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We consider polynomials on spaces £,(C"),1 < p < +00, of p-summing sequences of n-dimensional complex vectors, which
are symmetric with respect to permutations of elements of the sequences, and describe algebraic bases of algebras of continuous

symmetric polynomials on £,(C").

1. Introduction

Algebras of polynomials and analytic functions on a Banach
space X which are invariant (symmetric) with respect to a
group of linear operators G(X) acting on X were studied
by a number of authors [1-10] (see also a survey [11]). If
X has a symmetric structure, then it is natural to consider
the case when G(X) is a group of operators which preserve
this structure. In particular, if X is a rearrangement-invariant
sequence space, then G(X) is used to be the group of
permutations of positive integers. In [8] Nemirovskii and
Semenov described algebraic bases of algebras of continuous
symmetric polynomials on real spaces £,,, where 1 < p < +00.
Their results were generalized by Gonzalez et al. [7] to real
separable rearrangement-invariant sequence spaces.

Algebraic basis plays a crucial role in the problem of
description of spectra of algebras generated by polynomials
[1-4]. For example, each complex homomorphism on the
algebra of symmetric polynomials on €, is completely defined
by its values on the basis elements.

Note that an algebra of symmetric functions essentially
depends on a representation of a given group G on X. In
particular, in [12-14] the group of permutations of posi-
tive integers was considered which acts on the complex
space ¢, permutating “blocks” of coordinates. Polynomials
which are invariant with respect to the action are called

block-symmetric. It is natural to consider such polynomials
as symmetric polynomials on £, (C").

In this work we get an explicit description of algebraic
bases of algebras of symmetric polynomials on £,(C"), where
1< p<+oo.

2. Materials and Methods

We denote by N the set of all positive integers and by Z, the
set of all nonnegative integers.

A mapping P : X — C, where X is a complex Banach
space, is called an N-homogeneous polynomial if there exists
an N-linear form A, : X — C such that P is the restriction
to the diagonal of A p, that is, P(x) = Ap(x,...,x) for every

N
x € X. By [15, Corollary 2.3], N-homogeneous polynomial
P is continuous if and only if its norm [|P|| = supy, ., |P(x)]
is finite. Definition of N-homogeneous polynomial implies
the inequality |P(x)| < 1P|l |1 for every x € X. A mapping
P = Py+P+--+P,, where P, € Cand P; isa j-homogeneous
polynomial for every j € {1,...,m}, is called a polynomial of
degree at most m.
Letn € Nand p € [1,+00). Let us denote EP(C”) the

vector space of all sequences

x=(x1,%p...)s 1)
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Wherex = (xﬁl) ...,x?’)) € C" for j € N, such that the series

ijl zs:l Ixj |P is convergent. The space ¢,(C") with norm

l/p
") )

Definition 1. A function f: £,(C") — Cis called symmetric
it f(xo0) = f(x)forevery x € EP(C") and for every bijection
o : N — N, where x o 0 = (x,(;), X525 - - -)-

(o) n
Jacl, = (Z > |

j=1s=1

is a Banach space.

Let us denote @S(EP(C”)) the algebra of all symmetric
continuous polynomials on EP(C").

3. Results and Discussion

3.1. Power Sum Symmetric Polynomials on £,(C"). For a
multi-index k = (ky,...,k,) € Z} let |k| = k; +--- + k,,.
For every k € Z7 such that |k| > [p], where [p] is a ceiling
of p, let us define a mapping H;. : £,(C") — Cby

Hy (x) = ZH( D 3)

1s=1
= k>0

.....

homogeneous polynom1a1 Polynom1als H, are generahza-
tions of so-called power sum symmetric polynomials on finite-
dimensional spaces (see, e.g., [16, page 23] or [17, page 297]).

Proposition 2. For p € [1,+00) and for every k € 77 such
that |k| > [p], polynomial H, on fp(C”) is continuous and
[Hll < 1.

