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ON GENERALIZATIONS OF THE HILBERT NULLSTELLENSATZ
FOR INFINITY DIMENSIONS (A SURVEY)
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Abstract. The paper contains a proof of Hilbert Nullstellensatz for the polynomials on
infinite-dimensional complex spaces and for a symmetric and a block-symmetric polynomi-
als.
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1. INTRODUCTION

The Hilbert Nullstellensatz is a classical princip in Algebraic Geometry and actually its start-
ing point. It provides a bijective correspondence between affine varieties, which are geometric
objects and radical ideals in a polynomials ring, wich are algebraic objects. For the proof and
applications of the Hilbert Nullstellensatz we refer the reader to [6].

The question whether a bounded polynomial functionalon a complex Banach space X is de-
termined by its kernel the set of zeros under te assumption that all the factors of its decom-
position into irreducible factors are simple was posed by Mazur and Orlich (see also Problem
27 in [10]). A positive answer to this question it follows from Theorem 2 of the present paper.
Moreover, this result remains valid even when the ring of bounded polynomial functionals is
replaced by any ring of polynomials for which there exists a decomposition into ireducible fac-
tors satisfying the following condition along with each polynomial P(x) that it contains the ring
also contains the polynomial Pλ;x0(x) = P(x0 + λx), where x ∈ X and λ ∈ C.

Let X and Y be vector spaces over the field C of complex numbers. A mapping Pk(x1, . . . , xk)
from the Cartesian product Xk into Y is k − linear if it is linear in each component. The re-
striction Pk of the k-linear operator Pk to the diagonal M= {(x1, . . . , xk) ∈ Xk : x1 = . . . = xk},
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which can be naturally identified with X, is a homogeneous polynomial of degree k (briefly, a k-
monomial). A finite sum of k-monomials, 0 ≤ k ≤ n, P(x) = P0(x)+ P1(x)+ . . .+ Pn(x), Pn 6= 0
is a polynomial of degree n. For general properties of polynomials on abstract linear spaces we
refer the reader to [4].

This paper is devoted to generalizations of the Hilbert Nullstellensatz of infinite dimensional
spaces. In Section 2 we consider the case of abstract infinite dimension complex linear spaces.
Section 3 is devoted to continuous polynomials on complex Banach spaces. In Section 4 we
examin symmetric polynomials on `p and Section 5 contains some new results about Nullstel-
lensatz for block-symmetric polynomials.

2. THE NULLSTELLENSATZ ON INFINITE-DIMENSIONAL COMPLEX SPACES

All results of this section are proved in [15].
Let us denote by X a complex vector space, by P(X) the algebra of all complex-valued poly-

nomials on X. Let P0(X) be a subalgebra of P(X) satisfying the following conditions:

(1) If P(x) ∈ P0(X), then Px0;λ(x) = P(λx + x0) ∈ P0(X) for any x0 ∈ X and λ ∈ C.
(2) If P ∈ P0(X), P = P1P2; P1 6= 0, P2 6= 0, then P1 ∈ P0(X) and P2 ∈ P0(X).

That is, the algebra P0(X) is factorial and closed under translation. We shall agree to call
such algebras of polynomials FT-algebra.

It is obvious that P(X) is an FT-algebra. A typical example of an FT-algebra is algebra of
bounded polynomials (on bounded subset) on a locally convex space X. We shall denote this
algebra by Pb(X). Anothe example of an FT-algebra is provided by the polynomials formed by
finite sums of finite products of continuous linear functionals on X (polynomials of finite type).
If Y is subspace of X, we take P0(Y) to mean the restrictions of the polynomials of P0(X) to Y.
It easy to see that Pb(Y) coincides with the algebra of bounded polynomials on Y.

Let Pγ(x) ∈ P0(X) be a family of polynomials, where γ belongs to an index set Γ. We re-

call that an ideal (Pγ) in P0(X) is a set J =

{
P ∈ P0(X) : P = ∑

γ∈Γ
Qγ(x)Pγ(x), Qγ ∈ P0(X)

}
,

where the sum ∑
γ∈Γ

Qγ(x)Pγ(x) contains only a finite number of terms that are not identifically

zero. A linearly independent subset {Pγβ
} of the set {Pγ} such that (Pγ) = (Pγβ

) is a linear basis
of the ideal J. For an ideal J ∈ P0(X), V(J) denotes the zero of J, that is, the common set of zeros
of all polynomials in J. Let G be a subset of X. Then I(G) denotes the hull of G, that is, a set of
all polynomials in P0(X) which vanish on G. The set radJ is called the radical of J if Pk ∈ J for
some positive integer k implies P ∈ radJ. P is called a radical polynomial if it can be represented
by a product of mutually different irreducible polynomials. In the case (P) = rad(P).

It is easy to see that I(G) is an ideal in P0(X). The main problem that we shall solve consists
of establising conditions under wich the equality

I(V(J)) = J

holds for the ideal J ∈ P0(X) that is, an ideal in P0(X) is uniquely determined by its set of
zeros.

In the finite-dimensional case the answer to this question is provided by the Hilbert Null-
stellensatz, which asserts that a necessary and sufficient condition for this to happen is that the



60 V.V. Kravtsiv

ideal J be equal to its radical (which we shall define below). We remark that for the infinite-
dimensional case this condition is not sufficient. (A counterexample will be given).

Lemma 2.1. Let P1, . . . , Pn be polynomials on X and deg P1 ≥ deg P2 ≥ . . . ≥ deg Pn > 0. Then there
exists an element h ∈ X such that for any x ∈ X the degree of the scalar-valued polynomial P1(x + th)
in t is deg P1, and the polynomials P2, . . . , Pn depend on h, that is, for each Pi, i = 2, . . . , n, there exists
xi such that the scalar-valued polynomial Pi(xi + th) in t is of positive degree.

Proof. For n = 1 the assertion of the lemma is obvious. Assume it is true for n− 1. Let h1 be the
required element for P1, . . . , Pn−1. Assume that Pn is independent of h1, that is, Pn(x + th1) =
Pn(x) ∀x ∈ X. Let h2 be an elementof X such that Pn depends on h2. We make the definition
h(λ) := h1 + λh2, λ ∈ C. Consider the family of scalar-valued polynomials P1(x + th(λ)) in t
with parameters λ, x. For any x there is only a finite set of λ, at which the polynomial P1(x +
th(λ)) is of degree less than deg P1 in t.

