Carpathian Math. Publ. 2013, **5** (1), 59–62 doi:10.15330/cmp.5.1.59-62

Kravtsiv V.V.¹, Mozhyrovska Z.G.², Zagorodnyuk A.V.¹

HYPERCYCLIC OPERATORS ON SPACES OF BLOCK-SYMMETRIC ANALYTIC FUNCTIONS

The paper contains proof of the hypercyclicity of "symmetric translation" on the algebras of block-symmetric analytic functions of bounded type on an isomorphic copy of ℓ_1 .

Key words and phrases: block-symmetric analytic functions, hypercyclic operator, symmetric translation operator.

 $E-mail: \ \ \, \text{maksymivvika@gmail.com} \, (Kravtsiv \, V.V.), \, \, \text{nzoriana@yandex.com} \, (Mozhyrovska \, Z.G.), \\ \ \, \text{andriyzag@yahoo.com} \, (Zagorodnyuk \, A.V.)$

INTRODUCTION

Let X be a Fréchet linear space. A continuous linear operator $T: X \to X$ is called hypercyclic if there is a vector $x_0 \in X$ for which the orbit under T, $Orb(T, x_0) = \{x_0, Tx_0, T^2x_0, \ldots\}$, is dense in X. Every such vector x_0 is called a hypercyclic vector of T. The classical Birkhoff theorem [2] asserts that any operator of composition with translation $x \to x + a$, $T_a: f(x) \to f(x+a)$ is hypercyclic on the space of entire functions $H(\mathbb{C})$ on the complex plane \mathbb{C} if $a \neq 0$. The Birkhoff translation T_a has also been regarded as a differentiation operator

$$T_a(f) = \sum_{n=0}^{\infty} \frac{a^n}{n!} D^n f.$$

A generalization of the Birkhoff theorem was proved by Godefroy and Shapiro in [3]. They showed that if $\varphi(z) = \sum_{|\alpha| \geq 1} c_{\alpha} z^{\alpha}$ is a non-constant entire function of exponential type on \mathbb{C}^n , then the operator

$$f o \sum_{|\alpha| > 1} c_{\alpha} D^{\alpha} f, \qquad f \in H(\mathbb{C}^n),$$

is hypercyclic. Note that an analog of the Godefroy-Shapiro Theorem for weakly continuous analytic functions on Banach spaces which are bounded on bounded subsets was proved by Aron and Bés in [1]. A symmetric version of the Godefroy-Shapiro Theorem is proved in [9]. The purpose of this paper is to extend the results on hypercyclicity for the case of a special translation operator on the space of block-symmetric analytic functions of bounded type on ℓ_1 .

The following proposition is well known (see [4, Proposition 4]).

Proposition 1. Let T be a hypercyclic operator on X and A be an isomorphism on X. Then $A^{-1}TA$ is hypercyclic.

УДК 517.98

2010 Mathematics Subject Classification: 46J15, 46E10, 46E50.

 $^{^1\} Vasyl\ Stefanyk\ Precarpathian\ National\ University, 57\ Shevchenka\ str., 76018, Ivano-Frankivsk, Ukraine$

² Lviv Commercial Academy, 10 Tugan-Baranovskogo str., 79005, Lviv, Ukraine

1 BLOCK-SYMMETRIC ANALYTIC FUNCTIONS

Let $\mathcal{X}^2 = \bigoplus_{\ell_1} \mathbb{C}^2$ be an infinite ℓ_1 -sum of copies of Banach space \mathbb{C}^2 . So any element $\overline{x} \in \mathcal{X}^2$ can be represented as a sequence $\overline{x} = (x_1, \dots, x_n, \dots)$, where $x_n \in \mathbb{C}^2$, $n \in \mathbb{N}$, and $\|\overline{x}\| = \sum_{k=1}^{\infty} \|x_k\|_{\mathbb{C}^2} < \infty$.

