doi: 10.12732/ijpam.v117i3.7

SYMMETRIC POLYNOMIALS ON THE SPACE OF BOUNDED INTEGRABLE FUNCTIONS ON THE SEMI-AXIS

Taras Vasylyshyn
Vasyl Stefanyk Precarpathian National University 57 Shevchenka Str., Ivano-Frankivsk 76018, UKRAINE

Abstract

We describe an algebraic basis of the algebra of continuous symmetric polynomials on the complex Banach space of all essentially bounded Lebesgue integrable functions on the semi-axis.

AMS Subject Classification: 46G25, 46E15, 46E25, 46G20
Key Words: symmetric polynomial, algebraic basis, space of essentially bounded Lebesgue integrable functions on the semi-axis

1. Introduction

Algebras of analytic functions which are invariant (symmetric) with respect to a group or semigroup of linear operators were investigated by many authors [1], [2], [4], [5], [6], [8], [9], [10], [11], [13], [14], [15] (see also a survey [7]).

In [11] Nemirovski and Semenov described algebraic bases of algebras of continuous symmetric polynomials on real spaces $L_{p}[0,1]$ and $L_{p}[0,+\infty)$ with respect to a natural group of operators, where $1 \leq p<+\infty$. Some of their results were generalized by González et al. [9] to real separable rearrangementinvariant function spaces.

Note that the non-separable case is much more complicated than the separable case. Symmetric continuous polynomials on the complex $L_{\infty}[0,1]$ have been studied in [8] and [13]. In this paper we consider the algebra of symmetric continuous polynomials on $L_{1}[0,+\infty) \cap L_{\infty}[0,+\infty)$ and describe its algebraic basis.

Received: March 29, 2017
Revised: November 8, 2017
Published: January 15, 2018
© 2017 Academic Publications, Ltd. url: www.acadpubl.eu

2. Preliminaries

Let us denote \mathbb{Z}_{+}the set of non-negative integers and \mathbb{N} the set of positive integers. Let Ω be a Lebesgue measurable subset of \mathbb{R}. Let Ξ_{Ω} be the set of all measurable bijections of Ω that preserve the measure. For a given rearrangementinvariant complex Banach space $X(\Omega)$ of Lebesgue measurable functions x : $\Omega \rightarrow \mathbb{C}$, function $F: X(\Omega) \rightarrow \mathbb{C}$ is called symmetric if $F(x \circ \sigma)=F(x)$ for every $x \in X(\Omega)$ and $\sigma \in \Xi_{\Omega}$.

Let Y be a complex Banach space. A mapping $P: Y \rightarrow \mathbb{C}$ is called an n-homogeneous polynomial if there exists an n-linear mapping $A_{P}: Y^{n} \rightarrow \mathbb{C}$ such that $P(x)=A_{P}(x, . n . n, x)$ for every $x \in Y$. A mapping $P=P^{(0)}+P^{(1)}+$ $\ldots+P^{(m)}$, where $P^{(0)} \in \mathbb{C}$ and $P^{(j)}$ is a j-homogeneous polynomial for every $j \in\{1, \ldots, m\}$, is called a polynomial (of degree at most m).

Let us denote $\mathcal{P}_{s}(X(\Omega))$ the algebra of all continuous symmetric polynomials $P: X(\Omega) \rightarrow \mathbb{C}$.

Let $L_{\infty}[0,1]$ be the complex Banach space of all Lebesgue measurable essentially bounded complex-valued functions x on $[0,1]$ with norm $\|x\|_{\infty}=$ ess sup $\operatorname{se[}_{t \in, 1]}|x(t)|$.

Theorem 1 ([8], Theorem 4.3). Every symmetric continuous n-homogeneous polynomial $P: L_{\infty}[0,1] \rightarrow \mathbb{C}$ can be uniquely represented as

$$
P(x)=\sum_{k_{1}+2 k_{2}+\ldots+n k_{n}=n} \alpha_{k_{1}, \ldots, k_{n}} \tilde{R}_{1}^{k_{1}}(x) \cdots \tilde{R}_{n}^{k_{n}}(x),
$$

where $k_{1}, \ldots, k_{n} \in \mathbb{Z}_{+}, \alpha_{k_{1}, \ldots, k_{n}} \in \mathbb{C}$ and $\tilde{R}_{j}(x)=\int_{[0,1]}(x(t))^{j} d t$.
In other words, $\left\{\tilde{R}_{n}\right\}$ forms an algebraic basis in the algebra $\mathcal{P}_{s}\left(L_{\infty}[0,1]\right)$.

