

Web Database Applications
with PHP and MySQL

Other resources from O'Reilly

Related titles

oreilly.com

TP
(e

il f" ‘REILLY
@ANETVWORK,,

Conferences

O’REILLY NE:FWORK
Safari
Bookshelf.

Programming PHP Learning PHP 5

PHP Pocket Reference MySQL Pocket Reference

PHP Cookbook Managing and Using MySQL

JavaScript and DHTML MySQL Cookbook
Cookbook High Performance MySQL

Cascading Style Sheets Upgrading to PHP 5

oreilly.com is more than a complete catalog of O’Reilly books.
You’ll also find links to news, events, articles, weblogs, sample
chapters, and code examples.

oreillynet.com is the essential portal for developers interested in
open and emerging technologies, including new platforms, pro-
gramming languages, and operating systems.

O’Reilly brings diverse innovators together to nurture the ideas
that spark revolutionary industries. We specialize in document-
ing the latest tools and systems, translating the innovator’s
knowledge into useful skills for those in the trenches. Visit con-
ferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today with a free trial.

SECOND EDITION

Web Database Applications
with PHP and MySQL

Hugh E. Williams and David Lane

O’REILLY"

Beijing - Cambridge - Farnham - Koln - Paris - Sebastopol - Taipei - Tokyo

Web Database Applications with PHP and MySQL, Second Edition
by Hugh E. Williams and David Lane

Copyright © 2004, 2002 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our corporate/insti-
tutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Andy Oram
Production Editor: Darren Kelly
Cover Designers: Ellie Volckhausen and Emma Colby

Interior Designer: Melanie Wang

Printing History:
March 2002: First Edition.
May 2004: Second Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Web Database Applications with PHP and MySQL, the image of a platypus, and
related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

RepKover,
‘Eﬂphé This book uses RepKover', a durable and flexible lay-flat binding.

ISBN-10: 0-596-00543-1
ISBN-13: 978-0-596-00543-6
[M] [05/07]

Table of Contents

Preface ix
1. Database ApplicationsandtheWeb 1
The Web 2
Three-Tier Architectures 3

2. ThePHPScriptinglanguage .. 16
Introducing PHP 16
Conditions and Branches 28
Loops 33
Functions 36
Working with Types 37
User-Defined Functions 43

A Working Example 53

3. Arrays, Strings, and Advanced Data ManipulationinPHP 57
Arrays 57
Strings 76
Regular Expressions 87
Dates and Times 97
Integers and Floats 103

4. Introduction to Object-Oriented Programming withPHP5 108
Classes and Objects 108
Inheritance 124

Throwing and Catching Exceptions 131

SQLand MySQL 134

Database Basics 135
MySQL Command Interpreter 140
Managing Databases and Tables 142
Inserting, Updating, and Deleting Data 148
Querying with SQL SELECT 152
Join Queries 160
Case Study: Adding a New Wine 168
QueryingWeb Databases 171
Querying a MySQL Database Using PHP 172
Processing User Input 188
MySQL Function Reference 208
PEAR . 219
Overview 219
Core Components 220
Packages 230
WritingtoWeb Databases 251
Database Inserts, Updates, and Deletes 251
Issues in Writing Data to Databases 270
Validation with PHP and JavaScript 285
Validation and Error Reporting Principles 285
Server-Side Validation with PHP 287
JavaScript and Client-Side Validation 307
SeSSIONS 338
Introducing Session Management 339
PHP Session Management 340
Case Study: Using Sessions in Validation 347
When to Use Sessions 357
PHP Session API and Configuration 360
Authenticationand Security 369
HTTP Authentication 369
HTTP Authentication with PHP 373
Form-Based Authentication 385
Protecting Data on the Web 397

Table of Contents

12.

13.

14.

15.

16.

17.

18.

Errors, Debugging, and Deployment
Errors

Common Programming Errors

Custom Error Handlers

Reporting
Creating a Report

Producing PDF

PDF-PHP Reference

Advanced Features of Object-Oriented Programming in PHP5
Working with Class Hierarchies

Class Type Hints

Abstract Classes and Interfaces

Freight Calculator Example

AdvancedSQL
Exploring with SHOW

Advanced Querying

Manipulating Data and Databases

Functions

Automating Querying

Table Types

Backup and Recovery

Managing Users and Privileges

Tuning MySQL

Hugh and Dave’s Online Wines: ACaseStudy
Functional and System Requirements

Application Overview

Common Components

Managing Customers
Code Overview

Customer Validation

The Customer Form

TheShoppingCartl
Code Overview

The Winestore Home Page

The Shopping Cart Implementation

402
407
412

422
427
440

457
462
462
469

480
481
497
505
513
516
522
527
532

542
544
551

584
587
591

597
598
604

Table of Contents |

vii

19. Ordering and Shipping at the Online Winestore 618
Code Overview 618
Credit Card and Shipping Instructions 620
Finalizing Orders 624
HTML and Email Receipts 630

20. Searching and Authentication in the Online Winestore 642
Code Overview 643
Searching and Browsing 648
Authentication 658

A. LinuxlInstallationGuide 667
B. Microsoft Windows Installation Guide 688
C. MacOSXInstallationGuide 698
D. WebProtocols 714
E. Modeling and Designing Relational Databases 726
F. Managing Sessions in the DatabaseTier 746
G. Resources.......... 761
H. Thelmproved MySQL Library 766
IndeX 779
viii | Table of Contents

Preface

There are lots of PHP and MySQL resources. So why did we decide to add this book
to the market? We made the decision after we started teaching graduate students
how to program with PHP in 1999. We found that the PHP and MySQL manuals, as
well as most books, train people to use particular tools. But almost no resources
explained the principles of programming for the Web. We realized that Web admin-
istrators and programmers needed to know more than what PHP functions to use
and how to write SQL queries. That’s where this book comes in: it’ll help you learn
about web database development, as well as understand the principles.

This book explains what to do and why, along with how it’s done in PHP and
MySQL. You'll find information here that you won’t find elsewhere. Hopefully,
you’ll use this knowledge with whatever web tools you choose in the future. But
you’ll also learn about the breadth and depth of PHP and MySQL. When you finish
this book, you’ll be able to build an online store, a portal, or a content management
system.

What This Book Is About

This book is for developers who want to build database applications that are inte-
grated with the Web. We show you the principles and techniques for developing
small- to medium-scale web database applications that store, manage, and retrieve
data. The architecture we describe is a successful framework for applications that
can run on modest hardware and process more than a million hits per day.

We show you all of the critical tasks you need to know to build successful web soft-
ware. We cover programming fundamentals for the Web. We show you the princi-
ples and practice of working with databases using the SQL query language. We teach
you about tracking users with sessions, securing an application, separating presenta-
tion from code, writing database-independent code, writing reports, adding error
handling, and advanced object-oriented and database topics.

