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Abstract

The more recent methods for the removal of synthetic dyes from waters and wastewater are complied. The various methods of removal

such as adsorption on various sorbents, chemical decomposition by oxidation, photodegradation, and microbiological decoloration,

employing activated sludge, pure cultures and microbe consortiums are described. The advantages and disadvantages of the various methods

are discussed and their efficacies are compared.

D 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Synthetic dyes are extensively used in many fields of up-

to-date technology, e.g., in various branches of the textile

industry (Gupta et al., 1992; Shukla and Gupta, 1992;

Sokolowska-Gajda et al., 1996), of the leather tanning

industry (Tünay et al., 1999; Kabadasil et al., 1999) in

paper production (Ivanov et al., 1996), in food technology

(Bhat and Mathur, 1998; Slampova et al., 2001), in agri-

cultural research (Cook and Linden, 1997; Kross et al.,

1996), in light-harvesting arrays (Wagner and Lindsey,

1996), in photoelectrochemical cells (Wrobel et al., 2001),

and in hair colorings (Scarpi et al., 1998). Moreover,

synthetic dyes have been employed for the control of the

efficacy of sewage (Morgan-Sagastume et al., 1997) and

wastewater treatment (Hsu and Chiang, 1997; Orhon et al.,

1999), for the determination of specific surface area of

activated sludge (Sorensen and Wakeman, 1996) for ground

water tracing (Field et al., 1995), etc.

Synthetic dyes exhibit considerable structural diversity

(Fig. 1). The chemical classes of dyes employed more

frequently on industrial scale are the azo, anthraquinone,

sulfur, indigoid, triphenylmethyl (trityl), and phthalocyanine
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derivatives. However, it has to be emphasized that the

overwhelming majority of synthetic dyes currently used in

the industry are azo derivatives. It should be noted that azo-

keto hydrazone equilibria can be a vital factor in the easy

breakdown of many of the azo dye system. Some dyes

quoted in the review have only a marginal importance from

the point of view of industrial application.

Unfortunately, the exact amount of dyes produced in the

world is not known. It is estimated to be over 10,000 tons

per year. Exact data on the quantity of dyes discharged in

the environment are also not available. It is assumed that a

loss of 1–2% in production and 1–10% loss in use are a fair

estimate. For reactive dyes, this figure can be about 4%. Due

to large-scale production and extensive application, synthet-

ic dyes can cause considerable environmental pollution and

are serious health-risk factors. Although, the growing im-

pact of environmental protection on industrial development

promotes the development of ecofriendly technologies

(Desphande, 2001), reduced consumption of freshwater

and lower output of wastewater (Knittel and Schollmeyer,

1996; Petek and Glavic, 1996), the release of important

amounts of synthetic dyes to the environment causes public

concern, legislation problems and are a serious challenge to

environmental scientists.

Because of their commercial importance, the impact

(Guaratini and Zanoni, 2000) and toxicity (Walthall and

Stark, 1999; Tsuda et al., 2001) of dyes that are released in



Fig. 1. The chemical structure of synthetic dyes most frequently studied in degradation experiments.
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the environment have been extensively studied (Hunger,

1995; Calin and Miron, 1995). The formation of a carci-

nogenic amine from the dye Direct Blue 14 by human skin

bacteria (Platzek et al., 1999) and the antifungal activity of

13 diazobenzene dyes have been established (Oros et al.,

2001). As several thousand different synthetic dyes that are

employed exhibit various biological activities, it is under-

standable that our knowledge concerning their behavior in

the environment and health hazards involved in their use is

still incomplete.

Traditional wastewater treatment technologies have

proven to be markedly ineffective for handling wastewater

of synthetic textile dyes because of the chemical stability

of these pollutants. Thus, it has been verified that, of the
18 azo dyes studied 11 compounds passed through the

activated sludge process practically untreated, 4 (Acid Blue

113, Acid Red 151, Direct Violet 9, and Direct Violet 28)

were adsorbed on the waste activated sludge and only 3

(Acid Orange 7, Acid Orange 8, and Acid Red 88) were

biodegraded (Shaul et al., 1991).

A wide range of methods has been developed for the

removal of synthetic dyes from waters and wastewaters to

decrease their impact on the environment. The technologies

involve adsorption on inorganic or organic matrices, decol-

orization by photocatalysis, and/or by oxidation processes,

microbiological or enzymatic decomposition, etc. (Hao et

al., 2000). The efficacy of the various methods of dye

removal, such as chemical precipitation, chemical oxidation,
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adsorption along with their effects on subsequent biological

treatment was compared in an earlier paper (Tunay et al.,

1996). Chemical oxidation was very effective but the

efficiency strongly influenced by the type of oxidant.

The objectives of this review are the compilation of the

newer achievements in the technologies developed for the

removal of synthetic dyes from water and wastewater,

classification and short description of the methods, critical

evaluation of the technological processes and the compar-

ison of their advantages and disadvantages.
2. Removal of synthetic dyes from wastewaters by

adsorption and other physicochemical methods

As synthetic dyes in wastewater cannot be efficiently

decolorized by traditional methods, the adsorption of syn-

thetic dyes on inexpensive and efficient solid supports was

considered as a simple and economical method for their

removal from water and wastewater. The adsorption char-

acteristics of a wide variety of inorganic and organic

supports have been measured and their capacity to remove

synthetic dyes has been evaluated.

2.1. Inorganic supports

Because of their good mechanical and chemical stability,

high specific surface area and resistance to microbiological

degradation-specific inorganic supports have been preferen-

tially applied in adsorption studies.

2.1.1. Carbon-based inorganic supports

The excellent adsorption properties of carbon-based

supports have been exploited for the decolorization of dyes

in the industrial effluents. For a better understanding of the

physicochemistry of adsorption processes on the carbon

surface, a homogeneous surface diffusion model was devel-

oped and successfully applied for the description of the

adsorption of dyes and other wastes on the surface of

granulated activated carbon (Roy et al., 1993).

It has been repeatedly shown that the type of carbon

sorbent and its mode of preparation exert a marked influ-

ence on the adsorption capacity. It has been found that the

adsorption characteristics of lignite-based carbon markedly

depended on the mode of preparation. Maximal dye adsorp-

tion was achieved by a lignite that has been treated with

50% solution of sodium tungstate at 800 jC (Duggan and

Allen, 1997). The efficacy of various wood charcoals has

also been compared for the removal of Basic Red 22 and

Acid Blue 25 from textile mill effluents. The data indicated

that the media obtained from fluted charcoal, pine and

chestnut trees were superior to lamellar charcoal, and to

the media acquired from beech wood and oak trees (Marm-

ier-Dussoubs et al., 1991). The adsorption process on the

surface of carbonized spent bleaching earth has been studied

in detail. Basic Blue 3, Methylene Blue, Acid Blue and
Reactive Yellow 2 were adsorbed on this sorbent. It has

been demonstrated even in this instance that the mode of

preparation of the sorbent had a considerable influence on

the adsorption parameters, whereas the effect of pH was

negligible (Low et al., 1995).

The good sorption characteristics of sulfonated coals for

the removal of synthetic dyes have also been demonstrated

(Mittal and Venkobachar, 1993). It has been further found

that powdered active carbon efficiently removes the azo

dyes Orange P and Red Px from wastewater (Danis et al.,

1999). A similar study proved that granular activated

carbon can bind acid dyes (Walker and Weatherley,

1997) and the kinetics of adsorption have been elucidated

(Walker and Weatherley, 1999).