3. The Main Result

Let $L_{1}[0,+\infty)$ be the complex Banach space of all Lebesgue integrable functions $x:[0,+\infty) \rightarrow \mathbb{C}$ with norm $\|x\|_{1}=\int_{[0,+\infty)}|x(t)| d t$ and let $L_{\infty}[0,+\infty)$ be the complex Banach space of all Lebesgue measurable essentially bounded functions $x:[0,+\infty) \rightarrow \mathbb{C}$ with norm $\|x\|_{\infty}=\operatorname{ess}_{\sup }^{t \in[0,+\infty)}|x(t)|$. Let us consider the space $L_{1} \cap L_{\infty}:=L_{1}[0,+\infty) \cap L_{\infty}[0,+\infty)$ with norm $\|x\|=\max \left\{\|x\|_{1},\|x\|_{\infty}\right\}$. By [3, Theorem 1.3, p. 97], $L_{1} \cap L_{\infty}$ is a Banach space.

For every $E \subset[0,+\infty)$ let

$$
1_{E}(t)= \begin{cases}1, & \text { if } t \in E \\ 0, & \text { otherwise }\end{cases}
$$

Note that a family of functions $\left\{1_{[0, a]}: a>0\right\}$ is uncountable and a distance between any two different functions is not less than 1 . Therefore $L_{1} \cap L_{\infty}$ is non-separable.

For $n \in \mathbb{N}$ let $R_{n}: L_{1} \cap L_{\infty} \rightarrow \mathbb{C}, R_{n}(x)=\int_{[0,+\infty)}(x(t))^{n} d t$. Note that R_{n} is a symmetric n-homogeneous polynomial. Let us show that $\left\|R_{n}\right\|=1$. Let $x \in L_{1} \cap L_{\infty}$ be such that $\|x\| \leq 1$. Then $\|x\|_{1} \leq 1$ and $\|x\|_{\infty} \leq 1$. Since $\|x\|_{\infty} \leq 1$, it follows that $|x(t)|^{n} \leq|x(t)|$ for almost all $t \in[0,+\infty)$. Therefore,

$$
\left|R_{n}(x)\right| \leq \int_{[0,+\infty)}|x(t)|^{n} d t \leq \int_{[0,+\infty)}|x(t)| d t=\|x\|_{1} \leq 1
$$

Hence, $\left\|R_{n}\right\|=\sup _{\|x\| \leq 1}\left|R_{n}(x)\right| \leq 1$. On the other hand, $\left\|1_{[0,1]}\right\|=1$ and $R_{n}\left(1_{[0,1]}\right)=1$. Therefore, $\left\|R_{n}\right\|=1$ and, consequently, R_{n} is continuous.

Theorem 2. Every symmetric continuous n-homogeneous polynomial $P: L_{1}[0,+\infty) \cap L_{\infty}[0,+\infty) \rightarrow \mathbb{C}$ can be uniquely represented as

$$
P(x)=\sum_{k_{1}+2 k_{2}+\ldots+n k_{n}=n} \alpha_{k_{1}, \ldots, k_{n}} R_{1}^{k_{1}}(x) \cdots R_{n}^{k_{n}}(x)
$$

where $k_{1}, \ldots, k_{n} \in \mathbb{Z}_{+}$and $\alpha_{k_{1}, \ldots, k_{n}} \in \mathbb{C}$.
Proof. Let $P: L_{1} \cap L_{\infty} \rightarrow \mathbb{C}$ be a continuous symmetric n-homogeneous polynomial. For $x \in L_{1} \cap L_{\infty}$ let $\operatorname{supp} x=\{t \in[0,+\infty): x(t) \neq 0\}$. For $a>0$ let us denote X_{a} the subspace of all functions $x \in L_{1} \cap L_{\infty}$ such that $\operatorname{supp} x \subset[0, a]$. Let us denote P_{a} the restriction of P to X_{a}. Note that X_{1} is isometrically isomorphic to $L_{\infty}[0,1]$. Therefore, by Theorem 1 , there exist unique coefficients $\alpha_{k_{1}, \ldots, k_{n}} \in \mathbb{C}$ such that