Proof. Let x € €p(C”) such that x|, < 1. Note that

ol = Y TT "

j=1 s=1 (4)
k>0
Since |x§.s)| < maxlSmSn|x;m)| for everys € {1,...,n}and j €
N, it follows that
(m) [kl
"< (ma [47) ©

S_
k>0

for every j € N. Note that

Kl Ik|
(mas )" = e b < S o
Therefore,
ACTED I i ?)
j=1m=1
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Since ||lx]l, < 1, it follows that x| <
{1,...,n} and j € N. Therefore, |9c§m)||k| < Ix;m)lp. Thus,

1 for every m €

o n
H 0] <Y Y | =t < 1. (8)

j=1m=1
Therefore, |H,|| = SUP\|x||Pg1|Hk(x)| < 1. Hence, Hy is
bounded and, consequently, it is continuous. O

For m € N, let c ™ (C") be the space of all sequences
x = (x,.005%,,0,.. ) where x,...,x,, € C"and 0 =
(0,...,0) € C". Note that cog1 (C") is isomorphic to (C")
Let ¢,0(C") = Um . 00 ™)(C™). Note that co(C") is a dense
subspace in ¢£,(C"). Also note that Hy is well-defined on
coo(C") for every k € 7.

For arbitrary x = (X150 3 X, 0,.00), Y =
(V15 V6 0,...) € 0(C™), we set
X®Y=(Xp5eees X Viseoor Yoo 0,00 9)
For xV, ..., x" € ¢o(C"), let
r
@xw =xVeo. . ox". (10)
=1
Note that

P r
SR a
j=1

Also note that for every k € Z”, such that |k| > 1,

J= J=

@ )

j=1

Foreverym € Nand j € {1,...,m}, we set
1 27ij
Oj = s EXP <71> (13)
Also we set oy, = 0. For I = (I;,...,1,) € Z7}, let

o ;),(0,...,0),...), (14)

& = @ @((“1111

where lj = max{L,[;} forje{l,...,n}.

Let us define a partial order on Z'; by the following way.
For k,1 € 7" we set k > 1 if and only if there exists m € Z
such that k; = ml for every s € {1,...,n}. We write k > [, if
k>landk #1.

Proposition 3. For k € Z'; such that |k| > 1 and for arbitrary
leZ?

n

H kJl— 11_[13’ ifk =1

H(a)={ 1 (15)

k>0 k —0
0, otherwise,

where, by the definition, product of an empty set of multipliers
is equal to 1. In particular, Hi(a;) = 1.
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Proof. By (12) and (14),

Hy (a;)
Lol (16)
=Z” Hk(( L j % )’(O’ ’O)’
=1 Jn=1
By the definition of Hy,

n

ks
Hk(((xlljl,...,(xlnjn),(0,...,0),...): H ((Xlsjs) . (17)

=1

MX-M
v
S

Therefore,

ks n s

= ()" [T 20 (18)
n l: ks n .
= (“lsjs) H st

Let k > 1. Then there exists m € Z such that k; = m;
for everys € {1,...,n}. For s € {1, ..,n} such that k, > 0, we
have that I, > 0 too. Consequently, for such s we have I, = I,
and, by (13),

I

3 )= 2 i (2’2"]‘))%15

Js=1

= - Z exp (2mijm,) = (9)
ls js= s ]'521
1 1
- lms—l lks/l 1
Therefore, by (18),
n 1 n N
H (@) = H ol L. (20)
s=1 s= 1
k>0 k=
In the case k = [ we have
H () = Slkk/k 1Hk_1 (1)
k>0

Let k1. Then we have two cases. Case 1. There exists s €
{1,...,n} such that k; > I, = 0. Then

r
3 (o) = (o) = 05 (22)
=1

3
therefore, Hy.(a;) = 0. Case 2. There exists s € {1,...,n} such
that [, > k; > 0. Then

d o1 2mij, |\
(“lsjs) - ll/ls exp l
Jjs=1 Jjs=1 \bs s
(23)

It is known that

Zq:exp<ziij>r =0 (24)

= 1
forevery g € {2,3,...} and r € {1,...,q — 1}. Therefore,

L 27tij

Z p( 77 ) =0 (23)
and, consequently, Hy(ag;) = 0. O

Let us prove the following auxiliary proposition.