The results discussed above clearly state that carbon-based

sorbents show excellent adsorption properties for a consid-

erable number of synthetic dyes (Table 1). However, the

preparation of carbon sorbents is generally energy consum-

ing. Consequently, the commercially available products are

fairly expensive. Since a large amount of carbon sorbent is

needed for the removal of dyes from a large volume of

effluent, the expenses involved hamper their application.

2.1.2. Other inorganic supports

As substituents for carbon-based sorbents the adsorption

capacity of a wide variety of other inorganic supports was

also measured using different dye-support pairs.

The efficacy of coal, fly ash, wollastonite, and china clay

was compared for the removal of Omega Chrom Red ME

from effluents. It was found that each sorbent could be

employed in the adsorption process (Shukla and Gupta,

1992). The use of acid-activated clay for the removal of

basic, acidic, disperse, direct and reactive dyes was also

reported. The highest adsorption capacity was observed for

basic dyes and the support was proposed as an efficient

adsorption medium for their removal from aqueous solution

(Juang et al., 1997). Furthermore, china clay was found to

be an effective sorbent for the removal of Omega Chrom

Red ME from house wastewater. An acidic pH, low tem-

perature and smaller particle size of china clay increased the

efficacy of removal (Gupta et al., 1992).

The good adsorption capacity of silica was exploited in

the removal of the textile dye Basic Blue 3 from effluents

(Ahmed and Ram, 1992) and was employed for the adsorp-

tion of Rhodamine B, Acid Red 4, and Nile Blue sulfate

from aqueous solutions (Saleem et al., 1993). Alumina has

also been used for the removal of Rhodamine B and Nile

Blue Sulfate from wastewater (Salem et al., 1994). It has

been established that the adsorption of dyes on alumina

follows the Langmuir isotherm equation and the analysis of

thermodynamical parameters revealed that the adsorption of

these dyes is more favorable at high temperatures. Not only

pure Al2O3 but also waste red mud, a by-product of

aluminium production were employed for the removal of

Congo Red from wastewater using, 90-min of equilibrium

time (Namasivayam and Arasi, 1997).



Table 1

List of organisms intensively decolorizing synthetic dyes

No. of organism Dye Reference

Prokaryota

Gram negative bacteria

(1) Aeromonas

hydrophila

Acid Orange 7,

Acid Red 106,

Direct Orange 39,

Direct Yellow 4,

Direct Yellow 12,

Reactive Black NR,

Reactive Blue 160,

Reactive Blue 222,

Reactive Red 198

Chen et al. (2003)

(2) Burkholderia

cepacia

Acid Orange 7,

Anthraquinone-

2-sulfonate,

Remazol Red F3B

Laszlo (2000)

(3) Citrobacter sp. Brilliant Green,

Crystal Violet,

Gentian Violet,

Malachite Green,

Methyl Red,

An et al. (2002)

(4) Desulfovibrio

desulfuricans

Reactive

Orange 96

Yoo et al. (2001)

(5) Escherichia coli Ethyl Red,

Methyl Red

Nakanishi et al.

(2001)

Reactive Red 22 Chang and Lin

(2001)

Reactive Red 22 Chang and Kuo

(2000)

(6) Geobacter

sulfurreducens

Anthraquinone-2,

6-disulfonate

Cervantes et al.

(2003)

(7) Klebsiella

pneumoniae

Methyl Red Wong and Yuen

(1998)

(8) Proteus mirabilis Deep Red Chen et al. (1999)

(9) Pseudomonas

luteola

Crystal Violet,

Red Pigment 2B,

Red Pigment V2

Hu (1998, 2001)

Reactive Red 22 Chang et al. (2001),

Chen (2002)

(10) Pseudomonas

mendocina

Methyl Violet Sarnaik and

Kanekar (1999)

(11) Pseudomonas

putida

Tectilon Blue

4R-01

Walker and

Weatherley (2000)

(12) Pseudomonas

stutzeri

Methyl Red Itoh et al. (2002)

(13) Sphingomonas

xenophaga

Acid Orange 7,

Acid Orange 8,

Acid Orange 10,

Acid Red 4,

Acid Red 88

Coughlin et al.

(1999)

Congo Red Diniz et al. (2002)

Naphthalene-2-

sulfonate,

Naphtol Blue

Black

Keck et al. (2002)

Reactive Red 2 Zee van der et al.

(2003)

(14) Stenotrophomonas

maltophilia

Crystal Violet Kim et al. (2002a,b)

(15) Xenophilus

azovorans

Carboxy-

Orange II

Blumel et al. (2002)

Table 1 (continued)

No. of organism Dye Reference

Gram positive bacteria

(16) Arthobacter

globiformis

Acridine Orange,

Crystal Violet

Itoh et al. (1998a,b)

(17) Bacillus

benzenovorans

Tectilon Blue 4R-01 Walker and

Weatherley (2000)

(18) Bacillus cereus Azobenzene Koneva and

Kruglov (2001)

(19) Bacillus gordonae Tectilon Blue

4R-01

Walker and

Weatherley (2000)

(20) Bacillus polymixa Azobenzene Koneva and

Kruglov (2001)

(21) Caulobacter

subvibrioides

Acid Orange 6,

Acid Orange 7,

Acid Orange 8,

Acid Orange 12,

Acid Red 151,

Acid Red 88,

Methyl Red

Mazumder et al.

(1999)

(22) Clostridium

perfringens

Amaranth Semde et al. (1998)

Bromophenol

Blue,

Crystal Violet,

Methyl Orange

Kim et al. (2002a,b)

(23) Kurthia sp. Brilliant Green,

Crystal Violet,

Magenta

Wong and Yuen

(1998)

Malachite Green Sani and Banerjee

(1999)

Pararosaniline Wong and Yuen

(1998)

(24) Nocardia

corallina

Crystal Violet Azmi et al. (1998)

(25) Paenibacillus

azoreducens

Remazol

Black B

Meehan et al. (2001)

(26) Streptomyces

viridosporus

Poly R-478 Ball and Colton

(1996)

Eukaryota

Yeasts—Ascomycota

(27) Candida curvata Chrysoidine Kakuta et al. (1998)

(28) Candida lipolytica Reactive Blue 19 Aksu and Donmez

(2003)

(29) Candida tropicalis Reactive Black 5,

Reactive Blue 19,

Reactive Red

Donmez (2002)

(30) Candida zeylanoides Acid Orange 7 Ramalho et al. (2002)

Azobenzenesulfonates Martins et al. (1999)

p-Methoxyazobenzene Martins et al. (1999)

(31) Geotrichum

candidum

Reactive Blue 5 Lee et al. (2000)

Reactive Black 5,

Reactive Red 158,

Reactive Yellow 27

Maximo et al. (2003)

(32) Kluyveromyces

marxianus

Reactive Blue 19 Aksu and Donmez

(2003)

Remazol Black B Meehan et al. (2000),

Bustard et al. (1998)

Remazol Red Bustard et al. (1998)

Remazol Turquoise

Blue

Bustard et al. (1998)
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Table 1 (continued)

No. of organism Dye Reference

Eukaryota

Yeasts—Ascomycota

(33) Pichia anomala Disperse Red 15 Itoh et al. (1996)

(34) Saccharomyces

cerevisiae

Reactive Blue 19 Aksu and

Donmez (2003)

(35) Schizosaccharomyces

pombe

Reactive Blue 19 Aksu and

Donmez (2003)

Filamentous Fungi—Ascomycota

(36) Aspergillus ficuum Direct Black 22 Dong et al. (2001)

(37) Aspergillus

foetidus

Drimarene

Black HFGR1

Sumathi and

Manju (2000)

Drimarene Navy

BF Blue F2G1

Sumathi and

Manju (2000)

Drimarene Red

BR F3B1

Sumathi and

Manju (2000)

(38) Aspergillus niger Congo Red Fu and Viraraghavan

(2002)

(39) Myceliophthora

thermophila

Poly R-478 Alcade et al. (2002)

(40) Penicillium sp. Poly R-478,

Poly S-119

Zheng et al. (1999)

(41) Rhizopus arrhizus Reactive

Orange 16

O’Mahony et al.