Indeed, let deg P1 = m, and let P1 =
m
∑

i=0
fi be an expansion in monomials. Then P1(x + th(λ))

can be given in the following form:

P1(x + th(λ)) =
m

∑
i=1

fi(x + th(λ)) =
m

∑
i=1

tj f̄i(x, . . . , x,

j︷ ︸︸ ︷
h(λ), . . . , h(λ))

= tm fm(h(λ)) + ∑
k<m

∑
j≤k

tjqj(x + h(λ)),

where f̄i are i− linear forms corresponding to the monomials fi;

qj = ∑
i

f̄i(x, . . . , x,

j︷ ︸︸ ︷
h(λ), . . . , h(λ)).

If deg P1(x + th(λ′)) < m for some value λ′ of the parameter λ, then fm(h(λ′)) = fm(h1 +
λ′h2) = 0. But, since fm(h1 + λh2) is polynomial in the variable λ (for fixed h1 and h2), it can
have only a finite number of zeros without being identically zero. Assume that fm(h1 + λh2) ≡
0. Then this relation also holds for λ = 0. Hence deg P1(x + th(0)) = deg P1(x + th1) < m,
which contradicts the choice of h1.

Similarly, for each i = 2, . . . , n − 1 there exists a finite set of values of the parameter λ at
which the polynomials Pi(x + th(λ)) have smaller degree in t than deg Pi, in particular, degree
0. Hence there exists a number λ0 6= 0 such that deg P1(x + th(λ0)) = m with respect to t, and
the polynomials Pi depend on h(λ0) for 1 < i < n. Moreover, Pn also depends on h(λ0), since
Pn(x + th(λ0)) = Pn(x + tλ0h2). Therefore, h := h(λ0) is the required element for n. The lemma
is now proved. �

Theorem 2.2. Let X be a complex vector space of arbitrary (possibly infinite) dimension, and let
P1(x), . . . , Pn(x) ∈ P0(X), where P0(X) is an FT-algebra. Then there exists an element h ∈ X, a
subspace Z complementary to Ch in X, and polynomial functionals G1, . . . , Gn−1 ∈ P0(X) such that:

(1) gk(z + th) = gk(z) ∀z ∈ Z, t ∈ C, k = 1, . . . , n− 1.
(2) All Gk belong to the ideal (P1, . . . , Pn) in the algebra P0(X).
(3) The set of zeros of the ideal (g1, . . . , gn−1) in the algebra P0(Z) is the projection of the zeros of

the ideal (P1, . . . , Pn) in P0(X) onto the subspace Z along h.
(4) If gk ≡ 0, k = 1, . . . , n− 1, then P1, . . . , Pn have a common divisor.



On Generalizations of the Hilbert Nullstellensatz ... 61

Proof. Let deg P1 = max
i

deg Pi and let h ∈ X be an element such that the degree of the polyno-

mial P1(x + th) in the variable t ∈ C equals deg P1 for all x ∈ X and the polynomials P1, . . . , Pn
depend on h. Such an element exists in accordance with Lemma 2.1. Concider the polynomials
P1, . . . , Pn as elements of the algebra (P0(Z))[t], where Z is a closed subspace complementary
to Ch in X. That is, the elements of the algebra (P0(Z))[t] are polynomials of t with coefficients
in the fieldof quotients of elements of P0(Z). We shall denote them by P̃1(t), . . . , P̃n(t) respec-
tively. We may assume that deg P̃1(t) ≥ P̃2(t) ≥ . . . ≥ P̃n(t). Division with remainder holds
in the algebra (P0(Z))[t]. Therefore for P̃1(t) and P̃2(t) there exist P1

2 (t) and P1
2 (t) in (P0(Z))[t]

such that
P̃1 −Q1

2P̃2 = P1
2 . (2.1)

If deg P1
2 ≥ deg P̃3, there exist Q1

3 and P1
3 in (P0(Z))[t] such that

P1
2 −Q1

3P̃3 = P1
3 . (2.2)

When deg P1
2 < deg P̃3, we set Q1

3 = 0, P1
3 = P1

2 . Continuing this process, we obtain the follow-
ing relations:

P1
3 −Q1

4P̃4 = P1
4 ,

. . . . . . . . . . . . . . . . . . (2.3)

P1
n−1 −Q1

nP̃n = P̃n+1, (2.4)

where deg P̃n+1 < deg P̃n. From relations (2.1)-(2.4), we have:

P̃1 −
n
∑

i=2
Q1

i P̃i = P̃n+1.

For the elements P̃2, . . . , P̃n+1 ∈ (P0(Z))[t] we obtain similarly the relations

P̃2 −
n+1
∑

i=3
Q2

i P̃i = P̃n+2,

deg P̃n+2 < deg P̃n+1; for P̃3, . . . , P̃n+2 :

P̃3 −
n+2
∑

i=4
Q3

i P̃i = P̃n+3,

deg P̃n+3 < deg P̃n+2, and so on.
Since the sequence deg P̃n+1, deg P̃n+2, . . . is strictly decreasing, by continuing this process we

obtain for a coefficient k1 :

P̃k1−1 −
n+k1−2

∑
i=k1

Qk1
i P̃i = P̃n+k1−1.

Moreover, deg P̃n+k1−1 = 0, that is, P̃n+k1−1 ∈ P0(Z). We introduce the notation G1 = P̃n+k1−1.
Consider the elements P̃k1(t), . . . , P̃n+k1−2(t) ∈ (P0(Z))[t]. There are n− 1 of them, all depend-
ing on t. Applying the preceding reasoning to them, we obtain for some k2 > k1 :

P̃k2−1 −
n+k2−3

∑
i=k2

Qk2
i P̃i = P̃n+k2−2,



62 V.V. Kravtsiv

where P̃n+k2−2 ∈ P0(Z), deg P̃n+k2−2 < deg P̃n+k2−3 < . . . . We introduce the notation G2 =
P̃n+k2−2. Consider the polynomials P̃k2(t), . . . , P̃n+k2−3(t) ∈ (P0(Z))[t]. There are n− 2 of them,
all dependent on t, and the preceding reasoning is applicable to them.