An important feature of this book is our case study, Hugh and Dave’s Online Wines.
It’s a complete but fictional online retail store that illustrates how most of the tech-
niques described in the book can be put together to build a real application. The
winestore application allows users to browse and search a database of wines, add
items to a shopping cart, manage their membership, and purchase wines. It has all
the basic security, user-tracking, and error-handling features of a real-world applica-
tion. It features a medium-size database that we use in querying examples through-
out the book.

We use Open Source software, and we show you how to use it on Unix-based plat-
forms such as Linux and Mac OS X, and under Microsoft Windows 2000, 2003, and
XP. Our database server is MySQL, a system known for its suitability to applications
that require speed but low resource overheads. Our scripting language is PHP, which
is best known for its function libraries that interact with more than 15 relational
database systems, the web environment, and many other services. Apache is our web
server of choice, but most other web servers can be used successfully with MySQL,
PHP, and this book.

What You Need to Know

This book is about understanding and developing application logic that brings data-
bases and the Web together. We introduce database systems over the course of the
book, but our discussions don’t replace a book or class dedicated to relational data-
base theory, or a book about a specific relational database system such as MySQL.
Likewise, we assume you’re already familiar with the Web. We don’t delve deeply
into the three key web protocols, HTML, HTTP, and TCP/IP.

You don’t need to know how to program to use this book, but you do need to under-
stand basic HTML. Our introduction to PHP doesn’t assume you are familiar with
web scripting or are a programmer, but we do assume you understand the basic
HTML constructs and are familiar with the popular web browsers. If you can use a
text editor to author an HTML document that contains a form and a table, you have
sufficient HTML skills to use this book. It’s the principles of structure in the markup
process that are important, not the attractiveness or usability of the presentation in
the web browser.

You don’t need a detailed understanding of relational databases to use this book, but
a working knowledge is helpful. We present the relational database theory needed
for developing simple applications, and we cover many other basic concepts, includ-
ing how to tell when a database is the method of choice to store data, the database
query language SQL, and a case study that models system requirements and con-
verts the model to a database design. This book isn’t a substitute for the many good
resources on database theory. However, it’s enough to begin developing the underly-
ing databases for many web database applications.

x | Preface

We briefly introduce web servers and networking in Chapter 1 and provide addi-
tional material in Appendix B. Both web servers and networking are important to a
web database application but aren’t the focus of this book. We present enough infor-
mation to set up a web server and to understand how it fits in the architecture of a
web database application. For many applications, this is sufficient. Likewise, we
present sufficient detail so that you will understand what networking and network
protocol issues impact web database application design.

How This Book Is Organized

There are 20 chapters and 8 appendixes in this book. Chapters 1 to 5 introduce web
database applications, PHP, MySQL, and SQL:

Chapter 1, Database Applications and the Web
Discusses the three-tier architecture commonly used in web database applica-
tions, and how data is exchanged between browsers and servers. It introduces
PHP and MySQL, and discusses when and why databases are used on the Web.
The features of MySQL 4.1 and PHP5 are introduced.

Chapter 2, The PHP Scripting Language
Introduces the PHP scripting language. It covers programming in PHP and dis-
cusses the basic programming constructs, variables, types, functions, and tech-
niques.

Chapter 3, Arrays, Strings, and Advanced Data Manipulation in PHP
Explains the intermediate level features of PHP, including how to work with
arrays, strings, and times and dates. The chapter is illustrated with many short
examples that show how each technique is used in practice.

Chapter 4, Introduction to Object-Oriented Programming with PHP 5
Shows you how to use the basic object-oriented (OO) features of PHP4 and
PHP3, and explains why OO programming is popular and becoming important
in PHP. A more advanced discussion of the new OO features in PHPS5 is pre-
sented in Chapter 14, but this chapter gives you all the knowledge you need to
work with the PEAR packages that are discussed in Chapter 7.

Chapter 5, SQL and MySQL

Introduces MySQL and how to interact with it using the SQL query language.
The focus of the chapter is an example-driven section on querying, and we illus-
trate it using examples from the online winestore’s database. We also introduce
you to the basics of creating, deleting, and updating data and databases. A more
advanced discussion of the features of MySQL 4.1 is presented in Chapter 15,
but the basics discussed in this chapter are sufficient for you to work with all of
the material up to Chapter 13 and with the online wines case study in Chapters
17 to 20.

Preface | xi

Chapters 6 to 11 cover the principles and practice of developing web database appli-
cation logic.

Chapter 6, Querying Web Databases

Introduces connecting to MySQL with PHP. We explain the querying process
used in most interactions with MySQL and present examples that use the PHP
MySQL library functions. We show how user data is encoded, sent in requests
from a web browser to a web server, and decoded for processing in PHP. We dis-
cuss the security implications in processing user data and show steps to secure
interactive querying systems. Our discussions are supported by short examples
that show you how to build simple query modules.

Chapter 7, PEAR

Discusses the PEAR package repository. Packages are source code modules that
can be used in your code and save you from reinventing widely used concepts.
PEAR includes over 100 packages for tasks as diverse as date and time manipula-
tion, security, networking, and database access, and this chapter shows you how
to install and upgrade them. The chapter focuses on a templates package—a
useful tool for separating HTML from code—and another for database abstrac-
tion. Both packages are used in later chapters to develop robust, reusable code.

Chapter 8, Writing to Web Databases

Covers writing data to web databases. There are several reasons why writing
data is different from reading it and that’s why it isn’t discussed in Chapter 6.
For example, reloading or printing a page from a web browser can cause data to
be written to a database more than once. Multiple users accessing the same data-
base introduces other problems, such as data unexpectedly being changed by
one user while it’s being read by another. We discuss how to solve problems
related to the nature of the Web and multiple users. We illustrate the principles
with a case study example of collecting form data from a user and saving it in a
database.

Chapter 9, Validation with PHP and JavaScript

This chapter is related to Chapter 8 and presents the principles and techniques
for user input validation. We show you techniques such as how to validate
dates, credit card numbers, and phone numbers, and explain how to use these in
error-checking modules that are scalable and practical for web database applica-
tions. We also introduce client-side, browser-based JavaScript and show you
how to use it for common tasks including user input validation in the web
browser.

Chapter 10, Sessions

Covers the principles of adding session management to web database applica-
tions. Session management allows the interactions between a user and the appli-
cation to be related so that, for example, a user can log in and log out of an
application and be guided through a series of steps in a process. We show how
PHP manages sessions and illustrate the techniques with a case study of manag-

Xii

Preface

ing error feedback to users. We also discuss when and when not to use sessions,
and how to configure PHP’s session handler so it’s secure and scalable.

Chapter 11, Authentication and Security
Discusses web security and authentication. We show how PHP can be used for
basic authentication, how databases can be used to manage users, and why you
might need to secure communications with the secure sockets layer (SSL). The
case study is a reusable authentication module with login, logout, and password
change features.

Chapters 12 to 15 discuss tasks and techniques you’ll need when you’re building a
real-world application or deploying an application to users.

Chapter 12, Errors, Debugging, and Deployment
Error handling and debugging are the focus of this chapter. We discuss the types
of errors that can occur in PHP and show you how to identify the source of com-
mon programming errors that cause these problems. We then show you how to
write your own error handler that can be integrated into an application, and how
to trigger your own errors when you need them. Adding a custom error handler
gives a professional finish to an application.