$$
P_{1}(x)=\sum_{k_{1}+2 k_{2}+\ldots+n k_{n}=n} \alpha_{k_{1}, \ldots, k_{n}} \tilde{R}_{1}^{k_{1}}(x) \cdots \tilde{R}_{n}^{k_{n}}(x)
$$

for every $x \in X_{1}$. For $a>1$ let us define a mapping $J_{a}: X_{1} \rightarrow X_{a}$ by $J_{a}(x)(t)=x(t / a)$. Evidently, J_{a} is a linear bijection. Note that $\left\|J_{a}(x)\right\|_{1}=$ $a\|x\|_{1}$ and $\left\|J_{a}(x)\right\|_{\infty}=\|x\|_{\infty}$, therefore $\|x\| \leq\left\|J_{a}(x)\right\| \leq a\|x\|$. Hence, J_{a} is an isomorphism. Let $G_{a}=P_{a} \circ J_{a}$. Note that G_{a} is a continuous symmetric n-homogeneous polynomial on X_{1}. Therefore, by Theorem 1, there exist coefficients $\alpha_{k_{1}, \ldots, k_{n}}^{(a)} \in \mathbb{C}$ such that

$$
G_{a}(x)=\sum_{k_{1}+2 k_{2}+\ldots+n k_{n}=n} \alpha_{k_{1}, \ldots, k_{n}}^{(a)} \tilde{R}_{1}^{k_{1}}(x) \cdots \tilde{R}_{n}^{k_{n}}(x)
$$

for every $x \in X_{1}$. Let $x=J_{a}^{-1}(y)$ for $y \in X_{a}$. Note that $G_{a}(x)=G_{a}\left(J_{a}^{-1}(y)\right)=$ $P_{a}\left(J_{a}\left(J_{a}^{-1}(y)\right)\right)=P_{a}(y)$ and

$$
\tilde{R}_{j}(x)=\tilde{R}_{j}\left(J_{a}^{-1}(y)\right)=\int_{[0,1]}(y(a t))^{j} d t=\frac{1}{a} \int_{[0, a]}(y(t))^{j} d t=\frac{1}{a} R_{j}(y)
$$

Therefore

$$
P_{a}(y)=\sum_{k_{1}+2 k_{2}+\ldots+n k_{n}=n} \frac{\alpha_{k_{1}, \ldots, k_{n}}^{(a)}}{a^{k_{1}+\ldots+k_{n}}} R_{1}^{k_{1}}(y) \cdots R_{n}^{k_{n}}(y)
$$

Note that the restriction of P_{a} to X_{1} coincides with P_{1}. On the other hand, the restriction of R_{j} to X_{1} coincides with \tilde{R}_{j}. Therefore, by the uniqueness of $\alpha_{k_{1}, \ldots, k_{n}}$, we have that $\frac{\alpha_{k_{1}, \ldots, k_{n}}^{(a)}}{a^{k_{1}+\ldots+k_{n}}}=\alpha_{k_{1}, \ldots, k_{n}}$. Hence, for every $a \geq 1$ and for every $y \in X_{a}$,

$$
\begin{equation*}
P_{a}(y)=\sum_{k_{1}+2 k_{2}+\ldots+n k_{n}=n} \alpha_{k_{1}, \ldots, k_{n}} R_{1}^{k_{1}}(y) \cdots R_{n}^{k_{n}}(y) \tag{1}
\end{equation*}
$$

Let E be a Lebesgue measurable subset of $[0,+\infty)$ such that $\mu(E)<+\infty$, where μ is the Lebesgue measure. For every $j \in \mathbb{N}$ let $E_{j}=[j-1, j) \cap E$ and $F_{j}=\tau_{j}\left(E_{J}\right)$, where $\tau_{j}(t)=t-(j-1)$. By [12, $\S 2$, No. 1-4], every measurable subset $F \subset[0,1]$ is isomorphic modulo zero to an interval of the length $\mu(F)$. Therefore, for every $j \in \mathbb{N}$ there exists $\sigma_{j} \in \Xi_{[0,1]}$ such that $\sigma_{j}\left(F_{j}\right) \stackrel{a . e .}{=}\left[0, \mu\left(F_{j}\right)\right]$ and $\sigma_{j}\left([0,1] \backslash F_{j}\right) \stackrel{\text { a.e. }}{=}\left[\mu\left(F_{j}\right), 1\right]$. Let us define a mapping $\sigma_{E}:[0,+\infty) \rightarrow[0,+\infty)$ by the following way: for $t \in[0,+\infty)$ such that $m-1 \leq t<m$, where $m \in \mathbb{N}$, we set