Thus at step r we obtain, for some kr > kr−1>...>k1 :

P̃kr−1 −
n+kr−r−2

∑
i=kr

Qkr
i P̃i = P̃n+kr−r−1,

where P̃n+kr−r−1 ∈ P0(Z). We introduce the notation Gr = P̃n+kr−r−1. At step r = n − 1 our
algorithm coincides with the Euclidean algorithm for the polynomials P̃kn−1(t), P̃kn−1+1(t). That
is, for some kn−1 > . . . > k1 we find:

P̃kn−1 −Qkn−1
kn−1+1P̃kn−1+1 = P̃kn−1+2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P̃kn−4 −Qkn−4
kn−3P̃kn−3 = P̃kn−2, (2.5)

P̃kn−3 −Qkn−3
kn−2P̃kn−2 = P̃kn−1, (2.6)

where P̃kn−1 ∈ P0(Z). We introduce the notation Gn−1 = P̃kn−1.
It is clear from the algorithm that all the polynomials P̃i ∈ (P0(Z))[t] belong to the ideal

(P̃1, P̃2, . . . , P̃n) in the algebra (P0(Z))[t]. In particular, this is true also for Gr = P̃n+kr−1. That is,
there exist polynomials Vk

i , k = 1, . . . , n− 1, i = 1, . . . , n, in the algebra (P0(Z))[t] such that
n

∑
i=1

P̃iVk
i = Gk

for k = 1, . . . , n − 1. Multiplying each of these equalities by the common denominator ak ∈
P0(Z) of the coefficients of the terms of degree t in P0(Z) and passing to the algebra P0(X), we
find that there exist polynomials vk

i ∈ P0(X), such that
n
∑

i=1
Pivk

i = gk, (2.7)

where gk = Gkak.
Thus we have found a sequence of polynomials g1, . . . , gn−1, that actually belong to P0(Z),

more precisely: gk(z + th) = gk(z)∀z ∈ Z. In addition, all gk belong to the ideal (P1, . . . , Pn).
Let z0 ∈ Z be a common zero of the polynomials gk. Then z0 + th is a common zero of gk,
k = 1, . . . , n− 1, for any t ∈ C. We multiply Eq. (2.6) by the common denominator b1 ∈ P0(Z)
of the coefficients of the powers of t and pass to the algebra P0(Z). Then,

Pkn−3 − qkn−3
kn−2Pkn−2 = gn−1,

where Pi = P̃ib1, qi = Qib1. Therefore Pkn−3(z0 + th) is divisible by Pkn−2(z0 + th) (since
gn−1(zo + th) = 0). Let us multiply Eq. (2.5) by b2, the common denominator of the powers of t
in (2.5), and substitute the value of Pkn−3 in place of Pkn−3 itself:

Pkn−4 − qkn−4
kn−3(gn−1 + qkn−3

kn−2Pkn−2)− Pkn−2 = 0.

Taking account of the relation gn−1(z0 + th) = 0, we find that Pkn−4(z0 + th) is divisible by
Pkn−2(z0 + th). Working from bottom to top, we find that the polynomials b(z0 + th)P1(z0 +
th), . . . , b(z0 + th)Pn(z0 + th) are divisible by Pkn−2(z0 + th), where b is polynomial in P0(Z).
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Assume that Pkn−2(z0 + th) ≡ const (with respect t). This means that the degree of the poly-
nomial Pkn−2(z0 + th) is less than the degree of the polynomial P̃kn−2(t) ∈ (P0(Z))[t], since
by construction deg P̃kn−2 > 0. Then we also have deg Pkn−3(z0 + th) < deg P̃kn−3(t). Work-
ing from the bottom upward, we find that deg P1(z0 + th), as a polynomial in t, is less than
deg P̃1 = deg P1. But the equality deg P̃1 = deg P1 (which holds by the choice of h) means that
the monomial of highest degree in t in the polynomial P1(z0 + th) is independent of z ∈ Z, so
that this is impossible. Hence Pkn−2(z0 + th) 6= const, and therefore, first of all, the fact that
b(z0 + th)Pi(z0 + th) is divisible by Pkn−2(z0 + th) for 1 ≤ i ≤ n implies that Pi(z0 + th) is divis-
ible by Pkn−2(z0 + th), 1 ≤ i ≤ n, since b is independent of h and Pkn−2(z0 + th) depends on h;
second there exists t0 ∈ C such that Pkn−2(z0 + th) = 0. Thus x0 = z0 + t0h is a common zero of
the polynomials P1, . . . , Pn.

As a result we have the following: if z0 is a zero of the ideal (g1, . . . , gn−1), then for some t0
we find that x0 = z0 + t0 is a zero of the ideal (P1, . . . , Pn). It follows from Eqs. (2.7) that the
converse is also true: every zero of the ideal (P1, . . . , Pn) is a zero of the ideal (g1, . . . , gn−1),
and hence its projection of the zeros of the ideal (P1, . . . , Pn) on the subspace Z along h. In the
case when gk ≡ 0 for all k we find that all Pi, i = 1, . . . , n, are divisible by Pkn−2(z + th) for
every z ∈ Z, that is, (P1(x), . . . , Pn(x)) have the common divisor Pkn−2(x). The theorem is now
proved. �

Remark 1. In the case dim X = 1 the proposed algorithm becomes the general Euclidean
algorithm for finding a common divisor for n polynomials in one variable

Corollary 2.3. Let J = (P1, . . . , Pn) be an ideal of polynomials in P0(X) and dim X ≥ n. Then there
exist elements h1, . . . , hm ∈ X, a subspace W ⊂ X of codimension m ≤ n − 1, and a polynomial
f ∈ P0(X) such that:

(1) f ∈ J.
(2) f is independent of h1, . . . , hm, that is, for any w ∈ W f (w + t1h1 + . . . + tmhm) = f (w),

where t1, . . . , tn are arbitrary elements of C.
(3) The kernel of f is the projection of the set V(J) on W along the subspace Hm = lin(h1, . . . , hm).

Proof. We apply Theorem 2.2 to the ideal J = (P1, . . . , Pn). Let g1, . . . , gn−1 be polynomials, h
an element of X, Z is the subspace of X whose existence is guaranteed by the theorem. We
revise the notation for g1

i := gi, i = 1, . . . , n− 1, h1 := h, Z1 = Z. Applying Theorem 2.2 to the
polynomials g1

1, . . . , g1
n−1, we obtain polynomials g2

1, . . . , g2
n−2, element h2 ∈ X, and a subspace

Z2 ⊂ X. Here h2 can be chosen from the subspace Z1 and Z2 ⊂ Z1. Applying Theorem 2.2
several times at step m ≤ n − 1, we obtain a polynomial gm

1 =: f ∈ P0(X) such that f ∈ J.
Indeed

J = (P1, . . . , Pn) ⊃ (g1
1, . . . , g1

n−1) ⊃ . . . ⊃ (gm
1 ) = ( f ), f ∈ ( f ). (2.8)

Let w0 ∈ ker f . Then by Theorem 2.2 we have w0 + t0
m ∈ V((gm−1

1 , gm−1
2 )) for some t0

m. Then
w0 + t0

m + t0
m−1 ∈ V((gm−1

1 , gm−1
2 , gm−1

3 )) for some t0
m−1. Continuing, we find that w0 + t0

1 +

. . . + t0
m ∈ V(J) for some t0

1, . . . , t0
m in the other hand, if x0 ∈ V(J), then x0 ∈ ker f . Moreover,

it follows from the inclusions (2.8) and Theorem 2.2 the independent of h1, . . . , hm, so that the
projection of x0 on W := Zm belongs to the kernel of f . The corollary proved. �

We now recall some definitions from ideal theory.

