
1 23

European Journal of Mathematics
 
ISSN 2199-675X
 
European Journal of Mathematics
DOI 10.1007/s40879-018-0268-3

Symmetric polynomials on

Taras Vasylyshyn



1 23

Your article is protected by copyright and

all rights are held exclusively by Springer

International Publishing AG, part of Springer

Nature. This e-offprint is for personal use only

and shall not be self-archived in electronic

repositories. If you wish to self-archive your

article, please use the accepted manuscript

version for posting on your own website. You

may further deposit the accepted manuscript

version in any repository, provided it is only

made publicly available 12 months after

official publication or later and provided

acknowledgement is given to the original

source of publication and a link is inserted

to the published article on Springer's

website. The link must be accompanied by

the following text: "The final publication is

available at link.springer.com”.



European Journal of Mathematics
https://doi.org/10.1007/s40879-018-0268-3

RESEARCH ART ICLE

Symmetric polynomials on (Lp)n

Taras Vasylyshyn1

Received: 23 February 2018 / Revised: 19 May 2018 / Accepted: 23 June 2018
© Springer International Publishing AG, part of Springer Nature 2018

Abstract
We describe an algebraic basis of the algebra of symmetric continuous polynomials
on the nth Cartesian power of the complex Banach space Lp = Lp([0, 1]), where
1 � p < +∞.

Keywords Polynomial · Symmetric polynomial · Block-symmetric polynomial ·
Algebraic basis
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1 Introduction

Polynomials and analytic functions on a Banach space X invariant (symmetric) with
respect to a group of operators acting on X were studied by a number of authors [1,2,4–
12,14–19] (see also a survey [3]). For example, if X is a rearrangement-invariant
sequence space, it is natural to consider the group of permutations of the natural basis
of X isomorphic to the group of all bijections on the set of all positive integers. If X
is a rearrangement-invariant function space of measurable functions on some measur-
able space �, it is natural to consider the group of operators acting as a composition
of a function with some measure-preserving bijection on �. For the investigation of
algebras of symmetric polynomials and symmetric analytic functions it is handy to
know an algebraic basis (a set of elements of the algebra such that every element
of the algebra can be uniquely represented as an algebraic combination of elements
from this set) of the algebra (if such a basis exists), because every homomorphism
on the algebra with an algebraic basis is completely determined by its values on the
elements of the basis. Symmetric analytic functions and symmetric polynomials on
�p and Lp were first studied by Nemirovski and Semenov in [14]. In particular, in [14]
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T. Vasylyshyn

a description of algebraic bases of algebras of symmetric polynomials on �p and Lp

was provided. In [9] González et al. generalized results of [14] and described alge-
braic bases of some algebras of symmetric polynomials on rearrangement-invariant
separable Banach spaces. Algebras of symmetric polynomials and symmetric analytic
functions on the complex Banach space L∞([0, 1]) of essentially boundedmeasurable
functions on [0, 1]were studied in [7,15,17,18]. In particular, in [7] the author together
with Galindo and Zagorodnyuk described an algebraic basis of the algebra of symmet-
ric continuous polynomials on L∞([0, 1]). This result was applied for the description
of the spectrum of the algebra of symmetric entire functions of bounded type on
L∞([0, 1]) in works [7,17,18]. Symmetric polynomials on the Cartesian powers of
Banach spaces (which are also called “block-symmetric”) were studied in [10–12,16].

In this work an algebraic basis of the algebra of all continuous symmetric polyno-
mials on (Lp)

n is described.
We denote by N the set of all positive integers and by Z+ the set of all nonneg-

ative integers. Let X and Y be complex Banach spaces with norms ‖·‖X and ‖·‖Y
respectively. A mapping A : Xm → Y , where m ∈ N, is called an m-linear map-
ping if it is linear with respect to every of its m arguments separately. A mapping
P : X → Y is called an m-homogeneous polynomial if there exists an m-linear map-
ping AP : Xm → Y such that its restriction to the diagonal is equal to P , that is,

P(x) = AP (x, . . . , x
︸ ︷︷ ︸

m

) for every x ∈ X .

The mapping AP is called the m-linear mapping associated with P . Note that P(λx)
= λmP(x) for every λ ∈ C and x ∈ X .

