International Journal of Pure and Applied Mathematics

Volume 117 No. 3 2017, 425-430 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: 10.12732/ijpam.v117i3.7

SYMMETRIC POLYNOMIALS ON THE SPACE OF BOUNDED INTEGRABLE FUNCTIONS ON THE SEMI-AXIS

Taras Vasylyshyn

Vasyl Stefanyk Precarpathian National University 57 Shevchenka Str., Ivano-Frankivsk 76018, UKRAINE

Abstract: We describe an algebraic basis of the algebra of continuous symmetric polynomials on the complex Banach space of all essentially bounded Lebesgue integrable functions on the semi-axis.

AMS Subject Classification: 46G25, 46E15, 46E25, 46G20 Key Words: symmetric polynomial, algebraic basis, space of essentially bounded Lebesgue integrable functions on the semi-axis

1. Introduction

Algebras of analytic functions which are invariant (symmetric) with respect to a group or semigroup of linear operators were investigated by many authors [1], [2], [4], [5], [6], [8], [9], [10], [11], [13], [14], [15] (see also a survey [7]).

In [11] Nemirovski and Semenov described algebraic bases of algebras of continuous symmetric polynomials on real spaces $L_p[0, 1]$ and $L_p[0, +\infty)$ with respect to a natural group of operators, where $1 \leq p < +\infty$. Some of their results were generalized by González *et al.* [9] to real separable rearrangement-invariant function spaces.

Note that the non-separable case is much more complicated than the separable case. Symmetric continuous polynomials on the complex $L_{\infty}[0, 1]$ have been studied in [8] and [13]. In this paper we consider the algebra of symmetric continuous polynomials on $L_1[0, +\infty) \cap L_{\infty}[0, +\infty)$ and describe its algebraic basis.

Received:	March 29, 2017
Revised:	November 8, 2017
Published:	January 15, 2018

© 2017 Academic Publications, Ltd. url: www.acadpubl.eu

2. Preliminaries

Let us denote \mathbb{Z}_+ the set of non-negative integers and \mathbb{N} the set of positive integers. Let Ω be a Lebesgue measurable subset of \mathbb{R} . Let Ξ_{Ω} be the set of all measurable bijections of Ω that preserve the measure. For a given rearrangementinvariant complex Banach space $X(\Omega)$ of Lebesgue measurable functions x : $\Omega \to \mathbb{C}$, function $F : X(\Omega) \to \mathbb{C}$ is called *symmetric* if $F(x \circ \sigma) = F(x)$ for every $x \in X(\Omega)$ and $\sigma \in \Xi_{\Omega}$.

Let Y be a complex Banach space. A mapping $P: Y \to \mathbb{C}$ is called an *n*-homogeneous polynomial if there exists an *n*-linear mapping $A_P: Y^n \to \mathbb{C}$ such that $P(x) = A_P(x, .^n, ., x)$ for every $x \in Y$. A mapping $P = P^{(0)} + P^{(1)} + \dots + P^{(m)}$, where $P^{(0)} \in \mathbb{C}$ and $P^{(j)}$ is a *j*-homogeneous polynomial for every $j \in \{1, \ldots, m\}$, is called a polynomial (of degree at most *m*).

Let us denote $\mathcal{P}_s(X(\Omega))$ the algebra of all continuous symmetric polynomials $P: X(\Omega) \to \mathbb{C}$.

Let $L_{\infty}[0,1]$ be the complex Banach space of all Lebesgue measurable essentially bounded complex-valued functions x on [0,1] with norm $||x||_{\infty} = \text{ess sup}_{t \in [0,1]} |x(t)|$.

