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ANALYTIC FUNCTIONS OF BOUNDED TYPE

The paper contains a description of a symmetric convolution of the algebra of block-symmetric
analytic functions of bounded type on `1-sum of the space C2. We show that the specrum of such
algebra does not coincide of point evaluation functionals and we describe characters of the algebra
as functions of exponential type with plane zeros.
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INTRODUCTION

In resent years there is an increasing interest to investigations of invariants of the permu-
tation group S∞ of positive integers. This group can be represented on a Banach space X
with symmetric basis as a group of operators of perturbation of basis vectors. The action of
this group has a natural extension to the action on the algebra Hb(X) of analytic functions
of bounded type on X. Invariants of this representation of S∞ are so-called symmetric ana-
lytic functions of bounded type on X. The algebras of symmetric analytic functions Hbs(X)

were investigated by many authors ([1, 2, 9]). In particular, it is known that Hbs(`p) admits an
algebraic basis for 1 ≤ p < ∞.

On the other hand, there are more representations of S∞ in Banach spaces. For example, if
X is a directs sum of infinite many of “blocks” which consists of linear subspaces isomorphic
each to other, then S∞ may to act as a group of permutations of the “blocks”. For this case
we have invariants — the algebra of block-symmetric analytic functions. Note that this algebra
is much more complicated and in the general case has no algebraic basis (see e.g. [6, 12]). In
the case dimX < ∞, block-invariant polynomials were investigated in the classical theory of
invariants [5, 11].

1 MAIN RESULTS

Let
X 2 = ⊕`1C2 = `1 ⊗C2
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be an infinite `1-sum of copies of Banach space C2. So any element u =

(
x
y

)
∈ X 2 can be

represented as a sequence u =

(
x
y

)
=

((
x1
y1

)
, . . . ,

(
xn
yn

)
, . . .

)
, where

(
xn
yn

)
∈ C2,

with the norm ‖u‖ =
∞
∑

k=1
(|xk|+ |yk|) . Also, we will use notation u(x, y), where x, y ∈ `1,

x =
∞
∑

k=1
xkek, y =

∞
∑

k=1
ykek. Here ek is the standard symmetric basis in `1.

A polynomial P on the space X 2 is called block-symmetric (or vector-symmetric) if:

P
((

x1
y1

)
, . . . ,

(
xm
ym

)
, . . .

)
= P

((
xσ(1)
yσ(1)

)
, . . . ,

(
xσ(m)

yσ(m)

)
, . . .

)
,

for every permutation σ on the set of natural numbers N, where
(

xi
yi

)
∈ C2. Let us denote

by Pvs(X 2) the algebra of block-symmetric polynomials on X 2.
In [7] it was shown that the following vectors form an algebraic bases of “power” block-

symmetric polynomials of Pvs(X 2) :

Hp,n−p(x, y) =
∞
∑

i=1
xp

i yn−p
i , (1)

where 0 ≤ p ≤ n, (xi, yi) ∈ C2, i ≥ 1. Also, there is a basis of “elementary” block-symmetric
polynomials:

Rp,n−p(x, y) =
∞
∑

i1<...<ip
j1<...<jn−p

ik 6=jl

xi1 . . . xip yj1 . . . yjn−p ,
(2)

where 0 ≤ p ≤ n, n ≥ 1 and (xi, yi) ∈ C2.
In the finite case, generating elements of algebra of block-symmetric polynomials on the

space X 2
m = ⊕m

`1
C2 are algebraic dependent. In [12] was proved the following theorem.

Theorem 1. For every nonsymmertic polynomial ξ of a system of generating elements of
Pvs(X 2

m) there exist symmetric polynomials ak in this system such that

ξm! − a1ξm!−1 + · · ·+ (−1)m!−1am!−1ξ1 + (−1)m!am! = 0.

Let σ be some permutation on the set of natural numbers N. We denote by Tσ the linear
operator on X 2 associated with σ by the formula

Tσ

( ∞

∑
k=1

xkek,
∞

∑
k=1

ykek

)
=
( ∞

∑
k=1

xσ(k)ek,
∞

∑
k=1

yσ(k)ek

)
.

For any (x, y), (z, t) ∈ X 2 we denote (x, y) ∼ (z, t) if there exists a permutation σ on N such
that (x, y) = Tσ(z, t).

Theorem 2. Let (x, y), (z, t) ∈ X 2 and Hp,i−p(x, y) = Hp,i−p(z, t), where 0 ≤ p ≤ i for every
i ≥ 1. Then (x, y) ∼ (z, t).