It is known that an m-homogeneous polynomial P : X → Y is continuous if and
only if

‖P‖ = sup
‖x‖X�1

‖P(x)‖Y < +∞.

Similarly, an m-linear mapping A : Xm → Y is continuous if and only if

‖A‖ = sup
‖x1‖X�1,...,‖xm‖X�1

‖A(x1, . . . , xm)‖Y < +∞.

By [13, Theorem 2.2, p. 12], an m-homogeneous polynomial P is continuous if and
only if the symmetric (with respect to the permutations of its arguments) m-linear
mapping AP associated with P is continuous.

A mapping P = P0 + P1 + · · · + PN , where P0 ∈ Y and Pj is a j-homogeneous
polynomial for every j ∈ {1, . . . , N }, is called a polynomial of degree at most N .

Let p ∈ [1,+∞) and n ∈ N. Let Lp = Lp([0, 1]) be the complex Banach space
of functions y : [0, 1] → C for which the pth power of the absolute value is Lebesgue
integrable, with norm

‖y‖p =
(∫

[0,1]
|y(t)|pdt

)1/p

.
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Symmetric polynomials on (Lp)n

Let (Lp)
n be the nth Cartesian power of Lp with norm

‖y‖p,n =
(

n
∑

s=1

∫

[0,1]
|ys(t)|pdt

)1/p

,

where y = (y1, . . . , yn) ∈ (Lp)
n.

Let � be the set of all bijections σ : [0, 1] → [0, 1] such that both σ and σ−1 are
measurable and preserve the Lebesgue measure. A function f : (Lp)

n → C is called
symmetric if

f ((y1◦σ, . . . , yn◦σ)) = f ((y1, . . . , yn))

for every (y1, . . . , yn) ∈ (Lp)
n and for every σ ∈ �. Let us denote by Ps((Lp)

n) the
algebra of all symmetric continuous complex-valued polynomials on (Lp)

n.

2 Themain result

For every multi-index k = (k1, . . . , kn) ∈ Z
n+ such that 1 � |k| � �p�, where |k| =

k1+· · ·+kn and �p� is the integral part of p, let us define a mapping Rk : (Lp)
n → C

by

Rk(y) =
∫

[0,1]

n
∏

s=1
ks>0

(ys(t))
ks dt, (1)

where y = (y1, . . . , yn) ∈ (Lp)
n. Also we set R(0,...,0)(y) ≡ 1.

Theorem 2.1 For k ∈ Z
n+ such that 1 � |k| � �p�, the mapping Rk defined by (1) is

a well-defined continuous symmetric |k|-homogeneous polynomial on (Lp)
n.

Proof Clearly, Rk is symmetric. Let B : (Lp)
|k| → C be defined by

B(x1, . . . , x|k|) =
∫

[0,1]
x1(t) · · · x|k|(t) dt .

Note that B is a |k|-linear mapping. Let Q : Lp → C be the restriction of B to the
diagonal. Since

|Q(x)| =
∣

∣

∣

∣

∫

[0,1]
(x(t))|k|dt

∣

∣

∣

∣
�
∫

[0,1]
|x(t)||k|dt = ‖x‖|k|

|k| � ‖x‖|k|
p

for every x ∈ Lp, it follows that

‖Q‖ = sup
‖x‖p�1

|Q(x)| � sup
‖x‖p�1

‖x‖|k|
p = 1.
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T. Vasylyshyn

Therefore, Q is continuous, hence B as well.
Note that

Rk(y) = B
(

y1, . . . , y1
︸ ︷︷ ︸

k1

, . . . , yn, . . . , yn
︸ ︷︷ ︸

kn

)

, (2)

where y = (y1, . . . , yn) ∈ (Lp)
n. So Rk is well defined.

