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(L)

ANSARI A.H.!, BINBASIOGLU D.2, TURKOGLU D.3

COUPLED COINCIDENCE POINT RESULTS FOR CONTRACTION OF C-CLASS
MAPPINGS IN ORDERED UNIFORM SPACES

In the literature there is a lot of works related to fixed point theory. The theory has many
applications and some authors are interested in these applications in various spaces. In 2009,
Altun I. and Imdad M. defined the order relation on uniform spaces and the concept of compat-
ibility of mappings. Later Ansari A.H. defined the C-class function concept. In this paper, we take
some ultra altering distance and C-class functions, then we prove some coupled coincidence point
theorems for a mapping providing mixed g-monotonicity property in ordered uniform spaces. We
also give the appropriate examples.

Key words and phrases: coupled coincidence point, C-class mapping, ordered uniform space.
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INTRODUCTION AND PRELIMINARIES

In the literature there is a lot of works related to fixed point theory. Some of them are
fixed or common fixed point results in uniform space (e.g. [1-3,12]). Lately, Aamri M. and
El Moutawakil D. [1] have introduced the concept of E-distance function on uniform spaces
and utilize it to improve some well known results of the existing literature involving both E-
contractive or E-expansive mappings. Later, Altun I. and Imdad M. [3] have introduced a
partial ordering on uniform spaces utilizing E-distance function and have used the same to
prove a fixed point theorem for single-valued non-decreasing mappings on ordered uniform
spaces.

In this paper, we use the C-class function defined by Ansari A.H. [4], the order relation
on uniform spaces defined by Altun I. and Imdad M. [3] and the concept of compatibility of
mappings, then we prove coupled coincidence point theorems in ordered uniform spaces. We
also discuss an example.

Now, we mention some relevant definitions and properties from the foundation of uniform
spaces. We call a pair (X, @) to be a uniform space which consists of a non-empty set X together
with a uniformity ¢, wherein the latter begins with a special kind of filter on X x X, whose all
elements contain the diagonal A = {(x,x) : x € X}.If V € ¢and (x,y) € V, (y,x) € V, then
x and y are said to be V-close. Also a sequence {x,} in X is said to be a Cauchy sequence with
regard to uniformity ¢ if for any V' € 9, there exists N > 1 such that x, and x,, are V-close for
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4 ANSARI A.H., BINBASIOGLU D., TURKOGLU D.

m,n > N. A uniformity ¢ defines a unique topology 7 (¢) on X for which the neighborhoods
of x € X are thesets V (x) = {y € X : (x,y) € V} when V runs over 9.

A uniform space (X, ¢) is said to be Hausdorff if and only if the intersection of all the
V € 0 reduces to diagonal A of X, i.e. (x,y) € V for V € ¢ implies x = y. Notice that
Hausdorffness of the topology induced by the uniformity guarantees the uniqueness of limit
of a sequence in uniform spaces. An element of uniformity ¢ is said to be symmetrical if
V =Vl ={(yx): (x,y) € V}. Since each V € ¢ contains a symmetrical W € ¢ and if
(x,y) € W then x and y are both W and V-close and then one may assume that each V € ¢
is symmetrical. When topological concepts are mentioned in the context of a uniform space
(X, 9), they are naturally interpreted with respect to the topological space (X, T (¢)) .

In the sequel we shall require the following definitions and lemmas.

Definition 1 ([1]). Let (X, 9) be a uniform space. A functionp : X x X — R is said to be an
E-distance if

(p1) for any V € ¢ there exists 6 > 0 such that p(z,x) < ¢ and p(z,y) < J for somez € X,
imply (x,y) €V,

(p2) p(x,y) < p(xz)+p(zy) forany x,y,z € X.
The following lemma embodies some useful properties of E-distance.

Lemma 1 ([1,2]). Let (X, ) be a Hausdorff uniform space and p be an E-distance on X. Let
{xn} and {yn} be arbitrary sequences in X and {a,}, {Bn} be sequences in R™ converging to
0. Then, for x,y,z € X, the following holds.

(@) Ifp (xn,y) < ayand p (x4,z) < By foralln € N, theny = z. In particular, if p (x,y) = 0
andp(x,z) =0, theny = z.

(b) If p (xn,yn) < an and p (xn,2z) < B foralln € N, then {y,} converges to z.
(c) If p (xn, xm) < ay for allm > n, then {x, } is a p-Cauchy sequence in (X, 9) .

Let (X, ) be a uniform space equipped with E-distance p. A sequence in X is p-Cauchy if it
satisfies the usual metric condition. There are several concepts of completeness in this setting.

Definition 2 ([1,2]). Let (X, ¢) be a uniform space and p be an E-distance on X. Then

(i) X said to be S-complete if for every p-Cauchy sequence {x,} there exists x € X with
lim p (x4, %) = 0,

(ii) X is said to be p-Cauchy complete if for every p-Cauchy sequence {x, } there exists x € X
with lim x, = x with respect to T (9),

n—oo
(iii) f : X — X is p-continuous if}ilgn p (xn,x) = 0 implies nh_1>n p(fxu fx) =0,
(iv) f : X — X is T (8)-continuous if 1131 x, = x with respect to T (¢) implies lgllfxn = fx
n—oo n—oo

with respect to T (9) .
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Remark 1 ([1]). Let (X, ¢) be a Hausdorff uniform space and let {x, } be a p-Cauchy sequence.
Suppose that X is S-complete, then there exists x € X such that nl1_1>np (xn,x) = 0. Then

Lemma 1 (b) gives that lgrl x, = x with respect to the topology T (¢) which shows that S-
n—oo

completeness implies p-Cauchy completeness.

Lemma 2 ([3]). Let (X, ¢) be a Hausdorff uniform space, p be E-distance on X and ¢ : X — R.
Define the relation” < ” on X as follows;

x2ysx=yorplny) < ¢x)—¢y).
Then” < ” is a (partial) order on X induced by ¢.

Definition 3 ([6]). We call an element (x,y) € X x X a coupled fixed point of the mapping
T:XxX—=>XifT(x,y)=xT(y,x)=y.

Definition 4 ([11]). An element (x,y) € X x X is called a coupled coincidence point of a
mapping T : X x X — Xandg: X = XifT (x,y) =8(x), T(y,x) =g (y).

Definition 5 ([11]). Let X be a non-empty setand T : X x X — X and g: X — X. Wesay T
and g are commutative if ¢ (T (x,y)) = T (¢ (x),8 (y)) for any x,y € X.

Definition 6 ([7]). Let (X, ¢) be a Hausdorff uniform space, p be E-distance on X. The map-
pings T and g, where T : X x X — X and g : X — X, are said to be compatible if

lim p (¢ (T (xn,yn)), T (g (xn), & (yn))) =0

and
im p (& (T (yn, %)), T (& (yn) ,& (xn))) =0

n—oo

whenever {x,} and {y,} are sequences in X, such that lgrl T (xn,Yn) = 1131 g (xn) = x and
n—o00 n—o00

nlgroloT (Yn, Xn) = nlgrolog (yn) =y, forany x, y € X are satisfied.

In 2014, the concept of C-class functions (see Definition 7) was introduced by A.H. Ansari
in [4] that is pivotal result in fixed point theory. Also see [5,8,9].

Definition 7. A mapping f : [0,00)?> — R is called C-class function if it is continuous and
satisfies following axioms:

(1) f(s,t) <s;
(2) f(s,t) = s implies that eithers = 0 ort = 0 for all s, t € [0, ).
Remark 2. Note for some f we have that f(0,0) = 0.
We denote C-class functions as C.
Example 1. The following functions f : [0,00)?> — R are elements of C, for all s, t € [0,00):
(1) f(s,t) =s—t, f(s,t) =s=>1t=0;
(2) f(s,t) =ms, 0<m<1, f(s,t) =s=s=0;
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3) f(s,t) = ﬁ;r € (0,00), f(s,t) =s=s=0ort=0;
4) f(s,t) =log(t+a®)/(1+t),a>1,f(s,t) =s=s=0o0rt=0;

(5) f(s,t) =In(1+4a°)/2,a > ¢, f(s,t) =s=s5=0.

Definition 8 ([10]). A function i : [0,00) — [0, c0) is called an altering distance function if the
following properties are satisfied:

(i) ¥ is non-decreasing and continuous,
(ii) ¥ (t) = 0 ifand only if t = 0.
Definition 9. An ultra altering distance function is a continuous, nondecreasing mapping ¢ :
[0,00) — [0, c0) such that ¢(t) > 0,t > 0 and ¢(0) > 0.
We denote by &, the set of ultra altering distance functions.

Definition 10 ([12]). Let (X, ¢) be a uniform space and let” < ” be an order relation on X and
let T : X x X — X be an operator. We say that T has the mixed monotone property if T (x,y)
is monotone nondecreasing in x and is monotone nonincreasing in y, that is for any x,y € X,

x1,% € X,x1 2 x2 = T (x1,y) X T (x2,y)
and
vy, 2 € X,y1 2y =T (x,y1) = T(x,42).

Definition 11 ([12]). Let (X, ¢) be a uniform space and let” < ” be an order relation on X and
letT : X x X = X, g: X = X be operators. We say T has the mixed g-monotone property if
T is monotone g-non-decreasing in its first argument and is monotone g-non-increasing in its
second argument, that is, for any x,y € X,

x1,x2 € X,8(x1) 2 g(x2) implies T (x1,y) = T (x2,y)
and

yy2 € X, 8 (y1) = g (y2) implies T (x,y1) = T (x,12)
Remark 3. If g is the identity mapping, then Definition 11 reduces to Definition 10.

1 THE MAIN RESULTS

Theorem 1. Let (X, ®) be a Hausdorff uniform space, ” < ” is an order on X and suppose
there is an E-distance p on X such that (X, p) is a p-Cauchy complete uniform space. Assume
there is a function F € C, ¢ € &, and also suppose T : X x X — X and g : X — X are such
that T has the mixed g-monotone property and

p(T(xy), T(u0))

<F <<p(g (X),g(u));p(g (y),g(v))> 0 <p(g(x),g(u));p(g (y),g(v))» 1)

for all x,y,u,v € X for which g(x), g (u) are comparable and g (y), g (v) are comparable.
Suppose T (X x X) C g(X), g is T (¥)-continuous and monotone increasing and T and g be
compatible mappings. Also suppose
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(a) T is T (9)-continuous
or
(b) X has the following property :
(i) if a non-decreasing sequence
{xy} — x, then x,, < x foralln, (2)
(ii) if a non-increasing sequence
{yn} — y, theny <y, foralln. (3)

If there exist xg, Yo € X such that g (x9) = T (xo,y0) and g (vo) = T (yo,x0), then there exist
x,y € X such that g(x) = T(x,y) and g(y) = T (y,x), that is, T and g have a coupled
coincidence point in X.

Proof. Letxg,yo € X besuchthatg (xo) = T (xo,y0) and g (vo) = T (yo, x0) . Since T (X x X) C
g (X), we can define x1,y; € X such that g (x1) = T (x0,y0) and g (y1) = T (yo, Xo)-

In the same way we construct, ¢ (x2) = T (x1,1) and g (y2) = T (y1,x1) . Continuing in
this way we construct two sequences {g(x,)} and {g¢(y»)} in X such that,

g (xpt1) =T (xn,yn) and § (Ynt+1) = T (Yn, xn) foralln > 0. (4)
Now we prove that for all n > 0,
g (xn) = 8 (Xn+1) 5)
and
& (yn) = & (Ynt1)- (6)

Since g (x9) < T (x0,y0) and g (yo) = T (yo, x0) , in view of g (x1) = T (x0,y0) and g (y1) =
T (yo, x0) , we have g (x0) = g (x1) and g (o) = & (y1), that s, (5) and (6) hold for n = 0.
We presume that (5) and (6) hold for some 1 > 0. As T has the mixed g-monotone property

and g (xn) 2 g (xn41), & (Yn) = & (Ynt1) , from (4), we get
g (xn11) =T (xn,yn) 2T (Xus1,¥n) and T (Y1, %0) 2T (Y, Xn) = & (Ynr1) - (7)

Also for the same reason we have

g (Xnt2) =T (xps1, Ynt1) = T (X1, yn) and T (Yp11, Xn) = T (Yn+1, Xnt1) = § Wns2) . (8)

Then from (7) and (8), g (xy+1) = & (xn4+2) and g (¥n+1) = § (Yu+2) . Then, by mathematical
induction it follows that (5) and (6) hold for all n > 0.
Let

on = p(8(xn), §(xus1)) + P (8(Yn), §(WYn+1))
and
op = p(§(xn11),8(xn)) + P (8(Yn+1),8(yn)) -

Next we prove that

5! 5!
6, < 2F (‘5”2‘1,4) (‘5”2‘1>> and 0!, < 2F ( ”2—1,go ( ”2—1)> : 9)
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Since foralln > 0, g (x,—1) = g (x4) and g (¥y—1) = g (yn) , we have from (1) and (4),

p(8(xn), g(xn+1)) = P (T (xp-1,Yn-1), T (Xn,Yn))

<F ((P(g(xnl),g(xw J;p(g(ym),g(yn))) 0 (p(g(xnﬁ,g(xn)) er p(g(]/nl)rg(]/n))>>

o (5e(2)

and

p(g(xnt1),8(xn)) = (T (Xn,Yn), T (Xn—-1,Yn-1))

<F <<p (8 (¥n) 8 (¥n-1)) er P (8 (yn) rg(]/nl))> ,

’ <p<g<xn>,g<xn_1>>;p<g <yn>,g<yn_1>>>> r (5,12_1,4) (c&;)) |

Similarly from (1) and (4), we have for alln > 0,

P (& Wn), & Wn+1)) = P (T (Yn-1,%n-1), T (Yn, xn))

<o <p(g (yn—l),g(yn»;P(g(xn_l),g(xn» _r (‘5”2—‘1,4) <5n_1>>

and
P (8 Wnt1),8(Wn)) =P (T (Yn, xn), T (Yn—1,Xn-1))
<y (p(g ()8 (9-1)) +p<g<xn>,g<xn1>>> r (5,;1, , (5)) oo

2 2 2

Combining (10) and (11) we obtain (9). Since ¢ (t) > 0 for t > 0, it follows from (9) that
the sequences {9, } and {¢}, } are monotone decreasing sequence of non-negative real numbers.

Hence there exist 6 > 0 and ¢' > 0 such that lgn dp = 6 and lim §,, = ¢'. Taking the limit as
n o) (e

n — oo in (9)we obtain s = limd, < 2limF (%, ¢ (‘5n21))n: 2F ((3),¢(3)) S04 =0
or ¢ <%) = 0. Thus § = 0. Hence we have

lim [p(g (xn), & (xn+1)) + p(8 (Yn) & (Yn+1))] = lim oy =0

n—oo

and similarly ' = 0 that is

lim [p(g (xu+1),8 (xn)) + P(§ (Yu+1),8 (yn))] = lim 4, = 0. (12)

n—oo n—oo

Next we show that {¢(x,)} and {g(yx)} are p-Cauchy sequences. Let at least one of
{g (%)} and {g (yn)} be not a p-Cauchy sequence. Then there exists ¢ > 0 and sequences
of natural numbers {m (k) } and {I (k) } such that for every natural number k, m (k) > I (k) > k

and
pe=p (8 (i) 8 (vnie)) ) (3 (n100) 8 () ) = & 13)

Now corresponding to I (k) we can choose m (k) to be the smallest positive integer for which
(13) holds. Then,

4 <8 <xl(k)> /8 <xm(k)—1>) +p <8 (%(k)) 8 <]/m(k)—1)> <e (14)



COUPLED COINCIDENCE POINT RESULTS IN ORDERED UNIFORM SPACES 9

Further from (13) and (14), for all k > 0, we have

e<p<p (g <x1<k)> '8 <xm(k>—1>)

7 (8 (tmr1)8 (3w )+ 2 (8 (100) 18 (vm09-1) )+ 7 (8 (vmer-1) 18 (i)
= (8 (x100) & (omie1) ) + 2 (8 ())& (vmier1) ) + G2 <+ G 1.

Taking the limit as k — oo, we have by (12),

limpy = e. (15)

k—o0

Again, for all k > 0, we have,

P = p(( o)
< (s ().
(s (o) (yu )
=7 (s (xi00) 8 (s001)

+ (g (vie41) /& (Ve +1)
Hence, forallk > 0

Pk < 01 + 0,50 TP <8( (k)+1> 8 <xm(k)+1>) +p <g (yl(k)Jrl) '8 <ym(k)+1)> : (16)

From (1), (4), (5), (6) and (13), for all k > 0, we obtain

p (& (xi691) 18 (omwrr) ) = 2 (T (w00 ) T (e s ))
§F<P<g<xu b) g( <>))+P<g(%< >) g(?f <>)), a7

o) o)) -

Also by (1), (4), (5), (6) and (13), for all k > 0, we have,

p (& (1) o8 (1)) = 2 (T (003100 ) T (vt o))
<F((P 8 (x00). 8(x <>))+P<8(%<k>)'g<ym<k>)>),

2

, (P (8 () & (3m00) ) 1 (8 (i) & (90 )) CE (B (B).

<8 <J/l(k)> '8 (ym(k)>))> _ F(ﬁ <Pk)>_

¢

(18)

2

Putting (17) and (18) in (16), for all k > 0, we obtain, py < () + (5"71(,() +2F (B, 9 (B)) .
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Letting n — oo in the above inequality and using (12), (13) and (15) we obtain,

e (%o (2)) =2 (50 ()

So, § = 0,0r ¢ (5) = 0 which is a contradiction. Therefore, {g (x,)} and {g (v.)} are
p-Cauchy sequences in X and hence they are convergent in the p-Cauchy complete uniform
space (X, 9). Let

L T (xn,yn) = limg (xx) =x and = HmT (yn, xn) = lmg (yn) = y. (19)

Since T and g are compatible mappings, we have by (19),

Tim p (g (T (xn,yn)) , T (g (xn),8 (yn))) =0 (20)
and
Tim p (g (T (Yn, %)), T (g (¥n), & (xn))) = O. (21)

Next we prove that ¢(x) = T (x,y) and g(y) = T (y,x). Let (a) hold. For alln > 0, we
have,

p(8(xn), T(g(xn),8(n))) <P (g (xn),&(T (xn,yn))) +p (& (T (xn,yn)), T (g (xn), & (¥n)))
Taking the limit as n — oo, using (4), (19), (20) and the fact that T and g are continuous, we
have p (g (xn), T (x,y)) = 0.
Similarly, from (4), (19), (21) and the continuities of T and g, we have p (¢ (y»), T (y, x)) = 0.
Combining the above two results we get ¢ (x) = T (x,y) and g (y) =T (v, x) .
Next we suppose that (b) holds. By (5), (6) and (19) we have {g (x,)}} is non-decreasing

sequence, ¢ (x,) — x and {g (y»)} is non-increasing sequence, ¢ (y,) — y as n — co. Then by
(2) and (3) we have for all n > 0,

g (xn) = xand g (yn) = y. (22)
Since, T and g are compatible mappings and g is continuous, by (20) and (21) we have,

lim ¢ (¢ (xn)) = g (x) = lim g (T (xu,yx)) = UM T (g (xn),8 (yn)) (23)

n—oo n—oo n—oo

and

lim ¢ (g (yn)) = & (y) = Hmg (T (yn, xn)) = Hm T (g (¥u), 8 (xn)) (24)

n—o0 n—o0

Now we have p (g (x), T (x,y)) < p(8(x),&(8%n+1)) +p(8(8 (xn41)), T (x,y)) . Taking
the limit as n — oo in the above inequality, using (4) and (23) we have,

p(g(x),T(xy)) < limp(g(x),8(g(xnt1))) + Im p (¢ (T (xn,yu)), T (x,y))
< lim p (T (g (xu), & (yn)), T (x,))-

Since the mapping g is monotone increasing, by (1), (22) and the above inequality, we have
for all n > 0, Using (19)

) < hmF(p(g (8(xn)), g (x)) +p(g(g(yn).8 W)
= 2

n—oo

p(g(x),T(xy

p(P8 808 0) 4P &S W8 WD) _ iy (g (x), T (1)), 9lp (5 (2). T (x,))).
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So,p(g(x),T(x,y)) =0,0r,9(p(g(x),T(xy))) =0

That is ¢ (x) = T (x,y) and similarly, by virtue of (4), (19) and (24) we obtain g (y) =
T (y, x) . Thus we have proved that T and g have coupled coincidence point in X. This com-
pletes the proof. O

Remark 4. If we take F(s,t) = ¢(s) where ¢ : [0,00) — [0,00) is a continuous function such
that ¢(0) = 0 and ¢(t) < t fort > 0 in the above theorem then we obtain a corollary in [12].

Corollary 1. Let (X, ) be a Hausdorff uniform space, ” = ” is an order on X and suppose
there is an E-distance p on X such that (X, p) is a p-Cauchy complete uniform space. Assume
there is a function F € C, ¢ € &, and also suppose T : X x X — X and g : X — X are such
that T has the mixed g-monotone property and

p(T(x,y),T(u,0))

<F ((p(g(X),g(u)) ;P(g(y),g(v)) > . (p(g(X),g(u)) ;P(g(y),g(v)) ))

for all x,y,u,v € X for which comparable g (x), g (u) and comparable g (y), g (v) . Suppose
T(XxX) C g(X), g is T(9)-continuous and commutes with T and also suppose either
(a) T is T (¢)-continuous or (b) X has the following property:

(i) if a non-decreasing sequence {x,} — x,then x,, < x for alln,
(ii) if a non-increasing sequence {y,} — y, theny <y, for all n.

If there exist xp,yp € X such that g (x9) = T (x0,y0) and g (yo) = T (yo, X0), then there
exist x,y € X such that g(x) = T (x,y) and g (y) = T (y,x), that is, T and g have a coupled
coincidence.

Example 2. Let X = [0,1], p (x,y) = |x —y|. Then forx, y € X and” < ” is a partially ordered
with the natural ordering of real numbers. Then (X, <) is an ordered uniform space and (X, p)
is a p-Cauchy complete uniform space. Let g : X — X be defined as g (x) = x for all x € X.

Xy

- -
7, xyeX xxzy . T obeys the mixed
0, X<y

LetT: X x X — X be defined as T (x,y) = {
g-monotone property.

Let ¢ : [0,00) — [0,00) be defined as ¢ (s) = s, fors € [0,00) and F(s, ¢(s)) = ¢(s).
Therefore F(s, ¢(s)) = ¢(s) =s < sand F(s,¢(s)) =s =s=0or¢(s) =0and ¢(s) =0 =
s=0.SoF € C,¢ € ®,. Let {x,,} and {yn} be two sequences in X such that, nlgroloT (Xn,Yn) =
a, nlgrolog (xn) =a, and nlgroloT (Yn, xn) = b, nlgrolog (yn) = b. Then obviously,a = 0 and b = 0.

Now, foralln > 0; g (xp) = x, x4 € X and § (Yn) = Yn, Yn € X,

{ @r If xn tynr { @r If }/n i xnr

T (Xn,yn) = and T (Yn, xn) =

0, if Xy < Yn, 0, if Yy < xy.

Then, it follows that

lim p (8 (T (xn,¥n)), T (g (xn),& (yn))) =0 as n— oo

and
im p (& (T (yn, %)), T (& (yn),& (xn))) = 0 as n — co.

n—o0



12 ANSARI A.H., BINBASIOGLU D., TURKOGLU D.

Hence, the mappings T and g are compatible in X. Also, xop = 0 and for a positive number
m, yo = m are two points in X such that g (xp) = g(0) = 0 = T(0,m) = T (xo,y0) and
g (o) = g(m) =m = 3 = T(m,0) = T (yo, x0) . We next verify inequality (1) of Theorem 1.
We take x,y,u,v € X, such that g (x) = g(u) and g (y) >~ g (v), thatis,x R uandy > v.

We consider the following cases:

Casel: x =~ yandu > v.

Then

x—ul |y—o| _ |x—ul  |y—7 p(g(x),8(m)+p8(y),8(©)
_F (P(g (X),g(u));;?(g W).8@) P& (x),g(u));;?(g (y),g(v)))>

Case2: x ~ yandu < v.
Then

. xX—y _|x=y _x—y_u—l—x—y—u
p(T ) T o) =p (FL0) =[5 =55 =5

C(w—y)—(u—x) . lu—x| |o—y]
= > (sincev > u) = 5 + 5
:q)(!x;u! n !y;v\) :q)(p(g(x),g(u))+p(g(y),g(v)))

_r <P(g(x),g(u)) try),8()

Case3: x <yandu >~ v.
Then

u—uv u—v_u+x—v—x

2 2 2

u—x| Jo—y|_ |x—ul |y-o
I S d S e M

(T ), T o) =p (0,457 =
(u—x)—(0—3)

= 5 (sincey > x) < |

_ qo(p(g(X),g(u));p(g(y),g(v)))
_r (P(g(x),g(u));rp(g v).80) ,rEEx).gM) er P8 (y),g(v)))> .

Case4: x <yandu < v.

ThenT (x,y) = 0and T (u,v) = 0, thatis p (T (x,y),T (u,v)) = 0. Obviously (1) is satis-
tied.

Thus it is verified that the functions T, g, ¢ satisty all the conditions of Theorem 1. Here
(0,0) is the coupled coincidence point of T and g in X.
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Ancapi AT, Biabacioray A., Typxoray A. Pesynomamu npo 368’a3aHy mouky 36iey 019 CMUCKYIOUUX
8idobpadicerv kaacy C y snopaoxkosanux pigHomipHux npocmopax // Kapmarcbki MaTeM. my6a. — 2019.
— T.11, Nel. — C. 3-13.

Y Aitepartypi icHye 6araTo pobiT, MOB’sI3aHMX 3 Teopielo HepyxoMoi Toukn. LIst Teopist Mae 6araTo
3aCTOCYBaHb, TOMY AesIKi aBTOpM 3allikaBAeHi B IIMX 3aCTOCYBaHHSIX B pisHuX mpocTtopax. Y 2009 p.
Antys L. Ta IMaaa M. BU3HAUMAK BiAHOILIEHHS TIOPSIAKY Ha PiBHOMiIpHIMX IPOCTOpaXx i IOHSTTS Cy-
MicHOCTi Bino6paxens. AHcapi A. BBiB KoHIenmifo dpyHKIin C-Kaacy. Y milf craTi My BubMpaemo
dyuxii C-Kaacy, IO yABTpa 3MiHIOIOTE BiACTaHb, Ta AOBOAVIMO AesIKi TEOpeMM IPO 3B SI3aHy TOUKY
36iry Ans BiAOGpa’keHsb, III0 3aA0BOABHSIIOTh BAACTMBICT 3MillIaHOI g-MOHOTOHHOCTI Y BIIOPSIAKOBA-
HMX PiBHOMIpHMX IpocTOpax. Mu Tako>X HaBOAMMO BiATIOBiAHI ITPMKAAAN.

Kntouosi croea i ¢ppasu: 3B’s13aHa TOUKa 36iry, C-Kaac Biro6paskeHb, BIIOPSIAKOBAHWMIA PiBHOMIp-
HVVA IIPOCTIp.
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(L)

BANDURA A.L

SOME WEAKER SUFFICIENT CONDITIONS OF L-INDEX BOUNDEDNESS IN
DIRECTION FOR FUNCTIONS ANALYTIC IN THE UNIT BALL

We partially reinforce some criteria of L-index boundedness in direction for functions analytic
in the unit ball. These results describe local behavior of directional derivatives on the circle, esti-
mates of maximum modulus, minimum modulus of analytic function, distribution of its zeros and
modulus of directional logarithmic derivative of analytic function outside some exceptional set. Re-
placement of universal quantifier on existential quantifier gives new weaker sufficient conditions of
L-index boundedness in direction for functions analytic in the unit ball. The results are also new
for analytic functions in the unit disc. The logarithmic criterion has applications in analytic theory
of differential equations. This is convenient to investigate index boundedness for entire solutions of
linear differential equations. It is also apllicable to infinite products.

Auxiliary class of positive continuous functions in the unit ball (so-denoted Qy,(IB")) is also
considered. There are proved some characterizing properties of these functions. The properties
describe local behavior of these functions in the polydisc neighborhood of every point from the unit
ball.

Key words and phrases: bounded L-index in direction, analytic function, unit ball, maximum
modulus, directional derivative, distribution of zero.

Ivano-Frankivsk National Technical University of Oil and Gas, 15 Karpatska str., 76019, Ivano-Frankivsk, Ukraine
E-mail: andriykopanytsia@gmail.com

INTRODUCTION

The paper is addendum to papers [4-6,20]. There was introduced a concept of analytic
functions in the unit ball of bounded L-index in a direction, where L : B" — R, is a con-
tinuous function, Ry = (0,+c0), B" = {z € C" : |z| < 1}. Besides, there were deduced
necessary and sufficient conditions of belonging of analytic function in the unit ball to func-
tions of bounded L-index in a direction b € C" \ {0}, where 0 = (0, ...,0). The conditions
describe local behavior directional derivatives, maximum modulus and minimum modulus of
the analytic function on the circle of arbitrary radii. There are also an estimate of logarithmic
directional derivative outside some exceptional set by the function L and an estimate of distri-
bution of zeros for the analytic functions. Moreover, we established connection [4] betweeen
analytic functions in the unit ball of bounded L-index in direction and analytic function in the
unit ball of bounded value L-distribution.

Of course, there are two big classes of functions analytic in bounded domains from C".
These domains are unit ball and unit polydisc. The domains are not biholomorpic equivalent.
Nevertheless, they are importance domains in function theory of several complex variables.
Many methods are firstly developing for these domains. Particularly, there are papers [8-10]

YAK 517.55
2010 Mathematics Subject Classification: 32A10, 32A17.

@ Bandura A.IL., 2019



SUFFICIENT CONDITIONS OF L-INDEX BOUNDEDNESS IN A DIRECTION 15

on the concept of bounded L-index in joint variables for functions analytic in the unit polydisc
or in the unit ball. It was demonstrated application [17] of the concept to study properties of
analytic solutions of some systems of partial differential equations.

Recently, for entire functions of bounded L-index in direction new weaker sufficient con-
ditions are obtained [2,16]. They require validity of some conditions for one value of radius
instead each positive value. Moreover, there was presented class [7] of entire functions of un-
bounded index in any direction. The proof of this fact checks validity of some conditions for
some radius. It is simpler than for any radius. Also this idea [11] was applied to investigate L-
index boundedness in direction of entire solutions of linear directional differential equations.

Here we will consider similar problems for analytic functions in the unit ball.

1 AUXILIARY CLASS OF POSITIVE CONTINUOUS FUNCTIONS IN THE UNIT BALL

This section is devoted to auxiliary class of of positive continuous functions in the unit
ball. Note that positivity and continuity are still weak restrictions to construct a deep theory of
bounded index. Thus, we suppose that the functions satisfy additional assumptions on local
behavior.

LetD={teC:|t|<1},B"={ze€C":|z] <1}, L:B" — R bea continuous function,
b = (by,...,by) € C"\ {0} be a fixed direction, where 0 = (0, ...,0). For z € B" we denote

D, ={teC:f <G},

Ap() = sup sup

ZEB t1, €D,

L(z+t1b) i
{L(z+t;b)' Y A CE N A S W ACE NS, }

The notation Qy, (BB") stands for a class of positive continuous functions L : B" — R, satisfy-
ing

(V7 €10,B]) = Ap() < +oo (1)
and

L(z) > 1ﬁ—|b\|z!' @)

where f > 0 is some constant. It is easy to check that class Qy,(IB") can be defined as follows.
Forny € [0,B],z € C",b = (by,...,b,) € C"\ {0} and a positive continuous function L : B" —
R, satistying (2), we define

AP(p) = inf inf {L(z+tb)/L(z) : |t| <n/L(z)},

A2 () = sup sup {L(z + tb)/L(z) : |t| < 5/L(z)}.

zeB"

Then the class Qp (IB") consists from the functions L, providing inequality
(¥ € 0,B]) = 0 <AY() <AZ(y) < +oo, 3)

i.e., conditions (3) and (1) equivalent. Actually it is enough to require validity of any inequality
in (3) for one value 7 € (0, B] (for 7 = 0 the inequality is trivial). If n = 1 then Q(ID) = Qq(B!).
The reasoning leads us to the proposition.
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Proposition 1. Let L : B" — R be a positive continuous functions such that (Vz € B") :

L(z) > 15_“"2", where B > 1. Then the following statements are equivalent:
L (Vi € [0,B])  Ap(n) < +oo;
2. (Vg €[0,B]): 0<AP(n) < AR(n) < +oo;
3. (3n € (0,B]): 0<AP(n) < A3(y) < oo,

The proof of this proposition is elementary and uses the definition of class Qyp (IB"). Other
propositions on class Qy, are in [1,14,20].

2 LOCAL BEHAVIOR OF DIRECTIONAL DERIVATIVE

Henceforth, we everywhere suppose that g > 1.
Analytic function F : B" — C is called a function of bounded L-index [4-6,20] in a direction
b € C"\ {0}, if there exists my € Z such that for every m € Z and for each z € B"

m k
EE eI
m!L™(z) — o<k<mg k!LK(z)

(4)

where dVF(z) = F(z),0pF(z) = jé 3§§j)bj, o F(z) = Oy (8’1‘)_113(2)), k > 2. There is also
papers about analytic functions in the unit ball of bounded L-index in joint variables [19]. A
connection between these classes is established in [17].

Theory of entire functions of bounded L-index in direction is deeply considered in [13].

We need the following criterion of L-index boundedness in direction.

Theorem 1 ([5,6]). Let L € Qy(B"). Analytic function F(z) in B" has bounded L-index in
the direction b € C" if and only if for every 17,0 < y < B, there exist ng = no(y) € Z and
Py = Pi(n7) > 1 such that for each z € B" there exists ko = ko(z) € Z+,0 < ko < np, and the
following inequality

max{[9f0F (z + b)| : |t] < 7/L(z)} < PiJoF(2)|
holds.
Let us formulate some auxiliary propositions.

Lemma 1 ([5,6]). Let L € Qp(B"), % < 6 <0, < +00,01L(z) < L*(z) < 6,L(z). Analytic
function F(z) in B" has bounded L*-index in the direction b if and only if the function F has
bounded L-index in the direction b.

Lemma 2 ([5,6]). Let L € Qp(B"), m € C,m # 0. Analytic function F(z) in B" is of bounded
L-index in the direction b € C" if and only if the function F(z) is of bounded L-index in the
direction mb.

Theorem 2 ([5,6]). Let > 1,L € Qyp 3(B"). Analytic function F(z) in B" has bounded L-index
in the direction b € C" \ {0} if and only if for any ry and for any r;, 0 < r1 < r, < B, there
exists P| = Py (r1,12) > 1 such that for each z° € B"

max {|F(z° + tb)] : | :%} < Prmax {|F(2%+tb)| : |t|= L(rzlo) 1. 5)
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Theorem 2 is criterion of L-index boudnedness in direction providing maximum modulus
estimate on the greater circle by maximum modulus estimate on the lesser circle. Also it is
known some stronger proposition as sufficient conditions.

Theorem 3 ([5,6]). Let L € Qp(IB"). Analytic function F(z) in B" is of bounded L-index in the
directionb € C" \ {0} if and only if there existry and 12,0 < r1 < 1 < rp < B, and P; > 1 such
that for every z € B" inequality (5) is true.

The theorems distinguish universal and existential quantifiers for r; and 7, such that 0 <
r1<1<r < 4o

This leads to a natural question: Is it possible to replace quantifiers in other criteria of L-index
boundedness in direction?

Using Fricke’s idea [21], we deduce a modification of Theorem 1.

Theorem 4. Let L € Qy,(B"). If there existy € (0,B], no = no(y) € Z4 and P, = Pi(y7) > 1
such that for any z € B" there exists ko = ko(z) € Z+,0 < ko < np, and

max ([0 F(z + tb)| : |f] < y/L(z)} < PLRRE(2)],
then analytic function F : B" — C has bounded L-index in the directionb € C" \ {0}.

Proof. Besides mentioned paper of Fricke [21], our proof is similar to [3] (entire functions of
bounded L-index in direction) and to [29] (entire functions of bounded I-index).

Assume that there exist 7 € (0, 8], no = no(n) € Z4 and P; = Py(17) > 1 such that for any
z € B" there exists kg = ko(z) € Z4,0 < ko < np, and

ko < Ty < ko
max{|d, F(z + tb)| : [t| < L(z)} < Py|oy F(z)]. (6)
Ify € (1,5]., then we choose jo € IN such that P; < #/0. And for 7 € (0;1] we choose jo € N

such that (]{)Oik,?(j)! P; < 1. The jj is well-defined because

jO!kO! ko! )
- Py =+ . - Py — 0, jo — oo.
Gotk)! '~ Go+DGo+2) - (ot ko) " Jo

Applying integral Cauchy’s formula to the function F(z + tb) as analytic function of one
complex variable t for j > jy we obtain that for every z € B" there exists kg = ko(z), 0 < ko <
np, and

j! OF(z + tb)
271i / t+1

=15

I (z) = dt.

Taking into account (6), we deduce

R _ L) K U
< == 0 == <
7 <= max{|ab F(z+tb)|: |t| L(z)} <P

In view of choice jy with 7 € (1, B], for all j > j one has

S E@L o)

o E(2)]
(ko + j)!Lkoti(z)

. k k k
f! P REG) o RFE) )

< — .
o (] + ko)! n ko!LkO(Z +tob) — T k()!LkO(Z> o k()!LkO(Z>



18 BANDURA A.I

Since kg < ngp, the numbers 1y = ny(y) and jo = jo(17) do not depend of z, and z € B" is
arbitrary, the last inequality is equivalent to the assertion that F has boudned L-index in the
direction b and Ny, (F, L) < ng + jo.

If # € (0,1), then from (7) it follows that for all j > jo

o
9y ()]

ot [REG) _ RF()]
(ko + j)!Lkoti(z)

< - -
= G+ ko) gkl To(z) ~ pikolLio(z)

or in view of choice jy
ko+j - k
9, FE)] gl [y E()] gt
(ko+j)t Lhti(z) = kot Loo(z)’

Thus, the function F is of bounded L-index in the direction b, where L(z) = # Then by

Lemma 1 the function F has bounded L-index in the direction b, if 7 > 1. When < 1 we
choose arbitrary > # By Lemma 1 the function F is of bounded Li-index in the direction b,

where L1(z) = 17yL(z). Then be Lemma 2 the function F has bounded Li-index in the direction
7b. Since a’;b = 'ykallf,F and Lll< (z) = 9*L¥(2), in inequality (4) with the definition of L-index
boundedness in direction the corresponding multiplier v is reduced. Hence, the function F is
of bounded L-index in the direction b. Theorem is proved. O

The following propostion is easy directly deduced from the definition of L-index bounded-
ness in direction.

Proposition 2. Let L : B" — C be a positive continuous function. An analytic function
F : B" — C has bounded L-index in the direction b € C" \ {0} if and only if the function
G(z) = F(az + c) has bounded L.-index in the direction 2 for any ¢ € C" and a € B" such
that |c| < 1—|al, a; # 0 (Vj), where az + ¢ = (a1z1 + €1,...,anZn + Cn), g = (%,...,Z—Z),
L.(z) = L(az + ¢).

The proof of the proposition is elementary and it is similar to proof in the case of entire
functions (see [12]).
Analog of Proposition 2 for entire functions has generated the following still open problem.

Problem 1 ([12]). Does exist numbers ay, a, c1, c; € C and an entire function F(z1,z;) such
that F(z1,z2) is of bounded L-index in a direction b = (by, by), but F(a1z1 + c1, a2z + ¢3) is of
unbounded L-index in the same direction b = (b, by)?

3 ESTIMATE MAXIMUM MODULUS BY MINIMUM MODULUS

Previously (see [5,6]) we proved few criteria of L-index boundedness in direction. They are
analogs of one-dimensional criterion of /-index boundedness [29]. Moreover, we found that
some assertions (Theorems 1 and 2) have modified stronger versions. In fact, their reinforce-
ment is to replace universal quantifiers by existential quantifiers (see Theorems 3
and 4).

Also we can weaken sufficient conditions of Theorem 3, replacing the condition
O<r1<1<1’2<—|—ooby0<1’1<1’7_<+oo.
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Theorem 5. Let L € Q,(B"), F be a function analytic in B". If there existr1 and 13,0 < r1 <
o < B, and Py > 1 such that for all z° € B" inequality (5) is satisfied, then the function F is of
bounded L-index in the direction b.

Proof. Our proof is based on idea of A. D. Kuzyk and M. M. Sheremeta [24]. They proposed
this method to investigate the /-index boundedness of entire solutions of linear differential
equations. Later their idea was applied for entire functions of bounded L-index in the direction
and in joint variables [2,15].

Inequality (5) for 0 < rq < rp < B implies

2ry 11+ 1 0 2r1 r1+n
F(z0+1tb)|: |t| = <P F th)| : |t| = :
max { F(:2 + 1) s 1] = 22 LR < pymax { [P0 +-10)] s = - 22
Putting L*(z) = ‘:'1%2, we obtain
27’2
F(20+1tb)|: |t| =
max {| (z° +tb)| : [t| (r —i—rz)L*(ZO)} -
21’1
< Pymax{ |F(z° + tb)| : |t| = },
< Prmax {[F+ )] = 2
2 2 28 2Lz 26]b| : -
where 0 < rlvtlrz <1< 71_:272 < 15, Clearly, L*(z) = rl+‘i2 > G e L* satisfies
(2) and belongs to the class Qp, (B") with % instead B. From validity of inequality (8) we get
that by Theorem 3 the function F has bounded L*-index in the direction b. And by Lemma 1
the function F has bounded L-index in the direction b. O

Theorem 6 ([5,6]). Let L € Qy(B"). An analytic function F(z) in B" has bounded L-index in
the direction b if and only if for every R, 0 < R < B, there exist P,(R) > 1 and 7(R) € (0,R)
such that for all z° € B" and somer = r(z°) € [7(R), R] the inequality

max { [F(z"+tb)| : |t = /L") } < Pomin {|[FE +b)| : |t} =r/L(")} ()
is true.

Taking into account analogs of Theorems 4 and 5 for entire functions there was posed the
following question in [12].

Problem 2 ([12, Problem 6]). Is the following Conjecture 1 true?

Conjecture 1 ([12, 1]). Let L € Q}.. An entire function F : C" — C has bounded L-index in the
direction b € C" \ {0} if and only if there exist R > 0, P,(R) > 1 and #(R) € (0, R) such that
for allz° € C" and some r = r(z°) € [7(R), R] inequality (9) is valid.

The was fully proved for entire functions in [2,16].
Now, we will try to deduce similar results for functions analytic in the unit ball.

Theorem 7. Let L € Qp(B"), F : B" — C be an analytic function. If there exists R € (0,/2)
(or if there exists R € [f/2,B) and (Vz € B") : L(z) > ff—”bzn) and there exist P, > 1,1 € (0,R)
such that for all z° € B" and some r = r(z°) € [y, R] inequality (9) holds, thenthe function F
has bounded L-index in the direction b.
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Proof. In view of Theorem 5 we need to show existence P; such that for all z° € B”
max{yp(zo +tb)| 1 |t = (B — R)/L(ZO)} <P max{\F(zo +tb)| |t = R/L(ZO)} . (10)

Assume that there exist R € (0,8/2), P, > 1and 5 € (0,R) such that for every z € B"
and some r = r(z°) € [, R] we have

max {\P(ZO +tb)| |t = r/L(zO)} < szin{]F(zo +tb)|: |t = r/L(zO)} .

Denote L* = max {L(z0 +1tb) : |t| < ,B/L(zo)} , 00 =R/L(Z), pr = po +kn/L*, k € Z,. We

obtain
7 R__R B _P-R
L* ~L* — L(z%) L(z%) L(z9)

Therefore, there exists n* € IN, independent of 20 and such that

B—R
< <
Pr=1 = Loy = FPr = T(0y"

for some p = p(z°) < n*. Itis possible because L € Qp,(B"). Ar first, one has

(Lé()) ‘P°> / () :%

_B-R L(z° +tb)
——max{w .

Therefore, n* = [ﬁ_TRAb (,B)] , where [a] is an entire part of number 2 € R. Let [F(z° + t{*b)| =

max{|F(z0 +tb)| : t € ¢}, cx = {t € C : |t| = pi}, and #; be the intersection point of the
segment [0, £;*] with the circle c;_;. Hence, for every r > 7 and for each k < n* we get the

inequality [t;* — ] = 7& < W' Thus, for some r = r(z° + t;b) € [17, R] we deduce

IE(2° + £7b)| < max{|p(z0+tb)| |t =t = r/L(2° +th)}
< szin{]F(zo+tb)] |t — ] = r/L(2° +t;b)}
< szin{]F(zo+tb)] |t — 1] = /L2 + £b), |t — to| < pk,l}
< szax{|1—“(zO +1tb)|:t € cp_q1}-
Hence,
max{yp(zo +tb)| |t = (B — R)/L(zo)} < max{|F(z° + tb)| : t € ¢}

< Pymax{|F(z° +tb)|: t € Cp1}
< ... < (P)Pmax{|F(z° + tb)| : t € co}

< ()" max{|F(zO +1tb)|: |t = R/L(zo)}.

We get (10) with P; = (P,)" . Thus, for R € (0, 8/2) Theorem 7 is proved.
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Now, suppose that R € [/2,8) and (Vz € B") : L(z) > ff—”bzh. Then inequality (9) can be
rewritten as

max{’F(zo+%.2b)] /2] = %} < PZmin{‘P(ZO-l-%-Zb)] |t/2] = Lr(/zi)}

Denoting ' = /2, one has

maX{\P(ZOH’-Zb)\ ) = L2 }szmin{\F(zoth’-Zb)\ 1| :”—2}.

L(zY) L(zY)
Sincer <R € [B/2,B), wehaver/2 < R € [B/4,8/2) C (0,B/2). Therefore, as shown above

the function F has bounded L-index in the direction 2b, but by Lemma 2 the function is also
of bounded L-index in the direction b. O

4 ESTIMATE OF DIRECTIONAL LOGARITHMIC DERIVATIVE

Below we formulate another criterion of L-index boundedness in direction. It describes
behavior of logarithmic derivative in direction and distribution of zeros. Firstly the criterion
was obtained by Fricke [21,22] for entire function of bounded index.

We need additional notations.

Let g,0(t) := F(z° + tb). If for given z° € B" g.o(t) # Oforallt € D,o, then GP(F,z%) := &;
if for given z0 € B" g,0(t) =0, then GP(F,z°) := {z +tb: t € D,o}. And if for some z° € B"
g,0(t) # 0 and aY are zeros of the functions g,0(t), i.e., F(z° + alb) = 0, then

G,I?(F,ZO) = LkJ {ZO—{—tb: |i’—112| < m}, r> 0.

Let

Gr(F) = U GP(E2).
z0eB"

By n(r,z% 1/F) = EW -, 1 we denote counting functions of number of zeros a3.

Theorem 8 ([5,6]). Let F be an analytic function in B", L € Qp,(B") and B" \ G"B’(F) # . The
function F(z) has bounded L-index in the direction b if and only if

1) forevery r € (0, B] there exists P = P(r) > 0 such that for any z € B"\GP(F)
IpF(2)
F(z)

< PL(2); (11)

2) for eachr € (0, B] there exists 7i(r) € Z such that for all z° € B" with F(z° + tb) # 0

one has .
n (ﬁ,zo, f) < n(r). (12)

We weak sufficient conditions in Theorem 8. The one-dimensional analog of Theorem 8
for entire functions revealed its efficiency in the investigation of boundedness of the I-index
of infinite products in the one-dimensional case [27,28]. Recently, in [18], it has also used this
criterion to establish the sufficient conditions of boundedness of the L-index in joint variables
in terms of the restrictions imposed on the partial logarithmic derivatives and the distribution
of zeros. There was posed the following problem.
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Problem 3 ([12, Problem 7]). Is the following Conjecture 2 true?

Conjecture 2 ([12, 2]). Let F(z) be an entire function in C", L € Q. The function F has
bounded L-index in the direction b € C" \ {0} if and only if

1) there existr > 0, P > 0 such that for every z € C"\ G, inequality (11) holds;
2) there existr > 0, n € Z such that for every z € C" inequality (12) is true.

By some additional restriction there was proved the conjecture in [2,16].
Now we consider similar problem for analytic functions in the unit ball with » € (0, f]
instead » > 0. Let us denote

Gi(F):=Gr(F)= |J {z+tb:]t| <r/L(2)},
z: F(z)=0

a) are zeros of the function F(z° + tb) for fixed z° € B". By n,(r,F) = np(r,z%1/F) =
)N ad)<r 1 we denote the counting function of zeros a) for the slice function F(z° + tb) in the

disc {t € C: |t| < r}. If for given z° € B" and for all t € D, F(z° + tb) = 0, then we put
n,0(r) = —1. Denote n(r) = sup, g« 12(r/L(z)).

Theorem 9. Let L € Qp(B"), B"\ GE(P) # &, F : B" — C be an analytic function. If the
following conditions are satisfied

1) there existsr1 € (0,/2) (either there exists r1 € [$/2,pB) and (Vz € B") : L(z) > 2!3“7‘)
such that n(r) € [—1;00);

2) there existry € (0,B), P > 0 such that2r; - n(r1) < r1/Ap(r1) and for all z € B"\G,,(F)
inequality (11) is true;

then the function F has bounded L-index in the direction b.

Proof. Suppose that conditions 1) and 2) are true.

At first, we consider the case n(r1) € {—1;0}. Then in the best case the function F can only
identically equals zero on the complex line z* + tb for some z* € B", i.e., F(z* + tb) = 0. For
all points lying on such complex lines inequality (9) is obvious.

Let z° € B" \ Gy,. For any points t; and t; such that |¢;| = ﬁ,] € {1,2}, one has

F(z° + t2b) 219 F(z° + tb) R
—| < _ <
ln‘P(thlb) _/1 R D) [e3 _P/t1 L(z° + tb)|dt]
0 7T1’2
< PAp (r2) L(z )L(ZO) < 7trpPAy, (12)

(we also use that L € Qp(1B")). Hence,

max {|F(zo+tb)| |t = ﬁ} spzmin{lF(z0+tb)l L = ﬁ}

where P, = exp {7trp PA; (r7) } . Therefore, by Theorem 7 the function F has bounded L-index
in the direction b.
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Let r1 > 0 be a such that n(r;) € [1;00) and 2n(r1)r2 < r1/Ap(r1). Put ¢ =
n(ry) > 0. Clearly, rp=r1/(2(n(r1)+c)Ap(r1)).

Under condition 1) each set K = {Zo+fb :
tion F, where F(z° + tb) # 0.

Under condition 2) there exists P > 0 such that |

r
2rAp (11)

80) } has no more 1(r1) zeros of the func-

abF

| < PL(z) for every z € B"\G,,, i.e,,
for all z € K, lying outside the sets {z +tb: |t — ak\ < L(zTa,?b)} , where a) € K are zeros

of the slice function F(z° + tb) # 0. By definition A}, we obtain L(z°)/Ap(r1) < L(z° + alb).
Then | a‘;fz()z) | < PL(z) for every point z € B", lying outside union of the sets

0_ )0 g0 7’2)\b(7'1): 1
C"‘{ bt < S z<n<n>+c>L<z°>}'

The total sum of diameters of the sets cg does not exceed the value rin(ry) <
(n(r1)+c)L(z%) ~ L

there exists a set ¢’ = { +tb: |t = } where Zmin{Lel n < r < rq, such that for all

2(n(r1)+e) —
abf()) < PL(z) < PAb(r)L(zo) < PAy, (r1) L(2°). For any points z; = z° + t;b

and z; = 2" + £,b with c® one has

1
E9L Hence,

z € & we have

F(z° + t,b) t2 | 9, F (20 + tb) o T
ln‘F(ZO +hb)| ~ /1 F(z0 + tb) |dt| PAz (r1) L(z )L(z 0y =7 P(r2)Ap (11) -
Therefore,
0 = —L -\ < Pymi 0 o T
max{|F(Z +tb)| : [t L(ZO)} < P2m1n{|F(z +tb)|: |t] L(ZO)}’ (13)

where P, = exp {7r1 P(r2)Ap (1)} . If F(z' + tb) = 0, then inequality (13) is obvious. By
Theorem 7 the function F(z) has bounded L-index in the direction b. Theorem 9 is proved. [

Remark 1. We proved Hypothesis 2 for analytic function in the unit ball under the additional
condition 2rpn(r1) < r1/Ap(r1). The same condition was firstly appeared for entire functions
in [16]. At present, we do not know whether this condition is essential (see Problem 3 in [16]).

Note that Theorems 4, 5, 7 and 9 are new even for analytic functions in the unit disc (cf.
[23,25,26]). Particularly, for n = 1 and analytic functions of bounded /-index Theorem 9
implies the following corollary.

Corollary 1. Let! € Q(ID), f : ID — C be an analytic function in the unit disc. If the function
f satisfies the condition:

1) there exists 11 € (0,/2) (either there exists 11 € [$/2,B) and (Vt € D) : I(t) > = \fl)
such that n(ry) € [0;0);

2) there existsry € (0,B), P > 0 such that2r; -n(r1) < r1/Ap(r1), D\Gy,(f) # @ and for

allt € D\G,, (f) 'f}(( ;“ < PI(b);

then the function f has bounded I-index.
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As we have written that similar criteria (estimate of maximum modulus, minimum mod-

ulus, logarithmic derivative and distribution of zeros for arbitrary radii) are also known for
function analytic in the unit disc and in arbitrary domain on the complex plane [23,25,26]. But
they contain the universal quantifier in their assumptions.

Acknowledgement. These researches are inspired by Prof. O.B. Skaskiv. Author cordially

thanks him for his questions and interesting ideas which help the studies.
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Baraypa A.L Aeaxi caabusi docmamui ymosu o6 medceHocni L-indexcy 3a HANPIMKOM 019 AHANIMUMHUX
6 00uHuuniti kyni pynxyiit // KapmaTtcbki MaTeM. my6a. — 2019. — T.11, Nel. — C. 14-25.

HacTKOBO TTOCKMAOIOTHCS AesIKi KpuTepil 06MeXXeHOCTi L-iHAeKCy 3a HapsIMKOM AAS aHaAiTH-
YHMX B OAVMHWUHIN KyAl dpysKmiit. Lli pesyAabTaTy omicyoTh AOKaAbHe TTOBOAKEHHsS TTOXiAHMX 3a
HaIIPSIMKOM Ha KOAi, OIIIHKM MaKCHMYMY MOAYASI, MiHIMyMy MOAYAsI aHaAITHUIHOI pyHKIIIT, po3rio-
AlAY 1i HyAiB Ta MOAYAST AoTapudPMivHOT TIOXiAHOI 3a HAITPSIMKOM BiA aHaAITHMIHOI pyHKIIT 30BHI
Aestkoi BUHATKOBOI MHOXMHM. 3aMiHa KBaHTOpa YHiBepCaAbHOCTI Ha KBaHTOP 3araAbHOCTI Ad€ HO-
Bi caabmi AocTaTHI yMOBU 0OMeXXeHOCTi L-iHAeKCY 3a HapSIMKOM AASI aHAAITUYHUX B OAVHIYHIN
KyAi dpysxiiit. 1i pesyAbTaTi TakoX € HOBUMM AAST PYHKIIIM, aHAAITUYHMX B OAMHUYHOMY KPy3i.
Orpumanmii AorapucpMiuHMII KpUTepili Mae 3aCTOCYBaHHSI B aHAAITMUHIN Teopil AMdpepeHLiTHMX
piBHHSIb. BiH 3py4YHIIT y AOCAiIAKEHHI 0OMEXEHOCTI iHAeKCY LIAMX PO3B’SI3KiB AiHITHUX AMdepeH-
LiHMX piBHSIHB. TakoX BiH 3aCTOCOBHMIT AO HECKIHUEHHMX AOOYTKIB.

AOCAIAXEHO AOTIOMIXHMIT KAAC AOAATHIMX HellepepBHMX (PYHKIIIN B OAMHIYHIN KyAi (Tak 3BaHMI
Qp(B™)). Arst pyHKIII 3 LBOTO KAACY AOBEAEHO AesIKi XxapakTepucTu3aliiai BaacTusocTi. i Baa-
CTMBOCTI OICYIOTh AOKAAbHE TIOBOAXKEHHSI TaKMX (PyHKIIiM B IOAIKPYTOBMX OKOAAX KOXKHOI TOUKM
3 OAVIHMYHOT KYAi.

Kontouoei cnosa i ¢ppasi: obMexxeHMiT L-iHAKC 3a HAIIPSIMKOM, aHAaAITMUYHA (PYHKIISI, OAMHITIHA
KYASI, MAKCMMYM MOAYAsI, IOXiAHA 33 HAITPSIMKOM, PO3MOAIA HYAiB.



ISSN 2075-9827 e-ISSN 2313-0210 http://www.journals.pnu.edu.ua/index.php/cmp
Carpathian Math. Publ. 2019, 11 (1), 26-32 KapmaTcbki MmaTeM. my6a. 2019, T.11, Nel, C.26-32
doi:10.15330/cmp.11.1.26-32

(L)

Z ABOLOTSKYI M.V., BASIUK YU.V.

ASYMPTOTICS OF THE ENTIRE FUNCTIONS WITH v-DENSITY OF ZEROS ALONG
THE LOGARITHMIC SPIRALS

Let v be the growth function such that rv'(r)/v(r) = 0 as r — oo, I, = {z = teilptelnt) 1 <
t < 4co} be the logarithmic spiral, f be the entire function of zero order. The asymptotics of
In f (re(®+cIn7)y along ordinary logarithmic spirals Ig of the function f with v-density of zeros along
I outside of the Co-set is found. The inverse statement is true just in case zeros of f are placed on
the finite logarithmic spirals system I';,, = U]’-"ZO Zgj.
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INTRODUCTION

The issues related to the study of behavior of entire functions along the logarithmic spirals
were considered in [14, 6]. In particular, Macintyre [6] introduced the notion of an indicator
along the logarithmic spiral and generalized the concept of associated function. Kennedy [3]
generalized the concept of Mittag - Leffler function on the curvilinear area. Valiron-type and
Valiron-Titchmarsh-type theorems for entire functions of positive order with zeros on the log-
arithmic spiral were proved by Balasov [2] and Kheifits [4] correspondingly. The relation be-
tween regular behavior of logarithm of modulus of entire function f of positive order along
the curves of regular rotation (in particular, the logarithmic spirals) and existance of density
of zeros of f along these curves was investigated in [1]. The results of [1] generalize the well-
known Levin and Pfluger research of entire functions of completely regular growth (see, for
example, [5, p. 118-122; p. 199]).

In this paper we study issues that similar to ones considered in [1] for entire functions of
zero order.

1 SECTION WITH RESULTS

Forc € R, ¢ € [—7;71) we denote by I¢,(a,7) = {z:z = tellotelnt) g <t < v}, 15(1, +00) =

leP the logarithmic spiral, D*(r; a, B) = KL#@ lg,,(l, r) the curvilinear sector, — 7t < & < B < 1.

Let L be the set of all growth functions v such that rv'(r)/v(r) — 0 as r — +oo where
growth function v : [0; +00) — R is a continuously differentiable increasing to +oo function.
Itis clear that a set L coincides with accuracy to equivalent functions with a set of slow growing

YAK 517.53
2010 Mathematics Subject Classification: 30D20.

@ Zabolotskyi M.V., Basiuk Yu.V., 2019



ASYMPTOTICS OF THE ENTIRE FUNCTIONS ALONG THE LOGARITHMIC SPIRALS 27

functions in the sense of Karamata ([7, p. 15]). For v € L we denote by Hy(v) the class of
entire functions f of zero order that satisfy the condition n(r) = O(v(r)), ¥ — +oo, where
n(r) = n(r,0, f) is counting function of zeros (a,) % of function f.

We say that zeros of the function f € Hy(v) have v-density A°(«, B) along logarithmic
spirals [, if the limit

(e p)
= A @A)

exists forall o, B € R, 0 < B — a < 271 with the exception, perhaps, of a or S belongs to some
countable set N/, where n¢(r; a, B) is a number of zeros of the function f in D¢(r; «, B).

The equality A°(¢) = A°(¢1, @) for a fixed ¢1 ¢ N defines on the segment [¢1, ¢1 + 27|
a non-decreasing function A°(¢) which we extend on R by the rule A°(¢ +27) — A°(¢) =
A (@1 +2m) — A(¢1).

The logarithmic spiral [§ satisfying the condition

lim  Tm n(r;0 —h,0+h)

=0
h—s0+ r—-+oo u(r)

is called ordinary for f € Hy(v). The other logarithmic spirals are called exceptional. It follows
from monotonicity of the function A°(¢) that the set of exceptional logarithmic spirals is no
more than countable if zeros of f € Hy(v) have v-density A°(a, B) along I,

Denote by In <1 = f) , an € I the single-valued in the domain D(Ij) = C \ I§(|au|, 4+c0)

n

= 0. Let

branch of multi-valued function Ln (1 — i) such that In (1 — i)
z=0

an An

o =11 (1-2) o) )

n=1

Then
“+00

Inf(z) = Jioln (1 — f) ,z€C\ U Iy, (ri, +00),
n=1 n n=1

where 7; is the minimum module of zeros 4; of f that lie on the logarithmic spiral I, ¢; =
arga; € [—7, 7).

