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REPRESENTATION OF SPECTRA OF ALGEBRAS OF BLOCK-SYMMETRIC
ANALYTIC FUNCTIONS OF BOUNDED TYPE

The paper contains a description of a symmetric convolution of the algebra of block-symmetric
analytic functions of bounded type on /1-sum of the space C2. We show that the specrum of such
algebra does not coincide of point evaluation functionals and we describe characters of the algebra
as functions of exponential type with plane zeros.
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INTRODUCTION

In resent years there is an increasing interest to investigations of invariants of the permu-
tation group S« of positive integers. This group can be represented on a Banach space X
with symmetric basis as a group of operators of perturbation of basis vectors. The action of
this group has a natural extension to the action on the algebra H,(X) of analytic functions
of bounded type on X. Invariants of this representation of S, are so-called symmetric ana-
lytic functions of bounded type on X. The algebras of symmetric analytic functions Hy,(X)
were investigated by many authors ([1, 2, 9]). In particular, it is known that Hy(¢,) admits an
algebraic basis for 1 < p < co.

On the other hand, there are more representations of S, in Banach spaces. For example, if
X is a directs sum of infinite many of “blocks” which consists of linear subspaces isomorphic
each to other, then S., may to act as a group of permutations of the “blocks”. For this case
we have invariants — the algebra of block-symmetric analytic functions. Note that this algebra
is much more complicated and in the general case has no algebraic basis (see e.g. [6, 12]). In
the case dim & < oo, block-invariant polynomials were investigated in the classical theory of
invariants [5, 11].

1 MAIN RESULTS

Let
X? = EBglCZ =4 ® C?
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be an infinite /;-sum of copies of Banach space C?. So any element u = ( * ) € X2 can be

represented as a sequence u = (x> = << 1 >,...,<xn ),...),where ( *n > € C?,
Yn Yn

Yy n
with the norm |ju|| = Z (|xk| + |yk|) - Also, we will use notation u(x,y), where x,y € ¢y,

[e ]
E Xk, Y = E ykex. Here ¢y is the standard symmetric basis in ;.

A polynomlal P on the space X2 is called block-symmetric (or vector-symmetric) if:
() () ) = (e ) ) ),
n Ym Yo(1) Yo(m)

for every permutation ¢ on the set of natural numbers IN, where < ;Ci ) € C2. Let us denote
i
by Pys(X'?) the algebra of block-symmetric polynomials on X2
In [7] it was shown that the following vectors form an algebraic bases of “power” block-

symmetric polynomials of Pys(X?) :
HP P (xy) = X 2y 1)
i=1

where 0 < p < n, (x;,y;) € C2,i > 1. Also, there is a basis of “elementary” block-symmetric

polynomials:

RP"P(x,y) = L X XYY,
< <p (2)
Il <-~~<]n—p
K71
where 0 < p <mn,n>1and (x;,y;) € C2.
In the finite case, generating elements of algebra of block-symmetric polynomials on the
space X2 = @%CZ are algebraic dependent. In [12] was proved the following theorem.

Theorem 1. For every nonsymmertic polynomial ¢ of a system of generating elements of
Pus(X2) there exist symmetric polynomials ay in this system such that

E— @ g (<) a8 (1) = 0.

Let o be some permutation on the set of natural numbers IN. We denote by T, the linear
operator on X' associated with ¢ by the formula

Ta( Y xker, Y ykek) = ( Y X (k) Cks ) ya(k)ek)-
k=1 k=1 k=1 k=1
For any (x, y) (z,t) € X2 we denote (x,y) ~ (z,t) if there exists a permutation ¢ on N such
that (x,y) = Ty(z,t).

Theorem 2. Let (x,y),(z,t) € X% and H"'~P(x,y) = HP'~P(z,t), where 0 < p < i for every
i > 1. Then (x,y) ~ (z,t).
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Proof. Let G(x) be a symmetric polynomial of degree # in the algebra of symmetric polynomi-
als Ps(¢1) on ¢1. We set P(x,y) = G(x + jy), where 0 < j < n, (x,y) € X?. Obviously, P(x,y)
is a block-symmetric polynomial. In [13] it was proved that the block-symmetric polynomial