Note that for fixed x, y ∈ (Lp)
n the function λ ∈ C 
→ Rk(x +λy) ∈ C is a

polynomial of degree at most |k|. Therefore, by [13, Theorem 3.6, p. 22], Rk is a
polynomial of degree at most |k|. Also note that Rk(λy) = λ|k|Rk(y) for every λ ∈ C

and y ∈ (Lp)
n. Therefore, by [13, Exercise 2.C, p. 16], Rk is a |k|-homogeneous

polynomial.
By (2),

|Rk(y)| � ‖B‖‖y1‖k1p · · · ‖yn‖knp
for every y ∈ (Lp)

n. Therefore, for every y ∈ (Lp)
n such that ‖y‖p,n � 1, we have

|Rk(y)| � ‖B‖. Hence, ‖Rk‖ � ‖B‖. Consequently, Rk is continuous. ��
Lemma 2.2 Let P = P0 + P1 + · · · + PN be a symmetric continuous complex-valued
polynomial on (Lp)

n, where P0 ∈ C and Pj is a j-homogeneous polynomial for
j ∈ {1, . . . , N }. Then every Pj is symmetric and continuous, where j ∈ {0, . . . , N }.
Proof This is immediate from the Cauchy Integral Formula (see [13, Corollary 7.3,
p. 47]) since P0 + P1 + · · · + PN is the Taylor series of P at 0. ��
Let M be a finite nonempty subset of Z

n+. Let C
M be the vector space of all map-

pings from M to C. Note that every element ξ ∈ C
M can be considered as an

|M |-dimensional complex vector (ξk)k∈M , where ξk = ξ(k) for k ∈ M and |M |
is the cardinality of M . Therefore, C

M is isomorphic to C
|M|. We endow the space

C
M with norm

‖ξ‖∞ = max
k∈M |ξk |.

Form ∈ N, let c(m)
00 (Cn) be the space of all sequences x = (x1, . . . , xm, 0, . . .), where

xj = (

x (1)
j , . . . , x (n)

j

) ∈ C
n for j ∈ {1, . . . ,m}, and 0 = (0, . . . , 0) ∈ C

n. We endow

the space c(m)
00 (Cn) with norm

‖x‖�p =
⎛

⎝

m
∑

j=1

n
∑

s=1

∣

∣

∣x
(s)
j

∣

∣

∣

p

⎞

⎠

1/p

.

Note that c(m)
00 (Cn) ⊂ c(m+1)

00 (Cn) for every m ∈ N.

A function f : c(m)
00 (Cn) → C is called symmetric if

f ((x1, . . . , xm, 0, . . .)) = f ((xτ(1), . . . , xτ(m), 0, . . .))
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Symmetric polynomials on (Lp)n

for every (x1, . . . , xm, 0, . . .) ∈ c(m)
00 (Cn) and for every permutation τ : {1, . . . ,m} →

{1, . . . ,m}.
For every k ∈ Z

n+, let H
(m)
k : c(m)

00 (Cn) → C be defined by

H (m)
k (x) =

m
∑

j=1

n
∏

s=1
ks>0

(

x (s)
j

)ks.

Note that H (m)
k is a symmetric |k|-homogeneous polynomial. For an arbitrary

nonempty finite set M ⊂ Z
n+ such that |k| � 1 for every k ∈ M , let us define a

mapping π
(m)
M : c(m)

00 (Cn) → C
M by

π
(m)
M (x) = (

H (m)
k (x)

)

k∈M

We will use following results, proved in [12].

Theorem 2.3 ([12, Theorem 6]) Let M be a finite nonempty subset of Z
n+ such that

|k| � 1 for every k ∈ M. Then

(i) there exists m ∈ N such that for every ξ = (ξk)k∈M ∈ C
M there exists xξ ∈

c(m)
00 (Cn) with π

(m)
M (xξ ) = ξ ;

(ii) there exists a constant ρ > 0 such that if ‖ξ‖∞ < 1, then ‖xξ‖�p < ρ for every
p ∈ [1,+∞).

Theorem 2.4 ([12, Theorem 8]) Every symmetric N-homogeneous polynomial
P : c(m)

00 (Cn) → C, where m is an arbitrary positive integer, can be represented as an

algebraic combination of polynomials H (m)
k , where k ∈ Z

n+ is such that 1 � |k| � N .

Lemma 2.5 ([12, Lemma 11]) For m ∈ N, let K ⊂ C
m and κ : K → C

m−1 be
the orthogonal projection: κ((x1, x2, . . . , xm)) = (x2, . . . , xm). Let K1 = κ(K ).
Suppose int K1 �= ∅ and that for every open setU ⊂ K1 the setκ−1(U ) is unbounded.
If the polynomial Q(x1, . . . , xm) is bounded on K , then Q does not depend on x1.