(2002)

Filamentous fungi—Basidiomycota

(42) Bjerkandera adusta Amaranth,

Remazol Black B,

Remazol Orange,

Tropaeolin O

Swamy and Ramsay

(1999a,b)

Reactive Blue 15,

Reactive Blue 38

Heinfling-Weidtmann

et al. (2001)

(43) Coprinus cinereus Direct Blue 1 Schneider et al. (1999)

(44) Coriolus versicolor Acid Orange 7 Sam and Yesilada

(2001); Lin et al.

(2003)

Everzol Turquoise

Blue G

Kapdas and Kargi

(2002)

Methylene Blue Mazmanci et al.

(2002)

Pigment Violet 12 Itoh et al. (1998a,b)

(45) Cunninghamella

elegans

Malachite Green Cha et al. (2001)

(46) Cunninghamella

polymorpha

Disperse Blue 60 Sugimori et al. (1999)

(47) Datronica

concentrica

Poly R-478 Tekere et al. (2001)

(48) Dichotmius

sqaluens

Brilliant Green,

Cresol Red,

Crystal Violet

Gill et al. (2002)

(49) Eichhornia

crassipes

Acid Blue 25 Lee et al. (1999)

Reactive Blue 2 Lee et al. (1999)

(50) Flavodon

flavus

Azure B, Congo

Red, Poly B 411,

Reactive Blue 19

Raghukumar (2000)

Congo Red Tatarko and Bumpus

(1998)

(51) Funalia trogii Acid Orange 7 Sam and Yesilada

(2001)

(52) Ganoderma sp. Reactive Blue 19 Maximo et al. (2003)

(53) Irpex lacteus Reactive Blue 19 Maximo et al. (2003),

Bhatt et al. (2000),

Kasinath et al. (2003)

Table 1 (continued)

No. of organism Dye Reference

Filamentous fungi—Basidiomycota

(54) Lentinula edodes Amido Black 10 B,

Bromophenol Blue,

Methyl Red,

Reactive Blue 19

Nagai et al. (2002)

Acid Orange 7 Hatvani and Mecs

(2002)

Poly R-478 Chiu et al. (1999),

Hatvani and Mecs

(2002)

(55) Phanerochaete Amaranth Swamy and Ramsay

chrysosporium Disperse Orange

K-GL, Everzol

Yellow 4GL,

Everzol Red RBN,

Everdirect Supra

yellow PG,

Everzol Turquoise

Blue G

(1999a,b)

Kapdan et al. (2000)

Indigo Carmine Podgornik et al.

(2001),

Gemeay et al. (2003)

Poly R-478 Couto et al. (2000a),

Mielgo et al. (2002)

Red HE 8B Sani et al. (1998)

Remazol Black B Swamy and Ramsay

(1999a,b)

Remazol Turquoise

Blue

Conneely et al. (1999)

(56) Phanerochaete

magnoliae

Reactive Blue 19,

Reactive Red 158,

Reactive Yellow 27

Maximo et al. (2003)

Phanerochete crassa Poly R-478 Takano et al. (2001)

(57) Phellinus gilvus Indigo Balan and Monteiro

(2001)

(58) Phlebia fascicularia Brilliant Green,

Cresol Red,

Crystal Violet

Gill et al. (2002)

(59) Phlebia floridensis Brilliant Green,

Cresol Red,

Crystal Violet

Gill et al. (2002)

(60) Phlebia tremellosa Remazol Black B Kirby et al. (2000)

(61) Pleurotus eryngii Reactive Black 5 Heinfling et al. (1998)

(62) Pleurotus

ostreatus

Eosin Yellowish,

Evans Blue Phenol,

Red Poly B 411

Eichlerova et al.

(2002)

(63) Pleurotus

pulmonarius

Amido Black

10 B, Brilliant

Cresyl Blue, Congo

Red, Ethyl Violet,

Methyl Green, Methyl

Violet, Reactive

Blue 19, Trypan Blue

Zilly et al. (2002)

(64) Pleurotus

sajor-caju

Indigo Balan and Monteiro

(2001)

(65) Pycnoporus

cinnabarinus

Reactive Blue 19 Balan and Monteiro

(2001)

(66) Pycnoporus

sanguineus

Bromophenol

Blue

Pointing et al.

(2000)

Indigo Balan and Monteiro

(2001)

Malachite Green Pointing et al. (2000)

(continued on next page)
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Table 1 (continued)

No. of organism Dye Reference

Filamentous fungi—Basidiomycota

(67) Rigidoporus sp. Reactive Blue 19,

Reactive Red 158,

Reactive Yellow 27

Maximo et al. (2003)

(68) Sclerotium

rolfsii

Acid Blue 74,

Reactive Blue 19

Nyanhongo et al.

(2002)

(69) Trametes

cingulata

Cresol Red,

Poly R-478

Tekere et al.

(2001)

(70) Trametes

hirsuta

Acid Blue 225,

Basic Red 9,

Direct Blue 71

Nyanhongo et al.

(2002)

Crystal Violet Abadulla et al. (2000)

Indigo Campos et al. (2001)

Poly R-478 Maceiras et al. (2001)

Reactive Blue 19,

Reactive Blue 221

Nyanhongo et al.

(2002)

(71) Trametes

modesta

Acid Blue 74,

Reactive Blue 221,

Direct Blue 71,

Basic Red 9,

Acid Blue 225,

Reactive Blue 19

Nyanhongo et al.

(2002)

(72) Trametes pocas Cresol Red,

Crystal Violet

Tekere et al. (2001)

(73) Trametes trogii Poly R-478 Lenin et al. (2002)

(74) Trametes

versicolo

Acid Blue 74 Nyanhongo et al.

(2002)

Acid Violet 7 Zhang and Yu (2000)

Acid Violet 17 Nyanhongo et al.

(2002)

Amaranth Swamy and Ramsay

(1999a,b), Ramsay

and Nguyen (2002),

Shin et al. (2002)

Brilliant Blue R Borchert and Libra

(2001)

Congo Red Ramsay and Nguyen

(2002)

Phenol Red Lorenzo et al. (2002)

Poly R-478 Leidig et al. (1999)

Ponceau

Red 4R

Keharia and

Madamwar (2002)

Procion Red Keharia and

Madamwar (2002)

Reactive

Black 5

Maximo et al. (2003),

Borchert and Libra

(2001),

Ramsay and Nguyen

(2002)

Reactive

Blue 15

Ramsay and Nguyen

(2002),

Swamy and Ramsay

(1999a,b)

Reactive Blue 19 Borchert and Libra

(2001), Minussi

et al. (2001),

Nyanhongo et al.

(2002)

Reactive Blue 28 Keharia and

Madamwar (2002)

Reactive Blue 221 Nyanhongo et al.

(2002)

Reactive Golden

Yellow R

Keharia and

Madamwar (2002)

Table 1 (continued)

No. of organism Dye Reference

Filamentous fungi—Basidiomycota

Reactive Red 158 Maximo et al. (2003)

Reactive Red 198 Borchert and Libra

(2001)

Reactive Violet 5 Keharia and

Madamwar (2002)

Reactive Yellow 27 Maximo et al.