We call a set E € C the Cy-set if it can be covered by a system of circles {z : |z —a;| <
1}, k € Nsuchthat Y ro=o(r), r — +oo.

lag|<r
We write /1(6; ) for the 27r-periodic extension of the function k(6; ) = 6 — ¢ — 7T from

($;9 +2m) to R, —7r < ¢ < 7. Note N(r) = N(r,0, f) = /@ it,

0
0 T

Hi(o) = [ (0—p—m)dnc(y) = [ h(e;9)an(y). @
0-2m -7

Theorem 1. Letv € L, f € Hy(v), zeros of f have v-density A°(a, B) along If,. Then there is a
Co-set E such that the following asymptotic relation holds (|z| = r):

Inf(z) = (1+ic)N(r) +iHg(0)v(r) +o(v(r)), z €Iy, z ¢ E, (3)

where [§ is ordinary logarithmic spiral.



28 ZABOLOTSKYI M. V., BASIUK YU.V.

m

Letl;, = U lcj, - < 0 < ... < 8y < 7 be a finite system of logarithmic spirals,
j=1
9m+1 = 91 + 271.

Theorem 2. Letv € L, f € Hy(v), zeros of f lie on I}, H be a piecewise continuous on [—7t, 7r)
function. If for any 6 > 0 the following asymptotic relation

In f (re®+7)) = (14 ic)N(r) +iH(0)o(r) + 0(0(r)), 1 o0 (4)
+1

holds uniformly with respect to 6 € [—7, 1) \ mU (6, — 0;0; +6), then zeros of f have v-density
j=1

A(a, B) along I,

Remark. The condition that zeros of f € Hy(v) lie on a finite system of logarithmic spirals I},
is significant in Theorem 2. In the general case of zeros arrangement the statement of Theorem
2 is wrong (see [8] in case c = 0).

2 THE PROOF OF RESULTS
At first we present the lemmas that will be used in the proof of the theorems.
Lemma 1 ([11]). LetA > 0,v € L, f € Hy(v), zeros of f lie on the logarithmic spiral I, { € R,
n(r) = (1+o0(1))Av(r), r — +oo.
Then for @ € R\{y + 27tk : k € Z} the following asymptotic relation holds:
In f <rei(9+"lm)> = (14 ic)N(r) +inh(8; 9)o(r) +o(v(r)), r — oo, (5)
moreover, relation (5) is uniform with respect to € [ + ;P + 2w — 6], 0 <6 < 1.

Lemma 2. Let f has the form defined in (1), zeros of f have v-density A°(«, B) along S, e > 0 is
arbitrary number. Then there exist § > 0 and a Cy-set E such that for all ordinary logarithmic
spirals Iy of the function f the following inequality holds:

)lnf(z) —Info(z)| <ev(r), z€15 z ¢ E,

~+o00
where f°(z) = [1] <1 — ai’>' |ay| = |aul, |arga, —argay,| < 4.

n=1 n

The proof of the Lemma 2 follows from the considerations similar to [5, p. 132-133],
[1, p. 352-353] and Theorem 1 from [10].

We say that a set F C R is Ep-set if F is a measurable and mes(EN [0,7]) = o(r), r — +o0.

In view of Lemmas 4 and 5 from [9], we get

Lemma 3. Letf € [—7, ), v € L, f € Hy(v), 6 > 0. Then there exists a Ey-set F such that

0+
gl
0—o

| rei®)
f(re)

de = O(v(r)) <(5+5ln <1+%>>, r— +oo, r & F.
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Proof of Theorem 1. Let e > 0 is given arbitrary number, function HJS(H) defined by formula (2).
Choose 6 > 0 such that the integral sum

Z (0:9)) (A (911) — A°(),

where -t =g < 91 < ... < Pp1 < Py =7, max |P;;1— ;| < I, satisfies the inequality

0<j<m—1
€
[H3(0) = Su(0)| < 5. ©)
Then take numbers a; such that [a;| = |a|, a; € lf/;]- ifap € Iy, ¥ < ¢ < Yj1 (j =

0,1,...,m — 1) and build the function f°(z). Applying Lemma 2 we obtain that there exist
6 > 0 and Co-set E; such that for all ordinary logarithmic spirals [§ of f and f° the following
inequality holds:

‘lnf(z) - lnf‘s(z)‘ < gv(r), z¢ Eq, z €l (7)

Zeros of f(z) lie on a finite system of logarithmic spirals I}, so f°(z) can be depicted as a
product of m entire functions such that zeros of each function lie on a single logarithmic spiral
ll‘;Jj. From Lemma 1 (see (5)) we get that inequality

In f°(z) — (1+ic)N(r)
v(r)

holds uniformly with respect to 6 € R\ U/L;(; — &;¢; + ), where 6 > 0 is an arbitrary
number.

Further taking into account (6), (7) we obtain that for z ¢ Eq, z € Ig, 6 € R\ U;-”:l(tpj —
5;9; + 0) the following inequality holds:

Inf(z) — (1 +ic)N(r)
v(r)

Choosing another segmentation of [—7t; 7] by points (1;7]’-)]’-”20, \1,0]’ 1 1,0]’] < 4 such that inter-
vals (l[)]/ - 1/1]' + 6) do not have the mutual points with intervals (y; — J;; + J), we get that
(8) holds forz ¢ Ep, z € Ig, 6 € R \ U;-il(tp]" —6; 1/1]( + J), where Ej; is some Cp-set.

This yields that (3) holds for all ordinary logarithmic spirals [§ of function f. So Theorem 1
is proved. O

—iSm(H)‘ <eg z €l

—iH}(0)| <. )

Proof of Theorem 2. Letv € L, Q) = {|an| :n € N}, a, be zeros of f € Hy(v) that lie on a finite

system of logarithmic spirals I}, = U Iy T <0 <...< 0y <7 Set
]_

~1
oD (r;a,B) =15(1,r) UL (1,0, B) U <lf§(1,r)) U (T'(1; a,ﬁ))fl,
wherer & Q, =71 <O, <a <Oy < ... <05y <P <Os11 <7,

[(T;a,B) = {z =107 . o < 9 < B
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Since dz = (1 + ic)e/(?+eInt)dt for I5(1, 7) then with the notation

F(t,9) = Tei(4’+C1nT)f/(Tei((PJrClnT))
, f(Tei(§0+ClnT)>
using Residue theorem we have
/ !
intep)= [ Gus| [ [ - [ [ )FGe
oD<(r;a,8) (Lr)  T(ruap) lﬁlr I(1a,p)

(1+zc)/<P(t“)— (t5>dt+/ F(r,0) — F(1,0)) id6

lnf 7’6 i(a+clnr) ) lnf ret +clnr))

L bro

n 2 / / / F(r,0)id6 + C,

=Ko 655 og+s  T=kog—

©)

‘ 0, — — 01— 0;
where C — —lnf(e“") +lnf( 1[3) —/ (1,9)1519, 0<d< min{ k02 “,ﬁ 2950’ ]+12 ]},

o

j = kO/ S0 — 1.
0416
Taking account of / F(r,0)id6 = lnf(rei(9j+1*5+Clnr)> _ lnf(rei(0j+5+clnr)>’ from (9) we
9]‘+(5
obtain
S0 ) .
2min(r; o, B) = Z <lnf(rez(9ﬁ§+clnr)) _ lnf(rez(0j+5+clnr))>
j=ko
0j+4 (10)
+ Z / re!(®+enr))igg _Z +Z
J=kog_s
Applying (4) we get
Y, =i Z — H(8;+6)) v(r) +o(v(r)), r — co.

j=ko
In view of Lemma 3, there exist Eq-sets F; such that (j = ko, so)

9j+(5

j+o ! (4pi(0+cInr) b0
F(re'tenn)yige| < r freTe ) do =r

= f(rei(0+clnr)) -
0,5 0,5 0,5

= O(o(r)) <5+51n (14—%)), r— too, r & F.

f/(re'?)
Fret)

de
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'Zz < Ki(v(r)) <5+(5ln <1+%>> ,1r— +oo, r¢F,

50
where F = | F;is a Eg-set, K is some constant.
j=ko
Combining the last inequalities and (10) yields

o on(na,p) 1 & _ . 1
r%EwW‘E].:ZkO(H<9]—5>—H(9]+5))+KZ <5+5ln(1+5>>.

Directing ¢ to 0+ gives

n‘(r;a, B) 1 &

rgr&ow =5 ij (H(0; —0) — H(0; +0)) := A(a, B).
r¢E ]=ko

Whereas F is Eg-set, then any interval (R, (14 #)R), # > 0, includes points that are not in F.
Due to the monotonicity of the function n(r; a, B) with respect to r for r > Ry we can assert

that (rn, ) oln) _ n (e ) _ ne(raa,B) vlra)
n(ry; e, B) v(ry n(r; a, n(ry; , B) v(ry
o) o) S u) S un) o)’

wherer(1—y) <r <r<ro<(l+4+n)r, r,rn ¢ F.
Since v(ry) ~ v(r) ~ v(ry),r — oo, the last relation yields

Jim " = M)

Theorem 2 is proved. O
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Hexait doyrkuist spoctanss v Taxa, mwo rv'(r) /v(r) — 0mpur — 400, If = {z = telloteint) 1 <
t < 400} — rorapucpMivra cripans, f — mira PYHKILSI HyABOBOTO IOPSIAKY. 38 YMOBY iCHYBaHHSI
U-IIIABHOCTI Hy AiB f B3AOBX [(, 3HAVA€HO aCMMITOTHKY In f (re!(0+eIn")y p3a0Bx 3BIUAIIHIX AOTApH-
dmiurmx cripaneit I§ dynkii f 308Hi Co-MHOXMHM. [TokasaHo, 1110 obepHeHe A0 IILOTO TBEpPAXKe-
HHSI TIpaBUABHe AMIIIe V¥ BUITAAKY PO3TalllyBaHHS HyAiB f Ha cKiHUeHHIN cmcTeMi Aorapmdpmigrix
crmipaneit 'y, = U]’-”ZO Zgj.

Kntouosi ciosa i ppasu: 1ira YHKIIiSI, ITIABHICTD HYAiB, AorapudpMiuHa CIipaAb.
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(L)

BILANYK I.B.}, BODNAR D.1.23, BuyAKk L.M.3

REPRESENTATION OF A QUOTIENT OF SOLUTIONS OF A FOUR-TERM LINEAR
RECURRENCE RELATION IN THE FORM OF A BRANCHED CONTINUED
FRACTION

The quotient of two linearly independent solutions of a four-term linear recurrence relation is
represented in the form of a branched continued fraction with two branches of branching by anal-
ogous with continued fractions. Formulas of partial numerators and partial denominators of this
branched continued fraction are obtained. The solutions of the recurrence relation are canonic nu-
merators and canonic denominators of B-figured approximants. Two types of figured approximants
A-figured and B-figured are often used. A nth A-figured approximant of the branched continued
fraction is obtained by adding a next partial quotient to the (# — 1)th A-figured approximant. A
nth B-figured approximant of the branched continued fraction is a branched continued fraction
that is a part of it and contains all those elements that have a sum of indexes less than or equal to
n. A-figured approximants are widely used in proving of formulas of canonical numerators and
canonical denominators in a form of a determinant, B-figured approximants are used in solving
the problem of corresponding between multiple power series and branched continued fractions. A
branched continued fraction of the general form cannot be transformed into a constructed branched
continued fraction. For calculating canonical numerators and canonical denominators of a branched
continued fraction with N branches of branching, N > 1, the linear recurrent relations do not hold.
B-figured convergence of the constructed fraction in a case when coefficients of the recurrence rela-
tion are real positive numbers is investigated.

Key words and phrases: branched continued fraction, four-term recurrence relation.
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INTRODUCTION

It is well known that the general solution of a linear homogeneous recurrence relation of
second order: y, = buyy,—1 + anyn—2, n = 1,2,..., where the a,,b,, n > 1, are complex
numbers, can be represented in a form of a linear combination of two linearly independent

solutions
1) (1 2) (2
y(l): (1’0’y:(l ),yg ),...>,y(2): <O/11y](. )/yé )I"')'

These solutions are, respectively, canonical numerators and canonical denominators of approx-
imants of the continued fractions [15, 18,19]
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In this paper, an analogous idea for a four-term linear recurrence relation

Yn = CnlYn—1+ bn]/n—z + anyn-3, (1)

where the a,,, by, ¢, n > 2, are complex numbers, is considered.

Different constructions of multidimensional generalizations arise as a result of consider-
ing the N-term recurrent relation, N > 1, [8,12,18]. They are widely used for compatible
approximations, for representation of solutions of algebraic equations, etc. The formulas of
the elements of these fractions were not obtained, in general, except for the Furshtenau’s two-
dimensional generalization of continued fractions [14]. B. V. Krukowski has proved the theo-
rem of convergence of these fractions [16].

This investigation leads to branched continued fractions (BCF) that are a multidimensional
generalization of continued fractions. Thus, BCF of the general form are under consideration
[7,9,11,21]. Also, the different forms of BCF exist, in particular, BCF of the special form [1,
3-6, 10, 13], two-dimentional continued fractions [2, 17, 20], etc. The different constructions
of their approximants [7] and, respectively, the different types of convergence appear in the
considering of different mathematical problems.

Let

7= {i(k) = (1,1 ..., 0k) :1<i, <2, p=T1k k> 1}

be the set of multiindices. Let us introduse an order relation < on the set Z for i(p) € Z and
j(q),j(p) € T, where j(s) = (j1, ja -, Js), s € N:

1) i(p) <jq),ifp <gq
2) i(p) < j(p), ifix < ji;

3) i(p) < j(p) ifexistsr,1 <r < p,suchthatiy =ji, k=1,7,i,41 < jri1.

Let we have sequenses of complex numbers {ﬁi(k) },

—

Wi(k)}, where i(k) € Z, then

™

i(k) (2)
i(k)

i) Gi(2) = XZ:
Mi(1) M) + -+ (10

=

=

XZ: Si(1) _ X"':
i+ SN I N =t
Y Emie

»
+ ir=1

be a general branched continued fraction with two branches of branching with complex ele-
ments.
A nth approximant of the BCF (2) is a finite BFC of the form

5 & Gk
=D Y S > (3)
=1 ir=1 (k)
The continued fraction
Gi)  Gi) Ci(k)

i) T i) + -+ T Wiy + - -+

is called a (i1, i, ..., i, ...) branch of the BCF (2). Let us fix i(n) € Z, then a (i1,iy,...,in)
branch be a finite branch of the BCF (3).
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Length of a finite (71,1, . ..,1,) branch of the BCF (3) is a number of partial quotient of the
nth approximant of the continued fraction (4).

Each branch in the finite BFC (3) has length equal n. A figured approximant of the BFC (2)
is a BFC that is a part of (2) and has at least two branches with nonequal length. Two types of
figured approximants are often used. In particular, A-figured approximants are widely used
in proving of formulas of canonical numerators and canonical denominators in a form of a
determinant [7], B-figured approximants are used in solving the problem of corresponding
betweeen a multiple power series and a BFC.

a ¢
Let b = g denotes thata = ¢, b = d.
A nth B-figured approximanth of (2) is a BCF

~ n.o2 C;-k(k) > 1
fn - D Z 17* 7 n - 4y (5)
k=1 Zk:]. l(k)
where
Ci(k) o .
* if <mn;
i(k)z m(k), i1 +1p+ +1u.<n
;i 0
i(k) 7 ifiy+ip+...4+i > n.

The BCF (2) converges (B-figured converges), if the finite limit of its sequence of approxi-
mants f, (B-figured approximants f,) exists.

The canonical numerator A, and the canonical denominator B, of the B-figured approx-
imant fn are, respectively, the numerator and the denominator of a calculated BCF (5), fn =
Ay /By. In calculating we use the following algorithm [7]

2 &g
% _ Z : 1(/1)771(1), n>1 (6)
n g iy T S
and
& 2 &
l,(m) = ) . Z(m,H) (1) ,yim)eZ, m=n—1,n-2,...,5,n>2, (7)
Tiomy  imsr=1 Tigm+1)Ti(m+1) +¢; (m+1)
where

g;(i’l) - O, 77;(") - 1/ lp - 1/—2/ p - L—n/n Z 1. (8)

The algorithm (6)—(8) is equivalent to the gradual algorithm of calculation of the BCF (5) with-
out any reductions in the process.

1 SECTION WITH RESULTS

Let the y(l) = (1,0, bl,ygl),yg), o), y(z) = (O,l,cl,ygz),yéz), ...), be the two solutions of
equation (1), where the by, c; are complex numbers. These solutions yield all three linear

independent solutions of (1), for example,

vV = 1,004, 5,0, v® = (0,1,0,4, v, .., y® = (1,0,1,557, 557, .).
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Put Ay = y]((l), By = yl(cz), k=-1,0,1,..., where

Ap = cpAp_1 +byAyo+ayAy3, n=23...,

)
By = cyBy—1+byBy_o+ayB,_3, n=23...,

and
A—l =1, AO =0, Al = bl/ B—l =0, BO =1, B1 =C1. (10)

By analogous with a continued fraction let us construct the BCF such that each its nth
B-figured approximant equals A,,/B,, n > 1.

If n =1then Ay/By = by/c1. Forn = 2wehave Ay/By = by /(c1 + by_cgl) +ay/(cc1 +b7).
If n > 3 we replace n by n — 1 in (9) and put the obtained value A,,_; in (9), we get

A= Ao+ B Ay s+ Ay, (11)

n—1
where 7;(1”_)1 = Cy_1Cn + by, /5,(1”_)1 =b,_1¢,, + ay, rx,g"_)l = a,_1¢n. Next, if n > 4, by substituting

n — 2 for n in (9) and putting obtained A, in (11), we get a new formula for A,, etc. If
n > r+ 2, after (n — r) steps we have

Ap = 'Y;gn)Ar—l + ,Bi(’n)Aer + “;gn)Arf& (12)

where
1 =\ + B B = b+l ol = anY, (13)

r=n—1n-2,...,2,and 7,(1”) = Cp, ﬁ;”) =b,, (ngn) = a,.
An analogous relation holds for B,

B, = 'an)Brfl + ,Bgn)Br—?_ + “£n)Br—3/ (14)
where 7£"),ﬁ§"),a£"),r =n—-1n-2,...,2, are defined by (13) and 7,(1") = cu, By = b,
a,gn) = a,, with initial conditions from (10).

Let us introduse the following notation

Cp = CkCr_1+ by, k=21, n>2;
b = bxck—o +ay, k=3,n; n > 3; (15)
a, = agcr_3, k=4,1; n > 4;

and (n) () ()
7 cioB 4 a)
w(n) _ ﬁ] ) ] —1n ZJ(n) _ ] 2:3] J ’ ] =31, n>3. (16)
j (n) ] (n)
Wi j

Combining this with the initial conditions (10) and relations (12)—(14), for r = 2, we obtain

T L N S R

_ (1)
= - - = —= =y =Wy, N > 3.
Bu ("B 4+ BBy +al"B Ve 4B
Using the denoting (15) and (16) we get
(n) _ bl a?_')’én) bl ar

w + = + .
! 01+ wgn) 1 (cz'ygn) + ﬁgn)) + bzfyén) + ocgn) 01+ wgn) ch+ vén)
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Let us prove the recurrent formulas for w]((n), k=2n—-2,n>4, v,((n), k=3,n—-2,n>5 We
obtain

(n) _ ﬁl(cn) _ bk'y,ﬁ)l +“l(<i)1 _ by Ak41
ey ) R e R R W (17)
Yk Vi1 T Prin kT Wy G T U
Analogously
NN Ck—?-ﬁi(cn) + “lgn) _ Ck—Z(bk,Ylgi)l + “1(:21) + ‘lk%gi)l _ by B (18)
k (n) NG 5(”) o L™
Tk kY1 T Pria k k+1  Ck+1 T Pk42
Let us now consider thecasek =n — 1
b, a b !
n n—1 n n n—1 n
w = +—n>2,0 "' = +—, n>4.
n—1 b, | Ch n—1 b, Ch (19)
Cp—1+ — Cp_1+ —
Cn n

b b
If we put w,ﬁ”) = C—n, v,&”) = C—n, wii)l = 01(1':21 =0, wfﬁzz = vfﬁzz = oo we have that recurrent

formulas (17), (18) ﬁold for k S 1,n, as well.
Consider the BCF (2), where

G1="b1, Go = a, (20)
and foralli(k) € Z,k > 2

biiviyt.vip, i1 =i =1

, e a e
Eiy = bitigtvipy i1 =2, =1 1)
Ajytint..tipy o1 =1, =2;
a;1+i2+...+ik' ifix1 =2,k =2,
and foralli(k) € Z,k > 1
Cirtipt.tipy k=1
Ni(k) = { il P i (22)
Cirtigttipy I k=2,
where the a;, b;, c;, i > 1, are coeficients of (1), the a; Lo b:- 1 c;,i > 2, are obtained from (15).

Theorem 1. Let {A,}, {B,} be sequences of complex numbers such that
A*lzll A():O, Alzbl, B1=0,By=1, By =¢,

and
Ap = cpAp_1 +bAyo+ayAy3, n=23...,

By =cyBy_1+byBy_o+ayB,_3, n=23...,

where theay, by, ¢, n > 1, are complex constants. Then the A, B;, are the canonical numerator
and the canonical denominator of nth B-figured approximant of the BCF (2), i.e. f, = A,/ By.
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(n)

Proof. Applying the equality A, /B, = w; ’, n > 1, we use the recurrent relations (17)—(19)
and step by step write the value A, /B, in a form of a finite BCF that is equal f,. On the first

step we have

A b a
B : w T : W~ d w T = "
nooocitw,’ ¢y, Mm+wy,’ 12470,

After the second step we get

Ay ¢1 ¢2
B, G1,1 C12 i i+ ol
Tt T ) ’
ma+wy M2+ 0y

and after the third step we obtain

An C1 N &2
By $11 1,2 $21 &o
n G111 G112 +1712—|—U(n) 172+1721+w(")+177_2+v(”)
mit ot — AR

n
M1+ wz(; Mm,1,2 + 0g

etc. Using the method of mathematical induction we prove that after m steps, 1 < m < n, we

get

(23)

where @;.k(k) = Gy tir+ia+...+i < morig+ir+...+i = m+1land iy = 2
ifiy+ip+ ...+ < m—1, then q;k(k) = iy if iy = land iy +i2+... +i = m, then

(n) (n)

n;‘(k) =iy + Wy, ;i iy =2and iy +ip + ... + iy = m, then n;‘(k) = (k) + Vv

- - . () Gitky _ 0
i1+iy+...+1i =m+1, then Tiey = Mitk) + Vo In all other cases 17*— =7
i(k)
Let us make the next, m 41, step. Letiy +ip + ...+ iy = m, iy = 1, then
T (n) b1 Am+2
Niky = Mitk) + Winp1 = Mik) T + )

Cm41 T wg:lz Cin2 T Vs
or by using (21), (22) we obtain
. Gi(k)1 Ci(k),2

Mitk) = Mitk) + T '
Mi(k),1 T wﬁfﬂz Mi(k)2 + 0%3

Ifiy+iy+...+ip =m, i =2, then

o (ny _ byt [
Uity = Mitk) + Vpr =Mik) + T (n)

/
Cmt1 T Wyio  Chpyo T Upis

ik Ci(k),2
=Mi(k) + © w - )
i1 T Wyio Mgk 2+ Vpis

1 if iy = 2and
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(n)

Ifll +12++Zk = m+1,ik :2,then17;"(k) = qi(k) —}—’(’)m+2.
Hense, we get the equality (23), where m is replaced by m + 1.

Put m = n —1. Then, using the equalities (19) we obtain that n;k(k) = i) + gi(k)’l
i(k),1
lf11+12++1k :n—l,andiﬁ‘(k) = qi(k) lf11+12++1k :Vl,ik = 2.
Thus,
Ar 15N & Sk o
o Z PR f"
B 21 i1 Mk
O

Remark 1. A BCF with two branches of branching with arbitrary complex elements
ol 2 N
DX @4
=1 =1 Bito)

can not be transformed into the form (2), where the §j(y), 1x), i(k) € Z, are determined by
formulas (20)—«22). For calculating canonical numerators and canonical denominators of a
BCF with N branches of branching, N > 1, the linear recurrent relations do not hold.

Let us consider the nth B-figured approximants of BCF (24) and (2). Let n = 2, then we get
second B-figured approximant of the BCF (24) g, = a7/ <,31 +ap ,81_%) + ap/ B2, and by using
the formulas (20)-(22) and (15) we obtain second B-figured approximant of the BCF (2) ]?2 =
b,/ <c1 +b2c2_1) +ay/ (cica+by) . If we put by = ay, c1 = B1, a2 = ap, by = ay1, ¢2 = P12,
then we get that the relation 8112 + a11 = B2 must hold. But the 3, is arbitrary. Hense, this is
the case that illustrates the truth of the Remark 1.

Theorem 2. Let the coefficients a,, by, c,, n > 2, of equation (1) be positive real numbers such
that

) e = e, (25)
k=2
where
M; M;
M = min {—] , ,]H}, k>2,
k<j<2k R]'+1 Rj+2
Mj = cjcicivacio, [ 22,
R]‘ = b]‘C];lC]-H + aj+1Cj-1Cj, ] >3,
R] - b]C]_1C]+1 + ﬂj_i_lC]‘,lC]', ] Z 4,
and a; Yo b; Y c;-, i > 2, are determited by (15). Then the BCF (2), whose elements satisfy

relations (20)—«(22), B-figured converges.

Proof. Let us show that the elements of the BFC (2) satisfy the conditions of the Theorem 3.11 [7,
p- 85]. For this, we consider the following expressions d;1) = i) Mi(k+1)/ Ci(k+1), i(k+1) e
Z, k>2 Ifwefixi(k—1) € Z, k > 2, using the relations (21), (22), we obtain
¢ qC;
s dik—1)22 = s
a.
j+3

! !
J _CiCi P _ Ciy1Cj42 P G2
ik=1)11 = T Gil-1)21 T T 7 Fitk-1),12 =
]+1 ]'+2 ]+2
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k=1

where j = Z i; + 1. From this we obtain

I=1

min {di(k+1)} = min

!/ ! !
CiCi+1 Cj+1Cj+2 CiCit2 Cit1Cj43
i(k+1)€Z, k>2 k<j<2k, k>2

7 ! 7 4 !
b bi, 42 a3

/

. M; My

> min R = Yg-
k<j<2k, k>2 j+1 R].+2

Now from (25) it follows that the elements of the BFC (2) satisfy the conditions of the

Theorem 3.11 [7, p. 85]. This means that the BFC (2) converges.

(1]

(2]

(3]

(4]

(5]

(6]

(7]
(8]

9]

[10]

(1]

[12]
[13]

[14]

(15]

(16]

Finally, by the Theorem 2.2 [7, p. 48], the BFC (2) B-figured converges. O
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biranmk 1.B., Boanap A.L, Bysik A.M. 306pasicenns 6i0HowueHHS po3s’93Ki8 HOMUPUUIEHHO20 NiHITIHO020
PEKYPeHINH020 CNissioHOUEHH ] Y 8u290i 2i119c020 1aHy0206020 Opoby // KapmaTcbki MaTeM. myOA.
— 2019. — T.11, Nel. — C. 33-41.

BiaHOIIEHHST ABOX AiHIHO He3aAeXHMX PO3B’sI3KiB YOTMPUYAEHHOIO AiHIHOTO peKypeHTHOTO
CIIiBBiAHOIIIEHHSI 32 aHAAOTI€IO 3 HellepepBHMMIL APObaMI IIPEACTABAECHO Y BUTASIAY TiAASCTOTO AdH-
LIFOrOBOTO APOOY 3 ABOMA TiAKaMM po3raAy>kKeHHs. 3HaliAeHO (pOpMyAM YaCTMHHIX UMCEABHVKIB Ta
YJaCTMHHMX 3HaMEHHUKIB IIbOTO TiAASICTOTO AAHIFOTOBOTO Apoby. Po3s’s3ku pisHMIIEBOrO piBHSIH-
HSI € KaHOHIUYHVMMM UMCeABHMKAMM i KaHOHIYHMMM 3HaMeHHMKamMu B-(irypHmx miaxiaAHux Apobis.
YacTo BUKOPUCTOBYIOTh ABa TuIm (pirypHmx maxiaumx apob6is: A-dirypHi i B-dirypsi. n-mit A-
diryprEvt maXiAEMIT Apib TIAASICTOTO AAHIFOTOBOTO APOOY OTPMMYETHCS AOAABAHHSM HACTYITHOI
YaCTMHHOI 9acTku A0 (1 — 1)-To A-dirypHoro maxiaHOro aApoby. n—voi B-pirypHynit miaxiaHwit Api6
TiAASICTOTO AQHITIOTOBOTO APO6Y € TiAASICTMIT AAHIFOTOBMIA Apib, IITO € JI0TO YaCTMHOIO i MiCTUTD BCi
Ti eAeMeHTH, cyMa iHAeKciB sSIKMx MeHIa, abo pisHa 1. A-dirypHi maxiaHi Apo6u BUKOPUCTOBYIO-
TBCSI IIPY AOBEAEHHI (POPMYA AASI KAHOHIYHIMX UMCEABHVIKIB 1 3HAMEHHVKIB y BUTASIAL BUSHAYHMIKIB,
B-dirypHi miaxiaHi Apobu — y 3apadax BiAIOBIAHOCTI MiXK KPaTHMMM CTeNleHEBUMM PsSAaMM i Ti-
AASICTVMIL AQHIIFOTOBUMM ApOGaMiL. 3araAbHMIA TIAASICTVVE AQHIIFOTOBIMIL Api6 He MOXKHA 3BECTM AO
06y AOBAHOTO FiAASCTOrO AQHIIFOTOBOTO APOOY. AAsI 06UMCAEHHS KaHOHIYHIIX UMCeABHMKIB i KaHO-
HiYHMX 3HAMEHHMKIB TiAASCTHX AGHIIOrOBMX Apo6iB 3 N, N > 1, rinkamm po3raay>kKeHHS He CITpaB-
AXYIOTBCSI AiHIIHI peKypeHTHi criBBiaHOIIeHHS. AocaiaxeHa B-dirypHa 36ikHicTb TO6YA0BaHOTO
ApoOy y BUIIaAKY, KOAM KoedpillieHTaMI peKypeHTHOTO CIIiBBiAHOIIIEHHSI € AiJiCHI AOAATHI UMcAa.

Kntouosi cnosa i ¢ppasu: TIAASICTUIL AQHIIIOTOBUIL APi6, peKypeHTHe CITiBBiAHOIIIEHHSI.
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CHERNEGA 1.1, ZAGORODNYUK A.2
NOTE ON BASES IN ALGEBRAS OF ANALYTIC FUNCTIONS ON BANACH SPACES

Let {P,};_ be a sequence of continuous algebraically independent homogeneous polynomials

on a complex Banach space X. We consider the following question: Under which conditions poly-
nomials {Pf ... pk "} form a Schauder (perhaps absolute) basis in the minimal subalgebra of entire
functions of bounded type on X which contains the sequence {P,};>_,? In the paper we study the
following examples: when P, are coordinate functionals on ¢y, and when P, are symmetric polyno-

mials on ¢1 and on L [0, 1]. We can see that for some cases {Pf I... Pf"} is a Schauder basis which
is not absolute but for some cases it is absolute.

Key words and phrases: Schauder bases, analytic functions on Banach spaces, symmetric analytic
functions.
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INTRODUCTION AND PRELIMINARIES

Let X be a complex Banach space. We recall that Hj,(X) is the algebra of all entire analytic
functions on X which are bounded on bounded subsets. It is well known that H,(X) endowed
with the metrisable topology generated by the countable family of norms

1fllr = sup [f(x)], 7e€Qy,f e Hy(X),

[l <r

is a Fréchet algebra and the space P(X) of all continuous polynomials on X is a dense subal-
gebra in Hy(X).

Let P = {P,}, be a sequence of continuous algebraically independent homogeneous
polynomials on X with ||P,|| = 1 and Py = 1. We denote by Pp(X) the algebra of all polyno-
mials generated by the sequence IP and by Hyp(X) its closure in Hy(X).

Clearly,

(PO = Pfr.. Pl (k) = (ky,... ky), n=0,1,2,...}

is a linear basis in Pp(X), and so the span of P() is dense in Hyp(X). Here we set Py = 1.
This work is motivated by the following natural question: Under which conditions {P®)} is a
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2010 Mathematics Subject Classification: 46]15, 46]20, 46E15.

This work was supported by the budget program of Ukraine "Support for the development of priority research
areas" (CPCEC 6451230)

(© Chernega 1., Zagorodnyuk A., 2019



NOTE ON BASES IN ALGEBRAS OF ANALYTIC FUNCTIONS ON BANACH SPACES 43

Schauder (perhaps absolute) basis in Hyp(X)? The main result of this paper is that depending
on the sequence P we can have different answers on this question. In the paper we study the
following examples: when P, are coordinate functionals on ¢y, and when P, are symmetric
polynomials on ¢; and on Le |0, 1].

Let us recall some definitions in the theory of locally convex spaces (see e.g. [14]).

A sequence of subspaces {E, }, of a locally convex space E is a Schauder decomposition of E
if for each x in E there exists a unique sequence of vectors (x,),, x» € E,, such that

[ee] m

x:an::n%iggO;xn

n=1 n

and the projections (u,)5,_; defined by

) m
Um (Z xn> = an
n=1 n=1

are continuous. A Schauder decomposition {E, }, of a locally convex space E is absolute if for
each semi-norm p € cs(E),
(£) - £ o
n=1 n=1
defines a continuous semi-norm on E. Finally, a Schauder decomposition {E,}, of a locally
convex space E is global if for allr > 0,allx = )_° ; x, € Ewithall x, € E,

Z x, € E
n=1
and for each p € ¢s(E),
Pr (Z xn> = Z r"p(xn)
n=1 n=1

defines a continuous semi-norm on E.
If each E, is a finite dimensional subspace, then the decomposition is called finite dimen-
sional. If each E, is one dimensional and e, spans E,, then (e,)$’_; is a Schauder basis.

1 MAIN RESULTS

Let X = cg and P, = e}, be the coordinate functionals on cy. Then
PO (x) = (ef (x))f - (eh(x))r =l abe, m=0,1,2,...,

are so-called k1 + ... 4+ ky,-homogeneous monomials on cy. Since every polynomial on ¢y can
be approximated by polynomials of finite type and every polynomial of finite type belongs
to linear span of monomials, we have that Hyp(co) = Hj(cp). Moreover, in [8] it is proved
that the monomials {P(*)} endowed with some special order form a Schauder basis for Hj(cg)
which however is not absolute. Indeed, if it is absolute, then the subset of monomials
{PW): deg PY) = m} form an unconditional basis in the Banach space of all n-homogeneous
polynomials P(™cp). But it is not so for m > 1, according to [6].
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Let now deg P, = n.So if P € Pp(X) and deg P = m, then

m
k
P(x) = Z Z akl...knpll(x) o Pilffn (X), aklmkn S C (1)
n=0ky+2ky+...+nk,=n

We denote Pp("X) the linear space of all n-homogeneous polynomials in Pp(X). From (1) it
follows that Pp("X) is finite dimensional, polynomials {Pi< Lo PRk 4+ 2k .k, = n}
form a linear basis in Pp("X) and dim Pp("X) = p(n), where p(n) is the number of partitions
of n.

Proposition 1. Let deg P, = n. Then the sequence of spaces {Pp("X)}_, is a global finite
dimensional Schauder decomposition for Hyp(X). Here Pp(°X) = C.

Proof. In [14] it is proved that {P("X)}>> , is a global Schauder decomposition for Hj(X).
Since Hyp(X) is a closed subspace of H,(X), Pp("X) = P("X) N Hyp(X) is a global Schauder
decomposition for Hyp(X). O

Note that in the general case the existence of a finite dimensional Schauder decomposition
does not imply the existence of a Schauder basis (see [13]).

Algebras of symmetric functions on ¢; or L1 [0, 1] deliver us interesting examples of Hyp(X).
By a symmetric function on ¢; we mean a function which is invariant under any reordering of
the basis in /1. We use the notations ;s (¢1) for the algebra of all symmetric analytic functions
on /7 that are bounded on bounded sets.

In [12] it is proved that the polynomials

F(x)=Y xf, k=12,
i=1

form an algebraic basis in the algebra of all symmetric polynomials on ¢;. This means that
the polynomials { Fy } are algebraically independent and their algebraic combinations coincide
with the space of all symmetric polynomials Ps(¢1) on 1. Thus, {F*) = Ff To.. F]]:”} forms a
linear basis in Pg(¢1) or, in other words, Hys(¢1) = Hypr(41).

The algebras Hj,s (/) and their spectrum were investigated in [2—4, 10].

In [5] was constructed an example of a symmetric analytic function on ¢; which is not of
bounded type.

The algebra Py (¢1) has other natural algebraic bases. For us it is important the basis {G,, } :

Gu(x) = i Xp

1 Xk
k1< --<ky

n

and Gy := 1. It is known [3] that |G, || = 1/n!. By the Waring’s formula we have

- 1 A A
Gk = Z (_1>k ()\1+)\2++)\k) 5 - Fl 1., Fkk_
A 4240+ A+ kA=k A1IM - Atk

Note that in the general case, algebra Pp(X) admits a lot of algebraic bases of homogeneous
polynomials and linear bases as well. Indeed, if deg P,, = 1, then we can set Q; = a1;P; and

Qn=a110Qn-1P1 +aQu_2P1 + - + a4y, Py
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for some complex numbers 4;; such that a;; # 0. Then polynomials Q, form an algebraic basis

and Q) = Qll(1 e Qi” form a linear basis in Pp(X). Note that there is a linear basis of Ps("/¢1)
which is not generated by an algebraic basis. For a given partition (k) = (kq, ..., k,) such that
|(k)] = k1 + ...+ k, = n we denote by M(*)(x) = Yoyt iy xfll e x:‘: Then {M(k)}“’]‘<’|:O isa
linear basis in Ps("/47).

We need the following simple lemma which probably is well known (c.f. [1, Theorem 2.1]).

Lemma 1. Let Py, ..., Py be algebraically independent polynomials from a Banach space X to
C such that the map
X 3> x+ (Py(x),...,Py(x)) e CN

is onto. Then there is an isomorphism Iy from the minimal subalgebra of entire functions gen-
erated by Py, ..., Py onto the algebra of all entire functions on CN, H(CN) such that Iy(P;) =
t,k=1,...,N, (t,...,ty) € CN.

Theorem 1. Let P, = n!G,,. Then {P(*) = Pfl e P]’:”} is a Schauder basis in Hys((1).

Proof. Let ry be the operator of restriction onto subspace Viy C ¢; spanned on the standard ba-
sis vectors ey, ..., eN. Clearly that r(Gy) = 0if N < k. Also, we know that rn(Py),...,*N(PN)
are algebraically independent and the map

61 S X = (T’N(Pl),...,T’N(PN)) S CN

is onto. So from Lemma 1 we have the isomorphism Iy from the minimal subalgebra of en-
tire functions Hs(Vy) on Vy, generated by ry(Py),...,rn(Py) to H(CN). By the same rea-
son, we have the isomorphism Zy from the minimal subalgebra of entire functions HY (¢;)
on /1, generated by P;,..., Py to H (CN ). From here we have that the operator of restriction
rN: Hps(f1) — Hs(Vy) is onto and I{,l o Iy is the “extension” isomorphism from H,(V;)
to HsN (£1). Also, we know [7, p. 240] that monomials on ¢4, ..., t, form an absolute basis in
H(CN). Thus Pf to.. P,]:" for k < N form an absolute basis in HN (/1) and so all projections Ty,
to finite dimensional subspaces W, generated by these basis vectors are continuous. Thus any
projection u,, from Hys(¢1) to Wy, can be represented by

Up = TnoIIGlOINOTN
and so is continuous. 0

Let us denote Ays(By,) the completion of Hs(¢1) by the norm || - ||; that is, the sup-norm
on the unit ball By, of /1. Such algebra consists of analytic and uniformly continuous functions
on By, and was considered in [1].

Theorem 2. {F) = Ffl e F]]:”} cannot be an absolute Schauder basis in H;s(¢1) and cannot
be an unconditional basis in Ays(¢1).

Proof. Let us remind that a sequence {e,};’ ; is an unconditional basis of a Banach space, if
there exists a constant M such that for every Y ; a,e, and for every e1,...,&n, || = 1, we

have
m m
MH Z apen|| > H Z £,0,65
n=1 n=1

: (2)
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It is well known in combinatorics that

! =1
PAIA AR

3)
MA2A0 4+ +kA=

Let g(x) = Yoo Gu(x). Since ||Gul| = &, g(x) € Hps(f1) C Aus(fq). According to the
Waring’s formula,

v oy (kg kot ek 1 Ky
8(x)—2 Z ( 1)n(1 R
n=0ki+2ko+...+nk,=n kl!lkl o 'k”!nkn

Fkn,

Wesete ) = €, k) = (—1)ktkattkutn) - According to (3) and ||Ff1 .- Ff"||; = 1 the series

) 1 . L
E E F.o.. Ffn
11k1 .. e Iygkn 1 n
e PRNE VA o 1) LR L

diverges. It contradicts (2). Also, if { F(K)} is an absolute basis in H(¢;), then the series

i 1
— (k1 +ko+...+ky ki, .. pkn
Z H(_l)n ek )k1!1k1 . kn!nkn 11 Fn

1=0 ky+ 2K+t ik y=n 1

1

(o]
= Z Z 11k ... J Ik
n=0ki+2ko+...+nk,=n kl'l ! k”'n !

should be convergent. But it is not so. O

Algebra of symmetric analytic functions Hy(L[0,1]) on Leo[0, 1] consists of analytic func-
tions which are invariant with respect to all measurable automorphisms of [0, 1].
According to [9] polynomials P, = R, where

Ra(x) = /[Oll](x(t))”dt, neN,

form an algebraic basis in the algebra of all symmetric polynomials on L [0, 1]. In [11] it is
proved that {R*) = R’l(l e R’,i”} is an absolute basis in Hys(Loo [0, 1]).

REFERENCES

[1] Alencar R., Aron R., Galindo P., Zagorodnyuk A. Algebra of symmetric holomorphic functions on £,. Bull. Lond.
Math. Soc. 2003, 35, 55-64.

[2] Chernega I., Galindo P., Zagorodnyuk A. Some algebras of symmetric analytic functions and their spectra. Proc.
Edinb. Math. Soc. (2) 2012, 55, 125-142.

[3] Chernegal., Galindo P., Zagorodnyuk A. The convolution operation on the spectra of algebras of symmetric analytic
functions. ]. Math. Anal. Appl. 2012, 395, 569-577.

[4] Chernega 1., Galindo P., Zagorodnyuk A. A multiplicative convolution on the spectra of algebras of symmetric
analytic functions. Rev. Mat. Complut. 2014, 27 (2), 575-585.

[5] Chernega l., Zagorodnyuk A. Unbounded symmetric analytic functions on ¢1. Math. Scand. 2018, 122 (1), 84-90.



(6]

(7]

8]

9]

[10]

(1]
[12]

(13]

[14]

NOTE ON BASES IN ALGEBRAS OF ANALYTIC FUNCTIONS ON BANACH SPACES 47

Defant A., Kalton N. Unconditionality in spaces of n-homogeneous polynomials. Q. J. Math. 2005, 56 (1), 53-64.
doi:10.1093/ qmath /hah022

Dineen S. Complex Analysis in Locally Convex Spaces. North-Holland, Mathematics Studies, Amsterdam, New
York, Oxford, 57(1981).

Dineen S., Mujica J. A monomial basis for the holomorphic functions on cy. Proc. Amer. Math. Soc. 2013, 141,
1663-1672. d0i:10.1090/5S0002-9939-2012-11436-4

Galindo P, Vasylyshyn T., Zagorodnyuk A. The algebra of symmetric analytic functions on Le. Proc. Roy. Soc.
Edinburgh Sect. A 2017, 147 (4), 743-761. d0i:10.1017 /50308210516000287

Galindo P, Vasylyshyn T., Zagorodnyuk A. Symmetric and finitely symmetric polynomials on the spaces Lo, and
Lo [0, 4+00). Math. Nachr. 2018, 291, 1712-1726. doi:10.1002/mana.201700314

Galindo P., Vasylyshyn T., Zagorodnyuk A. On the algebra of symmetric analytic functions on L. Preprint.

Gonzélez M., Gonzalo R., Jaramillo J. Symmetric polynomials on rearrangement invariant function spaces. J. Lond.
Math. Soc. (2) 1999, 59 (2), 681-697.

Szarek S. A Banach space without a basis which has the bounded approximation property. Acta Math. 1987, 159,
81-98.

Venkova M. Global Schauder decomposition of locally convex spaces. Math. Scand. 2007, 101, 65-82.

Received 21.02.2019

Yepsera 1., 3aropoantox A. [Tpo 6asucu e anreebpax anarimuuHux QyHkyiii Ha 6anaxosux npocmopax //
KapmaTcexi MmaTeM. my6a. — 2019. — T.11, Nel. — C. 42-47.

Hexait { P, };;_, — TOCAIAOBHICTb HeTlepepBHMX aATe6paiuyHO He3aAeXHIX OAHOPIAHMX MOAIHO-
MiB Ha KOMIIAeKCHOMY 6aHaxoBoMy mpocTopi X. PosrasHeMo HacTyIHe mMTaHHS: 3a SIKMX YMOB
TIOAIHOMM {Pf To.. P,Ii”} yTBOpIOOTH 6asuc Illayaepa (MOXAMBO aOCOAIOTHWIL) B MiHIMaABHIN MiA-
aarebpi miamx dpyHKIili obMexeHoro Timy Ha X, sIKi MicTSTh mocAipoBHICTE { Py} (? Y pobori
AOCAIAXKYIOTBCSI HACTYIHI IIPMKAAAM: KOAU Py, € KxoopAMHaTHMMM (PYHKLIOHAAAMM Cq, i koan Py, €
CMEeTpUYHIMIY ToAIHOMaMY Ha {1 1 Ha Loo [0, 1]. Myt 6aummo, 1110 y A€SIKMX BATIAAKAX {P{( L...pkn e
6asmcom lllayaepa Kl He € aGCOAIOTHNM, aAe B A@SIKMX BUIIAAKAX € aOCOAIOTHIIM.

Kntouosi cnosa i ppasu: 6asuc Illayaepa, aHariTHuHi pyHKIIT Ha 6aHAXOBMX IMPOCTOpax, CUMe-
TPMYHI aHAAITIUHI (PYHKIIII.
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SPECTRAL APPROXIMATIONS OF STRONGLY DEGENERATE ELLIPTIC
DIFFERENTIAL OPERATORS

We establish analytical estimates of spectral approximations errors for strongly degenerate ellip-
tic differential operators in the Lebesgue space L;(Q)) on a bounded domain Q). Elliptic operators
have coefficients with strong degeneration near boundary. Their spectrum consists of isolated eigen-
values of finite multiplicity and the linear span of the associated eigenvectors is dense in L;(Q}). The
received results are based on an appropriate generalization of Bernstein-Jackson inequalities with
explicitly calculated constants for quasi-normalized Besov-type approximation spaces which are as-
sociated with the given elliptic operator. The approximation spaces are determined by the functional
E (t,u), which characterizes the shortest distance from an arbitrary function u € L;(Q)) to the closed
linear span of spectral subspaces of the given operator, corresponding to the eigenvalues such that
not larger than fixed t > 0. Such linear span of spectral subspaces coincides with the subspace of
entire analytic functions of exponential type not larger than t > 0. The approximation functional
E (t,u) in our cases plays a similar role as the modulus of smoothness in the functions theory.

Key words and phrases: elliptic operators, spectral approximations.
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1 INTRODUCTION

We investigate the problem of best approximations in the Lebesgue space L;({2) on a
bounded domain () C R" by using spectral subspaces R(A) of a strongly degenerate elliptic
differential operator A. Our aims is to prove the inverse and direct theorems that give precise
estimates of approximation errors and which are connected with appropriate estimations by
Bernstein-Jackson type inequalities.

For this purpose we use the best approximation functional E (t,1; R(A), Ls(Q))) which
characterizes a shortest distance from an arbitrary function u € L;(Q)) to the closed linear
span Rf(A) of all spectral subspaces R 2;(A) of the given operator A, corresponding to the
eigenvalues A; such that [A;| < t with a fixed t > 0.

This best approximation problem we solve by finding exact values of constants in the
Bernstein-Jackson inequalities. Namely, we establish the Bernstein-Jackson inequalities with
explicitly calculated constants, using the suitable generalization of Besov’s space 7 (A, L;(()),
determined by a given operator A and an appropriate functional E (t,1; R(A), Ls(Q))).

It is essentially to note that the approximation functional E (t,u; R(A),L,(Q)) in these
inequalities plays a similar role as the modulus of smoothness in the functions theory. Earlier
applications of smoothness modulus to approximation problems can be found in [5-7].

In this paper we continue the research started in [3, 4].

YAK 517.956.2
2010 Mathematics Subject Classification: 35]30, 47 A58.

(© Dmytryshyn M., Lopushansky O., 2019
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2 STRONGLY DEGENERATE ELLIPTIC DIFFERENTIAL OPERATORS

We shall follow the treatment given in [8, Sec. 6.2.1]. Let (3 C IR" be an open bounded
set with the infinitely smooth boundary 0Q). As usual, C*(Q)) denotes the space of all in-
finitely differentiable complex-valued functions defined on (). Suppose that p(x) € C*(Q) is
a positive function such that:

(i) for all multi-indices & = (a1, ..., an) € N", || = a1 + ... + &, there exist positive num-
bers ¢, such that

ID*0(x)| < cupt1¥(x) forall x e O

(ii) for any positive number K there exist numbers ex > 0 and rx > 0 such that p(x) > K, if
d(x) < egorl|x| > rg, x € Q (here, d(x) is the distance to the boundary 0Q)).

In what follows, S, (,)(€2) denotes the locally convex space
So(x)(Q) = {u cu e C®(Q), |lulli. = ilégpl(x)]D“u(x)] < ooforall wand I € ]NO}.
Letm € N, y, 7 € Rand T > pu +2m. We put

1

N, = —
! 2m

(t(2m—1)+ul), 1=0,1,...,2m,

and consider the differential elliptic operator

m
Au = Z Z o N2 (x) by (x) D*u + Z ag(x x) DPu, (1)
1=0 |a|=21 |B|<2m
where by (x) € C®(Q) (Ja| =21, 1 = 0,1,...,m) are real functions, all derivatives of which

(inclusively the functions themselves) are bounded in Q). In sequel we assume that there exists
a positive number C such that for all § € R" and all x € ()

YT ba(x) 3" > CIEP, b, 0)(x) > C,

|a| 2m
Y ba(x)e* >0, I=1,...,m—1.
|| =21
Moreover, let ag(x) € C*(Q) (0 < |B| < 2m) and there exists a positive number 6 > 0 such

that D7ag(5) = O(p Ripi 1l ~%) for 0 < |B| < 2m and for all multi-indices 7.
Letl < g <oco, 7> pu+sq s € Ngand 7,4 € R. Consider the weighted Sobolev space
W, (Q); p#; p7) endowed with the norm (see [8, Thm 3.2.4/2])

1w (ca;p) [/ < Y. ot (x) | D u(x)|? +pT(x)|u(x)|‘7>dx]".

|a[=s

Let7 >0,1<g <coand p~*(x) € L1(Q) for an appropriate number a > 0. Then A given
by (1) with the domain D(A) = qum (Q); p#; p7) is the closed operator in L,(Q2) (see [8, Thm
6.6.2]). The spectrum of A consists of isolated eigenvalues {A; € C: j € IN} of finite algebraic
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multiplicity and its eigenvectors belongs to S,(,)(Q2), as well as, its linear span is dense in
So(x) (1) and, as a consequence, it is dense in Ly (€2).

Let Ry (A) = {u € D%(A) = MNken DK(A): (Aj — A)"iu = 0} be the spectral subspace,
corresponding to the eigenvalue A; of multiplicity ;. Denote by RV(A) the complex lin-
ear span in Ly () of all spectral subspaces R, (A) such that [A;[ < v. Following to [4], let
R(A) := Uy~ RY(A) be endowed with the quasi-norm

ulra) = ||u||L )y +inf{v>0:u e R"(A)}.

3 ANALYTICAL ESTIMATES OF SPECTRAL APPROXIMATIONS

Let us consider the subspace of all exponential type vectors £(A) of the elliptic operator A
as the union |J,~ o £Y(A) which is endowed with the quasi-norm

|ule(ay = l[ullL, ) +inf{v > 0:u € E(A)},

where for any v > 0 the subspace £Y(A) = {u € E(A): [lullgviay < oo} is endowed with the
norm |[ul[gva) = Lken, H(A/V)kuHLq(Q) (see [3,4]).

Let0 <s<ocoand 0 <r <ooor0 <s < ocoandr = 0. To investigate spectral approxima-
tion errors, we consider the appropriate Besov spaces

B3 (A, Ly() = {u € Ly(Q): ulsar,q)) < 0},
associated with the given operator A on the space L;(€}), which is endowed with the norm

([T rpemea, ) ), o<r<s,
ulBs(aL ) = 0 t

sup t°E(t,u; E(A), Ly (Q)), r = 00,

>0
where E(t,u;E(A), Ly(Q))) = inf{Hu — uOHLq(Q): u € E(A), |ul[¢a) < t} forallu € L,(Q))

andt > 0. Denote E(t,u; R(A), L;(Q))) = inf{Hu — uOHLq(Q): u? € R(A), [u’|g(a) < t} for all
uc Ly(Q)).

Now, we consider the space £Y(D {u € C*(Q): D*u € Ly(Q), |a| =k € No} endowed
with the norm [|u||gv(p) = Tiz0 Ljaj= kv HD"‘uHL )- On &(D ) Uys0 V(D) we define the
quasi-norm [u[¢p) = ||u||L ) +inf{v > 0: uEEV( )}

In [3, Thm 9] 1t is proved that £(D) coincides with the space M;(Q) = U,~o My(Q)
endowed with the quasi-norm

ey = inf o {lol,mn+ sup [},
1(Q) vla=u,veLy(R") Ly (R") {esupp Fo }

where supp Fv denotes the support of the Fourier-image Fv of a function v € L;(IR") and
M (€2) means the space of entire analytic functions v(z) of the complex variable z € C" of
an exponential type v > 0 which restrictions to () belong to L,((2).
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Taking into account [1, Sec. 7.2] or [8, Sec. 2.5.4] and the mentioned above equality £(D) =
M,(Q2), the classic Besov space B ,(2) over Q) can be endowed with the norm

(/Ooo [E(t, u;s(D),Lq(Q))]’%l/r, 0<r<oo,

sup t°E(t,u; £(D), Ly(Q))), r = 0o.

t>0

||”||B;,,(Q) =

In B . (Q)) we consider the subspace which is associated with the function p(x),

B, o) (Q) = {u € B,(Q): supp! (x)|D*u(x)| < coforall x and I € NO}.
xeQ)

Theorem 1. The following Bernstein-Jackson inequalities hold,

lullsg ) < corluligalully oy 1 € R(A), )
E(t,1;R(A), Ly(Q) scs,rnunB;,(m, weB, Q) ©)

with the constants c;, = (rs™!(s +1)2)1/Y and C;, = 2571 (r71s(s —{—1)_2)1/r ifr < oo,

Cs,00 = Cs00 = 1. In addition, for each u € B;/r,p(x)(()),
inf{”u — 10l u’ € RV(A)} < v Cor [lulls, () (4)

Proof. First, note that applying [2, Thm 2.2], we get the following equalities
E(A) =R(A), |ulga) = lulg(ay forall u e E(A). (5)
Now, we show that the following linear topological isomorphism holds,

Using [8, Thm 6.5.2/1, Thm 3.2.4/3], we have
A) = (DF(A) = W™ (€ 0™ pT™%) = S, (),

where the locally convex space ©*(A) endowed with the semi-norms ||AkuHLq(Q) for all
k € INg. Above, the equality also must be understood as linear topological isomorphism.
Let us prove the equality

E(A) = {u € £(D): sup o' (x)|D*u(x)| < coforallx and [ € ]NO}. (7)
x€Q)
Since HAkuHL ) < vRJJullp, L) < (EM Y kHD"‘uHL y v kHuHL y) forallu € EV(A),
we get Y v~ 2k||Aku||Lq < Y (Xjuekv™ HD"‘uHL )+ k||u||L )). Substituting o = v
with v > 1, we have

N

vlull, o) L Vlulle ) 2v—1

——1 = [ullev(p) -1 v 1 [ullev(py

[ulleray < llullev(p)

It follows that {u € EVY(D): sup o' (x)|D*u(x)| < coforalla and I € Ny} C EY(A).
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On the other hand, applying [8, Thm 6.5.2/1, Lemma 6.2.3] for any k € IN, we obtain

k
HA uHLq(Q) > CkHuHW'%mk(Q;ka;quk)

—a| [[( L em ol o o )]

|a|=2mk

1
> CkCp {/Q < Y D%u(x)|7 + |u(x )|‘7>dx} = Cka|’”HW5»nk(Q),

|| =2mk

where ¢, > 0 does not depend on k. Thus,

1A g o) = IAS(AW) 11, 00y = exepll Aullyam g

==

—ad( T nmug(mHAuH&«»)

|a|=2mk

1

>ach( L IAD ] o) +llAu]] o)’
|a|=2mk

Q=

> CkC1C£+1<| |XZ: kHDaul|W2m + HuHWZm )) = Ck+1ck+ HuH Zm k+1)(0)
a|=2m

where ¢ 1 = cpc1 = cll‘+1 by induction on k. Hence, for each k € N and u € ©¥(A), we have

HAkuHLq(Q) > CIprH”Hw;mk(Q) forallu € ®*(A), where c; > 0 does not depend on k. This leads
to the inequality Ev*kHAkuHLq(Q) > 2((clcp)’1v)*k|\u|\wg(0) from which it follows that

EV(A) C {u € E(Clcﬂ)flv(D): sup p' (x)|D*u(x)| < oo foralla and € ]NO}.
x€Q)

Hence, equality (7) holds. Now applying [3, Thm 9], we obtain the required equality (6).
Using (5) and [4, Thm 2], as well as, taking into account (7), we obtain the required inequal-
ities (2), (3), while (4) directly follows from (3) and [3, Thm 6]. O
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Avutpyme ML, Aonyrrancskuii O.B. Crnexmpanvri anpokcumayii CuibHO 8Upo0d#CceHUX eninmuuHux
Jugpepenyianonux onepamopis // Kapmarcexi maTeM. myoa. — 2019. — T.11, Nel. — C. 48-53.

BcranoBAeHO aHAAITMUHI OLIHKM MOMMAOK CIIEKTPAABHMX alpOKCUMALIill CMABHO BUPOAXKEHMUX
eAInTMIHNX AMidpepeHITiaAbHIX OTlepaTopis B mpocTopi Aebera L;(()) Haa obmexeHoro obaacTio ().
Taki eAinTUUHI oIepaToOpM XapaKTepu3yIOThCsI CUABHMM BUPOAXKEHHSIM iX KoedpillieHTiB mobAM3y
rpaHMIi, iX CIEKTP CKAAAA€ThCS i3 i30ABOBAHMX BAACHMX 3HaUeHb CKiHUeHHOI aarebpaiuHoi Kpa-
THOCTI, a AiHilfHa 06OAOHKA BAACHMX i TIpMeAHAHMX BEKTOPIB mIiAbHA B TpocTopi Ly(QY). Otpumani
pe3yAbTaTU IPYHTYIOThCSI Ha BiATIOBIAHOMY y3araAbHeHHI HepiBHOcTeli bepHinreriHa i AXXexcoHa 3
O6UMCAEHHSIM TOYHMX KOHCTAHT AASI KBa3iHOPMOBAHMX allpOKCMMAIIHMX IPOCTOPiB Tuiry becosa,
acoLifOBaHMX 3 AAHMM eAINTUYHMM OIlepaTopoM. AITPOKCMMALiliHI IPOCTOPY BU3HAYAKOTHCST 3@ AO-
nomororo dyHkiionaay E (f, 1), sSIKuif xapakTepusye HallKOPOTILY BiACTaHb BiA 3aAaHOI pyHKIIT
u € Ly(Q)) ro 3aMKHeHOI AiHINHOT 060AOHKM CTIEKTPAABHMX MIATIPOCTOPIB 3aAAHOTO ONepaTopa,
IO BiATIOBiAQIOTH BAACHMM 3HAUEHHSM, SIKi 3a aOCOAIOTHOIO BEAMUMHOIO He IIePeBUIIYIOTh (pikco-
Bage uicro ¢ > 0. ITpm 11boMy BKasaHa AiHilfHa 060AOHKA CTIEKTPAABHMX ITiATIPOCTOPIB CITiBIIAAA€E
3 MAIIPOCTOPOM IHAMX aHAAITUYHMX (PYHKIIN €KCIIOHEHITiaABHOTO THITY, IIO He IepeBumye ¢ > 0.
Anpoxcnmanivtamii dpyskuionaa E (f, #) B HallloMy BUIIaAKY BiAirpae poAb, HOAIOHY MOAYAIO TAaA-
KocTi B Teopii pyHKIIi.

