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Preface 
We wanted to write a book on communio analysis with practical utility for ecologists. We 

chose to emphasize multivariate techmques for community ecology, because there is a great 
demand for accessible, practical. and current information in this area. 

We hope this book will be.usefu1 for researchers, academicians. and students of community 
ecology. We envision its use as both a reference book and a textbook. By publishing the book as 
a paperback through MjM Software, rather than a major publisher, we hope to keep the price 
reasonable. 

T h s  book shares some of the first author's experience gained from many years of teachng a 
course in community analysis and h s  pmcipation in de~eloping the software package PC-ORD. 
This book is not a manual for PC-ORD - that alrea* eusts. The PC-ORD manual describes 
the mechanics for using the software. along with a \.en- brief statement of the purpose of each 
analytical tool. The current book. in contrast. provides a foundation for better understanding 
community analysis. T h s  book also expands the logic behind choosing one technique over the 
other and explains the assumptions implicit in that decision. We also illustrate many of the 
methods with examples. 

We have tried to write a book for all community analysts, not just PC-ORD users. Many of 
the techniques described in t h s  book are not currently available in PC-ORD. The reader will 
find. however, numerous references to PC-ORD, simply because so many readers will want to 
immediately try out ideas generated from reading this book. 

Because of the need to relate community properties to environmental factors, Part 6 of the 
book deals with newly emerging methods that are well suited for this purpose. Dean Urban 
contributed an overview of the methods of classification and regression trees. The final chapter 
in Part 6 introduces structural equations, a coilstantly evolving body of methods for multivariate 
hypothesis testing that is widely used in many fields outside of the environmental sciences. The 
second author has spent a number of years appraising the value of structural equations and 
introducing these methods to the uninitiated. Our treatment of t h s  topic is brief, but we hope to 
suggest some of the power of structural equation modeling for understanding ecological 
communities. 

Bruce McCune dedicates h s  efforts on tlus book to Edward W. Beals, for h s  insight and 
teachng on many of these techniques, for h s  geometric view of community analysis, and for his 
willingness to look standard practice in the eve. Bruce also feels forever indebted to Paul L. 
Farber and Stella M. Coakley for graciously giving space in their gardens for this project to grow. 

Jim Grace acknowledges his appreciation to his major professor, Bob Wetzel, for giving him 
an example of the power of perseverance and dedication, and to his mother and sister for their 
unwavering support. 

We thank the numerous graduate students in McCune's Community Analysis class. Their 
collective contribution to the book is tremendous. We apologize for subjecting them to variously 
half-baked versions of this document, and we thank them for their patience, corrections, and 
suggestions. 

We also thank the many people who have provided comments, insights, and encouragement 
to Jim Grace during his journey through the world of complex data. 

The manuscript greatly benefited from careful readings by Michelle Bolda, Michael Mefford, 
JeriLynn Peck. and especially Patricia Muir. Selected chapters were improved by Mark V. 
Wilson. Portions of the chapter on cluster analysis were derived from unpublished written 
materials by W. M. Post and J. Sheperd. We thank Amy Charron for the cover design and its 
central graphic. 



CHAPTER 1 

Part 1. Overview 

Introduction 

Who lives with whom and why? In one form or 
another this is a common question of naturalists, 
farmers. natural resource managers, academics, and 
anyone who is just curious about nature. This book 
describes statistical tools to help answer that question. 

Species come and go on their own but interact 
with each other and their environments. Not only do 
they interact, but there is limited space to fill. If space 
is occupied by one species, it is usually unavailable to 
another. So. if we take abundance of species as our 
basic response variable in community ecology, then we 
must work from the understanding that species 
responses are not independent and that a cogent 
analvsis of community data must consider this lack 3f 
independence. 

We confront this interdependence among response 
variables by studying their correlation structure. We 
also summarize how our sample units are related to 
each other in ternls of this correlation structure. This 
is one form of "data reduction." Data reduction takes 
various forms, but it has two basic parts: (1) summari- 
zing a large number of observations into a few num- 
bers and (2) expressing many interrelated response 
variables in a more conlpact way. 

Many people realize the need for multivariate data 
reduction after collecting masses of comnlunity data. 
They become frustrated with analyzing the data one 
species at a time. Although this is practical for very 
simple comn~unities, it is inefficient, awkward, and 
unsatisfving for even moderate-sized data sets, which 
mav easily contain 100 or more s~ecies.  

For example, consider a conlmunih data set 
consisting of 100 sample units and the 80 species 
found in those sample units. This can be organized as 
a table with 100 objects (rows) and 80 variables 
(columns). Faced with the problem of summarizing 
the information in such a data set, our first reaction 
might be to construct some kind of classification of the 
sample units. Such a classification boils down to 
assigning a category to each of the sample units. In so 
doing, we have taken a data matrix with 80 variables 
and reduced it to a single variable with one value for 
each of the objects (sample units). 

The other fundamental method of data reduction is 
to construct a small number of continuous variables 
representing a large number of the original variables. 
This is possible and effective only if the original 
response variables covary. It is not as intuitive as 
classification, because we must abandon the cornfort- 
able typological model. But what we get is the capacity 
to represent continuous change as a quantitative syn- 
thetic variable, rather than forcing continuous change 
into a set of pigeonholes. 

So data reduction is summarization. and summari- 
zation can result in categories or quantitative variables. 
It is obvious that the need for data reduction is not 
unique to community ecology. It shows up in many 
disciplines including sociology, psychology. medicine, 
economics, market analysis. meteorology. etc. Given 
this broad need. it is no surprise that many of the basic 
tools of data reduction - multivariate analysis - have 
been widely written about and are available in all 
major statistical software packages. We can approach data reduction by categorization 

(or classification), a natural human approach to organi- In community ecology, our response variables 
zing conlplex systems, Or we can approach it by usually have distinct and unwelconle properties 
sumnlarizing continuous change in a large number of compared with the variables expected by traditional 
variables as a synthetic continuous variable (ordina- multivariate analyses. These are not Just minor viola- 

tion), The synthetic variable represents the combined tions. These are fundamental problems wlth the data 
variation in a Rroup of response variables, ~~t~ thd  seriouslv weaken the effectiveness of traditional - * 

reduction by categorization or classification is perhaps nlultivariate 

the most intuitive, natural approach. It is the first This book is about how species abundance as a 
solution to which the human mind will gravitate when response variable differs from the ideal, how this 
faced with a complex problem, especially when we are creates problems, and how to deal effectively with 
trying to elucidate relationships anlong objects, and those problems. This book is also about how to relate 
those objects have many relevant characteristics. species abundance to environmental conditions. the 



\.arious challenges to analvsis. and ways to extract the 
niosr inforn1ation from a set of correlated predictors. 

Definition of community 
What is a "cornmunil>" in ccolog!,? The word has 

been used 111311~ different ways and it is iu~likely that it 
will ever be used consistently. Some use "con~munity" 
as a n  abstract group of organisms that recurs on the 
landscape This can be called the itbstract community 
concept. and it usually carries with it an implication of 
a level of Integration among its parts that could be 
called organ~slnal or quasi-organismal. Others. 
including 11s. use the concrete community concept. 
meaning simply the collection of organisms found at a 
specific place and time. The concrete conlmunity is 
formali~ed by a sample unit which arbitrarily bounds 
and coinpartmentalizes variation in species conlposi- 
tion in space and time. The content of a sample unir is 
tllc operational definition of a coinmunity. 

The nard "assemblage" has ohen been used in the 
scnsc of a concrete conlmunity. Not only is this an 
a\\ kward word for a silnple concept, but the word also 
carries unwanted connotations. It implies to some that 
species are independent and noninteracting. In this 
book. we use the term "community" in the concrete 
sense. without any conceptual or theoretical implica- 
tions in itself. 

Why study biological 
communities? 

People hi~ve been interested in natural communi- 
ties of organisms for a long time. Prehistoric people 
(and Inan! animals. perhaps) can be considered coni- 
munity ecologists, since their ability to survive depend- 
ed in part on their ability to recognize habitats and to 
understand some of the environnlental in~plications of 
species the! encountered. What different~ates commu- 
niry ccolog) as a scientific endearor is that we 
svs~ematically collect data to answer the question 
"why" in rhe "who lives with whom and why." 

Anotlier fundamental question of community 
ecology is "What controls species diversity?" This 
springs from the more basic question, "What species 
are here?" We keep backyard bird lists. We note 
which species of fish occur in each place where we go 
fishil~g. We have mental inventories of our gardens. 
Inventorying species is perhaps the most fundamental 
acti\ ir! in com~nunity e c o l o ~ ~ .  Few ecologisrs can 
reslsl, however. going beyond rllar ro rq to understand 
which species associate with which other species and 
~ 1 1 ~ .  ho\\ the! respond to environmental changes. how 

thev respond to disturbance, and how they respond to 
our attempts to niarl~pulate species 

I t  IS not possible now. nor is it ever likel! 10 be 
possible to make reliable. specific. long-tern1 pred~c- 
tions of comniunih d~namics  for specific siles based 
on general ecological theory. This is not to sa! \ \e 
should not try. But. we face the same problenls as 
long-term bveather forecasters. Most of our predicr~\e 
success will come from short-term predictions appl! ing 
local knowledge of species and environment to specific 
sites and questions. 