(2003)

Remazol Black B Swamy and Ramsay

(1999a,b)

Remazol Orange Swamy and Ramsay

(1999a,b)

Tropaeolin O Swamy and Ramsay

(1999a,b),

Ramsay and Nguyen

(2002)

(75) Trametes

villosa

Reactive Blue 19 Minussi et al. (2001)

Algae

(76) Chlorella

pyrenoidosa

Direct Brown

NM

Huang et al. (2000)

(77) Spirogyra sp. Reactive Yellow 22 Blumel et al. (2002)

Planta

(78) Mentha

puligeum

Poly R-478 Strycharz and Shetty,

2002

(79) Rosmarinus

officinalis

Poly S-119 Zheng et al. (1999)

(80) Wolffia arrhiza Methyl Violet Kanekar et al. (1993)

(81) Thymus vulgaris Poly S-119 Zheng et al. (1999)

(82) Spirodella

polyrrhiza

Methyl Violet Kanekar et al. (1993)
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Vermiculite extract solutions as coagulants and vermic-

ulite as the adsorbent were used for the removal of Basic

Blue from dye wastewaters. The results indicated that the

efficacy of vermiculite as both coagulant and adsorbent was

better than that of conventional coagulants and adsorbents

(Choi and Cho, 1996).

Aqueous solutions of Acridine Orange, Alcian Blue

8GX, Alizarin Red, Azure A, Azure B, Brilliant Blue G,

Brilliant Blue R, Congo Red, Cresyl Violet Acetate, Crystal

Violet, Eosin B, Eosin Y, Eryhtrosin B, Ehidium Bromide,

Giemsa Stain, Janus Green B, Methylene Blue, Neutral Red,

Nigrosin, Orcein, Propidium Iodide, Rose Bengal, Safranine

0, Toluidine Blue 0, and Trypan Blue were successfully

decolorized passing the solution through a column that was

previously filled with Amberlite XAD-16. The efficacy of

removal was higher for dyes with low molecular mass, with

lower flowrate and smaller particle size of the resin. The

adsorbed dyes were easily extracted by washing the column

with methanol (Lunn et al., 1994). The decontaminated

solutions showed no mutagenicity towards Salmonella

typhimurium (Lunn and Sansone, 1991).

The application of various inexpensive industrial wastes

has also been elucidated for adsorption. Thus, a waste

containing trivalent iron and trivalent chromium hydroxide
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was employed for the removal of an azo dye from waste-

water. The removal efficiency of color was 91% at pH 3.

The adsorption followed both the Langmuir isotherm and

the Freundlich isotherm and was governed by ion exchange

processes between the polar substructures of the azo dye and

the hydrophilic adsorption centers of the sorbent (Namasi-

vayam and Senthilkumar, 1995; Namasivayam et al., 1994).

The aninoic dye New Coccine was also effectively adsorbed

on sludge particles (Wang et al., 1998).

The findings compiled above suggest that carbon-based

supports can be replaced by other, less expensive ones.

2.2. Organic supports

Organic supports have some advantages over inorganic

ones. They generally originate from renewable sources and

are wastes or by-products of industrial processes without

any commercial value. The adsorption capacity of a

number of such supports has been determined for synthetic

dyes as has their potential of their practical application

were evaluated.

Biogas waste slurry was dried, powdered and used for

the extraction of Rhodamine B from the wastewater of a

textile plant. It was found that adsorption followed the

Freundlich isotherm and the efficiency increased at acidic

pH (optimum pH 2.3) (Namasivayam and Yamuna, 1992).

Efficient removal of the direct dye Brilliant Yellow from

aqueous media with cross-linked chitosan fiber was also

detected (Yoshida and Takemori, 1997). The application of

orange peel (cellulosic waste) for the adsorption of Congo

Red, Procion Orange and Rhodamine B has also been

assessed. It was determined that the adsorption can be

described by Langmuir and Freundlich isotherms and fol-

lows first-order kinetics. Acidic pH condition promoted

adsorption while alkaline pH condition enhanced the de-

sorption of dyes (Namasivayam et al., 1996).

The application of pasteurized wastewater solids was

assessed for the adsorption of Methylene Blue. It has been

established that elimination of the biological activity of the

solids was a prerequisite for effective adsorption (Dobbs et

al., 1995). Bagasse pith was tested as a sorbent for the

adsorption of dyes. The adsorption process was described

by a three resistance number mass transfer model (external

mass transport, macropore and micropore diffusion) (Al

Duri et al., 1990). Waste banana pith was used for the

removal of Rhodamine B from aqueous solutions. The

maximum efficacy (87%) was observed at pH 4. It has been

concluded from the results that waste banana pith offers an

economical resource for the removal of dyes from waste-

waters (Namasivayam et al., 1993). The results demonstrat-

ed that the rate constants markedly depend on the type of

sorbents, with the higher values being attained on cellulosic

waste orange peel.

An interesting approach was to use of dead and pulver-

ized macrofungus, Fomitopsis carnea as a sorbent for the

basic dyes Orlamar Red BG, Orlamar Blue G, and Orlamar
Red GTL. Pulverized fungus proved to be a good sorbent

for the dyes, the adsorption in creased with increasing pH of

the dye wastewater and followed first-order kinetics (Mittal

and Gupta, 1996).A continuous flow study showed that the

non-living roots of water hyacinth can efficiently adsorb

Acid Blue 25 and Reactive Blue 2 (Lee et al., 1999).

The adsorption methods, independently of the inorganic

or organic character of the supports have some drawbacks.

Since adsorption processes are generally not selective, the

other components of the wastewater can also be adsorbed by

the support and the competition among the adsorbates can

influence the dye binding capacity of supports in an unpre-

dictable manner. Moreover, an adsorption process removes

the synthetic dyes from wastewater by concentrating them

on the surface retaining their structure practically un-

changed. When the support is to be regenerated, the fate

of the resulting concentrated solution of dyes presents a

problem that is not satisfactorily solved. Even the mineral-

ization of dyes on the surface of support cannot be achieved.

Large-scale applications based on the adsorption process

have to take into consideration the problems discussed

above.

2.3. Other physicochemical methods

Adsorptive bubble separation techniques (ion flotation,

solvent sublation and adsorbing colloid flotation) resulted in

the efficient removal (99%) of Direct Blue from wastewater

(Horng and Huang, 1993). The application of coagulation

processes for the removal of dyes from wastewater has also

been assessed. The efficiencies dependent on the type of

flocculant and on the pH of the medium (Koprivanac et al.,

1993). Electrocoagulation was used for the effective remov-

al of Acilan Blue from the wastewater of an operating textile

plant in a bipolar packed-bed electrochemical reactor (Ogut-

veren et al., 1992).
3. Photocatalytic decolorization and oxidation of

synthetic dyes

Commercial dyes are designed to resist photodegrada-

tion, so the selection of optimal photocatalytic conditions

for the decolorization of dyes requires considerable exper-

tise. Because of the significant commercial and environ-

mental interest the efficacy of a large number of catalysts

and irradiation conditions has been established for the

decolorization of various synthetic dyes.

3.1. Photocatalysis and oxidation with hydrogen peroxide

Hydrogen peroxide has been frequently applied to the

decolorization of synthetic dyes in waters. Hydrogen per-

oxide can effectively decolorize dye wastewaters in the

presence of Fe(II) sulfate, with the higher rates of decolor-

ization at higher concentrations of the reagents (Kuo, 1992).
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Iron (III) with hydrogen peroxide were successfully

employed for the degradation of the dye intermediate

anthraquinone-2-sulfonic acid sodium salt (Kiwi et al.,

1993). Not only an iron catalyst but also a UV/H2O2

oxidation process has been used for the decolorization of

Reactive Black 5 in textile wastewaters (Ince and Gonenc,

1997). The degradation of anthraquinone sulfonate dyes was

facilitated by H2O2 in the presence of TiO2 (Kiwi, 1994).