Kntouosi cnosa i ¢ppasu: eAinTvdHI oniepaTOpH, CrIeKTpaAbHi alpOKCHMAaIIil.
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ON SOME OF CONVERGENCE DOMAINS OF MULTIDIMENSIONAL S-FRACTIONS
WITH INDEPENDENT VARIABLES

The convergence of multidimensional S-fractions with independent variables is investigated us-
ing the multidimensional generalization of the classical Worpitzky’s criterion of convergence, the
criterions of convergence of the branched continued fractions with independent variables, whose

i ir—1
,(k)Q,(k 1)<1 Ji(k— 1)) i(k)

partial quotients are of the form , and the convergence continuation theorem
to extend the convergence, already known for a small domam (open connected set), to a larger do-
main. It is shown that the union of the intersections of the parabolic and circular domains is the
domain of convergence of the multidimensional S-fraction with independent variables, and that the
union of parabolic domains is the domain of convergence of the branched continued fraction with
independent variables, reciprocal to it.

Key words and phrases: multidimensional S-fraction with independent variables, convergence.
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E-mail: dmytryshynr@hotmail.com

1 INTRODUCTION

It is well known (see, for example [2,7]) that the branched continued fractions with inde-
pendent variables are an efficient tool for the approximation of analytic multivariable func-
tions, which are represented by multiple power series. One of the important problem for these
branched continued fractions is to establish the widest domains (open connected sets) of their
convergence. Convergence domains have been given in [1,2,8,11] for multidimensional regular
C-fractions with independent variables, in [4] for multidimensional regular S-fractions with in-
dependent variables, in [9] for multidimensional g-fractions with independent variables, in [6]
for multidimensional associated fractions with independent variables and in [6,10] for multi-
dimensional J-fractions with independent variables.

Let N be a fixed natural number and

Ik = {l(k) . l(k) = (il,iz,...,ik), 1 < ip < ip—ll 1 < p < k, iO :N}, kz 1,

be the sets of multiindices. In addition, let i(0) = 0 and Zy = {0}.
We investigate here the convergence of multidimensional S-fraction with independent vari-
ables

N C‘(l)zil ! Zz i2 Zz

1+211 +Z 2 Z & "/ (1)

i=1 =1

YAK 517.5
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where the c;) > 0 foralli(k) € Zy, k > 1,z = (z1,22,...,2N) € CN, and reciprocal to it

Nocinyzi, &L Ci)Zi Ci(3)Zi
Z:: i Z (1) 12_'_2 ()13+”.. @)

1221 i3=1

)—\|>—\
—_

2 CONVERGENCE

We introduce the following notation Qf(nn)) (z)=1,i(n) € Z,,n > 1,and

ik+1 . . infl . .
(n) —1 k+1 Zlk+1 Ci(k+2)Ziy o Ci(n)Ziy
_|_ _ T e —_—,
Q( . Z . + 2:1 1 + 4+ = 1
k+1= k42 In

wherei(k) € Zy, 1 <k <n—1, n > 2.1tis clear that the following recurrence relations hold

Q(gj)(z)zu Y S5t g alli(k) € Ty 1<k<n—1, 1> 2. 3)
l i1 QU (2)
k+1 i(k+1)

Let fu(z) =1+ 211 1(cig zzl/Q ( )) be the nth approximant of (1), n > 1.
We shall prove the followmg result.

Theorem 1. A multidimensional S-fraction with independent variables (1), where the c;y),
i(k) € Iy, k > 2, satisfy the inequalities

Citk) < ki Ty (1 — Qi) for alli(k) € Ty, k > 2, 4)
where {q;(x) }i(k)ez,, ke 1S @ sequence of real numbers such that
0 < gjp) <1forall i(k) € Iy, k> 1, (5)

converges to a function holomorphic in the domain

Py = U {z e CN: |z - Re(zke_zm) <2cos?(a), |zx] <M, 1<k < N} (6)
ae(—m/2,m/2)

for every constant M > 0. The convergence is uniform on every compact subset of Py;.

Proof. Let a be an arbitrary number from the interval (—71/2,71/2), n be an arbitrary natural
number, and let z be an arbitrary fixed point from domain (6). By induction on k for each
multiindex i(k) € Z; we show that the following inequalities are valid

Re(Qf?k))(z)e’i’") > qé’zk) cos(a) >0, (7)

where 1 < k < n.
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It is clear that for k = n, i(n) € Z,, relations (7) hold. By induction hypothesis that (7) hold
fork=r+1,r<n-—1,i(r+1) € Z,41, we prove (7) for k = r and for each i(r) € Z,. Indeed,
use of relations (3) for the arbitrary multiindex i(r) € Z, lead to

—2in

n —in —in I Ci(r+1)%ip1©
Qz(( ) (z)e ™ =e iy ) ((:)1) hn®
=1 Qi) (2)e™™

In the proof of lemma 4.41 [12] it is shown that if x > ¢ > 0 and v < 4u +4,

: (u + iv) VuZ + 02 —u
min Re =X - - (8)
—oco<y<+0oo X+ 1y 2x
We set
= Re(zy 0), 0 = m(zq0), x = Re(Qlf, (2)e™™), y = Re(Q[f,  (2)e™).

Then from (6) it is easy to show that v? < 4u + 4 for each index i, 1, 1 < i,41 < iy.
Now, using (4)—(8) and induction hypothesis, we obtain that

) ir Z:r+1 l:r+1 ( )(|Zz | Re(zz 21‘04))
Re(Q™ (z)e ™) > cos(a) — Y atnlity 7 I A

v ir1=1 2Re(Qjf,(z)e )

> cos(a Z ql'“ ! (1 —qj(r)) cos(a) = qé’(r) cos(a) > 0.

Zr+l—

It follows from (7) that Qf?k)) (z) # 0foralli(k) € Zx, 1 <k < n,n > 1,and for all z
from domain (6). Thus, the approximants f,(z), n > 1, of (1) form a sequence of functions
holomorphic in Pyy.

Again, let « be an arbitrary number from the interval (—7t/2, 77/2). And, let

Pyom = {z e CN: |zi| — Re(zke_zm) < 2(7cos7'((x), lzg] < oM, 1<k < N} , 9)

where 0 < 0 < 1. We set ¢ = max{cy, ¢, ...,cN}-
Using (7), for the arbitrary z € P, s m, Pyo,m C Py, we obtain forn > 1

| | N cocM
| fu(z \<1+Z Zi <1+27:C(Pa,U,M),

i=1Re(Q; (1))(z>eim) =14, )COS( o)

where the constant C(P, 1) depends only on the domain (9), i.e. the sequence {f,(z)} is
uniformly bounded in P, ; p.

Let K be an arbitrary compact subset of Py;. Let us cover K with domains of form (9). From
this cover we choose the finite subcover Py, o, M, Poy,o0,M/ - - - » Pa, 0, m- We set

C(K) = max {C(Pa,,0;,M), C(Pagoym)s - - - » C(Puy0,,M) } -

Then for arbitrary z € K we obtain |f,(z)| < C(K), for n > 1, i.e. the sequence {f,(z)} is
uniformly bounded on each compact subset of the domain (6).
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Let b = min{1, M, q1/(2¢c),q2/(2%c),...,qn/(2Nc)} and let
AR:{ze]RN: 0<zx<R<b, 1§k§N}.

Evidently Ag C Py for each 0 < R < b, in particular, say Ay, C Py. Then for the arbitrary
z € AR, AR C Py, we obtain
|ci)zi | < be < Z’ilq?(l) foralli(1) € 74,
o '
|citr i | < q;’Ek)q;’Ek_l)(l — gi(k—1) foralli(k) € Zy, k > 2.

It follows from theorem 1 [8], with g9 = 1/2, that (1) converges in the domain Ag. Hence,
by theorem 2.17 [3, p. 66] (see also theorem 24.2 [13, pp. 108-109]) the multidimensional S-
fraction with independent variables (1) converges uniformly on compact subsets of Py to a
holomorphic function. O

The following two theorem can be proved in much the same way as theorem 1 using theo-
rem 1 and 5 [5], respectively.

Theorem 2. A multidimensional S-fraction with independent variables (2), where the c;(y),
i(k) € Iy, k > 1, satisfy the inequalities c;() < q;’zk)q;’b;ll)(l — gjk—1)) for alli(k) € I, k > 1,
where {‘ii(k)}i(k) €7, keN, 1S a sequence of real numbers such that 0 < q;) < 1 for alli(k) € I,
k > 0, converges to a function holomorphic in the domain

D= U {z € CN: |zi| — Re(zre™2™) < 2cos?(a), 1 <k < N}. (10)
ae(—m/2,m/2)

The convergence is uniform on every compact subset of D.

Theorem 3. A multidimensional S-fraction with independent variables (2), where the c;y),

i(k) € Iy, k > 1, satisfy the inequalities c;1) < q?(f)l foralli(1) € 7y and ¢y < qi’zk)q;’zgjl)(l -
qik—1)) foralli(k) € Iy, k > 2, where {q;(x) }i(x)ez,, ken 1S @ sequence of real numbers satisfying
the inequalities (5) and Zf\llzl qi(1) < 1, converges to a function holomorphic in the domain (10).

The convergence is uniform on every compact subset of D.
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Amvurpymiva P.1. [Tpo degki 06 nacmi 36iscHocmi baeamosumiprux S-0pobie 3 HepisHOSHAUHUMU SMIHHUMU
// Kapnarceki MateM. my6a. — 2019. — T.11, Nel. — C. 54-58.

AocAiaXyeTbesT 361KHICTh 6araToOBUMIpHMX S-ApObiB 3 HepiBHO3HAYHVMY 3MIiHHUMY i3 BUKOpY-
CTaHHSIM 6araTOBMMIpPHOTO y3araAbHEHHsI KAACUYHOI O3HaKM 36iXHocTi BoprmiTchkoro, o3Hak 36i-
KHOCTi AAST TIAASICTMIX AQHITIOTOBUX APOGiB 3 HepiBHOZHAUHMMM 3MiHHVMMY, YaCTUHHI AQHKU SIKMX

e
qzl({k)q;}((k,l)(1_‘1i(k—1))zi(k)
T

MalOTh BUTASIA , 1 TeopemMu Ipo IPOAOBXeHHsI 361KHOCTI i3 y>ke BiAOMOI MaAOL
obaacri A0 6iabmmoi. OTpuMaHo, o 06’c¢AHAHHSI ePEeTUHIB MapabOAYHMX 1 KPYToBMX ObAacTelt €
0bAacTIo 361XHOCT] 6araToBMMipHOTO S-Apoby 3 HepiBHO3HAUHMMM 3MiHHMMY, a 00’€AHAHHS Mapa-
boAiuHMX 0bAACTelt — 06AACTIO 361KHOCTI 06epHEHOTO A0 HBOTO TIAASICTOTO AAHIIIOTOBOTO APO6Y 3
HePiBHO3HAUHMMI 3MiHHVMMA.

Kntouosi cnosa i ¢ppasu: baraToBUMipHWMIL S-Api6 3 HepiBHO3HAYHVMM 3MiHHVIMMY, 361KHICTb.
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RICCI SOLITON AND RICCI ALMOST SOLITON WITHIN THE FRAMEWORK OF
KENMOTSU MANIFOLD

First, we prove that if the Reeb vector field ¢ of a Kenmotsu manifold M leaves the Ricci operator
Q invariant, then M is Einstein. Next, we study Kenmotsu manifold whose metric represents a Ricci
soliton and prove that it is expanding. Moreover, the soliton is trivial (Einstein) if either (i) V is a
contact vector field, or (ii) the Reeb vector field ¢ leaves the scalar curvature invariant. Finally, it is
shown that if the metric of a Kenmotsu manifold represents a gradient Ricci almost soliton, then it
is n7-Einstein and the soliton is expanding. We also exhibited some examples of Kenmotsu manifold
that admit Ricci almost solitons.

Key words and phrases: Kenmotsu manifold, Ricci almost soliton, warped product.
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E-mail: aghosh_70@yahoo.com

INTRODUCTION

In the recent years, there has been a growing interest in the study of Riemannian manifolds
endowed with a metric which satisfies some structural equations involving Ricci curvature
and some globally defined vector fields. Sometimes these are also appear as a solution of
some geometric flows [5] and [7]. For instance, a Ricci soliton appears as a special (self-similar)
solution of the Hamilton’s Ricci flow [11]:

0
ggl] = —251]

A Ricci soliton is a smooth manifold M together with a Riemannian metric g that satisfies

where V is a vector field known as the potential vector field, £, denotes the Lie-derivative
operator along a vector field V, S is the Ricci tensor, A is a constant, and X, Y arbitrary vector
tields on M. This is also considered as a generalized fixed point of the Hamilton’s Ricci flow,
viewed as a dynamical system, on the space of Riemannian metrics modulo diffeomorphisms
and scalings.
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Recently, in [16] Pigola et al. extended the notion of Ricci soliton on a Riemannian manifold
by allowing the constant A to be smooth function in the defining condition of the Ricci soliton
(1). It is said to be shrinking, steady, or expanding according as A is positive, zero, or negative
respectively. If the potential vector field V is the gradient of a potential function f, then g is
called a gradient Ricci almost soliton. In this case, the soliton equation (1) transforms into

VxDf + QX = AX, )

where D is the gradient operator with respect to the metric g, Q is the Ricci operator asoociated
with the Ricci tensor S, i.e., S(X,Y) = ¢(QX,Y), X,Y are arbitrary vector fields on M. Both
equations (1) and (2) can be considered as a generalization of the Einstein equation S = Ag and
reduce to this latter in case V or D f are Killing vector fields. When V' = 0 or f is constant we say
the underlying Einstein manifold a trivial Ricci soliton. On a compact Riemannian manifold
a Ricci soliton is always a gradient Ricci soliton [15]. Ricci solitons are of interest to physists
as well and are known as quasi Einstein metrics in the physics literature [8]. Some aspects of
compact Ricci almost soliton may be found in [3,4,17]. In particular, in [4] it is proved that any
compact Ricci almost soliton is gradient provided its scalar curvature is constant (see also [17]).

In [13], a new class of almost contact metric manifolds was introduced and studied, which
is known as Kenmotsu manifold. This type of manifold is very closely related to the warped
product spaces. Actually, the warped product space R x, N?" with the warping function
o(t) = ce! on the real line R, and N?" is Kihler admits such structure. Conversely, ev-
ery point of a Kenmotsu manifold has a neighbourhood which is locally a warped product
(—e,€) Xy N?" where o(t) = ce! is a function on the open interval. It is interesting to notice
that a Kenmotsu manifold can not be compact because it satisfies divg = 2n. Recently, the au-
thor [9] studied Kenmotsu 3-metric as a Ricci soliton and proved that it is of constant negative
curvature —1. The existence of such metric has also been confirmed on the warped product
of a Riemann surface N of constant negative curvature (a Kithler manifold) with the real line.
For higher dimensions it is proved that “If the metric of an n-Einstein Kenmotsu manifold is a Ricci
soliton, then it is necessarily an Einstein manifold” (see [10]). These results intrigues us to consider
Kenmotsu metric as a Ricci soliton. The organization of the paper is as follows. After recall-
ing some basic definitions and formulas in Section 2, we study Kenmotsu manifold satisfying
£:Q = 0 in Section 3. In Section 4, we consider Kenmotsu metric as Ricci soliton. Finally, we
study Kenmotsu metric as Ricci almost solitons.

1 PRELIMINARIES ON KENMOTSU MANIFOLD

In this section, we recall the definitions and fundamental formulas on Kenmotsu manifolds.
Let M be a smooth manifold of dimension (21 + 1). Then M is said to be an almost contact
manifold if there exists a (1 — 1) tensor field ¢, a unit vector field ¢ (called the Reeb vector
field) and a 1-form # such that

P*X = =X + 5(X)E.

From which it is easy to verify ¢¢ = 0,709 = 0. A Riemannian metric ¢ on M is said to be an
associated metric if it satisfies

(X, 9Y) = g(X,Y) —n(X)n(Y),
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for any vector fields X Y on M. A Riemannian manifold M?"*! together with an almost contact
metric structure (¢, ¢, 7,g) is said to be an almost contact metric manifold. We remark that
an almost contact metric structure on a Riemannian manifold M?"*! may be regarded as a
reduction of the structure group M to U(n). For such a manifold, we can always define a 2-
form ¢ by ¢(X,Y) = g(X, ¢Y) which is known as the fundamental 2-form. The almost contact
metric structure is said to be normal if [¢, ¢](X,Y) + 2dy(X,Y)¢ = 0, for any vector field X,Y
on M, where

[0, p](X,Y) = [9X, ¢Y] + ¢°[X, Y] — 9[9X, Y] — ¢[X, ¢Y].
An almost contact metric manifold is said to be an almost Kenmotsu manifold if it satisfies

dn = 0and dp = 25 A ¢. Further, a normal almost Kenmotsu manifold is said to be a Kenmotsu
manifold, and this normality condition is expressed as

(Vx)Y =g(¢X,Y)s —n(Y)pX,

for any vector field X, Y on M. The following formulas also hold for a Kenmotsu manifold [13]

Vx§ =X -n(X)g, (3)
R(X,Y)¢ =n(X)Y =n(Y)X, 4)
Qg = _anr (5)

where R is the curvature tensor.

Next, we recall the notion of a f-Kenmotsu manifold which is a slight extension of the
Kenmotsu manifold. An almost contact metric manifold M(¢, ¢, 7, g) is said to be f-Kenmotsu
if it satisfies

(Vx@)Y = p{g(9X, Y)E —3(Y)9X},
for some smooth function § on M. Kenmotsu manifolds appear as particular case of
B-Kenmotsu manifolds with f = 1. Regarding the existence of such manifold we recall the
following (e.g, see [1]).

Lemma 1. The warped product M = R X N, is a f-Kenmotsu manifold with f = o/ o, where
R is the real line and N is a Kidhler manifold.

Recall that a vector field V on a contact manifold is said to be a contact vector field if

£y = fn,

for some smooth function f on M. The contact vector field V is called strict when f = 0.
Finally, we recall some formulas involving Lie-derivatives along an arbitrary vector field V.
First of all, using the well-known commutation formula (see p. 23 of [19]):

(EvVxg = VxLvg = Viy x8) (Y, Z) = = g((£vV)(X, Y), Z) = g((£vV)(X, 2),Y),

we deduce
(Vx£vg)(Y,Z)) = g((EvV)(X,Y), Z) + g((Ev V)(X, Z), Y). (6)

The following formulas are also known (see [19, p.23]):
(EvR)(X,Y)Z = (Vx£EvV)(Y,Z) — (Vy£EyV)(X, Z), (7)
LyVxY = VxEvY — Viy Y = (Ev V)(X,Y). (8)
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2 KENMOTSU MANIFOLD SATISFYING £:Q = 0

Recently, Cho-Kimura [6] proved that if the Reeb vector field of a 3-dimensional Kenmotsu
manifold leaves the Ricci operator invariant, then it is locally isometric to H3>(—1). Extending
this in higher diemnsions we prove

Theorem 1. Let M(¢, ¢, 1,8) be a Kenmotsu manifold of dimension (2n + 1). If the Reeb vector
tield ¢ of M leaves the Ricci operator Q invariant, then M is Einstein.

The proof of the theorem follows from the following lemma.

Lemma 2. For any Kenmotsu manifold of dimension (2n + 1) the following are valid

(i) (£:Q)Y = —2QY —4nY,

(i) (VeQ)Y = —2QY —4nY.
Proof. By virtue of (3), we have

(£:8)(Y, Z) = 8(VyE, Z) +8(VzE,Y) = 2{g(Y, Z) —n(Y)n(2)}. ©)
Taking covariant differentiation of (9) along an arbitrary vector field X and the use of (3) gives
(Vxkeg)(Y, Z) = 2020 (X)y(Y)1(Z) — (X, Y)n(Z) — (X, Z)n(¥)}.

Making use of this in (6), we obtain

S((£eV)(X,Y), Z) + g((£:V)(X, 2),Y) = 2{2n(X)n(Y)n(Z)
—8(X,Y)n(Z) — g(X, Z)n(Y)}.

By a combinatorial combination, we deduce

§((£eV)(Y, Z), X) + g((£e V)Y, X), Z) = 2{2n(Y)(Z)n(X)
—8g(Y, Z)n(X) —g(Y, X)n(2)},

S((£eVIZ,X),Y) +g((£eV)(Z,Y), X) = 2{2n(Z)n(X)n(Y)
—8(Z,X)n(Y) — g(Z,Y)n(X)}.

Subtracting the first equation from the addition of the last two equations provides
((EeV)(Y, Z2) = 2{n(V)n(Z) = &(Y, Z)¢}. (10)

Differentiating (10) covariantly along X and using (3), we find

(Vx£:V)(Y, Z) = 2{g(X, Y)n(2)¢ + (X, Z)n(Y)¢ + (Y, Z)n(X)¢
=8V, Z)X +n(YV)n(Z2)X = 3n(X)n(Y)n(Z)Z}.
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Utilizing this in (7), we obtain
(£eR)(X,Y)Z = 2{g(X, 2)Y — (Y, 2)X + n(V)n(Z2)X — n(X)n(Z)Y}. (11)

Contracting (11) over X with respect to an orthonormal frame of the tangent space of M, we
deduce

(£eS)(Y, Z) = 4n{n(Y)n(Z) — g(Y,Z)}. (12)
Next, we take the Lie derivative of S(Y,Z) = g(QY, Z), to get

(£e5)(Y, Z) = (£:8)(QY, Z) + g((£:Q)Y, Z). (13)

On the other hand, replacing Y by QY in (9) and using (5), we obtain

(£:8)(QY, Z) = 2{g(QY, Z) + 2ny(Y)y(Z)}. (14)

Using (14) and (13) in (12) we obtain (£,Q)Y = —2QY — 4nY. This completes the proof of (i).
Taking into account of (3) we observe that

(ﬁgQ)Y = £:QY — QLY = VzQY — Voyd — QVeY + QVy (¢
= (VeQ)Y — QY —2ny(Y)§ + QY + 2n7(Y)E = (VeQ)Y.

Using this in (i) we complete the proof of (ii). d

For a 3-dimensional Riemannian manifold it is known that the Ricci curvature determines
the curvature completely and the curvature tensor can be explicitely expressed as

R(X,Y)Z =S(Y,Z)X — S(X,Z)Y +g(Y, Z)QX — g(X, Z)QY

r (15)
- E{g(Y,Z)X —9(X,2)Y}.

Now;, if a 3-dimensional Kenmotsu manifold M satisfies £:Q = 0, then from (i) of the above
Lemma QX = —2X. Using this in (15) we see that M3 is of constant curvature —1. Thus, we
have the following (see also [6]).

Corollary 1. A 3-dimensional Kenmotsu manifold satisfies £:Q = 0 if and only if M is Iocally
isometric to a Hyperbolic space H3(—1).

3 KENMOTSU METRIC AS A RICCI SOLITON

In [9] the author proved that if a Kenmotsu 3-metric represents a Ricci soliton, then it is
of constant curvature —1. Here we extend this result in higher dimensions and prove the
following assertion.

Theorem 2. Let M(¢,¢,1,8) be a Kenmotsu manifold of dimension (2n + 1)(> 3). If g rep-
resents a Ricci soliton, then the soliton is expanding. Moreover, the soliton is trivial (Einstein)
if either (i) V is a contact vector field, or (ii) the Reeb vector tield ¢ leaves the scalar curvature
invariant.
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Proof. First, differentiating (5) along an arbitrary vector field X and recalling (3) we deduce

(VxQ)E = —QX — 2nX. (16)

Differentiating (1), using it in (6) and by a straightforward combinatorial computation we ob-
tain
s((EvV)(X,Y), Z) = (V25)(X,Y) = (VxS)(Y, Z) = (VyS)(X, Z).

Taking ¢ instead of Y in the preceding equation and then recalling (16) and (ii) of Lemma 3.1
provides
(EvV)(Y,C) =2QY +4nY. (17)

Covariant differentiation of (17) along X and the use of (3), (17) leads to
(Vx£vV)(Y,¢) + (EvV)(Y, X) = 27(X)(QY +2nY) = 2(VxQ)Y.
Making use of this in (7) and since £,V is a symmetric operator, one can deduce

(EvR)(X,Y)E = 2{n(X)QY —n(Y)QX + (VxQ)Y — (VyQ)X}
+4n{n(X)Y —n(Y)X}.
We now set Y = ¢ in the foregoing equation and making use of (16) and (ii) of Lemma 3.1 to

achieve (£yR)(X,&)¢ = 0. On the other hand, Lie differentiating the formula (follows from
(4)): R(X,¢)¢ = —X +1(X)¢ along V provides

(EvR)(X,8)¢ + R(X, £v )T + R(X, §)EvE = {(£vn) X}E + n(X)£vE. (18)

Moreover, from (4) it follows that R(X,)Y = g(X,Y)¢ —n(Y)X. Using this, (4) and
(EyR)(X,¢)¢ = 01in (18), we ultimately obtain

8(X, £vG)E — 2n(£vE)X = {(£vn)X}E. (19)
Now from the soliton equation (1) along with (5) shows that
(Eym)X — (X, £vE) — 2(A +2n)y(X) = 0. (20)

Also, Lie differentiating g(¢,¢) = 1 along V and taking into account (1), (5) provides
N(Ey¢) = A+ 2n. (21)

Using (20) and (21) in (19) it follows that A = —2n. Hence the soliton is expanding. Next, we
assume that V is a contact vector field. Then by using £y = fn, A = —2n and (20) it follows
that £y¢ = f¢. Scalar product of this with ¢ and using (21) implies that f = A 4+ 2n = 0. Thus,
£y¢ = 0, and hence V is strict. Replacing Y by ¢ in (8) and using (3), £y¢ = 0 = £y, we have

(EvV)(X,¢) = £vVxG — Vv x1¢ = £v(X —(X)¢) — £vX +11(£v X)¢
=Ly X —(X)Ev g — {(Evi) X} — n(£vX)¢ — £v X + 51(£vX)¢ = 0.

Finally, using (17), we can conclude that M is Einstein. This completes the proof of (i). Next,
we assume that the the Reeb vector field ¢ leaves the scalar curvature r invariant. This means
that £;7 = {r = 0. On the other hand, tracing (i) of Lemma 2, we have

r=—-2{r+2n(2n+1)}.
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From which it follows that ¥ = —2n(2n + 1). Hence, the scalar curvature r is constant. Next,
we recall the following integrability formula ([5], [17])

£yr = —Ar +2Ar +2|QJ?, (22)

for a Ricci soliton, where Ar = —divDr. Since r is constant (22) shows that |Q|2 = —Ar = —2nr.
By virtue of this and r = —2n(2n + 1), we compute

|Q +2nI* = |Q|* +2nr + 2nr + 4n*(2n 4 1)
=2nr +4n*(2n +1) = 2n{r +2n(2n +1)} = 0.

Since the length of the symmetric tensor Q + 2nI vanishes, we must have Q = —2nl. This
shows that M is Einstein and we complete the proof. O

We have mentioned earlier that the warped product R x, N*?, where N?" is a Kiihler man-
ifold of dimension 21 and ¢ (t) = ce? is the warping function, naturally admits Kenmotsu
structure. From this, we have the following result.

Corollary 2. If the metric of the warped product R x , N?" represents a Ricci soliton then it is
necessarily expanding.

Remark 1. The above corollary shows that there exists examples of non-compact expanding
Ricci solitons. In dimension 3, this has been derived explicitely in [9].

4 RICCI ALMOST SOLITON AND KENMOTSU METRIC

In this section, we study Kenmotsu metric as a Ricci almost soliton. First, we construct a
Kenmotsu metric that admits a Ricci almost soliton. The existence of non-compact Ricci almost
soliton has been established by Pigola et. al [16] on some certain class of warped product
manifolds. Following Lemma 1.1 of [16] we can construct the following example of a Ricci
almost soliton.

Example 1. Consider the warped product R X ,;) H" with metric § = dt? + 2(t)go, where
Qo is the standard metric on the hyperbolic space H". Let o(t) = cosht, then the warped
product R x, ;) H" becomes Einstein manifold with Ricci tensor SM = —ng and it admits a
Ricci almost soliton (g, V f, ) with f(x,t) = sinht and A(x,t) = sinht — n.

From this example we have the following one.

Example 2. Let M1 = R X ogn; CH?" with metric g = dt* + (cosh? t)go, where g is
the standard metric on the complex hyperbolic space CH?'. Then M?'+! becomes Einstein

manifold with Ricci tensor SM = —2ng (follows from Lemma 1.1 of [16]). Consequently,
(M?"+1, ¢V f,A) is a Ricci almost soliton with f(x,t) = sinht and A(x,t) = sinht — 2n.

Example 3. Let N*" be a complete Einstein Kaehler manifold with SN = —(2n — 1)go. We
consider the warped product (M*'1,¢) = (R X cosht N?",dt? + (cosh t)2gg). Then it follows
from Lemma 1.1 of [16] that (M?*"*1, ¢) is Einstein with SM = —2ng. Since M is complete,
by the result of Kanai, there exists a function f on M without critical points satisfying V2 f =
—fg (see Theorem D of [12]). Now if we choose A = —2n — f, then it is easy to see that
(M2, g, Vf,A) is a nontrivial gradient Ricci almost soliton.
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From, the last two examples it is evident that the metrics are not Kenmotsu. In fact, by
Lemma 1 it follows that the warped product R X ogh CH?" is a B-Kenmotsu manifold with
B = tanht. So, we consider a D-conformal deformation [14] on the warped product to trans-
form the warped product metric into a Kenmotsu metric. Let

g=0og+(1—-0o)n®y, (23)

where ¢ is positive function depending only on the direction of ¢. By virtue of Lemma 2.2 of
([2]) it is easy to see that the resulting manifold M(¢, &, 17, ) is B-Kenmotsu, where f = + g_—g
Next, we choose p in such a way that the manifold M under consideration will be a Kenmotsu.
So, we look for ¢ satisfying:

go
Bt =1

Making use of a local parametrization that is § = %, the foregoing equation can be written as

0
g(lna) =2(1-B).
Solving this we get o = % /(cosh t)?. Finally, using this and (25), equation (26) takes the form
g =g 4 dt%.

This is the desired Kenmotsu metric.
The above example motivates us to consider Kenmotsu metric as a gradient Ricci almost
soliton. Thus, the equation (2) holds for a smooth function A.

Theorem 3. If the metric of a Kenmotsu manifold M(¢,¢,1,g) of dimension (2n + 1) repre-
sents a gradient Ricci almost soliton, then it is 7-Einstein and the soliton is expanding. More-
over, it M is complete and the Reeb vector tield ¢ leaves the scalar curvature r invariant, then
M is locally isometric to a hyperbolic space H*"*1, and the potential (soliton) function, upto
an additive constant, can be expressed as a linear combination of cosh t and sinh t.

Proof. By virtue of (2) and the well known expression of the curvature tensor R(X,Y) =
[Vx, Vy| — VX, Y], we deduce

R(X,Y)Df = (VyQ)X — (VxQ)Y + (XA)Y — (YA)X. (24)
Taking ¢ instead of Y in the foregoing equation, recalling (ii) of Lemma 3.1 and (16) provides

R(X,¢)Df = (VeQ)X — (VxQ)& + (XA)§ — (EA)X
= —20X —4nX + QX +2nX + (XA)Z — (GA)X
= —QX —2nX + (XA)¢ — (EM)X.

Making use of R(X, ¢)Y = g(X,Y)¢ —n(Y)X (follows from (4)) the foregoing equation implies
that

8(X,Df = DA —{(Zf) — (EA)}X = —QX —2nX. (25)
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Inner product of of this equation with ¢ and using (5) shows

Df — DA ={(Zf) — (GA}C. (26)
Thus, using (26) in (25) provides

{(€f) = CAm(X)E = {(Zf) — (GA)}X = —QX —2nX. (27)

Next, we contract equation (24) over X to deduce
1
QDf = EDr —2nDA.

By virtue of this and (5) one can obtain - (&r) = (¢A) — (&f). But from (ii) of Lemma 3.1, we
have (¢r) = —2(r 4+ 2n(2n + 1)). Therefore, ({f) — ({A) = 5, + 2n + 1. Using this (27) can be
expressed as

-+ DX Y) - (5
This shows that M is -Einstein. Now, if ¢ leaves the scalar curvature r invariant, then ¢r = 0.
Consequently, ¥ = —2n(2n + 1). By virtue of this, (28) shows that QX = —2nX, i.e.,, M is
Einstein. Since r = —2n(2n + 1), we have (¢A) = (&f) and therefore Df = DA. Hence,
equation (2) may be exhibited as

S(X,Y) = ( + 21+ 1)5(X)E. (28)

VyDA = (2n + A)X, (29)

Applying Tashiro’s theorem [18] we conclude that M is isometric to the hyperbolic space
H?>"*1. Since Ve = 0 (follows from (3)), we deduce from (29) that {(¢A) = 2n + A. But
we know [13] that a Kenmotsu manifold M of dimension 2n + 1 is locally isometric to the
warped product (—¢, €) X+ N, where N is a Kihler manifold of dimension 2n and (—¢, ¢) is
an open interval. Using the local parametrization: ¢ = % (where t denotes the coordinate on
(—¢,€)) we obtain

dAZA
— =2 A.
ar
Its solution can be exhibited as A = A cosh t + B sinh t — 2n, where A, B are constants on M.
This completes the proof. O

Example 4. Let (N, ], go) be a Kiihler manifold of dimension 2n. Consider the warped product
(M, g) = (R x, N,dt? + 0?g0), where t is the coordinate on R. We setn = dt, & = % and the
tensor field ¢ is defined on R X, N by ¢X = X for vector field X on N and ¢X = 0 if X is
tangent to R. Then it is easy to testify (see [13]) that the warped product R x, N, 0> = ce¥,
with the structure (¢, ,1, ) is an almost Kenmotsu manifold, by Lemma 1. Thus, if we take
o(t) = ce!, then M becomes a Kenmotsu manifold. Further, we set N = CH?", then N being
Einstein, the Ricci tensor of M such that S = —2ng. Define f(t) = ke',k > 0. Then it is easy
to verify that (M, Vf,g) is a Ricci almost soliton with A = ke! — 2n. Similarly, we may also
construct many examples of Ricci almost solitons by taking different potential functions on the
warped product.

Next, we consider a special type of Ricci almost soliton on Kenmotsu manifolds in which
the potential vector field V is a pointwise collinear with the Reeb vector filed ¢. This type of
problem has been considered by the author within the framework of contact metric manifolds
in [10].
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Theorem 4. Let M(¢,¢,1,g) be a Kenmotsu manifold of diemnsion (2n + 1). If g represents
a non-trivial Ricci almost soliton such that the potential vector field V is pointwise collinear
with the Reeb vector field, then it is 1j-Einstein.

Proof. By hypothesis V = k¢, for some smooth function k on M. Differentiating this along an
arbitrary vector field X and using (3), we have

VxV = (Xk)¢ + k(X —1(X)Z). (30)
In view of (30) the soliton equation transforms to
25(X,Y) +2(k—A)g(X,Y) + (Xk)n(Y) + (Yk)n(X) — 2kn(X)n(Y) = 0. (31)

Setting X = Y = ¢ in (31) and using (5), we have ¢k = 2n + A. Further, taking ¢ instead of Y,
using (5) and ¢k = 2n + A shows that Xk = (2n + A)5(X). Making use of this in (31), we have

OX = (A — k)X — (21 + A — K)y(X)E. (32)

Tracing the foregoing equation provides

”
ﬂ—()\—k)—l. (33)
By virtue of (33), (32) can be written as
r r
This shows that M?**1 is 5-Einstein and we complete the proof. O

Remark 2. If k is constant, then from Xk = (A + 2n)n(X), we see that A = —2n and which is
constant. Thus from (33) follows that {r = 0. Then from (ii) of Lemma 3.1, we have (r) =
—2(r+2n(2n+1)). Hencer = —2n(2n + 1). Making use of this in (33) we see that k = 0, and
in this case the soliton becomes trivial.
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my6a. — 2019. — T.11, Nel. — C. 59-69.

Mu A0BOAMMO, CHIOUATKY, IO SIKIIO BeKTOpHe moAe Piba ¢ mMHorosmaa Kemmory M 3anmiae
oneparop ( iHBapiaHTHMM, TO M e AMHIITalHIBCHKMM. AaAi My BuB4YaeMo MHorosua Kenmoy,
MeTpuKa SIKOTO 306paxye cOAiTOH Piuui, i AoBoAMMO, 0 BiH € mommpiorounM. biablme Toro, co-
AITOH € TpuBiaABHMM (AVHIITaMHIBCHKUM), SIKIITO a60 (i) V € KOHTaKTHMM BEKTOPHUM IOAeM a60
(ii) BexTopHe moAe Piba § 3aAamiae ckaASpHY KpUBM3HY iHBapiaHTHOIO. Haperri, AoBeaeHO, 1110
SIKITIO MeTpyKa MHOTOBMAY KeHMo1ly 306pakae AesSKMli I'paAieHTHMI Malbke cOAiToH Piudi, To mett
MHOTOBUA € #-AVHIITaHIBCbKIM i IIel COAITOH € IOIMPIOIOWMM. MM TaKOX A€MOHCTPYEMO AesIKi
npukAaau MHOrosuay Kenmoiry, sxi AommyckaroTh Malike coaiTonu Piudi.

Kntouosi cnosa i ppasu: maOrosua Kermorry, marixe coaiToH Piudi, BUKpUBAEHIIT AOOYTOK.



ISSN 2075-9827 e-ISSN 2313-0210 http://www.journals.pnu.edu.ua/index.php/cmp
Carpathian Math. Publ. 2019, 11 (1), 70-88 KapmaTcbki MmaTem. my6a. 2019, T.11, Ne1, C.70-88
doi:10.15330/cmp.11.1.70-88

(L)

KACHANOVSKY N.A.!l, KACHANOVSKA T.O.2

INTERCONNECTION BETWEEN WICK MULTIPLICATION AND INTEGRATION ON
SPACES OF NONREGULAR GENERALIZED FUNCTIONS IN THE LEVY WHITE
NOISE ANALYSIS

We deal with spaces of nonregular generalized functions in the Lévy white noise analysis, which
are constructed using Lytvynov’s generalization of a chaotic representation property. Our aim is to
describe a relationship between Wick multiplication and integration on these spaces. More exactly,
we show that when employing the Wick multiplication, it is possible to take a time-independent
multiplier out of the sign of an extended stochastic integral; establish an analog of this result for
a Pettis integral (a weak integral); and prove a theorem about a representation of the extended
stochastic integral via the Pettis integral from the Wick product of the original integrand by a Lévy
white noise. As examples of an application of our results, we consider some stochastic equations
with Wick type nonlinearities.

Key words and phrases: Lévy process, extended stochastic integral, Pettis integral, Wick product.
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INTRODUCTION

A theory of test and generalized functions depending on infinitely many variables (i.e.,
with arguments belonging to infinite-dimensional spaces) is highly sought in many areas of
modern physics and mathematics. One of successful approaches to building of such a theory
consists in introduction of spaces of the above-mentioned functions in such a way that the
dual pairing between test and generalized functions is generated by integration with respect
to some probability measure on a dual nuclear space. First it was the Gaussian measure, the
corresponding theory is called the Gaussian white noise analysis (e.g., [2,16,26-28]), then it were
realized numerous generalizations. In particular, important results can be obtained if one uses
the Lévy white noise measure (e.g., [6,7,29]), the corresponding theory is called the Lévy white
noise analysis.

A very important role in the Gaussian analysis belongs to a so-called chaotic representation
property (CRP). This property consists, roughly speaking, in the following: any square inte-
grable random variable can be decomposed in a series of repeated Itd’s stochastic integrals
from nonrandom functions (see, e.g., [30] for a detailed presentation). Using CRP, one can
construct various spaces of test and generalized functions, introduce stochastic integrals and
derivatives on these spaces, etc. In the Lévy analysis there is no CRP (more exactly, the only
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2010 Mathematics Subject Classification: 46F05, 46F25, 60G51, 60HO05.

@ Kachanovsky N.A., Kachanovska T.O., 2019



INTERCONNECTION BETWEEN WICK MULTIPLICATION AND INTEGRATION... 71

Lévy processes with CRP are Wiener and Poisson processes) [35]; but there are different gener-
alizations of this property: Itd’s generalization [18], Nualart-Schoutens’ generalization [31,32],
Lytvynov’s generalization [29], Oksendal’s generalization [6, 7], etc. The interconnections be-
tween these generalizations are described in, e.g., [1,6,7,21,29,34,36]. Now, depending on
problems under consideration, one can select a most suitable generalization of CRP, construct
corresponding spaces of test and generalized functions, and introduce necessary operators and
operations on these spaces.

In the present paper we deal with one of the most useful and challenging generalizations of
CRP in the Lévy white noise analysis, which is proposed by E. W. Lytvynov [29] (see also [5]).
The idea of this generalization is to decompose random variables, square integrable with re-
spect to the Lévy white noise measure, in series of special orthogonal functions, by analogy
with decompositions of random variables, square integrable with respect to the Gaussian mea-
sure, by Hermite polynomials (remind that the last decompositions are equivalent to the de-
compositions by repeated Itd’s stochastic integrals). Like using CRP in the Gaussian analysis,
one can use Lytvynov’s generalization of CRP in order to construct and study spaces of regular
and nonregular test and generalized functions [19], various operators and operations on these
spaces, etc. In particular, the extended stochastic integral and the Hida stochastic derivative
on the spaces of regular test and generalized functions are introduced and studied in [10, 19],
operators of stochastic differentiation—in [8,9,13], some elements of a Wick calculus and its re-
lationship with operators of stochastic differentiation—in [11]. As for the spaces of nonregular
test and generalized functions—the corresponding results are presented in [19,22-24].

As is well known, in the Gaussian white noise analysis, in the same way as in various ver-
sions of a non-Gaussian analysis, a natural multiplication on spaces of generalized functions
is a so-called Wick multiplication. In particular, in many cases, using the Wick multiplication,
one can take a time-independent multiplier out of the sign of an extended stochastic integral.
Moreover, such a result holds true for a Pettis integral (a weak integral). Also, the extended
stochastic integral can be presented as a Pettis integral (or a formal Pettis integral—depending
on the concrete situation) from the Wick product of the original integrand by the derivative (in
the sense of generalized functions) of the integrator. On the above-mentioned spaces of regu-
lar generalized functions in the Lévy analysis such results were obtained in [12]. The aim of
the present paper is to transfer the results of [12] to the spaces of nonregular generalized func-
tions, which are constructed using Lytvynov’s generalization of CRP. In a sense, this paper is
a continuation of the paper [22].

The paper is organized in the following manner. In the first section we introduce a Lévy
process L and construct a probability triplet connected with L, convenient for our considera-
tions; then we describe Lytvynov’s generalization of CRP; construct a nonregular rigging of
the space of square integrable random variables (the positive and negative spaces of this rig-
ging are the spaces of nonregular test and generalized functions respectively); describe the
extended stochastic integral with respect to L on the spaces of nonregular generalized func-
tions; and recall necessary notions of the Wick calculus. In the second section we show that
when employing the Wick multiplication, it is possible to take a time-independent multiplier
out of the sign of the extended stochastic integral and of the Pettis integral; prove a theorem
about a representation of the extended stochastic integral via the Pettis integral; and consider
examples.
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1 PRELIMINARIES

In this paper we denote by || - || g or | - | the norm in a space H; by (-, -) the real, i.e., bilin-
ear scalar product in a space H; and by ((-, -)) iy the dual pairing generated by the scalar product
in a space H. Further, we use a designation pr lim (resp., ind lim) for a projective (resp., induc-
tive) limit of a family of spaces, this designation implies that the limit space is endowed with
the projective (resp., inductive) limit topology (see, e.g., [3] for a detailed description).

1.1 A Lévy process and its probability space

Denote Ry := [0, +00). Let L = (Ly)uecRr, be a real-valued locally square integrable Lévy
process (i.e., a continuous in probability random process on IR+ with stationary independent
increments and such that Ly = 0, see, e.g., [4] for details) without Gaussian part and drift. As
is well known (e.g., [7]), the characteristic function of L is

E[el1] = exp {u/

Ox 1
]R(e 1 z@x)v(dx)], (1)

where v is the Lévy measure of L, which is a measure on (R, B(R)), here and below B de-
notes the Borel c-algebra; E denotes the expectation. We assume that v is a Radon measure
whose support contains an infinite number of points, v({0}) = 0, there exists ¢ > 0 such that
[ ¥2ef*ly(dx) < o0, and [ x*v(dx) = 1.

Define a measure of the white noise of L. Let D denote the set of all real-valued infinite-
differentiable functions on R4 with compact supports. As is well known, D can be endowed
by the projective limit topology generated by a family of Sobolev spaces (e.g., [3]; see also
Subsection 1.3). Let D’ be the set of linear continuous functionals on D. For w € D’ and ¢ € D
denote w(¢) by (w, ¢). It is worth noting that D and D’ are the positive and negative spaces
of a chain

D' 5 L*(R,) DD, )

where L?(R ) is the space of (classes of) real-valued functions on R4, square integrable with
respect to the Lebesgue measure (e.g., [3]), and therefore (-, -) is the dual pairing generated by
the scalar product in L?>(IR ). The notation (-, -) will be preserved for dual pairings in tensor
powers of the complexification of chain (2).

Definition 1. A probability measure u on (D’,C(D’)), where C denotes the cylindrical o-
algebra, with the Fourier transform

/D/ Py (dw) = exp [/]R+X]R(ei9”(”)x —-1- iq)(u)x)duv(dx)] , ¢9€D, 3)

is called the measure of a Lévy white noise.

The existence of u follows from the Bochner-Minlos theorem (e.g., [17]), see [29]. Below we
assume that the o-algebra C(D") is completed with respect to .

Denote by (L?) := L*(D’,C(D’'), i) the space of (classes of) complex-valued functions on
D', square integrable with respect to y (in what follows, this notation will be used very often).
Let f € L?(R.) and a sequence (¢; € D)ren converge to f in L>(R) as k — oo (remind
that D is a dense set in L?(R; )). One can show [6,7,21,29] that (o, f) := (LZ)—%ingo<o, @x) is a

well-defined element of (L?).
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Denote by 1, the indicator of a set A, and put Loy = 0. It follows from (1) and (3)
that ((o, 1[0,14)})“ R, Can be identified with a Lévy process on the probability space (triplet)
(D',C(D’"), u), see, e.g., [6,7]. So, for each u € R4 we have L, = (o, 1[0,u)> € (L?).

Note that the derivative in the sense of generalized functions of a Lévy process (a Lévy
white noise) is L.(w) = (w,8.) = w(-), where § is the Dirac delta-function. Therefore L is
a generalized random process (in the sense of [14]) with trajectories from D’, and u is the
measure of L in the classical sense of this notion [15].

Remark 1. A Lévy process L without Gaussian part and drift is a Poisson process if its Lévy mea-
sure v is a point mass at 1. This measure does not satisfy the assumptions accepted above (its
support does not contain an infinite number of points); nevertheless, all results of the present
paper have natural analogs in the Poissonian analysis. The reader can find more information
about peculiarities of the Poissonian case in [21], Subsection 1.2.

1.2 Lytvynov’s generalization of CRP

Denote by @ the symmetric tensor multiplication, by a subscript C—complexifications of
spaces. Set Z, := IN U {0}. Denote by P the set of complex-valued polynomials on D’ that
consists of zero and elements of the form

Ny -

flw) =Y (@, fM), weD, f" eDg", NyezZy, fN) 0,

n=0
here Ny is called the power of a polynomial f; (w0, FO)) .= £(0) ¢ Dgo := C. The measure u
of a Lévy white noise has a holomorphic at zero Laplace transform (this follows from (3) and
properties of the measure v, see also [29]), therefore P is a dense set in (L?) [33]. Denote by
Py, n € Z, the set of polynomials of power smaller than or equal to n, by P, the closure of
Py in (L?). Let for n € N P, := P, © P,,_1 (the orthogonal difference in (L?)); put Py := P.
It is clear that .

(12) = & P, (4)

Let f(n) S Dg@n, n € Z4. Denote by : <O®”,f(”)> . the orthogonal projection of a monomial
(o®", f(M) onto P,. Let us define real (bilinear) scalar products (-, -)ex; on D", n € Z, by
setting for f(”),g(n) c ng

(F, 8wt = [ (@, f0) 0, g00) (). ®)
. JD!
The proof of the well-posedness of this definition coincides up to obvious modifications with
the proof of the corresponding statement in [29].
Denote by | - |ext the norms corresponding to scalar products (5), i.e., | - lext := v/ (*,)ext-

Let H(n)

exts 1 € Z, be the completions of Dg)” with respect to these norms. For F (n) ¢ H(n)

ext
define a Wick monomial : (0®", F(")) def (Lz)—klim :<o®",fk(")> :, where D%" > fk(") — F(M as
—00

k — ccinH gclt) . The well-posedness of this definition can be proved by the method of "mixed

sequences". It is easy to show that : (020, F(0)): = (020, F(0)) = F(0) and : (o, F): = (o, F))
(cf. [29]). -

Since, as is easy to see, for each n € Z, the set {: (o®", f(M):|f(") ¢ D¢"} is dense in Py,
the next statement from (4) follows.
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Theorem 1 (Lytvynov’s generalization of CRP, cf. [29]). A random variable F € (L?) if and

only if there exists a unique sequence of kernels F") ¢ 1 ne Z., such that

ext’

o]

F=) :(0®m M) (6)

n=0

(the series converges in (L?)) and

IFI22 = [ 1F(@)Puldew) = EIFP = Y ntlF) 2, < e
n=0

Remark 2. In this paper we do not use directly an explicit formula for the scalar products
(v, )ext, and therefore we prefer not to write it down. But for the interested reader we note
that such a formula is calculated in [29]; in another record form (more convenient for some
calculations) it is given in, e.g., [9, 11, 13]. Also we note that for each n € IN the space ngg is
the symmetric subspace of the space of (classes of) complex-valued functions on R, square

integrable with respect to a certain Radon measure.

Denote H := L?(IR), then H¢ = L?(IR; )¢ (in what follows, this notation will be used very
often). It follows from the explicit formula for (-, -)ex+ that 7-[(1) = Hc, and for n € N\{1} one

ext
can identify Hg&" with the proper subspace of ngt) that consists of "vanishing on diagonals"

elements (roughly speaking, such that £ (ug,...,uy) = 0if thereexistk,j € {1,...,n}: k #j,
(n)

oxt 15 an extension of HE", this explains why we use the

but uy = u;). In this sense the space H
subscript "ext" in our designations.

1.3 A nonregular rigging of (L?)

Let T be the set of indexes T = (71, »), where 77 € IN, T, is an infinite differentiable
function on R4 such that for all u € R4 72(u) > 1. Denote by 7 the real Sobolev space on
R, of order 71 weighted by the function 1, i.e., H+ is the completion of D with respect to the
norm generated by the scalar product

(9w, = |

T
() + Y- M)y () ) ra(u)du,
R+ k=1
here ¢l¥l and ¥l are derivatives of order k of functions ¢ and ¢ respectively. It is well known

(e.g., [3]) that D = pr lim 2, (moreover, one can show that for any n € N D" = pr lim H2"),
TeT TeT
and for each T € T H is densely and continuously embedded into H = L?(R). Therefore

one can consider a chain
D>O>H :DODOHDH:DD,

where H_., T € T, are the spaces dual of H. with respect to . Note that by the Schwartz
theorem [3] D’ = ind lTim H_. (it is convenient for us to consider D’ as a topological space
TE

with the inductive limit topology). By analogy with [20] one can easily show that the measure
p of a Lévy white noise is concentrated on 7 with some T € T, i.e., u(H_z) = 1. Excepting
from T the indexes 7 such that y is not concentrated on H_, we will assume, in what follows,
that foreacht € T uy(H—.) = 1.
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Denote the norms in #H, ¢ and its symmetric tensor powers by | - |, i.e., for f (n) ¢ H?E,
neZs, |fM = (f("),]T)H@,n (note that ’H?% :=Cand [fO | = |fO).

It follows from results of [19] that one can modify T again (it is necessary to remove from T
some "bad" indexes) in order to obtain the following statement.

Proposition 1. Foreach T € T and eachn € Z, the space ’H?E is densely and continuous]y
embedded into the space #") and there exists ¢(t) > 0 such that for all f") € H®g |f()

nte()|f .

Accept on default ¢ € Z, and T € T. Denote Py := {f = ZnN£0:<o®",f(")>:,f(”) €
DE", Ny € Zy } C (L?). Define real (bilinear) scalar products (-, -)r,; on Py by setting for

ext

Ny Ng
Z oM, fM):, g =} (0", 8): € Py
n=0 n=0
min(Ny,Ng)
(fr&)egi= Y, (m2"(f",g"), 0, 7)
n=0 T,

The well-posedness of this definition is proved in [22].
Let || - |4 be the norms corresponding to scalar products (7), i.e., || - ||z4 := 1/(+,*)7,4- De-
note by (), the completions of Py with respect to these norms, and set (H) := pr lim(H),,

q—00

(D) := prlim (H;)4. Asis easy to see, f € (H¢), if and only if f can be uniquely presented
TeT,g—o0
in the form
=L S £ € MR ®)
(the series converges in (H¢),), with
112 = 1 £,y = Z (n)?20" f ]} < eo ©)

(since for each n € Z. H®" C Hext, for 1) ¢ H%g :(0®", f(1)): is a well defined Wick
monomial, see Subsection 1. 2) Further, f € (H:) (f € (D)) if and only if f can be uniquely
presented in form (8) and norm (9) is finite for each g € Z, (foreach v € T and each g € Z,).

Proposition 2 ([19,22]). Foreacht € T there exists qo(7) € Z such that foreachq € N, () =
{90(7),q0(7) +1,...} the space (H<), is densely and continuously embedded into (L2)

In view of this proposition one can consider a chain
(D) D (H-x) D (Hx)gD (L) D (He)g O (He) D (D), TET, € Nyyr),  (10)

where (H_r)—y, (H—7) = ind im(#_¢)_, and (D') = ind lim (H_z)_ are the spaces dual

q'—o0 TeT,g'—o0

of (H+)q, (H+) and (D) with respect to (L?).
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Definition 2. Chain (10) is called a nonregular rigging of the space (L?). The positive spaces
of this rigging (H+)y, (H:) and (D) are called (Kondratiev-type) spaces of nonregular test
functions. The negative spaces of this rigging (H )4, (H <) and (D) are called (Kondratiev-
type) spaces of nonregular generalized functions.

Finally, we describe natural orthogonal bases in the spaces () ;. Let us consider chains

D" > HM S HE) S HEE S DI, (1)

ext

m € IN, where ’H( )C and D () — ind lTlm ’H( )C are the spaces dual of ’H®g and Dg’” with
Te

respect to ngt) Set D®O H?g = %ﬁﬁi = 7-[(_0;@ = D‘f:( ) .= C. In what follows, we denote

by (-, -)ext the real (b111near) dual pairings between elements of negative and positive spaces

(m)

from chains (11), these pairings are generated by the scalar products in H,,, .
The next statement follows from the definition of the spaces (H 1) 4 and the general du-
ality theory (cf. [19,20]).

Proposition 3. There exists a system of generalized functions

{ <O®m1Fe(xt)>' € (% ) | ext G H( T)C’ me Z+}

such that
1) for E(Z) € ng} C ’H(lnT) : (o ®m,Fe(xt)>: is a Wick monomial that is defined in Subsec-
tion 1.2;

2) any generalized function F € (H )4 can be uniquely presented as a series
Z ®m’ Fext Y Fe(;::) < ,H(fmr),C’ (12)
m=0

that converges in (H_+) g, ie.,

”FHZ*T,*q = HF”%’H Z 2 qm‘ ext (m) OO, (13)
and, vice versa, any series (12) with finite norm (13) is a generalized function from
(H—<)—4 (i.e., such a series converges in (H_1)4);

3) the dual pairing between F € (H_)_4 and f € (H<), that is generated by the scalar
product in (L?), has the form

(E fhay =Y mU(ELY, £ o, (14)

where E™ ¢ 7-[( m) ¢ and f € H%&” are the kernels from decompositions (12) and (8)

ext

for F and f respectwe]y

Itis clear that F € (H_<) (F € (D')) if and only if F can be uniquely presented in form (12)
and norm (13) is finite for some g € Ny, (1) (for some T € T and some g € NqO(T)).
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1.4 An extended stochastic integral on spaces of nonregular generalized functions

Decomposition (6) for elements of (L?) defines an isometric isomorphism (a generalized
Wiener-Ito-Sigal isomorphism)
1:(L%) — @ TETA

ext’
n=0

ext

where @On"H( " s a weighted extended symmetric Fock space: for F € (L?) of form (6)

IF = (FO,FM), ) € EB nH") . Denote by 1: Hc — Hc the identity operator. The opera-

ext "
n_

ext ext

tor I®1: (L) ® He — ( @On!’;’-[(”)) QR He = %On!(}[(n) ® Hc) is, obviously, an isometric
n= n=

isomorphism between the spaces (L?) ® Hc¢ and %On!(’;'-[(n) ® Hc). It is clear that for ar-
n=

ext

bit € Z; and F" € H) tor (0,...,0,F",0,...) belongs to th
itrary m + an H,k ® He a vector ( ) belongs to the space

ext

o n'(?—[g;g ® He). Set

n=0

(o®m Ey. Y 19 1)710,...,0,E™,0,..) € (12) ® He. (15)

m

By the construction elements :<o®”,F,(”)> : = 7—[( ") ® He, n € Z4, form an orthogo-

ext

nal basis in the space (L?) ® Hc in the sense that F € (L?) ® Hc if and only if F can be
uniquely presented as F F(-) =Y g:(o®n, F.(n)> : (the series converges in (L?) ® Hc), with

2 2
IFIB 3y, = ot IF R < o0
Since, obviously, the restrictions of the generalized Wiener-1t6-Sigal isomorphism I to the

spaces (), are isometric isomorphisms between (#+), and weighted symmetric Fock spaces
% (n!)22‘7”7-[§g (cf. [25]), for arbitrary n € Z and f.( € H®g ® HC c H1 ® Hc we have
n=0 !

ext

:<o®”,f.(n)>: € (H)q ® Hc. Moreover, elements : (0" f > f H®g ®He, n € Zy,
form orthogonal bases in the spaces (H); ® HC f € (Hr)g ® Hc if and only if f can be

uniquely presented as f f() = Zn o (0@ f > (the series converges in (H); ® He),

Further, as in the case of spaces (H— o) - —q 1t follows from the general duality theory that
there exists a system of orthogonal in each (H ;) 4 ® H¢ generalized functions

{<®m F( )> € (H-r)- ®,HC‘ ext EH(T)C®HC’mEZ+} (16)

7 *ext,

such that for F) € #" & He C HS’?{C ® He : (o“™ F (m )> is given by (15); any generalized

ext, ext 7~ ext,
function F € (H_:)_4 ® Hc can be uniquely presented as a convergent in (H_:)_; ® Hc
series

F=F() =Y (o™ EWh: Bl e H"c @ He, (17)

3
rmg

with

2 .
HF” ) g@He — Z 2" qm‘ ext m) e < o0; (18)
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and, vice versa, any series (17) with finite norm (18) is a generalized function from (H ;) 4 ®
Hc (i.e., such a series converges in (% 1) 4, ® Hc). So, system (16) is an orthogonal basis in
each space (H_¢)_; ® Hc. Moreover, itisclear that F € (H_¢) ® Hc := incLlim(H,T)fq ®@Hc
q oo
(Fe (D)®@Hc:= in%l lim (H )4 ® Hc) if and only if F can be uniquely presented in form
TeT,g—00

(17) and norm (18) is finite for some q € N, () (for some T € T and some g € N, ().

Now our aim is to describe the construction of an extended stochastic integral with respect

to a Lévy process L, that is based on decomposition (17). We need a small preparation.
Consider a family of chains

®m ®
D™ S HOM L D HE™ S HEW S DE™, (19)

m € N (as is well known (cf. [3]), ’H®mc and Do’:@’m = ind lTlm ’H®mc are the spaces dual of
TE

”H%g and D%m respectively). Set D%O = 7—[?[?: = H%O = H?QIC = D‘{:@’O := C. Since the spaces
of test functions in chains (19) and (11) coincide, there exists a family of natural isomorphisms

Up: D™ 5 DL mez,,

such that for all F") ¢ D&(m) and (") ¢ Dg’”

ext

<Fe(a}:tl)ff(m)>ext <umFe(xt)/f(m)>' (20)

(m)

It is easy to see that the restrictions of U, to the spaces H'

between the spaces HST),C and H@E’?C.