Definition 2.4. The ideal radJ is the radical of the ideal J, if for any positive integer k the relation
Pk ∈ J implies P ∈ radJ. If J = radJ, then J is a radical ideal.
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Definition 2.5. An ideal J is prime if P0(X)/J is integral domain, that is the algebra P0(X)/J
has no zero divisor ideal is maximal if P0(X)/J is a field.

Theorem 2.6 (The Hilbert Nullstellensatz.). Let J be an ideal the FT-algebraP0(X), J = (P1, . . . , Pn).
Then:

(1) If V(J) = ∅, then J = (2.1).
(2) I(V(J)) = radJ.

Proof. Since this theorem is well known for the case dim X < ∞, we can assume that dim X = ∞
(hence > n). I follows immediately from Corollary 2.3. Therefore only Point 2 requires proof.

We apply reasoning that is well known for the finite-dimensional case [12]. Let f be an arbi-
trary polynomial algebra P0(X). Assume that f (x) = 0∀x ∈ V(J). Let y ∈ C be an additional
independent variable. Consider P0(X + y) of polynomials on the space X ⊕Cy, that are poly-
nomials in P0(X) for each fixed y ∈ C and polynomials in C[y], the algebra of all polynomials
in y, for each fixed x ∈ X. The algebra P0(X + y) is obviously an FT-algebra. Theorem 2.2 holds
in it. The polynomials P1, . . . , Pn and f y− 1 have no common zeros. By Point 1 of the there exist
polynomials g1, . . . , gn+1 ∈ P0(X + y), such that

n

∑
i=1

Piqi + ( f y− 1)qn+1 ≡ 1,

and g1, . . . , gn+1 depend on x ∈ X and y. Since this is an identity, it remains valid also for
rational functionals the substitute y = 1

f . Hence,

∑ Piqi(x,
1
f
) = 1.

Reducing these to a common denominator, we find that for some N

∑ Piq′i(x) f−N = 1

or
∑ Piq′i(x) = f N,

where q′i(x) = qi(x, f−1) f N ∈ P0(X). But this means that f N belongs to the ideal J. Hence
f ∈ radJ theorem is now proved. �

We now give an example of an ideal generated by an infinite number of polynomials for
which the Nullstellensatz does not hold.

Example 2.7. Let H be a separable Hilbert space. Consider the ideal J generated by finite sums
of polynomials fi(x) = (x, ei) + ai, where ( , ) is the inner product, (ei) is an orthonormal basis
in H, and ai ∈ C. The only zero that this ideal can have is an element ∑

i
aiei. But if (ai) are

chosen so that this sum diverges in H, the ideal J has no zeros. But it is obvious that the ideal J
contains no units.

In the case n = 2 the next corollary gives a positive answer to Problem 27 of [10] (see also
[13]).

Corollary 2.8. Let P1, . . . , Pn be continuous polynomials on the Banach space X. Assume that there
exists a sequence of elements (xi)

∞
i=1, ||xi|| = 1, such that Pk(xi) → 0 as i → ∞, 1 ≤ k ≤ n. Then the

polynomials P1, . . . , Pn have a common zero.
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Proof. Suppose such is not the case. Since the algebra Pb(X) is an FT-algebra, according to
Theorem 2.2 there exist continuous polynomials q1, . . . , qn such that

P1q1 + . . . + Pnqn ≡ 1,

and this contradicts the fact that Pk(xi)→ ∞, 1 ≤ k ≤ n. The corollary is now proved. �

Now consider the topology σ on X whose closed sets are the kernels of polynomials inP0(X),
along with finite unions and arbitrary intersections of them. It is easy to see that this is indeed
a topology. By analogy with the finite-dimensional case we call this topology the Zariski topol-
ogy. We remark that for different FT-algebras we obtain different Zariski topologies. In the case
of the algebra of continuous polynomials on X the Zariski topology is strictly weaker than the
topology on X. In this connection the following question arises.

3. THE NULLSTELLENSATZ FOR ALGEBRAS OF POLYNOMIALS ON BANACH SPACES

All results of this section are proved in [14].
Let X be a Banach space, and let P(X) be the algebra of all continuous polynomials defined

on X. Let P0(X) be a subalgebra of P(X).

Theorem 3.1. [2] Let Y be a complex vector space. Let A be an algebra of functions on Y such that the
restriction of each f ∈ A to any finite dimensional subspace of Y is an analytic polynomial. Let I be a
proper ideal in A. Then there is a net (yα) in Y such that f (yα)→ 0 for all f ∈ I.

Here we need a technical lemma.

Lemma 3.2. [2] Let Y be a complex vector space. Let F = ( f1, . . . , fn) be a map from Y to Cn such
that the restriction of each fi to any finite dimensional space of Y is a polynomial. Then the closure of the
range of F, F(X)− is an algebraic variety. Moreover there exists a finite dimensional subspace Y0 ⊂ X
such that F(Y0)

− = F(X)−.

Theorem 3.3. LetP0(X) be a subalgebra ofP(X) with unity which contains all finite type polynomials.
Let J be an ideal in P0(X) which is generated by a finite number of polynomials P1, . . . , Pn ∈ P0(X). If
the polynomials P1, . . . , Pn have no common zeros, then J is not proper.

Proof. According to Lemma 3.2 there exists a finite dimensional subspace Y0 = Cm ⊂ X such
that F(Y0)

− = F(X)− where F(x) = (P1(x), . . . , Pn(x)). Let e1, . . . , em be a basis in Y0 and
e∗1 , . . . , e∗m be the coordinate functionals. Denote by Pk|Y0 the restriction of Pk to Y0. Since dim Y0 =
m < ∞, there exists a continuous projection T : X → Y0. So any polynomial Q ∈ P(Y0) can be
exended to a polynomial Q̂ ∈ P0(X) by formula Q̂ = Q(T(x)). Q̂ belongs to P0(X) becouse it
is a finite type polynomial. Let us consider the map

G(x) = (P1(x), . . . , Pn(x), ê∗1(x), . . . , ê∗m(x)) : X → Cm+n.