Theorem 1 ([8], Theorem 4.3). Every symmetric continuous *n*-homogeneous polynomial $P: L_{\infty}[0,1] \to \mathbb{C}$ can be uniquely represented as

$$P(x) = \sum_{k_1+2k_2+\ldots+nk_n=n} \alpha_{k_1,\ldots,k_n} \tilde{R}_1^{k_1}(x) \cdots \tilde{R}_n^{k_n}(x),$$

where $k_1, \ldots, k_n \in \mathbb{Z}_+$, $\alpha_{k_1, \ldots, k_n} \in \mathbb{C}$ and $\tilde{R}_j(x) = \int_{[0,1]} (x(t))^j dt$.

In other words, $\{R_n\}$ forms an algebraic basis in the algebra $\mathcal{P}_s(L_{\infty}[0,1])$.

3. The Main Result

Let $L_1[0, +\infty)$ be the complex Banach space of all Lebesgue integrable functions $x : [0, +\infty) \to \mathbb{C}$ with norm $||x||_1 = \int_{[0, +\infty)} |x(t)| dt$ and let $L_{\infty}[0, +\infty)$ be the complex Banach space of all Lebesgue measurable essentially bounded functions $x : [0, +\infty) \to \mathbb{C}$ with norm $||x||_{\infty} = \operatorname{ess\,sup}_{t \in [0, +\infty)} |x(t)|$. Let us consider the space $L_1 \cap L_{\infty} := L_1[0, +\infty) \cap L_{\infty}[0, +\infty)$ with norm $||x|| = \max\{||x||_1, ||x||_{\infty}\}$. By [3, Theorem 1.3, p. 97], $L_1 \cap L_{\infty}$ is a Banach space.

For every $E \subset [0, +\infty)$ let

$$1_E(t) = \begin{cases} 1, & \text{if } t \in E \\ 0, & \text{otherwise.} \end{cases}$$

Note that a family of functions $\{1_{[0,a]}: a > 0\}$ is uncountable and a distance between any two different functions is not less than 1. Therefore $L_1 \cap L_{\infty}$ is non-separable.

For $n \in \mathbb{N}$ let $R_n : L_1 \cap L_\infty \to \mathbb{C}$, $R_n(x) = \int_{[0,+\infty)} (x(t))^n dt$. Note that R_n is a symmetric *n*-homogeneous polynomial. Let us show that $||R_n|| = 1$. Let $x \in L_1 \cap L_\infty$ be such that $||x|| \leq 1$. Then $||x||_1 \leq 1$ and $||x||_\infty \leq 1$. Since $||x||_\infty \leq 1$, it follows that $|x(t)|^n \leq |x(t)|$ for almost all $t \in [0,+\infty)$. Therefore,

$$|R_n(x)| \le \int_{[0,+\infty)} |x(t)|^n \, dt \le \int_{[0,+\infty)} |x(t)| \, dt = ||x||_1 \le 1.$$

Hence, $||R_n|| = \sup_{||x|| \le 1} |R_n(x)| \le 1$. On the other hand, $||1_{[0,1]}|| = 1$ and $R_n(1_{[0,1]}) = 1$. Therefore, $||R_n|| = 1$ and, consequently, R_n is continuous.

Theorem 2. Every symmetric continuous *n*-homogeneous polynomial $P: L_1[0, +\infty) \cap L_{\infty}[0, +\infty) \to \mathbb{C}$ can be uniquely represented as

$$P(x) = \sum_{k_1+2k_2+\ldots+nk_n=n} \alpha_{k_1,\ldots,k_n} R_1^{k_1}(x) \cdots R_n^{k_n}(x),$$

where $k_1, \ldots, k_n \in \mathbb{Z}_+$ and $\alpha_{k_1, \ldots, k_n} \in \mathbb{C}$.