For every E ⊂ [0, 1], let

1E (t) =
{

1, if t ∈ E,

0, otherwise.

For m ∈ N, let Jm : c(m)
00 (Cn) → (Lp)

n be defined by

Jm(x) =
⎛

⎝

m
∑

j=1

x (1)
j 1[( j−1)/m, j/m], . . . ,

m
∑

j=1

x (n)
j 1[( j−1)/m, j/m]

⎞

⎠

for x = (x1, . . . , xm, 0, . . .) ∈ c(m)
00 (Cn). Note that Jm is a linear operator. Let us show

that Jm is continuous.
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Lemma 2.6 For every x ∈ c(m)
00 (Cn),

‖Jm(x)‖p,n = 1

m1/p ‖x‖�p .

Proof For x = (x1, . . . , xm, 0, . . .) ∈ c(m)
00 (Cn),

‖Jm(x)‖p
p,n =

n
∑

s=1

∫

[0,1]

∣

∣

∣

∣

m
∑

j=1

x (s)
j 1[( j−1)/m, j/m](t)

∣

∣

∣

∣

p

dt

=
n
∑

s=1

∫

[0,1]

m
∑

j=1

∣

∣x (s)
j

∣

∣
p1[( j−1)/m, j/m](t) dt

=
n
∑

s=1

m
∑

j=1

∣

∣x (s)
j

∣

∣
p
∫

[0,1]
1[( j−1)/m, j/m](t) dt

= 1

m

n
∑

s=1

m
∑

j=1

∣

∣x (s)
j

∣

∣
p = 1

m
‖x‖p

�p
.

Therefore, ‖Jm(x)‖p,n = ‖x‖�p/m
1/p. ��

Consequently, Jm is continuous. For l ∈ N, let

Dl = J2l
(

c(2l )
00 (Cn)

)

.

Note that J2l is a bijection between c
(2l )
00 (Cn) and Dl . Since J2l is linear and continuous,

it follows that J2l is a continuous isomorphism between c(2l )
00 (Cn) and Dl . Let

D =
∞
⋃

l=1

Dl .

Note that D is dense in (Lp)
n. For every k ∈ Z

n+ such that |k| � 1, let us define a
mapping ˜Rk : D → C analogously to (1):

˜Rk(y) =
∫

[0,1]

n
∏

s=1
ks>0

(ys(t))
ks dt,

where y = (y1, . . . , yn) ∈ D.

Lemma 2.7 For every k ∈ Z
n+ such that |k| � 1 and l ∈ N,

˜Rk(J2l (x)) = 1

2l
H (2l )
k (x) for every x ∈ c(2l )

00 (Cn).
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Proof For x = (x1, . . . , x2l , 0, . . .) ∈ c(2l )
00 (Cn),

˜Rk(J2l (x)) =
∫

[0,1]

n
∏

s=1
ks>0

( 2l
∑

j=1

x (s)
j 1[( j−1)/2l, j/2l ](t)

)ks
dt

=
∫

[0,1]

n
∏

s=1
ks>0

2l
∑

j=1

(

x (s)
j

)ks 1[( j−1)/2l, j/2l ](t) dt

=
∫

[0,1]

2l
∑

j=1

n
∏

s=1
ks>0

(

x (s)
j

)ks 1[( j−1)/2l, j/2l ](t) dt

=
2l
∑

j=1

n
∏

s=1
ks>0

(

x (s)
j

)ks
∫

[0,1]
1[( j−1)2l, j/2l ](t) dt

= 1

2l

2l
∑

j=1

n
∏

s=1
ks>0

(

x (s)
j

)ks = 1

2l
H (2l )
k (x). ��

Let a, b ∈ [0, 1] be such that a < b and that there exist r1, r2, s ∈ Z+ such that
a = r1/2s and b = r2/2s. Let us define a mapping S[a,b] : D → D in the following
way. For y ∈ D, we set

(S[a,b](y))(t) =
⎧

⎨

⎩

y

(

t − a

b − a

)

, if t ∈ [a, b],
(0, . . . , 0), if t ∈ [0, 1]\[a, b].

Lemma 2.8 For every y ∈ D,

‖S[a,b](y)‖p,n = (b − a)1/p‖y‖p,n .