Chapter 13, Reporting
Discusses reporting for the Web and what solutions work in PHP. The focus is
producing PDF (Adobe Portable Document Format) reports using a popular
PHP PDF library, and we illustrate the techniques with several examples. The
chapter concludes with a function reference for the class we use.

Chapter 14, Advanced Features of Object-Oriented Programming in PHP 5
This chapter shows you the advanced features of PHP5’s object-oriented pro-
gramming model. We extend the discussion in Chapter 4, and show you how to
build and reuse classes, and how to write powerful OO applications. The chap-
ter concludes with a case study that shows how all of the features can be used
together to build a complex and powerful class hierarchy.

Chapter 15, Advanced SQL
This chapter shows you the advanced features of MySQL 4.1. It extends the dis-
cussion in Chapter 5, and shows you how to write complex queries, manipulate
data in complex ways, manage users, and tune your database and MySQL server.

Chapters 16 to 20 present and outline the winestore case study that shows how most
of the techniques discussed in the book are put together to build an application. The
outlines aren’t comprehensive: we assume you’ve read the book and understand the
principles of developing web database applications.

Chapter 16, Hugh and Dave’s Online Wines: A Case Study
Explains the structure of the winestore application and discusses how the princi-
ples shown in earlier chapters are put together to build a real-world application
that is flexible, robust, secure, and scalable. It also shows how the scripts work

Preface | xiii

together through figures and explanations. We also explain how we’ve devel-
oped classes and functions for general-purpose tasks, and we list the code of all
of the reusable components.

Chapter 17, Managing Customers
Presents the code for customer management in the winestore. We list the scripts
for collecting, validating, and modifying customer details, and show how new
accounts are created.

Chapter 18, The Shopping Cart
Presents the code for the shopping cart at the winestore. The shopping cart is
stored in a database and each user’s cart is tracked using the session techniques
from Chapter 10. The cart module allows a user to view her cart, add items to
the cart, update item quantities, delete items, and empty the cart.

Chapter 19, Ordering and Shipping at the Online Winestore
Presents the code for the ordering and shipping modules of the winestore. The
ordering process shows how complex database processing is used to convert a
shopping cart into a customer order. We also show how to validate credit card
details, send an email confirmation of the order to the user, and show the confir-
mation as an HTML page.

Chapter 20, Searching and Authentication in the Online Winestore
Concludes the winestore application by presenting the user authentication and
searching modules. The user authentication module is almost identical to the
one in Chapter 11. The searching and browsing module shows how to develop a
component that presents a large number of results in separate pages and how to
use previous and next functionality to move between the pages.

There are eight appendixes to this book:

Appendix A, Linux Installation Guide
A guide to installing the Apache web server, PHP, and MySQL on Linux plat-
forms. Installation instructions change as software changes over time, so the latest
version of this appendix can be downloaded at http://www.webdatabasebook.com/
install-guides.

Appendix B, Microsoft Windows Installation Guide
A guide to installing the Apache web server, PHP, and MySQL on Microsoft
Windows platforms. Installation instructions change as software changes over
time, therefore the latest version of this appendix can be downloaded at http://
www.webdatabasebook.com/install-guides.

Appendix C, Mac OS X Installation Guide
A guide to installing the Apache web server, PHP, and MySQL on Mac OS X plat-
forms. Installation instructions change as software changes over time, so the latest
version of this appendix can be downloaded at http:/www.webdatabasebook.com/
install-guides.

xiv | Preface

Appendix D, Web Protocols
Describes the workings of the Web and explains how the HTTP protocol is used
to transfer data between browsers and servers.

Appendix E, Modeling and Designing Relational Databases
Contains a case study that models the system requirements for the winestore
using entity-relationship database modeling. It shows how this model can be
converted to a design. It also details the SQL statements used to create the
winestore database.

Appendix F, Managing Sessions in the Database Tier
An extension of Chapter 10, this appendix shows how the default PHP method
for session handling (which uses disk files) can be moved into a database.

Appendix G, Resources
Lists useful resources, including web sites and books containing more informa-
tion on the topics presented throughout this book.

Appendix H, The Improved MySQL Library
A guide to PHP’s new improved MySQL library, and how it makes use of the
new features of MySQL 4.1.

How to Use This Book

This book is designed as a tutorial-style introduction to web database applications.
To begin, read Chapter 1 for an overview of the architecture and tools that are used

in this book.

If you haven’t installed the Apache web server, the PHP scripting engine, or the
MySQL database management system (or you’re not sure you’ve got the latest soft-
ware), then follow the instructions in Appendix A, Appendix B, or Appendix C,
depending on the platform you are using. They also show how the examples used in
this book can be downloaded and installed locally. We recommend downloading the
code and databases used in this book, as they will help you understand the concepts
as they are presented.

Chapter 2 and Chapter 5 are designed as introductions to PHP and SQL, respec-
tively. Read them both for an introduction to the key tools, and before you read
Chapter 6 and later chapters. Chapter 3 and Chapter 4 provide more detail on PHP
and are structured by topic. You can read them as tutorials or use them as references
for functions or concepts.

Chapters 6 through 13 are tutorial-style chapters that follow through the principles
and practice of web database applications, and include annotated function refer-
ences and short case study examples to illustrate the concepts. Chapters 6 through
11 describe the basic principles and components and should be read sequentially.
When you’ve read these chapters, you’re ready to start building your own applica-

Preface | xv

tions. If you’re using MySQL 4.1, then after you’ve read Chapter 6, read Appendix H
for more information on PHP’s new improved MySQL function library.

Chapter 12 introduces writing custom error handlers that will aid your debugging
and add robustness to your application when it’s deployed. Chapter 13 focuses on
developing printable reports using Adobe’s PDF format. By the conclusion of
Chapter 13, you should be a master of the principles of developing web database
applications.

Chapter 14 and Chapter 15 contain advanced topics. These rely on concepts from
the earlier chapters and give you complete skills for building sophisticated applica-
tions using advanced programming and database techniques. You can reserve these
optional chapters for later, when you get interested in advanced web development.
You don’t need to read these chapters to understand our sample application in
Chapters 16 to 20.

Chapters 16 to 20 present and briefly discuss complete scripts for the online
winestore case study. The scripts show how the techniques from Chapter2 to
Chapter 12 are applied in practice and, as such, are most useful after mastering the
content of the earlier chapters. The material in these later chapters is most useful
when the example application has been downloaded and installed on a local server,
allowing the scripts to be modified and tested as the chapters are read.

Appendix D and Appendix E are also in a tutorial style. We recommend Appendix D
if you are interested in or are unfamiliar with the web environment and its underly-
ing protocols. Appendix E is a brief introduction to entity-relationship modeling for
databases and shows the steps we took in designing the winestore database. We rec-
ommend reading Appendix E after completing Chapter 5.

Conventions Used in This Book

The following conventions are used in this book:

Italic
Used for program names, URLs, and database entities, and for new terms when
they are defined.