Purpose and structure of this 
book 

The primary purpose of this book is to describe the 
most important tools for data analysis in colninu~lir! 
ecology. Most of the tools described in this book can 
be used either in the description of conlmunities or rhe 
analysis of ~nanipulative csperinlents. The topics of 
community sampling and nleasuring diversir! each 
deserve a book in themsel\es. Rather than complerely 
ignoring those topics, we briefly present some of rlie 
most i~nportant issues relevanl to conlmunity ecology. 
Explicitly spatial statistics as applied to community 
ecology likewise deserve a whole book. We excluded 
this topic here. except for a few tangential references. 

Each analytical method in this book is described 
with a standard format: Background. When to use it. 
Ho\v it works, What to report. Examples. and Varia- 
tions. The Bacliground section briefl! describes the 
development of tlie technique. with emphasis on the 
development of its use in community ecology. It also 
describes the general purpose of the method. When to 
use it describes more explicitly tlie conditions and 
assumptions needed to apply the method. Knowing 
How it worlis \+.ill also help most readers appreciate 
when to use a particular method. Depending on rlie 
utility of the method to ecologists. the level of detail 
varies from an overview to a full step-by-step descrip- 
tion of the method. What to report lists the metliodo- 
logical options and key portions of the numerical 
results that should be given to a reader. It does nor 
include items that should be reported from any 
analysis, such as data transforn~ations (if any) and 
detection and handling of outliers. Examples provide 
further guidance on how to use the methods and \\hat 
to report. Vitriations are available for mosr lech- 
niques. Describing all of them ~vould result in a much 
more expensive book. Instead. we emphasi~e  the most 
useful and basic techniques. The references in each 
section provide additional information about the 
variants. 





Chapter 2 

Table 2.1. ExampIes of objects and attributes in ecological matrices 

Type of Study Objects Attributes 

Community analysis Sample plots Species 
Stands Molecular markers 
Community types Structures or functions 

Environmental factors 
Time of sample 

Niche-space analysis Individuals Resources used or provided 
Populations Environmental optima, limits. or responses 
Species Physicochemical characteristics of resources 
Guilds Habitats 

Behavioral analysis individuals 
Populations 
Species 

Activities 
Response to stimuli 
Test scores .-. 

Taxonomic analysis Individuals (specimens) Morphological characters 
Populations Nucleotide positions 
Species Isozyme presence 

Secondary chemicals 

Functional or guild Individuals Life history characteristics 
analysis Populations Morphology 

Species Ecological functions 
Higher taxa Ecological preferences 

Table 2.2. Examples of molecular markers used in lieu of species in community ecology. BIOLOG = carbon 
source utilization profiles: cpDNA = chloroplast DNA: FAME = fatty acid methyl esters: LH-PCR = length 
heterogeneity polymerase chain reaction: T-RFLP = terminal restriction fragment length polymorphisms. 

Orga~lisnls Kind of marker Reference 

n~icrobial con~n~unities BlOLOG n~icroplates Ellis et al. 1995, Garland & 
(fi~ngal or bacterial) Mills 1991, Myers et al. 

200 1. Zak et al. 1994 

fine roots of trees cpDNA. restriction fragments Bn~nner  et al. 2001 

soil microbes FAME Cavigelli et al. 1995; 
Schulter & Dick 2000. 200 1 

soil bacteria FAME and LH-PCR of 16s rDNA Ritchie et al. 2000 

biosolids in wastewater 
treatment 

aquatic microbes 

FAME 

LH-PCR of 16s rDNA 

Werker & Hall 2001 

Bernhard et al. 2002 

nitrogen-fixing microbes nitrogen fixing gene sequences (nifH) Affourtit et al. 2001 

mycorrhizal fine roots and soil phospholipid fatty acids 
lnicrobes 

Myers et al. 200 1, Wiernken 
et al. 200 1 

microbes in soil T-RFLP of 16s rDNA and 16s rRNA- Buckley & Schmidt 200 1 
targeted oligonucleotide probes 



Overview 

Analyzing the data matrix 
See Appendix 1 for conventions of simple matrix 

notation and matrix operations. In the data matrix, in 
its normal orientation (matrices A and E, Table 2.3), 
rows represent sample units, objects, entities, or cases. 
Columns represent variables or attributes of the 
objects. The analysis can take several general forms, 
defined below: 

Normal analysis: The grouping or ordering of objects 
(Tables 2.1 and 2.4). 

Transpose analysis: The grouping or ordering of 
attributes (Table 2.1). The matrix can be 
transposed. then analyzed (Table 2.4). 

Q route: Arriving at a grouping or ordering of either 
objects or attributes by analyzing a matrix of 
relationships among objects. For example, with a 
matrix of sample units by species, we would 

analyze a matrix of relationshps among sample 
units. 

R route: Arriving at a grouping or ordering of either 
objects or attributes by anal!-zing a matrix of 
relationships among attributes. For example, 
with a matrix of sample units by species. we would 
analyze a matrix of relationships among species. 

The choice between Q route and R route is usually 
inherent in the choice of analytical method. For 
example, a normal analysis with Bray-Curtis ordina- 
tion is always by the Q route. A few methods, 
however, can be done by either route. For example, 
identical results from principal components analysis 
can be obtained for a normal analysis either by the Q 
route or the R route. 

Table 2.3. Example data matrices in community ecology. A: 15 sample units (plots) x 8 species: each species 
indicated by a 4-letter acronym. Each element represents the abundance of a species in a plot. E: 15 sample units 
x 3 environmental variables. For the first two variables each element represents a measured value. while the third 
variable, "Group" represents assignments to two treatments and a control group. S: 3 ecological traits x 8 species. 
Each element represents the characteristic value for an ecological trait for a given species. 

Plot01 
Plot02 
Plot03 
Plot04 
Plot05 
Plot06 
Plot07 
Plot08 
Plot09 
Plotl 0 
Plotl I 
Plotl 2 
Plotl 3 
Plotl 4 
Plotl 5 

MaxAge 
RootDpth 
Fecundity 

A Species E Environmental Variables 

ALSA CAHU CECH HYDU HYEN HYlN HYVl PLHE 
1 51 0.11 0 0.35 0.21 0 0 0.24 
1.73 0 0 0.25 0.23 0 0 0.53 
1.20 0 0.02 0.03 0.05 0 0 0.05 
1.42 0 05 0 0.99 0.13 0 0.09 0.08 
1 . I 4  0 0 0.14 0.17 0 0 0 
1.39 0.07 0.07 0 0 0 0 0.04 
2.26 0.11 0.03 0.02 0 0 0 0.07 
1.01 0.32 0.03 0 0 0 0 0.48 
1.09 0.09 0 0 0 0 0 0 
2.90 0 0.04 0.19 0.71 0.30 0.15 0.39 
3.22 0.03 0.06 0 0.56 0.41 0 0.63 
3.42 0.12 0 0.38 0.26 0 0 0.06 
2.55 0.08 0 0 0.27 0.43 0.08 0.15 
2.72 0.13 0 0.28 1.11 0 0.11 0 
3.01 0 0 0.28 0.67 0.86 0 0.25 

Elev Moisture Group 
31 1 9 1 
323 17 1 

12 10 1 
15 8 1 

183 12 1 
12 26 2 
46 29 2 

220 19 2 
61 22 2 
43 34 2 

256 21 3 
46 17 3 
76 22 3 

488 36 3 
274 2 3 3 

S 





Overview 

Metaobjects -+ Species Environment Species SU 

-1 traits Scores 

Sample 

units (SU) 

Species 

traits 

Environment 

Species scores 

Figure 2.1. The complete community data set. Bold uppercase letters represent different matrices. 
Calculated matrices are in parentheses. Sample unit (SU) scores and species scores are based on 
ordination or classification of sample units or sp5cies. The prime mark (') indicates a transposed matrix 
(see Appendix 1). 

The difference between the Q route vs. R route is 
one of mechanics. There are. however. very important 
conceptual differences between the normal analysis and 
transpose analysis. Those differences have not been 
thoroughly compared and explained in the literature. 
Table 2 . 1  contrasts normal and transpose analyses. 
based on the literature (e.g., Clarke 1993, p. 1 18) and 
our own experience. Understanding these differences 
requires some experience with community analysis, so 
\ye reconlnlend that beginners return to this table as a 

. 

reference. 

A 

S 

Community data sets 

(A'E)' 

(Y) 

(AS') E 

(SA'E) 

Community data sets take many forms. but most of 
them can be fit into a concept of basic matrices and 
their relationships (Fig. 2.1, Tables 2.5 & 2.6). One 
can thnk of the sample, species, environment, and 

(X) 

ecology. In other words, a sample is a metaobject 
conlposed of the objects that are sample units. The 
environment is a metaobject conlposed of environ- 
mental variables. 