By definition of G, G(X)− = G(Y0)
−.

Suppose that J is a proper ideal in P0(X) and so J is contained in a maximal ideal JM. Let φ
be a complex homomorphism such that JM = ker φ. By Theorem 3.1 there exists a P0- conver-
gent net (xα) such that φ(P) = limα P(xα) for every P0(X). Since G(X)− = G(Y0)

−, there is
a net (zβ ⊂ Y0) such that limα G(xα) = limβ G(zβ). Note that each polynomial Q ∈ P(Y0)

is generated by the coordinate functionals. Thus limβ Q(zβ) = limα Q̂(xα) = φ(Q). Also
limβ Pk|Y0(zβ) = limα Pk(xα) = φ(Pk), k = 1, . . . , n. On the other hand, every P0-convergent
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net on a finite dimensional subspace is weakly convergent and so it converges to a point
x0 ∈ Y0 ⊂ X. Thus Pk(x0) = 0 for 1 ≤ k ≤ n that contradicts the assumption that P1, . . . , Pn
have no common zeros. �

A subalgebra A0 of an algebra A is called factorial if for every f ∈ A0 the equality f = f1 f2
implies that f1 ∈ A0 and f2 ∈ A0.

Theorem 3.4 (Hilbert Nullstellensatz Theorem). Let P0(X) be a factorial subalgebra in P(X) which
contains all polynomials of finite type and let J be an ideal of P0(X) which is generated by a finite
sequence of polynomials P1, . . . , Pn. Then radJ ⊂ P0(X) and

I[V(J)] = radJ

in P0(X).

Proof. Since P0(X) is factorial, radJ ⊂ P0(X) for every ideal J ∈ P0(X). Evidently, I[V(J)] ⊃
radJ. Let P ∈ P0(X) and P(x) = 0 for every x ∈ V(J). Let y ∈ C be an additional “independent
variable” which is associated with a basis vector e of an extra dimension. Consider a Banach
space X ⊕Ce = {x + ye : x ∈ X, y ∈ C}. We denote by P0(X)⊗ P(C) the algebra of polyno-
mials on X ⊕ Ce such that every polynomial in P0(X)⊗ P(C) belongs to P0(X) for arbitrary
y ∈ C. The polynomials P1, . . . , Pn, Py − 1 have no common zeros. By Theorem 3.3 there are
polynomials Q1, . . . , Qn+1 ∈ P0(X)⊗P(C) such that

n

∑
i=1

PiQi + (Py− 1)Qn+1 ≡ 1.

Since it is an identity it will be still true for all vectors x such that P(x) 6= 0 if we substitute
y = 1/P(x). Thus

n

∑
i=1

Pi(x)Qi(x, 1/P(x)) = 1.

Taking a common denominator, we find that for some positive integer N,
n

∑
i=1

Pi(x)Q′i(x)P−N(x) = 1

or
n
∑

i=1
Pi(x)Q′i(x) = PN(x), (3.1)

where Q′(x) = Q(x, P−1)PN(x) ∈ P0(X). The equality (3.1) holds on an open subset X ker P,
so it holds for every x ∈ X. But it means that PN belongs to J. So P ∈ radJ. �

4. THE NULLSTELLENSATZ FOR ALGEBRAS OF SYMMETRIC POLYNOMIALS ON `p

Let X be a Banach space, and let P(X) be the algebra of all continuous polynomials defined
on X. Let P0(X) be a subalgebra of P(X). A sequence (Gi)i of polynomials is called an al-
gebraic basis of P0(X) if for every P ∈ P0(X) there is q ∈ P(C) for some n such that P(x) =
q(G1(x), . . . , Gn(x)); in other words, if G is the mapping x ∈ X G(x) := (G1(x), . . . , Gn(x)) ∈
Cn, then P = q ◦ G.
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Let Ps(X) be the algebra of all symmetric polynomials. Let 〈p〉 be the smallest integer that
is greater than or equal to p. In [5], it is proved that the polynomials Fk(∑ aiei) = ∑ ak

i for
k = 〈p〉, 〈p〉+ 1, . . . form an algebraic basis in Ps(`p). So there are no symmetric polynomials
of degree less than 〈p〉 in Ps(`p) and if 〈p1〉 = 〈p2〉, then Ps(`p1) = Ps(`p2). Thus, without loss
of generality we can consider Ps(`p) only for integer values of p. Throughout, we shall assume
that p is an integer, 1 ≤ p < ∞.

It is well known [8] that for n < ∞ any polynomial in Ps(Cn) is uniquely representable as a
polynomial in the elementary symmetric polynomials (Ri)

n
i=1, Ri(x) = ∑k1<...<ki

xk1 . . . xki .
In paper [1] was proof next results.

Lemma 4.1. Let {G1, . . . , Gn} be an algebraic basis of Ps(Cn). For any ξ = (ξ1, . . . , ξn) ∈ Cn, there
is x = (x1, . . . , xn) ∈ Cn such that Gi(x) = ξi, i = 1, . . . , n. If for some y = (y1, . . . , yn), Gi(y) = ξi
i = 1, . . . , n, then x = y up to a permutation.

Proof. First, we suppose that Gi = Ri. Then, according to the Vieta formulae [8], the solutions
of the equation

xn − ξ1xn−1 + . . . + (−1)nξn = 0

satisfy the conditions Ri(x) = ξi, and so x = (x1, . . . , xn) as required. Now let Gi be an arbitrary
algebraic basis of Ps(Cn). Then Ri(x) = vi(G1(x), . . . , Gn(x)) for some polynomials vi on Cn.
Setting v as the polynomial mapping x ∈ Cn  v(x) := (v1(x), . . . , vn(x)) ∈ Cn, we have
R = v ◦ G.

As the elementary symmetric polynomials also form a basis, there is a polynomial mapping
w : Cn → Cn such that G = w ◦ R; hence R = (v ◦w) ◦ R so v ◦w = id. Then v and w are inverse
to each other, since w ◦ v coincides with the identity on the open set, Im(w). In particular, v is
one-to-one.

Now, the solutions x1, . . . , xn of the equation

xn − v1(ξ1, . . . , ξn)xn−1 + . . . + (−1)nvn(ξ1, . . . , ξn) = 0

satisfy the conditions Ri(x) = vi(ξ), i = 1, . . . , n. That is, v(ξ) = R(x) = v(G(x)), and hence
ξ = G(x). �

Corollary 4.2. Given (ξ1, . . . , ξn) ∈ Cn, there is x ∈ `
n+p−1
p such that

Fp(x) = ξ1, . . . Fp+n−1(x) = ξn.

