(πm2

2n2

1

3

)

×
∫

[0, 1
42 ]

exp
( iπ

2n1
m1

l

∑
k=3

ε2k−1(t)

k + 1

)

exp
( iπ

2n2
m2

l

∑
k=3

ε2k(t)

k + 1

)

dt = . . .

= 4l
∫

[0, 1
4l ]

dt
l

∏
k=1

cos
(πm1

2n1

1

k + 1

)

cos
(πm2

2n2

1

k + 1

)

=
l

∏
k=1

cos
(πm1

2n1

1

k + 1

)

cos
(πm2

2n2

1

k + 1

)

.

Therefore,

Rm(pn) =
∞

∏
k=1

cos
(πm1

2n1

1

k + 1

)

cos
(πm2

2n2

1

k + 1

)

.
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For k ∈ N and j ∈ {1, . . . , k}, let

aj,k = exp
(2πij

k

)

.

For every k ∈ N let us define a function Sk : [0, 1] → C in the following way. For t ∈ [ j−1
k ,

j
k ],

where j ∈ {1, . . . , k}, let

Sk(t) = aj,k.

Let frac(t) be the fractional part of a real number t. For every n = (n1, n2) ∈ N2 let us define a

function yn : [0, 1] → C
2 by a formula

yn(t) =
(

Sn1(t)pn,1(frac(n1n2t)), Sn2(frac(n1t))pn,2(frac(n1n2t))
)

.

Note that ‖yn‖∞,2 = 1. For every m = (m1, m2) ∈ N2, we have

Rm(yn) =
∫

[0,1]
Sm1

n1
(t)pm1

n,1(frac(n1n2t))Sm2
n2
(frac(n1t))pm2

n,2(frac(n1n2t))dt =

=
n1

∑
j=1

am1
j,n1

∫

[
j−1
n1

,
j

n1
]
Sm2

n2
(frac(n1t))pm1

n,1(frac(n1n2t))pm2
n,2(frac(n1n2t))dt.

Let us make the substitution u = n1t − (j − 1) in the jth integral. Then n1t = u + j − 1 and,

consequently, frac(n1t) = frac(u + j − 1) = frac(u) and frac(n1n2t) = frac(n2u + n2(j − 1)) =

frac(n2u). Therefore,

Rm(yn) =
1

n1

n1

∑
j=1

am1
j,n1

∫

[0,1]
Sm2

n2
(frac(u))pm1

n,1(frac(n2u))pm2
n,2(frac(n2u))du.

Note that
∫

[0,1]
Sm2

n2
(frac(u))pm1

n,1(frac(n2u))pm2
n,2(frac(n2u))du

=
n2

∑
r=1

am2
r,n2

∫

[ r−1
n2

, r
n2
]
pm1

n,1(frac(n2u))pm2
n,2(frac(n2u))du.

Let us make the substitution v = n2u − (r − 1) in the rth integral. Then n2u = v + r − 1 and,

consequently, frac(n2u) = frac(v + r − 1) = frac(v) = v. Therefore,

Rm(yn) =
1

n1

n1

∑
j=1

am1
j,n1

1

n2
∑
r=1

n2am2
r,n2

∫

[0,1]
pm1

n1
(v)pm2

n2
(v)dv =

( 1

n1

n1

∑
j=1

am1
j,n1

)( 1

n2

n2

∑
r=1

am2
r,n2

)

× Rm(pn) =
( 1

n1

n1

∑
j=1

am1
j,n1

)( 1

n2

n2

∑
r=1

am2
r,n2

) ∞

∏
k=1

cos
(πm1

2n1

1

k + 1

)

cos
(πm2

2n2

1

k + 1

)

.

If m1 is not a multiple of n1, then
n1

∑
j=1

am1
j,n1

= 0.

Similarly, if m2 is not a multiple of n2, then

n2

∑
r=1

am2
r,n2

= 0.
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Let m1 = k1n1 and m2 = k2n2, where k1, k2 ∈ N. Then

1

n1

n1

∑
j=1

am1
j,n1

=
1

n2

n2

∑
r=1

am2
r,n2

= 1.

Therefore,

Rm(yn) =
∞

∏
k=1

cos
(πk1

2

1

k + 1

)

cos
(πk2

2

1

k + 1

)

.

If k1 > 1 or k2 > 1, then there is a multiplier cos π
2 = 0 in the given product. Thus Rm(yn) = 0,

if m 6= n. If m = n, then Rm(yn) = M2, where M is defined by (3).

For every n = (n1, n2) ∈ N
2, let us define a function zn : [0, 1] → C

2 by

zn =
1

|n|√
M2

yn.