Proof For y = (y1, . . . , yn) ∈ D,

‖S[a,b](y)‖p
p,n =

n
∑

s=1

∫

[a,b]

∣

∣

∣

∣
ys

(

t − a

b − a

)∣

∣

∣

∣

p

dt

= (b − a)

n
∑

s=1

∫

[0,1]
|ys(θ)|pdθ = (b − a)‖y‖p

p,n .

Therefore, ‖S[a,b](y)‖p,n = (b − a)1/p‖y‖p,n . ��
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Lemma 2.9 For every y ∈ D and k ∈ Z
n+ such that |k| � 1,

˜Rk(S[a,b](y)) = (b − a)˜Rk(y).

Proof For y = (y1, . . . , yn) ∈ D,

˜Rk(S[a,b](y)) =
∫

[a,b]

n
∏

s=1
ks>0

(

ys

(

t − a

b − a

))ks
dt

= (b − a)

∫

[0,1]

n
∏

s=1
ks>0

(ys(θ))ks dθ = (b − a)˜Rk(y). ��

Theorem 2.10 Every N-homogeneous symmetric continuouspolynomial P : (Lp)
n →

C can be uniquely represented as an algebraic combination of polynomials Rk, where
k ∈ Z

n+ is such that 1 � |k| � min{�p�, N }.
Proof Let Q be the restriction of P to D. Let

MN = {k ∈ Z
n+ : 1 � |k| � N }.

By Theorem 2.3, where we set M = MN , there exist m ∈ N and ρ > 0 such that
for every ξ ∈ C

MN there exists xξ ∈ c(m)
00 (Cn) with π

(m)
MN

(xξ ) = ξ and if ‖ξ‖∞ < 1,

then ‖xξ‖�p < ρ. Hence, π
(m)
MN

is surjective. For m′ � m, the restriction of H (m′)
k to

c(m)
00 (Cn) is equal to H (m)

k for every k ∈ Z
n+ such that |k| � 1. Consequently, the

restriction of π
(m′)
MN

to c(m)
00 (Cn) is equal to π

(m)
MN

. Since π
(m)
MN

is surjective, it follows

that π(m′)
MN

is surjective too.
Let

l0 = �log2 m� + 1. (3)

Then 2l0 � m. Let l � l0. Since J2l is continuous and linear, it follows that the

mapping Q◦ J2l is an N -homogeneous continuous polynomial on c(2l )
00 (Cn). Also

note that Q◦ J2l is symmetric. Therefore, by Theorem 2.4, Q◦ J2l can be represented
as an algebraic combination of polynomials H (2l )

k , where k ∈ MN . In other words,
there exists a polynomial ql : C

MN → C such that

(Q◦ J2l )(x) = ql
(

π
(2l )
MN

(x)
)

for every x ∈ c(2l )
00 (Cn). Since π

(2l )
MN

is surjective, it follows that such a polynomial ql
is unique.
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For y ∈ Dl , let x = J−1
2l

(y). Then

(Q◦ J2l )
(

J−1
2l

(y)
) = ql

(

π
(2l )
MN

(

J−1
2l

(y)
))

.

By Lemma 2.7, ˜Rk(J2l (x)) = H (2l )
k (x)/2l. Therefore, H (2l )

k

(

J−1
2l

(y)
) = 2l˜Rk(y).

Consequently,

π
(2l )
MN

(

J−1
2l

(y)
) = (

2l˜Rk(y)
)

k∈MN
.

Thus, for every y ∈ Dl ,

Q(y) = ql
((

2l˜Rk(y)
)

k∈MN

)

.