A polynomial P on the space \mathcal{X}^2 is called block-symmetric (or vector-symmetric) if

$$P\left(\left(\begin{array}{c}u_1\\v_1\end{array}\right)_1,\ldots,\left(\begin{array}{c}u_m\\v_m\end{array}\right)_m,\ldots\right)=P\left(\left(\begin{array}{c}u_1\\v_1\end{array}\right)_{\sigma(1)},\ldots,\left(\begin{array}{c}u_m\\v_m\end{array}\right)_{\sigma(m)},\ldots\right)$$

for every permutation σ on the set \mathbb{N} , where $\begin{pmatrix} u_i \\ v_i \end{pmatrix} \in \mathbb{C}^2$, $i \in \mathbb{N}$. Let us denote by $\mathcal{P}_{vs}(\mathcal{X}^2)$ the algebra of block-symmetric polynomials on \mathcal{X}^2 .

In paper [8] it was shown that the following vectors form an algebraic basis of $\mathcal{P}_{vs}(\mathcal{X}^2)$

$$H^{k_1,k_2}(x,y) = \sum_{i=1}^{\infty} (x_i)^{k_1} (y_i)^{k_2},$$

where $(x_i, y_i) \in \mathbb{C}^2$, $i \geq 1$. Let us fix an enumerating of the basis functions $H_1 = H^{1,0}, \ldots, H_n = H^{m_1,m_2}, \ldots$

Denote by $H_{bvs}^n(\mathcal{X}^2)$ the algebra of block-symmetric analytic functions on \mathcal{X}^2 which are topologically generated by polynomials H_1, \ldots, H_n . We will use the notation $\mathbf{H} := \{H_k\}_{k=1}^n$.

Lemma 1. The map

$$\mathcal{H}_n^{\mathbf{H}}: f(t_1,\ldots,t_n) \to f(H_1,\ldots,H_n)$$

is a topological isomorphism from the algebra $H(\mathbb{C}^n)$ to the algebra $H_{hvs}^n(\mathcal{X}^2)$.

Proof. Evidently, $\mathcal{H}_n^{\mathbf{H}}$ is a homomorphism. It is known [6, 7] that for every vector $(t_1, \ldots, t_n) \in \mathbb{C}^n$ there exists an element $(x,y) \in \mathcal{X}^2$ such that $H_1(x,y) = t_1, \ldots, H_n(x,y) = t_n$. Therefore the map $\mathcal{H}_n^{\mathbf{H}}$ is injective. Let us show that $\mathcal{H}_n^{\mathbf{H}}$ is surjective. Let $u \in H_{bvs}^n(\mathcal{X}^2)$ and $u = \sum u_k$ be the Taylor series expansion of u at zero. For every homogeneous polynomial u_k there exists a polynomial q_k on \mathbb{C}^n such that $u_k = q_k(H_1, \ldots, H_n)$. Put $f(t_1, \ldots, t_n) = \sum_{k=1}^{\infty} q_k(t_1, \ldots, t_n)$. Since f is a power series which converges for every vector (t_1, \ldots, t_n) , f is an entire analytic function on \mathbb{C}^n . Evidently, $\mathcal{H}_n^{\mathbf{H}}(f) = u$. From the known theorem about automatic continuity of an isomorphism between commutative finitely generated Fréchet algebras [5, p. 43] it follows that $\mathcal{H}_n^{\mathbf{H}}$ is continuous.

Let
$$(x, y), (z, t) \in \mathcal{X}^2$$
,

$$(x,y) = \left(\left(\begin{array}{c} x_1 \\ y_1 \end{array} \right), \dots, \left(\begin{array}{c} x_m \\ y_m \end{array} \right), \dots \right)$$
 and $(z,t) = \left(\left(\begin{array}{c} z_1 \\ t_1 \end{array} \right), \dots, \left(\begin{array}{c} z_m \\ t_m \end{array} \right), \dots \right)$

where $(x_i, y_i), (z_i, t_i) \in \mathbb{C}^2, i \in \mathbb{N}$. We put

$$(x,y) \bullet (z,t) = \left(\left(\begin{array}{c} x_1 \\ y_1 \end{array} \right), \left(\begin{array}{c} z_1 \\ t_1 \end{array} \right), \ldots, \left(\begin{array}{c} x_m \\ y_m \end{array} \right), \left(\begin{array}{c} z_m \\ t_m \end{array} \right), \ldots \right)$$