Constant width
Used for code examples, functions, statements, and attributes, and to show the
output of commands.

Constant width italic
Used to indicate variables within commands and functions.

Constant width bold
Used to indicate emphasis in program code.

xi | Preface

This icon designates a note, which is an important aside to the nearby
as text.

&
15

This icon designates a warning relating to the nearby text.

Using Code Examples

All the code in this book is available for download from http://www.oreilly.com/
catalog/webdbapps?2. See the file readme.txt in the download for installation instruc-
tions.

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Web Database Applications with
PHP and MySQL, Second Edition, by Hugh E. Williams and David Lane. Copyright
2004 O’Reilly Media, Inc., 0-596-00543-1.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)

(707) 829-0104 (fax)

There is a web page for this book, which lists errata, examples, or any additional
information. You can access this page at:

http://www.oreilly.com/catalog/webdbapps2

Preface | xvii

To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O’Reilly
Network, see the O’Reilly web site at:

http://lwww.oreilly.com
The authors can be reached at:

hugh@hughwilliams.com
dave@inquirion.com

Web Site and Code Examples

Code examples from this book, data used to create the online winestore database,
and the completed winestore application can be found at this book’s web site, http:/
www.webdatabasebook.com.

Acknowledgments

We thank our technical reviewers, Donal Ellis, Kimberlee Jensen, Caryn-Amy King,
S.M.M. (Saied) Tahaghoghi, and Harry Williams for their time, patience, and care in
helping us improve this book. We also thank our editor, Andy Oram. Most of what’s
new and fresh about this edition exists because Andy’s pushed, helped, and encour-
aged us to deliver the best book we could. Thanks Andy, it’s been fun!

Hugh thanks Selina and Lucy. Seline, thanks for being patient while I write, write,
write. Lucy, you’re not quite as patient, but you’re lovely. And to Mum and Dad for
starting it all: thanks Dad for building the Dick Smith 2650, and thanks Mum for
encouraging me to sit in front of it and its successors!

Dave thanks Louise, Beth, and Will for putting up with yet another project. Lou, I
can’t thank you enough for your friendship, encouragement, and support. Thanks
Beth for recycling chapter drafts and decorating my office with paintings and draw-
ings; and thanks Will for finding the platypus.

We acknowledge the support of our employer, RMIT University. Hugh thanks the
School of Computer Science and Information Technology, and Dave thanks InQuir-
ion Pty. Ltd.

xvii | Preface

CHAPTER 1
Database Applications and the Web

Most of the services we enjoy on the Web are provided by web database applica-
tions. Web-based email, online shopping, forums and bulletin boards, corporate web
sites, and sports and news portals are all database-driven. To build a modern web
site, you need to develop a database application.

This book presents a highly popular, easy, low-cost way to bring together the Web
and databases to build applications. The most popular database management sys-
tem used in these solutions is MySQL, a very fast and easy-to-use system distributed
under an Open Source license by its manufacturer, MySQL AB. We discuss MySQL
in detail in this book.

With a web server such as Apache (we assume Apache in this book, although the
software discussed here works with other web servers as well) and MySQL, you have
most of what you need to develop a web database application. The key glue you
need is a way for the web server to talk to the database; in other words, a way to
incorporate database operations into web pages. The most popular glue that accom-
plishes this task is PHP.

PHP is an open source project of the Apache Software Foundation and it’s the most
popular Apache web server add-on module, with around 53% of the Apache HTTP
servers having PHP capabilities.” PHP is particularly suited to web database applica-
tions because of its integration tools for the Web and database environments. In par-
ticular, the flexibility of embedding scripts in HTML pages permits easy integration
of HTML presentation and code. The database tier integration support is also excel-
lent, with more than 15 libraries available to interact with almost all popular data-
base servers. In this book, we present a comprehensive view of PHP along with a
number of powerful extensions provided by a repository known as PEAR.

* From the Security Space web server survey, Apache module report, http://www.securityspace.com/s_survey/
data/index.html (1 December 2003).

Apache, MySQL, and PHP can run on a wide variety of operating systems. In this
book, we show you how to use them on Linux, Mac OS X, and Microsoft Windows.

This is an introductory book, but it gives you the sophisticated knowledge you need
to build applications properly. This includes critical tasks such as checking user
input, handling errors robustly, and locking your database operations to avoid data
corruption. Most importantly, we explain the principles behind good web database
applications. You’ll finish the book with not only the technical skills to create an
application, but also an appreciation for the strategies that make an application
secure, reliable, maintainable, and expandable.

The Web

When you browse the Web, you use your web browser to request resources from a
web server and the web server responds with the resources. You make these requests
by filling in and submitting forms, clicking on links, or typing URLs into your
browser. Often, resources are static HTML pages that are displayed in the browser.
Figure 1-1 shows how a web browser communicates with a web server to retrieve
this book’s home page. This is the classic two-tier or client-server architecture used
on the Web.

(lient/web browser Web server

v N & ol

s s |
Wk

Wi Dt Ayl wieh PP sk

=
=Y

i e —ﬂma——_mmﬂ

Response

Figure 1-1. A two-tier architecture where a web browser makes a request and the web server
responds

A web server is not sophisticated storage software. Complicated operations on data,
done by commercial sites and anyone else presenting lots of dynamic data, should be
handled by a separate database. This leads to a more complex architecture with
three-tiers: the browser is still the client tier, the web server becomes the middle tier,
and the database is the third or database tier. Figure 1-2 shows how a web browser
requests a resource that’s generated from a database, and how the database and web
server respond to the request.

2 | Chapter1: Database Applications and the Web

(lient/web browser Web server Database server

] o s & _ B

O'REILLY

== VI Syl = e 50 . .

Figure 1-2. A three-tier architecture where a web browser requests a resource, and a response is
generated from a database

Three-Tier Architectures

This book shows you how to develop web database applications that are built
around the three-tier architecture model shown in Figure 1-3. At the base of an appli-
cation is the database tier, consisting of the database management system that man-
ages the data users create, delete, modify, and query. Built on top of the database tier
is the middle tier, which contains most of the application logic that you develop. It
also communicates data between the other tiers. On top is the client tier, usually web
browser software that interacts with the application.

The three-tier architecture is conceptual. In practice, there are different implementa-
tions of web database applications that fit this architecture. The most common
implementation has the web server (which includes the scripting engine that pro-
cesses the scripts and carries out the actions they specify) and the database manage-
ment system installed on one machine: it’s the simplest to manage and secure, and
it’s our focus in this book. With this implementation on modern hardware, your
applications can probably handle tens of thousands of requests every hour.

For popular web sites, a common implementation is to install the web server and the
database server on different machines, so that resources are dedicated to permit a
more scalable and faster application. For very high-end applications, a cluster of
computers can be used, where the database and web servers are replicated and the
load distributed across many machines. Our focus is on simple implementations;
replication and load distribution are beyond the scope of this book.