You can measure or calculate a matrix for each 
pair of metaobjects (Fig. 2.1, Table 2.5). Furthermore. 
you can represent each metaobject as points in a space 
defined by another metaobject (Table 2.6). In other 
words. sample units can be represented as points in 
species space and vice-versa: if this concept is nor 
immediately clear, we hope it will become clear when 
distance measures are introduced (Ch. 6). Similarl,. 
species can be represented as points in environmental 
space, environmental variables can be represented as 
points in species space, etc. Although not all of these 
combinations are conceptually appealing, all are 
mathematically possible. 

species traits as the basic "metaobjects" in community 



Chapter 2 

Table 2.5. Sources and types of multivariate ecological data used in studies of species composition. 
Categorical (= nominal) variables are qualitative rather than quantitative, indicating membership in one 
of two or more categories. 

Matrix Matrix Categorical* Usual data source 
Fullness vs. ordinal 

AS' 

A'E 

SA'E 

Species composition 

Environment 

Species traits 

Sample ordination or group 
membership 

Species ordination or group 
membership 

samples x traits 

species x environment 

traits x environment 

sparse* * 
full 

full 

full 

full 

full 

full 

full 

field 

field 

fieldlliterature 

calculated 

calculated 

calculated*** 

calculated* * * 
calculated* * * 

* Categorical (nominal) variables cannot be used in calculating new matrices. unless they are converted to a 
series of binary (01 1) variables. 

** A sparse matrix contains many zero values. 
*** Rare in the literature. , .  -- . 

Table 2 6 Matrices required for representing ecological entities in spatial 
coordinates defined by other sets of ecological vanables You can represent any 
of these enhties In any of the coorcllnate systems All are appropriate for 
multivariate analysis The prime mark (I) indicates a transposed matrix (see - 
Appendix 1) 

Coordinate system 

Entities Species Samples Environment Species 
traits 

Species A' A'E S' 

Samples A E AS' 

Environment (A'E)' E ' (SATE)' 

Species traits S .  (AS')' SA'E 



Overview 

The most common data sets are either the matrix 
A (sample units in rows, species in columns) or the 
combination of matrices A and E (sample units in 
rows. environmental variables in columns). The matrix 
S is rarely used, but may be of prima? interest where 
the focus is on variation in life history strategies or 
traits as it relates to environments or communities. 
lnterest has increased in using S as a basis for assign- 
lng species to "functional groups." 

The matrices X and Y are very commonly used. 
Typically X has only a few columns, each column 
representing placement on an ordination axis (the 
sample unit "score"). Alternatively, X may contain a 
categorization of the sample units into community 
tvpes. Similarly, Y may contain species scores on 
ordination axes andlor a categorization of species into 
species types. 

The other matrices are rarely used, but can be 
produced by matrix multiplication. For example, 
suppose you are doing a standard community analysis 
on species conlposition and environmental data. Your 
main matrix contains the abundance of each species in 
sach plot and your secondary matrix contains the 
sn\.ironmental parameters for each plot. The most 
common analytical approach is to examine the rela- 
tionships among plots in species space. That is, plots 
are grouped, ordered, or otherwise arranged by their 
similarities in species composition, A. Relationships 
bet\veen the environmental variables, E and the com- 
munity patterns are then sought. The purpose of this 
procedure is to see how species distributions are related 
to environmental factors. 

The species x environment matrix 
Why not examine species directly in environmen- 

tal spacea? First you would need a matrix of species 
scores for each environmental variable. One way to 
produce such a matrix is to multiply your main matrix, 
-4. by vour environmental matrix, E. (See Appendix 1 
for matrix nlultiplication.) Actually, to make the 
matrix algebra come out right, you must postmultiply 
h e  transpose of the main matrix (rows and colunlns 
m-itched) by the environmental matrix: 

species x environment matrix = A'E 

(The transpose of A is indicated by A'; see Appendix 1 
for elementary matrix algebra.) The resulting matrix 
contalns scores for each species on each environmental 
\-anable. Thls matrix can now be summarized further 

by analyzing its correlation structure (using correlation 
in the broad sense). A good example of this approach 
is in Brazner and Beals (1997). 

Serious potential pitfalls in calculating A'E must 
be carehlly avoided. For example, all of the environ- 
mental variables are included, whether or not they are 
related to species distribution and abundance. By 
multiplying the two matrices you implicitly assuine 
that all of the environmental variables are important. 
Brazner and Beals reduced this problem by first 
restricting the environmental variables to those shown 
to be important in relation to an ordination of sample 
units in species space. 

It is important to give some thought to prior data 
transformations (Ch. 9). Because matrix multiplication 
involves adding the products of many numbers. the 
resulting numbers can become very small or very large. 

A worse problem is that the resulting matrix can 
be nearly meaningless if careful attention is not paid to 
scaling your variables. For example, if one of the 
environmental variables ranges from 1000 to 3000 and 
the other environmental variables range from 0 to 1, 
the large numbers will completely obscure the small 
numbers. resulting in a matrix dominated by a single 
environmental variable. This problem could be 
avoided by standardizing or relativizing the variables 
in the two matrices, so that each variable is given equal 
weight (see Chapter 9). Brazner and Beals (1997) 
relativized all of their environmental variables, 
expressing each data point as the number of standard 
deviations away from the mean for that variable. 

If you do this kind of matrix n~anipulation, it is 
important that you examine the resulting matrices 
critically to be sure they contain what you think they 
contain. See Greig-Smith (1983 pp. 229 and 278) for 
further cautions about ordinations based on environ- 
mental data. 

The sample unit x species traits matrix 
Given the standard community matrix, A, and a 

matrix of species traits; S, one can multiply these to 
yield a matrix of sample units by species traits: 

sample units x species traits = AS' 

Analysis of this matrix (e.g., Feoli & Scimone 1984, 
Diaz et al. 1992, Diaz & Carbido 1997, Diaz et al. 
1999, Diaz Barradas et al. 1999, Lavorel et al. 1999, 
Landsberg et al. 1999) would reveal how sample units 
are related to each other in terms of species traits. One 
might wish to contrast the blend of species traits in 
different groups of sample units (e.g., treatment vs. 



control). For example. Lavorel et al. (1999) analyzed 
traits from AS'. one trait at a time, comparing 
experimental treatments with univariate ANOVA. Or 
one might wish to study how species traits covary in a 
sanlple along a gradient. For example, Diaz et al. 
(1999) used ordination to extract the main gradients 
(X) from the AS' matrix. then analyzed the 
relationship of those gradients to climate and 
disturbance (E). 

If A and S are binary (A contains presence- 
absence data and S specifies I=yes or O=no for each 
trait for each species). then AS' gives the total number 
of species in a sample unit with a given trait. If either 
A or S or both are quantitative, the elements of the AS' 
matrix can be considered to represent the abundance or 
magnitude of a particular trait in a particular sample 
unit. If S is quantitative and different traits are 
~neasured on different scales (the usual case), then the 
traits must be relativized in some way (for example. as 
a proportion of the maximum value or as number 9f 
standard deviations away from the mean; see Chapter 
9). 

Functional groups 
We can add another matrix, G,  that assigns 

species to functional groups. The groups may be 
different states of a single categorical variable. or the 
groups may be multiple variables that are not neces- 
sarilv mutually exclusive. For example. the Common 
Loon could be assigned to both the groups "divers" and 
"predators." 

Traits Functional 
groups 

thought of as a surnmw of S. where G must contain 
categorical or binary variables rather than measure- 
ment variables. If G is derived from S b! multi\.ariate 
analysis (Pillar 1999a), and different traits are . 
measured on different scales (the usual case). then the 
traits must be relativized in some way. This can 
happen as part of the analysis itself (e.g., the choice of 
correlation coefficients in the cross-products matrix for 
PCA: see Chapter 14) or as a relativization prior to 
analysis (see Chapter 9). 

The functional group matrix, G,  can be analyzed 
in relation to a community sample, A, and environ- 
mental variables. E. Kleyer (1999), for example. first 
derived G by a cluster analysis of S.  [n this case. G 
contained a single variable. representing groups of 
species with similar traits. The number of individuals 
in each species group in each sample unit is 
conveniently calculated by first separating the group 
membership variable in G into a series of mutually 
exclusive binary variables representing membership or 
not (110) in each species group, then calculating AG' 
(analogous to AS'). This yields the representation of 
each species group in each sample unit. Because A 
consisted of counts of each species in Kleyer's case, 
each element of AG' specified the number of 
individuals of each functional group in each sanlple 
unit. Multivariate analysis of the AG' ~ilatrix is 
possible, but in this case, Kleyer used Gaussiail logistic 
regression to fit the probability of co-occurrence of all 
species in a group along a gradient plane of resource 
supply and disturbance intensity. 

The traits x environment matrix 
Calculating the traits x environment matrix . 

SA'E. is one solution to the "fourth-corner problem" 
(Legendre et al. 1997). This refers to the fourth corner 
(lower right) in the square arrangement of matrices in 
Figure 2.1. This matrix can be used to represent ho\v 
species traits (morphological, physiological. phylo- 
genetic. and behavioral) are related to habitat or site 
characteristics. Three data matrices are required: S.  A. 
and E. 