Proposition 4.3 (Nullstellensatz). Let P1, . . . , Pm ∈ Ps(`p) be such that ker P1 ∩ . . . ∩ ker Pm = ∅.

Then there are Q1, . . . , Qm ∈ Ps(`p) such that
m
∑

i=1
PiQi ≡ 1.

Proof. Let n = max
i

(deg Pi). We may assume that Pi(x) = qi(Fp(x), . . . , Fn(x)) for some gi ∈

P(Cn−p+1). Let us suppose that at some point ξ ∈ Cn−p+1, ξ = (ξ1, . . . , ξn−p+1) and gi(ξ) = 0.
Then by Corollary 4.2 there is x0 ∈ `p such that Fi(x0) = ξi. So the common set of zeros of
all qi is empty. Thus by the Hilbert Nullstellensatz there are polynomials q1, . . . , qm such that
∑
i

giqi ≡ 1. Put Qi(x) = qi(Fp(x), . . . , Fn(x)). �
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5. THE NULLSTELLENSATZ FOR ALGEBRAS OF BLOCK-SYMMETRIC POLYNOMIALS

Let
X 2 = ⊕`1C

2

be an infinite `1-sum of copies of Banach space C2. So any element x ∈ X 2 can be represented

as a sequence x = (x1, . . . , xn, . . .), where xn ∈ C2, with the norm ‖x‖ =
∞
∑

k=1
‖xk‖.

A polynomial P on the space X 2 is called block-symmetric (or vector-symmetric) if:

P
(

xσ(1), . . . , xσ(n), . . .
)
= P (x1, . . . , xn, . . .) ,

where xi ∈ C2 for every permutation σ on the set N. Let us denote by Pvs(X 2) the algebra of
block-symmetric polynomials on X 2.

In paper [7] it was shown that the algebraic basis of algebra Pvs(X 2) is form by polynomials

Hp,n−p(x, y) =
∞
∑

i=1
xp

i yn−p
i ,

where 0 ≤ p ≤ n, (xi, yi) ∈ C2.
Let us denote by Pm

vs(X 2) the subalgebra of Pvs(X 2) which is generated by polynomials

H1,0,(x, y), . . . , Hp,n−p(x, y).

The number of these elements is equal to m and we denote by τm
vs the system of generators of

algebra Pm
vs(X 2).

Let (x, y), (z, t) ∈ X 2,

(x, y) =
((

x1
y1

)
, . . . ,

(
xm
ym

)
, . . .

)
and

(z, t) =
((

z1
t1

)
, . . . ,

(
zm
tm

)
, . . .

)
where (xi, yi), (zi, ti) ∈ C2. We put

(x, y) • (z, t) =
((

x1
y1

)
,
(

z1
t1

)
, . . . ,

(
xm
ym

)
,
(

zm
tm

)
, . . .

)
and define

T(z,t)( f )(x, y) := f ((x, y) • (z, t)). (5.1)

We will say that (x, y)→ (x, y) • (z, t) is the block symmetric translation and the operator T(z,t)
is the symmetric translation operator. Evidently, we have that

Hk1,k2((x, y) • (z, t)) = Hk1,k2(x, y) + Hk1,k2(z, t)

for all k1, k2.
For some positive number k denote by α0,k, α1,k, . . . , αk−1,k complex kth roots of the unity,

namely αm,k = e2miπ/k. The following lemma is well known.
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Lemma 5.1. For some positive integer number n

k−1
∑

m=0
αn

m,k = h
{

k if n = 0 mod k
0 otherwise.

Lemma 5.2. For any Hp,n−p ∈ τm
vs on X 2 and for any ξp,n−p there exist a vector

(x, y)p,n−p =

( (
x1
y1

)
,
(

x2
y2

)
, . . . ,

(
xNp,n−p

yNp,n−p

)
,
(

0
0

)
, . . .

)
in X 2 such that Hp,n−p = ξp,n−p, Hl1,l2 = 0 for all l1 6= p, l2 6= n− p.

Proof. Let us consider two cases:
(1) p = 0 or n = p;
(2) p 6= 0, n 6= p.

1. If p = 0 or n = p, then the polynomials H0,n(x, y) = Fp(y) and Hp,0(x, y) = Fp(x)
are symmetric relatively vectors y = (y1, . . . , yn, . . .), x = (x1, . . . , xn, . . .) respectively. In the

paper [1, p. 57] is proof that for symmetric polynomial Fk(x) =
∞
∑

i=1
xk

i exist the vector x0 =

(x1
0, x2

0, . . . , xn
0 , . . .) ∈ `1 such that Fk(x0) = ξk0, Fj(x0) = 0. Then for the polynomial Hp,0(x, y)

there exists vector (x0, 0)p,0 such that Hp,0((x0, 0)p,0) = ξp,0 and Hl1,l2((x0, 0)p,0) = 0 for all
l1 6= p, l2 6= 0. If we have p = 0 then there exists vector (0, y0)0,n such that H0,n((0, y0)0,n) = ξ0,n
and Hl1,l2((0, y0)0,n) = 0 for all l1 6= 0, l2 6= n.

2. For the second case we consider polynomials

Hp,k−p(x, y) =
∞

∑
i=1

xp
i yk−p

i ∈ τm
vs

of degree k, where 1 ≤ p < k. First we assume that p ≥ k− p, p ≥ k
2 and consider the vector

(x, y) =

((
a
(
α0,p(n+1)

)n+1−(k−p)

b
(
α0,p(n+1)

)p

)
,

(
a
(
α1,p(n+1)

)n+1−(k−p)

b
(
α1,p(n+1)

)p

)
, . . . ,

(
a
(
αp(n+1)−1,p(n+1)

)n+1−(k−p)

b
(
αp(n+1)−1,p(n+1)

)p

)
,

(
0
0

)
, . . .

)
,

where αi,p(n+1) is the ith roots of complex p(n + 1) roots of the unity.
According to Lemma 5.1 we have Hp,k−p(x, y) = p(n + 1)apbk−p. On the system of gen-

erating τm
vs there exists a polynomial which is not equal to zero at (x, y). Let us denote by

Hp1,k1−p1 , . . . , Hpl ,kl−pl , kl ≤ n the polynomials such that

pi(n + 1− (k− p)) + p(ki − pi) = 0 mod p(n + 1), i = 1, . . . , l.