Iron powder and hydrogen peroxide in combination were

employed in the decolorization of Reactive Red 120, Direct

Blue 160 and Acid Blue 40, in aqueous solutions. The non-

biodegradable azo dye Orange II was effectively mineral-

ized with iron and hydrogen peroxide, with pH exerting a

considerable effect on the decomposition rate (Bandara et

al., 1997). Optimal conditions for decolorization were found

to be different for each dye, indicating that the development

of a general oxidation method for a mixture of dyes would

be very difficult. Thus, compromise must be made that is

suitable for the decomposition of each dye at a reasonable

oxidation rate (Tang and Chen, 1996). UV irradiation

combined with hydrogen peroxide treatment was used for

the decolorization of the mono-azo dyes Acid Red 1 and

Acid Yellow 23. Decolorization followed a pseudo first-

order rate profile and the rate increased with increasing

concentration of H2O2 in the solution (Tang et al., 1997).

Acetone as a photosensitizer has also been used to facilitate

the photocatalytic degradation of Reactive Red 2 in aqueous

solutions. The reaction followed pseudo first-order decay

kinetics and involved both dechlorination and reduction

(Tsui and Chu, 2001). The possibility of UV/H2O2 treatment

of dyes with different structures has been studied in detail.

The results indicated that the method could be successfully

used for the decolorization of acid dyes, direct dyes, basic

dyes and reactive dyes but it proved to be inadequate for vat

dyes and disperse dyes (Yang et al., 1998).

3.2. Ozonation

Ozonation, as an effective oxidation process, has found

application in the decolorization of synthetic dyes. The

technique employed in the decoloration of Orange II.

Oxalate. Formate and benzene sulfonate ions were the most

important decomposition products (Tang and An, 1995a,b).

It was reported that ozone effectively decomposed azo dyes

in textile wastewater. The decomposition rate was consid-

erably higher at acidic pH. However, the influence of

temperature and UV irradiation on the decomposition rate

was negligible (Koyuncu and Afsar, 1996). The negligible

influence of UV irradiation on the decomposition rate of azo

dyes by ozone has been supported by other authors. The

effect of chemical structure on the decomposition rate has

been demonstrated (Davis et al., 1994). The effect of

ozonation on the toxicity of wastewater effluents has been

investigated using the nematode Caenorhabditis elegans.

The data indicated that the toxicity highly depended on the

type of dye to be decomposed (Hitchcock et al., 1998). The
influence of operating parameters on the decolorization of a

reactive dye by ozone has been studied in detail. The results

indicated that the decomposition rate increased with increas-

ing pH and temperature (Wu and Wang, 2001). A method

employing a combination of membrane filtration with

subsequent ozonation of retentates has been developed for

the effective purification of colored textile wastewaters (Wu

et al., 1998).

3.3. Photodecomposition in the presence of TiO2

It has been proven that the presence of catalysts enhances

the rate of photodecomposition. The role of TiO2 in oxidation

was studied. It was shown that the photodegradation rate of

azo dyes under UV irradiation considerably depends on the

chemical structure in the presence of TiO2. Monoazo dyes

were more easily decomposed than trisazo dyes, disazo dyes

were not included in the experiment (Reutergardh and Iang-

pashuk, 1997). UV irradiation and TiO2 catalysis were used

for the decomposition of Acid Blue 40. The initial step of

photocatalytic decomposition was found to be hydroxyl

radical attack to the carbon–nitrogen bond of the side chain

of anthraquinone (Liakou et al., 1997a). The same system

was applied for the study of the decomposition of Acid Blue

40, Basic Yellow 15, Direct Blue 87, Direct Blue 160 and

Reactive Red 120. The data demonstrated that the oxidation

mechanism was determined by both the pH and the chemical

structure of the dyes (Liakou et al., 1997b). The efficacy of

TiO2 and cadmium sulfide (CdS) photocatalysts was com-

pared in the photocatalytic decomposition of the Reactive

Black 5. The initial pH had a different impact on CdS and

TiO2 photocatalysis, the first-order rate constant increased

with increasing concentration of the semiconductor and with

increasing light intensity and temperature. It was found that

the toxicity of wastewater decreased with the presence of

TiO2 and increased with the presence of CdS (Shu et al.,

1994). The azo dye Acid Orange 7 was successfully decom-

posed on titanium oxide particles in visible light in the

presence of oxygen. Naphthoquinone and benzene sulfonic

acid were identified as main decomposition products

(Vinodgopal et al., 1996). Other dyes were also decolorized

by TiO2 and by irradiation in wastewater and it was found that

the temperature did not influence markedly the decomposi-

tion rate of dyes (Shu and Huang, 1995).

3.4. Other oxidizing systems

The photodecomposition of five dyes (Reactive Red 2,

Reactive Blue 4, Reactive Black 8, Basic Red 13 and Basic

Yellow 2) under UV irradiation in the presence of trivalent

iron-oxalato complexes was also reported (Nansheng et al.,

1997a). It has been established that the rate of photodegra-

dation is highly dependent on the chemical structure of the

dye. The decomposition followed first-order kinetics. The

acidic pH enhanced decomposition. The same dyes were

subjected to photodegradation, using a trivalent iron-hy-
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droxy catalyst and sunlight. The pseudo first-order decom-

position rate was lower than under UV irradiation (Nan-

sheng et al., 1997b). The photodegradation kinetics for five

synthetic dyes, using Fe3 +-hydroxy and Fe3 +-oxalate com-

plexes indicate that the rate constants were higher for Fe3 +-

hydroxy complexes except for Reactive Red 2. This finding

suggests that the Fe3 +-hydroxy system is more suitable for

activation of the photodegradation of reactive dyes than is

the Fe3 +-oxalate system. Optimal conditions for the chem-

ical oxidation-decolorization process were determined with

the help of modified Nernst model by using the NaOCl as

oxidant by (Chang et al., 1996). Electrooxidation of Acid

Blue 113 using a RuO2/Ti electrode was reported to be

successful (Mohan et al., 2001). It has been demonstrated

that the azo dye Remazol Black B can be decomposed in an

aqueous solution saturated with oxygen using a high-fre-

quency ultrasonic generator (Vinodgopal et al., 1998).
4. Microbiological decomposition of synthetic dyes

The application of microorganisms for the biodegrada-

tion of synthetic dyes is an attractive and simole method by

operation. However, the biological mechanisms can be

complex. Large number of species has been tested (Table

1) for decoloration and mineralization of various dyes.

Unfortunately, the majority of these compounds are chem-

ically stable and resistant to microbiological attack. The

isolation of new strains or the adaptation of existing ones to

the decomposition of dyes will probably increase the effi-

cacy of bioremediation of dyes in the near future.

The use of microorganisms for the removal of synthetic

dyes from industrial effluents offers considerable advantages.

The process is relatively inexpensive, the running costs are

low and the end products of complete mineralization are not

toxic. The various aspects of the microbiological decompo-

sition of synthetic dyes have been previously reviewed by

Stolz (2001). Besides the traditional wastewater cleaning

technologies, other methods have been employed in the

microbial decolorization of dyes. For instance, an activated

sludge process was developed for the removal of Methyl

violet and Rhodamine B from dyestuff effluents, using

microorganisms that were derived from cattle dung (Kanekar

and Sarnaik, 1991). Also in biofilms, efficient biodegradation

of Acid Orange 7 has been demonstrated (Harmer and

Bishop, 1992; Zhang et al., 1995). Azo dyes did not inhibit

the capacity of biofilms in the removal of organics from

wastewater (Fu et al., 1994). A multistage rotating biological

contactor was used for the biodegradation of azo dyes, where

an azo dye assimilating bacterium was immobilized in the

system (Ogawa and Yatome, 1990).