For a ∈ C, let γa : C
MN → C

MN be defined by

γa
(

(ξk)k∈MN

) = (aξk)k∈MN ,

where (ξk)k∈MN ∈ C
MN. Let q̃l = ql ◦γ2l . Then q̃l is a polynomial on C

MN and

Q(y) = q̃l
(

(˜Rk(y))k∈MN

)

(4)

for every y ∈ Dl .
Let us show that q̃l0 ≡ q̃l0+1 ≡ · · · . For l > l0 we have Dl0 ⊂ Dl . Therefore, by

(4),

q̃l
(

(˜Rk(y))k∈MN

) = Q(y) = q̃l0
(

(˜Rk(y))k∈MN

)

(5)

for every y ∈ Dl0 . Let η = (ηk)k∈MN be an arbitrary element of C
MN. For ξ = γ2l0 (η)

there exists xξ ∈ c(m)
00 (Cn) such that π

(m)
MN

(xξ ) = ξ . Since 2l0 � m, it follows that

π
(2l0 )
MN

(xξ ) = ξ , that is, H (2l0 )
k (xξ ) = ξk for every k ∈ MN . Let yξ = J2l0 (xξ ). By

Lemma 2.7,

˜Rk(yξ ) = 1

2l0
H (2l0 )
k (xξ ) = 1

2l0
ξk = ηk

for every k ∈ MN . Hence, (˜Rk(yξ ))k∈MN = η. By (5), where we set y = yξ , we have
q̃l(η) = q̃l0(η). Since this equality holds for every η ∈ C

MN, it follows that q̃l ≡ q̃l0 .
Thus, q̃l0 ≡ q̃l0+1 ≡ · · · . Let q = q̃l0 . By (4),

Q(y) = q
(

(˜Rk(y))k∈MN

)

(6)

for every y ∈ D.
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Consider the case N > p. Let k0 ∈ Z
n+ be such that �p� < |k0| � N . Let us show

that the polynomial q = q((ξk)k∈MN ) does not depend on ξk0 .Wewill use Lemma 2.5.
Let

V =
{

y ∈ D : ‖y‖p,n <
ρ

2l0/p

}

and

K = ν(V ),

where ν : D → C
MN is defined by

ν(y) = (˜Rk(y))k∈MN

for y ∈ D. Let κ : C
MN → C

MN \{k0} be the orthogonal projection, defined by

κ
(

(ξk)k∈MN

) = (ξk)k∈MN \{k0}

for (ξk)k∈MN ∈ C
MN. Let K1 = κ(K ). Let us show that int K1 �= ∅. For an arbitrary

ξ = (ξk)k∈MN ∈ C
MN such that ‖ξ‖∞ < 1 there exists xξ ∈ c(m)

00 (Cn) such that

‖xξ‖�p < ρ and π
(m)
MN

(xξ ) = ξ . Let yξ = J2l0 (xξ ), where l0 is defined by (3). Then,
by Lemma 2.6,

‖yξ‖p,n = 1

2l0/p
‖xξ‖�p <

ρ

2l0/p
.

Thus, yξ ∈ V . By Lemma 2.7, taking into account that π(m)
MN

is the restriction of π
(2l0 )
MN

,

ν(yξ ) = (

˜Rk(yξ )
)

k∈MN
=
(

1

2l0
H (2l0 )
k (xξ )

)

k∈MN

= 1

2l0
π

(2l0 )
MN

(xξ ) = 1

2l0
π

(m)
MN

(xξ ) = 1

2l0
ξ.

Since yξ ∈ V and K = ν(V ), it follows that ξ/2l0 ∈ K . Thus, K contains the open
ball

F =
{

η ∈ C
MN : ‖η‖∞ <

1

2l0

}

.

Since ‖κ(η)‖∞ � ‖η‖∞, it follows that κ(F) contains the open ball

F ′ =
{

η′ ∈ C
MN \{k0} : ‖η′‖∞ <

1

2l0

}

.

Therefore, K1 contains F ′. Thus, int K1 �= ∅.

123

Author's personal copy



Symmetric polynomials on (Lp)n

Let U be a nonempty open subset of K1. Let us show that κ
−1(U ) is unbounded.

Since U is open and nonempty, there exist ζ ′ ∈ U and ε > 0 such that the open ball

B(ζ ′, ε) = {

η′ ∈ C
MN \{k0} : ‖η′ − ζ ′‖∞ < ε

}

is contained in U . Since ζ ′ ∈ U ⊂ K1 and K1 = κ(K ), there exists ζ ∈ K such that
κ(ζ ) = ζ ′. Since K = ν(V ), there exists yζ ∈ V such that ν(yζ ) = ζ .

Let δ = (δk)k∈MN ∈ C
MN be defined by

δk =
⎧

⎨

⎩

1

2
, if k = k0,

0, if k ∈ MN \{k0}.

