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1. Introduction

Algebras of analytic functions which are invariant (symmetric) with respect to
a group or semigroup of linear operators were investigated by many authors [1],
[2], [4], [5], [6], [8], [9], [10], [11], [13], [14], [15] (see also a survey [7]).

In [11] Nemirovski and Semenov described algebraic bases of algebras of
continuous symmetric polynomials on real spaces Lp[0, 1] and Lp[0,+∞) with
respect to a natural group of operators, where 1 ≤ p < +∞. Some of their
results were generalized by González et al. [9] to real separable rearrangement-
invariant function spaces.

Note that the non-separable case is much more complicated than the sep-
arable case. Symmetric continuous polynomials on the complex L∞[0, 1] have
been studied in [8] and [13]. In this paper we consider the algebra of symmetric
continuous polynomials on L1[0,+∞) ∩ L∞[0,+∞) and describe its algebraic
basis.
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2. Preliminaries

Let us denote Z+ the set of non-negative integers and N the set of positive inte-
gers. Let Ω be a Lebesgue measurable subset of R. Let ΞΩ be the set of all mea-
surable bijections of Ω that preserve the measure. For a given rearrangement-
invariant complex Banach space X(Ω) of Lebesgue measurable functions x :
Ω → C, function F : X(Ω) → C is called symmetric if F (x ◦ σ) = F (x) for
every x ∈ X(Ω) and σ ∈ ΞΩ.

Let Y be a complex Banach space. A mapping P : Y → C is called an
n-homogeneous polynomial if there exists an n-linear mapping AP : Y n → C

such that P (x) = AP (x, n. . ., x) for every x ∈ Y. A mapping P = P (0) + P (1) +
. . . + P (m), where P (0) ∈ C and P (j) is a j-homogeneous polynomial for every
j ∈ {1, . . . ,m}, is called a polynomial (of degree at most m).

Let us denote Ps(X(Ω)) the algebra of all continuous symmetric polynomi-
als P : X(Ω) → C.

Let L∞[0, 1] be the complex Banach space of all Lebesgue measurable es-
sentially bounded complex-valued functions x on [0, 1] with norm ‖x‖∞ =
ess supt∈[0,1]|x(t)|.

Theorem 1 ([8], Theorem 4.3). Every symmetric continuous n-homoge-

neous polynomial P : L∞[0, 1] → C can be uniquely represented as

P (x) =
∑

k1+2k2+...+nkn=n

αk1,...,knR̃
k1
1 (x) · · · R̃kn

n (x),

where k1, . . . , kn ∈ Z+, αk1,...,kn ∈ C and R̃j(x) =
∫

[0,1](x(t))
j dt.

In other words, {R̃n} forms an algebraic basis in the algebra Ps(L∞[0, 1]).

3. The Main Result

Let L1[0,+∞) be the complex Banach space of all Lebesgue integrable functions
x : [0,+∞) → C with norm ‖x‖1 =

∫

[0,+∞) |x(t)| dt and let L∞[0,+∞) be the
complex Banach space of all Lebesgue measurable essentially bounded functions
x : [0,+∞) → C with norm ‖x‖∞ = ess supt∈[0,+∞)|x(t)|. Let us consider the
space L1 ∩L∞ := L1[0,+∞)∩L∞[0,+∞) with norm ‖x‖ = max{‖x‖1, ‖x‖∞}.
By [3, Theorem 1.3, p. 97], L1 ∩ L∞ is a Banach space.

For every E ⊂ [0,+∞) let

1E(t) =

{

1, if t ∈ E
0, otherwise.
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Note that a family of functions {1[0,a] : a > 0} is uncountable and a distance
between any two different functions is not less than 1. Therefore L1 ∩ L∞ is
non-separable.

For n ∈ N let Rn : L1 ∩ L∞ → C, Rn(x) =
∫

[0,+∞)(x(t))
n dt. Note that

Rn is a symmetric n-homogeneous polynomial. Let us show that ‖Rn‖ = 1.
Let x ∈ L1 ∩ L∞ be such that ‖x‖ ≤ 1. Then ‖x‖1 ≤ 1 and ‖x‖∞ ≤ 1. Since
‖x‖∞ ≤ 1, it follows that |x(t)|n ≤ |x(t)| for almost all t ∈ [0,+∞). Therefore,

|Rn(x)| ≤

∫

[0,+∞)
|x(t)|n dt ≤

∫

[0,+∞)
|x(t)| dt = ‖x‖1 ≤ 1.

Hence, ‖Rn‖ = sup‖x‖≤1 |Rn(x)| ≤ 1. On the other hand, ‖1[0,1]‖ = 1 and
Rn(1[0,1]) = 1. Therefore, ‖Rn‖ = 1 and, consequently, Rn is continuous.

Theorem 2. Every symmetric continuous n-homogeneous polynomial

P : L1[0,+∞) ∩ L∞[0,+∞) → C can be uniquely represented as

P (x) =
∑

k1+2k2+...+nkn=n

αk1,...,knR
k1
1 (x) · · ·Rkn

n (x),

where k1, . . . , kn ∈ Z+ and αk1,...,kn ∈ C.