(0,+00) — R, g(x) =
,C,, > 0, s strictly

Proposition 4. A function g :
(& 4+ )
decreasing.

, wherem € Nandc,...

Proof. Letus prove that g'(x) < 0foreveryx € (0,+00). Note
that g(x) = ((1/x)In(¢] + - -- + ¢;,)). Therefore,

1 x x 1
g'(x)=g(x)<—;ln(c1 + --+cm)+;
¢'lng +---+¢,lng,
(o SRR o
(x) x x
N (R 2o

X2(cF+- -+ )

‘In(q +--+¢,)-x(¢Ing, +---+¢,Inc,))
g (x) x x

=—m(cl (In(q +--+c,)

—In¢ )+ +c, (In(c +---+¢,)—Inc,)).

~++¢,)>0and In(c +
,m}, it follows that g/(x) <0. O

Since g(x)/xz(cfC + ~++¢y)>1In c]’.“

for every j € {1,...
Corollary 5. For every x € EP(C”) and for every q > p
el > Jxcl, (27)

For an arbitrary nonempty finite set M C Z’} let us define
amapping 77, : ¢o(C") — C™!, where |M]| is the cardinality
of M, by

7y (x) = (Hy (x))kEM > (28)



where (Hj(x))eps is an [M|-dimensional vector of values of
H, on x, indexed by k € M. We endow the space C' with
norm [|&]|, = maxycp &l where & = (& )reps € cM,

Theorem 6. Let M be a finite nonempty subset of Z'! such that
|k| > 1 for every k € M. Then

(i) there exists m € N such that for every & = (& )rem €
CM! there exists Xg € céf)”)(C”) such that 1y (x¢) = &

(ii) there exists a constant py; > 0 such that if |&],, < L,
then ||xgll, < P for every p € [1, +00).

Proof. (i) Let & = (§)reps € C™M!. For every k € M, let us
define 1, € C and b, € ¢,(C") by the following way. For
minimal elements k of the partially ordered set (M, <), let
N = & and b, = W/eay, where a; is defined by (14) and

| iargm/|k|
b

Vlrle if 7, #0
0, if 7, = 0.

i = { (29)

For k € M, which are not minimal elements of (M, <), we
define ;. and b, inductively by

M = &k ~ zg&Hk (@), (30)
1<k
b, = Yneay. (31
We set x; = (Db Note that x; € ¢m(c™), where
m= Zmin{jeN:akecéé) (C")}. (32)
keM

For k € M, by (12), Hy(x) = Ycp He(By). Since Hy is a |k|-
homogeneous polynomial,

H (b) = (ym)" Hy (a). (33)

By Proposition 3, H,(a;) is not equal to zero only for I € M
such that [ < k. Therefore,

Hy (xE) = Hy (b) + Z Hy (b).

(34)

By Proposition 3, H(a;) = 1, and therefore, by (33), H,(b,) =
1. Hence,

H (xg) =Mt Z Hy (b).

leM (35 )
1<k
Taking into account (30), we have H;(x;) = &,. Hence,

Ta(xe) = §.
(i) Let & = (&)iens € C™! be such that |||, < 1. For
k € M let

(k) = max {s eN: Y .19 ¢ M such that IV
(36)
<< 19 :k}.

Note that for minimal elements k € M we have (k) = 1.
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Let
C = max {1 max [a], } . (37)
Let
r=max (k), (38)
and for every j € {1,...,r} let
J
U :H(1+ms), (39)
s=1
where
mg = |{k e M : (k) =s}|. (40)

Also we set p, = 1.
Note that for every j € {1,...,7}

Ui = i (14 my) = pyy o+ pyam;
S Ui T UMy = (41)
= Ho T oyt Iy et UG 1.