For this polynomials we have Hpi,ki−pi(x, y) = pi(n + 1)api bki−pi , i = 1, . . . , l. All other polyno-
mials of the system τm

vs are equal of zero at (x, y).
We note that for all i = 1, . . . , l ki 6= k. Indeed let k1 = k. In the case p1 < p we obtain

p1(n + 1− (k− p)) + p(k1 − p1) = (n + 1)p1 + k(p− p1) = (n + 1− k)p1 + kp < p(n + 1).
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From this inequality it follows

p1(n + 1− (k− p)) + p(k1 − p1) 6= 0 mod p(n + 1),

that contradicts above hypothesis.
In the case p1 > p we obtain

p1(n + 1− (k− p)) + p(k1 − p1) = (n + 1)p1 + k(p− p1) = (n + 1− k)p1 + kp < p1(n + 1).

From this inequality it follows that for the condition p1(n + 1) = 0 mod p(n + 1) necessary
p1 = sp, s > 1, s ∈ N.

Since p > k
2 , then p1 > s k

2 . Since s > 1 and s ∈ N, then if smin = 2 we obtain that p1 > k, wich
is impossible. Therefore, ki 6= k.

Now we show that k < ki for all i = 1, . . . , l. Indeed let i = 1 k1 < k. For the polynomial
Hp1,k1−p1 we have p1(n + 1− (k− p)) + p(k1 − p1) = 0 mod p(n + 1). From inequality k1 < k
it follows that

p1(n + 1− (k− p)) + p(k1 − p1) = p1(n + 1− k) + pk. (5.2)
If p1 < p we obtain:

p1(n + 1− k) + pk < p(n + 1).
Therefore p1(n + 1− (k− p)) + p(k1 − p1) 6= 0 mod p(n + 1).

If p1 ≥ p, then
p1(n + 1− k) + pk ≤ p1(n + 1).

In order to last expression of inequality will evenly divided on p(n + 1) necessary that p1 = sp.
Since p > k

2 , then p > k1
2 , then p1 > s k1

2 . If s = 1 we obtain that p1(n + 1− (k− p)) + p(k1 −
p1) = p(n + 1− (k − p)) + p(k1 − p) = p(n + 1) − p(k − k1) < p(n + 1). Therefore on this
case p1(n + 1− (k− p)) + p(k1 − p1) 6= 0 mod p(n + 1). If s ≥ 2 we obtain p1 > k1, wich is
impossible. Therefore k < ki for all i = 1, . . . , l.

We will show that pi = sp, ki = sk for all i = 1, . . . , l. Indeed from

p(n + 1− (k− p)) + p(k− p) = 0 mod p(n + 1)

it follows that
mp(n + 1− (k− p)) + pm(k− p) = 0 mod p(n + 1),

where m > 1 (the case m < 1 is impossible because mk < k). Therefore we obtain the poly-
nomials Hmp,m(k−p), which will be among the polynomials Hp1,k1−p1 , . . . , Hpl ,kl−pl . We suppose
that there exist polynomials Hp+s1,k−p+s2 , where s1 < p, s2 < k− p.

Then

(p + s1)(n + 1− (k− p)) + p(k− p + s2) = p(n + 1− (k− p)) + p(k− p)
+ s1(n + 1− (k− p))ps2.

Since p(n + 1− (k− p)) + p(k− p) = 0 mod p(n + 1), then should performed the codition

s1(n + 1− (k− p)) + ps2 = 0 mod p(n + 1),

wich is impossible because s1(n + 1− (k− p)) + ps2 < p(n + 1− (k− p)) + p(k− p) = p(n +

1). Therefore all polynomials Hp1,k1−p1 , . . . , Hpl ,kl−pl are of the form Hmp,m(k−p), m = 2, . . . , w
where wk < n + 1. Therefore the polynomials Hp1,k1−p1 , . . . , Hpl ,kl−pl we can mark as

Hp1,k1−q1 = H2p,2(k−p), Hp2,k2−p2 = H3p,3(k−p), . . . , Hpl ,kl−pl = H(l+1)p,(l+1)(k−p),

where (l + 1)k < n + 1.
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Next we concider the vector

(x, y) =

((
a 2k
√
−1
(
α0,p(n+1)

)n+1−(k−p)

b 2k
√
−1
(
α0,p(n+1)

)p

)
, . . . ,

(
a 2k
√
−1
(
αp(n+1)−1,p(n+1)

)n+1−(k−p)

b 2k
√
−1
(
αp(n+1)−1,p(n+1)

)p

)
, . . . ,

(
a (l+1)k
√
−1
(
α0,p(n+1)

)n+1−(k−p)

b (l+1)k
√
−1
(
α0,p(n+1)

)p

)
, . . . ,

(
a (l+1)k
√
−1
(
αp(n+1)−1,p(n+1)

)n+1−(k−p)

b (l+1)k
√
−1
(
αp(n+1)−1,p(n+1)

)p

)
,

(
a 2k
√
−1 3k
√
−1
(
α0,p(n+1)

)n+1−(k−p)

b 2k
√
−1 3k
√
−1
(
α0,p(n+1)

)p

)
, . . . ,

(
a 2k
√
−1 3k
√
−1
(
αp(n+1)−1,p(n+1)

)n+1−(k−p)

b 2k
√
−1 3k
√
−1
(
αp(n+1)−1,p(n+1)

)p

)
, . . . ,

(
a (i+1)k
√
−1 (j+1)k

√
−1
(
α0,p(n+1)

)n+1−(k−p)

b (i+1)k
√
−1 (j+1)k

√
−1
(
α0,p(n+1)

)p

)
, . . . ,

(
a (i+1)k
√
−1 (j+1)k

√
−1
(
αp(n+1)−1,p(n+1)

)n+1−(k−p)

b (i+1)k
√
−1 k(j+1)

√
−1
(
αp(n+1)−1,p(n+1)

)p

)
, . . . ,

(
a lk
√
−1 (l+1)k

√
−1
(
α0,p(n+1)

)n+1−(k−p)

b lk
√
−1 (l+1)k

√
−1
(
α0,p(n+1)

)p

)
, . . . ,

(
a lk
√
−1 (l+1)k

√
−1
(
αp(n+1)−1,p(n+1)

)n+1−(k−p)

b lk
√
−1 (l+1)k

√
−1
(
αp(n+1)−1,p(n+1)

)p

)
, . . . ,

(
a i2k
√
−1 . . . il k

√
−1
(
α0,p(n+1)