7,C are isometric 1somorphlsms

Remark 3. Since 7-[( ) =

ext

= Hc, in the case m = 1 chains (19) and (11) coincide. Thus U; = 1 is
the identity operator on D @

onC.

= D¢. In the case m = 0 Uy is, obviously, the identity operator

Definition 3. Let A € B(Ry) and F € ( t)—q ® Hc. We define an extended stochastic
integral with respect to a Lévy process [, F(u)dL, € (H 1) by setting

/A Z ®m+1 Fext)A> (21)

where
B = Ul {Pr[(Un @ DES) 1A ()]} € HUD, (22)

Pr is the symmetrization operator (more exactly, the orthoprojector acting for each m € Z.

from 7—[®mc ®He C H®mC @ H_c to H®m+1), ext € 7-[( T)C ® He, m € Z., are the kernels
from decomposition (17) for F.

Since

Bt Al = [PrI(Un © DE O gz < [(Un © DF o gy = IEE Ly e
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and therefore by (21), (13) and (18)

H/FucTL Zzﬂ"”l\ M!zmﬂ
A
2
<2V L 2D =2 o
this definition is well-posed and, moreover, the extended stochastic integral
/Ao(u)ELu C(Hot) g @He = (M) 4 (23)

is a linear continuous operator.

As appears from the above, an extended stochastic integral can be defined by (21), (22) as
a linear continuous operator acting from (H_;) ® H¢ to (H_<), or from (D’) @ H¢ to (D’).
Exactly the integral

/A o(u)dLy : (H_x) ® He — (H_x) (24)
will be the object of our considerations in the forthcoming section.

Remark 4. As easily appears from results of [19, 21], stochastic integral (23) and its extension
(24) are generalizations of the extended Skorohod stochastic integral on (L?) ® Hc [21]. The
last integral, in turn, is an extension of the Ito stochastic integral.

Also we note that, in contrast to the regular case [9,12,13,19], integrals (23) and (24) cannot
be naturally restricted to the spaces of nonregular test functions, see [23] for details.

Remark 5. It follows from the definition of the extended stochastic integral that for each A €
B(R4)

/Ao(u)dLu - /R+o(u)1A(u)dLu. (25)

One can use this representation for an important generalization. Let a function F : Ry —
(H_+) be such thatF ¢ (H_+) ® Hc, but for some ® € B(R;) we have F(-)1g(:) € (H_1) ®
Hc. Itis clear that for any measurable A C © we have now F(-)14(+) € (H-) ® Hc, therefore
one can define [, F(u)dL, € (H_z) by formula (25).

Finally we note that the operator, adjoint to the extended stochastic integral, is called the
Hida stochastic derivative. This derivative is closely connected with so-called operators of sto-
chastic differentiation on spaces of nonregular test functions [24]. All the mentioned operators
play an important role in the Lévy white noise analysis.

1.5 Elements of a Wick calculus

Let F € (H_1). We define an S-transform (SF)(A), A € Dg, as a formal series

[ee]

(SF)(A) := Y (EM, a%my, = FO) Z A e, (26)

m=0 m=1

where E") ¢ 3" )C are the kernels from decomposition (12) for F. In particular, (SF)(0) =

ext

F g1 =1.

ext’
Note that each term in series (26) is well-defined, but the series can diverge. However, the

last is not an obstruction in order to construct the Wick calculus.
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Definition 4. ForF, G € (H_+) and a holomorphic at (SF)(0) functionh : C — C we define a
Wick product FOG and a Wick version of h h° (F) by setting formally

FOG := S~Y(SF-SG), hY(F) := S~ h(SF).

It is obvious that the Wick multiplication ¢ is commutative, associative and distributive
over a field C.
Note that a function & can be decomposed in a Taylor series

= Y hw(u—(SF)(0))™. (27)
m=0
Using this decomposition, it is easy to calculate that 1% (F) = Yor_o hy (F — (SF)(0)) Om, where
FOm .= FO .- OF = STY(SF)™], F®0 := 1.
N—_———

m times
"Coordinate formulas" for the Wick product and for the Wick versions of holomorphic

functions (i.e., representations of FOG, Fi(---OF,, n € N, and ho (F) via kernels from de-
compositions (12) for F, G, Fy, .. ., F,, and coefficients from decomposition (27) for h) are given
in [22]. Using these formulas, one can prove the following statement.

Theorem 2 ([22]). 1) LetFy,...,F, € (H_7),n € N. Then F;{ ---OF, € (H_+). Moreover,
the Wick multiplication is continuous in the sense that

HF1<>"'<>FHH—T,—QS max[z m(m+1)n 1““:1” —7,—(g—-1) ”Fn” —1,—(g—-1)r

meZ.

where g € N is such thatFy, ..., F, € (’H_T),(q,l).

2) Let F € (H_.) and a function h : C — C be holomorphic at (SF)(0). Then h®(F) €
(H—x).

Finally, we will write out a “coordinate formula” for FOG, F,G € (H_.), which will be
necessary in the next section. We need a small preparation: it is necessary to introduce an

(m)

analog of the symmetric tensor multiplication on the spaces H'"', m € Z..
For Fe(xt) € 7-[( ) c and Ge(xt) S HET)C, n,me Z,set
Fil o Gal = unim{PrMunPst) © UnGe) N} = Ul (U B (UG )} € HUTE.

(28)
It follows from properties of operators U, (see Subsection 1.4) and of the symmetric tensor
multiplication that the multiplication o is commutative associative and distributive over a

field C. One can show [22] that | ext g:;)| frim) < | ot | o |Gext | . ,and forany A € D¢
<Fe(xt)')‘®n>€Xf<Ge(xt)'A®m> xt = <Pe(xt) © Ge(xt) A®n+m> xt.
Proposition 4 (22]). ForF,G € (H_+)
- o)y
FOG =Y : (o Z o oGeZ :, (29)
m=0

where F%) ¢ ’H( ), Glmh ¢ ’H(m?tk ), are the kernels from decompositions (12) for F and G

ext —1,C7 “ext

respectively. In particular, for e(xt) en )C and Géxt) e H" T)C
< ®n'Fe(xt)> <> < ¥ Ge(xt)> < ®n+mfPe(xt)<>Ge(xt)> (30)
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Remark 6. It is relevant to note that the multiplication ¢ is an extension of an analog of the

symmetric tensor multiplication on the spaces ngt), m € Zy [22,24]. Using this fact, one
can show that the Wick products and the Wick versions of holomorphic functions, introduced
on the spaces of regular and nonregular generalized functions (see [11] and [22] respectively),
coincide on the intersections of the mentioned spaces. The interested reader can find a detailed

information in [22].

2 MAIN RESULTS AND EXAMPLES

21 The Wick multiplication under the sign of an integral

As is known, some properties of an extended stochastic integral differ from habitual prop-
erties of the Lebesgue integral. In particular, for F € (H_.) and HV) € H¢

/ (Fo HNYwdL, = [ F-HOwdL, #F- [ HO(u)dL,,

Ry Ry Ry

generally speaking, although F does not depend on u. Moreover, in general, the pointwise
product F - fR (u)dL, is undefined. Note that these facts are not directly related with
pecularities of the Levy analysis, and hold true even in the classical Gaussian analysis.

But if one uses the Wick multiplication instead of the pointwise multiplication, it becomes
possible to take a time-independent multiplier out of the sign of the extended stochastic inte-
gral, as in the Lebesgue integration theory (again, this statement holds true in the Gaussian
analysis, in the same way as in the Lévy analysis on the spaces of reqular generalized func-
tions [12]). In this subsection we’ll explain this in detail.

We begin with a preparation. Let F e(xt) € 7-[( T) cr GE(Z? € H(_n?c ® He, n,m € Z. Using the
notation of the previous section, define ’

EQ)sGln) = (UL, o D{(ProD[(UEL) © (Un @ DCI]Y e H W @ He. (1)

Remark 7. Letn,m € Z, Fe(;lt) € H(fr),o:/ e(xt) S ’H( )C and HY € He. By (31) and (28)
E1ls(Gl) @ HD) = (B o GlY) @ HO (32)

(cf. [24]).

It is easy to estimate the norm of F W3G™) in the space 7-[( TC) ® He: since operators

ext ext,
Uy : H(_'i)c — H%’TC, m € Z., are isometric isomorphisms (see Subsection 1.4), by (31) we
obtain

= [(Pr o 1)[(U.EL) © (U ®1)GLr)

’ ext ext ‘H@;{:’O@'HC )] ’H§n+m®7{

(U ©1)G™

< [UxF, ext) ext,: |H€O?C®H | ext|

”) |Gext | "1) ®HC

(33)

|H®n

Definition5. LetF € (H_.) and G € (H_.) ® Hc. We define a Wick product FOG € (H_1) ®
Hc, setting

FOG = (FOG)(-) := Y_ :(o®™ Z Wsgln oy, (34)

m=0 k=0
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where Fe(xt) e H! zc and Ge(xt M ¢ H(_n;}:k) ® Hc are the kernels from decompositions (12) and

(17) for F and G respectively (cf. (29)).

Using estimate (33) one can prove by analogy with [22] that this definition is well-posed,
and the Wick multiplication ¢ is continuous in the sense that for any g € N such that F €
(,H*T)f(qfl) and G € (’H, ),(qfl) ® Hce,

IEOGl ey e < NFll vy, oGl o) vy

Remark 8. Let F,G € (H_T) and HY ¢ He. Usmg (34), (32) and (29), one can easily show
that

FO(G® HWY) = (FOG) @ HW, (35)
Theorem 3. LetA € B(R+),F € (H_7)and G € (H_1) ® H¢c. Then
/ FOG(u)dLy = / (FOG)(u)dL, = FO / W)dLy € (H_q). (36)

Remark 9. It is possible to interpret G as a function acting from R, to (H_+) and, taking
into account the construction of the W1c1< multiplications ¢ and {, rewrite equality (36) in a
classical form [, FOG(u )dL, = FO J G( u)dLy,.

Proof. 1t is sufficient to consider the case A = R only: if A # Ry, it is necessary to substitute
G(-)15(+) instead of G.
Let at first F = : (o®" E )> G(-) = :(o®m ,G" )) L, E e 4l T)C, G e ym )C ® He,

7 *ext ext, ext ext,:

n,m € Z.. By (34) we have (FOG)(-) = : (™" FISG ), hence [y (FOG)(u)dL, =

ext ext,

< ®n+m+1 1:( )/G(\

ext 9yt R, ) ¢ (see (21), (22)). On the other hand, by (21)

/1R+ G(u)dL, = :<o®m+1fée(z1t?lR+>:/

therefore F fR u)dLy, = : (o®ntm+l Fe(xt) OGéxt]R ): (see (30)). So, we have to prove that
e(xt)OGe(xt)]R =F e(xt) @£Z?R+ (37)

in ’H(f”: g H).
Using (22) and (31) we obtain

—

Pe(xt)OGe(xt)lR = U, Ly {Pr[(Unm ®1)( ext ext >]}
= Uy {Pr[(Unen @ (UL, © D{(Pr @ D(UFL) © (Un @ DGR }
= unim+1{Pr[(u”Fe(xt)) ® (Un ® 1)ngt?‘)]},

whereas by (28) and (22)

e(xt) © Ge(xt)IR+ = un—&m—o—l{Pr[(u”Fe(xt)) ® (um+1é\(§z)]1{+)]}
= un—&m—o—l{Pr[ u”Fe(xt)) ® (um+1um+1{Pr[(um & 1>G(§xt) ]})} }

= Uy AP @ (Un @ 1G]
Therefore equality (37) is true, hence in our special case the theorem is proved. In the general
case the statement follows from the just obtained result, continuity of the Wick multiplications
¢ and ¢, and continuity of operator of stochastic integration (24). O
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Now let us obtain an analog of property (36) for a so-called Pettis integral (i.e., for a weak
integral) on the spaces of nonregular generalized functions. Denote by p the Lebesgue measure
on R; and consider A € B(Ry) such that p(A) < oo. Forany G € (H_) ® Hc define the
Pettis integral [, G(u)du € (H_+) as a unique element of (#_) such that for each f € (H)

<</A G(u)du, f)) 12y = (G(), f @ 1a()) (12) @1 (38)

Since by the generalized Cauchy-Bunyakovsky inequality for each ¢ € N, () (see Proposi-
tion 2)

(GC) f @1aC)) a2yemel <G a ) yeuclfllam,\/o(B),

this definition is well-posed and the Pettis integral
/A o(u)du : (H_1) @ He — (H_) (39)

is a linear continuous operator.

LetG € (H-+), H®Y € Hc. Then
(1) = .HD - G- 1)
/A(G ® HYW)(u)du = /AG HY (u)du =G /AH (u)du. (40)

In fact, for each f € (H.) by (38) we have

/G HY (u)du, )) 12y = (G @ HY (), f @ 1a0)) (12)0me

= (G, Mz [(HY (wiu = (G- [ HO ), £) 12

Letnow F,G € (H_.) and H") € H¢. Using (35) and (40) we obtain
/A FO((G® HY)(u))du = / (P@(G@@H(U))(u)du: /A ((F<>G)®H<1>)(u)du
—/ (FOG) - HO (u)du = (FOG) - /H
— FO(G /H u)du) _FQ/GH w)du
EFO/A (G © HD)(u)du.

From here, by virtue of continuity of the Wick multiplications ¢ and ¢, and continuity of Pettis
integral (39), we obtain the following statement (cf. Theorem 3).

Theorem 4. Let A € B(IR;) be such that p(A) < oo, F € (H_7) and G € (H_1) ® Hc. Then

/poc w)du = /(poc)( w)du = p<>/ w)du € (H_-). (41)
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Remark 10. As in the case of the extended stochastic integral, now one can interpret G as
a function acting from R, to (H_+), and rewrite equality (41) in a form [, FOG(u)du =

FO [\ G(u)du
2.2 A representation of the extended stochastic integral via the Pettis integral

It is well known that in the Gaussian analysis the extended stochastic integral on spaces of
generalized functions can be presented as a Pettis integral:

/AF(u)cTWu :/AF(u)OWudu, A € B(Ry). (42)

Here W is a Wiener process, W is a Gaussian white noise. Depending on the spaces under
consideration, equality (42) can be formal or can have a rigorous sense. In any case this equality
is very useful for applications, in particular, for studying stochastic equations with Wick type
nonlinearities.

Remark 11. In a sense, equality (42) is an analog of a formula for replacement of a measure in
the Lebesgue integration theory. In particular, W is an analog of a Radon-Nikodym derivative.

In the Lévy analysis representation (42) for the extended stochastic integral holds true up
to obvious modifications: it is necessary to substitute a Lévy process and a Lévy white noise
instead of a Wiener process and a Gaussian white noise respectively. Now on the spaces of
regular generalized functions the analog of (42) is a formal equality [12]; in the nonregular case
the corresponding analog is a rigorous equality. Let us explain this in detail.

As we saw in Subsection 1.1, a Lévy white noise can be presented in a form Ly, = (o,6,),
u € Ry. Asis well known (e.g., [3]), for each u the Dirac delta-function d,, € H_, therefore
Ly = (0,6y) =:(0,8,): € (H_7). Let F € (H_1) @ Hc. In this subsection it will be convenient
to interpret F as a function acting from Ry to (H_¢), so, for p-almost all u € R, the Wick
product F(u)(L, is a well-defined element of (%_-) (remind that p is the Lebesgue measure
on Ry). For arbitrary A € B(IRy) let us define the Pettis integral [, F(u)QL,du as a unique
element of (H_+) such that for each f € ()

P OLudu, ) iz) = [ (EG)OLu, £) 12 )

(cf. (38)). Since it is possible now that p(A) = oo, we cannot use the reasoning from Subsec-
tion 2.1 and have to prove the correctness of this definition (simultaneously we’ll obtain an
analog of (42)). It is sufficient to consider the case A = R, : if A # R4, one has to substitute
F(-)1a(+) instead of F. By (29), (28) and Remark 3 for p-almost all u € R

F(u)OLy = F(u)0:(0,8,): = Y : (0™ L E) 06,):

m=0

=Y (e U (UGS, 98}

m=0
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therefore by (8), (14) and (20) we obtain

Jo, CF)OLu £) 12

¢

(o™ UL {PrI(UnESD,) © 8]}, X (07, )] gy
n=0

+

[l 5

o

(m 4+ D)UY {PA(UnES) ) © 84}, F7 D) expdu

+
3
I

(e}

(m 4+ V)Y(UnEL,) @ 6, f ) du

+
3
[ gk

e i -

(m + DU EY™  Fm D (g, u))du

ext,u’

¢

+ m=0
= Y D U F )
m=0
= L (m+ D)N(Un @ DEG), F0).
m=0
(44)
Note that the penultimate equality in (44) is valid because, as is easy to verify,
[ On e DU O (o) s < oo
+ m=0
On the other hand, by (21), (22), (8), (14) and (20) we obtain
([ FdLu, )
Ry
= (L ™ UL {Pr{Un @ DEGN 2 L0 ) s
m=0 n=0
(45)

(m 4+ DU {Pr[(Uy @ )ED]Y, £ 1)

I
agk

3
<H:

(m + )N (U @ 1)E), D),

ext,-’

I
¢

3
I
S

Comparing (44) and (45) we conclude that for all f € (#;) and A € B(R)

J (B @OL Pz = [ ((F@)1500)OLu, ) iz

+

=, FOOta@MLu, ) = | FGOLu £ 0z

therefore by (43) [, F N u){QLydu is a well-defined element of (#_+) and, moreover, we have the
following statement

Theorem 5. For arbitrary A € B(R:) and F € (H_1) ® Hc¢

/A F(u)dLy = /A F(u)OLadu. (46)
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Remark 12. The extended stochastic integral can be defined by formulas (21), (22) with A =
R+ as a linear continuous operator acting from (H_.) ® H_,¢ to (H_z), cf. [23] (now it is
impossible to define the integral by a set A # R because a multiplication of an element of

”H(l?lc ®@ H_rc or (H-1) ® H_r ¢ by 1, is undefined, cf. (22), (25)). It is easy to show that
formulas (36) and (46) (with A = IR) hold true for this integral.

Finally we note that all results of Subsections 2.1 and 2.2 hold true for integrands and mea-
surable sets A, satisfying the assumptions of Remark 5.

2.3 Examples

In order to illustrate possible applications of our results, we consider some stochastic equa-
tions with Wick type nonlinearities.

Example 1. (a linear equation) Let us consider an integral stochastic equation
t _ L
X = Xo + / FOXudu + / GOXudLy, 47)
0 0

where Xy, F, G € (H_+) (we use here the classical notation fot = f[O,t) ). Applying to this equa-
tion the S-transform with regard to (41), (36) and (46), and solving the obtained nonstochastic
equation, we get

t
SX: = SXp - exp {SFt + SG/ )\(u)du}.
0
Applying to this equality the inverse S-transform, we obtain the solution of (47)

X¢ = X0 exp® {Ft + GOLt} € (H_x).

Example 2. (a Verhulst type equation) Consider an integral stochastic equation
t t ~

where Xy € (H-7), N,v,v € R, N > 0,7 > 0, (5X()(0) > 0. Here for p-almost all u € R
we interpret X, as a generalized function, it follows from the solution of (48) (see below) that
Xy € (H—+) and all integrals in (48) are well defined. As in the previous example, applying
to (48) the S-transform with regard to (46), solving the obtained equation, and applying the
inverse S-transform, we get the solution

X, = N{l + (NXOTY Z1)0exp® { — N(rt + th)}] oD (H_),

where YO(=1) .= g1 (SLY)

Remark 13. It is very easy to show that all results of this paper hold true (up to obvious
modifications) if we consider the spaces (D') and (D') ® Hc instead of the spaces (H_-) and
(H—¢) ® Hc respectively.
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Kavanoscoximit M.O., Kauanoscoka T.O. B31em038 930K Midic 6IKIBCOKUM MHONCEHHIM ma iHmMe2pyea-
HHSM HA NPpOCIopax HepeeyngpHux ysaeanvHeHux GyHkyil 6 ananisi 6irozo wymy Aesi // Kapmarcoki
MaTeM. my6A. — 2019. — T.11, Ne1. — C. 70-88.

Mu MaeMo cIpaBy 3 IPOCTOpaMM HEPETYASIPHIUX y3ararbHeHMX (PYHKIIIN B aHaAisi 6inoro mry-
My AeBi, sIKi T06yAOBaHi 3 BUKOPMCTaHHSIM AUTBMHIBCBKOTO y3araAbHEHHS BAACTVBOCTI XaOTUIHOTO
po3xaapy. Hamra Mera — ommcaTyt B3a€MOBIAHOCVMHM MiX BiKiBCbKVMM MHOXXEHHSIM Ta iHTerpyBaH-
HSIM Ha IMX IpocTropax. TouHille, My Mokas3yemo, 1110, BUKOPUCTOBYIOUM BiKiBChKe MHOXKEHHSI, MO-
JKHa BMHOCUTM He3aAeXXHMI BiA Yacy MHOXHMK 33 3HaK PO3IIMPEHOrO CTOXaCTMYHOTO iHTerpaay;
BCTAaHOBAIOEMO aHAAOT LILOTO Pe3yABTaTy AAs iHTerpay Ilerrica (caabkoro iHTerpaay); Ta AOBOAM-
MO TeopeMy PO MPeACTaBAEHHsI PO3IIMPEHOT0 CTOXaCTUYHOTO iHTerpaAy depes inTerpan Ilerrica
BiA BiKiBCbKOTO AOOYTKY BMXiAHOI MiAiHTerpaAbHOI oyHKIII Ha 6iawmit irym AeBi. Sk mpukaaam 3a-
CTOCYBaHHsI HAaIllMX Pe3yAbTaTiB MM PO3TASIAAEMO AeSIKi CTOXACTMYHI PiBHSIHHS 3 HeAIHIHOCTSIMM
BiKiBCHKOI'O THITY.

Knrouosi cnosa i ppasu: Ilpolec AeBi, po3IImpeHIii CTOXacTUIHMIA iHTerpaa, iHTerpaa Ilerrica,
BiKiBCBKIIT AOBYTOK.
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KRrAVTSIV V. V.

ALGEBRAIC BASIS OF THE ALGEBRA OF BLOCK-SYMMETRIC POLYNOMIALS ON
El SP) eoo

We concider so called block-symmetric polynomials on sequence spaces ¢1 ® £eo, {1 ® ¢, {1 P co,
that is, polynomials which are symmetric with respect to permutations of elements of the sequences.
It is proved that every continuous block-symmetric polynomials on ¢; @ ¢ can be uniquelly rep-
resented as an algebraic combination of some special block-symmetric polynomials, which form an
algebraic basis. It is interesting to note that the algebra of block-symmetric polynomials is infinite-
generated while /o, admits no symmetric polynomials. Algebraic bases of the algebras of block-
symmetric polynomials on ¢; @ ¢ and ¢ @ cp are described.

Key words and phrases: symmetric polynomials, block-symmetric polynomials, algebraic basis,
topological algebra.

Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine
E-mail: maksymivvika@gmail.com

1 INRODUCTION

Algebras of polynomials and analytic functions on a Banach space X which are invari-
ant with respect to a group or semigroup of linear operators acting on X were studied by
many authors (see e.g. [1,3-5,9]). In oder to study spectra of such algebras it is impotant
to figure out with their algebraic bases (if exist). Let Se be the group of all permutations of
the set of natural numbers IN. That is, Se consists of all bijections of IN to itself. Let SY, be
the subgroup in S of all finite permutations. If X is a sequence Banach space and for each
x = (x9,%2,...,%,...) € X, 0(x): = (xg(l), e X () - .) € X, 0 € Ss, then we can concider
functions which are invariants with respect to the operators o(x). A function f : X — C is
called symetric if f(o(x)) = f(x) for every x € X and ¢ € Se. If it is true for all ¢ € SO, then
f is called finitely symmetric. In [11] Nemirovskii and Semenov described algebraic bases of al-
gebra of continuous symmetric polynomials on real spaces £, where 1 < p < co. Their results
were generalized by Gonzalez et al. [7] for real separable rearrangement-invariant sequence
spaces. Also, in [7] it is proved that for £,,1 < p < oo, finitely symmetric polynomials are
symmetric and cy does not admit finitely symmetric polynomials. In [8] it is proved that there
are no symmetric polynomials on / but we have a lot of finitely symmetric polynomials. It
is not difficult to check that every symmetric (and finitely symmetric) polynomial on c can be
generated by the following one

L(x) = r}iilgoxn.

In [9,10] were concidered block-symmetric polynomials, wich also are called MacMahon Polyno-
mials on Banach spaces. The block-symmetric polynomials can be defined by the following

YAK 517.98
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way. Let Xj,..., X, be sequence spaces. Then every x € X; X ... X X;; can be represented

by x = (x},...,x™), where ¥/ € X;. For any 0 € S, we can define ¢(x) = (c(x'),...,0(x™))

and a polynomial P : X; X ... X, is block-symmetric if P(c(x)) = P(x) for every ¢ € Sc.

In [10] algebra of block-symetric analytic functions on ¢1 x /1 is investigated. In [9] constructed

an algebraic basis of block-symmetric polynomials on ¢, x ... x £, ~ £,(C"). In this paper
———

we construct an algebraic basis on the algebra of all block—synﬁmetric polynomials on £; X leo.
It is interesting to note that the algebra of block-symmetric polynomials is infinite-generated
while £, admits no symmetric polynomials. Also, we concider block-symmetric polynomials
on ¢ X cgand #1 X c.

2 MAIN RESULTS

Let us denote by {1 @ / the space with elements < X ) = (( *1 ) S, ( m ) ,) ,
y n Ym

where (x1,x2,...,%n,...) € {1, (Y1, Y2, -, Yn, - --) € Le. The space {1 & Lo with norm

(9]

(x )lley e = Y |xi] + sup |yl
=1

i= i>1

is a Banach space.
A polynomial P on the space ¢1 @ /s is called block-symmetric (or vector-symmetric) if

P<(X1>"-.’(xm>’~.'>zp xU(l) yeoess xO’(ﬂl) sl
Y1 Ym Yo(1) Yo(m)

. x .
for every permutation ¢ on the set of natural numbers IN, where ( ! ) € C2
i

Let us denote by Pys(¢1 & o) the algebra of block-symmetric polynomials on ¢; & {w; by
Hpps (01 @ L) the algebra of block-symmetric analytic functions of bounded type on ¢1 & (.
(e} n
In [9] it was proved that polynomials H*v+kn(x) = ¥ T[] (xjs-)kS, where x = (x1,xp,...) €

j=1s=1
ks>0

6(C"), x; = (x]l, ceey x;q) € C" form an algebraic basis of the algebra Ps(¢1(C")).

For a multi-index k = (kq,k, ..., ky) € Z" let |k| = k1 + ko + ...+ ky,. For an arbitrary
nonempty finite set M € Z'. let us define a mapping 7ty : coo(C") — CMI, where |M]| is the
cardinality of M, by

o (x) = (H () (k) kyem-

In [9] it was proved the following theorem.
Theorem 1 ([9]). Let M be a finite nonempty subset of Z"_ such that |k| > 1 for every k € M.

1. There exists m € IN, such that for every ¢ = (i, k) (k1. hn)eM € CIMI there exists
xg € c(()g’)(C”) such that mmy(xz) = G, where c(()g’)(C”) is the space of all sequences x =
(x1, .o, %m,0,...),x1, ..., xm € C";

2. There exists a constant pp; > 0 such that if ||||c < 1, then ||xg||, < pum for every
p e [1, +0), where |¢]l = max| .
S
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Let us denote by (/1 @ o)™ the space of all sequences

(), = () (G )-(a) )

where (x1,...,%m,0...) € {1, (y1,---,Ym,0...) € L. Clearly, that cé'g)(C”) = (1 @ loo) (™).
For an arbitrary nonempty finite set M € Z2 let us define a mapping rm : £1 ® foo — CIM|
by
(%)) = (HY2(2,9)) (1, ky)em-

Corollary 1. Let M be a finite nonempty subset of Z2 such thatky +k, > 1 for every (ki,ka) €
M.

1. There existsm € IN, such that for every § = (‘:(h,kz))(kl,kz)eM e CIM| there exists (x,y)z €
(41 © Leo) ™ such that (%, y)e) =&

2. There exists a constant pp; > 0 such that if ||C||e < 1, then ||(x,y)¢||e,00. < pM-
t

(0), 20 (G G)- (8 )-(0) )

For (x,y)!, (x,y)?,..., (x,y)" € {1 D Lo, let

For elements < X ) , < z ) € 01D Lo, let
y m m

r

P y) =xy)' o (xy)*o...0(xy).
=1

Obviously that

r

D(xyy

j=1

<y
=1

[E

glﬂagoo ’

l1Bl
Also note that for every (k1, k) € Zi, such thatky +k, > 1,

mm(émw)iwmmwn o

=1 j=1

For N € N let My be a finite nonempty subset Z2 such that 1 < k; +k; < N for every
(ki,k2) € M.

By Corollary 1, for M = My there exists p = py, such that 71, (V,) contains the open unit
ball of the space C/M| with norm |||, where

Vo={(xy) € ti® Ll : [|(x,¥)l|y0e <P}

Proposition 1. Let 9(¢(, 1,)) (1,,1,)emy be @ polynomial on CIMn|. If ¢ is bounded on Vo),
then g does not depend on G g ), k € IN.
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Proof. Let (0,k) € Z%,k € N. Let K = mpp, (Vp), K1 = 7043 (V) and 17 : K — Ki be an
orthogonal projection, defined by
1 Gt ) tb)emy = (S )emy\ {00}
Let us show that for every ball

B(u,r) = {C e CIMNMOMI e — u|e < r}

centered at u = (11, 1,)) (1,,1,)eMp\{ (0, o) e CIMNM\OM and of radius r > 0 such that B(u,r) C
T\ {(04)}(Vp), the set 77 “Y(B(u,r)) is unbounded. Since u € T\ {(0k)} (Vp), there exists
(xy)u €V, such that 7w, ((x,y)u

) = u by Corollary 1. For m € N, we set (x,y), =
0 0 0
m 1 1 m
a;, wh a, = — S, , o), e, = (V-1);,0 <
= ]\il ke WREEE Kk 06k,0> <0‘k,k—1> <0> > mj = )
j<m-—1
Choose ¢ such that

0<e<min{1,p_H(x’y)”Hfleafoo r }

et () Naxl oG =1+ 1)
where {(-) is the Riemann zeta-function.
Let (x,y)me = (e(x,¥)m) © (x,y)u. Let us show that (x,y)m,e € V.

o1 UL L 1
Y mlln oo, = Y || 7% Z —laxlley e = Nkl leyoen Z 7 < llakllend(R)-
j:1 ]k él@é = ]k j:l]k
Therefore, ||(x, ¥)mlle, ot < |lakllne.d(F)- Then
1
G YImellaoe < ell(xy)mlloen + 11 Yullnen < lladllnend () + 1 y)ulloer.

P*H(x/?/)ltﬂé’l@é’oo
gl 2006 (F)
Note that for arbitrary (I4,1) € Zi such that /1 + I, > 1, by equality (1),

Since € < , it follows that ||(x, y)me|| o, < o- Hence, (X,¥)me € V.

1,1 _ 1,1 oyl
HY2((x,y)n) = Y~ HY2 () = H'2(a) Y —,
j:1] k j:1] K

HY2((x,y)me) = e 2HVY2 (2, y)m) + HY2((x, 1))

m
— el (a) Y 2+ e ((x,),).
=17 %
Let us show that 7y \ 1041 (X, ¥)me) € B(u,r). For (I1,1a) € My \ {(0,k)}, such that
I #0 mod k, H""2(a;) = 0 (see [9, Prop. 3]) and therefore, by (2), HY:2 ((x,y)y) = U(Ly 1)
Let (I1,1) € My \ {(0,k)} be such thatl; =0and I =0 mod k. Then! =1, =s-k,s > 1,
s € IN. Hence

(2)

1
1
s—1+1

| —

m
<e[HY (ap)| Y

j=1]

< ¢ |H (@) g (s — 1+ 7).

m
)HOZ X, y)mg)—um ) <sl]HOZ (ay \Z
=17

o~
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Since ||H™|| < 1 (see [9, Prop. 2]), |H (ay)| < ||ax||}. Sincee < 1,and & < ¢, s0
1 1
e HO (@)[gls — 1+ 1) < ellaglliZ(s ~ 1+ ).

. . r . 0, —
From the inequality ¢ < RS TIL it follows that ’H ((x,y)me) —ugy| < rand

therefore 7y 1\ 1(0,)} (X, Y)me) € B(u, 7).
By [9, Prop. 3], H**(a;) = 1. Then

o
HO'k((xry)m,8> = ¢ Z -+ H(O'k)((xry)u> —>
=1

as m — oo. Hence, 771 (B(u,r)) is unbounded. By [9, Lemma 11], g does not depend on
S(0k)- 0

Theorem 2. Polynomials
Hkl k7_ x y Z xklnyI
form an algebraic basis of the algebra Pys(¢1 & {), where ki, kp € N, k1 > 1,ky > 0.

Proof. In [9] it was proved that polynomials H¥/*2(x,y) = OZOZ xklyk2 where k1,ky € N, k; > 0,

k, > 0 form an algebraic basis of the algebra Pos(l1 ® 61) Thus they are algebraically in-

depended. Let us show that HFk, kz(x y) = Z xklyfz, where ki,kp € IN,k; > 1,ko > 0 are

algebraically independed on ¢; @ / Suppose the opposite. Then there exists Q # 0 such
that Q(H(x,y), H*O(x,y), H"' (x,y),..., H"*2(x,y)) = 0. Let Qp be the restriction of Q on
01 ® fq. Then Qo(HMY(x,y), H* (x,y), H" (x,v),..., HV*2(x,y)) = 0, where Qy # 0. But it
cntradicts algebraically independed of polynomials H*1*2 on ¢1 @ ¢1, where k1, k; € N, k1 > 0,
ky > 0. So, polynomials H*1#2, k1, ky € N, k; > 1,k > 0 are algebraically independed.

Let us prove that H**2(x, y) are continuous on ¢1 @ fc. Indead,

HR )| = || < ) el il
i=1
Since | (x,) |l 1., = X [l +sup ly < 1then T || < 1and suply| < 1.
i>1 i>1

kz
(o) (o]
Moreover Y. |x;[ft[y;[*2 < ¥ |x;|F1 - [sup || | -
i=1 i=1 i>1
Hence

i

ka
= sup ’Hkl'b(x,y)’ < sup (Zx 1. (sup |yi|> ) <1.

H(xy)|[<1 H(xy)[<1 i21

Therefore H*'*2(x,v) are bounded and so continuous on #; @ /.
Let us prove that every continuous block-symmetric polynomial P € Pys(¢1 @ fo) can be
represented as an algebraic combination of polynomials Hkke (x,v), k1, ko € N, k1 > 1,kp > 0.



94 KRrRAVTSIV V.V.

Let D be restriction of P on ¢; & £;. For polynomial P there exists a unique polynomial
g : CMN — C such that P = go 7y, Since P is continuous, P is bounded on V,, so g is
bounded on 7ty (Vp).

By Proposition 1, a polynomial g does not depend on &g ), k € IN.

Since polynomials H*#2, where (k;, k) € My \ {(0,k)} are well-defined and continuous
on El ® loo, then P = go nMN\{(O,k)}'

Therefore H*K2(x, y), k1,kp € N, ky > 1,k > 0 form an algebraic basis of the algebra
Pos(l1 D Leo). O

Note that there are finitely symmetric polynomials on ¢; @ ¢« which are not symmetric.
For example, let U be a free ultrafilter on IN. Then polynomials of the form

m
k
Y. Yn
n=1
m

Pu(x,y) = limy, and Qux(x,y) = lim

are finitely symmetric but not symmetric (see [8]).
Since, {1 ® cop C {1 ® L, we can concider the algebra of block-symmetric polynomials on
{1 D co, Pos (fl D Co).

Proposition 2. The restriction Hgl’kz of polynomials H"¥* |y € Z, ks € N onto {1 ® ¢ form
an algebraic basis in Pys(¢1 @ cp).

Proof. Since 1 © ¢ C £ Dcg C {1 ® Lo and the restriction of H*2 onto ¢; @ ¢; are alge-
braically independed, so Hgl’kz are algebraically independed. Let P be a symmetric polynomial
on /1 @ co and P its Aron-Berner extension (see [2]) to the second dual (¢1 ® co)” = l4 @ leo. It
is known that the map P + P is an algebra homomorphism and P is symmetric on (¢ & ¢g)”
with respect to extension of operators o (x,y), 0 € S« (see [6]). Let P, be the restriction of P to
01 ® loo = ({1 D cp)"”. Then P; is symmetric and according to Theorem 2 can be represented by

(o]

! !

p Kl 1 \

b= )3 S T (H ) <H ) ,
1KY ..+, k7| =0

where ki = (k], k), [Kf| = K| + kL.
So P is the restriction of P; to ¢1 @ cg and have the representation

(e 9]

! !
= K1 1 r\ ‘r
P= Z I <H0 ) (HO ) ,
11‘k1‘+...+1r|k":0

where ki = (k], k), [Ki| = K| + kL.
Hence, Hgl’kz, ki € Z,ky € N form an algebraic basis in Pys(¢1 & ¢p). O

Note that ¢ @ c admits a block-symmetric polynomial

L(x,y) = lim y,

n—oo

wich can not be obtained by an algebraic combination of H*1%2, k; € Z,k, € N.
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B pobTi po3rAsiHYTO TakK 3BaHi OAOYHO-CMMETpWUHI MOAIHOMM Ha IIPOCTOpax IMOCAIAOBHOCTEN
U ® Lo, 1 B c, 1 D cp, a came, IOAHOMM sIKi € CUMETPMYHMMY BiAHOCHO ITEPECTaHOBOK eAeMEeHTIB
TIOCAIAOBHOCTEI. AOBEAEHO, ITI0 KOXeH HellepepBHMII OAOUHO-CMMEeTPUIHMIA TTIOAHOM Ha {1 @ loo
MOXe OYyTU €AVHVM UMHOM IIOAAHWMIA SIK aATebpaidHa KOMOIHAINST AeSKMX CHeliaABHUX OAOYHO-
CYMETPUYHNX TOAIHOMIB, SIKi yTBOPIOIOTE aATebpaiurmii 6asmc. LlikaBo 3ayBaxkmTy, o arrebpa
HAOUHO-CMMETPUYHNX MOAIHOMIB € HeCKiHUeHHO ITOPOAKeHa, TIpY ITboMY Ha (o, He iCHye cMeTpu-
YHMX ITOAIHOMIB. Y cTaTTi omvcaHo aATebpaivHi 6as3mcy aAre6p 6AOUHO-CMMETPUIHNX TTIOATHOMIB Ha
El (&) Eoo Ta El () CQ.

Kntouosi cnosa i ppasu: cumeTpUUHi IOAIHOMM, 6AOUHO-CMMETPWHI TOAIHOMM, aATebpaiuHI H6a-
3UC, TOIIOAOTiYHa aATebpa.
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LISHCHYNSKY]J I.1.

THE RELATIONSHIP BETWEEN ALGEBRAIC EQUATIONS AND (71, m)-FORMS,
THEIR DEGREES AND RECURRENT FRACTIONS

Algebraic and recursion equations are widely used in different areas of mathematics, so various
objects and methods of research that are associated with them are very important. In this article
we investigate the relationship between (1, m)-forms with generalized Diophantine Pell’s equation,
algebraic equations of n degree and recurrent fractions. The properties of the (1, m" + 1)-forms
and their characteristic equation are considered. The author applied parafunctions of triangular
matrices to the study of algebraic equations and corresponding recurrence equations. The form
of adjacent roots of the annihilating polynomial of arbitrary (n, m)-forms over the field of rational
numbers are explored.

The following question is very importan for some applied problems: Is a given form the largest
by module among its adjacent roots? If it is so, then there is a periodic recurrence fraction of n-
order that is equal to this (1, m)-form, and its mth rational shortening will be its rational approxi-
mation.The author has identified the class (nm)-forms with the largest module among their adjacent
roots and showed how to find periodic recurrence fractions of n-order and rational approximations
for them.

Key words and phrases: (n, m)-form, parapermanent, unit of field, Diophantine equation, recur-
rence fraction, rational approximation.

Vasyl Stefanyk Precarpathian National University, 57 Shevchenka str., 76018, Ivano-Frankivsk, Ukraine
E-mail: 1ishchynsky81@gmail.com

1 PRELIMINARY CONCEPTS AND THEOREMS

1.1 Algebraic form of n order

Definition 1. A real number
x=sg+s1Vm+...+s,_1Vm"1, neN,s;;meQ, (1)
or corresponding n-dimensional vector

x = (S0,51,--+,51—-1) 2)
is called an algebraic (n, m)-form or briefly (n, m)-form.

It is known that the set of (n, m)-forms with the usual operations of addition and multipli-
cation is a field.

We check the isomorphism of (1, m)-forms with some class matrices. For each (1, m)-form
(1) we put in correspondence the circular n order matrix

YAK 511.572
2010 Mathematics Subject Classification: 5A15, 11B37, 11B3.
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ynsKyj
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SlW

50

S0 Sp_1Vmt=1ls, >/mn=2...

Sn—1 \n/ mn_l e

5oV m? s1/m S0

- sy VA

SanW Sn73W Sn—4W e

Sp_1Vm'=1s, >/mn

25, A/ mn3 ...

Sy v/ m?
s3v m3

S1 W
52V m?

s3vV'm3

so  Sp_q1Vmn—1
s14/m 50

and for each (n, m)-form (2) we put in correspondence the matrix

S0 MSy—1 MSp—2
S1 S0 msy, 1

52 51 50

Sn—2  Sn-3 Sn—4
Sn—1 Sn-2 S5n—3

msy
mss
msy

50
51

msq
msy
mss

msy—1

50

Both matrices (3) and (4) are uniquely defined by their first columns.
The product of (1, m)-forms

M TR )
w"/ n—1

X" =) +s{Vm+ ...+

is the following (1, m)-form

where

x:SO—FSlW-i-...

ZS; ;’]+m Z ss ],':

j=i+1

Thus, we have proved the following theorem.

0,1,..

+ Snfl ': mn_lr

.,n—1.

97

3)

(4)

(5)

(6)

Theorem 1. The semigroups of (n, m)-forms (1) and (2) are isomorphic to the semigroups of
matrices (3) and (4), respectively.

From the above it follows that k degree of (n, m)-for

50 Spoq V! 2\/’”"
51/ 5 1

shvV/ m? sh/m s’O

/
n
/
n

X/
sl Wmn=2s! /mn=3s  mnt
/ n—1 o/ Yoan—2 of Yon—3 ...
s, Vm s’ V/m S,_3Vm
or matrix
/
/ / /
51 Sp M5, 4
/ / /
X — ) 51 50
/ / /
Sn—2 Sn73 Sn—4
/ / /
Si—1 Sn—2  Sp-3

s’ZW sh/m

-S3Vm3 shv/m?
Gt S
/ R
SO Sn—l m
I n /
sh/m sg
/
ms}
/
msh
/
ms},
/
ms!,_,
/
50

m (5) is responsible k degree of matrix
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It is also obvious that if the last two matrices multiply by on the matrices columns

1 1
50 50
Il n 1/
s1/m sy
X// _ : X// _ .
- . s - : ’
"N 2 "
Spo VM Sp—2
nooon 1 "
Sy Vm" Sn—1
then we get the matrices columns
S0 S0
S1v/m S1
X = : , X = : ,

Sp—pV'm" 2 Sn—2
Sp—q Vm=1 Sn—1

where s; are defined by (6).
For any (n, m)-form

x=s9+s1Vm+...+s,_4Vmn-1
there exists a unique (n, m)-form
XT=5g4+5Vm+...+5,7Vm"1,

such that product x¥ is a real number. The (n, m)-form ¥ is called conjugated to (n, m)-form x,
and their product is called a norm of x and denoted by |(n, m)]|.
Let X and X are matrices that corresponds to (1, m)-form

x=sg+s1Vm+...+s,_1Vmn-1
and conjugate (n, m)-form x. Then
X-X=|(nm)|-E,

where E be the identity matrix. The norm of (1, m)-form x is equal to det X, and matrix that
corresponds to conjugated (1, m)-form ¥ is inverse to the matrix X multiplied on the determi-
nant of X.

Therefore, the equation

Sg MS,_q MSy_p --- MSy mMS]
51 S0 msy,_q1 -+ MWS3 MSp
So 51 S0 cec MSy niss
==1
Sn—2  Sp-3  Sp—4 - S0 MSyq
Sp—1 Sp-2  Sp-3 - S1 S0

is an n-dimensional generalization Pell’s equation

sp msq

= s5 —ms3 = +1.
51 50
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Using the polynomial formula it is easy to prove the equality

(so4s1/m—+ ...+ s, 1 Vmn—1)k

k! Ao A A i

_ : 0.1 n—1,,,S,., -

= _S_ sa0sit L s imPm

A1 - . 170 "1 1

Ao+FAL+ A Ay 1=k AotAgt - Ay
MA2A0+ A (n=1)A, _1=ns+i

However, the above formula is inconvenient for the elevation of (1, m)-forms to the k degree,
because it is associated with orderly partition number of # on integer nonnegative summands.

1.2 Parafunctions of triangular matrices (tables)

Let K be some field of numbers.

Definition 2 ([2]). Triangular table

a1
a1 ax

A=| 7 T )
anl An2 - Aan

n

of numbers in K is called a triangular matrix.

To every element a;; of the triangular matrix (7) we put in correspondence the (i —j+ 1)
elements a;, k € {j,...,i} which are called derived elements of triangular matrix, generated by
a key element a;;. A key element of a triangular matrix is also a derived element. The product
of all derived elements generated by a key element of a;; is denoted by {a;;} and is called a
factorial product of this key element, i.e.,

i
{aij} = T Tau
k=

Definition 3 ([2]). The paradeterminant and parapermanent of the triangular matrix (7) are
the numbers

n T
ddet(A) = Z Z (_1)117”H{apl+...+ps,p1+...+p5,1+1}r

r=1p1+..+pr=n s=1

n r

pper(A) = Z Z 1__[{apl+...+ps,171+...+17571+1}r

r=1p1+..+pr=ns=1

where the summation of over the set of natural solutions of the equality p; + ...+ pr = n.

Paradeterminants and parapermanents of triangular matrices can be used in Algebra,
Number Theory and Combinatorics (see [2] for more details and examples).
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1.3 One-periodic recurrence fractions
Let us consider the algebraic equations of nth order
X" =g Vb a2+ +ay, (8)

where a,, # 0, and the expression

ai
a
ay al
Ay, Ay —
n—l =2z ai
an-2 an—3 (9)
iy An-1 a al
ap—1 ap—2 7 a1
an as a
0 28 -2 a
An—1 a3 ay 1
a Ay Ay
0 0 ... M Gy G2 g
L ap—1 Ap-2 ap-3 dm

which is closely related to (8). The expression (9) looks like as a symbol fraction, the numerator
of which is a parapermanent P, of order m formed by the removal columns from the expres-
sion pipe and the denominator of which is a parapermanent Q,, of order m — 1 without first
column of parapermanent of numerator.

If in the expression (9) we direct to the limit as m — co, we obtain an one-periodic recurrent
fraction of order n

a
a
ay al
Ay Ay —
n-l n=z ai
ap—2 an-3 (10)
ay ay—1 a a .
An-1 ap—p 7 a1 1
n as a
0 23 -2 a
An-1 a2 ay 1
237 | ap-—2
0 0 ... MAw cnl oon2 o 0og
L ap—1 Ap-—2 ap-3 1 1 oo

The expression (9) is called the mth approximant of (10).

Theorem 2 ([3]). Let (8) be an algebraic equation from pairwise different roots. If for the m-
rational shortening of one-periodic recurrent fraction of nth order (10) a finite non-zero real
limit exists asm — oo, i.e.,

Ijm&:x;éo,

m—o0 Qm

then a recurrent fraction of order n is an image of the real root of algebraic equations (8) with
the largest module.

More information about recurrent fractions can be found in [3].
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2 RELATIONSHIP (n,m)-FORM WITH ALGEBRAIC EQUATIONS
Let us find the integer coefficients of equation
no__ n—1 n—2 1
X' =ap X" Fapx" T+ a1 X+ Ay (11)
the root of which is the (n, m)-form
X =59+ m~+...+5,_1Vmn-1,
where s; € Q, m € IN.
The main minor of rth order of matrix
ann a a1n
ar1 dyp ... Ay
X = . . (12)
anl 4n2 -+ Aun
is denoted by
Aiviy Aiyip 0 iy
i1 Ip ... 1 Ainiy  Aigjiy  **° iy,
X(,l '2 1r>: 2.1 2,12 zlr’
1 1 ... Iy : :
air/il air/iz T air/ir

wherei; <ip <...

or

where

< 1,. The characteristic equation of matrix (12) is

det(X —xE) =0
n __ n—1 n—2 1
X" = a,nx + X + oot Ay u_1X + &up,

pj = (—1)/71 Y X < i 1:2 l] ) : (13)

1§i1<i2<...<ij§n h 2 ... l]

According to theorem Hamilton-Cayley, each square matrix satisfies the characteristic equa-

tion, so

X" = X" w0 X2 a1 X (14)

with coefficients (13), where X is matrix (12).
If matrix X in (14) is given by (4), then the coefficients 4,; of equation (11), for which a
(n, m)-form (2) is the root, can be found using the equalities (13). Thus, we prove

Theorem 3. If the (n, m)-form

Xx=so+s1Vm+...+s,_4Vmn-1

is a root of equation

X" =g a4+ an,n,lxl + ann,
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then the coefficients of this equation are equal

ay = (—1)/71 Yy x(fl o Z:f:>,

1<iy<ip<...<ij<n h ...

x(k
1 1 ... l]'

where

are major minors of matrix

S0 msy,_1 MSy—2 --- MSy msq
51 S0 msy_—1 --- MS3 msy
S S1 S0 st MSy mss
X =
Sn—2  Sn-3 Sn—4 U 50 MSp—1
Sn—1  Sn-2 Sp—3 81 50

Theorem 4. The (n, m" + 1)-form

m" e At 1L+ m’\’/(m" +1)7=2 4 {/ (mn 4 1)1

is the root of an algebraic equation

x" = " m" 1 4 " mt 2+ " mx + " )
1 2 n—1 n

Proof. Since all the major minors the same order of matrix

m" b mt 1 mm"+1) ..o m"3(m" 1) m 2 (m" 4 1)

m"'=2  m"1 m'+1  ...om" At m" +1) m" 3 (m" 1)
mn—3 "2 mh—1 . m”_S(m” +1) m”_4(m” +1)
m m? md . mn—1 m" +1
1 m m2 .. mh—2 mn—1

are equal, we find one of them. Let us find the major minor of matrix

m" b m"+1 m(m"+1) - mT2(m"+1)
mn—Z mn—l mh 41 .. ms—3(mn + 1)
mn—3 mn—Z mn—l .. ms—4(mn + 1)
mh—s mnfs+1 mnfs+2 mnfl

We multiply the first column on —m’, r =1,2,...,s — 1 and add it to the (r + 1) column; then
we get the determinant of matrix

mn—l 1 m .- ms—Z
man 0 1 . msf3
mnf?) 0 0 .. msf4

mi=s 0 0 - 0
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Decomposing above determinant by elements of the first column, we get (—1)T1m" .
Thus, according to the Theorem 3, coefficients a,s are equal to

(0t (1) =

O
3 SOME CALCULATIONS RELATED TO AN ALGEBRAIC EQUATIONS OF 11 DEGREE
Theorem 5. If
X" =g N a4+ Appn—1X + Apn
and
A= Apgx" V4 Ao+ Apn_1X+ Amn, 1 < m,
then foralli =1,2,...,n
Ani
An,it1
aunl inl
n,i+2 an2
an2 aZl anl
Ann Ay n—i Apn—i—1
Apn—i  Ann—i-1 Ann—i-2 Anl
= 0 Ann An,n—i an2 a (15)
An,n—i App—i-1 an1 nl
Ann an,nfl ”n,i+1 Ay
0 Apn—1 Ann—2 e Api Ap,i—1 An1
Ann Ay n—1 An3  4n2
L 0 0 0 U Gpp—1 App-2 an2  Anl an1 4 m—n+1

Proof. Obviously, equality (15) is true at m = n . Let us show that the induction step is per-

formed. We have

m+1 _ n—1 n—i
X = Am+1,1x + ...+ Am+1’ix + ...+ AmH,n_lx + Am+1,n-

On the other side,

XM = A+ A L+ Amln,lx2 + Apnx

= Ap1(an X" P Fapx" 2 .+ App—1X + Apn) + Apx™ 14+ Amln,lx2 + Apnx

= (anlAml + AmZ)xnil +...+ (aniAml + Am,i—i-l)xniz
+...+ (an,nflAml + Amn>x + A Am1.

Thus
Ami1i = piAm1 + Appiva-

It is easy to see that decomposing the parapermanent A,,;; by elements of the first column,
U

we get a,i A1 + Apivle
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Corollary 1. If
X" =g N a4+ Appn—1X + Ann

and
A= Apgx" VA 2+ Apn_1X+ Amn, 1 < m,

then coefficients A,,; can be found from the recurrence equations
Api = apiAp—11 + anivy1Am—21+ -+ amnAm—nyii1, 1 =12,...,m,
where
An =amn, Ap11=1LA21=...= Ap1 =0.

Proof. The proof it follows from the decomposition of parapermanent (15) by the elements of
the first column. O

Example 1. If

x3 = 61313(2 + 61323(1 + ass3

and
X" = A x* + Appxt + Ays, m >3,

then coefficients A,,;,i = 1,2,3 can be found from the recurrence equations
Al = a31Ap-11 + a32Am-21 + a33Am-31,

Amp = axpAy_11+a33Am-21,
Amz = as3Am-11, m > 4,

where A31 = 1131,A21 =1, All = AOl =0.
For comparison, let us consider a similar algorithm of Delone and Fadeev ([1, p. 73]). Let
w® = Sw?+ Qw+ N
and
then the coefficients U,;, V;;;, W, can be found from relations
|
u, = Z M g Qﬁ N7,
o a!Bly!
a+2B+3y=m—2
Vm = um+1 - umsr
Wi = um+2 - um—i—ls - qu-
Note that similar algorithms with n > 3 were not considered.
Theorem 6. If (n, k)-form looks like

x:SO_FSl\n/%_'_..._'_Snil\n/knfll

then others of adjacent roots of diriment polynomial over the field of rational numbers of this
form are as follows

X;j = Sg + sleiW +---+ Snfls(nil)i V kn—1,

where ¢ is the primitive root of degreen of 1 andi=1,...,n — 1.



THE RELATIONSHIP BETWEEN ALGEBRAIC EQUATIONS AND (7, 111)-FORMS 105

Proof. To unify notation we also denoted (#, k)-form x by x,. We will show that for every k,
Sm = Yi—q X" does not depend on radicals and belongs the field of rational numbers.

Let us consider, first, Y-/ ; &7 = e Y_I" | ¢'P. Since ¢ is the primitive root of degree 1 of unit,
then

n—1 no no
Y eP =Y P ie, Y €7=0,
i=0 i=1 i=1

if p is not a multiple of n.
In formula x;-” each summand will looks like

Spy €PIVKPL sy P kP = (s, .. sy, )€ PP o,

where py,...,pm € {0,1,2,...,n—1}. Thenin S, = Y ; x/" we can regroup the terms in
groups of sets with the same py, ..., py; each a such group has representation:

n

. n .
Z(spl...spm)el(pﬁ“‘ﬂ’m)\”/kP1+~~+Pm = (Spy - Spy) (Zg(m-ﬁ-w-i—l%n)) WPt pm,
i=1

i=1

Hence, if p1 + - - - + py is not a multiple of 7, then this group of summands is equal to zero; if
p1+ -+ + pn is a multiple of n, then this group of summands is a rational number.
According to Newton’s formulas, 0, (elementary symmetric expressions of x1, ..., x,), m =
1,...,n are expressed through the S;, g < m,i0;, r < m. Since 07 = S; and all Sy, is a rational
number, then all ¢;,;,, where m = 1,...,n, also a rational number. According to the Viete
formulas (x — x1) ... (x — x,) € Qx], that proves the theorem. O

For some applications it less important to known the view of adjacent roots of (1, k)-form
then the answer to the question: Is this form the largest by module? This question is quite
difficult and requires a special investigation, but we have an obvious consequence.

Corollary 2. If s9,s1,...,5,—1, n € IN are nonnegative rational numbers, then (n,k)-form
x =sg+s1Vk+ - +s, 1Vk" 1 is the largest by module amonyg its adjacent roots diriment
polynomial over the field of rational numbers.

Thus, using Theorem 3 for each (1, m)-form (1) we can write an algebraic equation of order
n. According to Corollary 2 and Theorem 2, by rational approximations of recurrent fractions
we can build a mth rational shortening (9) to the (n, m)-form (1).

Theorem 7. If (n, m)-form (1) with nonnegative coefficientss;,i = 0,1,...,n — 1 is the root of
an algebraic equation (8), then recurrent fraction (10) is it’s image, and it’s mth approximant
(9) is it’s rational approximation.
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Aimvcsxuni L1 38’930k aneebpaiunux pisHans 3 (n, m)-oopmamis, ix creneHamil i peKypeHmHumu opo-
6amu // Kapnarcebki MmateM. myba. — 2019. — T.11, Nel. — C. 96-106.

Anrebpaiuni Ta peKypeHTHi piBHSHHs MalOTh IIMPOKe 3aCTOCYBaHHsI He TIABKM B aATebpi are 71 B
IHIIIX po3Airax MaTeMaTMKM, UMM BUKAMKAIOTh Heabusike 3allikaBA€HHS AO Pi3HOTO pOAy 06’eKTiB
Ta METOAIB AOCAIAYKEHHSI OB SI3aHMX 13 HMMM. B 11i11 cTaTTi AOCAIAKEHO 3B SI30K (n, m)-cpopM 3 y3a-
raAbHeHVMM piBHSHHSIMM [lens, arrebpalusmMy piBHSHHSIMU 11-OTO CTeTIEHS i peKypPeHTHMU APO-
6amu. PosrastHyTO BAacTmBOCTi (1, m" + 1)-dpopmu i ii XapaKTepUCTUUHOTO PiBHSHHS. 3acTOCOBa-
HO HapadpyHKIII TPMKYTHMX MaTPUIIb A0 aATebpaidHMX PiBHSHB N-OTO CTEIeHs Ta BiAIOBIAHMX IM
PeKypeHTHUX PiBHSIHb. AOCAIAKEHO BUTASIA CYMUKHMX KOPEHIB aHyAIOIOUOro IMOAIHOMA AOBIABHOI
(n, m)-dpopMu Haa IOAEM paLliOHAABHMX UMCEA.

AAsT AeSIKMX TIPUKAAAHMX 33Aa4 BeAVKe 3HaUeHHST Mae BIATIOBiAb Ha IIMTAHHS: Ui € AaHa (1, m)-
dopMa HaltbiAbIIIa 32 MOAYAEM CepeA CBOIX CyMiXHMX KopeHiB? ToAl B IIbOMy BUITAAKY iCHYBaTMMe
OAHOIIEPIOAVYHIIA PeKYpPEeHTHIMI APi6 1-0ro MOPSIAKY, SIKMIL AOPiBHIOBaTMME AaHiit (1, 1m)-dopmi,
a Jforo m-Te pallioHaAbHe BKOPOUeHH: Oyae 1i pallioHaAbHVM HabAVDKeHHSIM. ABTOP BYAIAMB KAaC
(n, m)-dpopM, sIKi € HaMBGIABIIIMMY 32 MOAYAEM Cepea, CBOIX CYMIXKHMX KOPEHiB, Ta I0Ka3aB SIK AAS
HIIX 3HAWTV OAHOTIEPiOAMYHI PeKypeHTHi Apoby 11-0T0 IOPSIAKY 7 palliOHaAbHI HaOAVIKEHHSI.

Kutouosi cnosa i ppasu: (n, m)-dpopma, ImapariepMaHeHT, y3araabHeHe piBHSHHS [1eAst, peKypeH-
THUI Api6, palioHaAbHe HabOAVDKeHHSI.
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INVERSE PROBLEM FOR 2b-ORDER DIFFERENTIAL EQUATION WITH A
TIME-FRACTIONAL DERIVATIVE

We study the inverse problem for a differential equation of order 2b with the Riemann-Liouville
fractional derivative of order € (0,1) in time and given Schwartz type distributions in the right-
hand sides of the equation and the initial condition. The problem is to find the pair of functions
(1,8): a generalized solution u to the Cauchy problem for such equation and the time dependent
multiplier g in the right-hand side of the equation. As an additional condition, we use an analog of
the integral condition

(u(-,t), 9o(-)) = F(t), t€]0,T],

where the symbol (u(-, ), ¢o(-)) stands for the value of an unknown distribution u on the given test
function ¢ for every t € [0, T}, F is a given continuous function.