Let us prove that for every k € M

Il < by €™ (42)

We proceed by induction on (k). In the case (k) = 1, we have
Mk = &> and therefore, [[b [, = 'Wllaklll. Since [ | < 1, it
follows that |G [l; < llagll; < C = pyC. If r = 1, then (42) is
proved. Letr > 2 and j € {2,...,r}. Suppose that inequality
(42) holds for every k € M such that (k) € {1,...,j— 1}. Let
us prove (42) for k € M such that (k) = j. By (31) and (37),

5l < 8l el < Wimle: (43)
By (30),
|| < [&] + l§4 |H, (8)]. »
1<k

Since Hj is a |k|-homogeneous polynomial on the space
£, (C" and [[Hil < 1,

Ik

[ ()] < [El < ol (45)

Therefore, taking into account |&;| < 1, we have

6+ 2 @< 3l

leM leM
1<k 1<k
Therefore,
1/1k|
Yol < | 1+ 3 ! | (47)
leM
1<k
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By Proposition 4,
1/Ik|

1+l ) st Y fal. @)

leM leM
1<k I<k

Note that if [ < k, then () < (k). Therefore,

2 loli= 2 ol (49)

leM leM
1<k (Iy<(k)
Since (k) = j,
j-1
> M= > - (50)
leM s=1leM

(D<(k) (y=s

By the induction hypothesis, if (/) = s, wheres € {1,..., j—1},
then b, < p_,C°. Therefore,

Z "bllll < Z [’lsflCS = .”571CS Z 1= ‘us,lmSCs.

leM leM leM (51)
(y=s (Iy=s (D=s

Since C > 1, it follows that C* < C/™' for every s € {1,..., j -
1}, and therefore,

i1 i
1+ ZMs-lmsCS <1+ Cﬂz“s_lms
s=1 s=1
(52)
j-1 )
< <1 + ZMS_lmS> ¢
s=1
Since y, = 1, by (41),
-1
1+ Z.‘/‘s—ﬂns = Hjr- (53)
s=1

By (47)-(53),

Wil < € (54)

By (43) and (54), b ll; < yj_lcf. Hence, inequality (42) holds
for every k € M.
By (11) and by Proposition 4,

[l < 2 ol (55)
By (42),
Z ||bl||1 = Z Z ||bz||1 < Z z .“j—lcj
leM j=lleM j=l1leM

N=j N=j

=Y uiaC Y 1=y mC
= S (56)

Set pyy = 1#,C". We have that ||xg[l; < pyif [§llo, < 1. By
Corollary 5, ||x£||P < llxglly < pp for every p € [1,+00). [

Corollary7. Let M = (kW k9 ¢ 77 such that K9] > 1
for every j € {1,...,s}. Then there exists m € N such that
for every m' > m polynomials Hyw, ..., Hys are algebraically

independent on cégl’)(C”).
Proof. By Theorem 6, there exists m € N such that for every
&=(&,...,&) € C’ there exists x; € céf)")(C") such that

Hi (xz) = E]- (57)
,s}. Let us show that Hyo), ..

algebraically independent on cég"l)(C”) for every m' > m. Let

Q: C° — C be a polynomial such that
Q (Hk(l) (x),....,Hw (x)) =0 (58)

for every j € {1,... .» Hyo are

for every x € céz)”’)(C”). Set x = x;. Taking into account (57),
we have Q(&;,...,&,) = 0 for arbitrary &,,..., & € C, that is,
Q = 0. Hence, Hyw, ..., Hyo are algebraically independent.

O

3.2. Algebraic Basis of the Algebra 2 (¢,(C"))

Theorem 8. Every N-homogeneous polynomial P €
,@S(cég")(C")), where m is an arbitrary positive integer,
can be represented as an algebraic combination of polynomials
H,, wherek € Z"} such that 1 < |k| < N.

Proof. We proceed by induction on . In the case m = 1 for

x=(x,0,...) € cé(l))(C"), we have

P(x) = Z , (xgl))kl .”(xgn))kn

keZ’;
[k|=N

= Z o Hy (x),
keZ',
k=N

(59)

where o € C. Suppose the statement holds for 7 — 1 and
prove it for m. Let P € g’s(céf)")((:”)) and x = (xq,...,x%,,
0,...) € cég’)(C"). Then P(x) can be represented as a sum of
terms