Note that

‖zn‖∞,2 =
1

|n|√
M2

≤ 1

M2
, (4)

since 0 < M < 1. For every m ∈ N2,

Rm(zn) =

{
1, if m = n,

0, if m 6= n.
(5)

Let us define sequences ξ = {ξl}∞
l=1, η = {ηl}∞

l=1 ⊂ C by

ξl = 4c((l, 0))− 4
∞

∑
k=1

1

k2k+1

k

∑
j=1

(
c((j, k − j))k2k+1

)l/k
R(l,0)(z(j,k−j)) (6)

and

ηl = 4c((0, l))− 4
∞

∑
k=1

1

k2k+1

k

∑
j=1

(
c((j, k − j))k2k+1

)l/k
R(0,l)(z(j,k−j))

for l ∈ N. Let us show that supl∈N
|ξl |1/l < +∞ and supl∈N

|ηl |1/l < +∞. Let

a = sup
n∈Z2

+\{(0,0)}
|c(n)|1/|n| .

Then |c(n)| ≤ a|n| for every n ∈ Z2
+ \ {(0, 0)}. By (1), |R(l,0)(z(j,k−j))| ≤ ‖R(l,0)‖‖z(j,k−j)‖l

∞,2.

By (4), taking into account the equality ‖R(l,0)‖ = 1,

|R(l,0)(z(j,k−j))| ≤
1

M2l
.

Therefore,

|ξl | ≤ 4al +
4al

M2l

∞

∑
k=1

1

2k+1

(
k2k+1

)l/k
.

Note that supk∈N
(k2k+1)1/k = 4. Therefore, k2k+1 ≤ 4k for every k ∈ N. Consequently,

∞

∑
k=1

1

2k+1

(
k2k+1

)l/k ≤ 4l
∞

∑
k=1

1

2k+1
=

4l

2
.
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Therefore,

|ξl | ≤ 4al +
2(4a)l

M2l
.

Taking into account the estimate 0 < M < 1,

4al +
2(4a)l

M2l
≤ 4al + 2(4a)l

M2l
≤ 3(4a)l

M2l
≤ (12a)l

M2l
.

Thus,

|ξl | ≤
(12a)l

M2l
.

Analogically,

|ηl | ≤
(12a)l

M2l
.

Since supl∈N
|ξl |1/l ≤ 12a/M2 and supl∈N

|ηl |1/l ≤ 12a/M2, by Theorem 1, there exist vξ , vη ∈
L∞ such that ∫

[0,1]
(vξ(t))

l dt = ξl and
∫

[0,1]
(vη(t))

l dt = ηl (7)

for every l ∈ N and

‖vξ‖∞, ‖vη‖∞ ≤ 24a

M3
. (8)

For k ∈ N and j ∈ {1, . . . , k}, let

∆j,k =
(

1 − 1

2k
+

j − 1

k2k+1
, 1 − 1

2k
+

j

k2k+1

)

and hj,k : ∆j,k → (0, 1) let be defined by

hj,k(t) =
(

t −
(

1 − 1

2k
+

j − 1

k2k+1

))

k2k+1.

Note that hj,k is a bijection. Let us define a function xc : [0, 1] → C2 by

xc(t) =







(vξ(4t), 0), if t ∈ (0, 1/4),

(0, vη(4t − 1)), if t ∈ (1/4, 1/2),
(
c((j, k − j))k2k+1

)1/k
z(j,k−j)(hj,k(t)), if t ∈ ∆j,k, k ∈ N, j ∈ {1, . . . , k},

(0, 0), otherwise.

Note that xc ∈ (L∞)2 and, taking into account estimations (4), (8) and the inequality
(
c((j, k − j))k2k+1

)1/k ≤ 4a, we obtain

‖xc‖∞,2 ≤ max
{24a

M3
,

4a

M2

}

.

Since 0 < M < 1, it follows that 4a/M2 ≤ 4a/M3 ≤ 24a/M3. Therefore, ‖xc‖∞,2 ≤ 24a/M3.

Let us show that Rn(xc) = c(n) for every n ∈ Z
2
+ \ {(0, 0)}. Consider the case n = (n1, n2) ∈

N
2. In this case, taking into account (5),

Rn(xc) =
∫

(0,1/4)
(vξ(4t))n1 0n2 dt +

∫

(1/4,1/2)
0n1(vη(4t − 1))n2 dt +

∞

∑
k=1

k

∑
j=1

(
c((j, k − j))k2k+1

)|n|/k

×
∫

∆j,k

(
z(j,k−j),1(hj,k(t))

)n1
(
z(j,k−j),2(hj,k(t))

)n2 dt

=
∞

∑
k=1

k

∑
j=1

(
c((j, k − j))k2k+1

)|n|/k 1

k2k+1
Rn(z(j,k−j)) =

(
c((n1, n2))|n|2|n|+1

)|n|/|n| 1

|n|2|n|+1

= c((n1, n2)).
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Consider the case n = (l, 0), where l ∈ N. In this case, taking into account (6) and (7),