Proof. Let P : L1 ∩ L∞ → C be a continuous symmetric n-homogeneous
polynomial. For x ∈ L1 ∩ L∞ let supp x = {t ∈ [0,+∞) : x(t) 6= 0}. For
a > 0 let us denote Xa the subspace of all functions x ∈ L1 ∩ L∞ such that
supp x ⊂ [0, a]. Let us denote Pa the restriction of P to Xa. Note that X1

is isometrically isomorphic to L∞[0, 1]. Therefore, by Theorem 1, there exist
unique coefficients αk1,...,kn ∈ C such that

P1(x) =
∑

k1+2k2+...+nkn=n

αk1,...,knR̃
k1
1 (x) · · · R̃kn

n (x)

for every x ∈ X1. For a > 1 let us define a mapping Ja : X1 → Xa by
Ja(x)(t) = x(t/a). Evidently, Ja is a linear bijection. Note that ‖Ja(x)‖1 =
a‖x‖1 and ‖Ja(x)‖∞ = ‖x‖∞, therefore ‖x‖ ≤ ‖Ja(x)‖ ≤ a‖x‖. Hence, Ja is
an isomorphism. Let Ga = Pa ◦ Ja. Note that Ga is a continuous symmet-
ric n-homogeneous polynomial on X1. Therefore, by Theorem 1, there exist

coefficients α
(a)
k1,...,kn

∈ C such that

Ga(x) =
∑

k1+2k2+...+nkn=n

α
(a)
k1,...,kn

R̃k1
1 (x) · · · R̃kn

n (x)
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for every x ∈ X1. Let x = J−1
a (y) for y ∈ Xa. Note that Ga(x) = Ga(J

−1
a (y)) =

Pa(Ja(J
−1
a (y))) = Pa(y) and

R̃j(x) = R̃j(J
−1
a (y)) =

∫

[0,1]
(y(at))j dt =

1

a

∫

[0,a]
(y(t))j dt =

1

a
Rj(y).

Therefore

Pa(y) =
∑

k1+2k2+...+nkn=n

α
(a)
k1,...,kn

ak1+...+kn
Rk1

1 (y) · · ·Rkn
n (y).

Note that the restriction of Pa to X1 coincides with P1. On the other hand,
the restriction of Rj to X1 coincides with R̃j. Therefore, by the uniqueness of

αk1,...,kn , we have that
α
(a)
k1,...,kn

ak1+...+kn
= αk1,...,kn . Hence, for every a ≥ 1 and for

every y ∈ Xa,

Pa(y) =
∑

k1+2k2+...+nkn=n

αk1,...,knR
k1
1 (y) · · ·Rkn

n (y). (1)

Let E be a Lebesgue measurable subset of [0,+∞) such that µ(E) < +∞,
where µ is the Lebesgue measure. For every j ∈ N let Ej = [j − 1, j) ∩ E and
Fj = τj(EJ ), where τj(t) = t− (j − 1). By [12, §2, No. 1–4], every measurable
subset F ⊂ [0, 1] is isomorphic modulo zero to an interval of the length µ(F ).
Therefore, for every j ∈ N there exists σj ∈ Ξ[0,1] such that σj(Fj)

a.e.
= [0, µ(Fj)]

and σj([0, 1]\Fj )
a.e.
= [µ(Fj), 1]. Let us define a mapping σE : [0,+∞) → [0,+∞)

by the following way: for t ∈ [0,+∞) such that m− 1 ≤ t < m, where m ∈ N,
we set

σE(t) =

{ ∑m−1
k=1 µ(Ek) + σm(τm(t)), if t ∈ E

µ(E) +
∑m−1

k=1 (1− µ(Ek)) + σm(τm(t)) − µ(Em), otherwise.

It can be checked that σE ∈ Ξ[0,+∞), σE(E)
a.e.
= [0, µ(E)] and σE([0,+∞)\E)

a.e.
=

[µ(E),+∞).
Let y ∈ L1 ∩ L∞ be such that µ(supp y) < +∞. Since P is symmetric,

it follows that P (y) = P (y ◦ σ−1
supp y). Note that y ◦ σ−1

supp y ∈ Xµ(supp y) ⊂
Xmax{1,µ(supp y)}. Therefore, by (1),

P (y) =
∑

k1+2k2+...+nkn=n

αk1,...,knR
k1
1 (y ◦ σ−1

supp y) · · ·R
kn
n (y ◦ σ−1

supp y)

=
∑

k1+2k2+...+nkn=n

αk1,...,knR
k1
1 (y) · · ·Rkn

n (y). (2)
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Let x ∈ L1 ∩ L∞. For every m ∈ N let

xm(t) =

{

x(t), if |x(t)| > 1
m
,

0, otherwise.

Let A0 = {t ∈ [0,+∞) : |x(t)| > 1} and Am = {t ∈ [0,+∞) : 1
m+1 < |x(t)| ≤

1
m
} for m ∈ N. Since x ∈ L1[0,+∞), it follows that µ(Am) < +∞ for every

m ∈ Z+. Since the series

‖x‖1 =

∞
∑

m=0

∫

Am

|x(t)| dt

is convergent, it follows that ‖x− xj‖1 =
∑∞

m=j

∫

Am
|x(t)| dt → 0 as j → +∞.

Note that ‖x− xj‖∞ ≤ 1
j
→ 0 as j → +∞. Hence, ‖x− xj‖ → 0, i. e. xj → x.

Note that supp xj =
⋃j−1

m=0 Am. Since µ(Am) < +∞ for every m ∈ Z+, it
follows that µ(supp xj) < +∞. Therefore, by (2),

P (xj) =
∑

k1+2k2+...+nkn=n

αk1,...,knR
k1
1 (xj) · · ·R

kn
n (xj).

By the continuity of R1, . . . , Rn and P,

P (x) = lim
j→+∞

P (xj) =
∑

k1+2k2+...+nkn=n

αk1,...,knR
k1
1 (x) · · ·Rkn

n (x).

Let R0 : L1 ∩ L∞ → C, R0(x) = 1.

Corollary 3. {Rn}n∈Z+ forms an algebraic basis in the algebra

Ps(L1[0,+∞) ∩ L∞[0,+∞)).
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