$$
\sigma_{E}(t)= \begin{cases}\sum_{k=1}^{m-1} \mu\left(E_{k}\right)+\sigma_{m}\left(\tau_{m}(t)\right), & \text { if } t \in E \\ \mu(E)+\sum_{k=1}^{m-1}\left(1-\mu\left(E_{k}\right)\right)+\sigma_{m}\left(\tau_{m}(t)\right)-\mu\left(E_{m}\right), & \text { otherwise }\end{cases}
$$

It can be checked that $\sigma_{E} \in \Xi_{[0,+\infty)}, \sigma_{E}(E) \stackrel{\text { a.e. }}{=}[0, \mu(E)]$ and $\sigma_{E}([0,+\infty) \backslash E) \stackrel{\text { a.e. }}{=}$ $[\mu(E),+\infty)$.

Let $y \in L_{1} \cap L_{\infty}$ be such that $\mu(\operatorname{supp} y)<+\infty$. Since P is symmetric, it follows that $P(y)=P\left(y \circ \sigma_{\operatorname{supp} y}^{-1}\right)$. Note that $y \circ \sigma_{\operatorname{supp} y}^{-1} \in X_{\mu(\operatorname{supp} y)} \subset$ $X_{\max \{1, \mu(\operatorname{supp} y)\}}$. Therefore, by (1),

$$
\begin{align*}
P(y)= & \sum_{k_{1}+2 k_{2}+\ldots+n k_{n}=n} \alpha_{k_{1}, \ldots, k_{n}} R_{1}^{k_{1}}\left(y \circ \sigma_{\operatorname{supp} y}^{-1}\right) \cdots R_{n}^{k_{n}}\left(y \circ \sigma_{\operatorname{supp} y}^{-1}\right) \\
& =\sum_{k_{1}+2 k_{2}+\ldots+n k_{n}=n} \alpha_{k_{1}, \ldots, k_{n}} R_{1}^{k_{1}}(y) \cdots R_{n}^{k_{n}}(y) \tag{2}
\end{align*}
$$

Let $x \in L_{1} \cap L_{\infty}$. For every $m \in \mathbb{N}$ let

$$
x_{m}(t)= \begin{cases}x(t), & \text { if }|x(t)|>\frac{1}{m} \\ 0, & \text { otherwise }\end{cases}
$$

Let $A_{0}=\{t \in[0,+\infty):|x(t)|>1\}$ and $A_{m}=\left\{t \in[0,+\infty): \frac{1}{m+1}<|x(t)| \leq\right.$ $\left.\frac{1}{m}\right\}$ for $m \in \mathbb{N}$. Since $x \in L_{1}[0,+\infty)$, it follows that $\mu\left(A_{m}\right)<+\infty$ for every $m \in \mathbb{Z}_{+}$. Since the series

$$
\|x\|_{1}=\sum_{m=0}^{\infty} \int_{A_{m}}|x(t)| d t
$$

is convergent, it follows that $\left\|x-x_{j}\right\|_{1}=\sum_{m=j}^{\infty} \int_{A_{m}}|x(t)| d t \rightarrow 0$ as $j \rightarrow+\infty$. Note that $\left\|x-x_{j}\right\|_{\infty} \leq \frac{1}{j} \rightarrow 0$ as $j \rightarrow+\infty$. Hence, $\left\|x-x_{j}\right\| \rightarrow 0$, i. e. $x_{j} \rightarrow x$. Note that supp $x_{j}=\bigcup_{m=0}^{j-1} A_{m}$. Since $\mu\left(A_{m}\right)<+\infty$ for every $m \in \mathbb{Z}_{+}$, it follows that $\mu\left(\operatorname{supp} x_{j}\right)<+\infty$. Therefore, by (2),

$$
P\left(x_{j}\right)=\sum_{k_{1}+2 k_{2}+\ldots+n k_{n}=n} \alpha_{k_{1}, \ldots, k_{n}} R_{1}^{k_{1}}\left(x_{j}\right) \cdots R_{n}^{k_{n}}\left(x_{j}\right)
$$