and define

$$\mathcal{T}_{(z,t)}(f)(x,y) := f((x,y) \bullet (z,t)). \tag{1}$$

We will say that $(x,y) \to (x,y) \bullet (z,t)$ is the symmetric translation and the operator $\mathcal{T}_{(z,t)}$ is the symmetric translation operator. Evidently, we have that

$$H^{k_1,k_2}((x,y) \bullet (z,t)) = H^{k_1,k_2}(x,y) + H^{k_1,k_2}(z,t)$$

for all k_1, k_2 . It is easy to see that $\mathcal{T}_{(z,t)}$ is a continuous linear operator from $H^n_{bvs}(\mathcal{X}^2)$ to itself.

Theorem 1. Let $(z,t) \in \mathcal{X}^2$ such that $(H_1(z,t),...,H_n(z,t))$ is nonzero vector in \mathbb{C}^n . Then the symmetric translation operator $\mathcal{T}_{(z,t)}$ is hypercyclic on $H^n_{bvs}(\mathcal{X}^2)$.

Proof. Let $a = (H_1(z, t), \dots, H_n(z, t)) \in \mathbb{C}^n$. If $g \in H^n_{hvs}(\mathcal{X}^2)$, then

$$g(x,y) = \mathcal{H}_n^{\mathbf{H}}(f)(x,y) = f(H_1(x,y),\ldots,H_n(x,y))$$

for some $f \in H^n_{hys}(\mathcal{X}^2)$ and property (1) implies

$$\mathcal{T}_{(z,t)}(g)(x,y) = \mathcal{H}_n^{\mathbf{H}} T_a(\mathcal{H}_n^{\mathbf{H}})^{-1}(g)(x,y).$$

Since T_a is hypercyclic on $H(\mathbb{C}^n)$, the operator $\mathcal{T}_{(z,t)}$ is hypercyclic on $H^n_{bvs}(\mathcal{X}^2)$ via Proposition 1, which completes the proof.

2 THE INFINITY-DIMENSIONAL CASE

Let us recall a well known Kitai-Gethner-Shapiro theorem which is also known as the Hypercyclicity Criterion.

Theorem 2. Let X be separable Fréchet space and $T: X \to X$ be a linear and continuous operator. Suppose there exist X_0 , Y_0 dense subsets of X, a sequence (n_k) of positive integers and a sequence of mappings (possibly nonlinear, possibly not continuous) $S_n: Y_0 \to X$ so that

- 1) $T^{n_k}(x) \to 0$ for every $x \in X_0$ as $k \to \infty$;
- 2) $S^{n_k}(y) \to 0$ for every $y \in Y_0$ as $k \to \infty$;
- 3) $T^{n_k} \circ S^{n_k}(y) = y$ for every $y \in Y_0$.

Then T is hypercyclic.

The operator T is said to satisfy the Hypercyclicity Criterion for full sequence if we can chose $n_k = k$. Note that T_a satisfies the Hypercyclicity Criterion for full sequence [3] and so the symmetric shift $\mathcal{T}_{(z,t)}$ on $H^n_{bvs}(\mathcal{X}^2)$ satisfies the Hypercyclicity Criterion for full sequence provided $(H_1(z,t),\ldots,H_n(z,t)) \neq 0$.

In [9] it is proved the following lemma.

Lemma 2. Let X be a Fréchet space and $X_1 \subset X_2 \subset ... \subset X_n \subset ...$ be a sequence of closed subspaces such that $\bigcup_{m=1}^{\infty} X_m$ is dense in X. Let T be an operator on X such that $T(X_m) \subset X_m$ for each m and each restriction $T|_{X_m}$ satisfies the Hypercyclicity Criterion for full sequence on X_m . Then T satisfies the Hypercyclicity Criterion for full sequence on X.