We prove a theorem for the existence and uniqueness of a generalized solution of the Cauchy
problem, obtain its representation using the Green’s vector-function. The proof of the theorem is
based on the properties of conjugate Green’s operators of the Cauchy problem on spaces of the
Schwartz type test functions and on the structure of the Schwartz type distributions.

We establish sufficient conditions for a unique solvability of the inverse problem and find a rep-
resentation of an unknown function g by means of a solution of a certain Volterra integral equation
of the second kind with an integrable kernel.

Key words and phrases: distribution, fractional derivative, inverse problem, Green vector-function.
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INTRODUCTION

Different initial and boundary value problems to differential and pseudo-differential equa-
tions with distributions in the right-hand sides are sufficiently investigated (see, for exam-
ple, [1-9] and references therein).

Equations with fractional derivatives [10] and inverse problems to them are appearing in
different branches of science and engineering, and the range of the applicability of the gener-
ated models is increase considerable. The conditions of classical solvability of the Cauchy and
boundary value problems to equations with a time fractional derivative were obtained, for ex-
ample, in [11-15]. The inverse boundary value problems to a time fractional diffusion equation
with different unknown functions or parameters were investigated, for example, in [16-24].
Most papers were devoted to inverse problems with an unknown right-hand sides, mainly
under regular data.
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In this paper for the equation
ulf) — A(D)u = g(H)Fy(x), (x,t) € R" x (0,T] := Q, (1)

with the Riemann-Liouville fractional derivative of order g € (0,1) we study the inverse prob-
lem
u(x,0) = F(x), xeR", (2)

(1), 9o(-)) = F(t), t€[0,T], 3)

of the determination the pair (u, g) where

AD)u= Y A,Du
|v[<2b

is a differential expression of order 2b with constants coefficients A, |y| < 2b such that

ou

i A(D)u

is the parabolic differential expression [7,12], F; (j = 0, 1) are given Schwartz type distributions,
F is a given continuous function, the symbol (u(-, t), ¢o(+)) stands for the value of an unknown
distribution u on the given test function ¢y for every t € [0, T.

Note that the conditions of the existence a regular solution for such fractional Cauchy
problem, even with the variable coefficients A, = A,(x), |y| < 2b, was obtained in [8] by
M.I. Matijchuk. The inverse boundary value problems of finding a pair (u,g) for a time-
fractional diffusion equations under regular given data in the right-hand sides and similar
(integral) over-determination conditions were studied, for example, in [16, 18]. The over-deter-
mination condition of kind (3), but with the scalar product (1, ¢g) in abstract Hilbert space,
was used in [17]. The inverse problem of kind (1)=(3) with (—A)Y/? (y > B) instead of A(D)
and distributions with compact supports in the right-hand sides was studied in [22].

1 NOTATIONS, DEFINITIONS AND AUXILIARY RESULTS

We use the following: Q = R" x (0, T|, x = (x1,...,xn) € R", & = (a1,...,an), & = (xo, ),
aj€Zy,je{01,... n}, |a| = a1+ +ay x* = x5 1", D*(x,t) = Dio(x,t) =
%, D*y(x,t) = (%)“0 D*v(x,t), S(R") is the space of indefinitely differentiable func-
tions v in R” such that x”D"v are bounded in IR" for all multi-indexes «, 7y (the Schwartz space

of smooth rapidly decreasing functions), S, (R") (¢ > 0) is the space of type S(IR") (see [2, p.
201]):

1
S,(R") = {v € S(R") : |D*0(x)| < Coe ", x € R", Va}

with some positive constants C, = C,(v) and a = a(v),
1
S ()(R") = {0 € S(R") : |D*0(x)| < Cys(v)e "7 xeR", Va, V5>0}, a>0,

C0(Q) = {v e C*(Q) : (H)vli=r = 0, k € Z,}, S(Q) (5/(Q), S,,(4)(Q)) is the space of
functions v € C*(0)(Q) such that (%)Sv(~,t) € S(R") (8y(R"), S, ) (R"), respectively) for
allt € [0,T], s € Z. By E’ we denote the space of linear continuous functionals over E (the
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space of distributions). The symbol ( f, ¢) stands for the value of the distribution f € E’ on the
test function ¢ € E,

he(Q) ={f€5,(Q): (f(x,), 9(x)) €C[0,T] Vg e Sy(R")},
S ,c(Q) ={f €5, Q) : (fx.,)), ¢(x)) €CI0,T] Vo €S, y(R")}, a>0.
We denote by (g%¢)(x) = (8(¢), ¢(x +¢))) the convolution of the distribution g and the
test function ¢, by fxg the convolution of the distributions f and g: (f *xg, ¢) = (f,g%¢)

for any test function ¢, by fg the direct product of the distributions f and ¢: (fg, @) =
(f(x), (g(t), (x,t)) for any test function ¢(x, t), use the function

A—1
) = S

where I'(A) is the Gamma-function, 6(t) is the Heaviside function. Note that fy * f, = fai,

¥ fu = fatp

The Riemann-Liouville derivative v(f) (t) of order > 0 is defined by the formula

olP)(t) = fp(t) x 0(b),

the Djrbashian-Caputo (regularized) fractional derivative of order B € (0, 1) is defined by

forA >0 and fy(t) = fi,,(t) for A <0,

1

Pl = =)

/t(t — 1) P/ (7)dr,
0

and therefore DPo(t) = v(P)(t) — f1-p(t)v(0).
We denote

(L) (x,t) = o} (x,1) — (A0)(x,1),
(L"%80)(x,t) = va(x,t) — (Av)(x, 1),
(Lo)(x,t) = f-p(t)¥v(x,t) — (Av)(x,t), (x,t) € Q.
The Green formula

/v(x, 7)(Ly) (x, T)dxdT = /(L’egv) (x, T)P(x, T)dxdt + /v(x,O)fl,ﬁ(T)lp(x, T)dxdr,
Q Q Q

v, € S(Q), holds (see, for example, [5]).

Definition 1. The function u € Sé (a) C(Q) is called a solution of the Cauchy problem (1), (2)
if the identity

T T
[ wCn, @) 0)de = [0l 9 0)dt+ (FWA- 0. 940) @
0 0

holds forall p € S, (;)(Q)-

Definition 2. The pair (u,g) € S:Y (@) C(Q) x C|0, T] is called a solution of the problem (1)—(3)
if the identity (4) and the condition (3) hold.



110 LOPUSHANSKYY A., LOPUSHANSKA H.

It follows from (2) and (3) the compatibility condition

(F1, o) = F(0). ©)

Definition 3. The vector-function (Go(x,t), Gi(x,t)) is called a Green vector-function of the
Cauchy problem (2) to the equation (Lu)(x,t) = ®(x,t), (x,t) € Q, and also of such problem
to the equation

(L"8u)(x,t) = ®(x,t), (x,t)€Q, (6)

if under rather regular ®, F; the function

t
u(x,t) = /dr/Go(x —y,t = T)P(y, T)dy + / Gi(x—y, HR(y)dy, (1) €Q  (7)
0 R" R"

is the regular solution of the problem (6), (2).
Such Green vector-function exists [8] and has the following bounds:

2b
2B

5
b 2% B
(Go(x, £)] < Ct= 5 +plemellxlt ) Py (|43,

o (8)
B

n _B
Gi(ar )] < Hee M Py oy (),

1, m < 0,
where ¥, (z) = ¥ (1) for |z| > 1and ¥yu(z) = < 1+ |In|z||, m =0, for |z| < 1.
|z| =™, m >0,

Hereinafter ¢, C, ¢, Ck, dy, dAk, Ci, Ci (k € Z,) are positive constants. Let

T
(Gop) (v, v) = [ dt [ g(x,H)Go(x vt = T)dx, (1,7) € Q,

T R”

T
Gi9)w) = [t [ 9(x,1)Gi(x— v, )dx,y € R"
0

R

G t) = [ Glx—yg(x) dx, (1) €Q, j=01.
R”

Lemmal. Ifa >0,7v>1-— %, ¢ € S, (2)(R") then there exist numbers C > 0,4’ € (0,a] such
that for all k € Z ., multi-indexx, |x| =k, 6 > 0 the following bounds hold:

A , 1 , 1
D}(Gop) (v, £)] < extP e @O max sup [D*g(x)[e! ", (1) € Q,
"X‘SkxelR”

—~ / 1 / 1 _
1Dy (Giop)(y, )| < cre” T max sup [D¥p(x)]e® T (y,1) € Q.
|ae| <k xR

Proof. We use the bounds (8). In the case n > 2b for all multi-index a, [x| =k, ¢ € S, (;)(R")
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and &' = §/a we have

| [ Golx —y,t =)D p(x)dx| < / Golx — y,t — 7)| [D*(x)|dx
! {xEIR”:|xfy\<(th)%}
+ Golix =yt = )| D" p(x)ldx
{xeR™:|x—y|>(t— T)Z }
< C(t—1) BB~ 1[ / D p(x)llx —yl*™"
= B(2b—n)
t—1) 22
{XG]R”:‘Xfy|<(t7T)é%} ( )
b
+ / e—cllx=yl(t=1) 2] |D”‘q0(x)|dx]
{xelR":|x—y\>(t—r)%}
n — 2b— , ,_E 4 , L
< Cy(t— 1) H A / %(cuf&)uxwut*r) 71F g-a(1-8)xl ¥ g
g (t—T1)
{xeR™:|x—y|<(t—T)20 }
/ L szifﬁ , - , 1 ,
+ / o0 [lx—y|(t=1) 2] p—c(1=8")[|x=y|(t=1) ZbWe—a(l—é)IXI"dx] sup |D*¢(& )|e (1- 5)\6\"
B ¢eR"”
{xeR":|x—y|>(t—T1)20 }
b1 Y2 s x| T BT —a(1—5)x|¥
<Ci(t—1) BP [ / Y eme1=0) x| T 2] pa(1=5) 7 g
g (t—1) 2
{xeR™:|x—y|<(t—T)20 }
_B 20 _B1 1
+ / o0 [lx—y|(t=7)"B]20F ,—c(1-0")[|lx—y|T Zb]Ve*ﬂ(lfy)ledx} sup |[D*¢(& )|€ (1- 5)|§|7_
B ¢elR”
{xeR™:|x—y|>(t—T)20 }

1 _B
Putting ¢, = 2! fory € [1— %,1] ¢y =1fory>1,a = c,min{cT 27,a} and using the

inequality [12, p. 25] |A|% + |B|% > ¢,y |A+ B|% we get

1 _ B 1 1 1
c(|x — y|T~%)7 +alx|7 > min{cT 27, a}[|x — y|7 + |x|7] > a'|y|7.

Then
1 (tfr)'zéb
‘/Go(x—y,t—r)mcp(x)dx‘ < Cz[ / #2617,
(t—1)
' 0
por [ ittt B ) o x (187
+(t—1) /r e d] sup |D ()\e
p ZER"
t2b
o 1
< Gyt — )Pt [1+ / L(1=gg)n—1,—cd'z dz}ea’(lﬁ’)y“Ygsulg D% (&) |1~ el
c n

1

1
Y= sup | DY (&))" 5)\5\7, yeER", 0<T<t<T,

< C4(t — T)'Bilei
ZeRn
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ot oS [

! g (E—1)

{xeR":|x—y|<t2b}

~§12%5 s\l

+ / el ) = =0T sup D ()61 5)lel?
B geR"
{xeR™:|x—y|>t2b }
1

< C5 1+/ zbe Czdz} a'(1=3") |y[7 sup |Dp(& )]e (1- 5)\@’\7

ge]Rﬂ

= Cge " (1*5)\1/\7 sup |D*@(& ),e (1- 5)\5\7 (y,t) € Q
FER™

and similarly for n < 2b. Integrating by parts we finish the proof. O
Lemma?2. Ifa >0,7>1— %, a' = c, min{cT_%,a}, then

Go : S\ )R") =S, (o )( ™, @1 S @) (R") = S, () (R"), foreach t € [0, T},

Go: Sy ) (Q) = S (Q),G1 1 Sy () (Q) = S (4 (RY).

Proof. Tt follows from Lemma 1 the correctness of the mappings for G;, j = 0,1. Using the
property of the convolution and convolution’s differentiation we finish the proof. O

B -
Lemma 3. Fory > 1,0 <aT? <c,any ¢ € S%(a)(Q) the following relations hold:

(Go(Ly)) (v, 1) = p(y,7), (v,71)€Q,
(GILYNW) = (Ap(0), ¥y, 7)), yER"
Proof. Forally € S, (,,(Q), (v,5) € Q and multi-index « we have

©)

. , A T—s q -B
(F-649)w.5) = A_p(©)3(y5) = — | =g .0+ )
d k+1

(VDY) (w,5) = (~DF (gt () ' DE) 0.9).

Therefore, f g% € S, (;)(Q) and Ly € S,.(2)(Q)- Then it follows from Lemmas 1 and 2

thata' = aand (Go(Ly)) € S,,(4)(Q), (G1 (L)) € S () (R").

By [8], under rather regular (in particular, compactly supported) Fo, F;, g € C[0,T] the
unique regular solution (7) with ® = Fyg of the Cauchy problem (1), (2) exists. Substituting it
in the Green formula (instead of v) we get

/ / dr [ Go(x =yt = T)F()g(0)dy ) (L) (x, )l

R”

+ / | Gilx =y OF ()dy) (L) (x, )

R”

:/ (x, t)dxdt+/F1(x) (fip(t), (x,t))dx,
Q

R”
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T

/(/W/b“x‘%“‘ﬂ@wwiﬂﬂFWMﬁﬂwr

Q T R

+ [ ([ iy t)(Ly)x thdxat) B )y

R" Q

—/¢% yfwﬁ+/ﬁ5 ¥(y, 1)) Fi(y)dy,

and obtain the desirable formulas (9) after an arbitrariness of Fy, Fy, . 0

Lemma 4. Forany ¢ € S, (,)(Q) there exists ¢ € S, ,)(Q) such that

L) (xt) = o(xt),  (xt)€Q.
Proof. As in [21], we show that

T

Y1) = [dt [ Golx—y,t=Tp(x)dx, (7)€ O
T ]Rn

is the unknown function. O

2 EXISTENCE AND UNIQUENESS THEOREM FOR THE CAUCHY PROBLEM

B
Theorem 1. Assume thaty > 1,0 < aT? < ¢, Fy,F € S; (a)(lR”), g € C[0,T]. Then there
exists the unique solution u € S’ " (@),C (Q) of the Cauchy problem (1), (2). It is defined by

(uC. / 8(0)(Fo(), (Gog) (-t = ) )+ (Fi(), (Grg) (1))

Vo €S, )(R"), t € [0,T].

(10)

Moreover, for any ¢ € S, (,)(R") there exist positive constants cT] = dAj(q)), j = 0,1 such that
|(u(-, 1), 9(-))| < dotP+dy, te€(0,T] (11)

Proof. Using Lemma 2 we get that forany ¢ € S, (,)(IR") the right-hand side of (10) exists and
belongs to C[0, T|. As in [22], we show that the function (10) satisfies the equality (4). For all
P e S%(a)(é) we have

I
/N
3
~~
N

—
=2
a

U
=

—
—~

)
—
_S
~—"
~—
P
s
F'-
,_]
=
H~
o\_}
)
=
h
_S
=
~
N~——

0
T

= () [ 20 (Go(Ty) ,0)dr) + (R), GEHW)).
0
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Using Lemma 3 we get the identity (4). By Definition 1 the function (10) is the solution of
the problem (1), (2).
To prove the performance of (11) for the function (10) we use [2, p. 211] that

1
Sy ayR") ={v e C®(R") : [[v|[xa = sup 1=V DYy (x)| < +o0 Vk €N, k > 2}
|a| <k,x€R"

and the sequence vy, (x) converges to zero (m — +00) in the space S, (,)(R") if the sequence
D*v,,(x) converges to zero uniformly on an arbitrary compact |x| < C < oo for each multi-
index « and the norms ||vy, || , are limited at random m, k € IN, k > 2. Note that

[ollka < |ollk1pa YE,p €N, k>2, a>0, vES, ,(R").

We say (see [25, p. 151]) that the distribution F € S:Y (@) (R") has the order k € Z if there
exists C > 0 such that

[(F, @)l < Cllgllka Vo € S, (o) (R). (12)

A distribution from S; (a)(]R”) has a finite order. Indeed, the functional F satisfying (12) is
continuous on S, ,)(R"). Conversely, if F € S; (H)(]R”) and (12) is incorrect, then for each
k € N, k > 2 there exists ¢; € S, (,)(R") such that |(F, ¢x)| > k[|@k|k,q.- Then

(F,9)| > 1, where py(x) = -0 4 e e,
k|| @k |k.q

By definition, ||||x, < 1, and the sequence g — 0 (k — o0) in the space S, () (R"). We geta
contradiction with the previous inequality |(F, )| > 1 forallk € N, k > 2.
So, there exist k; € Z. and positive constants B; such that

[(F )| < Billgllk,a Vo €Sy @(RY), j=0,1T.

Using it and Lemma 1, forall ¢ € S, ,)(R") we get

|(Fo(w), (Gog) (.t — 1)) | < Boll(Gog) (-t — Dllke
< Bocky(t = TP [gllkye < 20(@)(t = TP lglliye 0< T << T,
t

/ 8O [(Fo(y), (Go@) (y,t — ) |dt < dot?||g| g < dotf, and similarly,
0

[(FL(), (Gi9) (o 1) | < Bill(GLo) (- Dllky0 < dil|@lliya < 1, £ € [0, T

Therefore, we obtain (11) with t;l; = di||@l|x.q, k = max{ko, k1 }, and see that the solution u of
the Cauchy problem has the order k for each t € [0, T'.
If uy, uy are two solutions of the problem (1), (2) then for u = u; — up from (4) we obtain

(w,Lp) =0 Yy €S, (Q).

By using Lemma 4 we get (u(+,t), ¢(-)) = 0forall ¢ € S, ,)(R"), t € [0, T]. We obtainu =0
in S;,(a),c(é). O
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3 SOLUTION OF THE INVERSE PROBLEM
We pass to the problem (1)—(3).

B
Theorem 2. Assume thaty > 1,0 < aT? < ¢, Fy,F; € S; (H)(]R”), g,F,F(ﬁ) e C[o,T],
@0 € Sy a)(R"), (Fo,p0) # 0 and (5) holds. Then there exists the unique solution (u,g) €
S; (@ c(Q) x C[0, T] of the problem (1)~(3): u is defined by (10) with

g(t) = [FP(t) —r(t)] [(Fo, 90)] Y, t€[0,T], (13)

where r(t) is the solution of the integral equation

/Ktr T)dt +o(t), teo,T), (14)
~ (Fo(+), (GoAgo) (-t —T))
K(t,T) = (Fo, 90) / (15)
:/ (t, 7)E® (1)dt + (F1(-), (G1Ap) (- 1)), t € [0,T]. (16)
0

Proof. Letu € S; (a) C(Q) be the solution of the problem (1), (2). The equation (1) implies

(), 90(-)) = (u(-,1), Ago(-)) + (Fo, 90)8(#).

By the over-determination condition (3) we get

FP(t) = (u(-,t), Apo(-)) + (Fo, o)g(t).

Using the assumption we find

8(t) = [FP(t) = (uC, 1), Ago())[(Fo, o)), £ € [0,T) (17)
By Theorem 1 the right-hand side of (17) is the continuous function on [0, T|. By substitut-
ing it in (10) instead of g(t) and putting ¢ = ¢( one obtains
t

(u(,1), Ago(") / /), Ap())] (R, (CoAgo) (-, t — 1)) dT
0

FO/ 900

+(Fi(), (G1A@o) (-, t)), te[0,T].
We denote
r(t) = (u(~t), Ago()).
Then the previous equation takes the form of equation (14). As in the proof of Theorem 1
we get
[(Fo(*), (GoAgo) (-, £,7))| < Boll(GoAo) (-t =TIk,
< CollAgo (-t = T)llky < Co(t =0 MI@o (-, t = D)llkg+25,
[(F1(), (G1A0) (-, 1)) | < Bull(G1Ago) (-, 1)1k, < Cillgo(:, £)lley +20-
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So, the kernel (15) is integrable, the function (16) is continuous on [0, T], and the second
type Volterra integral equation (14) has the unique solution r € C[0, T].
Let 7, ¢ be defined by (14), (13), respectively. Then by Theorem 1 the function (10) is the
solution of the Cauchy problem (1)—(2) with the known g(#). Using the property
lim [ p(x)G1(x —y,)dx = p(0) Vg € S(R")
Rﬂ
and the condition (5) we get

(u(-,0),@0(-)) = (Fi(), (Gi90)(-,0)) = (Fy, @o) = F(0).

Show that the function (10) with ¢(#) defined by (13) satisfies the condition (3). If F*(¢) =
(u(-,1), @o(-)) then F*(0) = F(0), and from the over-determination condition (3) we get

g(t) = [F*P(t) = (u(-, 1), Apo(-)) ] [(Fo, o)l ™, £ € [0, T]. (18)
As in the previous reasoning we obtain that the function (u(-, ), A@o(-)) satisfies the equa-
tion (14), and by uniqueness of a solution of this equation we obtain (u(-,t), Ago(-)) = r(t)
for all t € [0,T]. Then it follows from (18) and (13) that F*(F)(t) = F(F)(t), and therefore,
F*(t) = F(t),t € [0, T]. So, the pair (u, ) defined by (10) and (13), with r defined by (14), is the
solution of the problem (1)-(3).
If (11, 81), (42, §2) are two solutions of the problem (1)—(3), then foru = u; —uy, g = g1 —
we obtain the problem

(u(,1),0()) = = [ HD)(Fa), (Gop)( t — T))dT Vo € S(RY),
0

()
st) = (Fo, o)’ 0T,

where 7(t) is a solution of the second type homogeneous Volterra integral equation
t
P(t) = — / K(t,T)r(t)dt, telo,T.
0

By uniqueness of a solution of this equation we obtain r(¢t) = 0 for all t € [0, T]. Then, from
the previous equalities, ¢(t) = 0forallt € [0, T] and u = 0 in S; (a) -(Q). O

4 CONCLUSIONS

We proved the solvability of an inverse problem of the determination a time-dependent
continuous part of a source for a time fractional 2b-order equation with constant coefficients
and Schwartz type distributions in the right-hand sides using the over-determination condi-
tion (3). In a such way, by using the results of [8] the obtained results extend to some case of
the operator A(x, D) with infinitely differentiable coefficients.
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Aonymrancekmit A., Aonymancska I'. ObepHena 3adaua 019 dugpeperyianoHoeo pisHIHHS nopaoKy 2b 3
dpobosoro noxioHotw 3a uacom // KapmaTchki MateM. my6a. — 2019. — T.11, Nel. — C. 107-118.

BuBuaeMo obepHeHY 3apady AAS AMdpepeHITiaAbHOTO PiBHSHHS TOPSIAKY 2b 3 ApoboBoro moxi-
AHOIO TIOpsiAKY B € (0,1) 3a wacoM i 3apaHMMu y3ararbHeHrMy pyHKuismu vy IlIBapua y mpa-
BMX YaCTMHAX PiBHSIHHSI i IOUaTKOBOI YMOBIL. 3aAada IOASITAE y 3HAXOAKEeHHI mapy pyHKuiif (1, §):
y3araabHEHOI'O po3B’sI3Ky ¢ 3apadi Kol AAsl Takoro piBHSIHHS i 3aA€XHOTO Bia Jacy HellepepBHOTO
MHO>XHMKA § Y TIPaBili YacTUHI piBHSIHHS. SIK AOAATKOBY YMOBY BUKOPUCTOBYEMO aHAAOT iHTeTPaAb-
HOI yMOBM

(- D), po(-) = F(1), t€[0,T],

ae (u(-,t), po(+)) — 3HAUEHHS IIYKAHOTO y3araAbBHEHOTO PO3B’si3Ky u 3aradi Kot Ha dikcosasiii
OCHOBHIM yHKLIT @o(x), x € R AAST KOXHOTO 3HaUeHHS f, F — 3aaaHa HemepepBHa (PYHKIIiSL.

AOBOAMMO TeOpeMy iCHyBaHHSI i EAMHOCTi y3araAbHEHOro po3B’s13Ky 3aaaui Ko, oaepxyemo
JI0r0 306pa’keHHsI 3a AOIIOMOTOI0 BeKTOp-yHKuii [ piHa. AOBEACHHSI TEOpeMI TPYHTYEThCS Ha BAA-
CTMBOCTSIX CIpspKeHnx oneparopis I pina 3aaaui Kowui Ha mpocropax tury IlIBapua ocHOBHMX (pyH-
Kl i CTPYKTYpi y3araabHeHEMX pyHKUin tuny [IBapiia.

BcTaHOBAIOEMO AOCTaTHI YMOBM OAHO3HAYHOI PO3B’SI3HOCTI OOGepHEHOI 3aAadi i 3HAXOAMMO 30-
bpakeHHST HeBiAOMOI PYHKIII ¢ Yepe3 po3B’sI30K MEBHOTO iHTerpaAbHOrO PiBHSHHS BoAbTeppnu
APYTOTO POAY 3 iHTETPOBHUM SIAPOM.

Koouosi cnoea i ppasu: ysararbHeHa (pyHKIIisI, HOXiAHA APOHOBOTO MOPSIAKY, ObepHEHa 3aAava,
BekTOp-dyHKis I piHa.
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SOME INEQUALITIES FOR STRONGLY (p, h)-HARMONIC CONVEX FUNCTIONS

In this paper, we show that harmonic convex functions f is strongly (p, I)-harmonic convex func-

tions if and only if it can be decomposed as g(x) = f(x) — c(s»)2, where g(x) is (p, h)-harmonic

convex function. We obtain some new estimates class of strongly (p, h)-harmonic convex functions
involving hypergeometric and beta functions. As applications of our results, several important spe-
cial cases are discussed. We also introduce a new class of harmonic convex functions, which is called
strongly (p, h)-harmonic log-convex functions. Some new Hermite-Hadamard type inequalities for
strongly (p, h)-harmonic log-convex functions are obtained. These results can be viewed as impor-
tant refinement and significant improvements of the new and previous known results. The ideas
and techniques of this paper may stimulate further research.

Key words and phrases: p-harmonic convex functions, h-convex functions, strongly convex func-
tions, Hermite-Hadamard type inequalities.
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1 INTRODUCTION

Inequalities have played an important role in the developments of various fields of pure and
applied sciences. Convexity theory an inequalities theory are closely related with each other. It
is well known that a function is a convex function if and only if it satisfies the integral inequality
which is known as the Hermite-Hadamard inequality. Hermite-Hadmard type inequalities are
used to obtain the error bounds for energy functions in the material sciences. For applications
and other aspects of these inequalities and their generalized invariant forms, see [3-5,7,9, 10,
23,26,27].

In recent years, convex functions have been extended and generalized in various directions
using novel and innovative techniques. Varosanec [25] introduced and studied a new class
of convex functions involving an arbitrary non-negative function /(.), which is known as h-
convex function. With an appropriate and suitable choice of arbitrary function /(-), one can
obtain a wide class of convex functions. This idea has been used to introduce various classes
of convex functions in other fields. Polyak [24] introduced the concept of strongly convex func-
tions, which include the convex functions as special cases. Strongly convex functions played
a crucial role in optimization and variational inequalities problem. Motivated and inspired
by its applications, Angulo et al. [2] introduced the notion of strongly /-convex functions and
have shown that this class unifies other known and new classes of strongly convex functions.
The class of strongly beta-convex functions has introduced and investigated by Noor et al. [19].
They obtained some integral inequalities involving hypergeometric and beta functions. The

YAK 517.518.863
2010 Mathematics Subject Classification: 26D15, 26D10, 90C23.

@ Noor M.A., Noor K.I., Iftikhar S., 2019
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harmonic convex functions were introduced and studied by Anderson et al. [1] and Iscan [6].
Noor et al. [15] have introduced a class of strongly harmonic convex functions and established
some Hermite-Hadamard type integral inequalities. Noor et al. [11] also introduced the con-
cept of p-harmonic means, which includes the harmonic means, arithmetic means and geomet-
ric mean as special cases. Using this concept, they introduced and investigated the properties
of p-harmonic convex sets and the p-harmonic convex functions. It have been shown that the
p-harmonic convex functions include the harmonic convex functions and convex functions as
special cases. For recent developments and generalizations, see [12-14,16,17,20, 21].

Inspired and motivated by the ongoing research, Noor et al. [22] have introduced a con-
cept of strongly (p, h)-harmonic convex functions with respect to an arbitrary non-negative
function h(-) and obtained the integral inequalities. This class is more general and contains
several known and new classes of convex functions as special cases. In this paper, study those
conditions under which a function f(.) is a strongly (p, h)-harmonic convex function, if it can

be decomposed as g(x) = f(x) — (%)% where g(.) is (p, h)-harmonic convex functions. Some

new estimates for the integral | ab(xp — aP)*(bP — xP)P f(x)dx in terms of hypergeometric and
beta functions are obtained. Some special cases are discussed as applications of these new esti-
mates. In addition, we introduce and study the strongly (p, 1)-harmonic log-convex functions,
which is quite general and unifying one. Hermite-Hadamard type integral inequalities are ob-
tained. We would like to emphasize that the ideas and technqiues of this paper may stimulate
turther research in this dynamic field.

2 PRELIMINARIES

In this section, we introduce some new classes of harmonic convex functions. Throughout
the paper, we will take p € Rand I = [a,b] C (0, o) be an interval, unless otherwise specified.

Definition 1 ([11]). A set I is said to be a p-harmonic convex set, if

1
xPyP P
i <f veveltebl

We would like to point out that if p = 1, then p-harmonic convex set becomes harmonic
convex set. If p = —1, then p-harmonic convex set becomes convex set and if p = 0, then
p-harmonic convex set becomes geometrically convex set. This shows that the concept of p-
harmonic convex set is quite general and unifying one.

Definition 2 (11]). Let I be a p-harmonic convex set. A function f : I — R is said to p-harmonic
convex, if

f<[txi’ +x(?71y?7_ t)ypr> <1 =0)f(x) +tf(y), Vx,y € It € [0,1].

Noor et al. [11] have obtained the Hermite-Hadamard inequality for p-harmonic convex
functions, which may be regarded as a refinement of the concept of convexity. In particular, it
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has been shown that f is a p-harmonic convex function, if and only if,
1 1 1
2aPbP | P 1 4aPbP | p 4aPb? | p
< = S 7
(avw]) <al(lwvel )+ (755 )]

paPb? (Y f(x) )
Sy e )

<;1/([75%] ;’) +HOZIO < S i56a) + 50

The inequality (1) holds in reversed direction, if f is a p-harmonic concave function.

Definition 3 ([22]). Leth : ] = [0,1] — R be an arbitrary nonnegative function. A function
f : I — R is said to be strongly (p, h)-harmonic convex function with respect to an arbitrary
non-negative function h with modulus ¢ > 0, if

et ) < H(1L = 0(3) + BOF) et =) (* yp)z. @

xpyp

The function f is said to be strongly (p, 1)-harmonic concave function, if and only if, —f is
strongly (p, h)-harmonic convex function. For t = % in (2), we have

(o ) (D) s - (S, wyet ®)

xp—%yp xpyp

The function f is called Jensen strongly (p, l1)-harmonic convex function.
For h(t) = h(t)h(1 — t), in Definition 3, we obtain a new class of p-harmonic convex func-
tions, called relative strongly p-harmonic tgs-convex functions.

Definition4. Leth : | = [0,1] — R be an arbitrary nonnegative function. A function f : I - R
is said to be relative strongly p-harmonic tgs-convex with respect to an arbitrary non-negative
function h with modulusc > 0, if

f< [txp +x(p1yp_ t)yp] %> < h(Hh(1 =) [f(x) + f(y)] —ct(1 - 1) <x;;/;/p>2.

Remark 1. (i) If p = 1 in Definition 3, then it reduces to strongly harmonic h-convex func-
tions introduced by Noor et al. [18].

(ii) If p = —1 in Definition 3, then it reduces to strongly h-convex functions [2].
(iii) If p = 0 in Definition 3, then it reduces to strongly geometrically h-convex functions.

Definition 5. Leth : | = [0,1] — R be an arbitrary nonnegative function. A function f : I - R
is said to be strongly geometrically h-convex function with respect to an arbitrary non-negative
function h with modulus ¢ > 0, if

F(2 ) < h(1 =D f(x) + (D) f(y) —ct(1 — ) (Inx —Iny)>,

Now we discuss some special cases of strongly (p, l)-harmonic convex functions, which
appears to be new ones.
I.If h(t) = t in Definition 3, then it reduces to:
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Definition 6. A function f : I — R is said to be strongly p-harmonic convex with modulus
c>0,if

xp—yp

f<[txp+xg’1y”_t)ypﬁ> g(1—t)f(x)+tf(y)—ct(1—t)< . )2, Vx,y € 1t € (0,1).

IL. If h(t) = #° in Definition 3, then it reduces to:

Definition 7. A function f : I — R is said to be strongly p-harmonic s-convex function in
second sense with modulus ¢ > 0, where s € [—1,1], if

xp—yp

f(prf(pf/p_ t)y?F) < (1—t)sf(x)+tsf(y)—ct(l—t)( o )2, Vx,y € Lt € (0,1).

IIL If h(t) = t°(1 — t)° in Definition 3, then it reduces to:

Definition 8. A function f : I — R is said to be generalized strongly p-harmonic s-convex
with modulus ¢ > 0, if

e ) < #0100 1) — (T t) ), eyeree o)

IV. If h(t) = t*(1 —t)% in Definition 3, then it reduces to the definition of strongly p-
harmonic beta-convex functions.

Definition 9. A function f : I — R is said to be strongly p-harmonic beta-convex with modu-
lusc > 0, wherep,q > —1, if

(|asiss] ;) < (1= P f(6) 4 P (1= 1°7) = et(1 = 1) (% ‘yp)z

xpyp
Vx,yel, te(0,1).

If p =1, —1, 0, then Definition 9 reduces to the definition of strongly harmonic beta-convex,
strongly beta-convex functions and strongly geometrically beta-convex functions, respectively.

Since strongly (p, h)-harmonic convexity is a strengthening of the notion of (p, &)-harmonic
convexity, some properties of strongly (p, h)-harmonic convex functions are just stronger ver-
sion of known properties of (p, h)-harmonic convex functions. Using the technique of Niko-
dem [8] and Noor et al. [15], we prove the following result which shows the relationships
between strongly (p, 1)-harmonic convex (strongly (p,h)-harmonic mid-convex) and (p, h)-
harmonic convex ((p, h)-harmonic mid-convex) functions.

Lemma 1. 7). Let a function f : I C (0,00) — R be strongly (p, h)-harmonic convex function
with modulus c. Ifh(t) < t, then the function g(x) = f(x) — ¢(%)? is (p, h)-harmonic convex.
ii). Let a function f : I C (0,00) — R be strongly (p, h)-harmonic mid convex with modulus c.
Ifh(t) < t, then the function g(x) = f(x) — c(%)? is (p, h)-harmonic mid convex function.
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Proof. i) Assume that f is strongly (p, h)-harmonic convex with modulus ¢. Using properties
of the inner product, we have

g ( pr +x<pf/ - w] ;> =/ ( pr +x<pf/ - w} ;> - C<txp +x(vlyv_ W)z

2
< h(1 — D f(0)+ (0 fl) — et — 1) (L2 c<fx” +{1- W”)

xPyP xPyP
=h(1—=t)f(x) +h(t)f(y) — C<t(1 —t) Ké)z a xpzyp " (J%y]

e () 00 () )
= h(1 = )f(x) + H(B)f(y) —e(1 - 1) (ip)z B “(yivf
< h(1—t)f(x) +h(t)f(y) —ch(1—1) @)2 —h(t) (%Y
= h(1 —t)g(x) + h(H)g(y),

which gives that g is (p, h)-harmonic convex function.
i) Let f be strongly (p, h)-harmonic mid convex with modulus c. Then

(22)) -1

which gives that g is (p, h)-harmonic mid convex function. O
Remark 2. Under the condition h(t) > t, the converse of the Lemma 1 holds.

The Euler Beta function is a special function defined by

_ [ Sy, _ LI (Y)
B(x,vy) —/0 11— t)Y 1dt_W' Vx,y >0,

whereI'(-) = [;~ e~ '+*~1dt is a gamma function. The integral form of hypergeometric function
is defined as:
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1
JEila,biciz] = —— /tbfl(l—t)“b*l(l—zt)*“dt,

B(b,c—b) Jo

where |z| < 1,¢ > b > 0.

3 INTEGRAL INEQUALITIES

Some new and interesting estimates of the integral via strongly (p, )-harmonic convex
functions are obtained. These estimates can be viewed as refined bounds of the quadrature
formula of Guass-Jacobi type. The quadrature formula of Guass-Jacobi type has the form

/Hb(x —a)*(b— x)ﬁf(x)dx = i Buxf (7x) + Rulf],

k=0

for some B, x, 7k and the remainder term Ry, [f].

Lemma 2. If f : | — R is a function such that f € L[a, ], then the following equality holds for
some fixed a, B > 0.

b L1 —t)F _[ab
P _ gP)(pP — xP\B — Pt pp(B+1) (pp _ gpyatptl [ 22 ) [ 27
/a (xP — aP) (bP — xP)P f(x)dx = aP@HDpP(B+D (pp 1) /O AT f< Af)dt,

where A; = [ta? + (1 — t)bP ]% and L[a, b] is the space of Lebesque integrable functions on [a, ).

Theorem 1. If f : I — R is a function such that f € L[a, b] and |f| is strongly (p, h)-harmonic
convex function, «, f > 0, then

[ =y — <) ()

P_pr\2
< O 6 )P (@) + alf O] e T ) @),

where

P —1)PR(1 -1t
@1 _/0 Az;c-i—ﬁ—i—z dt,

(4)

w0, — /01 t%(1 —t)Ph(t) ” )

Aprx+pf3+p+1 ’
t

1 th+1 1—¢ B+1
w3 = / —£+ ﬁ+)+1 dt
0 Af ppTp

(6)
_ B(a+2,+2)

pra+pp+p+1

p
zFl[oc+/5+1+1/p,a+2;oc+/3+4,1—Z—p]
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Proof. Using Lemma 2 and strongly (p, h)-harmonic convexity of | f|, we have

b
/ (xP —a”)* (0P — x¥)P f(x)dx
a
U (1—t)P | (ab
a+1 1 1% 1
e /0 Wf<At>‘dt
) . 1 (] — )P
< aP@t)pp(BH1) (pp _ gp) +/3+1/0 W{h(l —t)|f(a)]
aP — pP\ 2
o) et - (L) b

L1 —t)Ph(1 —t)
+1 +1 +B+1
aP D) pp(B+1) (g7 _ gpya+p (Lf ,/" T

1 trx al — pp 1 ttx+1(1 _ t)/%ﬂ
+If (b \(/‘ lqpa+pﬁ+p+l dt—'c<‘jﬁﬁﬁf{> jﬁ _;Q£1$5151T_df>

P pp\2
aP @D pp(BH1) (pp — gpyatptl <w1\f(a)\ + wy|f(b)] — C<aaﬁb5 ) w3>.
This completes the proof. O

Corollary 1. Under the conditions of Theorem 1 with p = 1 and h(t) = t*(1 — )9, we have

[ e o 0P ()

2
< g IpPrL(p — ) Bt <!f(ﬂ)’wf + [f(b)|ws — c(%) w§),

where

1 pa4q(1 _ £\B+p
/ tra(1 —t) dr
0 Azx—i—ﬁ—i—.’l

t (7)

Bla+q+1,p+p+1) .
- patp+2 2F1[“+ﬁ+2z“+q+1}“+ﬁ+p+q+2,l—E],

. 1 ttx+p(1 _ t)ﬁ+q
“)2 :/O W

wy

(8)
Bla+p+1,8+q+1)
pa+p+2

1 tlx—i-l 1—t¢ B+1
w3 :/ (06+ﬁ+; dt
0 At

2Fia+B+2a+p+latprptat2l-z],

)
_ B(a+2,+2)
o pa+pB+2
Theorem 2. If f : | — R is a function such that f € L[a,b] and |f|9 is strongly (p, h)-harmonic
convex function, «, > 0, q > 1, then

[ =y — <) ()

a

a
2F1[rx+ﬁ—|—2,(x+2;rx—|—ﬁ+4,1—E}.

1 p_pP\2 \ o
< aﬁ(wﬂ)bl’(ﬁﬂ)(bﬁ _ gP)“+5+1 (w4)1 3 <|f(a)|qw1 + |f(D)|9w, — c(lla%;7 ) w3> q,
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where w1, wy and w3 are given by (4), (5) and (6) respectively and
Lor(1 —t)P
Wy = /O Wdf

_ B(a+1,p+1)
- pratpp+p+1

zPl[oc+/3+1+1/p,rx+1 a+p+2,1— bP]

Proof. Using Lemma 2, strongly (p, )-harmonic convexity of |f|9 and power mean inequality,
we have

/b(xp —aP)E (P — xP)PF(x)dx

11 —t)P
plat+)pp(B+1) (pp _ gpyatptl [ 22— )
a b (b7 —aP) /0 APTPRp

f(%)‘dt

1—-1
_ a”("‘H)bP(ﬁH)(bP _gpyerpe /1 t(1 —t)P g 1 (1 — i‘)/5
0 Aprx+pf3+p+1 O Aptx+p/3+p+1

—_

1
g
dt)

()

1
1 oj(1— )P =5
pla+1)pp(B+1) (pp _ p\a+B+1
<a b (bF —aP) (/0 Apa+pﬁ+p+1 )

([ S {wa - i@ + ol - aa-n (2 }olt)é

o 1-5
_ ap(tx+1)bp(/3+1)(bp _ ap>lx+/3+1 ( /1 Mdt) ‘
0

Apa+pﬁ+p+1

a B a1 np
<!f(ﬂ)!q/01t (1= t)7h(1 = >dt+]f( )‘q/olwdt

APEPBELEP AprrrEr
a? —bP\? (1R B NG
_C< aPbP ) /0 patpptptl dt)
At
p_pp\2 \a
aPEEDRP B (5 P )aPH1 (go,) (‘f(aﬂqwl +1f (b)Y — C<aﬂ’7b’? ) w3> k

which is the required result. O

Corollary 2. Under the conditions of Theorem 2 with p = 1 and h(t) = t*(1 — )9, we have

/ab(x —a)* (b — )P (x)dx

2 1
< a1 b — ) ) U)o + ) % — e T ) i)

where w}, w3 and w3 are given by (7), (8) and (9) respectively, and

* ! tlx(l - t)ﬁ

Ba+1,6+1) . a
= = zFl[oc+/3+2,fx+1,oc+/3+2,1—E].
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Theorem 3. If f : I — R is a function such that f € L[a,b] and |f|9 is strongly (p, h)-harmonic
convex function, , B > 0, then

[ = a7~ P

af — pp

< VP @ a4 ws) (1701 + 0] [ har - (70 ) :

where r,q > 1,1r+%,zland

1 thI'( )/Sr
ws :/0 At(pa+p/3+p+1)rdt
_ B(ar+1,Br+1)
o b(pa+p[3+p+l)r

2Fil(a+B+1+1/p)rar+1; (e +B)r+2,1— bP]

Proof. Using Lemma 2, strongly (p, h)-harmonic convexity of |f|4 and the Holder’s integral
inequality, we have

/ (a7 )P

g+ pp(B+1) (3 zx+ﬁ+1/ "1-1)Pf
0 Aprx+p[3+p+1

ab
(At>‘dt

1
< P Dpp (B (pp — o) tx+/3+1< (1 — dt) r </1
0 Al W+P5+p+1) 0

a \4
dt)

(%)

1
< gPapr(B+1) vc+/3+1< (L — dt)r
0 A pa+pﬁ+p+1)

(/01 {h(l —B|f(@)|9 + h(B)|f()|F = ct(1 —t) <m;;;7:p>2}dt>%

1 c(af — 2\ 3
DG 67 — a4 ) ([ @10+ o) [ e - (220 )

This completes the proof. O

Corollary 3. Under the conditions of Theorem 3 with p = 1 and h(t) = t*(1 — )9, we have

/ab(x — @) (b — x)Pf(x)dx

< a* TP (b — 0) AT (w )l’<[!f( )94+ [£(b)[9] /Olh(t>dt_%<aa—bb>2> 33’

where

. [T (=)
Ws —/0 Wdt

B(ar+1,Br+1) | )
= T piptor 2F1[(“+5+2)f/af+1,(oc+ﬁ)r+2,1—E].
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Theorem 4. If f : I — R is a function such that f € L[a,b] and |f|9 is strongly (p, h)-harmonic
convex function, , B > 0, then

b
/ (xP — aP)*(bP — xP)PF(x)dx| < aPFDppB+H1) (pp — aﬁ)w+ﬁ+13%(m+ 1,Br+1)

(11w + 170 9r e ;b,f”’)zwg) ’

where r,q > 1,lr—|— =1 and

1
q
e
w6_/o AfPHpﬁwH)th’

1
wr = | %dt'
0 Atp pp+p+l)q

_ =y 1 F (et palt1/p)q 241 a?
wS_/OW _6b(W+Pﬁ+p+1)q21[“ p P)q, 44 —b—p].

Proof. Using Lemma 2, strongly (p, 1)-harmonic convexity of |f|4 and the Holder’s integral

inequality, we have
ab
(5 )|

/b(xp _ aP)a(bP _ xp)ﬁf(x)dx — ap(zx—i—l)bp(ﬁ—i—l)(bp _ ap)a+5+1 /1 ttX(l — t)/3
1

ab\ | q

— || dt

f<At> )

0 Afrx+pﬁ+p+l

1
< aP @B (pp — gp)eth ( [ e t)ﬁrdt) | </ e
B 0

Agpwpﬁﬂvﬂ)q

1
< ap(oc+1)bp(/3+1)(bp _ ap)tx+/3+1 ( /1 t“r(l _ t)ﬁrdt> r
0

</o1 W{h(l —£)|f(a)|® +h(t)|£(b) |9 — ct(1—t) <a’;éfp>2}dt>%

1
_ ap(a+1)bp(/3+1)(bp _ ap)a+/3+1</1 t’xr(l _ t)/srdt) r
0
1 p(1—t) 1 h(t)
q (Mt —H q( "y
<|f(a)| /0 Agm+pﬁ+p+1)th+|f(b)| /0 Agptxﬂﬂﬁﬂﬂﬂ)th
(e —b 2/1 H1—1) \d
aror ) Jo qleerina

P_pP\? \a
= Pt pp(B+1) (pp — aP)HﬁHB%((xr +1,8r+1) (\f(a)\qc% +|f(b)|Yw; — c(aapbpb ) w8> "

This completes the proof. O

Corollary 4. Under the conditions of Theorem 4 with p = 1 and h(t) = t*(1 — )9, we have

[ = a6~ 0P ()

2 4
< a I b ) B ar 1, prer 1) (1)1 + (0195 — (10 ) i),
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where
,_ [1PA=tF . Blp+lg+1) | .
Wo = /0 A(zx+ﬁ+2)th = —paipog 20 [(“ +B+2)qq+Lp+q+2,1— E]’
t
o [P t) B(p+1,q+1) . .
w7 = /0 A(zx+ﬁ+2>th = paipag 20 [(“ +B+2)gp+Lp+q+2,1- E]’
t

* 1 t(l — t) o 1 . a
w8 = /0 A(“+5+2)th o 6b(1x+/3+2)q 2F1 {(“ + 5 + 2>qr 2;4,1— —]

b
t
Theorem 5. If f : I — R is a function such that f € L|a,b] and |f|9 is strongly (p, h)-harmonic
convex function, , B > 0, then

[ =y <))

a

< PN pp(BH1) (pp — gP)atBH1((yg) 7

1
ab —bP\* q
(1@ o 0 — o " ) Baa+2,pa+2))
wherer,q> 1,1 + ;= 1and
oo [ 1 dt_zFl[(oc+/5+1+1/p)r,1;2,1—g—Z]
9= 0 Agpa+pﬁ+p+1)r - p(patpp+p+1)r ’

1 1
wo= [ #IA-HFRA-HA,  wn = [ B
0 0

Proof. Using Lemma 2, strongly (p, h)-harmonic convexity of |f|4 and the Holder’s integral

inequality, we have
ab
f < At ) ‘ &

b
| —an o — )P p(x)d ©
a
1 1 T/ ab\|%, \d
pla+1)pp(B+1) (pp _ gp)a+p+1 - - aq(q1 _ 4)pa
< P DpP(B+) (pr g </O Agwwmpﬂ)rdt) </Ot (1-1) f<A> dt)

t

11 —t)P
— gPa+)pp(B+1) (pp _ gpyatp+l [ 2\ 0
a b (bF —aP) /0 Afoc+17/3+p+1

1

< PN pP(BHY) (pp _ gpyatptl /1 ;dt r
- 0 At(ptx+p/3+p+1)r

[ 0ma— pis@r® L - e - o (D) Tar)”
0 f a f c apbp

1

1 1 v
— gPat)pp(B+1) (pp _ gp)atp+1 - -

a b (bP —aP) </0 A§Pa+ﬁﬂ+p+1)rdt>

<|f(a)|q /01 t29(1 — t)PIn(1 — t)dt + | f(b)|° /01 t29(1 — £)Pan(t)dt

1
aP — pP\? 1 . q

_ q+1/1 _ p\Ba+1
c( prTee > /0 AT — 1) dt)

= PlADpp(B+1) (pp — gpyetptl (wg)%

1
aP — pP\ 2 3
(1@ P+ e —c(C) Bag+2.a+2))
This completes the proof.
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Corollary 5. Under the conditions of Theorem 5 with p = 1 and h(t) = t*(1 — )9, we have

[ = e 0P ()

< " P (p — g)v B () <|f(a) 9B(ag+q+1,Bq+p+1)

2 q
+IFOITBOa+p+1pa+a+1) —c( "5 ) Bag+2,p9+2)

where
N 1 1 2Fil(a+B+2)r1;2,1—¢]
Wo = / @ipro = (a+p+2)r '
0 A, b
Remark 3. For p = —1 and h(t) = (1 — t)9, our results reduces to the previously known

results obtained by Noor et al. [19] for strongly beta-convex functions.

4 STRONGLY p-HARMONIC log—CONVEX FUNCTIONS

In this section, we define the class of strongly (p, &)-harmonic log-convex functions and
obtain the integral inequalities.

Definition 10. Leth : | = [0,1] — R a nonnegative function. A function f : I — (0, c0) is said
to be strongly (p, h)-harmonic log-convex function with modulus c > 0, if

(| sis] :’) < (1) )" et - (Y

Fort = %, we have

(| }) < (s - (Lt veyer

xP +yP

The function f is called Jensen type strongly (p, h)-harmonic log-convex function.
Now we discuss some special cases of Definition 10.
I.If p = 1, then Definition 10 reduces to:

Definition 11. Leth : | = [0,1] — R a nonnegative function. A function f : I — (0, c0) is said
to be strongly h-harmonic log-convex function with modulus ¢ > 0, if

2
*Y h(1-t) h(t) _ _pn(*Y
i) = (e ) e -n (22
IL. If p = —1, then Definition 10 reduces to:

Definition 12. Leth : | = [0,1] — R a nonnegative function. A function f : I — (0, c0) is said
to be strongly h-log-convex function with modulus ¢ > 0, if

2

£ = Dx+ty) < (F)" ) (F)" = er(1 = 1) (x — )™
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IIL If p = 0, then Definition 10 reduces to:

Definition 13. Leth : | = [0,1] — R a nonnegative function. A function f : I — (0, c0) is said
to be strongly h-geometrically log-convex function with modulus ¢ > 0, if

) < (F) " ()" = el = 1) (inx —Iny)™

We now consider the following definitions of special means, which are used in our coming
results. For arbitrary a,b(a # b) € (0, 0), we have

1) the arithmetic mean

2) the generalized logarithmic mean

petl_go+1 1
[W] , p#-10,

Lp(ﬂ,b) - W, a;éb, p:—l,
l(@ﬁ)@iﬁl o =0.

e \a?

Under the assumptions of Definition 10 with h(t) = t, we obtain the Hermite-Hadamard in-
equalities for strongly p-harmonic log-convex functions.

Theorem 6. Let f : I — (0,00) be strongly p-harmonic log-convex function with modulus
c>0.Iff € L[a,b], then

2P bP bf(x)dng(a)—}—f(b) C(gp—bl’>2.

b —ab J, x1tp 2 6\ alb?

Proof. Let f be strongly p-harmonic log-convex function with modulus ¢ > 0. Then

b;?’;p ab j:l(f;)adx - /Olfqmrff(plbp—t)bp]%)dt
< [ [(f(a))l_t(ft(b))t —et(1-1) (“’;,,bfp)z]zdt
— f(a)/ol (%) dt—/olct(l—t)<al;;;7:p> dt
b) - f(a) (ﬂ)"
b)

abPbr

2
= L), F0) — 5 ()

aP — pP\ 2
()

VAN
™
=

N+
=
=

N O
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Theorem 7. Let f,g : I — (0, 00) be strongly p-harmonic log-convex functions with modulus
c>0.Iff,g € L[a,b], then

aPb? bf(x)g([%]%)
S /a ( ;Z’)ﬂ "1 7 dx
= £
S YO 0)] B L P PR )]
2 (%)
- In(f(0)) — In(f(a))]2 [A(f(a) f(b))— L(f(a) f(b))]
2 (%)’ ()’
R0 neaE AE@), 80 - Lg@,s®)] + 5
Proof. Let f, g be strongly p-harmonic log-convex functions with modulus ¢ > 0. Then
aPbP bf(x)g([(ap%’%]%) 1 aPbP ; aPbP ’
i e [ (e e ([ahe) )
< [ 0@ o) - e -0 | ) ) = e - (U
= [ (@) () @) (g(e) = () e [ -0 (52 )

In[5] f(a)
() °s0) 1 8@y o )’
hf[M] /O(Zt—l)<g(—)>dt+ 36’
8(b)
_(XZ . 1 1 m w . ) 1 % ﬂ w .
() [ (50) dorpsont [ (55)
S @ [f@ o fw) )
nffig] L@ InlfE) /Mn[%J !
()50 [5(a) + () [ &) ], e
g L@l i) 30
_ 2 FO): = (@) (3(0)F — (3(a))”
In(f(0)) = In(f(@)) " * In(3(0)) ~In(g(a))
(Ve[ f@as)  2() -2f()
abr ) [In(f(0)) ~In(f{@)P ~ [n(f(®)) ~In(f(a))]
8(a) +(b) 2(a) ~25(0) ], (%)

in(g(a)) — In(g®)P  [(g(a)) — n(g(6))P 30



SOME INEQUALITIES FOR STRONGLY (p, h)-HARMONIC CONVEX FUNCTIONS 133

c(2=b"
a [ln(f(zb § H_pbl;() (a))]2 [A(f(a),f(b)) — L(f(a) f(b))}
ZC(Haﬁ,IZp)Z Cz(”;ﬁ,l,’,p)él
B [In(g(b)) — In(g(a))]? [A(g(a),g(b)) — L(g(a),g(b))] + 30
(@) +£(8) e ola) +g(b) .
: af 2 / L(ifl)(f(b) f(a)) —i—ﬁg > 3 L _71)( (b),g(a))
2(%f)”
"~ [In(f(b)) —1In(f(a))]? [A(f(a), f(b)) — L(f(a), f(D))]
2(5F)° (e’

which is the required result. O

Theorem 8. Let f : I — (0,00) be strongly p-harmonic log-convex function with modulus
c>0.Iff € L[a,b], then

1
aPbP /b f(@f([w%’%]p)

dx

c alP—pp
< f@f®) = iy f(‘;>§ “"b{;()f( 57 AU @), f() = LU (@), f(0))] + —5F

Proof. Let f be strongly harmonic log-convex functions with modulus ¢ > 0. Then

2 PN o [ rtts] (=] )

<[ [<f<a>)1‘f<f<b>)f —a( - ([ o) = et - 0 (S
- [, s app_bfp)zﬂa)/l <1—t>(§$§)dt
—c(W:p) f(b) [ t(1—t) ( PbP O tz(l—t)zdt

aP bp)

SCICE % = (ﬂ)
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In[£H] f(b) 30
() fla) [ fla)+£0) o ()
= f(a)f(b) — -2 dt
/ ln%] {f(a)ln[%] /Oln[%] ]
() ) S0 s, (76 al s )’
(&3] LeymA] o miEE 30
(T2 @) 2f(b) — 2f(a)
= 1@ =) | ) M@~ W] =T
L f@EfO) () - 2f(0) ]+c2(“;’pzip)4
In(f(@)) —In(f®) ~ n(f(a)) — In(f())F 30
oy () N ()’
= F@)f®) = Ty Sty AU @ £0) — L{f(@), F®)] + 5,
which is the required result. O
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Y AaHiit cTaTTi MM IOKA3y€MO, LI0 TapMOHINMHI omykAi oyHKuil f € cuabHO (p, h)-TapMOHIHO
OmyKAMMY pYHKLISIMM TOAI i TIABKY TOAL KOAM iX MOXXHa oAaTH Y BurAsiail g(x) = f(x) — (%)% ae
g(x) e (p, h)-rapmosniiizo omyxaoro dpyHkmiclo. OTpUMaHO AesiKi HOBI OLIHKM KAACYy CHABHO (p, h)-
TapMOHINHO OMyKAMX (PYHKIIIV, BKAIOYAIOUN TillepreoMeTpnyHi Ta beTa-dpyHKIiil. SIk 3acTocysaH-
HSI HaIlIX Pe3yABTaTiB PO3TASHYTO KiAbKa Ba>KAMBIMX OCOOAVMBIX BMITAAKiB. TakoX BBeAeHO HOBMI
KAaC rapMOHIHMX OMyKAMX (PYHKIIM, sIKi Ha3MBAIOThCSI CMABHO (p, h)-rapMoHiHNMY log-OmyKAn-
mut pyskissmu. OTprMaHO Aesiki HoBi HepiBHOCTI Tuiry EpMita-AaaMapa AAsT cuabHO (p, h)-rapmo-
HilHMX [0g-omyKAuX pyHKir. L1i pe3yAbTaTyt MOXHA PO3TASAATH SIK BaXKAMBe yTOUHEHHS i CyTTEBe
MIOKpAaIIeHHsT HOBMX i IIOTIepeAHiX BIAOMIX pe3yAbTaTiB. Iael Ta METOAMKM ITi€l po6OTH MOXYTb 6y T
MIAIPYHTSIM AASI TIOAAABIINX AOCAIAKEHb.

Kntouosi cnoea i ppasu: p-rapMOHINHO omyKAl pyHKII, h-omyKai doyHKII, crAbHO onykAi dyH-
K11ii, HepiBHOCTI Tviry EpmiTa-Aaamapa.
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CHARACTERIZATIONS OF REGULAR AND INTRA-REGULAR ORDERED
I'-SEMIHYPERGROUPS IN TERMS OF BI-I-HYPERIDEALS

The concept of I'-semihypergroups is a generalization of semigroups, a generalization of semihy-
pergroups and a generalization of I'-semigroups. In this paper, we study the notion of bi-I'-hyper-
ideals in ordered I'-semihypergroups and investigate some properties of these bi-I'-hyperideals.
Also, we define and use the notion of regular ordered I'-semihypergroups to examine some clas-
sical results and properties in ordered I'-semihypergroups.
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1 INTRODUCTION

A semigroup is an algebraic structure consisting of a non-empty set S together with an asso-
ciative binary operation [24]. The notion of a I'-semigroup was introduced by Sen and Saha [37]
as a generalization of semigroups as well as of ternary semigroups. Since then, hundreds of
papers have been written on this topic, see [6,7,16]. Many classical notions of semigroups have
been extended to I'-semigroups. Let S = {a,b,c,--- } and I = {«, B, 7, - - - } be two non-empty
sets. Then, S is called a I'-semigroup if there exists a mapping from S x I' X S to S, written as
(a,7,b) — ayb, satisfying the identity (aab)pc = aa(bBc) for all a,b,cin S and &, B inT. In
this case by (S,I') we mean S is a I'-semigroup. By an ordered semigroup, we mean an algebraic
structure (S, -, <), which satisfies the following conditions: (1) (S, ) is a semigroup; (2) S is
a partial ordered set by <; (3) If 2 and b are elements of S such thata < b, thena-c <b-c
andc-a < c-bforall c € S. Ordered semigroups have been studied extensively by Kehay-
opulu and Tsingelis, for example, see [27-29]. The notions of an ordered I'-groupoid and an
ordered I'-semigroup were defined by Sen and Seth in [38]. Many authors studied different as-
pects of ordered I'-semigroups, for instance, Abbasi and Basar [1], Chinram and Tinpun [7, 8],
Dutta and Adhikari [16,17], Hila [22], [ampan [25], Kehayopulu [26], Kwon [31], Kwon and
Lee [32,33], and many others. Recall from [38], that an ordered T'-semigroup (S,T, <) is a I'-
semigroup (S,T') together with an order relation < such that a < b implies that ayc < byc and
cya <cybforalla,b,ce Sand y €T.