4.1. Mixed cultures (microorganism consortiums)

The utilization of microbiotic consortiums offers consid-

erable advantages over the use of pure cultures in the
degradation of synthetic dyes. The individual strains may

attack the dye molecule at different positions or may use

decomposition products produced by another strain for

further decomposition. However, it should be stressed that

the composition of mixed cultures may change during the

decomposition process, which interferes with the control of

technologies using mixed cultures. Moreover, the efficacy

of decomposition considerably depends on the chemical

character of the synthetic dye and on the biodegradation

capacity of the microorganism consortium. The benefits and

drawbacks of the use of microbial consortiums for the

decomposition and decolorization of various dyes have been

previously reviewed by Banat et al. (1996). Optimal con-

ditions for the microbial decolorization of dyes show

marked diversity both in anaerobic and aerobic as well as

mixed anaerobic/aerobic processes. However, it has been

observed in a number of cases that the efficacy of aerobic

treatment was inferior to that of anaerobic decolorization

process.

4.1.1. Anaerobic decolorization of synthetic dyes

The efficacy of various anaerobic treatment applications

for the degradation of a wide variety of synthetic dyes has

been many times demonstrated (Delee et al., 1998). Experi-

ments indicated that chemical reduction by sulphide is

partially responsible for the anaerobic conversions of Acid

Orange 7. Mathematical evaluation of the experimental

results pointed out that autocatalysis played an important

role where 1-amino-2-naphthol accelerated the chemical

reduction of azo bond. (Zee van der et al., 2000). The

decolorization of reactive water-soluble azo dyes was

achieved under anaerobic conditions using glucose as a

carbon source (Carliell et al., 1996). The supplement

tapioca starch gave also enhanced the color removal

efficacy from synthetic blue wastewater (Chinkewitvanich

et al., 2000). Mordant Orange 1 and Azodisalicylate were

reduced and decolorized under anaerobic conditions using

methanogenic granular sludge (Razo-Flores et al., 1997).

Reactive Red 141 was also decolorized under anaerobic

conditions in a conventional sewage treatment technology.

The chemical identification of the products of dye degra-

dation showed that decolorization was via reduction mech-

anism (Carliell et al., 1994). The synthetic dye Tartrazine

was found to be readily decolorized in an anaerobic baffled

reactor (Bell et al., 2000; Plumb et al., 2001). Disperse

Blue 79 was also reduced in anoxic sediment–water

system, the primary decomposition products being N,N-

disubstituted 1,4 azobenzene and 3-bromo-6-nitro-1,2-dia-

minobenzene (Weber and Adams, 1995). Great differences

were observed among the decomposition rates of various

dyes in anoxic settled bottom sediments. Half-life varied

between a few days (Solvent Red 1) and some months

(Solvent Yellow 33) (Baughman and Weber, 1994). The

reactive azo dye Reactive Red 141 was decomposed under

anaerobic conditions. The azo bonds were reduced and

cleaved by the microbial community resulting in the
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liberation of 2-aminonaphtalene-1,5 disulfonic acid (Car-

liell et al., 1995).

Much effort have been devoted to the study of the

influence of various modern technologies on the decompo-

sition rate of dyes and the effect of the presence of other

compounds in the media. It has been recently established

that the development of high-rate systems, in which hy-

draulic retention times are uncoupled from solids retention

times, facilitate the removal of dyes from textile processing

wastewaters (Lier van et al., 2001). Another study proved

the feasibility of the application of anaerobic granular

sludge for the total decolorization of 20 azo dyes (Zee van

der et al., 2001a). It was further demonstrated that the

application of the redox mediator anthraquinone-2,6-disul-

fonic acid highly accelerates the decomposition of azo dyes

(Zee van der et al., 2001b). The effect of the presence of

salts (nitrate and sulfate) on the decomposition rate of the

azo dye Reactive Red 141 under anaerobic conditions has

been studied. The results indicated that nitrate delays the

onset of decomposition while sulfate did not influenced the

biodegradation process (Carliell et al., 1998).

4.1.2. Anaerobic/aerobic decomposition of synthetic dyes

Although anaerobic reduction of azo dyes is generally

more satisfactory than aerobic degradation, the intermediate

products (carcinogenic aromatic amines) have to be degrad-

ed by an aerobic process. Diverse technologies have been

developed for the successive anaerobic/aerobic treatment of

dye wastewaters. It has been observed that the removal of

dyes from wastewaters in an anaerobic–oxic system in-

volved both decomposition by bacteria and adsorption onto

the sludge. Decolorization rates were 20%, 72%, and 78%

for Acid Yellow 17, Basic Blue 3, and Basic Red 2,

respectively (An et al., 1996). This combined method has

been successfully employed for the decomposition of bisazo

vinylsulphonyl, anthraquinone vinylsulphonyl and anthra-

quinone monochlootriazine reactive dyes (Panswad and

Luangdilok, 2000) and the considerable impact of the

molecular structure on the decolorization rate has been

demonstrated (Luangdilok and Panswad, 2000). Dye waste-

waters were also treated using a sequential anaerobic/aero-

bic filter system. Results showed that, the Basic Red was

removed very efficiently in the anaerobic filter, however, no

removal of the Acid Yellow 17 occurred. (Basibuyuk and

Forster, 1997). Another two-stage anaerobic/aerobic system

successfully decomposed sulfonated azo dyes (Acid Orange

10, Acid Red 14, Acid Red 18) (FitzGerald and Bishop,

1995). It was further established that an anaerobic/aerobic

treatment is suitable for the cleavage of the azo bond in

various azo dyes (Seshadri et al., 1994). Moreover, it was

found that biofilms degraded aerobically the azo dye Acid

Orange 8. The azo bond of Acid Orange 8, Acid Orange 10

and Acid Red 14 was cleaved only under anaerobic con-

ditions (Jiang and Bishop, 1994). The efficacy of the

removal of reactive diazo Remazol Black B dye by aerobic

and anoxic plus anaerobic/aerobic sequencing batch reactor
(SBR) activated sludge processes has been assessed. The

results indicated that longer anoxic + anaerobic period pro-

moted decolorization (Panswad et al., 2001). The azo dye

Procion Red H-E7B has been efficiently decolorized in a

combined anaerobic–aerobic process (O’Neill et al., 1999)

and the beneficial effect of existence of carbohydrate at

higher concentration on the decolorization has been proven

(O’Neill et al., 2000).

4.2. Pure cultures of white-rot fungus

White-rot fungi produce a wide variety of extracellular

enzymes (laccase, lignin peroxidase, phenol oxidase, Mn-

dependent peroxidase and Mn-independent peroxidase)

that decompose the highly stable natural (lignin, hemicel-

lulose, cellulose, etc.). Because of their high biodegrada-

tion capacity they are of considerable biotechnological

interest, and their application in the decolorization process

of wastewaters has been extensively investigated (Young

and Yu, 1997). Earlier results on decolorization of waste-

waters by fungi have been reviewed (Fu and Viraraghavan,

2001).