With presence-absence species data and nominal 
variables in S and E. then SATE is a contingenc! table. 
Legendre et al. (1997) pointed out that one cannot use 
a G statistic to test for independence of traits and 
environment in this contingenc? table. because several 

Figure 2.2. Derivation of functional groups, G ,  from a species are obsened in each sample urut. This makes 
species trait matrix, S.  the obsenations norundependent The!- propose a per- 

mutation method for staumcal significance. 
Functional groups can be assigned a priori or \Vith quanutatne data all of the cautions about 

based on an analysis of the trait matrix. S. G can be calculating .4'E q p h  kre as \bell. Carefull! done. the 
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Table 2.7. Conlparison of a focal species-centered approach to a general habitat-centered approach for analvsis of 
a focal species in relation to its habitat. F, H: and S are defined in Figure 2.3. 

Focal species-centered approach General habitat-centered approach 

Goal Predict focal species (i.e., predict 
presence or abundance or performance of 
focal species based on habitat variables) 

Matrix concepts F = f(subset of H) 

Example tools Logistic regression 

Multiple regression 

Discriininant analvsis 

Advantages Better predictive power for focal species 

Disadvantages Little or no description of habitat 
variation in general. 

Not applicable to other focal species. 

Cautions Need to evaluate reliability of predictions. 
preferably using an independent data set. 
an unused subset of the data set. or a 
resampl ing procedure 

Describe variation in available habitats. 
then describe position of the focal species 
within that variation. 

Derive S from H, then see how F is 
related to X 

Extract primary gradients X in habitat by 
ordination or classification of habitat 
matrix H. Overlay F on this ordination 
and calculate correlations between F and 
X. 

Better description of habitat variation in 
general. 

Potentially applicable to a wider range of 
species. 

Worse predictive power for focal species. 

Need to carefully consider (1 )  relative 
weights of variables that are on different 
scales and (2) which variables to include. 
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Community Sampling and Measurements 

Sampling is the process of selecting objects of 
study from a larger number of those objects (the 
population). Each object is then subjected to one or 
more measuren~ents or observations. Although the 
word "sampling" is often used in a broad sense to 
~ncludc a discussion of the measurements. the two 
concepts are distinct. 

Tliis book does not include sampling theory. nor 
does it contain a comprehensive survey of sanlpling 
methods. It does include a few sampling basics and a 
discussion of some recurrent issues in com~nunity 
sampling and measurement. 

To be perfectly clear, we will use the word 
"sample" to refer to a collection of sa~npling units or 
sample units (SUs). In casual conversation. a "sample" 
is often used to mean a single sample unit or a 
collection of sample units. 

Measures of species abundance 
1. Cover is the percentage of some surface covered 

by a vertical projection of the perimeter of an organ- 
ism. Note that when summed for a given sample unit, 
percent cover can exceed 100'%, because of nlultiple 
lqering.  Cover excels as a n  abundance measure in 
speed. repeatabilih. comparability between different 
estimatio~l methods. and because it can be measured 
nondestructively. Conversion to biomass estimates is 
possible but requires additional data collection for 
calibration (e.g., Forman 1969, McCune 1990). C o ~ ~ e r  
is the most con~n~only  used abundance measure for 
plants. 

Percent cover is often scored as cover classes. 
rather than estimates to the nearest percent (allhough 
these too are classes. just much narrower). Using co\,er 
classes rather than attempting to estimate cover to the 
nearesl one percent tends to speed sampling and data 
entry. Co\,er classes do not pretend to achieve more 
accuracy than is realistic. Furthermore, they yield 
statistical results that are similar to unclassed data, 
provided that the classes are not too broad (Sneath & 
Sokal 1973). Cover classes have been shown to be 
effecti\,e surrogates for direct biomass measurement 
(Hern~y 1988. McCune 1990) and detectors of 
c o n ~ n ~ u n i t  changes through time (Mitchell et al. 
1988). Altllough most analysts treat cover classes as if 

they were continuous data, sor~le methods are available 
that explicitly recognize their ordered. multistate na- 
ture (e.g., Guisan & Harrell 2000). A disad\,antage of 
cover classes is the potential for consistent differenccs 
(bias) between observers (Sykes et al. 1983). 

The most useful and most commonly used co\,er 
classes are narrow at the extremes and broad i n  t l ~ c  
middle. These approxi~nate an arcsine-squareroot 
transformation. which is generally desirable for pro- 
portion data. The cover classes can thus be anal!,~cd 
directly, improving normality and homogeneig. of 
variances anlong groups without converting to percent- 
ages. Unless transformed (Chapter 9). multivariate 
analysis of raw percent cover data tends to e~nphasize 
the dominant species at the expense of species \\.ith 
medium to low abundance. Cover class data seldo~n 
have this problen~. If. hocvever. cover classes are 
transformed into midpoints of the ranges. then the 
problem reappears. 

Many cover class schemes have been devised. 
Some of the most common and/or logical are listed in 
Table 3.1. Note the high degree of similarity among 
the systems. 

Frequency is the proportion (or percentage) or 
sample units in which a species occurs. The best traits 
of frequency are that it is relati\,ely sensiti1.c to 
infrequent species and it is fasl to score in the field. 
Frequency measures should. however, generally be 
avoided because frequency, unlike cover or density. is 
highly dependent on the size of the sample unit. 
Because there is little standardization in size of sample 
units. use of frequent), measures restricts opportunities 
for con~parison with other studies. 

Frequency does. hocvever. carry information about 
spatial distribution. For exaniple. consider two popula- 
tions of equal densih. one highly aggregated and the 
other dispersed. The second population is more 
frequent. 

If individuals are randomly located then frequency 
is an asymptotic function of density (Fig. 3.1). A little 
known fact: an average density of two individuals1SU 
gives about 86?/u frequency. Why? Wliar ~~nderlqing 
distribution is this based on?  (Answer: the Poisson 
distribution, the same distribution as is used to describe 
the number of chocolate chips in chocolate chip 
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Table 3.1. Cutoff points for cover classes. Question marks for cutoff points represent classes that are not exactly 
defined as percentages. Instead. another criterion is applied. such as number of individuals. Cutoffs in parenthe- 
ses are additional cutoffs points used by some authors. 

Name Cutoff points, % Notes References 

Arcsine squareroot 0 1 5 25 50 75 95 99 

Braun-Blanquet 0 ? '7 5 25 50 75 

Hult-Sernander 0 (.02 .05 .10 .lY .39 .78) 
(modified) 1.56 3.13 6.25 12.5 25 50 

75 ... 

Designed to approximate an 
arcsine squareroot 
transformation of percent 
cover. 

Uses two categories of low 
co\,er not exactly defined as , 
percents. Commonly used in 
Europe. 

Widel! used in western U.S. in 
habitat-typing efforts by U.S. 
Forest Service and many other 
studies. 

One category of low cover not 
exactly defined as percent. 

Based on successive halving of 
the quadrat. 

Muir &L McCune (1987, 
1988) 

Braun-Blanquet (1965). 
Mueller-Dornbois & 
Ellenberg (1974) 

Krajina (19 33): Mueller- 
Dotnbois &L Ellenberg 
(1974) 

Oksanen ( 19 76) 

cook~es.) As SU size increases, frequency loses sensl- 
tivity and plateaus at 100%. 

Counts (density). Density is the number of 
individuals per unit area. Dens~ty 1s not dependent on 
size of the SU. Relative density of species J is the 
proportion of the p species that belong to species j :  

2 Density is useful if the target organisms have readily 

DENSITY (individuals/SU) distinguishable individuals (these may be ranlets of 
clonal plants) and the individuals do not vary much in 
size. Density is of questionable utility when applied to 

Figure 3.1 Expected percent frequency of organisms that v a y  greatly in size. such as trees. 
presence in sample units (SU) as a filnctioll unless applied to restricted size classes (e.g.. seedling 
of density (individuals/SU). density). 

Biom;~ss. Biomass values are usually relatively 
destructive and tedious to obtain directly. Most often, 
biomass is estimated by regression equations based on 
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more easily measured "predictor" variables. Of course, 
someone at sonletinle had to go through the tedium of 
obtaining data on both the biomass and the predictors. 
Biomass is often chosen as a measure of abundance 
when the functional role of the organisms is important. 
For example. it may be inlportant to estimate available 
forage for animals. 

Basal area is a measure applied to individual trees 
(units usually cn12), then aggregated to the stand level, 
where it is sonletimes referred to as dominance. The 
usual units for stand-level basal area are m2/hectare (or 
ft2/acre historically). We like basal area as a descriptor 
of forests because it is more closely proportional to leaf 
area and foliage mass than are the other common 
measures, such as density or frequency. Thus, we 
would argue that it has more functional significance 
than most other simple descriptors of forest structure. 
See Box 1 for an example description of forest compo- 
sir ion based on individual-tree data. 