P(x,y) will be represented as an algebraic combination of F(x + jy), where F,(x) = Z xp.
So for the polynomial P(x,y) according to [1, Theorem 1.3] we obtain that x + jy = T, (z + ]t)
On the other hand, we can denote by T,(x) = T,(x,0), Ty(y) = T5(0,y) and we obtain that

x+jy = To((2,0) +j(0,1) = To(2) + jTo ().
For us it is enough to consider j = 1,2. We obtain two equalities

x4y ="T,(2)+ Ts(t), x+2y=Ts(z)+2T,(t),

which imply x = T,(z), y = Ty (). Thatis, (x, jy) = To(z, t).
Since HP~P(x,y) = HP'P(z,t),0 < p < ifor every i > 1 it follows that F;(x + jy) =
Fi(z+jt) and so (x,y) ~ (z,t). O

Let Hy,s(X?) be the algebra of block-symmetric analytic functions of bounded type (that is,
bounded on bounded subsets) on X2 This algebra is generated by polynomials
HW, .. HP"P, . HY",. .., wheren > 1,0 < p < n.Letus denote by My,,(X?) the specrum
of algebra Hy,s(X2).

For given (x,v), (z,t) € A2,

o = (
@0 =

where (x;,v;), (z;,t;) € C?, we put
= ((3)(2)(2) ()

Tien () (xy) = f((x,y) @ (2,1)). ®)

We will say that (x,y) — (x,y)  (z,t) is the intertwining and the operator 7, ;) is the intertwin-
ing operator. Some elementary properties of 7, ;) was proved in [6].

Let C{t1,t,} be the space of all pover series over C2. We denote by R and H the following
maps from My, (X?) into C{t1, 2}

N
= R
—_ =
N——
N
= =
] =
N—
N—

and

VN
~~ N
—
~
N
~ N
S =
~_
~_

and define

R(p) =} tity "p(RMP),

n=0
0<p<n

and
H(p) = Z 'ty Po(HP"P).

0<p<n
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Note
R((x,y) e (z,1)) = R(x,y)R(z 1),

and

H((x,y) o (z,1) = H(x,y) + H(z 1),

where (x,v), (z,t) € X2 We will prove these equalities in Theorem 4 for more general situa-
tion.
Following [3] we define the symmetric convolution.

Definition 1. For any f € Hy,(X?) and 0 € Hy,s(X?)', symmetric convolution 6 x f is defined
by
(0 f)(x,y) = O[T (xy)(f)]-

Definition 2. For any ¢,0 € Hy,s(X?)’, symmetric convolution ¢ x 0 is defined by
(9x0)(f) = @0 f) = 9((z,1) = (T2 f))-

Theorem 3. For any ¢,0 € My,s(X?) the symmetric convolution is commutative, associative
and

(px0)(HP"P) = @(HP"™P) 4+ 6(HP"F), (4)
where 0 < p < n.

Proof. First we will prove the equality (4). Indead, for polynomials H?"*~7 we have

(0% HP"P)(x,y) = 0(T (1) (H"F))
=0(HP" P(x,y) + HP""F) = HP""P(x,y) + O(HP"F).

Therefore,

(@ x0)(HP""F) = o(HP""P(x,y) + 0(H"""F))
— o(HP"P) + 6(HPP).

From this equality it follows the associativity and commutativity of ¢ x 0 € My,s(X2). [

Similarly to Lemma 3.1 and Proposition 8.2 in [4] (see also [12]) it is possible to show that

_ 2
[[RPPP] < D= p)
and R(¢)(t) is a function of exponential type for every fixed ¢ € My,(X?).
Theorem 4. The following identities hold
1. H(p*0) = H(p) + H(0),

2. R(px0) =R(p)R(0).
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Proof. The first statement it follows from Theorem 3. To prove the second statement we observe
that

Rp,nfp((x’y) ° (Z,t)) — Z Rr,ifr(x,y>RP*r,n*P*(l?r) (Z, t).

i=0
0<p<n
0<r<i
Thus
(0% RP"P)(x,y) = 0(T (11 42)(RP77))
:9< Zn: Rr,z’—r<x,y>Rp—r,n—p—(i—r))
Oé;%n
0<r<i
n . .
_ Z Rr,1—r<x’y)6(Rp—r,n—p—(z—r)).
i=0
0<p<n
0<r<i
Therefore
or0 (7) = g $5 R 0 ()
0<p<1’l
0<r<i
_ Z (P(er r) (Rpfr,nfpf(ifr))_
0<‘p<7’l
0<r<i
On the other hand
R Z tkt2 (P Rkl Z trt? re RIM— r)
0<k<1 gzﬁ
Z Z tptn p Rk,i*k)g(Rl’,mfr)

n=0 k+r=p
O<p<”i+m n

Z tpt” p 2 (PRkl Rr,m—r): i tft’;_P(qo*e)(Rp,n—p)

0252 or=p 0252
=R(p*0).