4.2.1. Pure cultures of Phanerochaete chrysosporium

Because of its high enzyme production, the white rot

fungus, P. chrysosporium has been frequently employed for

the biodegradation of synthetic dyes. It was applied to the

decoloration of Orange II, Tropaeolin 0, Congo Red and

Azure B under aerobic conditions. The results indicated that

the fungus can be used for the removal of these dyes from

wastewater (Cripps et al., 1990). Decolorization was

achieved in 6–9 days. Two strains of P. chrysosporium

and an isolate of white-rot fungus were used for the

decomposition of the azo dyes Amaranth, Orange G and

the heterocyclic dye Azure B. The rate of decoloration of

dyes depended on the composition of medium and on the

dye-microorganism pair. It has been assumed that various

extracellular peroxidases (lignin peroxidase and Mn-depen-

dent peroxidase) or laccase are involved in the decoloriza-

tion process. The data further indicated that the high

decomposition rate of dyes can be achieved only by careful

selection of the fungi and cultural conditions (Chao and Lee,

1994). The decomposition of Indigo Carmine by the fungus

has also been studied and the involvement of ligninolytic

enzymes in the process has been demonstrated (Podgornik

et al., 2001). The biodegradation of Amaranth, New Coc-

cine, Orange G and Tartrazine by P. chrysosporium and

Pleurotus sajor-caju was compared. It was suggested that

Mn-peroxidase, h-glucosidase and laccase can be involved

in the decolorization process (Chagas and Durrant, 2001). It

has been found that the addition of activators for the

production of lignolytic enzymes by P. chrysosporium

(Tween 80, veratryl alcohol, manganese (IV) oxide) in-

creased the decomposition rate of the dye Poly R-478

(Couto et al., 2000a; Couto et al., 2000b). It has been

confirmed that the lignin peroxidase of P. chrysosporium
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removes not only dyes but also phenol and chlorophenol

from wastewaters (Manamekalai and Swaminathan, 2000).

4.2.2. Pure cultures of other white-rot fungus

Other white-rot fungi have been used for the decoloration

of different dyes. Thus, Trametes versicolor decomposed

anthraquinone, azo and indigo-based dyes (Wang and Yu,

1998), Pycnoporus cinnabarinus rapidly decoloration Rema-

zol Brilliant Blue in packed-bed bioreactor (Schliephaje and

Lonergan, 1996), and Trametes hirsuta was able to decom-

pose triarylmethane, indigoid and anthraquinone dyes (Aba-

dulla et al., 2000). The degradation capacity of 103 strains of

white-rot fungi has been measured. It has been established

that the higher degradation rate was achieved by Irpex lacteus

and Pleurotus ostreatus (Novotny et al., 2001). The biodeg-

radation capacity of wood-rotting basidiomycete fungi was

also determined using 14 structurally different synthetic dyes.

The results indicated that the decomposition rate highly

depends on both the chemical structure of the dye and the

character of the fungi (Knapp et al., 1995). It has been

determined that the presence of azoreductase in the microor-

ganism and the permeation of the dye molecule are prereq-

uisites of the microbial decolorization of dyes (Yatome et al.,

1991a). The decoloration of the phthalocyanine dyes, Reac-

tive Blue 15 and 38, by Bjerkandera adusta was studied in

detail. It was found that the main metabolites were sulfoph-

thalimides (Heinfling-Weidtmann et al., 2001). The potential

of some white-rot fungi to decolorize indigo dye has been

compared. The decomposition rate was the highest for

Phellinus gilvus followed by those achieved P. sajor-caju,

Pycnoporus sanguineus and P. chrysosporium (Balan and

Monteiro, 2001). It has been reported that Phlebia tremellosa

decomposes synthetic dyes but complete mineralisation did

not occur (Kirby et al., 2000). The decoloration capacity of

another set of white-rot fungi has been assessed using

industrial dyes as model compounds. The results indicated

that Trametes hispida produced lignolytic enzymes at higher

rate than was achieved Pleurotus ostreatus in solid state

cultures on whole oats (Rodriguez et al., 1999).

The assays carried out on another set of white rot fungi

indicated that Coriolus versicolor showed the highest de-

composition capacity (Knapp and Newby, 1999). An inter-

esting combined method has been described for the

decolorisation of Acid Violet 7. Pellets have been prepared

form the mycelium of T. versicolor and activated carbon

powder and their decoloration rate has been shown to be

higher than those of the individual components (pure

mycelium or activated carbon) (Zhang and Yu, 2000).

4.3. Other pure cultures

Although the capacity of white rot fungi to remove

synthetic dyes from waters has been frequently demonstrat-

ed the search for other dye-decomposing microorganisms

proceeds. Pure cultures other than white rot fungi have also

found application in the decolorization of synthetic dyes.
The potential of fungi from marine habitats to degrade

synthetic dyes (Azure B, Brilliant Green, Congo Red,

Crystal Violet, Poly-R, Poly-B, Remazol Blue R) has been

revealed (Raghukumar, 2000). Reactive azo dyes have been

effectively removed from water by the fungus Aspergillus

foetidus. However, the measurements indicated that the dyes

were not decomposed, they were only adsorbed in the

fungal biomass (Sumathi and Manju, 2000).

The ability of a Kurthia sp. to decolorize Magenta,

Crystal Violet, Malachite Green, Pararosaniline and Bril-

liant Green has been reported (Sani and Banerjee, 1999).

Pure culture of Bacillus subtilis can degrade p-amino-

azobenzene under anoxic conditions, producing aniline

and p-phenylenediamine as main decomposition products

(Zissi and Lyberatos, 1996). The biodegradation of anthra-

quinone dyes by B. subtilis in industrial wastewater was

also observed. The first step of biodegradation was the

reduction of dyes to the leuko form (Itoh et al., 1993). It

was reported that B. subtilis could decompose the triphe-

nylmethane dye Crystal Violet at low concentrations below

7.10� 6 mol/l, while Escherichia coli was ineffective. The

main decomposition product was identified as 4,4V-bis(di-
methylamino) benzophenone (Yatome et al., 1991b). The

capacity of Pseudomonas strains for the decolorization of

various dyes has also been studied in detail (Yu et al.,

2001). The azo dyes (Acid Violet 7, Acid Red 151 and

Reactive Black 5) were degraded at higher extent (>90%)

than Indigo Carmin, Acid Red 183 (chromium complex)

and antraquinones (Reactive Blue 2 and Acid Green 27). It

has been demonstrated that P. mendocina could effectively

decolorize Methyl Violet in textile wastewater, with the

use of a fixed-film reactor (Kanekar and Sarnaik, 1995;

Kanekar et al., 1996). Decolorization of wastewaters con-

taining reactive azo dyes was achieved by a culture of the

bacteria P. luteola. Bacteria reduced the azo bond in Red G

and biodegraded the other dyes (Hu, 1994). The capacity

of Klebsiella pneunomoniae to decolorize Methyl Red

under aerobic conditions was compared with that of

Acetobacter liquefaciens in another study and the higher

activity of K. pneunomoniae has been demonstrated (Wong

and Yuen, 1996). It has been found that the sulfate

reducing bacteria Desulfovibrio desulfuricans can also

decolorize Reactive Orange 96 and Reactive Red 120

under anaerobic conditions (Yoo et al., 2000).

Food-borne bacteria are also capable for the reduction of

dyes. The reduction of seven redox dyes by 13 food

spoilage bacterial strains was determined. The results clearly

show that the rate of reduction markedly varies among dye/

organism pairs, proving the different reduction capacity of

bacteria and the different sensitivity of dyes to reductases

(Learoyd et al., 1992).

The biodegradation of azo dyes by the algae (Chlorella

pyrenoidosa, C. vulgaris and Oscillatoria tenuis) has been

also assessed. According to the data, the azo reductase of the

algae is responsible for degrading azo dyes into aromatic

amines by breaking the azo linkage. In addition, the algae
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can play a direct role in degradation of azo dyes (Liu and

Liu, 1992).

The application of microorganisms for the biodegrada-

tion of synthetic dyes is an attractive and simple method.