The concept of ordered semihypergroups is a generalization of the concept of ordered semi-
groups. The concept of ordering hypergroups introduced by Chvalina [11] as a special class

YAK 512.552
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of hypergroups. Many authors studied different aspects of ordered semihypergroups, for in-
stance, Davvaz et al. [15], Gu and Tang [19], Heidari and Davvaz [20], Tang et al. [39], and
many others. Explicit study of ordered semihypergroups seems to have begun with Heidari
and Davvaz [20] in 2011. Recall from [20], that an ordered semihypergroup (S, o, <) is a semihy-
pergroup (S, o) together with a partial order < that is compatible with the hyperoperation o,
meaning that for any x,y,z € S,

x<y=zox<zoyandxoz<yoz.

Here, zo x < zoy means for any a € z o x there exists b € z oy such that a < b. The case
x oz < yozis defined similarly.

Recently, Davvaz et al. [4,5, 13,21, 23] studied the notion of I'-semihypergroup as a gen-
eralization of a semigroup, a generalization of a semihypergroup and a generalization of a
I'-semigroup. They proved some results in this respect and presented many exmaples of I'-
semihypergroups. Many classical notions of semigroups and semihypergroups have been
extended to I'-semihypergroups. The notion of a I'-hyperideal of a I'-semihypergroup was
introduced in [4]. Davvaz et al. [5] introduced the notion of Pawlak’s approximations in I'-
semihypergroups. Abdullah et al. [2] studied M-hypersystems and N-hypersystems in a I'-
semihypergroup. Algebraic hyperstructures are a suitable generalization of classical algebraic
structures. In a classical algebraic structure, the composition of two elements is an element,
while in an algebraic hyperstructure, the composition of two elements is a set. The concept
of hyperstructure was first introduced by Marty [34] at the eighth Congress of Scandinavian
Mathematicians in 1934. A comprehensive review of the theory of hyperstructures can be
found in [9,10,12,40]. Let S be a non-empty set and P*(S) be the family of all non-empty
subsets of S. A mapping o : S x S — P*(S) is called a hyperoperation on S. A hypergroupoid
is a set S together with a (binary) hyperoperation. In the above definition, if A and B are two
non-empty subsets of S and x € S, then we denote

AoB=|J, xoA={x}oA and Box=Bo{x}.

acA
beB

A hypergroupoid (S, o) is called a semihypergroup if for every x,y,zin S, xo (yoz) = (xoy)oz.

That is,
U xXou = U voz.

ucyoz vexoy

A non-empty subset K of a semihypergroup S is called a subsemihypergroup of S if Ko K C K.
A hypergroupoid (S, o) is called a quasihypergroup if for every x € S, x0S = S = Sox. This
condition is called the reproduction axiom. The couple (S, o) is called a hypergroup if it is a
semihypergroup and a quasihypergroup. A non-empty subset K of S is a subhypergroup of S if
Koa =aoK =K, for every a € K. A hypergroup (S, o) is called commutative if xoy = yox,
for every x,y € S.

2 REVIEW: ORDERED I'-SEMIHYPERGROUPS

The notion of a I'-semihypergroup was introduced by Davvaz et al. [4,5,21]. In [20], Heidari
and Davvaz introduced the concept of ordered semihypergroups, which is a generalization of
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ordered semigroups. In this section, we recall the notion of an ordered I'-semihypergroup and
then we present some definitions and properties which we will need in this paper. Throughout
this paper, unless otherwise stated, S is always an ordered I'-semihypergroup (S, T, <).

Definition 1 ([4,5]). Let S and I' be two non-empty sets. Then, S is called a I'-semihypergroup if
every vy € I' isa hyperoperationon S, i.e., xyy C S forevery x,y € S, and forevery a, B € I' and
x,Y,z € S, we have xa(ypz) = (xay)Bz. If every v € T is an operation, then S is a I'-semigroup.
Let A and B be two non-empty subsets of S. We define

ATB=U{ayb|ac AlbeBandy e} = |J AyB.
yerl

A T-semihypergroup S is called commutative if for all x,y € S and 7y € T, we have xyy = yyx.
AT-semihypergroup S is called a I'-hypergroup if for every v € T, (S, ) is a hypergroup.

Now, we consider the notion of an ordered I'-semihypergroup.

Definition 2 ([30]). An algebraic hyperstructure (S,T, <) is called an ordered T-semihypergroup
if (S,T') is a I'-semihypergroup and (S, <) is a partially ordered set such that for any x,y,z € S
and v € I, x < y implies zyx < zyy and xyz < yyz. Here, if A and B are two non-empty
subsets of S, then we say that A < B if for every a € A there exists b € B such thata < b.

Let S be an ordered I'-semihypergroup. By a sub I'-semihypergroup of S we mean a non-
empty subset A of S such thatayb C Aforalla,b € Aand v €T.

Example 1 (30]). Let (S, o, <) be an ordered semihypergroup and I' a non-empty set. We define
xyy = xoy forevery x,y € S and vy € I'. Then, (S,T, <) is an ordered I'-semihypergroup.

Definition 3. Let (S,T', <) be an ordered T-semihypergroup. A non-empty subset I of S is
called a left I-hyperideal of S if it satisfies the following conditions:

(1)ST1 C I;

(2) When x € I andy € S such thaty < x, imply thaty € I.

A right I'-hyperideal of an ordered I'-semihypergroup S is defined in a similar way. By
two-sided I'-hyperideal or simply I'-hyperideal, we mean a non-empty subset of S which both left
and right I'-hyperideal of S. A I'-hyperideal I of S is said to be proper if I # S.

Let K be a non-empty subset of an ordered I'-semihypergroup (S, T, <). If H is a non-empty
subset of K, then we define (H|g := {k € K | k < h for some h € H}. Note that if K = S, then
we define (H] := {x € S| x < hforsome h € H}. For H = {h}, we write (h] instead of ({h}].
Note that the condition (2) in Definition 3 is equivalent to (I] C I. If A and B are non-empty
subsets of S, then we have

(1) AC (A];

@) ((A]] = (AL

(3) If A C B, then (A] C (B];
(4) (AT(B] C (ATBJ;

(5) ((AJT(B]] = (ATB].
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Lemma 1. If I and | are I'-hyperideals of an ordered I'-semihypergroup (S,T, <), thenIN ] is
aI'-hyperideal of S.

Proof. Letx € I,y € Jand vy € I'. Then, xyy C IT] C ITS C [ and xyy C IT] C SI'J C J. So,
xyy CINJand hence @ #INJ CS. Wehave (IN])I'SCITSC Tand ST(INJ) C ST'J CJ.
Similarly, (INJ)I'S C Jand ST(IN]) C I. So,wehave (IN])ISC INJand ST(INJ) CINJ.
Now, letx € IN ],y € Sand y < x. Since I and | are I'-hyperideals of S, we obtain y € I and
y € J. Thus, y € I N ]. This completes the proof. O

Let (S,T, <) be an ordered I'-semihypergroup. A subset A of S is called idempotent if A =
(AT A].

Lemma 2. The I'-hyperideals of an ordered I'-semihypergroup (S,T, <) are idempotent if and
only if for any T'-hyperideals I, ] of S, we have I N ] = (IT']].

Proof. The sufficiency is obvious. For the necessity, let I, | be I'-hyperideals of S. We have
(IT]J] € (ITS] € (I] = I'and (IT]] C (STJ] € (J] = J. So, we have (ITJ] € INJ. On
the other hand, by Lemma 1, I N ] is a I'-hyperideal of S. By assumption, we have I N ] =
((INNHI(IN]J)] C (IT]]. This completes the proof. O

Theorem 1. Let (S, T, <) be a commutative ordered T'-semihypergroup. If I is a I'-hyperideal
of S and A is a non-empty subset of S, then (I : A) = {x € S|xya C Iforalla € Aandy €T}
is a I'-hyperideal of S.

Proof. Suppose thatx € (I: A),s € Sand d € I'. Then, xya C [ foralla € Aand y € I. We
have (séx)ya = sé(xya) C ST'I C I. So, we have sdx C (I : A). In the similar way, we obtain
x6s C (I: A). Now,letx € (I: A),y € Sandy < x. Then, xya C [foralla € Aand v € T.
Also, we have yya < xyaforalla € A and ¢ € T, by hypothesis. So, for any u € yya, u < v for
some v € xya C I. Since I is a I'-hyperideal of S, it follows that u € I. So, we have yya C I for
alla € Aand vy € T. Thus, wehave y € (I : A). Therefore, (I : A) isa I-hyperidealof S. [

3 BI-I'-HYPERIDEALS

The study of ordered semihyperrings was first undertaken by Davvaz and Omidi [14].
In [35], Omidi, Davvaz and Corsini studied some properties of hyperideals in ordered Kras-
ner hyperrings. The concept of a bi-ideal is a very interesting and important thing in semi-
groups and ordered semigroups. In 1952, Good and Hughes [18] introduced the notion of
bi-ideals in semigroups. Recently, Davvaz et al. [4] introduced the notion of bi-I'-hyperideal
in I'-semihypergroups (cf. [3]). In [36], Pibaljommee and Davvaz studied the properties of
bi-hyperideals in ordered semihypergroups. The concept of bi-I'-hyperideals of an ordered I’-
semihypergroup is a generalization of the concept of I'-hyperideals (left I'-hyperideals, right I'-
hyperideals) of an ordered I'-semihypergroup. First, we define the concept of a bi-I'-hyperideal
in ordered I'-semihypergroups.

Definition 4 ([30]). A sub I'-semihypergroup B of an ordered T'-semihypergroup (S,T, <) is
called a bi-T'-hyperideal of S if the following conditions hold:

(1) BISTB C B;
(2) When x € Band y € S such thaty < x, imply thaty € B.
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The concept of bi-I'-hyperideals of an ordered I'-semihypergroup is a generalization of
the concept of I'-hyperideals (left I'-hyperideals, right I'-hyperideals) of an ordered I'-semi-
hypergroup. Obviously, every left (right) I'-hyperideal of an ordered I'-semihypergroup S is a
bi-I'-hyperideal of S, but the the following example shows that the converse is not true in ge-
neral case. Indeed, If I is a left (right) [-hyperideal of S, then IT'I C ST'I C I. Hence, I is a sub
I'-semihypergroup of S.

Example 2. Let S = {a,b,c,d,e,f} and T = {v,B} be the sets of binary hyperoperations
defined as follows.

yla b ¢ de f Bla b ¢ d e f
ala b a aa a ala b a a a a
bbb b bb b bbb b b b b
cla b {a,c} a a {a f} cla b a a a a
dia b {a,e} a a {ad} dla b a {ad} {ae} a
ela b {ae} a a {ad} ela b a a a a
fla b {ac} a a {af} fla b a {a f} {ac} a

Then S is a I'-semihypergroup [41]. We have (S,T, <) is an ordered I'-semihypergroup where
the order relation < is defined by:

<= {(a,a), (a,), (a,¢), (a,d), (a¢), (a, f), (b,b), (c,<), (d,d), (e,e), (£, £)}.

The covering relation and the figure of S are given by:

<= {(a,b), (a,c), (a,d),(ae),(a,f)}.

C d e
bvf

Here,

(1) It is a routine matter to verify that By = {a,b,c} is a bi-I'-hyperideal of S, but it is not a
I'-hyperideal of S.

(2) With a small amount of effort one can verify that By = {a,b,c, f} is a bi-I'-hyperideal of
S, but it is not a left I'-hyperideal of S.

Lemma 3. The intersection of any family of bi-I'-hyperideals of an ordered I'-semihypergroup
(S,T,<) is a bi-T-hyperideal of S.

Proof. Let {By | k € A} be a family of bi-T-hyperideals of S and B = () By. It is easy to
keA
check that B is a sub I'-semihypergroup of S. Now, let x € BI'SI'B. Then, x € aaspb for

some a,b € B,s € Sand a, € I'. Since each By is a bi-I-hyperideal of S, it follows that

ansPb C B I'ST By C By for all k € A. Then, x € By forall k € A. So, we have x € (| By = B.
keA
Since x was chosen arbitrarily, we have BISTB C B. If x € Band y € S such that y < x, then

x € By for all k € A. Since each By is a bi-I'-hyperideal of S, it follows that y € By for all k € A.

So, we have y € (| By = B. Hence, B is a bi-I'-hyperideal of S. O
keA
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Lemma 4. Let (S,T, <) be an ordered I'-semihypergroup. If B is a bi-I'-hyperideal of S and C
is a bi-T-hyperideal of B, such that C = (CT'C], then C is a bi-T-hyperideal of S.

Proof. By assumption, we have that
CI'C = (CICJI'(CIC] C (CI'(CICIC)] C (CIC] =C,

which shows that C is a sub I'-semihypergroup of S. On the other hand, we have BI'STB C
B and CI'BI'C C C. Thus, we have

CTSTC = (CTC|TST(CIC] = (CTC]T(S]T(CTC]
C (CTCTS|T(CIC] C (CT(CTSIC)IC]

C
C (CT(BTSTB)IC] C (CT'BIC] C (C]g C C.

Now, let c € Cand x < ¢, where x € S. Since B is a bi-I'-hyperideal of S and C C B, we get
x € B. On the other hand, C is a bi-I'-hyperideal of B. It follows that x € C. This completes the
proof. O

Let A be a non-empty subset of an ordered I'-semihypergroup (S,T', <). We denote by
Ls(A) (resp. Rs(A), Is(A)) the left (resp. right, two-sided) I'-hyperideal of S generated by A.

Lemma 5. If A is a non-empty subset of an ordered I'-semihypergroup (S,I’, <), then the
following hold:

(1) Ls(A) = (AUSTA);
(2) Rs(A) = (AU ATS];
(3) Is(A) = (AUSTAU ATS U STATS].

Proof. Since A C Lg(A) and STA C Lg(A), it follows that (A USTA] C Lg(A). Clearly,
(AUSTA| # @. We have

ST(AUSTA] = (S|T(AUSTA] C (ST(AUSTA)]
— (STAUST(STA)] C (STA] C (AUSTA].

Thus, (A U ST A] is a left I'-hyperideal of S containing A. This means that Lg(A) C (AU
ST A]. This proves that (1) holds. The conditions (2) and (3) are proved similarly. O

Corollary 1. Leta be an element of an ordered I'-semihypergroup (S, T, <). Then,
(1) Ls(a) = (aU STal;
(2) Rs(a) = (auals);
(3) Is(a) = (aUSTaUal'SUSTalsS].
Let A be a non-empty subset of an ordered I'-semihypergroup (S, T, <). We define
© = {B | Bis a bi-I-hyperideal of S containing A}.

Since S € O, it follows that © # &. We denote by Bg(A) the bi-I'-hyperideal of S generated by
A. Clearly, A C Bs(A) = () B. By Lemma 3, Bs(A) is a bi-T-hyperideal of S.
Be®
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Lemma 6. Let A be a non-empty subset of an ordered I'-semihypergroup (S,T, <). Then,
Bs(A) = (AU ATA U ATSTAJ.
Proof. Set B= (AU ATAU ATST A]. Clearly, B # @. We have

BTB = (AU ATAU ATSTAJT(A U ATA U ATSTA]
C ((AUATAUATSTA)T(AU ATA U ATSTA)]
C (ATSTA] C (AU ATAU ATSTAJ.

Hence, B is a sub I'-semihypergroup of S. Now,

BTSTB = (AUATAU ATSTA|TST(A U ATA U ATSTA]
C ((AUATAU ATSTA)TST(AU ATA U ATSTA)]
-

(ATA U ATSTA] C (AU ATA U ATSTA.

Therefore, B is a bi-T-hyperideal of S, and hence Bs(A) C (AU AT AU ATST'A]. Let C be a
bi-I'-hyperideal of S containing A. Then, AA C C and AI'STA C CI'STC C C. Thus, we have
B=(AUATAUAIST'A] C (C] = C. Hence, B is the smallest bi-I'-hyperideal of S containing
A. Therefore, Bs(A) = B = (AUATAU ATSTA]. O

Corollary 2. Leta be an element of an ordered I'-semihypergroup (S,T, <). Then,

Bs(a) = (aUalaUal'STa.

4 MAIN RESULTS

The concepts of regular (resp. intra-regular) ordered I'-semihypergroups generalize the
corresponding concepts of regular (resp. intra-regular) I'-semihypergroups as each regular
(resp. intra-regular) I'-semihypergroup endowed with the order <:= {(a,b) | a = b} is a reg-
ular (resp. intra-regular) ordered I'-semihypergroup. In this section, we introduce the notion
of regular ordered I'-semihypergroups and investigate some related results. We characterize
regular ordered I'-semihypergroups in terms of bi-I'-hyperideals, left I'-hyperideals and right
I'-hyperideals of ordered I'-semihypergroups. In this paper, some well known results of or-
dered semihypergroups in case of ordered I'-semihypergroups are examined.

Definition 5. An ordered I'-semihypergroup (S,T, <) is called regular if for every a € S there
existx € S, a, B € I such thata < aaxpa. This is equivalent to saying thata € (aI'STa|, for
everya € Sor A C (ATSTA|, forevery A C S.

Example 3. Let S = {a,b,c,d,e} andT = {v, B} be the sets of binary hyperoperations defined
as follows.

Y| a b ¢ d e Bl a b ¢ d e
a|{ab} {be} ¢ {cd} e a|{be} e ¢ {cd} e
b|{be} e ¢ {cd} e b| e e ¢ {cd} e
cl ¢ c ¢ ¢ c cl ¢ c ¢ ¢ c
d|{cd} {cd} ¢ d {cd} d|{cd} {cd} ¢ d {cd}
e| e e ¢ {cd} e e| e e ¢ {cd} e
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Then S is a I'-semihypergroup [42]. We have (S,T, <) is an ordered I'-semihypergroup where
the order relation < is defined by:

<:={(a,a),(a,b),(a,c), (a,e), (b,b),(b,c), (be),(c,c) (dc), (dd),(ec) (ee)}.

The covering relation and the figure of S are given by:

<={(a,b), (b,e), (4,0), (e.c)}.

a s

d

We can easily verity that S is a regular ordered I'-semihypergroup.

Lemma 7. Every I'-hyperideal I of a regular ordered I'-semihypergroup (S,T, <) is a regular
sub I'-semihypergroup of S.

Proof. Leta € I. Since S is a regular ordered I'-semihypergroup, there exist x € S, &, 8,7,0 € T
such that a < aaxBa < aaxPayxdéa = an(xPayx)da. Since I is a I'-hyperideal of S, it follows
that xayx C STITS C I. Thus, a < t for some t € aa(xBayx)éa C al'll'a. So, we have
a € (al'ITa];. Therefore, I is a regular sub I'-semihypergroup of S. O

Theorem 2. If [ and | are regular I'-hyperideals of an ordered I'-semihypergroup (S,T, <),
then I N ] is also a regular I'-hyperideal of S.

Proof. Let I and ] are regular I'-hyperideals of S. By Lemma 1, I N | is a I'-hyperideal of S.
By Lemma 7, I and | are regular sub I'-semihypergroups of S. Now, let a € I N ]. Then,
a < aaxPa and a < ayyda for some x,y € Sand «,B,7,6 € I'. So, we have a < aaxpa <
(aaxPa)usA(ayyda) = an(xPapsiayy)da. Since I and | are I'-hyperideals of S, we obtain
xBapusAayy C INJ. Thus, we have a < t for some t € aa(xpapusAayy)éa C al'(IN])Ta
which implies that a € (al'(I N J)T'a];. Hence, there exists z € 1N ] such that a < aazda.
Therefore, I N | is a regular sub I'-semihypergroup of S. O

We now prove the following theorem which is the crucial theorem in the establishment of
our main theorems.

Theorem 3. An ordered I'-semihypergroup (S,T’, <) is regular if and only if for every right
I'-hyperideal R and every left I'-hyperideal L of S, we have RN L = (RT'L].

Proof. Let R be a right I'-hyperideal and L a left I'-hyperideal of S. As RI'L C ST'L C L and
RTL C RIS C R, wehave RTL C RN L. So, (RTL] € (RNL] € (RN (L] € RNL. Let S be
regular; we need to prove that RN L C (RT'L]. Since S is regular, we have

RNLC ((RNL)TST(RNL)] C (RTST(RNL)] C (RTSTL] C (RTL).



144 OMIDI S., DAVVAZ B., HIiLA K.

Conversely, suppose that RN L = (RI'L] for any right I'-hyperideal R and any left T-
hyperideal L of S. Leta € S. Since a € Rg(a) and a € Lg(a), it follows thata € Rg(a) N Lg(a).
By hypothesis, we have that

a € (Rg(a)TLg(a)] ((aUal'ST(a U Sla]

C (aTaUal'STaUal'STSTa] C (alTa Ual'STa.

Hence, a <t forsomet € al'aUal'STa. If u € aI'STa, then a < aaxPa for somex € S, a, B € T.
Thus, we have a € (aI'STa]. Therefore, S is a regular ordered I'-semihypergroup. If u € al'a,
then a < ana < an(aPa). So, we have a € (al'ST'a]. Therefore, S is regular. O

Now, we obtain the following corollaries.
Corollary 3. If (S, T, <) is a regular ordered I'-semihypergroup, then S = (STS].

Corollary 4. An ordered I'-semihypergroup S is called fully I'-hyperidempotent it every I'-hyper-
ideal of S is idempotent. If S is a regular ordered I'-semihypergroup, then S is fully I'-hyper-
idempotent.

Theorem 4. Let (S,T', <) be a regular ordered T'-semihypergroup. Then, B is a bi-I'-hyperideal
of S if and only if there exists a right I'-hyperideal R and a left I'-hyperideal L of S such that
B = (RTL].

Proof. Let S be a regular ordered I'-semihypergroup and B a bi-I'-hyperideal of S. First, we
show that (BT'S] is a right T-hyperideal of S. Lety € S and x € (BI'S]. Then, there exist b €
(BT'S],c € B,s € Sand a € T such that x < b < cas. Since S is an ordered I'-semihypergroup,
it follows that xpy < bBy < b < (cas)By C BI'S, where g € T'. Hence, xpy C (BI'S]. If y < x,
theny < x < b, and soy € (BI'S]. Therefore, (BI'S] is a right I'-hyperideal of S. Similarly, we
can prove that (ST'B] is a left [-hyperideal of S. Now, we prove that B = ((BI'S|T'(SI'B]]. Since
S is regular, it follows that B C (BI'ST'B|, for every B C S. Since B is a bi-I-hyperideal of S, it
follows that BI'ST'B C B. So, we have (BI'STB] C (B] = B. Hence, B = (BI'ST'B]. By Corollary
3, we have S = (ST'S]. Hence,

B = (BISTB] = (BI(ST'S|TB] = ((B]I((STS]|TB] = ((BISTS|IB]
— ((BTSTS|T(B]] = ((BISTS)TB] = ((BTS|T(STB]).

Conversely, suppose that R is a right I'-hyperideal and L a left I'-hyperideal of S such that
B = (RT'L]. We prove that (RT'L] is a bi-T-hyperideal of S. We have

(RTL|T(RTL] C ((RTL)T(RTL)] = ((RTLTR)TL] C ((RTSTR)TL] C (RTL].
Then, (RT'L] is a sub I'-semihypergroup of S. Also, we have

(RTLJTST(RTL] = (RTL]T(S]T(RTL] C ((RTL)TS|T(RTL] C ((RTL)IST(RTL)]

Z (RT(LTS)TRTL] C ((RTS)TRTL] C (RTRTL] C (RTSTL] C (RTL).

Now, suppose that y € S and x € (RTL] such that y < x. Since x € (RT'L], it follows that x < a
for some a € RTL. Sincey < x and x < a, we gety < a. So, we have y € (RT'L]. Therefore,
(RT'L] is a bi-T'-hyperideal of S. O
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Theorem 5. An ordered I'-semihypergroup (S,T, <) is regular if and only if for every right I'-
hyperideal R, every left I'-hyperideal L and every bi-I'-hyperideal B of S, we have RN BN L C
(RTBI'L].

Proof. Let R be right I'-hyperideal, L a left I'-hyperideal and B a bi-I'-hyperideal of S. By
hypothesis, we have

((RNBNL)TST(RNBNL)TST(RNBNL)TST(RNBNL)]
(RTSTBISTBISTL] = ((RTS)I(BTSTB)I(STL)] C (RTBTL).

Conversely, suppose that RN BN L C (RT'BT'L] for every right I'-hyperideal R, every left
I'-hyperideal L and every bi-I'-hyperideal B of S. Since S is a bi-I'-hyperideal of S, we have
RNL=RNSNLC (RITSTL] C (RTL]. By Theorem 3, S is regular. O

Definition 6. Let (S,T, <) be an ordered T'-semihypergroup. An element a € S is said to
be intra-reqular if there exist x,y € S, «, B,y € I such thata < xaaPayy. An ordered I'-
semihypergroup S is called intra-regular if all elements of S are intra-regular.

Equivalent definitions:

(1) a € (STal'al'S], for alla € S.
(2) A C (STATATS], forall A C S.

Example 4. Let S = {a,b,c,d,e} andT = {7, B} be the sets of binary hyperoperations defined
as follows.

Y| a b c d e Bl a b c d e
a|{a,b} {bc} ¢ {de} e a|{bc} ¢ c {de} e
b|{bc} ¢ c {de} e b| ¢ c c {de} e
c| ¢ c c {de} e c| ¢ c c {de} e
d|{de} {de} {de} d e d|{de} {de} {de} d e
e| e e e e e el e e e e e

Then S is a I'-semihypergroup [41]. We have (S,T, <) is an ordered I'-semihypergroup where
the order relation < is defined by:

<i={(a,a),(a,b),(a,c),(bb),(bc),(cc) (dd),(ee)}

The covering relation and the tigure of S are given by:

<=A{(a,b),(bc)}.

c

b

Q.o
Y

a

Then, by routine calculations, (S,T, <) is intra-regular.
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Theorem 6. Let (S, T, <) be an ordered I'-semihypergroup. Then, S is intra-regular if and only
if for every right I'-hyperideal R and every left I'-hyperideal L of S, we have

RNLC (LTR].

Proof. Let R be a right I'-hyperideal and L a left I'-hyperideal of S. Let S be intra-regular; we
need to prove that RN L C (LTR]. Since S is intra-regular, we have

RNLC (ST(RNL)T(RNL)TS] C (STLTRTS] C (LTR].

Conversely, suppose that RN L C (LI'R] for any right I'-hyperideal R and any left I'-
hyperideal L of S. Leta € S. Since a € Rg(a) and a € Lg(a), it follows that a € Rg(a) N Lg(a).
By hypothesis, we have

a € (Lg(a)TRg(a)] ((aU STal'(a UalS]]

C (aTa U STala Ualal'S U STalal'S].

Hence, a < u forsomeu € al'aU STal'aUal'al'SUSTalal'S. If u € STal'al’S, thena < xaaPayy
for some x,y € S, , B, € I'. Thus, we have a € (STal'al'S]. Therefore, S is intra-regular. If
u € ala, then a < ana < aw(apa) < awaPaya. So, we have a € (STal'al'S|. Hence, S is
intra-regular. If u € STal'a, then a < xaaPfa < xa(xyada)pa for some x € S, o, B,7v,6 € T.
So, we have a < syadaBa. Hence, a € (STal'al'S|. If u € alal'S, in a similar way, we obtain
a € (STalal'S]. Therefore, S is intra-regular. O

Corollary 5. Let (S,T', <) be an ordered I'-semihypergroup. Then, the following statements
are equivalent:

(1) S is regular and intra-regular.
(2) (RTL]=RNL C (LI'R] for every right I'-hyperideal R and every left I'-hyperideal L of S.
Proof. It is immediately followed by Theorem 3 and Theorem 6. O

Theorem 7. An ordered I'-semihypergroup (S,T, <) is intra-regular if and only if for every
right I'-hyperideal R, every left I'-hyperideal L and every bi-I'-hyperideal B of S, we have
RNBNLC (LTBTR].

Proof. The proof is similar to the proof of Theorem 5. O
By routine verification we have the following theorem.

Theorem 8. An ordered I'-semihypergroup (S,T, <) is both regular and intra-regular if and
only if for every right I'-hyperideal R, every left I'-hyperideal L and every bi-I'-hyperideal B of
S, we have RNBN L C (BI'RTL).

Our main aim in the following is to introduce and study the notion of simple ordered I'-
semihypergroups. Also, we characterize this type of ordered I'-semihypergroups in terms of
I'-hyperideals.

Definition 7. An ordered I'-semihypergroup (S,T, <) is said to be left (resp. right) simple if S
has no proper left (resp. right) I'-hyperideals. S is called a simple ordered I'-semihypergroup if it
does not contain proper I'-hyperideals, i.e., for any I'-hyperideal I # & of S, we have I = S.
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Lemma 8. Let (S, T, <) be an ordered I'-semihypergroup. Then, the following assertions hold:
(1) S is left simple if and only if (STa] = S, for alla € S.
(2) S is right simple if and only if (aI'S] = S, for alla € S.
Proof. (1): Suppose that S is a left simple ordered I'-semihypergroup and a € S. We have
ST'(STa] = (S|T'(STa] C (ST(ST'a)] = ((ST'S)T'a)] C (STa.

Now, suppose that x € (ST'a] and y € S such that y < x. Since x € (STa], it follows that x < u
for some u € STa. Since y < x and x < u, we gety < u. So, we have y € (STa|. Hence, (ST'a] is
a left hyperideal of S. Since S is a left simple ordered I'-semihypergroup, we have (STa] = S.

Conversely, suppose that (ST'a] = S foralla € S. Let L be a left hyperideal of S and x € L.
By assumption, we have (SI'x] = S. If s € S, thens € (STx]. So, s < v for some v € ST'x C L.
Since L is a left I'-hyperideal of S, we have s € L, and so L = S. Therefore, S is a left simple
ordered I'-semihypergroup.

(2): The proof is similar to the proof of (1). d

Theorem 9. If (S,T, <) is a left (right) simple ordered I'-semihypergroup, then S is a simple
ordered I'-semihypergroup.

Proof. 1t is straightforward. O

Theorem 10. An ordered I'-semihypergroup (S,T, <) is left and right simple if and only if for
every a € S, we have (ST'al'S] = S.

Proof. Let S be left and right simpleand a € S. By Lemma 8, a € (ST'a] and a € (aI'S]. We have
a € (a'S] C ((STa|I'S] C (STal's|,

and so S C (ST'aTl’S]. Thus, (STal'S] = S.
Conversely, suppose that (STal'S] = S for every a € S. Let I be a I'-hyperideal of S such
that I S S. Let x € I. By assumption, we have s < suxAs for every s € Sand y, A € T'. We have

suxAs C STITS C (STITS] C (I] = 1.

Then, S C I, a contradiction. Therefore, S has no proper left and right I'-hyperideals. This
completes the proof. O

In what follows, we characterize simple ordered I'-semihypergroups in terms of bi-I'-hyper-
ideals.

Theorem 11. An ordered I'-semihypergroup (S,T, <) is left and right simple if and only if S
does not contain proper bi-I'-hyperideals.

Proof. Suppose that S is a left and right simple ordered I'-semihypergroup and B a bi-I'-
hyperideal of S. We claim that S C B. Consider s € S and x € B. Since S is left simple,
we get S = (x U ST'x]. We can consider the following two cases:

Case 1. If s < x, then we have s € B.

Case 2. Lets € (uyx] for some u € S and ¢y € I'. By hypothesis, S is a right simple or-
dered T'-semihypergroup. Then, we have S = (x UxI'S]. Since u € S, we have u < x or
u € (xéw| for some w € Sand é € I'. By Lemma 8, we have S = (xI'S] = (ST'x], and so
x € (xI'S] = (xI(STx]] € (xI'STx]. Then, S is a regular ordered I'-semihypergroup. Thus,
there exists a € S and &, § € I such that x € (xaaBx]. If u < x, then we have
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(uyx] C (xyx] C (xyxaapx] C (BI'STB] C B,
and so s € B. If u € (xéw], then we have
(uy] C (xéwyx] C (BTSTB] C B,

and so s € B. Therefore, S C B.

Conversely, suppose that S does not contain proper bi-I'-hyperideals. Let L be a left I'-
hyperideal of S. Then, L is a bi-I'-hyperideal of S. By assumption, we have S = L. Therefore,
S is a left simple ordered I'-semihypergroup. Similarly, we can show that S is a right simple
ordered I'-semihypergroup. O

In the following, we study some properties of bi-I'-hyperideals and minimal bi-I'-hyper-
ideals in ordered I'-semihypergroups.

Definition 8. An ordered T-semihypergroup (S,T, <) is said to be B-simple if S does not con-
tain any proper bi-I'-hyperideals. A bi-I'-hyperideal C of S is called a minimal bi-I'-hyperideal of
S if C does not properly contain any bi-I'-hyperideal of S.

Theorem 12. Let B be a bi-I'-hyperideal of an ordered T'-semihypergroup (S,T,<). Then,
(uI'BI'v] is a bi-T'-hyperideal of S for every u,v € S. In particular, (uI'ST'v] is a bi-I'-hyperideal
of S for every u,v € S.

Proof. The proof is similar to the proof of Theorem 2.2 in [8]. O

Corollary 6. Let (S,T, <) be an ordered I'-semihypergroup. Then, S is B-simple if and only if
(uI'STu] = S forallu € S.

Proof. The necessity is obvious. For the sufficiency, let (uI'STu] = S for all u € S. We have
(uI'STu] C (STu] C Sand (uI'STu] C (uI'S] C S.

By assumption, we have (SI'u| = S and (uI'S] = S for all u € S. Now, let B is a bi-I'-hyperideal
of Sand b € B. Then, (STb] = S = (bI'S]. So, we have

S = (bI'S] = (bI'(bI'S]] C (bT'STH] C (BI'SI'B] C (B] C B.
This completes the proof. O

Corollary 7. Let (S,T, <) be an ordered I'-semihypergroup. If C is a minimal bi-T-hyperideal
of S and B a bi-T-hyperideal of S, then C = (cI'BI'd] for every c¢,d € C.

Proof. By Theorem 12, (cI'BT'd] is a bi-I'-hyperideal of S. Since C is a minimal bi-I'-hyperideal
of S and (cI'BT'd] C (CT'BIC] C (CTSI'C] C (C] C C, we obtain C = (cI'BI'd]. O

At the end of the paper, we prove the following theorem.

Theorem 13. Let B be a bi-T'-hyperideal of an ordered I'-semihypergroup (S,T’, <). Then, B is
a minimal bi-I'-hyperideal of S if and only if B is B-simple.



CHARACTERIZATIONS OF REGULAR AND INTRA-REGULAR ORDERED I'-SEMIHYPERGROUPS ... 149

Proof. Let B be a minimal bi-I'-hyperideal of S. Then, B is a sub I'-semihypergroup of S. Now,
let C be a bi-T-hyperideal of B. Then, CTBTC C C. Put K = (CI'BI'C|¢. Then, @ # K C C C B.
Now, we prove that K is a bi-I'-hyperideal of S. Let k1,k, € K, x € Sand 4,6 € I'. Then,
ki < craqbiBicl and ky < coanbaBacy for some cq, ¢, c2,¢h € C, by, by € Band ay, B1, a2, B2 €T
So, we have

kivks < cio1 (b1 Brciycanabr)Bach

and

kyyxdky < cqaq(byBrcyxdeanabs)Bach.

Since by B1c}yconaby C BISIB C B, it follows that kyyk, € KITK C CI'C C C. So, k17kz
(CTBI'C]c = K. Hence, K is a sub I'-semihypergroup of S. Since by B¢} yxdconbp C BISTB
B, we get

c101 (b1 Bic)yxdcanaby)Bacy, C CIBIC C C.

Since C is a bi-I'-hyperideal of B and k;yxdk, € KI'STK C BI'STB C B, we obtain kyyxdk; C C.
So, we have k1yxdk, C (CT'BI'C]c = K. Therefore, KITSTK C K. Now, lety € (K]. Then, y < k
for some k € K. Since k € K, there exist ¢,c’ € C,b € Band yu,A € T such that k < cubAc’.
Since cubAc’ C CI'BI'C C C C B and B is a bi-I-hyperideal of S, we get k € B. Since B is a
bi-I'-hyperideal of S, we have y € B. So, y < z for some z € cubAc’ C CI'BI'C C C. Since C
is a bi-I'-hyperideal of B, we have y € C. So, we have y € (CI'BI'C]c = K. Therefore, K is a
bi-I'-hyperideal of S. Since B is a minimal bi-I-hyperideal of S, it follows that K = B. So, we
have C = B. Therefore, B is B-simple.

Conversely, assume that B is B-simple. Let C be a bi-I'-hyperideal of S such that C C B.
Then, BN C # @. Let c € BN C. By Theorem 12, (cI'BIc] is a bi-I'-hyperideal of B. Since B is
B-simple, we obtain (cI'BTc] = B. Now, we have

B = (cI'BI'c] C (CI'BI'C] C (CI'SIC] C (C] = C.
Hence, C = B. Therefore, B is a minimal bi-I'-hyperideal of S. O
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Omiai C., AasBas b., Xira K. Xapaxmepucmuku peeyngpHux i 6HympiuiHvo-peeyiapHux 81opsokosaHux
T'-naniseinepepyn 6 mepminax bi-I'-zinepioeanis // Kapnarcoki Mmarem. myba. — 2019. — T.11, Nel. — C.
136-151.

ITonsarrs I'-HamiBrineprpym € y3araAbHeHHIM HalliBIPYII, y3araAbHEeHHSIM HaIliBrineprpy i ysa-
raAbHeHHSIM [-HamiBrpym. Y aaHilt pob0Ti AOCAIAXY€ETBCs IOHSTTS 6i-I'-rimepiaanis y Bmopsiako-
BaHMX |-HamiBrineprpymax i AOCAIAXYIOTbCSI Aesiki BAacTMBOCTI mmx 6i-I'-rinepiaeanis. Takox mu
BM3HAYAEMO i BUKOPMCTOBY€EMO IIOHSTTSI PETYASIPHO BIIOPSIAKOBAHMX [-HaIiBrineprpymn AAsl BUBYe-
HHSI AeSIKMX KAACMUHMX Pe3yAbTaTiB 1 BAACTMBOCTEN y BIOPSIAKOBaHMX ['-HamiBrimeprpymnax.

Kntouosi cnosa i ¢ppasu: ynopsiakosasi I'-Hamisrimeprpymm, I'-rimepiaeann, bi-I'-rimepiaeaan.
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ON A NEW APPLICATION OF QUASI POWER INCREASING SEQUENCES

In the present paper, absolute matrix summability of infinite series has been studied. A new
theorem concerned with absolute matrix summability factors, which generalizes a known theorem
dealing with absolute Riesz summability factors of infinite series, has been proved under weaker
conditions by using quasi -power increasing sequences. Also, a known result dealing with absolute
Riesz summability has been given.

Key words and phrases: Riesz mean, almost increasing sequences, quasi power increasing se-
quences, Holder inequality, Minkowski inequality, matrix transformation.
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INTRODUCTION

Let )" a, be a given infinite series with partial sums (s, ). Let (p,) be a sequence of positive
numbers such that
n

PnZva%oo as n—oo, (Pj=p_;=0,i>1).
=0

Let A = (a,,) be a normal matrix, i.e., a lower triangular matrix of nonzero diagonal entries.
Then A defines the sequence-to-sequence transformation, mapping the sequence s = (s,) to
As = (Ay(s)), where

n
An(s) = Zanvsv, n=20,1,....
v=0

Let (¢,) be any sequence of positive real numbers. The series ) a, is said to be summable
¢ — |A; 0]k, k> 1and 6 > 0, if (see [9])

Y- i Au(s) = Aua(s) [ < co. (1)
n=1
In the special case for 6 = 0, ¢, = % and a,, = f;—:, we obtain the |N, p,|r summability

(see [2]). Also, it should be noted that for ¢, = % and a,, = g—:, the ¢ — |A; 6| summability

n

reduces to |N, py; 6| summability (see [3]).

YAK 517.52
2010 Mathematics Subject Classification: 26D15, 40D15, 40F05, 40G99.

@ Ozarslan H.S., 2019



ON A NEW APPLICATION OF QUASI POWER INCREASING SEQUENCES 153
1 KNOWN RESULT

A positive sequence (h,) is said to be almost increasing if there exist a positive increasing
sequence (¢, ) and two positive constants K and L such that K¢, < h,, < Lc,, (see [1]). By means
of this sequence, Mazhar [7] has established following theorem.

Theorem 1. If (X,) is an almost increasing sequence and the conditions

m
Y nXu|A%Ay| =O(1) as m — oo, (3)
n=1
" p
L =0(P,) as m— oo, 4)
n=1 n
) =0(Xy) as m— oo (5)
n=1 n
and
- P
—n\tn]k =0(Xy) as m— oo, (6)
n=1 Py

are satisfied, where (t,) is the nth (C,1) mean of the sequence (nay), then the series }_a,\, is
summable |N, py |, k > 1.

2 MAIN RESULT

A positive sequence () is said to be quasi B-power increasing sequence if there exists a
constant K = K(B,v) > 1 such that KnPv,, > mPv,, holds for all n > m > 1 (see [6]). It should
be noted that every almost increasing sequence is quasi -power increasing sequence for any
nonnegative 8, but the converse need not be true as can be seen by taking the example, say
Yy = n~P for B > 0. A sequence (A,) is said to be of bounded variation, denoted by (1,) €
BY,if Y7 1 |AAw| = Y1 |An — Apr1| < oo. One can find some applications of quasi power
increasing sequences (see [4-6, 10]). The purpose of this paper is to obtain a theorem which
generalizes Theorem 1 for ¢ — | A; 6| summability using quasi f-power increasing sequence.
Before giving this theorem, let us introduce some further notations.

Let A = (a,y) be a normal matrix, A = (d,,») and A= (Ayp) are defined as follows:

n
ﬁnv:Zani, n,v=0,1,... (7)
i=v

and

Aoo = dop = 400, fAnp = Ay —Ap—10, n=12,..., (8)
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A and A are the well-known matrices of series-to-sequence and series-to-series transforma-
tions, respectively. Then, we have

n n
An(s) = Z AnySy = Z Anoly )
v=0 v=0
and
_ n
AAn (S) — Z ﬁnyaz]. (10)
v=0

Theorem 2. Let (A,) € BY and A = (anw) be a positive normal matrix such that

do=1 n=0,1,... (11)
Ap_10 = Anp, for n=>v+1, (12)
py = O <%> , (13)
n—1 |4
a
v ol _ o, (14)
v=1 v
m+1 . .
) K| Aplny| = O <(pi ’1) as m — oo, (15)
n=ov+1
et ok Sk
Z Pn ’ﬁn,v+1’ =0 <(Pv ) as m — oo. (16)
n=v+1

Let (X,) be a quasi B-power increasing sequence for some 0 < B < 1 and ¢,p, = O(Py). If
conditions (2), (3) of Theorem 1 and

m
s 1
) k= |ty |f = O(Xy) as m — oo, (17)
n=1 h
m
qoikilytn‘k =O(Xm) as m— oo (18)
n=1

are satisfied, then the series ) a,\, is summable ¢ — |A; S|, k > 1and0 < 6 < 1/k.
Lemma 1. ((4]). Under the conditions of Theorem 2, we have

nXu|AAy| =0(1) as n— oo, (19)

Y Xu|AMy| < oo (20)

n=1
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3  PROOF OF THEOREM 2

Let (I,) denotes A-transform of the series )" a,A,,. Then, we have

by (9) and (10). Now, using Abel’s transformation,

n—1 4 v 4 n
Z ( nz; ) Zrar rm n Zrar

v=1

>

Iy

v:

=Ty +Inp + Iz + L 4.

To complete the proof of Theorem 2, by (1), we will prove that
2 PR L F< oo, for r=1,2,3,4.

For r = 1, applying Holder’s inequality, we have

k
Z AT = Z gkt (Z Ao (ano)] [Ao] |tv|>

= Z g 12 B0 (@no)| Ao |1, |° (nx | A (

v=1

By (7) and (8), we have

v+1 11
A tz] + Z ﬂn v+1AA tv + Z lln v+1Av+1tv +

A

a

n+1

———pnAntn

k—1
nv)l) :

Ay (anv) = lno — Apo+1 = Ano — An—10 — Ano+1 T An—1,0+1 = Ano — Ap—1,0-

Thus using (7), (11) and (12)

n—1 n—1
Z |Av(ﬁﬂv)| = Z(ﬂn—l,v _anv) < aun.
v=1 v=1
Hence,
ch‘”‘*“ Zqo‘”‘“”“(Z\A HAHH)
k - ok—1 k
1) Z Aol £, [ Z P Ao (Bno)| = O(1) Y 00| |to]
v=1 n=v+1 v=1

Z AlAy |Z¢‘fk e+ 0 (1) A Iquik kol

v=1 r=1 v=1
-1

3

=0(1) Y |82 |Xo +O(1)[Am| X = O(1) as m — oo,

v=1

155
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by (2), (13), (15), (18) and (20). For r = 2, using Holder’s inequality, we get

k—1
-1 n—1
Z Py Ly | = Z gyt Z 041 || AN [to]* (Z |ﬁn,v+1||Mv|)
= v=1
dtk=1k (= k
Z Pn g Z |01 DA |t
v=1
k sk sk |to|*
D 38Nl T ] = 0(1) 3 ool e
v=1 n=ov+1 v=1
= skl ik T
1) ) A(v]Ady]) Z P =1t + O()m|AAL] Y ¢ =|t]
v=1 r=1 4 v=1 v
m—1 m—1
1) Y 0Xo|A%As| +O(1) Y [AA|Xo + O(1)m| Ay | Xin
v=1 v=1

=0(1) as m— oo,

by using (3), (13), (16), (17), (19) and (20).
Again, for r = 3, we have

k
n—1
. t
Z ¢5k+k 1‘1 ’k < Z (P5k+k 1(2 \an,le)‘vH‘%)

v=1
skrko1 [ kltol* — |y v+1| o
Z Pn Z |8n,041/|Aos1] - Z
Shtk—1 k-1 =
Z Pn M Z |ﬁn,v+1||Av+1|
v=1
ol : k
Z Mv—i—l’ Z 90 ‘anv-i-l’ = Z Mv+1Htv’
n=ov+1 v=1
— skl ik & k
1) Z [ Ay 11 Z% B+ O() A Z ) —val
v=1 r=1 U=
m—1
= O(l) Z |A)\v+1|Xv+1 +O(1)|Am+1|Xm+1
v=1

=0(1) as m— oo,

by using (2), (13), (14), (16), (17) and (20).
Finally, as in the process for I, 1, by using Abel’s transformation, we have

m
Z ¢5k+k 1 ’ In,4 ‘k — O(l) Z ¢5k+k 1 k ‘)\n’ ‘tn’k

= O(1) as m— oo,

by using (2), (13), (18) and (20). This completes the proof of Theorem 2.
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If we take (X,) as an almost increasing sequence, ¢, = %, Ao P * and 6 = 0 in Theorem

2, then we get Theorem 1. In this case the conditions (14), (17) and (18) reduce to the conditions

(4), (5) and (6), respectively. Also, if we take (X,) as an almost increasing sequence, ¢, = 5—2

and a,, = Z—Z in Theorem 2, then we get a theorem dealing with |N, p,; 8|, summability (see
[8]).
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Osapcaan I'. [Tpo Hose 3acmocyeants keasi-cmeneHesux spocmaiouux nocaidosHocmeii // Kapmarcski Ma-
TeM. my6A. — 2019. — T.11, Nel. — C. 152-157.

Y poboTi AOCAiAXKEHO abCOAIOTHY MaTpUUHY CyMOBHICTh HECKiHUeHHMX MOocAiaoBHOCTell. HoBy
TeopeMy, sIKa CTOCYEThLCSI YMOB abCOAIOTHOI MaTPWYHOI CyMOBHOCTI i y3araAbHIOE BiAOMY TeopeMy
IIPO yMOBM abCOAIOTHOI cyMOBHOCTI Pica AASI HeCKIHUHHMX IIOCAIAOBHOCTEN AOBEAEHO 3a CAaOIIIX
YMOB 3 BUKOPUCTaHHSIM KBa3i-B-CTelleHeBUX 3pOCTa0uMX MOCAIAOBHOCTel. TakoX, OTpMMaHO OAMH
BiAOMMIT pe3yABTAT, SIKUIA CTOCYEThCS ab6COAIOTHOL cyMOBHOCTI Pica.

Kntouosi croea i ppasu: cepense 3a Picom, MarKe 3pocTarodi IOCAIAOBHOCTI, KBa3i-cTeTleHeBi 3po-
CTaro4i MOCAIAOBHOCTI, HepiBHiCTh I'eAbaepa, HepiBHICTh MiHKOBCHKOrO, MATPUYHI IEPETBOPEHHSL.
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ON APPROXIMATION OF HOMOMORPHISMS OF ALGEBRAS OF ENTIRE
FUNCTIONS ON BANACH SPACES

It is known due to R. Aron, B. Cole and T. Gamelin that every complex homomorphism of the
algebra of entire functions of bounded type on a Banach space X can be approximated in some
sens by a net of point valued homomorphism. In this paper we consider the question about a
generalization of this result for the case of homomorphisms to any commutative Banach algebra A.
We obtained some positive results if A is the algebra of uniformly continuous analytic functions on
the unit ball of X.

Key words and phrases: analytic functions on Banach space, homomorphisms of algebras of ana-
lytic functions, approximation property.
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INTRODUCTION

Let X be a complex Banach space and Hj,(X) be the algebra of entire functions of bounded
type on X, that is, H,(X) consists of all analytic functions on X which are bounded on all
bounded sets. It is known that H,(X) is a Fréchet algebra with respect to the following family
of norms

Ifll- = sup [f(x)], f &€ Hy(x),
x| <r
where r is taken over the set of positive rational numbers. We denote by M, the spectrum
of Hyp(X), that is, the set of all continuous complex valued homomorphisms of Hy(X). My is
a topological space endowed with the Gelfand topology which is the weakest topology such
that all mappings f(¢) := ¢(f) are continuous. Typical examples of elements in M, are point
evaluation functionals 6y, x € X which are defined by dx(f) = f(x), f € Hp(X).

In [1] it was proved that for every complex homomorphism ¢ € M, there exists a net
(x¢) C X such that ¢(P) = liorcn P(xy) for every P € P(X), where P(X) is the algebra of all
continuous polynomials on X. This property was used for investigations of spectrain [8, 9, 6, 3].
Our task is to generalize this formula in the case of homomorphisms from H,(X) to some
commutative Banach algebra A.

Let A be a complex commutative Banach algebra and A ®, X be the complete projective
tensor product of A and X. Every element of A ®, X can be represented by the form 7 =
Y ar @ xx, where a, € A, x; € X.

k
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For every f € Hy(X) let us define a function f : A ® X — A so that foreverya € A®, X,
f(a) is the “value” of f at @ in the means of functional calculus for analytic functions on a
Banach spaces ([5]). Then the mapping f + f is a homomorphism between algebras Hj(X)
and (Hy(A @, X), A). For every fixed @ we define 6;(f) = f(@) and 0 is a homomorphism
from Hy(X) to A (see also [7, 10]).

The article is motivated by the following general question: under which conditions for an
arbitrary homomorphism ® from Hy,(X) to A there exists a net (ay) C A ® X such that

®(P) = lim6z(P) = lim P(a,), VP € P(X)? (1)
o o
We obtain some positive answers under assumption that X has the approximation property for

the case when A = H;..(B), where H2.(B) is the algebra of all uniformly continuous analytic
complex functions on closed unitball B := {x € X : ||x|| < 1} with norm

Ifll = sup [f(x)]-

[x[[<1
For more definitions and properties of polynomials and entire functions of bounded type
on Banach spaces we refer the reader to [4].

1 MAIN RESULTS

We consider case when A = H%.(B). Also, we suppose, first that @ is the identity mapping,
thatis, ® = I: Hy(X) — H;w(B) and I(f) is the restriction of f to B.

Our destination is to show that under some conditions there exists a net (a,) € H;(B) ®x
X such that

O(f)(x) =lim f(a) V f € Hy(X) )
for @ = I and for a more general case of ®.

Example 1. Let us consider X = C" and ® = [: H,(C") = H(C") — H$(B) = A(B).
Every element x € C" can be represented as

n
X = Z e;(x)ek/
k=1

where {¢;}}_, is a basis in C" and {e; }_, is the dual basis of the coordinate functionals. Then

n
ac AB)®,C",a= Y ef ®e, thatis
k=1

a(x) = i ep(x)ex = x.
k=1

On the other hand, in the sense of functional calculus we have:

1(F)(x) = I(f(x)) = f(x) = f (kzl ez<x>ek> —F@(x) =7 (kz 6 ® ek) (x).

Thus, for the fixed homomorphism ® = I we found an elementa and an arbitrary functions
f € A(B) and we have equality:

I(f(x)) = f(@)(x) = 0a(f) (x).

Note that in this case we need just a single A-evaluation functional 0.
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Let ® be an arbitrary homomorphism from H(C") to .A(B) such that there is an analytic
automorphism F : B — B such that ® = Cro I, where Cr is the composition operator,

Ce(f)(x) = f(F(x)), f € A(B), x € B. We set

n
=) (efoF)®er € A(B)®C".
k=1

Then &(f)(x) = f(@)(x).

This example can be generalized to the case when X has a Schauder basis. Recall that the
sequence {e, }°_; in a Banach space is called a Schauder basis of X if for any x € X there exists
a unique sequence of scalars {x,}°’ ; such that

[e ]
x=Y xpen,
n=1

and the series converges by the norm of X, that is,

n
lim Hx — Z xkekH = 0.
k=1

n—oo

We denote by e}, the coordinate functionals, e}, (x) = x;,.

Proposition 1. Let X be a Banach space with a Schauder basis, A = H3.(B), ® = I: Hy(X) —
H:2(B). Then (2) holds for a sequence a,, € H2(B) @, X.

Proof. Let {ex}; ; is a Schauder basis in X. Then every element x € X can be represented as

[ee)
= Y e;(x)ex. Consider
k=1

m m
Ay = Zeij@ek: Ze;ek.
k=1 k=1

In the sense of functional calculus we have:

ot ()11 (o) ()

m
Since {ex}}> ; is a Schauder basis, Y- xi(ex) — x as m — co. This means that
k=1

I(f)(x) = lim f(@n)(x) = lim 0z, (f).

m—o0 mM— 00

In the general case we consider the space with the approximation property.

Definition 1. A Banach space X is said to have the approximation property in the sense of
Grothendieck if for every compact set K in X and every ¢ > 0 there is an operator T : X — X
of finite rank such that ||Tx — x|| < ¢ for every x € K.

Theorem 1. Let X be a Banach space with the approximation property. Then for ® = I equality
(2) holds.
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Proof. Let 2 be the following set of indexes: if & € 2, then « = (K, ¢, 1), where K is a compact
setin X, e > 0 and n € IN. We introduce a partial order on 2 by the following way: a1 < a5 if
and only if K1 C K, &1 < ey and n1 < np. So 2 is a directed set. Since X has the approximation
property, for every a = (Ky, €4, 11,) € 2 there is an operator T, with the rank n, such that for
every x € Ky, || Tox — x|| < €. (Tx)a is @a net and x = lim, T, x for every x € X.

Let {7xq} 2, be a basis in the range of T, in X and {7} ,};*,; € X' be linear functionals

which are bi-orthogonal to {7k }%1- S0 Ta(x) = Y% Y 5 (X)Vka- Thus we can set

Ny

— *

B =Y Vi @ Thaw
k=1

Hence, for every f € Hy(X) B
[(f)) = lim f (@) € Hyc(B)
and so equality (2) holds. O

It seems to be that the approximation property is to strong condition for our purpose. Let
us consider the weak H, topology on X as the the restriction of the Gelfand topology on X,
that is, the weakest topology on X such that all f € Hy(X) are continuous.

Definition 2. We say that X has the Hy-approximation property if for every compact set K in the
weak Hy,(X) topology and every € > 0 there exists a finite rank operator T such that

f(T(x) —x)| <e
for every polynomial f € Hy(X) and every x € K.
Doing the same work like in Theorem 1 we can prove the following theorem.
Theorem 2. If X has the H,-approximation property, then (2) holds.

It is easy to see that every Banach space X with the approximation property has the Hy-
approximation property but we do not know about the inverse implication. Also, we do not
know any examples for which the property (2) is not true.

Let us consider (1) for more general case.

Theorem 3. Let ® be a homomorphism from Hy,(X) to H;.(B) such that there is an analytic
automorphisms F : B — B with ® = Cr o I, where Cr is the composition operator with F.
Then (2) holds.

Proof. Let

My
*
’)/k,lx & 'Yk,rx
k=1

be the net which approximate the identity map I as in the proof of Theorem 1. It enough to
put

My

Ay = Z(’Y}ia © F) ® Y,
k=1

O

Note that in the general case, not every homomorphism @ can be represented as ® =
Cr o I. In [2] some related problems to the question about representation of homomorphisms
by compositions operator were considered.
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ON THE SOLUTIONS OF A CLASS OF NONLINEAR INTEGRAL EQUATIONS IN
CONE b-METRIC SPACES OVER BANACH ALGEBRAS

In this paper, we study the existence of the solutions of a class of functional integral equations by
using some fixed point results in cone b-metric spaces over Banach algebras. In order to obtain these
results we introduced and proved some properties of generalized weak ¢-contractions, in which the
@ are nonlinear weak comparison functions. The obtained results are generalizations of results of
Van Dung N, Le Hang V. T., Huang H., Radenovic S. and Deng G. Also, some suitable examples are
given to illustrate obtained results.
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1 INTRODUCTION AND PRELIMINARIES

In 2007, Huang and Zhang [5] introduced the concept of a cone metric space and general-
ized Banach fixed point theorem in such spaces. Afterwards, several authors published many
papers on this topic. Aydi et al. [1,2] proved some coupled coincidence point results on gen-
eralized distance in ordered cone metric spaces. Dordevi¢ et al. [4] considered fixed point and
common fixed point results for maps in tvs-cone metric spaces under contractive conditions
expressed in the terms of c-distance. By using an old Krein’s result and a result concerning
symmetric spaces, Jankovic et al. [10] showed in a very short way that fixed point results in
cone metric spaces obtained recently, in which the assumption that the underlying cone is
normal and solid is present, can be reduced to the corresponding results in metric spaces.

In 2013, Lia and Xu [12] introduced the notion of cone metric spaces over Banach algebras
and defined a generalized Lipschitz contraction with vector contractive coefficient instead of
usual real constant. The authors proved the existence of fixed points with the assumption
that the underlying cone is normal. Furthermore, they explained by an example that the fixed
point theorems in cone metric spaces over Banach algebra are not equivalent to those in met-
ric spaces, and so, such generalizations are the genuine ones. Latter, Xu and Radenovi¢ [16]
showed that the normality of the cone can be removed from the results of Liu and Xu [12]. In
2015, Huang and Radenovi¢ [6] introduced the notion of cone b-metric spaces over Banach al-
gebra and presented some common fixed point theorems in such spaces. Subsequently, Huang
and Radenovi¢ [7] considered the Banach type version of a fixed point result with the general-
ized Lipschitz constant k satisfying p(k) € [0, 1) where p(k) is the spectral radius of k. In 2017,

Huang et al. [8] generalized a famous result for Banach-type contractive map from p(k) € [0, 1)

YAK 515.124.32, 517.968.4
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to p(k) € [0,1) in cone b-metric spaces over Banach algebra with coefficient s > 1. Very re-
cent, by using a nontrivial proof method Li and Huang [11] proved some fixed point results
for weak ¢-contractions in cone metric spaces over Banach algebras and applied to investigate
the existence and uniqueness of a solution to two classes of equations. However, in the con-
struction of such applications, the functions ¢ considered in ¢-contractions are simple linear
functions, for example see [6, Theorem 3.1] and [11, Theorem 3.2].

In this paper, we study the existence of the solutions of a class of functional integral equa-
tions by using some fixed point results in cone b-metric spaces over Banach algebras. In order
to obtain these results we introduced and proved some properties of generalized weak ¢-
contractions, in which the ¢ are nonlinear weak comparison functions, and we also illustrated
obtained results by suitable examples.

Now we recall definitions and properties which will be useful in what follows.