Since ‖δ‖∞ = 1/2 < 1, there exists xδ ∈ c(m)
00 (Cn) such that ‖xδ‖�p < ρ and

π
(m)
MN

(xδ) = δ, that is,

H (m)
k (xδ) =

⎧

⎨

⎩

1

2
, if k = k0,

0, if k ∈ MN \{k0}.

Let l � l0 be such that

2l >
1

ε
max

k∈MN \k0
|ζk |. (7)

Let yδ = J2l (xδ). Then, by Lemma 2.7, ˜Rk(yδ) = H (2l )
k (xδ)/2l. Since 2l � m and

xδ ∈ c(m)
00 (Cn), it follows that H (2l )

k (xδ) = H (m)
k (xδ). Therefore,

˜Rk(yδ) =
⎧

⎨

⎩

1

2l+1 , if k = k0,

0, if k ∈ MN \{k0}
= 1

2l
δk .

Since ˜Rk0(yδ) �= 0, it follows that ‖yδ‖p,n > 0. Since |k0| > �p� and both |k0| and
�p� are integers, it follows that |k0| � �p� + 1. Therefore, |k0| > p. Consequently,
p/|k0| < 1. Therefore, there exists β such that

0 < β <
1

‖yδ‖p,n

ρ

2l0/p

(

1 −
(

1

2

)1−p/|k0|)1/p
.

For j ∈ N, let

z j = S[1/2l,1](yζ ) +
j

∑

s=1

αs S[1/2l+s,1/2l+s−1](yδ),
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where

αs = β

(

2s

s

)1/|k0|
.

Let us show that z j ∈ V . By Lemma 2.8,

‖z j‖p
p,n = ‖S[1/2l,1](yζ )‖p

p,n +
j

∑

s=1

α
p
s
∥

∥S[1/2l+s,1/2l+s−1](yδ)
∥

∥
p
p,n

=
(

1 − 1

2l

)

‖yζ ‖p
p,n +

j
∑

s=1

α
p
s

(

1

2l+s−1 − 1

2l+s

)

‖(yδ)‖p
p,n .

Note that ‖yζ ‖p,n < ρ/2l0/p, since yζ ∈ V . Also note that

j
∑

s=1

α
p
s

(

1

2l+s−1 − 1

2l+s

)

‖(yδ)‖p
p,n = 1

2l
‖yδ‖p

p,n

j
∑

s=1

α
p
s

2s

= 1

2l
‖yδ‖p

p,n

j
∑

s=1

β p(2s/s)p/|k0|

2s

= 1

2l
β p‖yδ‖p

p,n

j
∑

s=1

(
(

1

2

)1−p/|k0|)s 1

s p/|k0|

� 1

2l
β p‖yδ‖p

p,n

j
∑

s=1

(
(

1

2

)1−p/|k0|)s

<
1

2l
β p‖yδ‖p

p,n

∞
∑

s=1

(
(

1

2

)1−p/|k0|)s

= 1

2l
β p‖yδ‖p

p,n
1

1 − (1/2)1−p/|k0|

<
1

‖yδ‖p
p,n

ρ p

2l0

(

1 −
(

1

2

)1−p/|k0|)

· 1

2l
‖yδ‖p

p,n
1

1 − (1/2)1−p/|k0|

= ρ p

2l0+l
.

Therefore,

‖z j‖p
p,n <

(

1 − 1

2l

)

ρ p

2l0
+ ρ p

2l0+l
= ρ p

2l0
.
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Hence, ‖z j‖p,n < ρ/2l0/p and, consequently, z j ∈ V . Therefore, ν(z j ) ∈ K .
For every k ∈ MN , by Lemma 2.9,

˜Rk(z j ) = ˜Rk
(

S[1/2l,1](yζ )
) +

j
∑

s=1

α|k0|
s

˜Rk
(

S[1/2l+s,1/2l+s−1](yδ)
)

=
(

1 − 1

2l

)

˜Rk(yζ ) +
j

∑

s=1

α|k0|
s

(

1

2l+s−1 − 1

2l+s

)

˜Rk(yδ)

=
(

1 − 1

2l

)

ζk +
j

∑

s=1

α|k0|
s

1

22l+s
δk .