By the continuity of R_{1}, \ldots, R_{n} and P,

$$
P(x)=\lim _{j \rightarrow+\infty} P\left(x_{j}\right)=\sum_{k_{1}+2 k_{2}+\ldots+n k_{n}=n} \alpha_{k_{1}, \ldots, k_{n}} R_{1}^{k_{1}}(x) \cdots R_{n}^{k_{n}}(x)
$$

Let $R_{0}: L_{1} \cap L_{\infty} \rightarrow \mathbb{C}, R_{0}(x)=1$.
Corollary 3. $\left\{R_{n}\right\}_{n \in \mathbb{Z}_{+}}$forms an algebraic basis in the algebra

$$
\mathcal{P}_{s}\left(L_{1}[0,+\infty) \cap L_{\infty}[0,+\infty)\right) .
$$

References

[1] R. Alencar, R. Aron, P. Galindo, A. Zagorodnyuk, Algebras of symmetric holomorphic functions on ℓ_{p}, Bull. London Math. Soc., 35 (2003), 55-64., doi: 10.1112/S0024609302001431.
[2] R. Aron, P. Galindo, D. Pinasco, I. Zalduendo, Group-symmetric holomorphic functions on a Banach space, Bull. London Math. Soc., (5) 48 (2016), 779-796., doi: 10.1112/blms/bdw043.
[3] C. Bennet, R. Sharpley, Interpolation of Operators, Academic Press, Inc., Boston, MA (1988).
[4] I. Chernega, P. Galindo, A. Zagorodnyuk, Some algebras of symmetric analytic functions and their spectra, Proc. Edinburgh Math. Soc., 55 (2012), 125-142., doi: 10.1017/S0013091509001655.
[5] I. Chernega, P. Galindo, A. Zagorodnyuk, The convolution operation on the spectra of algebras of symmetric analytic functions, J. of Math. Anal. Appl., 395 (2012), 569-577., doi: 10.1016/j.jmaa.2012.04.087.
[6] I. Chernega, P. Galindo, A. Zagorodnyuk, A multiplicative convolution on the spectra of algebras of symmetric analytic functions, Revista Matemática Complutense, 27 (2014), 575-585., doi: 10.1007/s13163-013-0128-0.
[7] I. Chernega, Symmetric polynomials and holomorphic functions on infinite dimensional spaces, Journal of Vasyl Stefanyk Precarpathian National University, (4) 2 (2015), 23-49, doi: 10.15330/jpnu.2.4.23-49.
[8] P. Galindo, T. Vasylyshyn, A. Zagorodnyuk, The algebra of symmetric analytic functions on L_{∞}, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 147A (2017), 1-19, doi: 10.1017/S0308210516000287.
[9] M. González, R. Gonzalo, J.A. Jaramillo, Symmetric polynomials on rearrangement invariant function spaces, J. London Math. Soc., (2) 59 (1999), 681-697, doi: 10.1112/S0024610799007164.
[10] V.V. Kravtsiv, A.V. Zagorodnyuk, Representation of spectra of algebras of blocksymmetric analytic functions of bounded type, Carpathian Math. Publ., (2) 8 (2016), 263-271, doi: 10.15330/cmp.8.2.263-271.
[11] A.S. Nemirovskii, S.M. Semenov, On polynomial approximation of functions on Hilbert space, Mat. USSR Sbornik, 21 (1973), 255-277, doi: 10.1070/SM1973v021n02ABEH002016.
[12] V.A. Rohlin, On the fundamental ideas of measure theory, Amer. Math. Soc. Transl., 71 (1952), 1-54.
[13] T.V. Vasylyshyn, Symmetric continuous linear functionals on complex space $L_{\infty}[0,1]$, Carpathian Math. Publ., (1) 6 (2014), 8-10, doi: 10.15330/cmp.6.1.8-10.
[14] T.V. Vasylyshyn, Continuous block-symmetric polynomials of degree at most two on the space $\left(L_{\infty}\right)^{2}$, Carpathian Math. Publ., (1) 8 (2016), 38-43, doi: $10.15330 / \mathrm{cmp} .8 .1 .38-43$.
[15] T.V. Vasylyshyn, Topology on the spectrum of the algebra of entire symmetric functions of bounded type on the complex L_{∞}, Carpathian Math. Publ., (1) 9 (2017), 22-27, doi: 10.15330/cmp.9.1.22-27.