SPECTRA OF ALGEBRAS OF BLOCK-SYMMETRIC ANALYTIC FUNCTIONS 265

Proof. Let G(x) be a symmetric polynomial of degree n in the algebra of symmetric polynomi-
als Ps(`1) on `1. We set P(x, y) = G(x + jy), where 0 ≤ j ≤ n, (x, y) ∈ X 2. Obviously, P(x, y)
is a block-symmetric polynomial. In [13] it was proved that the block-symmetric polynomial

P(x, y) will be represented as an algebraic combination of Fk(x + jy), where Fn(x) =
∞
∑

k=1
xn

k .

So for the polynomial P(x, y) according to [1, Theorem 1.3] we obtain that x + jy = Tσ(z + jt).
On the other hand, we can denote by Tσ(x) = Tσ(x, 0), Tσ(y) = Tσ(0, y) and we obtain that
x + jy = Tσ((z, 0) + j(0, t)) = Tσ(z) + jTσ(t).

For us it is enough to consider j = 1, 2. We obtain two equalities

x + y = Tσ(z) + Tσ(t), x + 2y = Tσ(z) + 2Tσ(t),

which imply x = Tσ(z), y = Tσ(t). That is, (x, jy) = Tσ(z, t).
Since Hp,i−p(x, y) = Hp,i−p(z, t), 0 ≤ p ≤ i for every i ≥ 1 it follows that Fi(x + jy) =

Fi(z + jt) and so (x, y) ∼ (z, t).

Let Hbvs(X 2) be the algebra of block-symmetric analytic functions of bounded type (that is,
bounded on bounded subsets) on X 2. This algebra is generated by polynomials
H1,0, . . . , Hp,n−p, . . . , H0,n, . . . , where n ≥ 1, 0 ≤ p ≤ n. Let us denote by Mbvs(X 2) the specrum
of algebra Hbvs(X 2).

For given (x, y), (z, t) ∈ X 2,

(x, y) =
((

x1
y1

)
, . . . ,

(
xm
ym

)
, . . .

)
and

(z, t) =
((

z1
t1

)
, . . . ,

(
zm
tm

)
, . . .

)
,

where (xi, yi), (zi, ti) ∈ C2, we put

(x, y) • (z, t) =
((

x1
y1

)
,
(

z1
t1

)
, . . . ,

(
xm
ym

)
,
(

zm
tm

)
, . . .

)
and define

T(z,t)( f )(x, y) := f ((x, y) • (z, t)). (3)

We will say that (x, y)→ (x, y) • (z, t) is the intertwining and the operator T(z,t) is the intertwin-
ing operator. Some elementary properties of T(z,t) was proved in [6].

Let C{t1, t2} be the space of all pover series over C2. We denote by R and H the following
maps from Mbvs(X 2) into C{t1, t2}

R(ϕ) =
∞

∑
n=0

0≤p≤n

tp
1 tn−p

2 ϕ(Rp,n−p),

and

H(ϕ) =
∞

∑
n=1

0≤p≤n

tp
1 tn−p

2 ϕ(Hp,n−p).
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Note
R((x, y) • (z, t)) = R(x, y)R(z, t),

and
H((x, y) • (z, t)) = H(x, y) +H(z, t),

where (x, y), (z, t) ∈ X 2. We will prove these equalities in Theorem 4 for more general situa-
tion.

Following [3] we define the symmetric convolution.

Definition 1. For any f ∈ Hbvs(X 2) and θ ∈ Hbvs(X 2)′, symmetric convolution θ ? f is defined
by

(θ ? f )(x, y) = θ[T(x,y)( f )].

Definition 2. For any ϕ, θ ∈ Hbvs(X 2)′, symmetric convolution ϕ ? θ is defined by

(ϕ ? θ)( f ) = ϕ(θ ? f ) = ϕ((z, t) 7→ θ(T(z,t) f )).

Theorem 3. For any ϕ, θ ∈ Mbvs(X 2) the symmetric convolution is commutative, associative
and

(ϕ ? θ)(Hp,n−p) = ϕ(Hp,n−p) + θ(Hp,n−p), (4)

where 0 ≤ p ≤ n.

Proof. First we will prove the equality (4). Indead, for polynomials Hp,n−p we have

(θ ? Hp,n−p)(x, y) = θ(T(x,y)(Hp,n−p))

= θ(Hp,n−p(x, y) + Hp,n−p) = Hp,n−p(x, y) + θ(Hp,n−p).