Unfortunately, the majority of dyes are chemically stable

and resistant to microbiological attack. The isolation of new

strains or the adaptation of existing ones to the decompo-

sition of dyes will probably increase the efficacy of micro-

biological degradation of dyes in the near future.
5. Enzymatic decomposition of synthetic dyes

The character of enzymes and enzyme systems in micro-

organisms that are suitable for the decomposition of dyes

has been extensively investigated. Effort has been devoted

to the separation, isolation and testing of these enzymes.

Exact knowledge of the enzymatic processes governing the

decomposition of dyes is important in the environmental

protection both from theoretical and practical points of view.

Lignin peroxidase isoenzymes were isolated from P.

chrysosporium and purified by chromatofocusing. The ac-

tivity of isoenzymes towards decoloring triphenylmethane

dyes, heterocyclic dyes, azo dyes and polymer dyes was

compared with that of a crude enzyme preparation. Opti-

mum pH values for the decolorization of dyes by various

isozymes were markedly different. According to the results,

the decomposition capacity of crude enzyme preparation
Table 2

Improvement of decolorization activity of organisms by interspecific transfer of g

Organisms

Donor Acceptor

Prokaryotes

Clostridium perfringens Escherichia coli

Bacillus sp. E. coli

Rhodococcus sp. E. coli

Caulobacter subvibrioides E. coli

Xenophilus azovorans E. coli

Pseudomonas luteola E. coli

E. coli Sphingomonas

xenophaga

Agrobacterium rhizogenes Mentha puligeum

Eukaryotes

Geotrichum candidum Aspergillus oryzae

Ceriporiopsis subvermispora A. nidulans

C. subvermisopra A. oryzae

Coprinus cinereus Saccharomyces cerevisiae

C. cinereus A. oryzae

Coriolus versicolor Nicotiana tabacum

Phanerochaete chrysosporium A. nidulans

P. chrysosporium A. oryzae

Pycnoporus cinnabarinus Pychia pastoris

P. cinnabarinus A. niger

Pleurotus sajor-caju P. pastoris

Trametes versicolor S. cerevisiae

T. versicolor P. pastoris

T. versicolor P. pastoris

Armoracia rusticana S. cerevisiae
and purified isoenzymes showed marked differences while

variations in the structure of dyes exerted slight influence

(Ollikka et al., 1993). Horseradish peroxidase has been

successfully employed for the decomposition and the pre-

cipitation of azo dyes. The degradation rate was dependent

on the pH (Bhunia et al., 2001). Another study revealed that

the enzymes of white rot fungus degraded Crystal Violet via

N-demethylation (Bumpus et al., 1991). Interestingly, lignin

peroxidase from B. adusta showed very low degradation

capacity towards azo dyes and phthalocyanine dyes. How-

ever, veratryl alcohol considerably increased the decompo-

sition rate (Heinfling et al., 1998). Similar investigations

proved that pure laccase was also unable to decolorize

Remazol Brilliant Blue R but the decoloration rate was

facilitated by the presence of a mediator (violuric acid)

(Soares et al., 2001).

The employment of enzyme preparations shows consid-

erable benefits over the direct use of microorganisms.

Commercial enzyme preparations can be easily standard-

ized, facilitating accurate dosage. The application is simple

and can be rapidly modified according to the character of

the dye or dyes to be removed.
6. Future trends

The overwhelming majority of the current publications in

the field of the removal of synthetic dyes from waters has
enetic elements

Function References

Azoreductase Rafii and Coleman (1999)

Azoreductase Suzuki et al. (2001)

Azoreductase Chang and Lin (2001)

Azoreductase Govind et al. (1993)

Azoreductase Blumel et al. (2002)

Azoreductase Chang et al. (2000)

Flavin reductase Russ et al. (2000)

Tolerance to R-478 Strycharz and Shetty (2002)

Peroxidase Sugano et al. (2000)

Peroxidase Larrondo et al. (2001)

Peroxidase Larrondo et al. (2001)

Laccase Cherry et al. (1999)

Laccase Schneider et al. (1999)

Peroxidase Iimura et al. (2002)

Peroxidase Larrondo et al. (2001)

Peroxidase Larrondo et al. (2001)

Laccase Otterbein et al. (2000)

Laccase Record et al. (2002)

Laccase Soden et al. (2002)

Laccase Larsson et al. (2001)

Laccase O’Callaghan et al. (2002)

Laccase Hong et al. (2002)

Peroxidase Morawski et al. (2001)
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been dealing with the various aspects of the application of

microbiological methods and techniques, with the search for

new microorganisms providing higher decomposition rates

and with the elucidation of the principal biochemical and

biophysical processes underlying the decolorization of dyes.

This trend unambiguously proves the decisive role of

microbiological processes in the future technologies used

for the removal of dyes from waters.

The widespread application of combined techniques

using microbiological decomposition and chemical or phys-

ical treatments to enhance the efficacy of the microbiolog-

ical decomposition can be expected in future.

Some new results indicate that gene manipulation; the

creation of recombinant strains with higher biodegradation

capacity will be applied in the future (Table 2). The cloning

and expression in E. coli of an ’azoreductase’ gene from

Clostridium perfringens (Rafii and Coleman, 1999), from a

Bacillus sp. (Suzuki et al., 2001), from Pseudomonas

luteola (Hu, 1994) have been reported. Furthermore, the

feasibility of the use of a recombinant E. coli strain,

harboring azo-dye-decolorizing determinants from Rhodo-

coccus sp. (Chang and Lin, 2001), and recombinant Sphin-

gomonas sp. (Russ et al., 2000) for the decolorization of dye

wastewater has been demonstrated. The exoenzymes of

white-rot fungi have also been objects of genetic engineer-

ing. The laccase of various filamentous fungi was success-

fully transmitted into yeast. These manipulations enhanced

the capacity of microorganisms to decolorize synthetic dyes.

The expression of oxidases from higher plants augmented

the catabolic potential of microbes (Haudenschild et al.,

2000; Morawski et al., 2001) and in turn microbial genes

straightened the tolerance of higher plant to Poly R-487

(Strycharz and Shetty, 2002; Iimura et al., 2002). Polymeric

dye-tolerant plants may be useful in phytoremediation

because they could provide a rhizosphere that was suitable

for colonization by microbes that are efficient degraders of

aromatic structures. The plant derived compounds can

induce production of fungal redox enzymes (Curreli et al.,

2001). Reductive cleavage of the azo bond dissipates the

electron deficiency of the aromatic nuclei so that the

aromatic amino compounds generated may be subject to

subsequent oxidation and mineralization. The C-hydroxyl-

ation of aromatic rings by mammalian monoxygenases

facilitates subsequent microbial degradation. Human cyto-

chrome P450 enzymes are now routinely expressed as

recombinant proteins in many different systems (Gillam,

1998; Sakaki and Inouye, 2000). The capacity of such

recombinants to catabolize dyes has been tested (Stiborova

et al., 2002). It is clear that complexity of association

involved in the complete degradation should be increased

with increasing complexity of the chemical structure of

synthetic dyes. The genetically engineered microorganisms

can accomplish degradation of synthetic dyes, which persist

under normal natural conditions. In natural habitats, com-

plex microbial/macrobial communities carry out biodegra-

dation. Within them, a single organism may interact through
interspecific transfer of metabolites. This co-metabolic po-

tential may be complementary so that extensive biodegra-

dation or even mineralization of xenobiotics can occur

(Rieger et al., 2002). In this respect, deterioration of dyestuff

effluents in constructed wetlands with multisite catabolic

potential is a promising possibility. Mobilizing specific

genes, encoding nonspecific multifunctional degradative

sequences, may decisively increase the degradative potential

of natural synthropic community against synthetic dyes. The

use of recombinants that harbor dye-decolorizing determi-

nants from other species can essentially enhance the capac-

ity of waste remediation technologies.
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