Proof. Let $P: L_1 \cap L_{\infty} \to \mathbb{C}$ be a continuous symmetric *n*-homogeneous polynomial. For $x \in L_1 \cap L_{\infty}$ let supp $x = \{t \in [0, +\infty) : x(t) \neq 0\}$. For a > 0 let us denote X_a the subspace of all functions $x \in L_1 \cap L_{\infty}$ such that supp $x \subset [0, a]$. Let us denote P_a the restriction of P to X_a . Note that X_1 is isometrically isomorphic to $L_{\infty}[0, 1]$. Therefore, by Theorem 1, there exist unique coefficients $\alpha_{k_1,\ldots,k_n} \in \mathbb{C}$ such that

$$P_1(x) = \sum_{k_1+2k_2+\ldots+nk_n=n} \alpha_{k_1,\ldots,k_n} \tilde{R}_1^{k_1}(x) \cdots \tilde{R}_n^{k_n}(x)$$

for every $x \in X_1$. For a > 1 let us define a mapping $J_a : X_1 \to X_a$ by $J_a(x)(t) = x(t/a)$. Evidently, J_a is a linear bijection. Note that $||J_a(x)||_1 = a||x||_1$ and $||J_a(x)||_{\infty} = ||x||_{\infty}$, therefore $||x|| \le ||J_a(x)|| \le a||x||$. Hence, J_a is an isomorphism. Let $G_a = P_a \circ J_a$. Note that G_a is a continuous symmetric *n*-homogeneous polynomial on X_1 . Therefore, by Theorem 1, there exist coefficients $\alpha_{k_1,\ldots,k_n}^{(a)} \in \mathbb{C}$ such that

$$G_a(x) = \sum_{k_1+2k_2+\ldots+nk_n=n} \alpha_{k_1,\ldots,k_n}^{(a)} \tilde{R}_1^{k_1}(x) \cdots \tilde{R}_n^{k_n}(x)$$

for every $x \in X_1$. Let $x = J_a^{-1}(y)$ for $y \in X_a$. Note that $G_a(x) = G_a(J_a^{-1}(y)) = P_a(J_a(J_a^{-1}(y))) = P_a(y)$ and

$$\tilde{R}_j(x) = \tilde{R}_j(J_a^{-1}(y)) = \int_{[0,1]} (y(at))^j dt = \frac{1}{a} \int_{[0,a]} (y(t))^j dt = \frac{1}{a} R_j(y).$$

Therefore

$$P_a(y) = \sum_{k_1+2k_2+\ldots+nk_n=n} \frac{\alpha_{k_1,\ldots,k_n}^{(a)}}{a^{k_1+\ldots+k_n}} R_1^{k_1}(y) \cdots R_n^{k_n}(y).$$

Note that the restriction of P_a to X_1 coincides with P_1 . On the other hand, the restriction of R_j to X_1 coincides with \tilde{R}_j . Therefore, by the uniqueness of α_{k_1,\ldots,k_n} , we have that $\frac{\alpha_{k_1,\ldots,k_n}^{(a)}}{a^{k_1+\ldots+k_n}} = \alpha_{k_1,\ldots,k_n}$. Hence, for every $a \ge 1$ and for every $y \in X_a$,

$$P_a(y) = \sum_{k_1 + 2k_2 + \dots + nk_n = n} \alpha_{k_1, \dots, k_n} R_1^{k_1}(y) \cdots R_n^{k_n}(y).$$
(1)

Let *E* be a Lebesgue measurable subset of $[0, +\infty)$ such that $\mu(E) < +\infty$, where μ is the Lebesgue measure. For every $j \in \mathbb{N}$ let $E_j = [j - 1, j) \cap E$ and $F_j = \tau_j(E_J)$, where $\tau_j(t) = t - (j - 1)$. By [12, §2, No. 1–4], every measurable subset $F \subset [0, 1]$ is isomorphic modulo zero to an interval of the length $\mu(F)$. Therefore, for every $j \in \mathbb{N}$ there exists $\sigma_j \in \Xi_{[0,1]}$ such that $\sigma_j(F_j) \stackrel{a.e.}{=} [0, \mu(F_j)]$ and $\sigma_j([0,1] \setminus F_j) \stackrel{a.e.}{=} [\mu(F_j), 1]$. Let us define a mapping $\sigma_E : [0, +\infty) \to [0, +\infty)$ by the following way: for $t \in [0, +\infty)$ such that $m - 1 \leq t < m$, where $m \in \mathbb{N}$, we set