)n+1−(k−p)

b i1k
√
−1 . . . il−1k

√
−1
(
α0,p(n+1)

)p

)
, . . . ,

(
a i1k
√
−1 . . . il−1k

√
−1
(
αp(n+1)−1,p(n+1)

)n+1−(k−p)

b i1k
√
−1 . . . il−1k

√
−1
(
αp(n+1)−1,p(n+1)

)p

)
, . . . ,

(
a 2k
√
−1 . . . lk

√
−1 (l+1)k

√
−1
(
α0,p(n+1)

)n+1−(k−p)

b 2k
√
−1 . . . lk

√
−1 (l+1)k

√
−1
(
α0,p(n+1)

)p

)
, . . . ,

(
a 2k
√
−1 . . . lk

√
−1 (l+1)k

√
−1
(
αp(n+1)−1,p(n+1)

)n+1−(k−p)

b 2k
√
−1 . . . lk

√
−1 (l+1)k

√
−1
(
αp(n+1)−1,p(n+1)

)p

)
,

(
0
0

)
, . . .

)
.
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Then we obtain that

Hip,i(k−p)((x, y) • (x, y)) = aipbi(k−p)

(
p(n + 1)− p(n + 1) + p(n + 1)

l

∑
j=1
j 6=i

( jk
√
−1
)ik

− p(n + 1)
l

∑
j=1
j 6=i

( jk
√
−1
)ik

+ . . .

+ p(n + 1)
l

∑
j1<...<jl−1

jm 6=i

( j1k
√
−1 . . . jl−1k

√
−1
)ik

− p(n + 1)
l

∑
j1<...<jl−1

jm 6=i

( j1k
√
−1 . . . jl−1k

√
−1
)ik
)

= 0.

For Hp,k−p we obtain

Hp,k−p((x, y) • (x, y)) = p(n + 1)apbk−p

(
1 +

l

∑
j=1

j+1
√
−1 + . . .

+
l

∑
j1<...<jl−1

j1
√
−1 . . . jl−1

√
−1 + 2

√
−1 . . . l

√
−1 l+1
√
−1

)
. (5.3)

We denote by M the next condition

M = 1 +
l

∑
j=1

j+1
√
−1 + . . . +

l

∑
j1<...<jl−1

j1
√
−1 . . . jl−1

√
−1 + 2

√
−1 . . . l

√
−1 l+1
√
−1.

If we choice (j + 1)th a complex root of −1, j = 1, . . . ł such that M 6= 0 to zero, we obtain
Hp,k−p((x, y) • (x, y)) 6= 0.

If we substitute to (5.3)

a =
1

p
√
(k− p)(n + 1)M

p
√

ξp,k−p, b = 1

we obtain
Hp,k−p((x, y) • (x, y)) = Hp,k−p((x, y)p,k−p) = ξp,k−p.

In the case p < k− p we consider the vector

(x, y) =

((
a
(
α0,(k−p)(n+1)

)k−p

b
(
α0,(k−p)(n+1)

)n+1−p

)
,

(
a
(
α1,(k−p)(n+1)

)k−p

b
(
α1,(k−p)(n+1)

)n+1−p

)
, . . . ,

(
a
(
α(k−p)(n+1)−1,(k−p)(n+1)

)k−p

b
(
α(k−p)(n+1)−1,(k−p)(n+1)

)n+1−p

)
,

(
0
0

)
, . . .

)
,

where αi,(k−p)(n+1) is ith root of (k− p)(n + 1) complex root of the unity. For this case the proof
is the same like in the case p ≥ k− p. �
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Corollary 5.3. Let τm
vs =

{
H p̃,j− p̃(x, y), 0 ≤ p̃ ≤ j, j = 1, . . . , n

}
, j ≤ m. Then for each ξ =

(ξ1,0, . . . , ξp,k−p, . . . , ξp′,k′−p′) ∈ Cm there is (x, y)p,k−p ∈ X 2 such that Hp,k−p((x, y)pq) = ξp,k−p.

Proposition 5.4. Let P1, . . . , Pm ∈ Pvs(X 2) such that ker P1 ∩ . . . ∩ ker Pm = ∅. Then there are
Q1, . . . , Qm ∈ Pvs(X 2) such that

m

∑
i=1

PiQi = 1.

Proof. For the proof we use the same method as in [1, p. 58]. Let n = maxi(deg Pi). We may as-
sume that Pi(x, y) = qi(H1,0, . . . , Hl1,k−l1) for some qi ∈ P(Cn), where 0 ≤ l1 ≤ k, n is number of
polynomials Hl1,k−l1 . Let us suppose that at some point ξ ∈ Cn, ξ = (ξ1,0, . . . , ξp,k−p, . . . , ξp′,k′−p′)

and gi(ξ) = 0. Then by Corollary 5.3 there is (x, y)p,k−p ∈ X 2 such that Hp,k−p((x, y)p,k−p) =
ξp,k−p. So the common set of zeros of all qi is empty. Thus by the Hilbert Nullstellensatz there
are polynomials g1, . . . , gm such that ∑i qigi ≡ 1. Put Qi(x, y) = gi(H1,0, . . . , Hl1,k−l1). �
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[12] Van der Waerden B.L. Algebra. Springer, New York, 1966.
[13] Zagorodnyuk A.V. On two propositions of the Scottish Book that apply to the rings of bounded polynomial

functionals on Banach spaces. Ukr. Mat. Zh., 48 (10) (1996), 1329-1336.
[14] Zagorodnyuk A.V. Spectra of Algebras of Analytic Functions and Polynomials on Banach Spaces. In: Contemporary

Mathematics, 435. AMS, 2007, 381-393.
[15] Zagorodnyuk A.V. The Nullstellensatz on infinite-dimensional complex spaces. Jornal of Mathematical Sciences,

92 (2) (1999), 2951-2956.



74 V.V. Kravtsiv

Address: V.V. Kravtsiv, Vasyl Stefanyk Precarpathian National University, 57, Shevchenka Str., Ivano-
Frankivsk, 76000, Ukraine.

E-mail: maksymivvika@gmail.com.
Received: 05.06.2015; revised: 12.10.2015.
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У роботi доведено теореми Гiльберта про нулi для полiномiв на нескiнченно вимiрному компле-
ксному просторi, для симетричних та блочно-симетричних полiномiв.

Ключовi слова: полiноми, симетричнi полiноми, блочно-симетричнi полiноми, алгебра полiномiв,
теорема Гiльберта про нулi, алгебраїчний базис.