Definition 1 ([14, p. 245]). Let (A, ||.||) be a Banach space over the real field R in which a
multiplication is defined that for all x,y,z € A and for all « € R satisties

1) (xy)z = x(yz),

2) x(y+z)=xy+xzand (x +y)z = xz+yz,

3) a(xy) = (ax)y = x(ay),

4 [lxyll < llx[llyll,

5) there is a unit element e with ||e|| = 1 such that xe = ex = x.
Then A is called a Banach algebra.

Definition 2 ([7, p. 567]). Let A be a Banach algebra with a unit e and a zero element 6. A
nonempty closed subset P of A is called a cone in A if

1) {6,e} C P,
2) aP+ BP C P, foralla, B € Ry,
3) P2=PP C P,
4) Pn(—P) = {6}.
Definition 3 ([7, p. 567]). Let A be a Banach algebra and P is a cone in A. We say that
1) P is asolid cone ifint P # &, where int P denotes the interior of P;
2) P is a normal cone if there is a number M > 0 such that for all x,y € A

6 < x <y implies ||x|| < M||y||,

where ||.|| is the norm in A. The least positive value of M satisfying the above inequality is
called the normal constant.
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Note that, for any normal cone P we have M > 1 (see [13]).

For a given cone P C A, we can define a partial ordering “ < ” with respect to P by x <y
if and only if y — x € P. We write x < y, if x < y and x # y, and denote x < y if and only if
Yy — x € intP.

In the sequel, unless otherwise specified, we always suppose that A is a Banach algebra, P
is a solid cone in A, and =, < are the above partial orderings with respect to P.

Definition 4 ([5]). Let X be a nonempty set, A be a Banach algebra andd : X x X — A be a
map such that for all x,y,z € X

1) 6 Rd(x,y),andd(x,y) =0 ifandonlyifx =y,
2) d(x,y) = d(y, x),
3) d(x,z) =d(x,y) +d(y,z).

Then d is called a cone metric on X and (X, .A,d) is called a cone metric space over Banach
algebra.

Definition 5 (5]). Let (X, A, d) be a cone metric space over Banach algebra, {x, } be a sequence
in X and x € X. Then

1) {xn} converges to x € X if for each ¢ € intP there exists N € IN such that d(x,,x) < ¢

foralln > N. Then, we write lim x,, = x orx,, — x asn — oo;
n—o0

2) {xy} is a Cauchy sequence if for each c € intP there exists N € N such thatd(x,, x,) < ¢
foralln,m > N;

3) (X, .A,d) is called complete if each Cauchy sequence is convergent in X.

Definition 6 ([7]). Let X be a nonempty set, s > 1 be a constant, A be a Banach algebra and
d: X x X — A be amap such that forall x,y,z € X

1) 0<d(x,y),andd(x,y) = 0ifonlyifx =y,
2) d(x,y) = d(y, x),
3) d(x,z) = s[d(x,y) +d(y,z)].

Then d is called a cone b-metric on X and (X, A,d,s) is called a cone b-metric space over
Banach algebra with the coefficient s.

Remark 1 ([7]). A cone metric space over Banach algebra must be a cone b-metric space over
Banach algebra. Conversely, it is not true. As a result, the notion of cone b-metric space over
Banach algebra greatly generalizes the notion of cone metric space over Banach algebra.

The following example shows that there exists a cone b-metric spaces over Banach algebras
which are not cone metric spaces over Banach algebras.
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Example 1 ([7]). Let A = C[0, 1] be the usual Banach space with the supremum norm. Define
multiplication in the usual way: (xy)(t) = x(t)y(t), t € [0,1]. Then A is a Banach algebra with
aunite =1. PutP = {x € A:x(t) >0,t € [0,1]} and X = R. Defineamapd : X x X — A
by d(x,y)(t) = |x —y|Pe! for all x,y € X, where p > 1 is a constant. This makes (X, A, d, s)
into a cone b-metric space over Banach algebra with the coefficient s = 2P~!, but it is not a cone
metric space over Banach algebra.

Similar to Definition 5, we repeat the notions of convergent sequence, Cauchy sequence
and complete space in cone b-metric space over Banach algebra.

Definition 7 ([7]). Let (X, A, d, s) be a cone b-metric space over Banach algebra and {x, } be a
sequence in X. We say that

1) {x,} converges to x € X if for each ¢ € intP there exists N € IN such that d(x,,x) < ¢

foralln > N. Then, we write lim x,, = x orx,, — x asn — oo;
n—o00

2) {x,} is a Cauchy sequence if for each c € intP there exists N € N such thatd(x,, x,) < ¢
foralln,m > N;

3) (X, .A,d) is a complete cone b-metric space if each Cauchy sequence in X is convergent.

Definition 8 ([4, Sect. 3.1]). A sequence {u,} C P is called a c-sequence if for each ¢ € int P,
there exists N € N such that u, < c foralln > N.

Lemma 1 ([7]). Let P be a solid cone in a Banach algebra A, {u,} and {v,} be two c-sequences
inP. Ifa, B € P are two arbitrarily given vectors, then {au, + pv,} is a c-sequence.

Lemma 2 ([14]). Let A be a Banach algebra. Then the spectral radius of k € A equals to
p(k) = Jim [[k"[[7 = inf [[k"]|.

Lemma 3 ([6]). Let A be a Banach algebra. Letk € A and p(k) < 1. Then {k"} is a c-sequence.
Lemma 4 ([9]). Let A be a Banach algebra and u,v,w € A. Then

(1) ifu Rvandv < w, thenu K w;

(2) Ifu < vandv < w, thenu < w;

(3) If 6 < u < c foreach c € intP, thenu = 6;

(4) aintP C intP for allx > 0;

(5) If c € intP, 0 = a, and lgn a, = 0 then there exists ny € IN such that for all n > ng we
n—o0
havea, < c.

Definition 9 ([9]). Let (X, A, d,s) be a cone b-metric space over Banach algebra and B C X. An
element b € B is called an interior point of B whenever there is § < p such that By(b, p) C B,
where By(b,p) = {y € X :d(y,b) < p}.

Definition 10 ([15, p. 246]). A function v : Ry — Ry is called a comparison function if 7y is
increasing and 1211 v"(u) =0 forallu € Ry.
n—o00
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The following some notions and property are well known in [11].

Definition 11 ([11]). Let A be a Banach algebra and P be a conein A. Amap ¢ : P — P is
called a weak comparison if the following conditions hold

(1) ¢ is nondecreasing with respect to <, that is, for all t;,t; € P and t; < tp, implies that
p(t1) =2 @(t2);

2) {¢"(t)} is a c-sequence in P for all t € P;
(3) if {u,} is a c-sequence in P, then {¢(u,)} is also a c-sequence in P.

Definition 12 (11]). Let (X, A, d) be a cone metric space over Banach algebra and P be a cone in
A. Let ¢ : P — P be a weak comparison. Then amap f : X — X is called a weak ¢-contraction
ifforallx,y € X,

d(f(x), f(y) = e(d(x,y)).

Theorem 1 ([11]). Let (X, .A,d) be a complete cone metric space over Banach algebra and
f : X — X be a weak ¢-contraction. Then f has a unique fixed pointu € X and lgn f'(x)=u
n—oo

foreachx € X.

2 FIXED POINT RESULTS IN CONE b-METRIC SPACES OVER BANACH ALGEBRAS

First we extend the notion of weak @-contraction in metric spaces to the setting of cone
b-metric spaces over Banach algebra as follows.

Definition 13. Let (X, A, d, s) be a cone b-metric space over Banach algebra and P be a cone in
A. Let ¢ : P — P be a weak comparison. Then a map f : X — X is called a generalized weak
@-contraction if for all x,y € X,

d(f(x), f(y) = e(d(x,y)).

Lemma 5. Let (X, A,d,s) be a cone b-metric space over Banach algebra, P be a cone in A, and
f : X — X be a generalized weak ¢-contraction. Then,

(1) forallty, t; € P witht; <ty and alln € IN, we have ¢"(t1) = ¢"(t2);

(2) forallx,y € X and alln € IN, we have
d(f"(x), f*(y)) = ¢"(d(x,y))-
Proof. (1). For any tq,t, € P with t; < t;, since ¢ is a weak comparison, we have

@(t1) = o(t2).

Then, we get
9'(t) = p(9(h)) = p(p(t)) = ¢*(t2).

Continuing the above process, we obtain that for all 7,

¢"(t1) 2 9" (t2).
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(2). For any x,y € X, since f is a generalized weak ¢-contraction, we have

d(f(x), f(v)) = e(d(xy)).

Note that ¢ is a weak comparison, so we have

p(d(f(x). F1)) = 9(@(d(x,y) ) = 9*(@(x.1)). 1)

Using f being a generalized weak ¢-contraction again, we get

A(F2(x), £2(y) = 9(d(F), fB)) )- &)
From (1) and (2) we have
d(f2(x), f(v) = ¢*(d(x,y))-
Continuing this process we obtain that for all n,
d(f"(x), f*(y)) = ¢"(d(x,y))-
O

Now, we establish some results for generalized weak ¢-contraction maps in complete cone
b-metric space over Banach algebra.

Lemma 6. Let (X, A,d,s) be a complete cone b-metric space over Banach algebra and
f : X = X be a generalized weak ¢-contraction. Then f has a unique fixed point u € X and
foreach x € X, lgn f'(x) = u.

n—oo

Proof. Letany x € X and put xop = x, x, = f*(x) foralln > 1.
Then, by Definition 13, for each ¢ € intP, exists ny € IN such that ¢ (c) < s~ !c. Using
Lemma 5.(2), for every n € IN we have

d(xn, Xpiny) 2 @" (d(xo, xno)). 3)

Since {¢" (d(x0, Xy,)) } is a c-sequence then by (3) and Lemma 4.(1), we have {d(x,, Xu4n,)} is
also a c-sequence. Hence, exists N; € IN such that

d(Xn, Xniny) K stc— @™ (c) forall n > Nj.
Put
B(xy,c) ={y € X:d(xy,y) < c} forallm > N; — 1. 4)
For each n > Nj — 1, choosing y € B(xy, ¢), by (3) and (4) we have

d(xn, f*y) s[d(xn, Xnyny) + d(Xntng, fY)]
sls™c — ™ (c) + ¢"(d(xu,y))]
< ¢—s¢™(c)+s9™(c)

= C.

=
=
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This implies that B(xy, ¢) is f"0-invariant. Hence, for each k € IN, we have
d(Xn, Xpikny) = d(xn, fPx,) < ¢, foralln > Ny — 1. (5)
Using Lemma 5.(2), for every n € IN we get

sd(xn, Xn11) + Szd(xn—i-l/ Xpg2) + -+ Snod(xn+n0—1z xn+n0)

6
=< s¢" (d(x0,x1)) + szfp"(d(xl,xz)) 4 4 5"09" (d(Xng—1, Xng) ) - ©)

For each i = 0,1,2,...,n9, we have {¢" (d(.Xi,Xi+1))} is a c-sequences then by Lemma 1,
{s@™ (d(x0,x1)) + 5%@" (d(x1,x2)) + - - - + s"0¢" (d(xy,—1, Xny)) } is a c-sequence. Hence, by (6)
and Lemma 4.(1), we have

{sd(xn, Xps1) + 82d(xXn1, Xng2) + -+ - + 8™ (X191, Xnrng) }
is also a c-sequence. So, for any ¢ € intP, exists N, € IN such that
Sd(xnr xn+1) + Szd(xn+1/ xn—i—?.) Tt Snod(xr&noflr xn+n0) <c (7)

foralln > Ns.
Denote N = max{Ny, N, }, for all m, n > N we put

o= (1], 1= [122)

where [.] stands for the integer part. Because
N<m-—kynyg<N+ny, N<n-—kyny<N+ny, (8)

from (8) we find that
|(n — knno) — (m — kyno)| < no.

Hence, from (7) we have

d(xnfknnorxmfkmno) = Sd(xnfknnor xnfknnoJrl) T+t Snod(xnfknn0+n071/ xnfknnoJrno) <. (9)
Hence, from (5) and (9) we find that

d(xﬂf xm) = Sd(xn/ xn—knno) + Szd(xn—knnoz xm—kmno) + Szd(xm—kmnol xm)
< (s+8%+8)c.
This implies that {x, } is a Cauchy sequence in (X, A, d, s). Since (X, A, d, s) is complete there
exists u € X such that 1131 Xy = U.
n oo

Next, we prove that u is the fixed point of f. Indeed, we have
d(fu,u) < sd(fu,x,) + sd(xn, u)
= sd(fu, fx,—1) + sd(xu, u) (10)
< so(d(u,xy-1)) + sd(xn, u).

Since {d(x,,u)} is a c-sequence and ¢ is weak comparison, then {¢(d(u,x,_1))} is also a
c-sequence. Hence, by Lemma 1 we have {s¢(d(u, x,_1)) + sd(x,, 1)} is a c-sequence. By (10),
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Lemma 4.(3) and {s¢(d(u, x,_1)) + sd(x,, u)} is a c-sequence, we find that d(fu,u) = 6. This
implies that u is a fixed point of f.

Finally, we prove that the fixed point is unique. Assume that v is another fixed point of f.
Then we have

0 <d(u,v) =d(f"(u), f"(v)) = ¢"(d(u,v)) foralln > 1. (11)

Since {¢"(d(u,v))} is a c-sequence then by (11) and Lemma 4.(3), we have d(u,v) = 6. This
implies that u = v.
So, f have unique fixed point # € X and for each x € X, lgn f'(x) = u. O
n—oo

In Lemma 6, if we choose ¢ : P — P by ¢(t) = kt, forallt € A and k € P such that
p(k) < 1, then we obtain the following.

Corollary 1 ([8]). Let (X,.A,d,s) be a complete cone b-metric space over Banach algebra and
f : X = X be a map such that for all x,y € X,

d(f(x), f(y)) = kd(x,y), (12)

where k € P is a generalized Lipschitz constant with p(k) < 1. Then, f has a unique fixed
pointu € X and for each x € X, lgrl ' (x) = u.
n—oo

By choosing A = R and P = Ry in Lemma 6, then we obtain the following.

Corollary 2 ([3]). Let (X,d,s) be a complete b-metric space and f : X — X be a map such that
forallx,y € X,

d(f(x), f(y)) < 9(d(x,y)),

where ¢ : Ry — Ry is a comparison function. Then, f has a unique fixed pointu € X and for
eachx € X, lgn f"(x) = u.
n—oo

The following example shows the superiority of the main result in the sense that there
exist a complete cone b-metric space over Banach algebra and a map f : X — X such that
Corollary 1 is not applicable to, while our result is.

Example 2. Let A = R%, P = {(x,y) € A: x,y > 0}, and x = (x1,x2), y = (y1,42) € A.
Define

(a) the norm of A by ||(x1, x2)|| = |x1| + |x2|;
(b) the multiplication of A by xy = (x1,x2)(y1,Y2) = (X1Yy1, X1y2 + X211);
(c) X = [0,00) and defined : X x X — A by d(x,y) = (|x —y|?,0) forallx,y € X;

(d) f: X=X, f(x) = 57 forallx € X;

(€) ¢ : P — P, ¢(z1,22) = <%,O> forall (z1,z3) € P.
Then

(1) A is a Banach algebra with the identity elemente = (1,0) and 6 = (0,0);
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(2) forallx = (x1,x2), y = (y1,y2) € A, x = yifand only if x; > y; and x > yp;
(3) (X, A,d,s) is a complete cone b-metric space over Banach algebra with s = 2;
(4) there does not existk € A with p(k) < 1 such that the condition (12) holds;

(5) all assumptions of Lemma 6 hold.

Proof. (1). See [11, Theorem 3.1].

(2). Since P = {(x,y) € A : x,y > 0}, forany x = (x1,x2), v = (y1,¥y2) € A4,
we have x > y if and only if (x1 — y1, X2 — y2) € P. Itis equivalent to x; > y1 and xp > y».

(3). Forany x,y,z € X = [0,00) we have

e d(x,y) = (Jx—y[%0) = (0,0). Sod(x,y) = 6,and d(x,y) = 0 if and only if x = y;

o d(x,y) = (Ix —y|*0) = (ly — x2,0) = d(y, x).
Since |x —z[? < 2(|x — y|* + |y — z|*), we have (|x —z|?,0) < 2[(|x —y[*,0) + (ly — 2%, 0)].
It implies that
d(x,z) 2 2(d(x,y) +d(y,z)).

By the above, d is a cone b-metric on X with s = 2.
Now for any Cauchy sequence {x,} in X and for each ¢ = (c1,¢2) € intP there exists
mgy € IN such that for all n, m > my we have

d(xn, Xm) = (|xn — xm|%,0) < (c1,02) = c.

This implies that for each ¢; > 0, we have |x, — x| < (cl)% for all n,m > myp. It implies
that {x,} is a Cauchy sequence in R. So there exists x € R such that nlgrolo |x, — x| = 0.
Since x, € X = R4 for all n and x;, — x in R, we have x € X. This implies that for each
¢ = (c1,¢2) € intP, there exists my € IN such that for all n > mg we have |x, — x| < (cl)%.
Therefore, we get that for all n > my

d(xn, x) = (Jxn — x]z,O) < (c1,02) =c.

This proves that {x, } convergent to x in (X, A,d,s). So (X, A,d,s) is complete.
By the above, (X, A,d,s) is a complete cone b-metric space over Banach algebra with s = 2.
(4). Firstly, we observe that for k = (ky,k2) € P, by induction we have

K' = (ky, k)" = (K}, nkok ™).
It implies that
1
o(k) = inf |[K"||% = inf (|K}| + |nkoki~]) .
Then, if p(k) < 1, by (13), we get that k; < 1.
On the contrary, suppose that there exists k = (k1,k2) € P with p(k) < 1 such that

d(f(x), f(y)) < kd(x,y)
forall x,y € X. Then forall x,y € X,

(13)

2 o) =< (ky, k2) (Jx — y[2,0).

()xil_#
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For x # 0 and y = 0 we have

<‘x-j—1 2’0) = (k1 ko) (|22, 0).

It is equivalent to

x 12
(| =5]70) = (kP kalx?).
This implies that
|x[? 2
Gt =kl
Hence for all x # 0, we have
1

Letting x — 07 in (14) we get 1 < k;. This contradicts to the above observation.
(5). ® Forany z = (z1,22),t = (f1,t2) € Pwithz < ¢, thatis, 0 < z; < tjand 0 < zp < tp.

Then we have
21 tl
< .
z1 + 1= t1 + 1

o) = (722,0) < (+2,0) = g(t).

21 —+ 1’ tl —+ 1,
So, forall z, t € P with z < t, we have ¢(z) < ¢(t).

e Now for any z = (z1,22) € P we have by induction that ¢"(z) = <nz?+1,0>. It follows
that

It implies that

Z1 . Z1
< =0.
(O, 0) - <n21 + 1’0) and nlglt}o nzq +1 0

This implies that
6 < ¢"(z) and nlgxc}o ¢"(z) =6.

Therefore, for each ¢ = (c1,¢2) € intP, by Lemma 4.(5) there exists my € IN such that for all
n > my we have

Z1
/O) 7 = C.
<1’l21 +1 < (Cl Cz) C

This implies that {¢"(z) } is a c-sequence in P.
e Suppose that {z,} = {(z&"),zg’))} is a c-sequence in P, then for each ¢ = (¢, ¢2) € intP,
there exists kg € IN such that for all n > ko we have (zgn), zén)) < (c1,¢2) = c. This implies that

a0

¢(zn) = (

o ,O) < (z&"),zgn)) < (c1,62) = ¢, forall n > ko.
z; 7 +1
Therefore, {¢(z,)} is also a c-sequence in P.

Hence ¢ is a weak comparison.

Next, for any x,y € X, we have

2 _ 2
0 (5t

2
ﬁ)§<5@3%£7m)

2,0) = (\ﬁ
Q x —y[?
[x —y[2+2x—y|+1

()xil_# (15)
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2’ O)

Note that

500,10 () = (e 5

and

Y — 2
od(x,) = (A 0).

So from (15) we find that d(f(x), f(y)) = ¢(d(x,y)) for all x,y € X, and f is a generalized

weak ¢-contraction.
By the above, all assumptions of Lemma 6 hold. O

3 APPLICATIONS TO THE NONLINEAR INTEGRAL EQUATIONS

In this section, we apply Lemma 6 to study the existence and uniqueness of the solution to
the nonlinear integral equations.

Lemma 7. Let C[a, b] be the set of all continuous functions on |a, b], wherea, b € R. Let A = R?
and P = {(x,y) € A: x,y > 0} with the same norm, the same multiplication, and the same
partial order on A as stated in Example 2. Define d : Cla, b] x C[a, b] — A by

d(x,y) = (sup [x(t) —y(B)P, sup |x(t) - y(t)?)
te(a,b] te(a,b]

for all x,y € Cla,b]. Then (C [a,b], A, d,s) is a complete cone b-metric space over Banach
algebra with s = 2.

Proof. For any x,y,z € Cla, b] we have
d(x,y) = ( sup [x(t) = y(B), sup [x(t) — y(t)*) > (0,0). Sod(x,y) = 6.

te(a,b] te(a,b]
d(x,y) = 6 if and only if sup |x(t) — y(t)|*> = 0if and only if x(t) = y(t) forall t € [a,b],
te(a,b]
thatis, x = y.
Since sup |x(t) —y(t)|> = sup |y(t) — x(t)|* forall t € [a,b], we get that d(x,y) = d(y, x).
te[a,b] tE[El,b}
We have

x() — 2(8) < 2(Jx(t) = y(OP +|y(t) — 2(t) ) forall £ € [a,].

It implies that

sup |x(t) —z(£)]* < 2( sup |x(t) — y(t)|* + sup |y(t) — z(t)\2> forall t € [a,b].
te(a,b) t€(a,b) t€(a,b)
That is,
d(x,z) 22(d(x,y) +d(y,z)).

By the above, d is a cone b-metric on X with s = 2.
Now for any Cauchy sequence {x,} in (C [a,b], A, d,s) and for each ¢ = (c1,¢cp) € intP,
there exists my € IN such that for all n, m > mg we have

d(xn, xm) = ( sup |xu(t) — xm(t)[?, sup [xa(t) — xm(t)*) < (c1,02) =c. (16)
tela,b] te(a,b]
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This implies that

sup |x,(t) — xpm(t)| < /i, i =1,2, forall n,m > my. (17)
te(a,b]

So {x,} is a Cauchy sequence in C[a,b]. Since C[a,b] with the sup-norm is complete, there
exists x € C[a, b] such that nlgn x, = x. Hence by (17) we have

sup |xn(t) —x(t)| < /c;, i =1,2, forall n > my.
tela,b]

This implies by (16) that

d(xp, x) = < sup |x,(t) — x(t)[%, sup |x,(t) — x(t)|2> < (c1,62) = ¢, forall n > my.
te[glb} te[a,b]

This proves that {x, } converges to x in (C[a,b], A, d,s). So (C[a,b], A, d,s) is complete.
By the above, (C[a, b], A, d, s) is a complete cone b-metric space over Banach algebra with
s =2. ]

Theorem 2. Let (Cla,b], A,d,s) be a complete cone b-metric space over Banach algebra in
Lemma 7. Consider a integral equation

b
x(t) = n(t) —i—/ﬂ K(t, x(r))dr, te[ab], (18)

where x € Cla,b], 7 € Cla,b] and K : [a,b] x R — R. Assume that the following hypotheses
hold:

1) foreacht € [a,b], K(t,x(r)) is integrable with respect tor on [a, b];

b
2) there exists a continuous function  : [a,b] x [a,b] — R with sup / |l (t,7)|dr <1and
telab] V4
there exists a comparison function 7y such that for all t,r € [a,b] and all x,y € Cla,b],

(K (& x(r) = K(Ly ()| < [ 0)]r(1x(r) —y()]).

Then the integral equation (18) has a unique solution u € C|a, b].

Proof. Let f : Ca,b] — CJa, b] be a map defined by

(f(x)) () = 5(t) +/abK(t,x(r))dr, x € Cla,b], t € [a,b].
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For any x,y € C[a, b], we have

- (tzl[lpb () ()= (F) O, sup (7)) = (70) ®I°)

— (tz[ > { (t,x(r)) —K(t,y(r))}dr 2,:{1}2] Hb [K(t,x(r)) —K(t,y(r))]drr)

< (tz[ P { K(t, x(r)) —K(t ’dr} ,t?}?)][ ’ (t,x(r)) —K(t,y(r))‘drr)

< <ti[gb / lp(t,r)|v(|x(r) ,;1{1”}2 / [ (t, )|y (|x(r) —y(r)|)d r]2>
§<t§[ﬁ / [t )l ( sup [x(r) = y(7) /titzpb] / [yt )] ( sup [¥(0) y(r)|)df]2)

< g%u ymmfgﬁym—wm)
(

= ”Zwi‘[ﬁ x(r) y(”'2>'72<%i‘[2%'x(” —y(nP))
= ¢( sup [+(r) ~y(r)f"), sup Ix() —ynP)) = p(d(xy)),

where ¢ : P — P defined by ¢(z) = ¢(z1,22) = <’)/2(\/271),'yz(\/5)) forall z = (zq,2p) € P.
Now we prove that ¢(z) is a weak comparison.

e Forany z = (z1,2z2), t = (t,t2) € P with z < t. Then we have 0 < z; < #; and
0 < zp < 1. It follows that

0 < y(va) < 7(vh) and 0 < 1(vE) < 7(VE).

This implies that
Y (y/z1) < Y*(VH) and 12(vz2) < P(Vh).

Therefore, we get

So, forall z, t € P with z < t, we have ¢(z) < ¢(t).
e Sincez = (z1,2) € P and 7 is the comparison function, we have

(0,0) < (v"(vZ1),7"(vZ2)) and lim 7*(V1) = lim 7%(vZ2) = 0.

n—oo n—oo

This implies that
6 < ¢"(z) and nlgn ¢"(z) = 6.

Therefore, for each ¢ = (c1,¢2) € intP, by Lemma 4.(5) there exists my € IN such that for all
n > my we have

¢"(z) < (c1,c0) =¢
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This prove that {¢"(z) } is a c-sequence in P.
e Suppose that {z,,} = {(z&”),zg”))} is a c-sequence in P, then for each ¢ = (c1,¢2) € intP,

there exists [y € IN such that for all n > [y we have (Zgn), Zé")) < (c1,¢2). Since 7y is a compari-

son function, we find that
pzn) = o(=".2") = (P(/A"). P (VA)

< (1A H) = (VA V) < (vave).

This implies that {¢(z,)} is also a c-sequence in P. Hence ¢ is a weak comparison.
Thus, all the conditions of Lemma 6 hold, and hence the integral equation (18) has a unique
solution u € Cla, b]. O

The following example guarantees the existence of the function K, 1, v and 7 that satisfies
all assumptions in Theorem 2.

Example 3. Let C|0, 1] be the set of all continuous functions on [0,1]. Consider the nonlinear
integral equation

1
x(t) =t— <§ —l—ln%).sint%— /r.sint.ln (1+ 1]x(r)])dr, t €10,1]. (19)
4 9 / 2
Put
n(t)=t— <Z —|—ln29£).sint, Y(t,r) =r.sint forall t,r € [0,1],

and 1

K(t,x(r)) =r.sint.In (1+ §|x(r)|) forall x € C[0,1] andallt,r € [0,1].
Then

(1) n € C[0,1] and K(t, x(r)) is integrable with respect tor on [0,1];

1

(2) ¢(t,r) is continuous on [0,1] x [0,1] and sup [ | ¢(t,r)|dr <1;
t€[0,1] 0

(3) puty(u) =In(1+ Ju) for allu € R, we have vy is a comparison function;

(4) forallt,r € [0,1] and x,y € C[0,1], we have
K(tx() = K(t,y()| < [9e.0)|(1x() = y(0).

Proof. (1). Since y(t) = t — <43I +In #).sint for all t € [0,1], we have 5 € CJ0,1]. Since
x € C[0,1], we have K(t,x(r)) = r.sint.In (1 + 3|x(r)|) is integrable with respect to r on [0, 1].
1

(2). Tt is easy to see that ¢ (¢, r) is continuous on [0,1] x [0,1] and sup [ | ¢(¢t,7) | dr < 1.
te[0,1] 0

(3). For all u1,uy € Ry and uy < up, we have (1) = In(1 + %ul) <In(1+ %uz) = v(up).
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For any u € R, we have

and

V() = v(v(w) =In(1+ %111(1 + %u)) <

Continuing the above process we obtain that for all n,

From the above, we have v is increasing and 1131 Y*(u) = 0.
n—oo
(4). Now let x,y € C|0,1]. Then, for each 7, t € [0,1], we have

|K(t,x(r) —K(ty(r) | = )r.sint.ln(1+%|x(r)|)—r.sint.ln(1+%|y(r)|))
= |r.sint|.|In (1+%|x(1’)|) —1In (1+%|y(1’)|)‘

= |r.sint|.|In

= |r.sint|.|In

< |r.sint|.|In

) 1
< Jr.sint|.|In(1+ i}x(r) —y r)}) ‘
= |p(t, )| (|x(r) = y(r)|)
From the above, K, ¢, v and 7 satisfy all assumptions of Theorem 2. Hence the integral
equation (19) has a unique solution u € C[0, 1]. O
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— C. 163-178.

Y AaHiit pob0Ti MM BUBUAEMO iCHYBaHHSI pO3B’I3KiB A€SKOTO KAACy pyHKITIOHAABHMX iHTEIPaAb-
HUX PiBHSHD 3 BUKOPUCTAHHSIM A@SIKMX Pe3yAbTaTiB ITpO (piKcoBaHy TOUKY Y KOHIUHIMX b-MeTpUUIHMX
IIpocTOpax Haa 6aHaxoBMMM aATebpamMit. AAS OTPMMAHHS IVIX Pe3yAbTaTiB MU BBEAM i AOBEAM AeSIKi
BAACTVBOCTI y3araAbHEHMX CAAOKMX @-CKOPOUEHbD, B SKMX ¢ € HeAIHIHMMM cAabKumMm pyHKIiIMM
nopiBHsIHHS. OTpyMaHi pe3yAbTaTy € y3ararbHeHHsIMI pe3yabTaTiB Van Dung N., Le Hang V. T,,
Huang H., Radenovic S. i Deng G. TakoX, HaBeA€HO AesIKi BIATIOBiAHI IPMKAAAM AAS iAfocTpamii
OTPUMAHMX Pe3yAbTaTiB.

Kntouosi croea i hppasu: KOHIUHMIA b-MeTPpUUHMIA IIPOCTip HaA 6aHAXOBOIO aATrebpoIo, P-CKOPOUEH-
HsI, C-TIOCAIAOBHICTD, HEpyXOMa TOUKa, iHTerpasbHe PiBHSIHHSL.
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CLASSIFICATION OF GENERALIZED TERNARY QUADRATIC QUASIGROUP
FUNCTIONAL EQUATIONS OF THE LENGTH THREE

A functional equation is called: generalized if all functional variables are pairwise different;
ternary if all its functional variables are ternary; quadratic if each individual variable has exactly
two appearances; quasigroup if its solutions are studied only on invertible functions. A length of a
functional equation is the number of all its functional variables. A complete classification up to
parastrophically primary equivalence of generalized quadratic quasigroup functional equations of
the length three is given. Solution sets of a full family of representatives of the equivalence are
found.
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INTRODUCTION

We study functional equations which can be considered on an arbitrary set (a carrier) and
therefore they have neither individual nor functional constants. Moreover, we focus our at-
tention only on the solutions which are sequences of invertible functions (i.e., quasigroup
functions) and such equations are called quasigroup equations. We do not pay attention to
dependencies among functional variables. That is why, we consider generalized equations: all
functional variables are pairwise different. The word ‘ternary” means that every functional
variable takes its value in the set A3 of all ternary invertible operations defined on a carrier.

Every ternary invertible operation has three inverses: left, middle and right divisions and
each of them is also invertible, etc. These operations are called parastrophes. Generally speak-
ing, an arbitrary ternary invertible operation has 4! = 24 parastrophes including itself and all
of them are connected by some defining identities. These identities are true not only for all
individual variables but for all functional variables provided they take their value in Az. In
other words, they are hyperidentities over the set A3, and they are called primary. Renaming
functional and individual variables and applying primary hyperidentities, one can transform
one functional equation into some other equation. This relation between functional equations
is an equivalence and is called a parastrophically primary equivalence. If two functional equa-
tions are parastrophically primarily equivalent, then there is an algorithm which transforms
the solution set of the first equation into the solution set of the second one.
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The problem under consideration is “Describe parastrophically primary equivalence on the set
of all quasigroup functional equations, select all representatives (i.e., a maximal set of non-equivalent
functional equations) and solve all of them”.

This problem is discussed in A. Krapez [3], S. Krsti¢ [15], A. KrapeZ and D. Zivkovi¢ [4],
A. Ehsani, A. KrapeZ and Y. Movsisyan [5], F. Sokhatsky [8,10], F. Sokhatsky and H. Kraini-
chuk [6,9], R. Koval’ [14], H. Krainichuk [13] etc. for binary quasigroups. On ternary quasi-
groups, the parastrophically primary classification was carried out in the article [11], where
a two-element transversal equivalence of the generalized non-trivial functional equations of
the length one and the seven-element transversal of the equivalence of generalized non-trivial
functional equations of the length two were singled out.

In this article, only quadratic generalized functional equations of the length three on invert-
ible functions (i.e. quasigroup operations) are studied, that is, those equations in which each
individual variable has exactly two appearances. If a quasigroup equation has one appearance
of an individual variable, then it is trivial, i.e. it has solutions only on singletons.

In section ‘Quasigroup solutions’, general solutions of each element from a family of pair-
wise parastrophically primarily non-equivalent generalized quadratic functional equations of
the length three on ternary quasigroups have been found in Theorems 2-5. In the next section
‘Proof of Theorem 1, a full proof of the classification theorem is given.

1 PRELIMINARIES

1.1 Quasigroup

All operations considered in this article are defined on an arbitrary fixed set Q called a
carrier. A binary operation is a mapping g: Q> — Q, the set of all operations defined on Q
is denoted by ;. A binary operation g is called invertible, if it is invertible in both monoids
(Os; ElB, e1) and (Oy; %9, ez), where e1(x1, x2) := x1, e2(x1, x2) := x and

(g @1981)(9511952) = g(g1(x1,x2), x2), (8 @29g1)(x1/x2) = g(x1,81(x1, %2)).

The operation g is the main one and its inverses in (O2; @, e1) and (Oy; @, e;) are denoted by ‘g
1 2

and 'g and are called ¢’s left and right divisions respectively. If an operation g is invertible, then
the algebra (Q;g,‘,’g) is called a binary quasigroup [10]. Usually, infix notations are used for

binary operations. Therefore, an algebra (Q; o, g, o) is called a quasigroup if the identities

(xoy)oy=x (xoy)oy=x xo(xéy)=y, xé(xoy)=y
hold.

Similarly, a ternary operation is a mapping f: Q% — Q, the set of all ternary operations
defined on Q is denoted by O3. A ternary operation f is called invertible if it is invertible in
each of the monoids (Os; @, ¢;), i = 1,2,3, where

1
) == f(fi(x1,x2,x3), %2, x3),
) = f(x, fi(x, X2, x3), X3),
) f(xlleIfl (xll X2, JC3))
)=

x, i=1,23.
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The operation f is the main one and its inverses in (Os; ®,e1), (Os; B, e2), (O3; B, e3) are de-
1 2 3

noted by (14)f, (24)f, (34)f and they are called f’s left, middle and right divisions respectively. In
other words, the operation f is invertible if the identities

F(Wf(x,y,2),y,2) =x, 1) W (f(x,y,2),y,2) =x, 4)
flx, @f(x,y,2),2) =y, ) @f(x, f(x,,2),2) =, (5)
flxy, BV (x,,2)) =2, (3) GV (x,y, f(x,y,2) =2 (6)

hold. If an operation f is invertible, then the algebra (Q; f, 14)f, @4f, BYf) (in brief, (Q; f)) is
called a ternary quasigroup [10]. It is easy to verify that all divisions of an invertible operation
are also invertible and so are their divisions.

A o-parastrophe of an invertible operation f is called an operation ’f defined by

7f(X10, X20, X30) = X4y & f(X1,X2,X3) = X4, O € Sy,

where S; denotes the group of all bijections of the set {1,2,3,4}. Therefore in general, every
invertible operation has 24 parastrophes. Some of them can coincide. If all parastrophes coin-
cide, the quasigroup is called totally symmetric. Since parastrophes of a quasigroup satisfy the
equalities

TH=7F and =], )

then the symmetric group S4 defines an action on the set Az of all ternary invertible operations
defined on the same carrier. In particular, the fact implies that the number of different paras-
trophes of an invertible operation is a factor of 24. More precisely, it is equal to 24/|Ps(f)],
where Ps(f) denotes a stabilizer group of f under this action which is called parastrophic sym-
metry group of the operation f. Consequently, a totally symmetric quasigroup is a quasigroup
whose parastrophic symmetry group is S4. If the parastrophic symmetry group of a ternary
quasigroup is trivial, then the quasigroup has 24 different parastrophes and it is called asym-
metric.
An element e of (Q; f) is called neutral if for all x from Q the equalities

f(x,ee) =x, fle,x,e) =x, fle,e,x) =x

hold. In contrast to the binary case, a neutral element is not necessarily unique in a ternary
quasigroup. A quasigroup is called a loop if it has a neutral element. For example, let (Q; +)
be a group of the exponent two and an operation f be defined by

f(x,y,z) =x+y+z.

It is easy to see that every element of the quasigroup is neutral in the ternary quasigroup
(Q; f). Such a quasigroup will be called universally neutral. Namely, a ternary quasigroup
(Q; f) will be called a left, middle, right universally neutral if the respective identity holds:

foyy)=x, flyxy)=x  flyyx) =

It will be called universally neutral if all three identities take place. Note, that the given exam-
ple of the ternary quasigroup is not only universally neutral, but it is totally symmetric. A
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quasigroup which is both universally neutral and totally symmetric is called a Steiner quasi-
group [2,12]. Thus, every ternary Steiner quasigroup is a loop. Moreover, each of its elements
is neutral.

An invertible operation f is called repetition-free decomposable if there exist two binary in-
vertible operations g, i and bijection ¢ € S3 such that

f(xll X2, x3) — g(h(xlo'/ x20’)r x3(7)'
Theorem 1 from [16] implies the following result.

Corollary 1. If a ternary Steiner quasigroup (Q; f) is repetition-free decomposable, then there
is a group (Q; +) of the exponent two such that

flx,y,z) =x+y+z.
1.2 Functional equations

Throughout the article, we will use the notion ‘functional equation” in the following sense.
Let T; and T are second order terms which have only individual and functional variables. A
formula T; = T is called a functional equation, if it is universally quantified on all individual
variables and has at least one free functional variable. Moreover, we consider only generalized
ternary quadratic functional equations of the length three on quasigroups, where the notion
‘ternary quasigroup equation’ means that all functional variables take their values only in
the set of ternary invertible functions; the word ‘generalized” means that the variables are
pairwise different; the word ‘quadratic” means that every individual variable has exactly two
appearances or none; the notion ‘length of a functional equation’ is the number of functional
variables including their repetitions (see [1,10]).

A subterm of an equation is a subterm of its left or right sides. A subterm of a term T is
called proper if it coincides neither with T nor an individual variable. Let F(t1, f5, t3) be a term,
then the function variable F is called main.

Let T} = T be a ternary functional equation of the length three, (F, G, G]-) be the lexi-
cographical sequence of its functional variables, i.e., i < j. A sequence (f,g, h) of invertible
ternary functions defined on a set Q is called a solution of Ty = T, if substituting f for F, g for
Gi and & for G,, we obtain a true proposition t; = tp, i.e., t; = t; is an identity. A quasigroup
functional equation is called trivial if it has a solution only on a singleton.

Consequently, in an arbitrary non-trivial quasigroup functional equation, every individual
variable has at least two appearances. In this article, we consider the case when every individ-
ual variable has exactly two appearances, these equations are called quadratic.

Let A3 be the set of all invertible ternary functions defined on a carrier Q. The relationships
(1)-(6) and (7) are true for all functions from Ajz. In other words, the following hyperidentities
are true over the set Aj:

("F)=Y""F, 'F=F, U9F(F(x,y,2),y,2) = x;
(24)F(x,F(x,y,z),z) =y; (34)F(x,y,F(x,y,z)) =z, (8)
F(x1,x2,x3) = F(X14, X20, X3¢), O € S3.

The hyperidentities are called primary.
Two quasigroup functional equations are called: equivalent over a set Q if they have the same
solution set over the carrier; equivalent if they are equivalent over each set.
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Definition 1 ([8]). Two functional equations are called parastrophically primarily equivalent
if one can be obtained from the other in a finite number of the following steps: 1) replacing
of the equation sides; 2) renaming of the functional variables; 3) renaming of the individual
variables; 4) applying the hyperidentities (8).

A lexicographical renaming of individual variables is renaming all first appearances of these
variables according to their lexicographical order.

Lemma 1. Let v = w and v/ = «’ be generalized ternary functional equations of the length
three. If they are parastrophically primarily equivalent, then there exists a bijection T in S3 and
bijections 01, 03, 03 in Sy such that for an arbitrary solution (f1, f2, f3) of v = w the sequence

(Ulfl"r’ UZfZT' U3f3r)

is a solution of the equation v’ = «'.

In this case, (T, 01, 02, 03) is called a defining bijection system of the equations v = w and v’ =
w'. This lemma implies a sufficient condition for parastrophically primary non-equivalence of
ternary generalized functional equations of the length three. Namely, the following statement
is valid.

Corollary 2. If for every bijection T in S3 and bijections 01, 02, 03 in Sy there exists a solution
(f1, f2, f3) of v = w such that ("\f |, 2f,., ®f ) is not a solution of v' = «’, then the functional
equations v = w and v’ = w' are not parastrophically primarily equivalent.

A function f is called a solution of a functional equation if the sequence (f,f,...,f) is
solution of the equation.

Corollary 3. If a totally symmetric function is a solution of a functional equation but it is not a
solution of another functional equation, then the equations are not parastrophically primarily
equivalent.

2  QUASIGROUP SOLUTIONS

Theorem 1 gives a full classification of generalized quadratic ternary quasigroup functional
equations of the length three up to parastrophically primary equivalence. Also, all quasigroup
solutions of all representatives (9)-(12) of the classification are proved in Theorem 2-5.

Theorem 1. Every generalized quadratic ternary quasigroup functional equation of the length
three is parastrophically primarily equivalent to exactly one of the following equations:

Fi(z,x, B(x,y,y)) = F3(z,u,u), ©)
Fi(F(x,y,y),z,z) = F3(x, u,u), (10)
Fi(F(x,y,z),u,u) = F3(x,y,2), (11)
Fi(F(x,y,z),x,u) = F3(y,z,u). (12)

Lemma 2. Leta, f be the unary and ternary invertible operations respectively. Then the equal-
ity
fxyy) = ax (13)

is equivalent to the existence of a left-universally neutral invertible operation g such that

f(xy,2) = glax,y, 2). (14)
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Proof. Define operation g, by

g(x,y,z) = fla"x,y,2). (15)

Since f is invertible and g is an isotope of f, the operation g is invertible. Taking into account
(13), we have x = f(a~'x,y,y) = g(x,y,y). Hence, the operation g is left-universally neutral.
Applying (15), we obtain (14).

Conversely, let g be a left-universally neutral invertible operation and let the relationship
(14) holds. Then f(x,y,y) = g(ax,y,y) = ax. O

Theorem 2. A triplet (f1, f2, f3) of ternary invertible operations is a solution of the equation (9)
if and only if there exist left-universally neutral invertible operations hy, hy, h3 and bijections
«, B such that

filx,y,z) = ha(ax,y, p~12), (16)
f(x,y,2) = ha(Bx,y,2), (17)
f3(x,y,2) = ha(ax, y, 2). (18)

Proof. Let a triplet (f1, f2, f3) of ternary invertible operations defined on Q be a solution of the
equation (9), i.e., for all x, y, z, u the identity

fi(zx, f2(x,4,y)) = f3(z,u,u) (19)
holds. In particular, if u = a € Q, we have
iz x fo(xyy) = az, (20)

where az:= f3(z,a,a) is a bijection of Q because « is a left translation of the invertible operation
f3.

Also, from (20) and (19), we get the identity f3(z, 1, u) = az. According to Lemma 2, there
exists a left-universally neutral invertible operation /13 such that (18) holds.

Applying the definition of a parastrophe to the equality (20), we have

f(xyy) = OYfi(z, 1, az).

Ifz=a € Qand Bx :=(% f(a, x, xa), the equality is written as f»(x, y,y) = Bx. Note that § is
bijective on Q since it is a translation of an invertible operation 3f;. By Lemma 2, the latter
relationship implies the existence of a left-universally neutral invertible operation h; such that
(17) is true.

Replace f>(x,y,y) with Bx in (20): f1(z,x, Bx) = az. Let hy(x,y,z) := fi(a"'x,y, Bz), then
(16) holds and h1(x,y,y) = fi(a"'z,x,Bx) = aa~'x = x. Thus the operation h; is a left-
universally neutral invertible.

Conversely, let the operations h, hy, h3 be left-universally neutral invertible operations and
operations f1, f2, f3 be defined by (16), (17), (18) for some bijections «, B of a set Q. Then

filz x, po(x,y,y) = n(az,x, B ha (B, y, y)
=y (az,x, B Bx) = hi(az,x,x) = az
= h3(az,u,u) = f3(z,u,u).

Therefore, the triplet (f1, f2, f3) is a solution of the equation (9). O
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Theorem 3. A triplet of ternary invertible operations ( f1, f2, f3) is a solution of the equation (10)
if and only if there exist left-universally neutral invertible operations g1, g2, g3 and bijections
7, 6 such that

fl(x,y,z) =41 (’)/x,y,z), (21)
f(x,y,2) = §2(0%,y,2), (22)
f3(x,y,2) = g3(vdx, Y, 2). (23)

Proof. Let a triplet (fi, fa, f3) of ternary invertible operations is a solution of the equation (10),
i.e., the identity

A%y, y),2,2) = fa(x,u,u) (24)

holds. In particular, if y = u = a € Q, we have fi(f2(x,y,y),a,a) = fz(x,a,a). Then
afr(x,y,y) = Bx, where ax := f1(x,a,a) and Bx := f3(x,a,a) are bijective since « and B are
translations of the invertible operations f; and f3 respectively. Therefrom

fH(xyy) =a B

Defining 6 := a~!B, we have fo(x,y,y) = 6x. According to Lemma 2, there exists a left-
universally neutral invertible operation g» such that the equality (22) holds.
Let us substitute dx in (24) for fo(x,y,y):

f1(6x,2,2) = f3(x,u,u).

Replace x with 6 ~1x in the equality: fi(x,z,z) = f3(6~'x,u,u) for all x, z, u. In particular, when
u=ac Q,wehave fi(x,z,z) = yx, where yx:= f3(6"'x,a,a) is a bijection of the carrier Q,
because v is the left translation of the invertible operation f3. Therefore, the relationship (21)
holds for some left-universally neutral operation g;. Applying (21) and (22) to (24), we have

Yox = fa(x,u,u).

According to Lemma 2, there exists a left-universally neutral invertible operation g3 such that
the equality (23) holds.

Vise versa, let the relationships (21), (22), (23) be true for some left-universally neutral op-
erations g1, g2, g3 and bijections v, J, then

filk(yy)zz) =81(15200x,Y,Yy), 2 2)
= ¢1(y0x,z,2z) = vox = g3(yox,u,u) = f3(x,u,u).
Thus, the triplet (f1, f2, f3) is a solution of the equation (10). O

Theorem 4. A triplet (fi1, f2, f3) of ternary operations defined on a set Q is a quasigroup solu-
tion of the functional equation (11) if and only if the operation f, is invertible and there exists
a bijection p and a left-universally neutral operation g such that

fs(x,y,z) =uha(x,y,2),  flxyz)=g8uxy,z). (25)
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Proof. Leta triplet (f1, f2, f3) of ternary invertible operations be a solution of the equation (11),
i.e., for all x, y, z, u the identity

flf2(xy,2),u,u) = f3(x,y,2) (26)

holds. In particular, when u = a € Q and ux:= f1(x,a,a), we have the first identity from (25).
Substituting y f, in (26) for f3, we have

flfa(x,y,2),u,u) = pf(x,y, z).

Replacing f(x,y,z) with x, we obtain fi(x,u,u) = px. According to Lemma 2, there exists
a bijection y and a left-universally neutral operation g such that the second relationship from
(25) holds.

Conversely, let f, be invertible ternary operation and there exists a bijection u and a left-
universally neutral operation g such that the relationships (25) hold. Then

A2y, 2),uu) = g(ufa(x,y,2),u,u) = g(f3(x,y,2), u,u) = f3(x,y,2).
Therefore, the triplet (f1, f2, f3) is a quasigroup solution of the equation (11). O

Theorem 5. A triplet (f1, f2, f3) of ternary invertible operations defined on set Q is a solution
of the functional equation (12) if and only if there exist binary invertible operations o, *, ¢ on
Q such that

fily,x,u) = (xoy) *u,
f_’)_(x,y,Z) = xg(yOZ), (27)
f3(y,z,u) = (yoz)*u.

Proof. Let a triplet (f1, f2, f3) of ternary invertible operations is a solution of the equation (12),
ie, forall x,y,z,u € Q the identity:

hlf(xy 2),x,u) = f3(y,2,u) (28)
holds. In particular, when x = 2 € Q and
yoz:= fr(a,y,z), txu:= fi(t,a,u),

we have (yoz) *u = f3(y,z,u). Hence, we obtain the third relationship from (27). Note that
(o) and (*) are invertible operations since they are retracts of ternary invertible operations f,
and fi. Applying the latter equality to (28), we get

hlfa(xy,2),x,u) = (yoz) *u. (29)
Replace y with ?¥)f,(x,y,2):
filf2(x, B (x,y,2),2), x,u) = (Pfp(x,,2) 0 2) %

Apply (2):
fly,x,u) = ((24)f2(X,]/,Z) 0z) * L.
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Replacing z with a and denoting x o y := (?¥f, (x, y,a) o a, we obtain the first relationship from
(27). Then (29) can be written as

(xo fo(x,y,2)) xu= (yoz)*u.

Since the operation (x) is invertible, then

xo fo(x,y,z) =yoz.

Since the operation (¢) is invertible, we can use the definition of the right division for binary
operations. As a result, we obtain the second equality from (27).

Conversely, let o, *, ¢ be invertible binary operations on Q. Then the ternary operations
defined by the relationship (27) are invertible since they are repetition-free superpositions of
binary invertible operations.

Ay z),xu) = (xo fa(x,y,z)) xu
= (xo(x6(yoz)))xu=(yoz)xu= f3(y,zu).

Hence, for all x, y, z, u (28) holds. Therefore, the triplet (f1, f2, f3) is a solution of (12). O

3 PROOF OF THEOREM 1

Proof. Let v = w be a generalized quadratic ternary quasigroup functional equation of the
length three. Changing its sides if necessary, we obtain an equation which has one of the
following forms:

DEC.LE(.) ) =F(.), i) FE( B B =t
i) F( o Fi( ), Bl ), ) = 8

where t is an individual variable and (...) denotes some sequence of variables or an empty
sequence.

When the equation has the form ii) we substitute both sides of the equation for #' in the
term F;(...,t,...). As aresult, we obtain

TFieo o Fieo s F( Bl )y ) ) ) = Fie o E ),

where “F; is a suitable division of F;, i.e., c'is (14), (24) or (34). Applying the respective primary
identity (1)—(6), we get

Fooo Fe(on) ) =Bl t,..).

Therefore, every functional equation of the form ii) is parastrophically primarily equivalent to
an equation of the form 7).

If the functional equation has the form iii), we substitute both sides of the equation for v in
the term "F;(..., Fi(...),...,0,...):
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where 7F; is a suitable division of F;. Applying one of the primary identities (1)-(6), we have

Fl(co Fi(o )t ) = F()

Thus, every functional equation is parastrophically primarily equivalent to a functional equa-
tion of the form 7).

Let a functional equation have the form 7). Applying a suitable transformation to a paras-
trophe, we obtain an equation of the form

E(ooFi(o) ) = Bel..).

Renaming its functional and individual variables in lexicographical order, we obtain

Fi(F(x,ty,t3),ta, t5) = F3(te, t7,t3), (30)

where t; € {x,y,z,u}. Denote a lexicographical order of individual variables by <. If t, =
t3, we replace the subterm F,(x, tp, t3) with the subterm (23)F2(x, t3, t), mutually rename the
individual variables t, and t3 and rename (23)132 by F,. As a result, we obtain the functional
equation of the form (30) in which t; < t3.

Analogically, we suppose that t4 < t5 and tg < t7 < tg. At last, we can put in order the
second appearances of x, t, t3. Namely, we rename them in a lexicographical order, then we
transform them to the corresponding parastrophe of F,. The same transformation holds for
the pair ty, ts.

Thus, we have proved that every quadratic functional equation is parastrophically primar-
ily equivalent to the equation (30) in which: 1) the first appearances of individual variables
have a lexicographical order; 2) t, < t3, t4 <X t5 and tg < t7 < tg; 3) the second appearances of
x, tp, t3 as well as the second appearances of 4, t5 are in the lexicographical order.

Hence, the proper subterm is

1) F(x,x,y) or 2)F(xy,z).

The case F,(x,y,y) is impossible because the second appearances of x and y should be in a
lexicographical order.

Let the proper subterm be F(x, x,y). If y € {t4,t5}, then t4 is y and t5 is z thus, we have the
equation

Fi(F(x,x,y),y,z) = F3(z,u,u).
Transform F; and F; to (13)-parastrophes of F; and F, in the equation. We obtain
(13)131 (y,z, (13)P2 (y,x,x)) = F3(z,u,u).

Mutually renaming x and y and renaming the functional variables in a lexicographical order,
we obtain the functional equation (9).

If y & {t4, t5}, then there are two possibilities for the pair (¢4, t5): (z,z) and (z, u). Therefore,
we have two equations:

Fi(F(x,x,y),2z,z) = F3(y, u,u), (31)
Fl(Fz(x,x,y),z,u) = Fg(y,Z,I/l). (32)
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The equation (31) is parastrophically primarily equivalent to (10) by means of transforming to
(13)-parastrophe of F,, by mutually renaming x and y and replacing (1®)F, with F,.
Apply the hyperidentity (4) to (32):

WE (B3(y, z,u),2,u) = By (x, x,y),
then apply the hyperidentity (3):
F(x, x, (34)F3(y, zZ,U)) = (14)131 (y,z,u).

Transform F, to (13)-parastrophe of F, and rename the functional variables in a lexicographical
order:

Fi(F(y,z,u),x,x) = F3(y,z,u).

Renaming the individual variables according to the cycle (yxuz), we obtain the functional
equation (11).

Let the proper subterm be F,(x, y,z). Since the second appearances are ordered, then 4 is
x and t5 is y or u. Consequently, we have two equations: equation (12) and

Fi(E(x,y,2),x,y) = F3(z,u,u).
Apply (1) to the last functional equation:
F3(UF,(x,y,2),u,u) = Fi(z,x,y).

To obtain equation (11), transform F; to (312)-parastrophe of F; and rename the functional
variables.

It remains to prove that the equations (9)—(12) are pairwise parastrophically primarily non-
equivalent. According to Corollary 2, we can prove that for every pair of these equations and
for every bijection 07, 02, 03, T of the set {1,2,3} there is a solution (f, f2, f3) of one equation
such that (“1f1¢, 2f2r, 3f3r) is not a solution of the other one. Note that all parastrophes of a
totally symmetric quasigroup and, in particular of a Steiner quasigroup, coincide.

It is easy to verify that an arbitrary Steiner quasigroup is a solution of each of the functional
equations (9), (10), (11). Suppose, a Steiner quasigroup (Q; f) is a solution of the equation
(12). Theorem 5 implies that f is a repetition-free superposition of two binary quasigroups.
According to the definition, every Steiner quasigroup is a loop. Therefore, by Corollary 1
there is a group (Q; +) of exponent two such that f(x,y,z) = x +y + z. There is no group
of exponent two of the order 10 but Steiner quadruple systems exist (see [7]) thus, there exists
a Steiner quasigroup of the order 10, but it can not be a solution of (12). Hence, according to
Corollary 1, the functional equation (12) is not parastrophically primarily equivalent to any of
the equations (9), (10), (11).

Let (f1, f2, f3) be an arbitrary triplet of Steiner quasigroup operations defined on the same
carrier Q. These operations can be isomorphic but all of them are pairwise different. It is
easy to see that (f1, f2, f3) is the solution of both functional equations: (9) and (10). Suppose
(fie, far, f37) is a solution of the functional equation (11) for some T € S3, i.e., the identity

fre(fae (%, y,2),u,1) = fae(%,y,2)
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holds. Since f;; is a Steiner quasigroup operation, then for = f3;. There is a contradiction to
the assumption. Thus, the triplet (fi¢, f2r, f3r) is not a solution of (11) for all T € S3. Therefore,
the functional equation (11) is parastrophically primarily equivalent to neither (9) nor (10).
Hence, it remains to prove the parastrophically primary non-equivalence of the equations
(9) and (10).
To avoid repetition, we will prove the following assertion.

Assertion. Let (Q;-,e) be an arbitrary non-commutative group, p is its non-identical automor-
phism and

flx,y,2) :=px-y-z L (33)
If for a bijection o € Sy there exists a bijection v such that for all x, y, z
F(x,y,z) =vx, (34)

thenv =porv=pL

To prove Assertion, consider the following notations:
He: =X, tyw:=Y, t3:=Y, ty:=VX.

Then (34) can be written as % (14, tas, t3s) = tar. According to the definition of o-parastrophe,
the equality is equivalent to f(t1, t, t3) = t4. Using (33), we obtain pt; - to - t; 1 = t4, i.e.

ptl . t;)_ = t4 : t3. (35)

We will analyze the relationship taking into account that two of the terms t;, f, t3, t4 coincide
with y.

If t; = y, then (35) with y = e implies one of the following equalities: vx - x = e or x = vx.
Consequently, ve = e. That is why, (35) with x = e implies py - y = e or py = y. Since (-) is not
commutative and p is a non-identical automorphism of (-), then neither py = y~! nor py = y
is true.

If t; = x, t, = vx, then (35) with x = e implies ve = y?. Therefrom when y = ¢ we have
ve = ¢, therefore y?> = e. But the group of exponent two is commutative. As a result we have a
contradiction to the assumption.

If t; = x and ¢, = y, then (35) with y = e implies px = vx thatis v = p.

Finally, let t; = vx, then (35) with y = e implies one of the equalities pvx - x = e or pvx = x.
The first equality follows from (35) when t, = x. Therefore, y> = e and consequently, the group
is commutative. As a result we have a contradiction to the assumption. The second equality
implies v = p~1.

Thus, Assertion has been proved.

We provide a proof of parastrophically primary non-equivalence of (9) and (10) by con-
tradiction. Suppose (9) and (10) are parastrophically primarily equivalent. Denote the corre-
sponding defining bijection sequence by (7, 07, 02, 03).

Let (Q; -, e) be an arbitrary non-commutative group and v, J, yd be different non-identical
automorphisms of (Q; -, e). Then, according to Theorem 3, the triplet (fi, f2, f3) of operations
defined by

filx,y,z) =9yx-y- z 1 fo(x,y,z) ==0x-y- z 1 (36)

fa(x,y,z) == yox-y - z71
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is a solution of the equation (10). Lemma 1 implies that the triplet

(Ulfl"r’ UZfZT' U3f3r)

is a solution of the equation (9). By Theorem 2 there exist left-universally neutral operations
hy, hy, h3 and bijections «, B such that

1o y,2) = hi(ax,y, B 12),
?fa(¥,y,2) = ha(Bx,y,2), (37)
Pfac(x,y,2) = h3(ax,y,z).

If y = z, the second and the third equations are

2f (xyy) =Bx,  Pfy(xyy) =ax.

Applying Assertion to these equalities, we have o, 8 € {7,771,6,671,96,6 19~1}. Replace z
with Bz in the first equality of (37): “1f, (x,y, Bz) = hi(ax,y,z). If y = z, then

(Y, By) = ax. (38)

Introduce the notations: ti,, := x, tag, := Y, t3¢, := BY, tas, := ax. Thus, (38) can be written
as “f 1 (Hy, tomy, t30y) = tag. Using the definition of a parastrophe, we have fi(t1,t2,t3) =
ty. But fi; is one of the operations f;, f, f3, that is why we can apply the relationship (36):
Oty - ta-t51 =ty e,

Ot -ty =ty - 13,

where 6 € {v,4,7v0}.

If x has an appearance in 6t;, then we put x = 0. As a result, we obtain one of the equalities
y = By or 0 = y - By. The first equality is impossible, since the automorphisms v, J, v are not
identical. The second identity is impossible because the group is not commutative. If x has no
appearance in 6t, then we put y = 0 and obtain the same contradictions.