Reli~tive measures: Density, frequency, and 
dominance of species mav all be expressed as relative 
proportions. For example, relative density of speciesj 
is the ratio of its density to the overall density, the sum 
of the densities of the p species. These relative mea- 
sures are conln~only expressed as percents, by multiply- 
ing the proportions by 100, for example: 

(1 00 ~ e n s i v , )  
Relative u%rsiv1 % = 

Densi*] 
] = I  

Importance values are averages of two or more of 
the a b o ~ c  parameters. each of which is expressed on a 
relat~ve basis. For example, a measure often used for 
trees in eastern North American forests is: 

IT.% = (Relative frequency + relative dominance + 
relative density) / 3 

where relative dominance is based on basal area. Some 
ecologists feel that that importance values muddle 
interpretation. while others appreciate the simpli- 
fication of several measures into one overall measure of 
abundance. 

The advantage of importance values is that they 
are not ovenvhelnlingly influenced either by large tree 
size (as is relative dominance) or large numbers of 
small trees (as are relative frequency and relative 
density). The inlportance values add to 100 when 
summed across species in a stand. 

The chief disadvantage of importance values is 
that you never know quite what a number represents. 
For example, consider an IV based on relative density 
and relative dominance. The following two species 
have the same lV, yet they will look very different in 
the stand (Table 3.2). 

Table 3.2. Example of identical importance values 
representing different community structures. 

Species 1 Species 2 

Relative Density 42 8 

Relative Dominance 10 44 

Sun1 5 2 5 2 

IV% 26 26 

Presence-absence is a very useful measure in 
large-scale studies. It is also what is recorded in point- 
intercept sampling. In large regional studies or any 
other study in which the heterogeneity of the SUs is 
large, most of the inforination in the data will be 
carried in the presence-absence of species. But 
presence-absence is not useful in detecting more subtle 
differences in more homogeneous areas. For example, 
in a conlparison of old-growth and inanaged second- 
growth forests in Montana, the lichen Alector~a 
sarnlentosa was present in all stands but was 
consistently much more abundant in old growtl~ rhan in 
second growth (Lesica et al. 199 I). 

Size-cliiss d i ~ t i ~  (or age classes or life histon 
stages) can give useful insight into the history and 
future of a species. For example. an ideal "climax" 
species should be well represented in all size classes, 
indicating that the species is reproducing and replac i~~g 
itself at a site. On the other hand, a species that is 
present in only the largest size classes may gradually 
be lost from a population as the large. old indi\-iduals 
die. 

Size-structured populations are sonletinles incor- 
porated into community analysis by treating each s i ~ e  
class (or age class or stage) as a separate "species" in 
the analysis. This has a desirable effect of incorpora- 
ting information that may better integrate life history 
patterns into an  analysis of community patlerns. On 
the other hand, the goals of a study may be sufficiently 
broad that including this additional detail contributes 
little or nothing to the results. 
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Box 3.1. Example of stand description, based on individual tree data from fixed-area plots. The variance- 
to-mean ratio, V/M, is a descriptor of aggregation. values larger than one indicating aggregation and 
values smaller than one indicating a more even distribution than random. The variance and mean refer to 
the number of trees per plot. IV and other measures are defined in the text. 

Raw data for three tree species in each of four 0.03 hectare plots. Each number represents the 
diameter (~111) of an individual tree. 

Species Plot 1 Plot 2 Plot 3 Plot 4 

Carya glabra 2 3 2 2 3 1 
24 

C'orr~ u.5 jlorrda 10 10 12 
10 11 
12 

Quercus alba 13 20 11 10 
17 3 0 3 2 
Ad 

Frequencies. counts, total basal areas, stand densities, and stand basal areas. 

Species Freq. No. BA (dm2) Freq.% Density B A 
Trees Treestha dm'tha 

Catya glabra 3 4 20.0 75 33.3 166.9 

Cornu.sJlorida 3 6 5.6 75 . 50.0 46.4 

Quercu.~ alba 4 8 38.8 100 66.7 323.3 

Totals 10 18 64.4 150.0 536.56 

Relative abundances, importance values, and variance statistics 

Relative Abundance Variance 

Species Frequency Density Dominance IV(%) no. trees VIM 

C'arva glabra 30.0 22.2 31.1 27.8 0.67 0.67 

Cornus, florida 30.0 33.3 8.7 24.0 1.67 1.11 

Quercus alba 40.0 44.4 60.3 48.2 0.67 0.33 

All species 1.00 0.22 

Nunlber of quadrats = 

Empty quadrats - - 
Quadrat size - - 

Area sampled - - 

Average BNtree - - 
BNhectare - - 

Treesthectare - - 

Treestquadrat - - 

4 
0 
0.030 hectares 
0.120 hectares 
3.577 dm2 
5.366 m2/hectare 
150 
4.5 
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Defining the population 
Write down the definition of your population. It 

is in~portant that the population in the statistical sense 
be defined in writing during the planning stages. 
Revise the definition in the field as you encounter 
unexpected situations. Perhaps the clearest practical 
way of defining the population is to make a list of 
criteria used to reject SUs. This list should be reported 
in the resulting publication. For example, one might 
include the sentence, "Plots were selected on southeast 
to west aspects between 1000 and 1500 m in elevation. 
Only stands with the dominant cohort between 70 and 
120 years in age.were included. Rock outcrop, talus, 
and riparian areas were excluded. " 

Homogeneity within sample units. Very often 
we apply a criterion of homogelleity to sample units, 
the idea being that SUs are internally more-or-less 
homogeneous. Typically, sites or "stands" are consi- 
dered to be areas that, at the scale of the dominant 
vegetation, are essentially homogeneous in vegetation, 
environment, and histoq. This is almost always 
applied in a v e v  loose way. One rule of thumb is that 
the leading dominant should vary no more than by 
chance. This could be evaluated by subsampling, b ~ l t  
in practice, homogeneity is usually assessed by eye. 

Placenient of sample units 
An anonymous early ecologist: "The illost 
important decision an  ecologist makes is 
where to stop the car." 

1. Random sampling requires the application of 
two criteria: each point has an  equal probability of 
being included and points are chosen independently of 
each other. 

2. Striltified rilntlom sampling has the additional 
feature that a population (or area) is divided into strata: 
subpopulations (or subareas) with known proportions 
of the whole. Sample units are selected at randoin 
vithin strata. Stratification allows sampling intensity 
to vary anlong different strata, yet you can still calcu- 
late overall population estimates for your parameters. 

3 .  Regular (systematic) si~mpling has sample 
units that are spaced at regular intervals. In most 
cases. the consequences of sampling in a regular 
pattern are not severe unless the target organisms are 
patterned at a scale sinlilar to the distance between 
SUs. It has repeatedly been shown, however, that the 
p-1-alues emerging from hypothesis tests based on 

systematic sampling are NOT accurate (e.g., see 
Whysong and Miller 1987). In many cases. thougll. 
the practical advantages of svste~ilatic sanlpling (say 
with a grid of points) outweigh the rcduction in f ;~ i~ l l  in 
our p-values. One practical advantage is that it is 
usually much easier to relocate systematically placed 
pernialient plots than randomly placed plots. 

4. Arbitrary but without preconceived bias. We 
find this to be an apt phrase for what biologists usually 
do when they are clain~ing "random sanlpling." Uilless 
you are strictly following a randomization scheme that 
is applied to your WHOLE population, you cannot 
really say you are sampling at random. V e v  often we 
try hard not to bias the san~ple but do not carcfi~lly 
randomize. What are the consequences of this'? Surcly 
they depend on the goal of the study. The more 
in~portant it is to make a statement with known error 
about the population as a whole. the more in~portilnl it 
is that sampling be truly random. When describing 
your sampling method, consider calling it "arbitrary 
but without preconceived bias" or "haphazard" instead 
of bending the truth by calling it random sampling if il 

is, in fact. not random. 

5. Subjective. In some cases it makes sense to 
locate samples subjectively, but you should be veq 
cautious about using subjective sampling - it has a 
long and partly unpleasant history. Sampling in Eu- 
rope (especially the Braun-Blanquet school of phytoso- 
ciology) and North America was often based on subjec- 
tively placed SUs, the criteria being whether or no[ 111c 
community was "typical" of a preconceived communit~ 
type. Clearlv. one cannot use such data to make ob.jec- 
tive statements about topics such as the existence of 
continuous vs. discrete variation in communities. 

In other cases, subjectivity is a necessary and inte- 
gral part of a study design. For example, if you wan1 lo 
find or study the most diverse spots in the landscape, 
then it is reasonable to use a subjective \.isual 
assessment of diversity to choose SUs Of coursc. tllc 
price is that you inlmcdiatclj reduce the scopc of 
inference from the study. In this example. you n o ~ ~ l d  
obviously be remiss to use the resulting diversity 
estimates to make a statement about average diversity 
in the landscape as a whole. 