[l

Lemma 1. If 9 = 4, ), then for every (x,y) € X*:

R(O(xy) (1, t2) = [ [0+ xity + yit2) = 2 (xt1 +yta),
i=1 n=0
where (x;,y;) € C2,i > 1and G, (xt; +yt2) = Y (xt +yigt2) - (Xt + Y, t2) and
ki <kpy<...<ky

Go =1.
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Proof. For every (x,y) € X2, the product

o0

H(l + xit1 + yit2)
i=1

(0]
is absolutely convergent if the series Y (x;t1 + y;t2) is absolutely convergent. Since
i=1

Y-l +yital < Y- (il ] + llltz]) = [l 1 |l + 12l 3 Iy
i=1 i=1 i=1 i=1
(e (e
< max{|ta], 2]} (1 Il + X Iyl
i=1 i=1

(e 9]

1/2
< max{|t1], 1 }V2( 1 (1 + 1)) < e,
i=1
we obtain that [T (1 + x;t; + y;t2) is absolutely convergent, and so the product is convergent
i=1
as well. Since for every 1 < m < oo will be performed the equality

m m

Bty POy (RPF) = T(1 + xit1 + yita)
n=0 i=1
0<p<n

and series and product are convergent, we obtain that

[ee]

R(&(x,y))(tl, tz) = H(l + x;t1 + yitz).
i=1

It is known from Combinatorics [8] that Y #"G,(x) = T (1+ x;t1) for every x € cgo, where
i=1

n=0
Gu(x) = ¥ Xg,...Xx, is the basis of elementary symmetric polynomials of algebra Hp (/).
ki <...<kn
Since it is true for every x € ¢y,
o0 0 x y o0 X; yi
Gp(xt fy) = ht)'Gp(—+ =) = 1 — + = |t
Y- Galet ) = L (kG4 1) =TT (14 (3 + ) e

Il
—e

(1 + x;t] + yitz).

i
0

]

Now we show that the spectrum of the algebra of block-symmetric analytic functions of
bounded type on X does not coincide of point evaluation functionals.

Example 1. Letk, | are same fixed nonzero complex numbers. Now we consider the sequence

T () (3) - (2) )
wn=( (), () o (). )

wan=((3) () (1))

~
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in X2 and for every n put
1
vn(k, 1) = —(er(kD) +ea(k D) + ... +en(k, 1)) € X2,

Then Jvn(k,l)(HO'l) — 1, ‘5vn(k,l)(H1'O) — k, (5vn(k,l)(HP'i*p) — 0asn — oo forevery 1 < k <1,
where 1 < p < i. By the reletive compactness of bounded subset of My,;(X?) there is an
accumulation point ¢y ;) of the sequence 6, ), such that go(k/l)(Hofl) =1, (p(k/l)(Hl'O) =k,
go(kll)(Hp'l*P) =0foralll <i < m, wherel < p < i. From Theorem 2 it follows that there is
no poit (x,y) € X?, such that S(xy) = P(1)- Indeed, if such a point exists, then (x,y) ~ (0,0).
Therefore &, ) (H') = 5vn(k,l)(H1'O) = 0, but we have thatévn(krl)(Hofl) =1, 5vn(k,l)(Hl’0) =
k.

Example 2. Let ¢ ;) be as in Example 1. We know that H(¢ ) = k+ 1. To find R(¢;
P P (k) p Pk P k)

note that kPIs—p
RP==P(0n (k1)) = nPns—p <Z> <;> '
hence
. - kPIs—P
(RP*F) = lim RP*~P (0,(k,1)) = ois—p)!
and so

n

R(q)(k,l)>(t1/ tZ) = lim Z tft;_pq)(Rp,s—p)

n—00
s=0
0<p<s

— lim i (ktl)p(ltz)s_p — ekt1+lt2'
n—eo = pl(s—p)!
0<p<s
Theorem 5. The invertible elements of semigroup (My,s(X?),) are functionals only of the

form ¢y = R(Q(i1)) (b1, 12) = 112,

Proof. Since by Theorem 4 R(¢p*6) = R(@)R(0), (k1) isinverse to ¢y ;. In the other hand,
if ¢ is invertible and ¢ = ¢!, then R(y)) = % is an entire function of exponential type
and so has no zeros. So we have that R (¢)(t1,t,) = 11" for some complex numbers k,I. [

Corollary 1. Let ® be a homomorphism on the subspace of block-symmetric polynomials in
Hyys (X?) to itself such that ®(HP*—P) = —HP* =P for every p, k. Then ® is discontinuous.