Describing web database applications as three-tier architectures makes them sound
formally structured and organized. However, it hides the reality that the applications
must bring together different protocols and software, and that the software needs to
be installed, configured, and secured. The majority of the material in this book dis-
cusses the middle tier and the application logic that allows web browsers to work
with databases.

Three-Tier Architectures | 3

XX

L
e, 4

R
. e 4

The Internet

Web server

Scripting
engine
Scripts
Database
management
system Database
(DBMS)

Figure 1-3. The three-tier architecture model of a web database application

HTTP: the Hypertext Transfer Protocol

The three-tier architecture provides a conceptual framework for web database appli-
cations. The Web itself provides the protocols and network that connect the client
and middle tiers of the application: it provides the connection between the web
browser and the web server. HTTP is one component that binds together the three-
tier architecture.

HTTP allows resources to be communicated and shared over the Web. Most web
servers and web browsers communicate using the current version, HTTP/1.1. A
detailed knowledge of HTTP isn’t necessary to understand the material in this book,
but it’s important to understand the problems HTTP presents for web database
applications. (A longer introduction to the underlying web protocols can be found in
Appendix D.)

HTTP example

HTTP is conceptually simple: a web browser sends a request for a resource to a web
server, and the web server sends back a response. For every request, there’s always
one response. The HTTP response carries the resource—the HTML document,
image, or output of a program—back to the web browser.

4 | Chapter1: Database Applications and the Web

An HTTP request is a textual description of a resource, and additional information
or headers that describe how the resource should be returned. Consider the follow-
ing example request:

GET /~hugh/index.html HTTP/1.1

Host: goanna.cs.rmit.edu.au

From: hugh@hughwilliams.com (Hugh Williams)

User-agent: Hugh-fake-browser/version-1.0

Accept: text/plain, text/html
This example uses a GET method to request an HTML page /~hugh/index.html from
the server goanna.cs.rmit.edu.au with HTTP/1.1. In this example, four additional
header lines specify the host, identify the user and the web browser, and define what
data types can be accepted by the browser. A request is normally made by a web
browser and may include other headers.

An HTTP response has a response code and message, additional headers, and usually
the resource that has been requested. Part of the response to the request for /~hugh/
index.html is as follows:

HTTP/1.1 200 OK

Date: Thu, 04 Dec 2003 04:30:02 GMT

Server: Apache/1.3.27 (Unix)

Last-Modified: Fri, 21 Nov 2003 22:26:07 GMT

ETag: "a87da0-2128-3fbegoff"

Accept-Ranges: bytes

Content-Length: 8488

Content-Type: text/html

<!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.0 Transitional//EN"
"http://www.w3.0rg/TR/html4/loose.dtd">
<html>
<head>

The first line of the response tells the browser that the response is HTTP/1.1 and
confirms that the request succeeded by reporting the response code 200 and the mes-
sage OK. In this example, seven lines of additional headers identify the current date
and time, the web server software, the last date and time the page was changed, an
entity tag (ETag) that is used for caching, an instruction to the browser on how to
request part of the document, the length of the response, and the content type. After
a blank line, the resource itself follows, and we’ve shown only the first few lines. In
this example the resource is the requested HTML document, /~hugh/index.html.

State

Traditional database applications are stateful. Users log in, run related transactions,
and then log out when they are finished. For example, in a bank application, a bank
teller might log in, use the application through a series of menus as he serves customer

Three-Tier Architectures | 5

requests, and log out when he’s finished for the day. The bank application has state:
after the teller is logged in, he can interact with the application in a structured way
using menus. When the teller has logged out, he can no longer use the application.

HTTP is stateless. Any interaction between a web browser and a web server is inde-
pendent of any other interaction. Each HTTP request from a web browser includes
the same header information, such as the security credentials of the user, the types of
pages the browser can accept, and instructions on how to format the response. The
server processes the headers, formulates a response that explains how the request
was served, and returns the headers and a resource to the browser. Once the
response is complete, the server forgets the request and there’s no way to go back
and retrieve the request or response.

Statelessness has benefits: the most significant are the resource savings from not hav-
ing to maintain information at the web server to track a user or requests, and the
flexibility to allow users to move between unrelated pages or resources. However,
because HTTP is stateless, it is difficult to develop stateful web database applica-
tions: for example, it’s hard to force a user to follow menus or a series of steps to
complete a task.

To add state to HTTP, you need a method to impose information flows and struc-
ture. A common solution is to exchange a token or key between a web browser and a
web server that uniquely identifies the user and her session. Each time a browser
requests a resource, it presents the token, and each time the web server responds, it
returns the token to the web browser. The token is used by the middle-tier software
to restore information about a user from her previous request, such as which menu
in the application she last accessed.

Exchanging tokens allows stateful structure such as menus, steps, and workflow pro-
cesses to be added to the application. They can also be used to prevent actions from
happening more than once, time out logins after a period of inactivity, and control
access to an application.

Thickening the Client in the Three-Tier Model

Given that a web database application built with a three-tier architecture doesn’t fit
naturally with HTTP, why use that model at all? The answer mostly lies in the popu-
larity and standardization of web browsers: any user who has a web browser can use
the web database application, and usually without any restrictions. This means an
application can be delivered to any number of diverse, dispersed users who use any
platform, operating system, or browser software. This advantage is so significant that
our focus in this book is entirely on three-tier solutions that use a web browser as the
client tier.

Web browsers are thin clients. This means almost no application logic is included in
the client tier. The browser simply sends HTTP requests for resources and then dis-

6 | Chapter1: Database Applications and the Web

plays the responses, most of which are HTML pages. This thin client model means
you don’t have to build, install, or configure the client tier, but that you do need to
build almost all of your application to run in the middle tier.

You can thicken the client tier to put more work on the browser. Using popular tech-
nologies such as Java, JavaScript, and Macromedia Flash, you can develop applica-
tion components that process data independently of the web server or preprocess
data before sending it to the server.

JavaScript is particularly good for many tasks because it’s easy to use, open source,
and built into all popular browsers (although users can turn it off). It’s often used to
validate data that’s typed into forms before it’s sent to the server, highlight parts of a
page when the mouse passes over, display menus, and perform other simple tasks.
However, it’s limited in the information it can store and it can’t communicate with a
database server. Therefore, although you shouldn’t depend on JavaScript to do criti-
cal tasks, it’s useful for preprocessing and it’s another important technology we dis-
cuss in Chapter 7.

The Middle Tier

The middle tier has many roles in a web database application. It brings together the
other tiers, drives the structure and content of the data displayed to the user, pro-
vides security and authentication, and adds state to the application. It’s the tier that
integrates the Web with the database server.

Web servers

There are essentially two types of request made to a web server: the first asks for a
file—often a static HTML web page or an image—to be returned, and the second
asks for a program or script to be run and its output to be returned. We’ve shown
you a simple example previously in this chapter, and simple requests for files are fur-
ther discussed in Appendix D. HTTP requests for PHP scripts require a server to run
PHP’s Zend scripting engine, process the instructions in the script (which may access
a database), and return the script output to the browser to output as plain HTML.