Sources of random digits. Often one needs a 
source of random nunibers in the field. Sonle people 
copy a page from the random nunlbers tables containcd 
in most con~pilations of statistical tables. Some people 
have used a die in a clear container. Random dlgits 
can also be assigned in advance and entered on dilt;~ 
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forms, before going into the field. Fulton (1996) Distance methods. Distance-based methods have 
pointed out that the digital stopwatch built into most been most frequently used for sampling forest structure 
people's watches is a good source of randoni digits, (Cottam & Curtis 1956) as well as for animal popu- 
\vlien the digit appearing in one of the most rapidly lations (Buckland et al. 1993). If you are sampling 
changing positio~is is used. forests, you measure distances from randomlv chosen 

points to the nearest trees. The diameter (or basal 

Types of sample units 
Fixed-area. Fixed-area sample units are of a sct 

s u e  and shape Usually these are called quadrats or 
plots. Quadrats need not be four-sided. The ease of 
use and s~a~is t ica l  efficiency of quadrats depend on 
their shape. 

Circles are very fast to lay out. only one marker is 
needed for permanent relocation and they minimize the 
nurnber of edge decisions (lowest perimeter to area 
ratio). but they have the poorest shape for estimation 
from aggregated distributions, yielding a high variance 
aniong SUs. 

Squares are slow to lay out when large, two or four 
markers are needed for permanent relocation, and they 
have a poor shape for aggregated distributions. 

Rectangles are slow to lay out when they are large 
and two or four niarkers are needed for permanent 
relocation. but they have a better shape for aggregated 
distributio~is (the narrower the better for that: 1 e., 
lower variances anlong SUs). Rectangles require more 
edge decisions than do other shapes. 

Point intercel~t:  Percent cover is calculated as 
proportion of hits by (theoretically) dimensionless 
points. Points are usually arrayed in pin frames, ticks 
on tapes. etc. With multilayered vegetation more than 
one hit can be recorded per pin. Some details follow. 
Size of pin makes a difference in rarer species (Goodall 
1952, 1953b). The more abundant the species, the less 
the pin size matters. Doubling the pin diameter from 2 
mm to I mnl makes about a 5-10% difference in % 
cover. Point sampling is difficult to apply to grasses or 
tall vegetation, and easiest to apply in low-growing 
vegetation such as tundra. Clustering pins in frames is 
convenient but reduces the quality of estimates for a 
given number of points, because the points are not 
independent. 

Line intercept. Percent cover is calculated as a 
proportion of a line directly superimposed on a species 
(b?, vertical projection). This method was developed 
for use on desert shrubs. It is difficult or impossible to 
use if the highest plants are taller than your eye level. 
It is a relatively good method for both conlnlon and 
rare species. The line intercept method allows an 
estimate of cover bur nor density. unless individuals are 
of uniform size. 

area) and species of those trees are then recorded The 
most conimonly used of these methods 1s the point- 
centered quarter method (Cottam & Curtis 1956). In 
the point-quarter method the observer measures the 
distance to the nearest individual in each of four 
quadrants around randomly chosen points. 

Distance methods are based on the concept that the 
distances call be used to calculate a "mean area" 
occupied by the objects. The average of the distances 
is equal to the square root of the mean area. Mean area 
is the reciprocal of density. Density is converted into 
sonie measure of dominance or biomass by multiplying 
the density by the average size of each object. Usually 
this means multiplying tree density by the average 
basal area of the trees to arrive at a total basal area per 
unit land area. 

Distance methods can also be used to estimate the 
quantity of any discrete objects in any area. For 
example. Peck and McCune (1998) used the point- 
centered quarter method to estimate the biomass of 
harvestable epiphytic moss mats in forests in western 
Oregon. Batcheler (197 1) used point-to-object dis- 
tances to eslimate the density of anirnal pellet groups 
and introduced a correction factor for a fixed 
maximum search distance. 

The main drawback to distance methods is that 
their effectiveness diminishes as the objects become 
increasingly aggregated. Distance methods perform 
well when the objects are distributed at randoni. 
Because plots need not be laid out, distance methods 
are usually more rapid to apply than area-based 
methods. Using a laser-based tool for measuring 
distances makes the method even more rapid and 
accurate. 

Another criticism of distance methods is that they 
require judgements by the analyst that can lead to 
differences in estimates of density. Anderson and 
Southwell (1995) compared results from a panel of 
students and experts. All participants used the same 
data, but they were not restricted to particular software. 
The authors concluded that "the subjective aspects of 
the analysis of distance sampling may be overcome 
with some education. reading and experience with 
computer software." 
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Table 3.3. Average accuracy and bias of estiinates of lichen species richness and gradient scores in the 
southeastern United States. Results are given separately for experts and trainees in the multiple-expert study. 
Extracted from McCune et al. (1997). N = sanlple size. 

% Deviation from expert 

Activity N Species Score on Score on 

richness cli~natic gradient air quality 

gradient 

% of expert Bias Acc. Bias Acc. Bias 

Reference plots 16 6 1 -3 9 4 .4 .  +2.4 11.1 -10.5 

Multiple-expert study. experts 3 95 -5 3.6 +3.6 4.7 -4.7 

Multiple-expert study, trainees 3 54 -46 8.0 +8.0 5.0 -5.0 

Certifications 7 74 -26 2.7 +2.4 2.1 -2.1 

Audits 3 50 -50 10.3 +3.7 6.0 +2.7 

HOW do we apply these to community ecology? 
First. we usually express the parameters of interest in a 
univariate way. Some univariate measures are species 
richness. ordination scores, and abundances of domi- 
nant species. Second, we need "true" values for conl- 
parison. This can be done with computer simulation, 
but in field studies, our best approximation of the 
"truth" can be obtained by resampling an area intense- 
ly. using multiple observers and a large number of 
sample units. 

For an extended example, we will list soine results 
fro111 the Lichen Community component of the Forest 
Health Monitoring program (McCune et al. 1997a). 
Data quality was assessed for each plot-level summary 
statistic (air quality index, climatic index, and species 
richness) with several criteria: species capture. bias, 
and accuracy (Table 3.3). The indices were scores on 
major gradients, as determined by ordillation methods. 
"Species capture" was the proportion of the "true" 
~iu~iiber of species (St,,,,) in a plot that was captured in 
the sampling. Accuracy was the absolute deviation 
from "true" gradient scores, as determined from expert 
data. Bias was the signed deviation from "true" 
gradient scores. as deternlined from expert data. A11 
expert was considered to be a persoil with extensive 
experience with the local lichen flora, in most cases 
with two or nlore peer-reviewed publications in \vliich 
tlre person contributed floristic knowledge of lichens. 
Percent deviation in gradient score is calculated as 100 

x (obsewer's score - expert's score) / length of the 
gradient. 

If Sob! is the observed number of species, x,b, is the 
observed value of variable x. and x,,,, is the true value 
of parameter x. then: 

Species capture, % 100 (S,,,,, : S,,) 

100 'xob., - x,,-,,,j 
Accuracy. % = 

< .  

x true 

100 (x0bs - xtrue) 
Bias. % = 

To quote from the report (McCune el al. 1997) 
fro111 which Table 3.3 was extracted: 

Two results of this study seem most 
important. First, species richness is a very difficult 
parameter to estimate, being strongly dependent on 
the skill, experience, and training of the observer. 
Second, scores on compositional gradients are 
relatively consistent across observers, even in cases 
where there is considerable variation in species 
capture by the different observers. Each of these 
points is discussed further below. 

With the concept of "biodiversitv" becoming 
deeply entrenched in the management plans of 
government agencies and conservation 
organization, there comes a great need to inventoq, 
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Recurrent issues in commi~nity 
sampling 

Tradeoffs between size and number of sample 
units. All studies with fixed-area plots face tradeoffs 
between size and number of sample units (Table 3.6). 
The "manv-but-small" strategy will yield relatively 
accurate abundance estimates for the most common 
species but will yield a very incomplete species list. 
The "large-but-few" strategy will yield a relatively 
complete species list but will tend to overestimate the 
cover of rarer species and yields imprecise estimates of 
the more common species (McCune and Lesica 1992). 

Kenkel and Podani (1991) recommended that a 
plot size somewhat larger than the mean patch size 
will likely provide the most efficient sampling design. 
They also recommended that to maximize efficiency. 
plots be as large as possible, given the constraints on 
sainpling effort. 

Pseudoreplication. Experimental units are often 
subsampled and the subsamples analyzed as indepen- 
dent replicates. This is pseudoreplication because sub- 
sample units are not independent. Designs that include 
subsampling (nested designs) are fine, but it is crucial 
to identify the level in the design at which treatments 
are applied and analyze the data accordingly. 

Repeated measures. Successive samples from 
permanent sample units are usually correlated, so 
analyzing successive dates as if they were independent 
replicates of a treatment is invalid. Permanent sample 
units are excellent for detecting temporal change 
(Lesica and Steele 1997) because they allow you to 
separate spatial variation from the temporal change. 
However. seldom can "time" or "date" be included as 
main effects in a factorial ANOVA. In most cases, if 
you are following an experiment with permanent plots, 
you should be aware that you are using a repeated 
measures design. 