B (xf,i))k1 e (xi,':))k" fi ((x15--+,%,,.1,0,...)),  (60)

where 8, € C, k = (ky,...,k,) € Z} such that1 < |k| <
N, and f; is an (N — |k|)-homogeneous polynomial. Note
that f, € .@S(CSS"_I)(C”)), and therefore, by the induction
hypothesis, fi.((x;,...,%,,_1,0,...)) can be represented as an
algebraic combination of H;((x,,...,X,,_1,0,...)), where [ €
Z" such that 1 < |I| < N - |k|. Note that

Hl ((xl" s X1 O,.. ))

I I (61)
=H;(x) - (Xirl,))l (xig)) :



Therefore, P(x) can be represented as an algebraic combina-

tion of H;(x) and x(l) EZ). Since P and H; are symmetric,
it follows that together w1th term

(1))rl
Vrl,...,rn,tl,...,ts (xm e

atot. € Gl € Z and
t EZ

(xg;))’n Hltll (x) - Hlt (x), (62)

where y,
rl,...,rn,tl,..

1\
Vristt it \ X o

where j € {1,...,m — 1}. Therefore, P(x) can be represented
as a sum of terms

1 ¢ "
Y1ttt <;Z (xi'l))“ e (x§">)’ > (64)

the sum must contain terms

()" () HY (), (63)

=1
“H)' (x) - Hy* (x).

Since Z] 1(x(1))r1 . (x(")) " = H,(x), where r = (r},...,7,),

it follows that Pisan algebrarc combination of polynomials

H,, where k € Z'} such that 1 < |k| < N. O

Theorem 9. Let P : ¢,(C") — C be a symmetric N-
homogeneous polynomial. Let My, = {k € Z"! : 1 < |k| < N}.
There exists a polynomial g : C™~! — C such that P = q°Tp,»
where the mapping 1, is defined by (28).

Proof. By Corollary 7, there exists m € N such that for every
m' > mpolynomials H,, where k € M, are algebraically inde-
pendent. Therefore, the representation given by Theorem 8

for the restriction of P to cém )(C"), is unique. Thus, for every
: Ml S
such that P(x) = (g, ° nMN)(x) for every x € cég",)(C”). Since

m' > m there exists a unique polynomial g,,,

cm (" 5 ™ (™), it follows that g, is the restriction of g,
to 7y, (coo)(C”)) By Theorem 6, 7, (cém)(C")) CMnl and
therefore, A = G- Letq = q,,,. Then P(x) = (gomyy,,)(x) for
every x € ¢,(C"). O

Theorem 10. Polynomials H,, where k ¢
algebraic basis of the algebra P (£,(C")).

Z", form an

Proof. Let us prove that every symmetric continuous polyno-
mial on ¢,(C") can be uniquely represented as an algebraic
combination of polynomials H,. It suffices to prove the
statement only for homogeneous polynomials. Let P

£,(C") — C be a symmetric continuous N-homogeneous
polynomial. By Theorem 9, the restriction of P to ¢, (C")
can be uniquely represented as an algebraic combination of
polynomials Hy, where k € Z' such that1 < |k|] < N
Since ¢y,(C") is dense in ¢,(C") and polynomials H, are
well-defined and continuous on £, (C"), it follows that given
representation can be extended to €,(C"). ]

3.3. Algebraic Basis of the Algebra P (£,(C")). Let p €
(1, +00). In this section, we describe an algebraic basis of the
algebra @S(EP(C”)).

Let us prove a complex analog of [8, Lemma 2].
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Lemma 11. Let K ¢ C" and »x : K — C™' be an
orthogonal projection: u((xy, Xy, ...,%,,)) = (x,5,...,%,,). Let
K, = »(K), intK, # 0 and for every open set U C K, a set
% 1 (U) is unbounded. If polynomial Q(x,, ..., x,,) is bounded
on K, then Q does not depend on x;.