Apache is an open source, fast, and scalable web server. It can handle simultaneous
requests from browsers and is designed to run under multitasking operating systems
such as Linux, Mac OS X, and Microsoft Windows. It has low resource require-
ments, can effectively handle changes in request loads, and can run fast on even
modest hardware. It is widely used and tested. The current release at the time of
writing is 2.0.48.

Conceptually, Apache isn’t complicated. On a Unix platform, the web server is actu-
ally several running programs, where one coordinates the others and doesn’t serve
requests itself. The other server programs notify their availability to handle requests
to the coordinating server. If too few servers are available to handle incoming

Three-Tier Architectures | 7

requests, the coordinating server may start new servers; if too many are free, it may
kill spare servers to save resources.

Apache’s configuration file controls how it listens on the network and serves
requests. The server administrator controls the behavior of Apache through more
than 150 directives that affect resource requirements, response time, flexibility in
dealing with request load variability, security, how HTTP requests are handled and
logged, how scripting engines are used to run scripts, and most other aspects of its
operation.

The configuration of Apache for most web database applications is straightforward.
We discuss how to install Apache in Appendixes A through C, how to hide files that
you don’t want to serve in Chapter 6, and the features of a secure web server in
Chapter 11. We discuss the HTTP protocol and how it’s implemented in
Appendix D. More details on Apache configuration can be found in the resources
listed in Appendix G.

Web Scripting with PHP

PHP is the most widely supported and used web scripting language and an excellent
tool for building web database applications. This isn’t to say that other scripting lan-
guages don’t have excellent features. However, there are many reasons that make
PHP a good choice, including that it’s:

Open source
Community efforts to maintain and improve it are unconstrained by commer-
cial imperatives.

Flexible for integration with HTML
One or more PHP scripts can be embedded into static HTML files and this
makes client tier integration easy. On the downside, this can blend the scripts
with the presentation; however the template techniques described in Chapter 7
can solve most of these problems.

Suited to complex projects
It is a fully featured object-oriented programming language, with more than 110
libraries of programming functions for tasks as diverse as math, sorting, creating
PDF documents, and sending email. There are over 15 libraries for native, fast
access to the database tier.

Fast at running scripts
Using its built-in Zend scripting engine, PHP script execution is fast and all com-
ponents run within the main memory space of PHP (in contrast to other script-
ing frameworks, in which components are in distinct modules). Our experiments
suggest that for tasks of at least moderate complexity, PHP is faster than other
popular scripting tools.

8 | Chapter1: Database Applications and the Web

Platform- and operating-system portable
Apache and PHP run on many different platforms and operating systems. PHP
can also be integrated with other web servers.

A community effort
PHP contains PEAR, a repository that is home to over 100 freely available source
code packages for common PHP programming tasks.

At the time of writing, PHP4 (Version 4.3.3) was the current version and PHP5 was
available for beta testing (Version 5.0.0b2). The scripts in this book have been devel-
oped and tested using PHP4, and testing on PHP5 has identified a few limitations.
This book describes both versions of PHP: in particular, you’ll find a discussion of
new object-oriented PHP5 features in Chapter 14. When a feature is only available in
PHP3, we tell you in the text. When a PHP4 script or feature doesn’t work on PHP5,
we explain why and predict how it’ll be fixed in the future; it’s likely that almost all
scripts that run under PHP4 will run under PHPS5 in the future.

PHP is a major topic of this book. It’s introduced in Chapters 3 through 5, where we
discuss most of the features of the core language. PHP libraries that are important to
web database application development are the subject of Chapters 6 and 8 through
13. PHP’s PEAR package repository is the subject of Chapter 7. An example PHP
application is the subject of Chapters 16 to 20. Appendixes A through C show how
to install PHP. Other pointers to web resources, books, and commercial products for
PHP development are listed in Appendix G.

A technical explanation of the new features of PHPS is presented in the next section.
If you aren’t familiar with PHP4, skip ahead to the next section.

Introducing PHP5

PHP4 included the first release of the Zend engine version 1.0, PHP’s scripting
engine that implements the syntax of the language and provides all of the tools
needed to run library functions. PHP5 includes a new Zend engine version 2.0, that’s
enhanced to address the limitations of version 1.0 and to include new features that
have been requested by developers. However, unlike the changes that occurred when
PHP3 became PHP4, the changes from PHP4 to PHP5 only affect part of the lan-
guage. Most code that’s written for PHP4 will run without modification under PHP5.

In brief, the following are the major new features in PHP5. Many of these features are
explained in detail elsewhere in this book:

New Object Model
Object-oriented programming (OOP) and the OOP features of PHP5 are dis-
cussed in detail in Chapter 14. PHP4 has a simple object model that doesn’t
include many of the features that object-oriented programmers expect in an
OOP language such as destructors, private and protected member functions and
variables, static member functions and variables, interfaces, and class type hints.
All of these features are available in PHP5.

Three-Tier Architectures | 9

The PHP5 OOP model also better manages how objects are passed around
between functions and classes. Handles to objects are now passed, rather than
the objects themselves. This has substantially improved the performance of PHP.

Internationalization
Support for non-Western character sets and Unicode. This is discussed in
Chapter 3.

Exception Handling
New try...catch, and throw statements are available that are aimed at improv-
ing the robustness of applications when errors occur. These are discussed in
Chapter 4. There’s also a backtrace feature that you can use to develop a custom
error handler that shows how the code that caused an error was called. This fea-
ture has been back-ported into PHP4 and is discussed in Chapter 12.

Improved memory handling and speed
PHP4 was fast, but PHPS5 is faster and makes even better use of memory. We
don’t discuss this in detail.

New XML support
There were several different tools for working with the eXtensible Markup Lan-
guage (XML) in PHP4. These tools have been replaced with a single new, robust
framework in PHP5. We don’t discuss XML support in this book.

The Improved MySQL library (mysqli)
A new MySQL function library is available in PHP5 that supports MySQL 4. The
library has the significant feature that it allows an SQL query to be prepared
once, and executed many times, and this substantially improves speed if a query
is often used. This library is briefly described in Chapter 6, and is the source of

many of the PHP4 and PHP5 compatibility problems described throughout in
this book.

You can find out more about what’s new in PHP5 from http://www.zend.com/zend/
future.php.

The Database Tier

The database tier stores and retrieves data. It’s also responsible for managing
updates, allowing simultaneous (concurrent) access from web servers, providing
security, ensuring the integrity of data, and providing support services such as data
backup. Importantly, a good database tier must allow quick and flexible access to
millions upon millions of facts.

Managing data in the database tier requires complex software. Fortunately, most
database management systems (DBMSs) or servers are designed so that the software
complexities are hidden. To effectively use a database server, skills are required to
design a database and formulate queries using the SQL language; SQL is discussed in
Chapter 5. An understanding of the underlying architecture of the database server is
unimportant to most users.

10 | Chapter1: Database Applications and the Web

In this book, we use the MySQL server to manage data. It has a well-deserved reputa-
tion for speed: it can manage many millions of facts, it’s very scalable, and particu-
larly suited to the characteristics of web database applications. Also, like PHP and
Apache, MySQL is open source software. However, there are downsides to MySQL
that we discuss later in this section.