Thus, our assumption is not true, therefore, the equations (9) and (10) are not parastrophi-
cally primarily equivalent. Theorem 1 has been proved. O

4 CONCLUSION

There exist exactly four classes of generalized quadratic functional equations of the length
three on invertible functions (i.e. quasigroup operations) concerning the parastrophically pri-
mary equivalence, (9)—(12) are their representatives whose solution sets are found in Theo-
rems 2-5.
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ON INTEGRAL REPRESENTATION OF THE SOLUTIONS OF A MODEL
2h-PARABOLIC BOUNDARY VALUE PROBLEM

A general boundary value problem for Eidelman type %—parabolic system of equation with-
out minor terms in the equations and boundary conditions, and with constant coefficients in the
group of major terms is considered in the region {(t,x,...,x,) € R* 1|t € (0, T],x]- € R,je
{1,...,n—1},x, > 0}, T > 0,n > 2. Itis assumed that the boundary conditions are connected with
the system of equations by the complementing condition, which is analogous to the Lopatynsky
complementing condition. Integral representations of the solutions for such a problem are derived.
The kernels of the integrals from this representation form the Green’s matrix of the problem. It is
revealed that, in general, not all the elements of the Green’s matrix are ordinary functions. Some
of them contain terms that are linear combinations of Dirac delta functions and their derivatives.
This occurs in cases when the boundary conditions include derivatives with respect to the variables
t and x, of orders that are equal or greater than the highest orders of derivatives with respect to
these variables in the equations of the system. The obtained results are important, in particular, for
the establishing of the correct solvability and integral representation of solutions for more general

%-parabolic boundary value problems.

Key words and phrases: Eidelman type %-parabolic system of equations, boundary value prob-
lem, integral representation of solutions, Green’s matrix.
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INTRODUCTION

Nowadays, the general theory of boundary value problems for systems of equations that
are parabolic in the sense of I. G. Petrovsky and for more general systems parabolic in the
sense of V. A. Solonnikov is well known (see, for example, [2,3,5]). The parabolic boundary
problems are determined by the parabolicity condition of the system of equations and the
complementing condition for boundary differential expressions. We note that the conditions
for the parabolicity of a problem are specified only by the groups of the major in the parabolic
sense terms of the system of equations and the boundary conditions.

The theorems of the correct solvability in Holder and Sobolev-Slobodetskii spaces for
parabolic boundary value problems, in the framework of their general theory, (Schauder’s
theory and L,-theory) are proved. It turned out that the a priori estimates of the solutions
established in this case are necessary and sufficient conditions for the parabolicity of the prob-
lem.

An important step in the construction of the theory of parabolic boundary value problems
is a detailed study of the so-called model problems, namely the problems in a half-spaces with

YAK 517.956.4
2010 Mathematics Subject Classification: 35K52, 35C15.
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respect to the spatial variables in which systems of equations and boundary conditions contain
only the major terms in the parabolic sense, and their coefficients are constants.

If we consider the, so-called, %—parabolic systems defined in [2] by S. D. Eidelman, then the
orders of such systems are vectorial and the group of their major terms includes the derivatives
of different the highest orders with respect to different spatial variables, since spatial variables
are not equal. Therefore, it is perhaps impossible to construct a general theory of boundary
value problems for such systems, analogous to the above theory for the I. G. Petrovsky systems
and for V. A. Solonnikov systems, in which all spatial variables are equal. But for S. D. Eidel-
man systems, one can construct a theory of model boundary-value problems in a half-spaces
in which one of the spatial variables varies is in the interval (0, o), and all the others are in the
interval (—o0, 00).

In the works of the authors [4,6,7], for a parabolic in the sense of S. D. Eidelman system of
the first-order equations with respect to the time variable a model boundary-value problem in
a half-space is considered in which only the last spatial variable varies in the interval (0, o).
For such a problem, the complementary condition is formulated. The problem is correctly
posed when the boundary conditions satisfy this complementary condition. Thus, the defi-
nition of a model 2? -parabolic boundary-value problem (P problem) is given. For P problem
the Poisson kernel and the homogeneous Green’s matrix were constructed, their accurate es-
timates and the estimates of their derivatives were obtained, the divergent representation was
received. Using these results, a theorem of the correct solvability of P problem in anisotropic
Holder spaces is proved. In this article we obtain the integral representation of solutions of the
P problem and investigate the structures of the kernels of the integrals from the representation.
These kernels form the Green’s matrix of P problem.

1 P PROBLEM FORMULATION, ITS HOMOGENEOUS GREEN’S MATRIX AND POISSON
KERNELS

We will use the following notation: n,N, by,...,b, are given natural numbers; 27 =
(204, ...,2by); s is the least common multiple of numbers by, .. ., by; mj:=s/bj,j € {1,...,n};

7' is the set of all n-dimensional multi-indices k := (ky,...,kx); [[k| = i mik;, if k € Z';
j=1

k|| := 2sko + |||, if k := (ko, k), where kg € Z1,k € Z"; x := (x1,...,%1) € R", ¥’ :=
(x1,...,%5-1) € R"™LRL := {x € R"x, > 0}, IT} := {(t,x) € R""|t € (0, T}, x € R},
1% == {(t,x')|t € (0,T],x' € R" 1}, where T is given positive number; X := 82...8’;;;,
a’;,x = 81208';, if k = (ko,k), ko € Z.,k € Z",t € R'ix € R". Here, as usual, R" is the

al
= a_yl’

In the region ITF we will consider a boundary value problem:

n-dimensional real Euclidean space, and a]l/ : if [ is a natural number and y € R

A%(3t, 0y, 0, )u(t, x) == (InOr — Y adu(t, x) = f(t,x), (t,x) €L, (1)
kl|=2s

BY(3t, 0, 0, Ju(t, )|, —0:= Y bgdf cuu(t, x)|x,—0 = gj(t,¥'), (t,x') € TNy, je{1,...,m},
=7

u(t, x)‘f:O = (P(x>/ x € RY, 3)
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where u, f and ¢ are matrix columns of height N; a; and bj;
and 1 x N respectively; Iy is a unit matrix of order N; g1, . .., gm are scalar functions; rq, ..., 7y
are non-negative integers.

We assume that the system of equations (1) is parabolic according to Eidelman [1]. The
number of boundary conditions m = b, N and these boundary conditions satisfy the comple-

menting condition from [6]. The problem (1)—(3) that satistfies these conditions, we will call a

1 are constant matrices of size N x N

model 2? -parabolic boundary value problem or P problem.

For P problem, we will give the definitions and the results of the studying of the homoge-
neous Green’s matrix and Poisson kernels from [4, 6] that are necessary for further investiga-
tion.

According to [2, 3], we define a homogeneous Green’s matrix and Poisson kernels of P
problem as a matrix Go(t,x,&),t € R'\{0},{x,&} C R" of the size N x N and matrices
Gj(t,x),t € R\ {0}, x € R" of the size N x 1 that are the solutions of the following prob-
lems:

A%(04,0,,0x,)Go(t, x, &) = Ind(t, x — ),

BY (9, 9y, 9x, ) Go(t, %, &)|v,=0 = 0, j € {1,...,m},
Go(t,x,&) =0 ast <0,
A°(9y, 9,1, 0x,)Gj(t, x) =0,

BY (94,0, 0x,)Gj(t, %) x,—0 = 0i0(t,x'), 1€ {L,...,m},
Gi(t,x) =0 ast<0, je{l,...,m}

in spaces of generalized functions, where ¢;; is Kronecker symbol, (t,x — &) and d(t,x") is
Dirac delta functions with supports in points t = 0,x = ¢ and t = 0,x’ = 0 respectively.
Wherein Gy (t, x, §)|t—o0+ = INO(x — §).

From these definitions it follows that for an arbitrary smooth and finite functions f, g1, .. .,
gm and ¢ the solution of P problem (1)—(3) is represented in the form

u(t,x) = (Gof +Y_ Gigj + Gmr19)(t,x), (t,x) €Il

=1
where

(Gof) (¢, x) = /dr/cot—rng(rg)g )

(Gigi)(t, x) /dr/ i —T,x—éj’)gj(r,é")dé", je{1,...,m}, (5)

(Gusa9) () /Gotxc )dz. ©

The existence of matrices Gj,j € {0,1,.. ., m} and the correctness for their divergent repre-
sentations

G =L'(3,9,)G"”, je{01,...,m}, 7)
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where
n—1

L@, dv) =3 +a Y (~1)133,a >0

j=1

and r is any non-negative number were proved in [4,6] and for G ](r) the following estimates are
fulfilled

9 0EGY (%, ©)| < Ct= MR/ I (1, x — ),

t>0,{x,¢} CRLkez" 17" ®

9F:G) (1, )] < Gt~ MU EN/ @9 (1, ), 9)
t>0,xeRkez™,je{1,...,m}.

In the estimates (8) and (9)

M := Z;lzl m]-/(zs), M = Z;?:_ll m]'/(ZS),
E.(t, x) := exp{—c 2]7.’:1 p—1/(2bj=1) ’xj‘ij/(ij—l)}’

C, Cr and ¢ are some positive constants.

2  REPRESENTATION OF SOLUTION FOR P PROBLEM WITH HOMOGENEOUS INITIAL
CONDITION

Suppose that in the problem (1)-(3) f and g;j,j € {1,...,m} are sufficiently smooth func-
tions such that they together with their derivatives are bounded and equal to zero as t = 0
and ¢ = 0. Let us find a formula for the solutions of P problem with these right-hand sides,
namely for the following problem with zero initial condition:

A0y, 0y, 0, )u(t, x) = f(t,x), (tx)€llf, (10)
B?(at,axz,axn)u(t,x)|xn:0 =gi(t,x"), (tx')elly, je{l,...,m}, (11)
u(t,x)|i=0=0, xeR. (12)

Consider the function
up(t,x) :==(Gof)(t,x), (tx)e€ ij. (13)

Based on the definition (4) of the operator Gy and the properties of the matrix Gy, the function
up is a solution of system (10) that satisfies the condition (12). In addition, if the order r; of the
differential expression B;-)(at, 0,/,0x, ) is less than 2s, then

B?(af/ ax’/ axn )MO(tr x) ’xnzo
t
= [dv [ B)(n00,06,)Go(t — 7,5 D)l -of (1,0 =0, (1,%') € T,
0 Rt

In the case when r; > 2s, it is impossible to apply the operation B? (0¢, 04,0y, ) and pass to the
limit as x,, — 0 under the sign of the integral. In this case, we proceed as follows.
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Consider Bo(p, ic’,it) and A%(p,ic’,iT), where i is the imaginary unit, as matrix polyno-

mials of T with fixed values of the parameters p and ¢’. Based on the 26 -parabolicity of system
(10), the determinant of the matrix, which is the coefficient at 2% in Ao(p, ic’,it), is non-
zero (see Remark 1 in [4]). Therefore, there exist such matrix polynomials C]-(p, io’,it) and
B]’-(p, io’,iT) that their degrees on T do not exceed ri— 2b, and 2b;, — 1 respectively, and they
fulfill the equality

B)(p,ic’,it) = Cj(p,ic’,it) A(p,ic’, i) + Bi(p,ic’, it).
Turning to differential expressions, we obtain the equality
BY(d1, 0y, 9x,) = C; (D1, 0, 9, ) A% (D1, 0, A, ) + B}(3, s, O, ), (14)

where C; and B]’- are expressions containing differentiations on x, of order not higher than
rj — 2by and 2b, — 1, respectively.

For function (13), on the basis of equality (14) and the fact that A%(9;,0,/, 9y, )up = f, we
now get

B?(atrax/raxn)u()‘xn:() — C](af/ ax’/axn )f‘x,l:O + B]/(at/ ax’/axn>u0‘xn:0

Using representation (7) and estimates (8) for Gy and integrating by parts, for a sufficiently
large r, we obtain

B(31, 3, s, )ttol,—0 / it / BL(01, 91,92, ) G (t — T,%, &) x,—0L" (9+, 0 ) £ (T, E)dE.

Based on (14) and on the fact that AO(at,ax/,axn)Ggr) = 0, we replace B]’- by B? in the last
integral. If we represent this integral as the limit of the integral over {¢ € R"|¢, > €},& > 0, as

¢ — 0, and then integrate by parts of the expression L"(d-, ag,) and use it to G(()r), then we get
that it is equal to zero. So,

B;')(atz ax’r axn)MO|xn:0 - C](at/ ax’/ axn)f|xn:O-

Note that C; = 0 if the highest order of derivatives with respect to x, in B? is less than 2b,,.
Thus, the function (13) is a solution to the problem (10)-(12), in which g; is replaced by
C;(0t, 9y, 9x,) flx,=0,j € {1,...,m}. Moreover, if the function f is finite in IT{, then

Ci(01,9y,05,) flry—o =0, j€{1,...,m}.

If, in the conditions (11), the functions gj/] € {1,...,m}, such as indicated at the beginning
of this section, then using for G; the representation (7) and the estimates (9) just as in [5], we
prove that the function

t

up(t, x) := Z/dr / Gi(t—t,x—&)gj(t,g)de’, (t,x)ellf,

=10 je-t
is the solution to the problem

A%y, 0y, 0x, )ur (t, x) =0, (t,x) € ITf,
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B?(at,ax/,axn)ul(t,x)|xn:0 =gi(t,x"), (tx)elly, je{l,...,m},
ur(t,x)|=0 =0, xeRl.

Therefore, for the functions f and ISHAS {1,...,m} indicated at the beginning of Section 2,
the solution of problem (10)—(12) is determined by the formula

u(t,x) = (Gof)(t, x) + Z(Q]( Cj(9, 9y, 0, ) flx,=0)) (£, %), (t,x) €TI.  (15)

=
3 THE GENERAL CASE OF P PROBLEM

Suppose now that in the problem (1)-(3) functions f, g;,j € {1,...,m}, and ¢ are suffi-
ciently smooth in [T, IT}. and IR that are the closures of I}, IT; and R", respectively and
they together with their derivatives, are bounded and satisfy the corresponding matched con-
ditions as t = 0 and x,, = 0. Then, from the results of the paper [7], it follows that there exists
a unique smooth solution u of the general P problem, defined in IT} and bounded with all its
derivatives. Now we were find the integral representation of this solution u.

Let us choose the infinitely differentiable function {(t),t € R!, that is equal to 1 for t > 1
and is equal to 0 for t < 1/2, and the function vy (t,x) := {(t)u(t x), (t,x) € I}, where
Cn(t) := C(t/h), h is a sufficiently small positive number. Obviously, v;, has the same smooth-
ness properties as the function u, and it is a solution to the problem

Ao(at,ax/,axn)vh(t,x) = Fyu(t,x), (tx) € ij,
B?(at, ax/, axn)’()h(f, X)|xn:0 = th(t, x’), (i’, X/) € IT, , ] € {1, .. .,m}, (16)
vp(t,x)|i=0 =0, x€RY,

where

Fon(t, %) = Cu(t)f (1, %) + V) (Du(t, x),
ko
Ealt,x') o= 0u(Dgi(t )+ Y Y Ch by (091 u(t, x) 0, j € {L,...,m}.

| k|=r;v=0

Here and further C := kot _ g(") (t) := u(t),
0 vi(ko—v)!” °h dt
Since the problem (16) is a problem with zero initial condition, then according to the result
of Section 2, the representation of its solution could be written in the form (15), i.e.

2 (t0) = (GoFon) () + 16 (s = G002 )Pl 0))6, ), (1:5) €T (17)

Assuming that the point (¢, x) is fixed from I and € (0, t), we pass to the limitas & — 0
in (17). At the same time, we obtain u(¢, x) in the left-hand side. Further we find the limit of
the right side.

We have

Go(@uf)(t,x) = (Gof)(t,%) / dr [ Golt —,%,8)(@(T) = VAT 5 — (Gof)(t, )
IRH
(18)
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Taking into account the properties of the function {j and integrating by parts, we obtain

h

Gol@ W)t ) = [ dr [ Got—7,x,8)g) (Tu(r o)
h/2 R
= /Go(t—h,x,g’f)u(h,g’f)dg (19)
R
h
= [ dr [a(Golt = %, 8)u(r, )2 (D) — (i) (t,)
h/2 R

Similarly we have

(GE (6,0 = (G0 + T byd (60kanls, i) 63

H]_(H:r]
ko .
+ Z(—l)v_lczzo[ / oy (Gt — T, x — &) "0ku(T, &)le,—0)dE T (DT
v=1 R-1
h ) (20)
= [ar [ 3Gt —rx = 0 (e, Dle, ) (| b 1 (G151
h/2 ]Rnfl
+ Y by Z ey / UGyt — T, x — &) 9ku (T, &) oy —0)dE o
HkH_r - Rn-1
(k0>0)
Now consider G;(C;(0t, 9y, 0x, ) Fon|x,=0). Using the record
C]‘(at, ax/, axn) = Z C]kat xr
[kl <<rj—2s

as above, using integration by parts, we obtain

(g]( '(atr Oy /axn>F0h’xn*0>>(t x)

/df/ Fx— &) % 30 (09 £(n,8) + 2 (1)aku (T, ) e, _odE’

HkH<V

- L / dr / Gt — 7,3 — &) GO,y + (D)0 (T, ) g, -0)dE

Ikl <rj— n—1

The remaining terms are zero due to the properties of the functions {; and G;. Integrating by
parts again and passing to the limitas & — 0, we get
t

(G/(C1{@1, 32,35, Fonly=0)) (1, 1) — 1 Jk( [ v [ oGt~ x— &)k f(x, e, o’

HkH<r 0 Rn—1
[ A6~ k()0 ).
Rn—1

(21)
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From (17)—(21) it follows the formula

u(t,x) = (Gof + ) Gi& + Gmr19) (£, x)
=1
t

+[ar [ ¥ Rlt-x—)kf(r k=0t + [ T Reltix—&)0kp(@)lg,0dd’

0  Re-1 Hk\|<ro Rri-1 [Kl<ro
Y ¥ Z )l b (Gt — T x — £ k() e, o) oo, (8, %) € T,
Rri-1 /=1 [K[=r;v=
(k0>0)
(22)
where
m
Ri(t,x) := Y Ryt x), (23)
=1
Y cid*Gj(t,x), if k|| < r;—2s,
Rjk(t,x) = { ko<(rj—|lkll—2s)/(2s) (24)
0, ifrj —2s < ||k|| <ro,
ro :=max (0,71 —2s,..., 7y — 25), (25)

moreover Ry = 0, if the highest order of derivatives with respect to x, in B?(at, 0y,0x,), ] €
{1,...,m}, ngis less than 2b,,.

All terms of the right-hand side of (22), except for the last, include only the right-hand sides
of the problem (1)—(3). We transform the last term (denote it by D) in such way that it also will
include only the right-hand sides of the problem (1)—-(3). Note that the term D is absent if the
expressions B}) (0¢,04,0x,),j € {1,...,m}, do not include differentiation with respect to ¢.

Using the Leibniz formula and changing the order of summation, we get

m Pj—

k
p- | ZZ Z Y. Negbidd "Gyt =, x — )k (T, &) lemog,=0dE,  (26)
Rri-1 J=1#=0 ko= |[k||=r;—
]/l 1 725](0

where pj is the highest order of derivatives with respect to ¢ in the expression B? (0t,947,9x,),

and
ko

k 1
Newi= Y. (1) lcpclort,
v=ko—p

We will write the formula (26) in the form

po—1
D= / Z Z Q,‘uk(t —T,Xx— gl)aga]é'u(l—/ é) |T:0,§n=0d§/l (27)

Ri1 #=0 (K] <ro—2su

where pg := max(p1, ..., Pm),

Quk(t, x) Z Qjuk(t, x), (28)
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ijk(t/ x) =
Y Nkoybj,-(alzofyflG]-(t,x),ifO <u<p—12u+ k|| < rj —2s,
u+1<ko<
=\ =(rj—lkll—2s)/(2s)

0, if pj < <po—1lorrj—2s <2su+ |kl <ro.

Using the system (1) and the condition (3) for # > 0 we obtain the representation

a?a’éu(r, §)|T=O = Z Aykvagq)(é) + Z Bykﬁaz,Cf(Tl §)|T=0/ (29)
vl =2sp+|Ik|| [7l1=2s(u—1)+Ik||
(ro<p—1)

where A, and By are constant matrices of the size N x N, wich compiled with coefficients
ak, ||k|| = 2s, from the system (1). Substituting expression (29) into (27), changing the order of
summation and using the notation

Vv(tr x) = Z ka(tr x)Aykvr Wﬁ(tr x) = Z ka(t/ x>Byk17/ (30)
2sp+||k|[=]lv|| 2sp+||k[|=7|+2s
(1<po—1) (p=vo+1)

we get the following expression for D:

p- | L Vil )0k0(0)l-odt
Rn-1 IV <rp
_ 31
s [T Wt -t £ ) emog, o o

Rri-1 17l <ro—2s
(v<po—2)

Therefore, from formulas (22) and (31) it follows the following representation of the solu-
tion of the general P problem:

u(t,x) =(Gof +Y_Gi& + Gm+19)(t, x)
=1
t

+ [ar [ ¥ Rlt—7x—)okf(r,0)lg,—ode

0 gt Ikl<ro

[ L Wit — 809 (T ez, -0 (32)
Rri-1 [[kll<ro—2s
(ko<po—2)
[T Rltx =)+ Vit x — ) 2p(0)le, o
ria K=

=hL+DL+L+1L, (tx)ellf.

Now, we rewrite this representation in another form. To do this, first we transform the
addend I3 from formula (32). Using the formula

ko
W' f = Y (—1) 7'l (3T W f),
1=0
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we get

po—2 ko

he f pE l |Z L ()G Wt~ T x 209 (, )l o) eodl
0=0 ||k||<rg— =0

Rt ~2s(kg+1)
R [ kool ko~ ok :
= [ Y, (-1l Wit = 3 = (5, ) o | dE
g1 =0 ko=1 ||k||<ro— =0
—2s(ko+1)
! po—2 | po—2 b d ko] L
= [ar [ X000 L X (1Rck bWt - 7 x — )30l olemodd’
R ko=1 ||kf|<ro—
—2s(ko+1)
t
:/dT/Gé’(t,x,T, Vf (T, &)dé,
0 R
where
po—2 po—2 .
Gl (t,x;7,¢) : 25 Y Y (—nRtkc Wit — 1 x — &)ek) (&), (33)
ko=1 " [|k|| <ro—
—2s(ko+1)
where |k| := ki + - - - 4 ky, 6()(7) and 6(n)(&,) are the derivatives of delta functions concen-

trated at points T = 0 and ¢, = 0 respectively.
Similarly transforming the addends I, and I4 from (32) and taking into account the defini-
tions (4)—(6), we write the representation (32) in the form

u(t, x) /dT/GOtxré T§d§+2/dr/ (t—1,x—¢")gi(t,&')de’
R R (34)
+ [ Cunbx8e@dz, (1) €f,
R

where
Eio(t,x;r,g) = Go(t—1,%,8) + Gyt —T,x,&) + G (t, x; 7, ), (35)
Gms1(t, %, &) := Go(t, x,8) + Gy(t, x, &) + +Gly 1 (8, x, ).
Here
Go(t,x,8) = Y (~DMOER(t,x =)o) (&),
it x,8) = |k|2_r0<—1>"'a"ivk<t,x — &6 (), o
[[k[[<ro

and G is defined by the formula (33).
As a corollary we can get the following theorem from the results obtained above and from
Theorem 2 [7] about the correct solvability of the P problem in Holder spaces.
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Theorem 1. Any solution to the P problem (1)—«3), that belongs to the Hoélder space
st“*/\(l:I}L,CNl), where | is an integer, such that! > rop and A € (0,1), is represented in
the form (34). The kernels of this representation are defined by formulas (33), (35) and (36). In
these formulas Ry, Vi and Wy, are defined by equalities (23)<25), (28) and (30). In all of these
formulas, Gy is a homogeneous Green’s matrix, and Gj,j € {1,...,m}, are Poisson kernels of
problem (1)—«3). Moreover, Gy = Gy = G, | = 0if2spg + mung < 2s, where pg and ng are the
highest orders of derivatives with respect to t and x, in boundary conditions (2) accordingly,
and m, = s/b,.

Definition 1. The matrix composed of the elements of the matrices Go,G1,-..,Gp and G4 is
called the Green’s matrix of the problem (1)—3).

So, the article describes the structure of the Green’s matrix of the problem (1)—(3).
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Typunnza H.I., Isacurent C.A. I1po inmeepanvte 306pasiceHHs po3s’a3Kie mMo0enoHOL qu-napa()bﬂiuuo'z' Kpa-
ifogoi 3a0aui // Kapmarceki MaTem. my6a. — 2019. — T.11, Nel. — C. 193-203.

B obnacti {(t,x1,...,x,) € Rt € (0,T],xj € R,je{l,...,n—1},x, > 0}, T > 0,n > 2,
PO3rASIAA€ETHCST 3araAbHa KpajioBa 3apava AAST %-napa60Ait1Ho'1' 3a ElfaeAbMaHOM CHCTEMM PiBHSIHB,
B SIKiif y piBHSHHSIX i KpalfOBMX yMOBax BiACYTHi MOAOAIII UAeHM, a KoedpillieHTV Py CTapIImX
uAeHiB cTai. [TpumyckaeThbesl, 0 KpalioBi yMOBM MOB’sI3aHi 3 CUCT@MOIO PiBHSIHb YMOBOIO AOIOB-
HSIABHOCTI, IKa € aHAAOT'OM YMOBM AOIOBHSIABHOCTI AOIaTMHCBKOTO. AAsl po3B’sI3KiB Takol 3apadi
BUBEAEHO iHTeTpaArbHe 306paxeHHs . Slapa iHTerpaAis 3 mboro 306pakeHHs YTBOPIOIOTH MaTPUIIIO
I'pina 3apaui. BusiBAaeHo, 1110, B3araai KaxXyw, He BCi eaxeMeHTH MaTpui [ piHa e 3Buuaitemmu pyH-
KuistMu. AesiKi 3 HUX MIiCTSITh AOAAHKY, SIKi € AIHITHMMM KOMbIHALIIIMYU AeAbTa-PYHKIII Aipaka Ta
ix moxiaamx. Lle BuHMKae y BUITaAKax, KOAM B KpaliOBi yMOBM BXOASITh ITOXiAHI 3a 3MiHHMMY f 1 Xy
TIOPSIAKIB, piBHMX ab0 GiABIINX 3a HAVBUIIT TIOPSIAKM IIOXIAHMX 33 LMY 3MiHHVMMY B PiBHSIHHSIX CH-
cremn. OTpMMaHi Pe3yAbTaTH € BaXKAMBMMH, 30KpeMa, AASL BCTAHOBAEHHSI KOPEKTHOI pO3B’SI3HOCTi
Ta iHTerpaABHOTO 300pa’keHHsI PO3B’SI3KiB 3araABHIIIMX 2b-TTapaboAiUHMX KPafOBMX 3aAad.

Kntouosi cnosa i ppasu: 2b-mapaboaiuna 3a EifaeAbMaHOM crcTeMa piBHSIHD, KpalioBa 3apada, iH-
TerpaabHe 306paXkeHHsT po3B’sI3KiB, MaTpuis I piHa.
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AOITYITAHCBKOMY OAEI'Y BACUABOBHYY — 70 POKIB

13 6epesns 2019 poky sunoBHMAOCS 70 pOKiB BiaAOMOMY
MaTeMaTuky AonymaHncbkomy Oaery Bacuabosuuy.

Oner AomymiaHCbKMII — AOKTOpP pi3MKo-MaTeMaTid-
HIX HaykK, Mpocpecop, AeKaH MaTeMaTUYHO-TIPUPOAHIMIOTO
daxyabreTy XelryBcbKoro yHiBepcuTeTy.

Hapoamscst Oaer Bacuavosmu 13 6epests 1949 poxy
y ceai Crpiakm Crapocambipcbkoro payioHy ABBiBCHKOI
obaacti. Y 1971 poui 3akiHUMB MexaHiKO-MaTeMaTWIHIIA
daxyabTeT AbBIBCBKOTO Aep>XaBHOTO yHiBEpCUTETY iMeHi
IBana ®panxa. Y 1971-1973 pokax cayXusB B apmii y Mon-
roaii. ¥ 1973-1985 pokax mpaifoBaB B O6UMCAIOBAABHOMY
LeHTpi [HCTUTY Ty NpuKAaAHMX ITPpOOAEM MeXaHiku i MaTe-
matuky AH Yxpainn. 3 1985 poxy nepeiiiios npaioBaTi y
BiAAIA PYHKITIOHAABHOTO aHAAI3y IILOTO X iHCTUTYTY, CIIO-
YaTKy Ha IO0cady CTapIIIOrO0 HayKOBOTO CHiBpObiTHMKA, a
3 1990 poxy Ha mocaay 3aBipyBauda BiaAiAy. Ilia xepiBHM-
ursoM LI XKypbenka, 6e3nocepeanporo yurs A.M. Koa-
Moroposa, y 1986 poui B binopychbKOMy yHiBepCUTETI 3aXMCTUB KAHAVAATChKY AMCepPTaLiio Ha
TeMy “BeKTOpHi 60pHOAOTII B ClIEKTpaAbHil TeOpil AOKaABHO OIyKAMX aArebp”, a AOKTOPCHKY
AmcepTamio — y 1994 poui y AbBiBcbkoMy yHiBepcuTeTi Ha Temy “ITiBobMexxeHi Ta obMeXeHi
oTlepaTOpM B CIEKTPaAbHIl Teopil AOKaABHO OMYyKAMX aarebp”. YV 1996 pomi oTpumas BueHe
3BaHHsI podpecopa.

Yopoaosx 2008-2012 poxkis npaitoBas y [ [pukapnaTchkoMy HalliOHAABHOMY YHiBepCUTETi
Ha nocaAi mpodpecopa KadpeApy MaTeMaTMUIHOTO i PyHKIIIOHAABHOTO aHAAi3y. 3a Iiell IepioA
po3pobus i unraB xypcu “Teopis piBHsHD baeka-Illoyaca” Ta “diHaHcoBa MaTeMaTmka”. Y
2013 porii, 3aBASIKM 30KpeMa i 110ro po3pobxam, 6yA0 AilleH30BaHO, Ii3Hillle YCIIIIHO aKpeAu-
TOBAHO MariCcTepchKy Iporpamy 3 piHaHCOBOI MaTeMaTUKIA

YrnpoaoBx pobotn B IIpukaprarcekoMy yHiBepcuteTi Oaer BacuaboBid 6yB BMKOHABIIEM
KiABKOX HAyKOBO-AOCAIAHMX TeM. 3a 11oro be3rocepeaHboi yuacTi B [IpukapmaTcbkomy yHiBep-
CUTeTI 6yAa BiAKpUTa i AOCi cpyHKuiOHye creniaaizoBaHa Buena paaa 1o 3axmcTy AucepTaiin
i3 ceniaabHOCTI “MaTteMaTmunmii aHaai3”. 3 2009 poxy i A0 cboroaHi Oaer AomylraHCHKWA
€ 3aCTYTIHMKOM TOAOBHOTO PeAaKTopa ¢paxoBOro HayKoBOro XypHaay “Kapmnarcbki MaTema-
TUYHI Iy OAiKaIlii”, KOTpWii iHAeKCYeThcsl 6araTbMa HayKOMETPUUIHMMM 6a3aMy AAHMX, cepen,
sxux Emerging Sources Citation Index (Web of Science) Ta Scopus. Ilia xepiBHMIITBOM IpoO-
decopa O.B. AomymraHCbKOro 6yA0 3aXMIIEHO 9 KaHAMAATCHKMX AMCepTallil, 3 HuX IIiCTb —
B YKpaiHi Ta Tpu — y [ToABIIi, AAST ABOX AOKTOPCBKMX AMCEpTAllilf BiH 6yB HayKOBMM KOH-
CyABTaHTOM. YeTBepo 10ro yuHiB (2 KaHAMAAQTY HayK Ta 2 AOKTOPM HayK) 3apa3 IPalolTh Y
ITpukapnaTchKOMy HaLliOHAABHOMY YHiBePCUTETI.




205

3aBasku cripusiHHIO O.B. Aonymancekoro cryaenTn [IpuxapnaTchbkoro yHiBepcuTeTy crie-
LiaAbHOCTe “MaTeMatmka”, “cratmctuxa”’, “dismka”, “npuxaassHa dismuxa”, “dirocodis”,
“apxeoaoris”, “disndHe BUXOBaHHS~ MalOTh 3MOTY 6€3KOIITOBHO HaBUaTHCS y JKeIIyBcbKo-
My YHIBEPCUTETI 3a IPOrpaMoOIO MOABIVTHIX MariCTepChbKMX AMIAOMIB. Y 2016 poui oaHOCTa-
HUM pimeHHsIM Buenoi paan Aonymancbkomy Oaery BacuaboBiay npucsoeHo 3BaHHs [Toue-
camit mpodpecop IIpukapnaTcbkoro HalioHaABHOTO yHiBepcuTeTy iMeHi Bacuas Credpanmka.

Hayxosi iHTepecn mpod. O.B. AomyimaHcbKoro AexaThb y cpepax HEAiHIHOTO PyHKIIiO-
HaABHOTO aHaAi3y, Teopii omepaTopiBs, Teopii y3araabHeHMX pyHKIi. Oaer AomyIaHChKII
AOCSITHYB 3HaYHOTO IIPOTPeCy y PO3BUTKY Teopii mpocTopis I'apai Anst yHKIIIN Bia HeCKiHUeH-
HOI KIABKOCTI 3MiHHMX, BUKOPUCTOBYIOUM iHBapiaHTHI MIMOBIPHICHI Mipy, IO 3aAOBOABHSIIOTDH
YMOBM KOHCHCTeHIIi1 KoAMOroposa Ha HeCKiHUeHHOBMMIPHMX YHITApHUX IPyIax, Ta AOCAIAVB
ix 3B’s13KM 3 cuMeTpyuHMMM ITpocTopamu doxa. e A03BOAsIe BUKOPUCTOBYBaTU METOAM He-
CKiHUEHHOBMMIPHOI TOAOMOPHOCTI AAST PYHKIIOHAABHOTO IMPeACTaBAEHHST HeCKiHUeHHOBY-
mipanx rpyn I'eitzenbepra. ITpodpecop O.B. AomynraHchbkmii 3aIIpOIIOHyBaB HOBUMI IAXiA AO
o6YAOBM Ta AOCAIAKEHHSI OIIepaTOPHOTO YMCAEHHS B KAacCi CMMeTPMUYHMX OCHOBHMX Ta y3a-
raAbHeHVX (PYHKIIN, BUKOPYICTOBYIOUM TEXHIKY TeH30pHMX A0OYTKiB. PasoMm 3i cBOiMM yuUHSI-
MM BiH pO3BMHYB IIOAIHOMiaABHMIT aHAAOT Teopii ABoicTocTi [ poTeHAIKa Ta BiATIOBIAHMI aHa-
Ai3 Dyp’e-Aannraca ars po3noaiais [lIBapiia Ta yAbTpapo3noairis PyM’e. 3acTocyBaHHS IbOrO
aHaAi3y 6yAO 3HAMIAEHO y ITOOYAOBI OIIEPaTOPHOTO UMCAEHHSI AAS HECKiHUEHHOI KiABKOCTi He-
0bOMeXeHNX OIIepaToOpiB y 3STOPTKOBUX aArebpax MOAIHOMiIaABHMX (YABTpa)po3mnoainiB. Takox
BiH Mae Baromi pe3yAbTaTy B TeOpil CIEKTPaAbHOI allpOKCcHMallil Heo6MeXXeHNX orlepaTopis B
baHaXOBMX ITPOCTOPAXx, Ae, BUKOPVUCTOBYIOUN TEOPil0 iHTepIIOASLIii, BiH OIcaB IIPOCTOPY TUITY
Becosa i A0BiB HepiBHOCTI bepHinTeltHa-AXXeKkcoHa AASI AOBIABHIX abCTPaKTHIMX OIlepaTopiB.

Ha gects 70-pivus nmpodecopa O.B. Aonymancekoro y [ IpukapnarcbkoMy HallioHaABHOMY
yHiBepcuTeTi 3 16 A0 20 xoBTHs 2019 poKy mpoliae MiXXHapOAHa MaTeMaTUHa KOH(epeHIIis
“Infinte dimensional analysis and topology”. 3ampolreHnMy AeKTOpaMy IIOTOAVIAVCH Oy T Ha-
crynHi Biaomi maTematuxkm: Tapac barax (AbBiB, YkpaiHa), AHApeac AedpaHT (OrbareHOYPT,
Himeuunna), Cepriit ®aBopos (Xapkis, Ykpaina), [Tabao T'aninao (Barercisi, Icranist), Boao-
anmup Kaaeup (Xapkis, Ykpaina), Cepriit Maxcumenko (Kuis, Ykpaina), Meunncaas Mactmao
(ITosnany, [Toabia), Muxaiiao Ilonos (IBano-dpankisebk, Ykpaina), Baoasimex 3sorek (Kpa-
kiB, [Toasmma). Ha Beb6cTopiami https://conference.pu.if.ua/idat MOXHa AeTaAbHi-
IIIe AOBiAATICh ITPO KOH(PEPEeHIIiIo Ta 3apeecTPyBaTUCh AASI YUaCTi.

Y aarmit yac Oaer BacuAbOBIY 3HAXOAUTHCS Y PO3KBITI TBOPUMX CUA i MPOAOBXYE aKTUB-
HO 3alIMaTHCsT HayKOBO-AOCAIAHOIO poboTor0. Bia mmpoi aAy1ii BiTaeMo oBiasipa Ta 6a’kaeMo
JIOMY MIITHOTO 3A0POB’sI, AOBIMX POKIiB XWTTsI Ta TBOPYOIrO HATXHEHHS!

Peaaxiiiriia Kkoaerist
IBaHO-dpaHKiBCchbKe MaTeMaTVUHe TOBapPVICTBO
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Kupnuenko Boaoaymunp Bacuabosua

17.06.1942 — 02.04.2019

Peaxoaerist XypHaAy 3 TAM60KMM CyMOM CIIOBiIIaE, 10 2 KBiTHS 2019 poKy IIIOB i3 XUTTS
BMAATHMII MaTeMaTHK-aATebpaicT, YAeH PeAKOAeTiI, A.dp.-M.H, 3acAy>keHmii mpodpecop Kuiscn-
KOro HallioHaAbHOrO yHiBepcuTeTy iMeHi Tapaca Illepuenxa, aaypear AepkaBHOI Ipemii
YKpainu B raaysi Hayku i Texsiku Kupudenxko Boaoaumup Bacuabosny.

B.B. Kupnuenxo Hapoamscst 17 uepsHs 1942 poxy y micrti Ilensa (Pocist). Y 1959 poui, mi-
CASL 3000V TTSI CepeAHBOI OCBiTH, BCTYIMB Ha MeXaHiKO-MaTeMaTUJIHMIT dpakyAbTeT KniBchbko-
ro aepxasHoro yHiBepcureTy iMeHi T.I'. IlleBueHka, sikmii 3aKiHUMB 3 Bia3HaKo10 y 1964 pori.
B acmipanTypi Incturyty matrematuxku AH YPCP Boaoanmmup BacuaboBiu HaBuaBest 3 CidHS
1965 poxy mo ceprienn 1967 poky i y 1968 poui, B AeHiHrpaAcbKOMy BiaaireHHI MaTtematn-
yHOro iHCTUTYTY iMeHi B.O. CTekAoBa, yCIIIITHO 3aXMCTUB KaHAMAATCHKY AMCEPTALilo Ha TeMY
“306pakeHHsI CTIAAKOBIX, LILAKOM PO3KAAAHMX Ta 6acOBUX TOPSIAKiB”. Horo HayKoBuM Kepis-
HIKOM 6yB BiaOMIIE dpaxiBellb B TaAy3i aare6pu, ureH-kopecnoHaeHT AH CPCP, mpodpecop
A.K. ®aanees.

ITeaaroriuny AistAbHiCTB Boroaymup BacuaboBiy posnouas Ha MexaHiKO-MaTeMaTUIHOMY
daxyabreTi KuiBcbkoro HartrionaabHOrOo yHiBepcureTy iMeHi T.I. Illepuenxa y BepecHi 1967
poxy. Y 1986 poui B MOCKOBCbKOMY Aep>KaBHOMY yHiBepcureTi iMmeHi M.B. AomoHOcoBa BiH
YCHIITHO 3aXMCTVB AOKTOPCHKY AMCepTalilo Ha TeMy “MoayAi Ta cTpyKTypHa Teopis Kiremp”.
3 1988 poky mo 2016 pik B.B. Kupudenko mpairtoBaB Ha Kadpeapi reomeTpii MexaHiKo-MarTe-
MaTmuHOro dpaxyabTery KmiBchbkoro HarioHaabHOro yHiBepcuTery imeHi T.I. IlleBuenka, a
3roaoM ii i ogoatoBas. Y 2016 — 2018 poxax 06iiiMaB IocaAy CTapIIIOrO HayKOBOTO CIiBpObOiTHN-
Ka HayKOBO-AOCAIAHOI YaCTVHN yHIBEPCUTETY.
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B.B. KupnueHKo € OAHMM i3 3aCHOBHUKIB Cy4JacHOI KMIBCHKOI aATebpaivHOl IIKOAL. Horo
HAyKOBi pe3yAbTaTU CTaAM KracmaHuMH. Pospobaera HuMm, O.A. Apo3aom i A.B. Portrepom
Teopist 6acoBMX Ta KBa3si-6acoBMX MOPSIAKIB CTara BiAOMOIO Ta PO3BMBaAacs y 3aKOPAOHHMX
aArebpaldyHIX IIIKOAAX, 30KpeMa, B SmoHii. B.B. KupnueHKy HaaeXUTh TakoX IIPOBiAHA POAD
Y PO3BUTKY CTPYKTYpPHOI Teopii Kirellb, Ae BiH edpeKTMBHO 3aCTOCYBaB METOAM Teopii 306pa-
XeHb. BBeAeH] HMM IOHSTTSI caraiiaaka i IepBMHHOTO caraiaaka KiAblis Ta po3pobaeHi MeToAM
AO3BOAVIAML OTPMMATV KOHCTPYKTMBHMI OINC HU3KM Ba>KAMBMX KAACIB KiAellb, a 3rOAOM OAep-
XaTy po3B’s130Kk mpobaemn A.A. CKOpHsIKOBa Ipo 6yAOBY Kirellb criemiaabHOTO THy. Y 1976
poui B.B. Kupnuenxom crinbao 3 O.I'. 3aBaachkuM 6yAM BBeAeHi Tak 3BaHi HalliBMaKCMMaAbHI
Kiabis. Y 1993 poui B.B. KupuueHko AOBiB BaXXAUBY KaacudikalliiiHy TeopeMy Cy4dacHOI Te-
opii acouiaTMBHMX KiAellb PO 6yAOBY HalliBIIEpBMHHIX HETEPOBMX HalliBAOCKOHAAMX HaIliB-
AVICTpUOYTUBHIX KiA€llb.

Boaoammup Kupuuerko e aBTopom moHaa 250 HayKoBux Tpatib. Horo HaykoBi pesyAb-
TaTU AObpe BiAOMi y CBiTi Ta BBilIIIAM B MOHOTpadpiuHy AiTepaTypy 3 Teopii 306pa’keHb Ta
Teopii Kireupb i MoayaiB. Y 2007 poui mpodpecop B.B. KupudeHko y ckaaai KoAeKTUBY Hay-
KOBLIIB MeXaHiKO-MaTeMaTUJHOro dpakyAbTeTy Ta IHcTuTyTy MaTematuxu HAH VYkpaiam 3a
LKA POBIT «3006pakeHHs aArebpaldHiX CTPYKTYp i MaTpuuHi 3aAadi B AiHIHNX Ta TiAbbep-
TOBMX MPOCTOpax» CTaB AaypeaToM Aep KaBHOI mpeMmii YKpaiHM B raAysi HayKM i TexXHiKW.
B.B. KuprueHKo akTMBHO HpallfoBaB HaA BMXOBaHHSIM HayKoBMX KaapiB. Ilia 7ioro xepisHM-
LTBOM 3aXMIIEHO 36 KaHAMAATCHKMIX Ta 8 AOKTOPCHKMX AVICEpTaLIilA.

B.B. KupudeHko € OAHMM i3 3aCHOBHUKIB PeTyASIPHMX MiXXHapOAHMX aArebpaidHuX KOH-
depentiit B YkpaiHi, 6yB peAaKTOPOM Ta YAEHOM PEAKOAETIN HaraTboX HAYKOBMX XKYPHAAIB,
cepen Hux “Algebra and Discrete Mathematics”, “KapmaTceki MaremMaTnysi my6aikarii”, “Ma-
TeMaTWU4HI CTyAii” Ta iH.

3raaxa rmpo Boroaumupa Bacuabosnda sirpiae Ayiry. Bin Ha3aBX AV 3aAMIIATECS B TaM’si-
Ti BCIX, XTO JIOTO 3HaB, SIK BMCOKOIHTEAIreHTHa, ClIpaBeAAMBa, YyliHa AIOAVHA, 3AATHA 3aBXAM
MPYIATA Ha AOTIOMOTY.

PeaaxiiitHa Koaerist
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D)

Bbepeszancexint FOpint Maxkaposua

08.05.1925 — 07.06.2019

YHoui 3 7 Ha 8 yepBHs 2019 poky Biairmos y BiunicTs IOpiit Makaposuu bepesanchxiit —
BUAATHIMN YKPAIHChKIA yUeHMI-MaTeMaTHK, akapeMik HamionaapHOT akaaeMil Hayk Ykpainy,
OAVH 3 PYHAATOPIB CyUacHOro (PyHKIIOHAABHOTO aHaAi3y.

Hapoauscst IOpiit Makaposuu 8 Tpasrst 1925 poky y Kuesi B iHTeairenTHiit cim’i. Moro
6aTbKO 6yB arpOHOMOM-HayKOBIIEM, MaTi — 6ibAioTekapeM. AUTMHCTBO i JOHICTb XAOMIIS 6Y-
AV AyXe BaXXKUMM — JIOMY AOBEAOCH IIepeXUTI YMCAeHHI BUCHAXAMBi XBOpOOU, TOAOAHI PO-
KM, BilfHY, OKyIamio. SIK BiH 3raAyBaB, HiMIIi BAQIITOBYBaAM OOAABM i BiAIlpaBASIAM HeIlIpalIio-
10Uy MOAOAB Ha pobotu a0 HiMeuunHy, aae BiH MaB AOBiAKY PO poOOTY: 6aTbKO BAAILITYBAB
yioro “Ha mocaay omyaaAa” — BiH MaB TaHSITU NTaxiB Ha AOCAIAHMIIBKOMY IIOAL IIyKPOBOTO
IHCTUTYTY.

Y 1943 poui, micas 3BiabHeHHsI KueBa Bia OKyTIaHTIB, KiabKa IpodpecopiB i AOLIEHTIB, 1110 ITe-
pebyBaAmM B MiCTi, HamMararThcst BiakpuTy KuiBcbkuit yHiBepcuTeT. OroaomreHo Habip, BCTYTIHI
icrmTy ckaaaaTy He oTpibHO. FOpiit BeTur 3akiHumMTH A0 BiViHM AmIIle 8 KAACiB, are IOUaB Bia-
BiAyBaTH AeKIii Ha ¢pi3MKo-MaTeMaTMYHOMY dpakyAbTeTi. Llett Bubip 6yB y neBHil Mipi 3yMoB-
AeHMIT iHTepecoM A0 (pi3ymKy, IO M0T0, y CBOIO Yepry, IOPOAMB iHTepec A0 PaAio, are 3STOAOM
XAOTIellb BUPIIINB cTaTy MaTeMaTUKOM. Uepes 6araTo poxiB, Bke 6yAyun BiAOMMUM Ha BeCh CBIiT
ydernM, IOpiit MakapoBud OSICHIOBaB, IO 3pO6yB BUbip Ha KOPMCTh MaTeMaTUKM, OCKIABKI
3aBASKM AekLissM C.I. 3yxXOBMIIBKOTO yCBiAOMMB, IIO MaTeMaTMKa — Lie HayKa, sSKa He 3aAe-
XUTD BiA MOAITHKY, HEIIIABAaAHA XOPCTOKOCTSIM PeXVMY, a TOMY, 3aliMalOulich Hel0, MOXKHa
OyTu BiABHMM, BCyIleped yCchboMy. AO TOTO X OMy IOA06aAOCh, IIIO MaTeMaTHKa He BYMarae
rapHoi mam’siTi: TyT He Tpeba 6araTo 3armam’sITOBYBaTH, TOAOBHE — AOTiUHE MUCAEHHSI.
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Y 1948 poui IOpiit bepe3ancbkini 3akiHumB 3 BiasHaKor0 KnuiBcbkini yHiBepcuTeT. AAe IIaH-
CM BCTYIIMTH AO acCHipaHTYpM y IOHaKa, IO He 6yB KOMCOMOABIIEM, Ta IIle ¥ IepebyBaB IIia
Jac OKYTIallil Ha OKYIIOBaHil TepuTopii, 6yAn HaaTo mpuMapHMMK. Ha aomomory mpuiimios
C.I. Kpertn, sxuii npamoBaB y KuiBcbkoMy yHiBepcuTeTi 3 1945 poxy Ta 3BepHYB yBary Ha
TAaAQHOBUTOTO CTyAeHTa. Pazom 3 M.M. boroaro60B1M BiH BMOBMB TOAIIITHBOTO AMpeKTOpa IH-
cturyty Mmatematuku AH YPCP M.O. AaBpenTtbeBa ponomorty IOpito bepesancbkomy crati
acripaHTOM, Ta, pa3oM 3i cBOIM 6paToM MapkoM I'puroposmueM, cTaB 10ro HayKOBUM KepiB-
HJIKOM. 3 TOTO Yacy i AO KiHIISI XKUTTSI HayKoBa AisAbHICTD IOpiss Makaposuya 6yaa moB’si3aHa
i3 IncturyTOM MaTeMaTukum. TyT BiH 3aXMCTMB O6MABI CBOI AMicepTaLii: KaHAMAATCHKY “Timep-
KOMIIAEKCHI CHCTeMI 3 KOMIIAKTHMM i ArickpeTHMM 6asmcom” (1951 p.) Ta AOKTOPCbKy “Aeski
IIMTaHHS CIIEKTPAaAbHOI Teopil PiBHSIHD 3 YaCTMHHMMM Pi3HMIISIMM 1 YaCTMHHMMM HOXiAHMMM
(1955 p.), TYT HNpOMIIIOB BCi HAYKOBi IIOCAAM BiA MOAOALIOTO AO TOAOBHOT'O HAayKOBOT'O CIiBPO-
biTHMKa, 6YB O6paHIIT YAEHOM-KOpPeCIOHAeHTOM (1964) Ta axaaemikom (1988) HarioHaabHOT
akapemii Hayk YPCP (mmmi — HAH Ykpainm), TyT cTBOpMB BiAAiA MaTeMaTHM4HOro (3 1985
POKy — (pyHKIIIOHaABHOTO) aHaAi3y, 3aBiayBadeM sikoro 6yB 3 1960 mo 2001 pik, TyT 3amoua-
TKyBaB HIHi BCeCBITHbOBIAOMY KMIBCbKY IIKOAY 3 (PYHKIIIOHAABHOTO aHaAi3y, ska yCIIIHO
MpalliOe 1 pO3BMBAETHCSI AO CbOTOAHI.

IOpint Makaposuu bepesancbkii BiapaB MaTeMaTuili oHaA 70 pokiB cBOro Xurrs. Bin
OTpMMaB HU3KY (PYHAAMEHTAaAbHMX Pe3yAbTaTiB B 06AacTi pyHKIIIOHAABHOTO aHAAi3y, Teo-
pii AMdepeHITiaAbHX PiBHSHB, MaTeMaTiuHOi isukn. MIoro pesyAbTaTy CyTTEBO BIAMHYAM
Ha PO3BUTOK TaKMX HaIPSIMiB MaTeMaTUKM, SIK CIIeKTPaAbHA TeOpis caMOCHPSDKEeHMX oIepa-
TOPiB Ta iX KOMYTYIOUMX CiMeli, TeOpisl OCHOBHMX Ta y3araAbHeHMX (PYHKIIi, TapMOHITHMIA
aHaAi3, rpaHNYHI 3apadi AAS AMidpepeHITiaAbHNX Ta Pi3HMIIEBUX PiBHSHD, ObepHeHi 3apadi crie-
KTPaABHOTO aHaAi3y Ta iH. 30KpeMa, y 11oro poboTax 3i crieKTpaAbHOI Teopii onepaTopis 6yAo
3aBepIIIeHO OOy AOBY TeOpii PO3KAAAiB 3a y3araAbHEHMMM BAACHVMM BEKTOpaMI abCTPaKTHIX
CaMOCIPSIXEHMX ONepaTopiB, HUM PO3BMHYTO T€OPiIO MPOCTOPiB 3 MO3UTUBHMMM Ta HeTaTWB-
HMMJ HOpMaMI, sSIKa Ma€ BeAMKY KiAbKiCTb 3aCTOCyBaHb, i 6€3 sSIKOi HeMOXXAMBO YSIBUTH CObi
cyvacHMII (pyHKITIOHAABHWMIA aHAAi3, HUM pa30M i3 KOoAeraMu Ta yUHSIMM BUBUYEHO HeCKiHUeH-
HOBMMIipHY IIpO6AEMY MOMEHTIB Ta ii y3araabHeHHsI, IIOB'sI3aHi 3 KBAaHTOBOIO Teopi€lo moast. B
baraTbOX po3airax PYHKIIIOHAABHOTO aHAAi3y, MaTeMaTUUIHOI pi3MKM, Ta TeOpil BUITAAKOBIX
IIPOLIECiB BUKOPUCTOBYIOTHCS pe3yAbTaTy TeOpil OCHOBHMX Ta y3araAbHeHMX (PYHKIIiV HeCKiH-
YeHHOI KiABKOCTI 3MiHHMX, 6iAs BUTOKIB sIKOi cTosTh IO.M. Bepesanchkmii Ta vtoro yusi. Lls
TeOpist AO3BOAMAQ, 30KpeMa, ToOyAyBaTH LiKaBi Ta KOPMCHI y3araAbHEHHs IayCCiBCbKOTO aHa-
Aisy 6inroro mymy. IOpiii Makaposud 3po6mB TakoX CYTTEBIMI BHECOK Y PO3BUTOK Ta BAOCKO-
HaA€HHsI METOAIB HeCKIHUeHHOBMMIPHOTO aHaAi3y. Lleii mepeAik HayKOBMX AOCSTHEHb yYeHOTO
AAA€KO He TTOBHMI. BaskKo 3HaMTM pO3AiA CydacHOTO aHaAi3y, Y SIKOMY He 3aCTOCOBYBAAMCH 611
pesyAbTaTu HaykoBoi koA FO.M. Bepesancbkoro. Horo ocobucra HaykoBa CrIaAIlIHA CKAA-
AQ€ThCsI 3 7 MOHOTpadpitt Ta 6Am3bK0 300 HayKOBMX CTaTel, OCTAHHS 3 SIKVIX BUIIAE APYKOM BXe
IiCAS I0TO CMepTi. A AO OCTaHHIX AHIB CBOTO XXWTTSI BiH IIAIAHO 3alIMaBCsI YAIOOAEHOIO CITpa-
BOIO, 3yCTpiUaBCsl 3 KOA€TaMI Ta yYHSIMM, TeHepyBaB HOBi iAel, Ta MaB IIle 6araTo HayKOBMX
IIAAQHIB Ha MalibyTHe.

IOpit Makaposud 6yB He TIABKM OAHMM 3 HAICMABHIIIIVIX MaTeMaTUKiB Cy4JacHOCTI, a 11 Ta-
AAQHOBUTMM BumTeAeM. barato poxiB BiH BukAasas y KuiBcbkomy yHiBepcuTeTi iMeHi Tapaca
[IleBueHKa, KepyBaB HayKOBOIO pPOOOTOIO CTYA€HTIB i acHipaHTiB, KOHCYABTYBaB AOKTOPaHTiB
Ta 3000yBauiB HAYKOBOTO CTYIIeHsI AOKTOpa HaykK. 3a CBO€ XUTTSI MATOTyBaB 44 KaHAMAATIB
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HayK, 6yB HQyKOBMM KOHCYABTAaHTOM 14 AOKTOPiB HayK. ABOE 3 110T0 6e3mocepeAHixX yUHiB cTa-
AV YAeHaMI-KopecrioHAeHTaMy HarioHaabHOI akaaeMii Hayk YKpaiHK, OAHOTO 3 HuX obpaHO
akapemikom HAHY. Ha HaykoBux ceminapax, poboToro sikux kepysas IOpilt Makaposid, BBa-
>KaAM 3a YeCTb 3pOOUTHM AOTIOBIiAb He TIABKIM MOAOAI HayKOBIIi, a 71 BiAOMI Ta BU3HaHI dpaxiBIIi.

IO.M. Bepe3saHcpKit 6yB UAEHOM PEAKOAETIN 6araTbox dpaxoBMX MaTeMaTMUHMX XYypHa-
AiB, IIIO BUAQIOTBCS y Pi3HMX KpaiHax cBiTy. A y 1996 polii BiH cTBOpUB HayKOBMI XypHaA
“Methods of Functional Analysis and Topology” (HyHi 0AMH 3 MPOBiIAHMX MaTeMaTUYHUX XYP-
HaAiB YKpaiHM) i OYOAIOBaB JIOTO PEAKOAETrifo, bepyunt aKTUBHY y4acTh y pOOOTi, XK A0 KiHIIS
CBOTO XUTTsI. 30KpeMa, 3MiCT IOTOYHOTO HoMepa XypHaAy 6yAo cpopMoBaHO i 6esmocepe-
AHIM KepiBHMIITBOM IOPpiss MakapoBiua 3a KiAbKa AHIB AO JIOTO CMepTi.

Hayxosa aisiapgicTh IOpist Makaposnua bepesaHcbkoro Bia3HaueHa HM3KOIO HaropoA.
Bin — aaypeat npemiii im. M.M. Kpunrosa (1980 p.), M.M. Boroato6osa (1997 p.), M.B. Octpo-
rpaacekoro (2006 p.), M.I'. Kperina (2011 p.) HAH Yxpainu, raypeatom Aep>kaBHOI Impemii
YKpailm B raaysi Hayku i Texsiku (1998 p.), oTpumaBs 3BaHHSI 3aCAy>KeHOTO Aislua HayKM i Te-
xHiku Ykpaiam (2005 p.). By uaenom Kuicbkoro, Yxpaincbkoro, MockoBcbKoro Ta AMepu-
KaHChKOrO MaTeMaTUYHIX TOBAPUCTB.

BapTo cka3aTy KiabKa cAiB po AOACHKI sikocTi FO.M. Bepesancbkoro. byayun 6e3kommpo-
MiCHMM y Hay1li, BiH 6yB IIPOCTVM i AOCTYIIHIM y cHiAKyBaHHI. CTyA€HTH Ta acIipaHTV MOTAM
Ha piBHMX O6TOBOPIOBATM 3 HMM HAayKOBi IMTaHHs. A SIKIIIO KOMYCh i3 JIOTO OTOUeHHsI 6yaa
noTpibHa aomomora, IOpiit MakapoBud 3aBXAM pobuB yce, 106 AOIIOMOT'TH, iHOAI HaBiTh BCY-
reped BAACHMM IHTepecaM.

A e IOpiit Makaposud 6yB cripaBxHiM maTpioTom Ykpaiam. baraTo pasis BiH oTpuMyBaB
3alpOIIEeHHsI BiA 3aKOPAOHHMX HayKOBMX LIEHTPiB, IOMy IIPOIIOHYBaAM TaKi yMOBHM, IIPO SIKi B
VkpaiHi roai i Mpisti. Ane BiH BiAXMAMB BCi 3aIIpOIIIeHHsI, 60 XOTiB IpaloBaTy Ha 6Aaro CBO€l
baTbKiBIIMHN, HaBUATM caMe YKPaiHChbKy MOAOAD, IIATPMMYBATH caMe yKpaiHChbKy HayKy. Bin
HiKOAV He OyB aHi KOMCOMOABIIEM, aHi KOMYHICTOM, 60 He CIIpyiiMaB i BBaXKaB BOPOXKOIO AAST
YKpaiHy KOMyHICTMYHY iAe0AOTio. I, He3BaXkalouy Ha MOXKAVIBI HeTaTVBHI HACAIAKM AAsI cebe,
HiKOAM He 60SIBCSI BIAKPUTO BUCTYTATH IPOTU TUX MOXKHOBAAALIB, SIKMX BBaXkKaB BOPOTaMM
YKpalHCbKOI Aep>XKaBU.

CBiTAa TaM’SITh IIPO BEAMKOTO YUEHOT0, TAAAHOBUTOTO Bumreast, A06py i HOpsiAHY ATOAMHY
Ha3aBXXAV 3aAVILNTHCS Y CEPLISIX JIOTO YUHIB Ta KOAET.

PenaaxiriiHa KoAerist