Therefore,

(ϕ ? θ)(Hp,n−p) = ϕ(Hp,n−p(x, y) + θ(Hp,n−p))

= ϕ(Hp,n−p) + θ(Hp,n−p).

From this equality it follows the associativity and commutativity of ϕ ? θ ∈ Mbvs(X 2).

Similarly to Lemma 3.1 and Proposition 8.2 in [4] (see also [12]) it is possible to show that

||Rp,n−p|| ≤ 2
p!(n− p)!

andR(ϕ)(t) is a function of exponential type for every fixed ϕ ∈ Mbvs(X 2).

Theorem 4. The following identities hold

1. H(ϕ ? θ) = H(ϕ) +H(θ),

2. R(ϕ ? θ) = R(ϕ)R(θ).
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Proof. The first statement it follows from Theorem 3. To prove the second statement we observe
that

Rp,n−p((x, y) • (z, t)) =
n

∑
i=0

0≤p≤n
0≤r≤i

Rr,i−r(x, y)Rp−r,n−p−(i−r)(z, t).

Thus

(θ ? Rp,n−p)(x, y) = θ(T(x1,x2)(Rp,n−p))

= θ
( n

∑
i=0

0≤p≤n
0≤r≤i

Rr,i−r(x, y)Rp−r,n−p−(i−r)
)

=
n

∑
i=0

0≤p≤n
0≤r≤i

Rr,i−r(x, y)θ
(

Rp−r,n−p−(i−r)
)

.

Therefore

(ϕ ? θ)
(

Rp,n−p
)
= ϕ

( n

∑
i=0

0≤p≤n
0≤r≤i

Rr,i−r(x1, x2)θ
(

Rp−r,n−p−(i−r)
))

=
n

∑
i=0

0≤p≤n
0≤r≤i

ϕ
(

Rr,i−r
)

θ
(

Rp−r,n−p−(i−r)
)

.

On the other hand

R(ϕ)R(θ) =
∞

∑
i=0

0≤k≤i

tk
1ti−k

2 ϕ(Rk,i−k)
∞

∑
m=0

0≤r≤m

tr
1tm−r

2 θ(Rr,m−r)

=
∞

∑
n=0

0≤p≤n

∑
k+r=p
i+m=n

tp
1 tn−p

2 ϕ(Rk,i−k)θ(Rr,m−r)

=
∞

∑
n=0

0≤p≤n

tp
1 tn−p

2 ∑
k+r=p
i+m=n

ϕ(Rk,i−k)θ(Rr,m−r) =
∞

∑
n=0

0≤p≤n

tp
1 tn−p

2 (ϕ ? θ)
(

Rp,n−p
)

= R(ϕ ? θ).

Lemma 1. If ϕ = δ(x,y), then for every (x, y) ∈ X 2 :

R(δ(x,y))(t1, t2) =
∞

∏
i=1

(1 + xit1 + yit2) =
∞

∑
n=0

Gn(xt1 + yt2),

where (xi, yi) ∈ C2, i ≥ 1 and Gn(xt1 + yt2) =
∞
∑

k1<k2<...<kn

(xk1t1 + yk1t2) . . . (xkn t1 + ykn t2) and

G0 = 1.
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Proof. For every (x, y) ∈ X 2, the product
∞

∏
i=1

(1 + xit1 + yit2)

is absolutely convergent if the series
∞
∑

i=1
(xit1 + yit2) is absolutely convergent. Since

∞

∑
i=1
|xit1 + yit2| ≤

∞

∑
i=1

(|xi||t1|+ |yi||t2|) = |t1|
∞

∑
i=1
|xi|+ |t2|

∞

∑
i=1
|yi|

≤ max{|t1|, |t2|}
( ∞

∑
i=1
|xi|+

∞

∑
i=1
|yi|
)

≤ max{|t1|, |t2|}
√

2
( ∞

∑
i=1

(
|xi|2 + |yi|2

)1/2
)
< ∞,

we obtain that
∞
∏
i=1

(1 + xit1 + yit2) is absolutely convergent, and so the product is convergent

as well. Since for every 1 ≤ m < ∞ will be performed the equality
m

∑
n=0

0≤p≤n

tp
1 tn−p

2 δ(x,y)(Rp,n−p) =
m

∏
i=1

(1 + xit1 + yit2)

and series and product are convergent, we obtain that

R(δ(x,y))(t1, t2) =
∞

∏
i=1

(1 + xit1 + yit2).