(8)

Let us show that κ(z j ) ∈ B(ζ ′, ε). For k ∈ MN \{k0}, by (8),

˜Rk(z j ) =
(

1 − 1

2l

)

ζk .

Therefore, taking into account (7),

∥

∥

(

˜Rk(z j )
)

k∈MN \{k0} − ζ ′∥
∥∞ = max

k∈MN \{k0}

∣

∣

∣

∣

(

1 − 1

2l

)

ζk − ζk

∣

∣

∣

∣

= 1

2l
max

k∈MN \{k0}
|ζk | < ε.

Thus, κ(z j ) ∈ B(ζ ′, ε).
Let us show that κ

−1(B(ζ ′, ε)) is unbounded. By (8),

˜Rk0(z j ) =
(

1 − 1

2l

)

ζk0 +
j

∑

s=1

α|k0|
s

1

22l+s

1

2
.

Note that

j
∑

s=1

α|k0|
s

1

22l+s+1 = 1

22l+1

j
∑

s=1

α
|k0|
s

2s
= β

22l+1

j
∑

s=1

1

s
.

Therefore, ˜Rk0(z j ) = (1− 1/2l)ζk0 +β/22l+1 ·∑ j
s=1 1/s → ∞ as j → +∞. Thus,

κ
−1(B(ζ ′, ε)) is unbounded. Since B(ζ ′, ε) ⊂ U , it follows thatκ−1(U ) is unbounded

too.
Note that

sup
y∈V

|Q(y)| = sup
y∈D

‖y‖p,n<ρ/2l0/p

|P(y)| � sup
y∈(Lp)

n

‖y‖p,n<ρ/2l0/p

|P(y)| =
(

ρ

2l0/p

)N

‖P‖.
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Thus, Q is bounded on V . Consequently, q is bounded on K . By Lemma 2.5, q does
not depend on ξk0 . Therefore, in the case N > p, the polynomial q does not depend
on ξk such that �p� < |k| � N .

Thus, in the general case, q depends only on ξk such that k ∈ M ′, where

M ′ = {

k ∈ Z
n+ : 1 � |k| � min{�p�, N }} .

Let q̂ be the restriction of q to C
M ′
. By (6),

Q(y) = q̂
(

(˜Rk(y))k∈M ′
)

for every y ∈ D. Let us show that

P(y) = q̂ ((Rk(y))k∈M ′)

for every y ∈ (Lp)
n. Since D is dense in (Lp)

n, for every y ∈ (Lp)
n there exists a

sequence {yj }+∞
j=1 ⊂ D that converges to y. Since P is continuous,

P(y) = lim
j→+∞Q(yj ) = lim

j→+∞q̂
(

(˜Rk(yj ))k∈M ′
)

.

Since q̂ is a polynomial on a finite-dimensional space, it follows that it is continuous.
Therefore,

lim
j→+∞q̂

(

(˜Rk(yj ))k∈M ′
) = q̂

((

lim
j→+∞

˜Rk(yj )
)

k∈M ′
)

.

Note that ˜Rk is the restriction of Rk . Therefore, ˜Rk(yj ) = Rk(yj ). By Theorem 2.1,
Rk is continuous. Therefore,

lim
j→+∞

˜Rk(yj ) = lim
j→+∞Rk(yj ) = Rk(y).

Thus, P(y) = q̂ ((Rk(y))k∈M ′) for every y ∈ (Lp)
n. ��

Corollary 2.11 The set of polynomials {Rk : k ∈ Z
n+, 0 � |k| � �p�} is an algebraic

basis of the algebra Ps((Lp)
n).

Proof Let P = P0 + P1 + · · · + PN be a symmetric continuous complex-valued
polynomial on (Lp)

n, where P0 ∈ C and Pj is a j-homogeneous polynomial for
j ∈ {1, . . . , N }. Note that P0 = P0R(0,...,0). By Lemma 2.2, for every j ∈ {1, . . . , N },
the polynomial Pj is a symmetric continuous j-homogeneous polynomial. Therefore,
by Theorem 2.10, Pj can be uniquely represented as an algebraic combination of
polynomials Rk , where k ∈ Z

n+ is such that 1 � |k| � min{�p�, j}. Consequently, P
can be represented as a sum of these algebraic combinations. ��
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