The first step in successful web database application development is understanding
system requirements and designing databases. We discuss techniques for modeling
system requirements, converting a model into a database, and the principles of data-
base technology in Appendix E. In this section, we focus on the database tier and
introduce database software by contrasting it with other techniques for storing data.
Chapters 5 and 15 cover the standards and software we use in more detail.

There are other server choices for storing data in the database tier. These include
search engines, document management systems, and gateway services such as email
software. Our discussions in this book focus on the MySQL server in the database tier.

Database Management Systems

A database server or DBMS searches and manages data that’s stored in databases. A
database is a collection of related data, and an application can have more than one
database. A database might contain a few entries that make up a simple address
book of names, addresses, and phone numbers. At the other extreme, a database can
contain tens or hundreds of millions of records that describe the catalog, purchases,
orders, and payroll of a large company. Most web database applications have small-
to medium-size databases that store thousands, or tens of thousands, of records.

Database servers are complex software. However, the important component for web
database application development is the applications interface that’s used to access
the database server. For all but the largest applications, understanding and configur-
ing the internals of a database server is usually unnecessary.

saL

The database server applications interface is accessed using SQL. It’s a standard
query language that’s used to define and manipulate databases and data, and it’s
supported by all popular database servers.

SQL has had a complicated life. It began at the IBM San Jose Research Laboratory in
the early 1970s, where it was known as Sequel; some users still call it Sequel, though
it’s more correctly referred to by the three-letter acronym, SQL. After almost 16 years
of development and differing implementations, the standards organizations ANSI
and ISO published an SQL standard in 1986. IBM published a different standard one
year later!

Since the mid-1980s, three subsequent standards have been published by ANSI and
ISO. The first, SQL-89, is the most widely, completely implemented SQL in popular

Three-Tier Architectures | 11

database servers. Many servers implement only some features of the next release,
SQL-2 or SQL-92, and almost no servers have implemented the features of the most
recently approved standard, SQL-99 or SQL-3. MySQL supports the entry-level SQL-
92 standard and has some proprietary extensions.

Consider an SQL example. Suppose you want to store information about books in a
library. You can create a table—an object that’s stored in your database—using the
following statement:
CREATE TABLE books (
title char(50),
author char(50),

ISBN char(50) NOT NULL,
PRIMARY KEY (ISBN)

)5
Then, you can add books to the database using statements such as:
INSERT INTO books ("Web Database Apps", "Hugh and Dave", "123-456-N");

Once you've added data, you can retrieve facts about the books using queries such as
the following that finds the author and title of a book with a specific ISBN:

SELECT author, title FROM books WHERE ISBN = "456-789-Q";

These are only some of the features of SQL, and even these features can be used in
complex ways. SQL also allows you to update and delete data and databases, and it
includes many other features such as security and access management, multiuser
transactions that allow many users to access the same database without corrupting
the data, tools to import and export data, and powerful undo and redo features.

SQL is discussed in detail in Chapters 5 and 15.

Why use a database server?

Why use a complex database server to manage data? There are several reasons that
can be explained by contrasting a database with a spreadsheet, a simple text file, or a
custom-built method of storing data. A few example situations where a database
server should and should not be used are discussed later in this section.

Take spreadsheets as an example. Spreadsheet worksheets are typically designed for
a specific application. If two users store names and addresses, they are likely to orga-
nize data in a different way and develop custom methods to move around and sum-
marize the data. The program and the data aren’t independent: moving a column
might mean rewriting a macro or formula, while exchanging data between the two
users’ applications might be complex. In contrast, a database server and SQL pro-
vide data-program independence, where the method for storing the data is indepen-
dent of the language that accesses it.

Managing complex relationships is difficult in a spreadsheet or text file. For exam-
ple, consider what happens if we want to store information about customers: we

12 | (Chapter1: Database Applications and the Web

might allocate a few spreadsheet columns to store each customer’s residential
address. If we were to add business addresses and postal addresses, we’d need more
columns and complex processing to, for example, process a mail-out to customers. If
we want to store information about the purchases by our customers, the spreadsheet
becomes wider still, and problems start to emerge. For example, it is difficult to
determine the maximum number of columns needed to store orders and to design a
method to process these for reporting. In contrast, databases are designed to manage
complex relational data.

A database server usually permits multiple users to access a database at the same
time in a methodical way. In contrast, a spreadsheet should be opened and written
only by one user; if another user opens the spreadsheet, she won’t see any updates
being made at the same time by the first user. At best, a shared spreadsheet or text
file permits very limited concurrent access.

An additional benefit of a database server is its speed and scalability. It isn’t totally
true to say that a database provides faster searching of data than a spreadsheet or a
custom filesystem. In many cases, searching a spreadsheet or a special-purpose file
might be perfectly acceptable, or even faster if it is designed carefully and the vol-
ume of data is small. However, for managing large amounts of related information,
the underlying search structures allow fast searching, and if information needs are
complex, a database server should optimize the method of retrieving the data.

There are also other advantages of database servers, including data-oriented and
user-oriented security, administration software, portability, and data recovery sup-
port. A practical benefit of this is reduced application development time: the system
is already built, it needs only data and queries to access the data.

Examples of when to use a database server
In any of these situations, a database server should be used to manage data:

* There is more than one user who needs to access the data at the same time.

* There is at least a moderate amount of data. For example, you might need to
maintain information about a few hundred customers.

* There are relationships between the stored data items. For example, customers
may have any number of related invoices.

* There is more than one kind of data object. For example, there might be infor-
mation about customers, orders, inventory, and other data in an online store.

* There are constraints that must be rigidly enforced on the data, such as field
lengths, field types, uniqueness of customer numbers, and so on.

* New or consolidated information must be produced from basic, related informa-
tion; that is, the data must be queried to produce reports or results.

* There is a large amount of data that must be searched quickly.

Three-Tier Architectures | 13

* Security is important. There is a need to enforce rules as to who can access the
data.

* Adding, deleting, or modifying data is a complex process.

* Adding, deleting, and updating data is a frequent or complex process.

Examples of when not to use a DBMS

There are some situations where a relational DBMS is probably unnecessary or
unsuitable. Here are some examples:

* There is one type of data item, and the data isn’t searched. For example, if a log
entry is written when a user logs in and logs out, appending the entry to the end
of a simple text file may be sufficient.

* The data management task is trivial and accessing a database server adds unnec-
essary overhead. In this case, the data might be coded into a web script in the
middle tier.

The MySQL server

MySQL has most of the features of high-end commercial database servers, including
the ability to manage very large quantities of data. Its design is ideally suited to man-
aging databases that are typical of most web database applications. The current ver-
sion at the time of writing is MySQL 4.1.

The difference between MySQL and high-end commercial servers is that MySQL’s
components aren’t as mature. For example, MySQL’s query evaluator doesn’t always
develop a fast plan to evaluate complex queries. It also doesn’t support all of the fea-
tures you might find in other servers: for example, views, triggers, and stored proce-
dures are planned for future versions. There are other, more minor limitations that
don’t typically affect web development. However, even users who need these fea-
tures often choose MySQL because it’s free. (Contrary to popular belief, since 2002,
MySQL has supported nested queries, transactions, and row (or record) locking.)