$$\sigma_E(t) = \begin{cases} \sum_{k=1}^{m-1} \mu(E_k) + \sigma_m(\tau_m(t)), & \text{if } t \in E\\ \mu(E) + \sum_{k=1}^{m-1} (1 - \mu(E_k)) + \sigma_m(\tau_m(t)) - \mu(E_m), & \text{otherwise.} \end{cases}$$

It can be checked that $\sigma_E \in \Xi_{[0,+\infty)}, \sigma_E(E) \stackrel{a.e.}{=} [0,\mu(E)] \text{ and } \sigma_E([0,+\infty) \setminus E) \stackrel{a.e.}{=} [\mu(E),+\infty).$

Let $y \in L_1 \cap L_\infty$ be such that $\mu(\operatorname{supp} y) < +\infty$. Since P is symmetric, it follows that $P(y) = P(y \circ \sigma_{\operatorname{supp} y}^{-1})$. Note that $y \circ \sigma_{\operatorname{supp} y}^{-1} \in X_{\mu(\operatorname{supp} y)} \subset X_{\max\{1,\mu(\operatorname{supp} y)\}}$. Therefore, by (1),

$$P(y) = \sum_{k_1+2k_2+\ldots+nk_n=n} \alpha_{k_1,\ldots,k_n} R_1^{k_1} (y \circ \sigma_{\text{supp } y}^{-1}) \cdots R_n^{k_n} (y \circ \sigma_{\text{supp } y}^{-1})$$
$$= \sum_{k_1+2k_2+\ldots+nk_n=n} \alpha_{k_1,\ldots,k_n} R_1^{k_1} (y) \cdots R_n^{k_n} (y). \quad (2)$$

Let $x \in L_1 \cap L_\infty$. For every $m \in \mathbb{N}$ let

$$x_m(t) = \begin{cases} x(t), & \text{if } |x(t)| > \frac{1}{m}, \\ 0, & \text{otherwise.} \end{cases}$$

Let $A_0 = \{t \in [0, +\infty) : |x(t)| > 1\}$ and $A_m = \{t \in [0, +\infty) : \frac{1}{m+1} < |x(t)| \le \frac{1}{m}\}$ for $m \in \mathbb{N}$. Since $x \in L_1[0, +\infty)$, it follows that $\mu(A_m) < +\infty$ for every $m \in \mathbb{Z}_+$. Since the series

$$\|x\|_{1} = \sum_{m=0}^{\infty} \int_{A_{m}} |x(t)| \, dt$$

is convergent, it follows that $||x - x_j||_1 = \sum_{m=j}^{\infty} \int_{A_m} |x(t)| dt \to 0$ as $j \to +\infty$. Note that $||x - x_j||_{\infty} \leq \frac{1}{j} \to 0$ as $j \to +\infty$. Hence, $||x - x_j|| \to 0$, i. e. $x_j \to x$. Note that supp $x_j = \bigcup_{m=0}^{j-1} A_m$. Since $\mu(A_m) < +\infty$ for every $m \in \mathbb{Z}_+$, it follows that $\mu(\text{supp } x_j) < +\infty$. Therefore, by (2),

$$P(x_j) = \sum_{k_1+2k_2+\ldots+nk_n=n} \alpha_{k_1,\ldots,k_n} R_1^{k_1}(x_j) \cdots R_n^{k_n}(x_j).$$

By the continuity of R_1, \ldots, R_n and P,

$$P(x) = \lim_{j \to +\infty} P(x_j) = \sum_{k_1 + 2k_2 + \dots + nk_n = n} \alpha_{k_1, \dots, k_n} R_1^{k_1}(x) \cdots R_n^{k_n}(x).$$