Proof. If @ is continuous it may be extended to continuous homomorphism & of Hy,s(X?).
Then for (x,y) € A2
HPE=P (x,y) + ®(HPFP)(x,y) = 0 (5)

for all p, k. Note that this equality is true for

(xoyo)=<<1)<8) (8) )

Let us denote ¢ = 0, ) © ®. From the continuity of homomorphism & we have, that
P € Mpys(X?). From equality (5) we have, that S(xy) * ¥ =600y, ¥ = (5(;(1) o) According to the

Theorem 5 ¢, ) is not invertible. O
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Let f(z) be an entire function of many variable. We will say that f(z), where z € C", has
"plane" zeros if the set of zeros is

zf:{zeC”:f(z)zo}: GHk,
k=1

where Hy = {z : (z,a"|a"|72) = 1} is hyperplane in C". Here a* € C" are feets of perpendicu-
lars dropped from the origin onto zeros hyperplanes Hy of the function f(z) (see [10]).

Theorem 6. Let ¢ be a character such that R(¢) is a polynomial. Then R(¢) have a plane
zeros, that is KerR(¢) consists of one-codimensional linear subspaces.
Proof. Let us denote Ay, (Gy) = Gpu(xt; + ytz). Now we consider the equation
m m

Y. M(Ayt,(Gy)) = 0 with m solutions zx, 1 < k < m. Hence J](1+ zA) = 0. Obvi-
n=0 i=1

ously, every solution z; can be represented as zy = xxt; + yxt;, where xy, yy are indetermi-
nants and t,t, are some complex numbers. If we take t; = 1,t, = Oand t; = 2, = 1,
then can fined xi, yx. So we have the system of 2m equation and 2m indeterminants xy, yy,
1 < k < m. The solutions of that system are x; = z, yx = —z;, 1 < k < m. Hence xy, yx can be
clearly define. If A = 1, then we obtain the equality

m

R(9)(t1,t2) = ) @(Anty(Gn)) = [T(1 +xits + yit2) = 0.
n=0 i=1
Hence ¢ has plane zeros. O

According to the analog of Hadamard’s Theorem [10] the function R(¢)(t1, t2) with plane

zeros is of the form
n

R(9)(t1,t2) = exp(P(ty, 2)) IT (1 = (g + tayite) ).
=
where {(a%,a)} are the zeros of R(¢)(t1,t2), P(t1, t2) is analytic polynomial and we have
n

1
v L <o,
= o]

According to the Lemma 1
m

R(O(xy) (b1, t2) = [ [(1+ xity + yit2),

i=1
and so the zeros of R(J(,,))(t1, t2) are

S S S
x| 4 [yil? [k 4 [yel?
On the other hand, if f(t1, t7) is the function of the exponential type with plane zeros, then

it can be represented as

00 —k 7k
Rig)(t,t2) = exp(P(t, 1)) TT (1= (a7l + tari) ).

1=

if )
1
kgl o < o

So for ¢ € Mfkw()f)' which we can represanted as ¢ = P k1) *(5(%), where (x,) € X2,
(XK k) = — (|;Tl|2, ‘;TZP) and ¢ ;) was defined in Example 1, we have that

R(@)(t, t2) = f(t1, t2).
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Y cTaTrTi OmICaHO CMMETPUMYHY 3rOPTKY XapakTepiB airebpy OAOUHO-CMMETPMYHMX aHAAITH-
uHMX (PHKIIiM 06MexeHOTO THIy Ha {1-cyMi mpocTopy C2. ABTOpaMy MOKA3aHo, L0 CHEKTp TaKoi
aArebpu He He 36ira€Tbcst 3 MHOKMHOIO KAACiB €KBiBAAEHTHOCT] (PYHKIIIOHAAIB 3HAUEHHI B TOUKAX,
OIICaHO XapaKTepy TaKoi aArebpy, Ik PYHKIIIT eKCIIOHEHIIIaABHOTO TUITY 3 “TIAOCKMMM HY ASIMIA.

Kntouoei cnosa i ppasu: arrebpaiuryii 6asmc, GAOUHO-CUMETHYHI IOATHOMM, GAOUHO-CMMETPUIHI
aHaAITHUHI (PYKIILT, CIIEKTpP, CUMEeTPUYHIIA 3CYB, CUMETPIUYHA 3TOpTKa.