Most permanent plot studies are subject to some 
degree of error from changes in observers and inexact 
relocation of sample units (Ketchledge & Leonard 
1984. McCune B Menges 1986). This was called 
"pseudo-turnover" of species by Fischer and Stocklin 
(1997). Although rarely measured directly, it is 
important to know the size of this error relative to the 
size of observed changes in community composition. 

Nesting. Ecologists frequently subsample their 
sample units. thus creating nested designs. Nested 
designs are also called multistage sampling. Sample 
units are subsampled (two-staged) and the subsamples 

may be subsampled (three stage). From a statistical 
standpoint, it is desirable to randomize the sampling at 
each stage in the design. In forest inventories, clusters 
of plots are often placed randomly but with a 
systematic pattern of plots within clusters. According 
to Husch et al. (1972), "Fixed clusters of tlus type do 
not permit a valid measure of within-cluster variation ... 
The entire cluster would have to be considered as the 
ultimate sampling unit. I' 

Pairing. Paired designs are potentially very 
powerful ways to isolate single factors in a field set- 
ting. In theory, pairing has the potential to isolate the 
ever-present site-to-site variation from variation related 
to the factor of interest. Pairs are selected such that the 
members are "identical" except that one member 
receives (or received) a treatment or disturbance and 
one member does not. The most serious problem with 
this design in practice is that it is usually very difficult 
to find two adjacent spots that are identical. This is 
particularly true if one is studying historical distur- 
bances. Many disturbances, such as fire, tend to leave 
edges at natural topographic breaks, such that the areas 
inside and outside the disturbance are likely to differ in 
some important way. 

Topographic variables 
Although the topic of environmental measures is 

not covered here, a couple of issues about topography 
recur so frequently that a short discussion of them is 
worthwhile. 

Aspect of a slope (the direction or azimuth that a 
slope faces) is commonly measured in field studies. 
Untransformed, aspect is a poor variable for 
quantitative analysis. For example, lo  is adjacent to 
360". and although the numbers suggest a large 
difference, the aspect is about the same. So aspect 
needs to be transformed in one of several ways, 
depending on the precision with which it was 
measured and the environmental factor(s) you would 
like it to represent. 

Heat load. Heat load is not symmetrical about the 
north-south axis. A slope with afternoon sun will be 
warmer than an equivalent slope with morning sun. A 
reasonable approximation of heat load for slopes in the 
northern hemisphere is to make the scale symmetrical 
about the northeast-southwest line. The following 
formula rescales aspect to a scale of zero to one, with 
zero being the coolest slope (northeast) and one being 
the warmest slope (southwest). 
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Species Diversity 

Background 
Species richness is defined as the number of spe- 

cies in a sample unit or other specified area. Accord- 
ing to Whittaker (1972). "Diversity in the strict sense 
is richness in species. and is appropriately measured as 
the number of species in a sanlple of standard size." 

Although species richness is an intuitive measure 
of diversity, including inequality in relative abundance 
as a component of diversity can be intuitive as well. 
Consider, for example, two plots, each with three 
species (Table 4.1). Plot 1 has equal amounts of the 
three species, but Plot 2 has mostly one species and just 
a bit of the other two. Most people agree that Plot 1 
seems more diverse than Plot 2. This intuitive notion 
of diversity incorporates the evenness (equitability) of 
abundance. A sample unit with more even abundances 
is. all else being equal, more diverse than a sample unit 
with abundant and sparse species. 

Table 4.1. Which plot is more diverse? 

species 1 species 2 species 3 

plot 1 1 0 1 0 10 

plot 2 28 1 1 

Whittaker (1960. 1965. 1972) defined three levels 
of diversity. 

Alpha diversity: diversity in individual sample 
units 

Beta diversity: amount of compositional variation 
in a sample (a collection of sample units) 

Gamma diversity: overall diversity in a collection 
of sample units, often "landscape-level" 
diversity 

Each of these can be measured in various ways. 
There have been numerous reviews of the pros and 
cons of various diversity measures. Some of the better 
known and more complete references are Auclair and 
Goff (197 l), Hill (1973a). Hurlbert (1 97 l), Magurran 
(1988), Peet (1974). Pielou (1966, 1975), Rosen~weig 
(1995), and Whittaker (1972). A selection of the most 
popular diversity measures follows. 

Alpha diversity 

Proportionate diversity measures 
Many diversity measures are special cases of a general 
equation proposed by Hill (1973a) and Renyi (196 1). 
For an observed abundance x,, (numbers, biomass, 
cover, etc.) of species i in a sample unit, let 

p, = proportion of individuals belonging to species i :  

a = constant that can be assigned and alters the proper- 
ty of the measure 

S = number of species 

D, = diversity measure based on the constant a. The 
units are "effective number of species" 

parameter a 

Figure 4.1. Influence of equitability on Hill's (1973a) 
generalized diversity index. Diversity is shown as a 
function of the parameter a for two cases: a sample 
unit with strong inequitability in abundance and a 
sample unit with perfect equitability in abundance (all 
species present have equal abundance; see Table 4.1 ). 





Diversity 

Box 4.1. How is information related to uncertainty? 

You are blindfolded next to two plots, one with equal mmbeIS of two species and one with 
many individuals of one species and few of the other species. Your partner calls out species 
names of individuals as they are encountered. After 100 individuals have been tallied from each 
plot, your data are: 

Plot 1 1 
Plot 2 50 50 0.50 0.50 

For the 101" individual, in which plot is your uncertainty greater'? In which plot does the next 
individual provide more information? 

2 

information content = H' = -z p, log pi 
1=1 

For plot 1 

H' = - 1 [099 . log(0.99) + 0.0 1 . log(OO I)] = 0.024 

For plot 2, 

HI= - 1 [0.5 . Iog(0.5) + 0.5 log(0.5)] = 0.301 

Clearly, the information content of the next individual chosen from plot 2 is much higher 
than for plot 1, because it resolves more uncertainty In plot 1 you are fairly certain that the next 
individual chosen will be species A. but it is more uncertain in plot 2. The more uncertainty is 
relieved. the inore information you have obtained. This much is clear. But Hurlburl (1971) and 
others question how the concept of information is relevant to biological diversity. 

Species richness 
Species richness is simply calculated as the 

number of species in a sample unit (SU). whether the 
sample unit is defined as a specific number of indivi- 
duals, area. or biomass. If expressed per unit area. it is 
called species density (Hurlbert 1971). SUs of different 
sizes cannot, however, be compared directly, because 
the relation between species richness and SU size is 
nonlinear (see species-area curves below). 

Species richness as a measure of diversity is very 
attractive to ecologists because it is simple, easily 
calculated, readily appreciated, and easy to communi- 
cate to policy makers and other lay people (Purvis 8r 
Hector 2000). For example, consider trying to explain 
H' = 2.12 versus S = 33. Peters (1991) said we should 
try harder to present results in a way that does not 
obfuscate simple underlying units. 

On the other hand, species richness is very 
sensitive to the sample unit area and the skill of the 
observer. Measurement error is high for small, cryptic, 
mobile. or taxonomically difficult organisms (e.g., 
Coddington et al. 1996: McCune et al. 1997a). 

Whittaker's bottom line (1972) was: "For the mea- 
surement of alpha diversity relations I suggest. first, 
use of a direct diversity expression, [species richness], 
as a basic measurement wherever possible; second, 
accompaniment of this by a suitable slope expression [a 
measure incorporating equitability] when the data 
permit. " 

Beta diversity 
Beta diversity is the amount of compositional 

change represented in a sample (a set of sample units). 
There are various ways of measuring beta diversity. 
depending on our concepts or measurements of 
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underlying sources of the compositional variation 
(Table 4.2). The phrase "beta diversity" need not 
invoke specific gradients. Species turnover. on the 
other hand. is a special case of beta diversity applied to 
changes in species composition along explicit 
environmental gradients (Vellend 2001). The term 
.'beta diversity" has also recently been applied in a 
different way (e.g.. Condit et al. 2002), as a rate of 
decay in species sinlilarity with increasing distance, 
without respect to explicit environmental gradients. 

Three applications of beta diversity in the usual 
sense are: 

1 .  Direct gradient - beta diversity is the amount of 
change in species composition along a directly 
nieasured gradient in en\ lronment or time. 

2. Indirect gradients - beta diversity is the length 
of a presumed environmental or temporal gradient 
as measured by the species, and 

as a consequence of the weakening of structure in the 
data matrices when the fine-grained patterns of the 
vegetation are emphasized." Thus. beta diversity is 
controlled by a combination of biological and sampling 
processes. 

The performance of multivariate methods strongly 
depends on beta diversity. Estimates of beta diversity 
help to inform us about which ordination methods 
might be appropriate for a particular data set and 
whether differences between ordination methods 
should be anticipated. The greater the beta diversity, 
the more ordination methods are challenged and the 
more results will differ anlong methods. 

Beta diversity can be used to compare responsive- 
ness of different groups of organisms to environmental 
differences in a sample (e.g., McCune 62 Antos 1981). 
Such comparisons are not, however, biologically 
meaningful between studies using different methods. 