Let $R_0: L_1 \cap L_\infty \to \mathbb{C}, R_0(x) = 1.$

Corollary 3. $\{R_n\}_{n\in\mathbb{Z}_+}$ forms an algebraic basis in the algebra

$$\mathcal{P}_s(L_1[0,+\infty)\cap L_\infty[0,+\infty)).$$

References

- R. Alencar, R. Aron, P. Galindo, A. Zagorodnyuk, Algebras of symmetric holomorphic functions on l_p, Bull. London Math. Soc., **35** (2003), 55-64., doi: 10.1112/S0024609302001431.
- [2] R. Aron, P. Galindo, D. Pinasco, I. Zalduendo, Group-symmetric holomorphic functions on a Banach space, Bull. London Math. Soc., (5) 48 (2016), 779-796., doi: 10.1112/blms/bdw043.
- [3] C. Bennet, R. Sharpley, Interpolation of Operators, Academic Press, Inc., Boston, MA (1988).

- [4] I. Chernega, P. Galindo, A. Zagorodnyuk, Some algebras of symmetric analytic functions and their spectra, *Proc. Edinburgh Math. Soc.*, 55 (2012), 125-142., doi: 10.1017/S0013091509001655.
- [5] I. Chernega, P. Galindo, A. Zagorodnyuk, The convolution operation on the spectra of algebras of symmetric analytic functions, J. of Math. Anal. Appl., **395** (2012), 569-577., doi: 10.1016/j.jmaa.2012.04.087.
- [6] I. Chernega, P. Galindo, A. Zagorodnyuk, A multiplicative convolution on the spectra of algebras of symmetric analytic functions, *Revista Matemática Complutense*, 27 (2014), 575-585., doi: 10.1007/s13163-013-0128-0.
- [7] I. Chernega, Symmetric polynomials and holomorphic functions on infinite dimensional spaces, *Journal of Vasyl Stefanyk Precarpathian National University*, (4) 2 (2015), 23-49, doi: 10.15330/jpnu.2.4.23-49.
- [8] P. Galindo, T. Vasylyshyn, A. Zagorodnyuk, The algebra of symmetric analytic functions on L_∞, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 147A (2017), 1-19, doi: 10.1017/S0308210516000287.
- [9] M. González, R. Gonzalo, J.A. Jaramillo, Symmetric polynomials on rearrangement invariant function spaces, J. London Math. Soc., (2) 59 (1999), 681-697, doi: 10.1112/S0024610799007164.
- [10] V.V. Kravtsiv, A.V. Zagorodnyuk, Representation of spectra of algebras of blocksymmetric analytic functions of bounded type, *Carpathian Math. Publ.*, (2) 8 (2016), 263-271, doi: 10.15330/cmp.8.2.263-271.
- [11] A.S. Nemirovskii, S.M. Semenov, On polynomial approximation of func-USSR Sbornik, tions on Hilbert space, Mat. $\mathbf{21}$ (1973),255-277,doi: 10.1070/SM1973v021n02ABEH002016.
- [12] V.A. Rohlin, On the fundamental ideas of measure theory, Amer. Math. Soc. Transl., 71 (1952), 1-54.
- [13] T.V. Vasylyshyn, Symmetric continuous linear functionals on complex space $L_{\infty}[0, 1]$, Carpathian Math. Publ., (1) 6 (2014), 8-10, doi: 10.15330/cmp.6.1.8-10.
- [14] T.V. Vasylyshyn, Continuous block-symmetric polynomials of degree at most two on the space $(L_{\infty})^2$, Carpathian Math. Publ., (1) 8 (2016), 38-43, doi: 10.15330/cmp.8.1.38-43.
- [15] T.V. Vasylyshyn, Topology on the spectrum of the algebra of entire symmetric functions of bounded type on the complex L_{∞} , Carpathian Math. Publ., (1) 9 (2017), 22-27, doi: 10.15330/cmp.9.1.22-27.