Rn(xc) =
∫

(0,1/4)
(vξ(4t))l dt +

∫

(1/4,1/2)
0l dt

+
∞

∑
k=1

k

∑
j=1

(
c((j, k − j))k2k+1

)l/k
∫

∆j,k

(
z(j,k−j),1(hj,k(t))

)l
dt

=
1

4

∫

(0,1)
(vξ(t))

l dt +
∞

∑
k=1

k

∑
j=1

(
c((j, k − j))k2k+1

)l/k 1

k2k+1
R(l,0)(z(j,k−j))

=
1

4
ξl +

∞

∑
k=1

k

∑
j=1

(
c((j, k − j))k2k+1

)l/k 1

k2k+1
R(l,0)(z(j,k−j)) = c((l, 0)).

Analogically, in the case n = (0, l), where l ∈ N, we have Rn(xc) = c((0, l)). This completes

the proof.

Corollary 1. Let A be a topological algebra of complex-valued functions on (L∞)2, which con-

tains the algebra Ps((L∞)2) as a dense subalgebra. Let A be such that for each x ∈ L∞ the

point-evaluation functional δx is continuous on A. Let ϕ : A → C be a continuous linear

multiplicative functional. Then ϕ is a point-evaluation functional if and only if

sup
n∈Z2

+\{(0,0)}
|ϕ(Rn)|1/|n|

< +∞.

Proof. Let ϕ : A → C be a continuous linear multiplicative functional such that

sup
n∈Z2

+\{(0,0)}
|ϕ(Rn)|1/|n|

< +∞.

By Theorem 2, there exists x ∈ (L∞)2 such that Rn(x) = ϕ(Rn) for every n ∈ Z2
+ \ {(0, 0)},

that is, δx(Rn) = ϕ(Rn) for every n ∈ Z2
+ \ {(0, 0)}. Since both δx and ϕ are linear and mul-

tiplicative, it follows that δx(P) = ϕ(P) for every P ∈ Ps((L∞)2). Since both δx and ϕ are

continuous and Ps((L∞)2) is dense in A, it follows that δx = ϕ.

Let ϕ = δx for some x = (x1, x2) ∈ (L∞)2. By (1), for every n = (n1, n2) ∈ Z
2
+ \ {(0, 0)},

|ϕ(Rn)| = |Rn(x)| ≤ ‖x‖|n|. Consequently,

sup
n∈Z2

+\{(0,0)}
|ϕ(Rn)|1/|n| ≤ ‖x‖.
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Василишин Т.В. Функцiонали обчислення значень в точках на алгебрах симетричних функцiй на

просторi (L∞)2 // Карпатськi матем. публ. — 2019. — Т.11, №2. — C. 493–501.

Вiдомо, що кожен неперервний симетричний (iнварiантний вiдносно дiї композицiї агру-

мента з будь-якою вимiрною за Лебегом бiєкцiєю вiдрiзка [0, 1], яка зберiгає мiру Лебега ви-

мiрних множин) полiном на декартовому степенi комплексного банахового простору L∞ всiх

вимiрних за Лебегом суттєво обмежених комплекснозначних функцiй на вiдрiзку [0, 1] може

бути єдиним чином подано як алгебраїчну комбiнацiю, тобто лiнiйну комбiнацiю добуткiв, так

званих елементарних симетричних полiномiв. Як наслiдок, кожен неперервний комплексно-

значний лiнiйний мультиплiкативний функцiонал (характер) довiльної топологiчної алгебри

функцiй на декартовому степенi простору L∞, яка мiстить алгебру неперервних симетричних

полiномiв на декартовому степенi простору L∞ як щiльну пiдалгебру, однозначно визначає-

ться своїми значенннями на елементарних симетричних полiномах. Тому задача опису спе-

ктра (множини всiх характерiв) такої алгебри еквiвалентна до задачi опису множин вищезга-

даних значень характерiв на елементарних симетричних полiномах.

В данiй роботi розв’язано задачу опису множин значень характерiв, якi є функцiонала-

ми обчислення значення в точках, на елементарних симетричних полiномах на декартовому

квадратi простору L∞. Показано, що множини значень функцiоналiв обчислення значення в

точках на елементарних симетричних полiномах задовольняють деяку природну умову. Та-

кож показано, що для кожної множини c комплексних чисел, яка задовольняє вищезгадану

умову, iснує елемент x декартового квадрата простору L∞ такий, що значення функцiонала

обчислення значення в точцi x на елементарних симетричних полiномах збiгаються з вiдпо-

вiдними елементами множини c.

Ключовi слова i фрази: симетричний полiном, функцiонал обчислення значення в точцi.