It is known from Combinatorics [8] that
∞
∑

n=0
tnGn(x) =

∞
∏
i=1

(1+ xit1) for every x ∈ c00, where

Gn(x) =
∞
∑

k1<...<kn

xk1 ...xkn is the basis of elementary symmetric polynomials of algebraHbs(`1).

Since it is true for every x ∈ `1,
∞

∑
n=0

Gn(xt1 + yt2) =
∞

∑
n=0

(t1t2)
nGn(

x
t2

+
y
t1
) =

∞

∏
i=1

(
1 +

(xi
t2

+
yi
t1

)
t1t2

)
=

∞

∏
i=1

(1 + xit1 + yit2).

Now we show that the spectrum of the algebra of block-symmetric analytic functions of
bounded type on X 2 does not coincide of point evaluation functionals.

Example 1. Let k, l are same fixed nonzero complex numbers. Now we consider the sequence
of elements

e1(k, l) =
( (

k
l

)
,
(

0
0

)
, . . . ,

(
0
0

)
, . . .

)
,

e2(k, l) =
( (

0
0

)
,
(

k
l

)
, . . . ,

(
0
0

)
, . . .

)
,

. . . . . . . . . . . .

en(k, l) =
( (

0
0

)
,
(

0
0

)
, . . . ,

(
k
l

)
, . . .

)
,

. . . . . . . . . . . .
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in X 2 and for every n put

vn(k, l) =
1
n
(e1(k, l) + e2(k, l) + . . . + en(k, l)) ∈ X 2.

Then δvn(k,l)(H0,1) → l, δvn(k,l)(H1,0) → k, δvn(k,l)(Hp,i−p) → 0 as n → ∞ for every 1 ≤ k ≤ i,
where 1 ≤ p ≤ i. By the reletive compactness of bounded subset of Mbvs(X 2) there is an
accumulation point ϕ(k,l) of the sequence δvn(k,l), such that ϕ(k,l)(H0,1) = l, ϕ(k,l)(H1,0) = k,
ϕ(k,l)(Hp,i−p) = 0 for all 1 ≤ i ≤ m, where 1 ≤ p ≤ i. From Theorem 2 it follows that there is
no poit (x, y) ∈ X 2, such that δ(x,y) = ϕ(k,l). Indeed, if such a point exists, then (x, y) ∼ (0, 0).
Therefore δvn(k,l)(H0,1) = δvn(k,l)(H1,0) = 0, but we have that δvn(k,l)(H0,1) = l, δvn(k,l)(H1,0) =

k.

Example 2. Let ϕ(k,l) be as in Example 1. We know that H(ϕ(k,l)) = k + l. To find R(ϕ(k,l))

note that

Rp,s−p(vn(k, l)) =
kpls−p

npns−p

(
n
s

)(
s
p

)
,

hence

ϕ(Rp,s−p) = lim
n→∞

Rp,s−p(vn(k, l)) =
kpls−p

p!(s− p)!
and so

R(ϕ(k,l))(t1, t2) = lim
n→∞

n

∑
s=0

0≤p≤s

tp
1 ts−p

2 ϕ(Rp,s−p)

= lim
n→∞

n

∑
s=0

0≤p≤s

(kt1)
p(lt2)

s−p

p!(s− p)!
= ekt1+lt2 .

Theorem 5. The invertible elements of semigroup
(

Mbvs(X 2), ?
)

are functionals only of the
form ϕ(k,l) = R(ϕ(k,l))(t1, t2) = ekt1+lt2 .

Proof. Since by Theorem 4R(ϕ ? θ) = R(ϕ)R(θ), ϕ(−k,−l) is inverse to ϕ(k,l). In the other hand,
if ϕ is invertible and ψ = ϕ−1, thenR(ψ) = 1

R(ϕ)(t1,t2)
is an entire function of exponential type

and so has no zeros. So we have thatR(ϕ)(t1, t2) = ekt1+lt2 for some complex numbers k, l.

Corollary 1. Let Φ be a homomorphism on the subspace of block-symmetric polynomials in
Hbvs(X 2) to itself such that Φ(Hp,k−p) = −Hp,k−p for every p, k. Then Φ is discontinuous.

Proof. If Φ is continuous it may be extended to continuous homomorphism Φ̃ of Hbvs(X 2).
Then for (x, y) ∈ X 2

Hp,k−p(x, y) + Φ(Hp,k−p)(x, y) = 0 (5)

for all p, k. Note that this equality is true for

(x0, y0) =

((
1
1

)
,

(
0
0

)
, . . . ,

(
0
0

)
, . . .