We denote by $H_{bvs}(\mathcal{X}^2)$ the Fréchet algebra of all block-symmetric analytic functions on \mathcal{X}^2 which are bounded on bounded subset. This algebra is the completion of the space of block-symmetric polynomials on \mathcal{X}^2 endowed with the uniform topology on bounded subset.

Theorem 3. The operator $\mathcal{T}_{(z,t)}$ is hypercyclic on $H_{bvs}(\mathcal{X}^2)$ for every $(z,t) \neq 0$.

Proof. Since $(z,t) \neq 0$, we have $H_{m_0}(z,t) \neq 0$ for some m_0 [6, 7]. So, $\mathcal{T}_{(z,t)}$ is hypercyclic (and satisfies the Hypercyclicity Criterion for full sequence) on $H^n_{bvs}(\mathcal{X}^2)$ whenever $n \geq m_0$. The set $\bigcup_{n=m_0}^{\infty} H^n_{bvs}(\mathcal{X}^2)$ contains the space of all block-symmetric polynomials on \mathcal{X}^2 and so it is dense in $H_{bvs}(\mathcal{X}^2)$. Also $H^n_{bvs}(\mathcal{X}^2) \subset H^m_{bvs}(\mathcal{X}^2)$ if m > n. Hence $\mathcal{T}_{(z,t)}$ is hypercyclic via Lemma 2. \square

REFERENCES

- [1] Aron R., Bés J. Hypercyclic differentiation operators. Contemporary Mathematics 1999, 232, 39–46.
- [2] Birkhoff G.D. Démonstration d'un théorèm élémentaire sur les functions entières. C. D. Acad. Sci. Paris 1929, 189, 473–475.
- [3] Godefroy G., Shapiro J.H. *Operators with dense, invariant, cyclic vector manifolds*. J. Funct. Anal. 1991, **98**, 229–269. doi: 10.1016/0022-1236(91)90078-J
- [4] Grosse-Erdmann K.-G. Universal families and hypercyclic operators. Bull. Amer. Math. Soc. 1999, 36, 345–381.
- [5] Hussain T. Multiplicative Functionals on Topological Algebras. Research Notes Math. Pitman Advansed Publishing Program 85, Boston-London-Melbourne, 1983.
- [6] Kravtsiv V.V. Symmetric analytic functions on products of Banach spaces. Ph.D. thesis, 2012. (in Ukrainian)
- [7] Kravtsiv V.V., Labachuk O.V., Zagorodnyuk A.V. Nullstellensatz for block-symmetric polynomials on the Banach space. Preprint. (in Ukrainian)
- [8] Kravtsiv V.V., Zagorodnyuk A.V. On algebraic bases of algebras of block-symmetric polynomials on Banach spaces. Mat. Stud. 2012, **37** (1), 109–112.
- [9] Novosad Z., Zagorodnyuk A. *Polynomial automorphisms and hypercyclic operators on spaces of analytic functions*. Arch. Math. 2007, **89**, 157–166. doi: 10.1007/s00013-007-2043-4

Received 19.02.2013

Кравців В.В., Можировська З.Г., Загороднюк А.В. Гіперциклічні оператори на просторах блочно-симетричних аналітичних функцій // Карпатські математичні публікації. — 2013. — Т.5, \mathbb{N}^2 1. — С. 59–62.

Стаття містить доведення гіперциклічності оператора симетричного зсуву на алгебрі блочно-симетричних аналітичних функцій обмеженого типу на ізоморфній копії простору ℓ_1 .

Ключові слова і фрази: блочно-симетричні аналітичні функції, гіперциклічний оператор, оператор симетричного зсуву.

Кравцив В.В., Можировская З.Г., Загороднюк А.В. Гиперциклические операторы на пространствах блочно-симметрических аналитических функций // Карпатские математические публикации. — 2013. — Т.5, \mathbb{N}^2 1. — С. 59—62.

Статья содержит доказательство гиперцикличности оператора симметрического сдвига на алгебре блочно-симметрических аналитических функций ограниченного типа на изоморфной копии пространства ℓ_1 .

Ключевые слова и фразы: блочно-симметрические аналитические функции, гиперциклический оператор, оператор симметрического сдвига.