3. No specific gradient - beta diversity measures 
compositional heteroneneib without reference to a 

Beta diversity along a direct gradient 
- 

s~ecific gradient. Beta diversity integrates the rate of change. Do - 
Measures of beta diversity depend on the underlying not confuse the rate of species change with the 

gradient model and the data type (Table 4.2). After a amount of change. The rate of change, R, refers to 

brief summary of the usefulness of measuring beta steepness of species response curves along gradients 

diversity, we describe measures of beta diversity for (not to be confused with Minchin's R, which is a mea- 

each class of underlying gradient model. sure of the amount of change). For example, if you 
sample with a series of plots along a gradient and 

Usefulness of beta cliversity calculate the dissimilarity among adjacent plots. then 
you can graph dissimilarity as a measure of R against 

Greig-Smith (1983) pointed out that beta diversity position on the gradient (Fig 4.2). This coilcept of 
is a Property of the sample. not an inherent Property of "rate of species change" has historically been used to 
the community. This is well illustrated by the results address theoretical questions about sharpness of 
of 0kland el al. (1990): "Beta diversity. measured as boundaries between communities. 
the length of the first DCA axis. invariably increased 
upon lowering of sample plot size. . This is explained 

Table 4.2. Some measures of beta diversity. See Wilson and Mohler (1983) and Wilson and Shmida 
(1984) for other published methods. "DCA" is detrended correspondence analysis. A direct gradient 
refers to sanlple units taken along an explicitly measured environmental or temporal gradient. lndirect 
gradients are gradients in species conlposition along presumed environmental gradients. 

Underlying Data type 

gradient model Quantitative Presence-absence 

Direct gradient HC (Whittaker's half changes) a (beta turnover) 
PG (gleasons) Minchin's R 
Minchin's R 
A (total gradient length) 

lndirect gradient Axis length in DCA Axis length in DCA 

No specific gradient PD Dissimilarity P (half changes) (Whittaker's beta. yla- I) = 



0 5 10 15 20 
Position on Gradient 

Figure 4.2. Example of rate of change, R,  measured as 
proportional dissimilarity in species conlposition at 
different sampling positions along an environmental 
gradient Peaks represent relatively abrupt change in 
species composition. This data set is a series of 
vegetation plots over a low mountain range. In more 
homogeneous vegetation, the curve and peaks would be 
lower. 

We seldom try to estimate R along gradients 
because we rarely have the appropriate quality of 
information. Usually the prinlary interest is in the total 
amount of change along the gradient, in other words, 
the integral of R. Measures of the total an~ount of 
change, beta diversity; are discussed below. One of 
them, Wilson and Mohler's (1983), is based on esti- 
mates of R using similarity measures. Other methods 
for estinlating R proposed by Oksanen and Tonteri 
( 1995) assume Gaussian (bell-shaped) response func- 
tions. summing the absolute values of the slopes of 
individual species' response functions. 

The amount of change, P, is the integral of the rate 
of change: 

b 

where a and h refer to the ends of an ecological 
gradient x. 

Beta diversity can be calculated in various ways, 
depending on the available data. First consider species 
abundance data collected in sequential sample units 
along one directly measured gradient. Wilson and 
Mohler (1983) introduced "gleasons" as a unit of 
species change. This measures the steepness of species 

.> . 

Separation along gradient, half 
changes .=. 

Figure 4.3. Hypothetical decline in similarity in 
species composition as a function of separation of 
sample units along an environmental gradient, 
measured in half changes. Sample units one half 
change apart have a similarity of 50%. 

response curves. It is the sum of the slopes of 
individual species at each point along the gradient. 

where Y is the abundance of species i at position x along 
the gradient. T h s  can be integrated into an estimate of 
beta diversity along a whole gradienl with 

n-l 

P, = 2 1  [IA - PS(i, i + 1)] 
1 l l  

where PS(a.h) is the percentage similarity of sample 
units a and b and IA is the expected similaritj of 
replicate samples (the similarity intercept on Fig. 1 .3) .  

For simulated data, Minchin (1987) defined a 
measure of beta diversity as "R units." To reduce 
coihs ion with Wilson's use of R as a rate of change. 
we refer to Minchin's measure of the amount of change 
as "Minchin's R." Minchin measured beta divers~ty 
using the mean range of the species' physiolog~cal 
response function: 

Minchin' s R = 
L 

where r, is the range of species i along the gradienl. L 
is the length of the gradient. and r and L are measured 
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Species on Environmental Gradients 

The ideal and the real 
Robert H. Whittaker's writings brought to 

the fore the concept of hump-shaped species 
responses to environmental gradients, through 
his ecological monographs (Whittaker 1956, 
1960). review papers (1967, 1973), and his 
textbooks. Whittaker drew species responses as 
smooth, hump-shaped lines, some narrow, some 
broad, and varying in amplitude (Fig. 5.1). 

These smooth, noiseless curves represent the 
Gaussian ideal response of species to environ- 
mental gradients. Under the Gaussian ideal, a 
species response is completely described by its Environmental Gradient 

mean position on the environmental gradient. Figure 5.1. '~ypothetical species abundance in response to an 
its standard deviation along that gradient, and its environmental gradient. Lettered curves represent different 
peak abundance. Even if species followed the species. Figure adapted from Whittaker (1954). 
Gaussian ideal. community analysis would be 
difficult because two species following the 
Gaussian ideal will have a nonlinear relationship 
to each other, challenging our usual statistics 
based on linear models. 

An even rnore idealistic model would be 
linear responses to environment (Fig. 5.2). The 
linei~r ideal has species rising and falling in 
straight lines in response to environmental 
gradients. Although the linear model is blatant- 
ly inappropriate for all but very short gradients, 
many of the most popular multivariate tools Environmental Gradient 
( e g .  principal components and Figure 5.2. Hypothetical linear responses of species abundance 
minant analysis) assume linear responses. to an environmental gradient. Lettered lines represent different 

Even the Gaussian model has several critical species. 
shortcomings when compared with actual conl- 
munity data. Three major problems are common 

.> hi, in community data: . . 

1. Species response have the zero truncation The zero truncation problem 
problem. 

2. Curves are "solid" due to the action of many Beals (1984, p. 6) introduced the term "zero 

other factors. truncation problem." Beyond the extremes of a species 

3 ,  R~~~~~~~ curves can be complex: polynlodal, tolerance on an environmental gradient only zeros are 

asymmetric, or discontinuous. possible (Fig. 5.3). Therefore, once a species is absent, 
we have no infornration on how unfavorable the 

Each of these is explained below. environment is for that species. The dashed lines in 
Figure 5.3 indicate the ideal response curve, if the zero 
truncation problem did not exist. 
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Figure 5.8. The dust bunny distribution in ecological community data, with three levels of abstraction. 
Background: a dust bunny is the accumulation of fluff, lint, and dirt particles in the corner of a room. 
Middtc: sample units in a 3-D species space, the three species forming a series of unimodal distributions 
along a single environmental gradient. Each axis represents abundance of one of the three species: each 
ball represents a sample unit. The vertical axis and the axis coming forward represent the two species 
peaking on the extremes of the gradient. The species peaking in the middle of the gradient is represented by 
the horizontal axis. Foreground: The environmental gradient forms a strongly nonlinear shape in species 
space. The species represented by the vertical axis dominates one end of the environmental gradient, the 
species shown by the horizontal axis dominates the middle, and the species represented by the axis coming 
forward dominates the other end of the environmental gradient. Successful representation of the 
environmental gradient requires a technique that can recover the underlying I-D gradient from its contorted 
path through species space. 
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0 2 4 6 

Species 2 

Figure 5.10. Plotting abundance of one species 
against another reveals the bivariate dust bunny 
distribution. Note the dense array of points near 
the origin and along the two axes. This bivariate 
distribution is typical of community data. Note the 
extreme departure from bivariate normality. 

Figure 5.11. Nature abhors a vacuum. A sam- 
ple unit with all species removed is usually soon 
colonized. The vector shows a trajectory through 
species space. The sample unit moves away from 
the origin (an empty sample unit) as it is 
colonized. In this case, species B and a bit of 
species C colonized the sample unit. As in this 
example. successional trajectories tend to follow 
the corners of species space. 

Number of added 0.0's 

Figure 5.12. The consequence for the correlation 
coefficient of adding (0,O) values between species 

As the heterogeneity of our sample increases, our 
distance measures lose sensitivity. Thts is discussed 
further under "Distance Measures" (Chapter 6). 

* 
Summary 

Box 5.1 summarizes the basic properties of ecolo- 
gical community data. These properties influence the 
choice of data transformations, analytical methods, and 
interpretation of results. 

Partial solutions to the zero-truncation problem 
can be found at eveq level in the analysis (data 
adjustments and transformations, distance measures, 
methods of data reduction, and hypothesis testing; 
Table 5. I), yet most of these solutions are not available 
in the major statistical packages. Multivariate data sets 
in most other fields do not usually have this problem; 
hence their lack of consideration by the major 
statistical packages. This is changing, however, 
Recent versions of SPSS and SAS include some tools 
that are useful with this kind of matrix. 
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