Proof. Suppose that Q depends on x;. Then

Q(xy,..sx qu (%35 % xl, (65)
where 1 < k < degQand qk;éO. Note that g, #0 on int K, and
therefore, there exists point a € int K, such that g,(a) # 0.
Since int K, is open and gy is continuous, there exists r > 0
such that B(a,r) ¢ intK; and inf,cp,,)|q;(b)] > 0, where
B(a, r) is an open ball with center a and radius r in the space
C™'. Note that, for (x,,...,x,,) € x ' (B(a,r)),

Q)] >

|‘1k (%35 ’xm)l |x1|k

k-1
- Z |qj (%355 %)
=0

j
'|x1| (66)

= ,
>clx | - Zdj A
=0

where ¢ = infycp, ,)|q(b)] and dj = supbeB(a),)Iq](b)I for
j €1{0,...,k—1}. Note that for the polynomial cx’f+2’; éd]
there exists R > 0 such that if |x;] > R, then c|x1|k >
23 djlx,V, that is, ¥ djlx, 1 < (1/2)clx,|*. Therefore,
if [x;| > R, then

b= ; 1 1
clal' =Y d; > el - Selul = Jefx [ (67)
j=0

Since % '(B(a,r)) is unbounded, there exists a sequence
((xgn),...,xfr’f)))neN c » Y(B(a,r)) such that xﬁ") — 00 as
n — +00. Taking into account (66) and (67), we have

)

as n — +00, which contradicts the boundedness of Q on K.
O

70 let 7'(k) = {s € {1,...,n} :

el =0 (69

'Q x1 -

For k = (k;,...
k, # 0} and v(k) =

k) €
|7 (k).

Lemmal2. Fork,l € Z"} ifl > kandv(l) > v(k), then |I| > |k|.

Proof. Sincel > k, there exists m € Z' such that (I,,...,1,) =
(myky,...,myk,), and | # k. Therefore, if k, = 0 for some
s € {1,...,n}, then [, = 0 too. It means that 7'(I) ¢ 7'(k).

On the other hand, »(I) > v(k). Therefore, 7'(I) = 7(k); that
is, for s € {1,...,n}, we have that [, # 0 if and only if k, # 0.
Therefore, for every s € 7/(I) we have that m, > 1. Sincel # k,

there exists s, € 7°(I) such that m, > 2. Therefore,
| =mk, +---+myk, >k +---+k, =|k|. (69)

O
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For N e Nand ] € {1,...,n}let

MY =ltez" 1<)l <[p], v(I) = J}

u{lez}

(70)
:[p] <1l < N}.

By Theorem 6, for M =

that (V) contains the open unit ball of the space C™! with
norm | - ||, where

MI(\I,) there exists p = py; > 0 such

v, = {x € Goo (C") = lIxll, < p}. (71)

,N}, let q((El)leM;p) be a
0 (V,), then q does

Proposition 13. For ] € {1,...

polynomial on cM, If q is bounded on 1,
not depend on & such that v(k) = J and 1 < |k| < [p].

Proof. Let k € Z' such that »(k) = Jand 1 < |k| < [p]. Let
K = nM%>(VP), K, = nMg>\{k}(VP) and » : K — K, be an
orthogonal projection, defined by

% (Eiea — Crent g (72)

Let us show that, for every ball
Bur)={Eec W ey <r}  73)

IMP\{k}

with center u = (1), Mg € C and radiusr > 0 such

that B(u,r) ¢ (”\{k}(V) a set ' (B(u, 7)) is unbounded.

Since u € m,, k}(V) there exists x, € V, such that
1/|k
ﬂM;?\{k}(xu) =u. Form € N, we set x,, = 69;":1(1/]1/| hay,

where gy is defined by (14). Choose ¢ such that

—|lx,
0<e<minyl, L"pl/p,
lall, ¢ (p/ k1)

(74)
r
el ¢ 1+ 171Dy |
where ((-) is a Riemann zeta-function. Let x,, . = (ex,,) ® x,,.
Let us show that x,,, . € V.. By (11),
«l|l 1 <« 1
||xm||§ = Z P ZW ||ak||§
j=1 ] P ]:1]
. (75)
I? py( P
” k|psz/|k| “ak”p(<m>
j=1

Therefore, IIxmllp < IIakIIPC(p/IkI)l/P. By the triangle inequal-
ity,

el , < ellxmll, + Il

1/p
<ellad, ¢ (£) "+ Il

mellp

(76)