)
.

Let us denote ψ = δ(x0,y0) ◦ Φ̃. From the continuity of homomorphism Φ̃ we have, that
ψ ∈ Mbvs(X 2). From equality (5) we have, that δ(x,y) ? ψ = δ(0,0), ψ = δ−1

(x0,y0)
. According to the

Theorem 5 δ(x0,y0) is not invertible.
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Let f (z) be an entire function of many variable. We will say that f (z), where z ∈ Cn, has
"plane" zeros if the set of zeros is

Z f =
{

z ∈ Cn : f (z) = 0
}
=

∞⋃
k=1

Hk,

where Hk = {z : 〈z, ak|ak|−2〉 = 1} is hyperplane in Cn. Here ak ∈ Cn are feets of perpendicu-
lars dropped from the origin onto zeros hyperplanes Hk of the function f (z) (see [10]).

Theorem 6. Let ϕ be a character such that R(ϕ) is a polynomial. Then R(ϕ) have a plane
zeros, that is KerR(ϕ) consists of one-codimensional linear subspaces.

Proof. Let us denote Λt1t2(Gn) = Gn(xt1 + yt2). Now we consider the equation
m
∑

n=0
λn ϕ(Λt1t2(Gn)) = 0 with m solutions zk, 1 ≤ k ≤ m. Hence

m
∏
i=1

(1 + zkλ) = 0. Obvi-

ously, every solution zk can be represented as zk = xkt1 + ykt1, where xk, yk are indetermi-
nants and t1, t2 are some complex numbers. If we take t1 = 1, t2 = 0 and t1 = 2, t2 = 1,
then can fined xk, yk. So we have the system of 2m equation and 2m indeterminants xk, yk,
1 ≤ k ≤ m. The solutions of that system are xk = zk, yk = −zk, 1 ≤ k ≤ m. Hence xk, yk can be
clearly define. If λ = 1, then we obtain the equality

R(ϕ)(t1, t2) =
m

∑
n=0

ϕ(Λt1t2(Gn)) =
m

∏
i=1

(1 + xit1 + yit2) = 0.

Hence ϕ has plane zeros.

According to the analog of Hadamard’s Theorem [10] the function R(ϕ)(t1, t2) with plane
zeros is of the form

R(ϕ)(t1, t2) = exp(P(t1, t2))
n
∏
i=1

(
1−

(
t1

ak
1
|ak|2 + t2

ak
2
|ak|2

))
,

where {(ak
1, ak

2)} are the zeros ofR(ϕ)(t1, t2), P(t1, t2) is analytic polynomial and we have
n
∑

k=1

1
|ak|

< ∞.

According to the Lemma 1

R(δ(x,y))(t1, t2) =
m

∏
i=1

(1 + xit1 + yit2),

and so the zeros ofR(δ(x,y))(t1, t2) are

ak
1 = − xk

|xk|2 + |yk|2
, ak

2 = − yk
|xk|2 + |yk|2

.

On the other hand, if f (t1, t2) is the function of the exponential type with plane zeros, then
it can be represented as

R(ϕ)(t1, t2) = exp(P(t1, t2))
∞
∏
i=1

(
1−

(
t1

ak
1
|ak|2 + t2

ak
2
|ak|2

))
,

if
∞
∑

k=1

1
|ak|

< ∞.

So for ϕ ∈ Mbvs(X 2), which we can represanted as ϕ = ϕ(k,l) ? δ(x,y), where (x, y) ∈ X 2,

(xk, yk) = −
( ak

1
|ak|2

, ak
2
|ak|2

)
and ϕ(k,l) was defined in Example 1, we have that

R(ϕ)(t1, t2) = f (t1, t2).
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У статтi описано симетричну згортку характерiв алгебри блочно-симетричних аналiти-
чних фнкцiй обмеженого типу на `1-сумi простору C2. Авторами показано, що спектр такої
алгебри не не збiгається з множиною класiв еквiвалентностi функцiоналiв значеннi в точках,
описано характери такої алгебри, як функцiї експоненцiального типу з “плоскими” нулями.

Ключовi слова i фрази: алгебраїчний базис, блочно-симетичнi полiноми, блочно-симетричнi
аналiтичнi фукцiї, спектр, симетричний зсув, симетрична згортка.