Since ¢

< (p = Ix ) Nagll L (p/IkD'?, it follows that
[l

m,sllp < p. Hence, x,,,, € V,,.
Note that for arbitrary I € Z' such that |I| > 1, by (12),

o1 &1
H, (x,,) = ZWHI (o) = H, (a;) ZW (77)
=y =1/
Hl (xm,e) = slllHl (xm) + Hl (xu)

i v 1 78)
= &' H, (a) ZW +H(x,).
j=1

Let us show that nMg>\{k}(xm)s) € B(u,r). Forl € Mg) \ {k}

such that I/k, by Proposition 3, H(a;) =
(78),

0, and therefore, by

Hl (xm,s) = Hl (xu) = U (79)

Let] € MY\ {k} be such that [ > k. If [p] < || < N, then
[I] > |k|, since |k| < [p].If1 < |I| < [p] and v(I) > ], then
[I] > |k| by Lemma 12. Hence, |I| > |k| in both cases. By (78),

o 1
|Hl (xm,s) - ull < slll |Hl (ak)| Z;j|l|/|k| : (80)
j=

I 1, it follows

Since € < 1, it follows that "' < e. Since |H,|| <
that |Hy(@)| < [al}. Taking into account [la;]|, > 1 and
[I] < N, we have that |H(a;)| < ||ak||11\]. Since |I| and |k| are
integer numbers and |I| > ||, it follows that |I| > |k| + 1, and

therefore,
m m 1
]Zl |l|/|k g +1/|k| < m>' (81)
Hence,
1
IH) (,.) 0] < el ¢ (1 + W) (82)

Since e < r/IIakIIINC(Hl/IkI), it follows that |Hj(x,, .)—u| <1,
and therefore, 770\ ;1 (X,,.e) € B(u, 7).
4 :

By Proposition 3, Hy.(a;) = 1, and therefore, by (78),

< 1
Hy (x,,,) = Slllz_, +H; (x,) — 00 (83)
=

as m — +oo. Hence, % '(B(u,r)) is unbounded. By
Lemma 11, g does not depend on &,. O

Theorem 14. Let P € QS(EP(C”)) be an N-homogeneous

polynomial. If N < [p], then P = 0. Otherwise, there exists
(p)

a unique polynomial q : C™»¥! — C such that P = g 7TM "

where M, = {k € Z% : [pl < |kl < N} and 7TMPN
£,(C") — CMorlis defined by 7y (x) = (Hi(¥)ken, -



Proof. Let P, be the restriction of P to ¢,,(C"). Note that P,
is a continuous symmetric N-homogeneous polynomial. By
[My]

Theorem 9, there exists a unique polynomial g : C -

C, where My = Ml(\}) such that Py = q o my, . Since P is
continuous, P is bounded on v, defined by (71). Therefore,
q is bounded on 1) (V).

Let us prove that g does not depend on arguments &, such
that 1 < |k| < [ p] by induction on v(k). By Proposition 13, for
J = 1 we have that ((§;) ke, ) does not depend on arguments
& such that »(k) = 1 and 1 < |k| < [p]. Suppose that the
statement holds for v(k) € {1,...,] — 1}, where J € {2,...,n},
that is, ((§x)ken, ) does not depend on arguments & such
that 1 < (k) < J—1and 1 < |[k| < [p]. Then the restriction

ofgto C'M%)l, by Proposition 13, does not depend on &, such
that v(k) = Jand 1 < |k| < [ p]. Hence, g does not depend on
& such that 1 < |k| < [p].

Since polynomials Hy, where k € M, , are well-defined
and continuous on KP(C") and ¢,,(C") is dense in EP(C”), it

follows that P = g » ng\’,}) . Note that in the case N < [p] we
PN
have M, \ = 0 and, therefore, P = 0. O

Corollary 15. Polynomials Hy, where k € {l € Z' : |l| >
[p1} U {0}, form an algebraic basis of the algebra 9’5(€P(C")).

4. Conclusions

Power sum symmetric polynomials on €,(C") are alge-
braically independent and form an algebraic basis of the
algebra of all continuous symmetric polynomials on £,(C").

Results of this work generalize results of works [7, 8, 14].
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