MySQL is another major topic of this book. It’s introduced in Chapter 5, and used
extensively in examples in Chapters 6 through 8 and 11 and 12. Advanced MySQL
features are a subject of Chapter 15. An example application that uses PHP and
MySQL is the subject of Chapters 16 through 20. Appendixes A through C shows
how to install MySQL and selected MySQL resources are listed in Appendix G.

A technical explanation of the features of MySQL 4 is presented in the next section.
If you aren’t familiar with MySQL, skip ahead to the next section.

Introducing MySQL 4

MySQL 4 is a major new release that includes important features that have been
added since MySQL 3.23. The current version, MySQL 4.1, supports a wide range of

14 | Chapter1: Database Applications and the Web

SQL queries, including joins, multi-table updates and deletes, and nested queries. At
present it supports most features of the SQL 92 standard, and its aim is to fully sup-
port SQL 99.

The MySQL server supports several table types that allow a wide range of choice in
your applications of locking techniques, transaction environments, and performance
choices. It also has good tools for backup and recovery. MySQL is a powerful, fully-
featured DBMS that’s commercially supported by the company MySQL AB.

In detail, the following are the major features of MySQL 4. Many of these features
are explained in detail elsewhere in this book:

Nested query and derived table support
Sub-queries are new in MySQL 4.1. This allows you to use the SQL statements
EXISTS, IN, NOT EXISTS, and NOT IN, and it also allows you to include a nested
query in the FROM clause that creates a derived table. UNION was introduced in
MySQL 4.0. All of these are discussed in detail in Chapter 15.

Internationalization
MySQL 4.1 now supports Unicode, allowing you to develop applications that
don’t use Western languages. We don’t discuss MySQL’s use of Unicode in this
book, but we do discuss PHP’s Unicode support in Chapter 3.

Query caching
MySQL 4.0 introduced a query cache that stores the most-recent results of que-
ries, and intelligently delivers these as answers to identical future queries. We
show you how to use this feature in Chapter 15. We explain other speed
improvements in the same chapter.

Transaction-safe InnoDB tables
The InnoDB table type was included as a built-in module in MySQL 4.0.
InnoDB supports transactions, and allows you to decide whether to commit or
rollback a set of writes to the database. It also supports checkpointing, which is
used by MySQL to get the database into a known state after a crash or serious
error. We explain the advantages and disadvantages of InnoDB in Chapter 15.

Full text searching
MySQL 4 introduced new methods for fast searching of text and a form of
search engine-like ranking. We don’t discuss this in the book.

MySQL 4 resources are listed in Appendix G.

Three-Tier Architectures | 15

CHAPTER 2
The PHP Scripting Language

This chapter is the first of three that focus on the PHP scripting language. This chap-
ter describes the PHP language basics. Chapter 3 describes PHP’s support for arrays,
strings, and other data types, and Chapter 4 introduces object-oriented program-
ming in PHP.

If you’re familiar with any programming language, PHP should be easy to learn. If
you have done no programming before, the pace of this chapter may be brisk but
should still be manageable. PHP has a syntax similar to JavaScript, which many web
designers have learned; both languages hark back to the classic C and Perl languages
in syntax.

The topics covered in this chapter include:
* PHP basics, including script structure, variables, supported types, constants,
expressions, and type conversions

* Condition and branch statements supported by PHP, including if, if...else,
and the switch statements

* Looping statements
* User-defined functions

We conclude the chapter with a short example that puts many of the basic PHP con-
cepts together.

Introducing PHP

The current version of PHP is PHP4 (Version 4.3.4). PHPS5 is available for beta test-
ing at the time of writing as Version 5.0.0b3. We discuss both versions in this chap-
ter.

PHP is a recursive acronym that stands for PHP: Hypertext Preprocessor; this is in the
naming style of GNU, which stands for GNU’s Not Unix and which began this odd
trend. The name isn’t a particularly good description of what PHP is and what it’s
commonly used for. PHP is a scripting language that’s usually embedded or com-

16

bined with the HTML of a web page. When the page is requested, the web server exe-
cutes the PHP script and substitutes in the result back into the page. PHP has many
excellent libraries that provide fast, customized access to DBMSs and is an ideal tool
for developing application logic in the middle tier of a three-tier application.

PHP Basics

Example 2-1 shows the first PHP script in this book, the ubiquitous “Hello, world.”
It’s actually mostly HTML; the PHP is embedded near the end.

Example 2-1. The ubiquitous Hello, world in PHP

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html401/1loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Hello, world</title>
</head>
<body bgcolor="#ffffff">
<h1>
<?php
print "Hello, world";
>
</h1>
</body>
</html>

When requested by a web browser, the script is run on the web server and the result-
ing HTML document sent back to the browser and rendered as shown in Figure 2-1.

% Hello, world - Mozilla
File Edit ¥iew Go Bookmarks Tools Window Help

B?c’k 7 F-::%%é\rd f H:%;d ‘3§§§F \"&hm Eﬁﬁt ¥

' <} Home | wfBookmarks g Red Hat, Inc. ¢ Red Hat Network 2 Support @5 5hop 25

Hello, world

S &b & B Document: Dane (0412 sec:sj =1D=-ﬁ“

Figure 2-1. The output of Example 2-1 shown in the Netscape browser

Example 2-1 illustrates the basic features of a PHP script. It’s a mixture of HTML—
in this case it’s mostly HTML—and PHP code. The PHP code in this example:
<?php

print "Hello, world";
>

Introducing PHP | 17

simply prints the greeting, “Hello, world.”

The PHP script shown in Example 2-1 is rather pointless: we could simply have
authored the HTML to include the greeting directly. Because PHP integrates so well
with HTML, using PHP to produce static sequence of characters is far less compli-
cated and less interesting than using other high-level languages. However, the exam-
ple does illustrate several features of PHP:

* A block of PHP code is embedded within HTML using the begin and end tags
<?php and ?>. Other begin and end tag styles can also be used, such as the
HTML style that is used with JavaScript or other embedded scripts: <script
language="PHP"> and </script>. There’s also a shorter style <? and ?>. For consis-
tency, we use only the <?php and ?> style in this book.

* Whitespace has no effect, except to aid readability for the developer. For exam-
ple, the PHP could have been written succinctly as <?php print "Hello,
world";?> with the same effect. Any mix of whitespace characters—spaces, tabs,
carriage returns, and so on—can be used to separate PHP statements.

* A PHP script is a series of statements, each terminated with a semicolon. Our
simple example has only one statement: print "Hello, world";. PHP script can
be anywhere in a file and interleaved with any HTML fragment. While
Example 2-1 contains only one statement within one set of <?php and ?> tags,
statements can be distribute code across multiple blocks of code.

* When PHP script is run, each block of code, including the start and end script
tags <?php and ?> is replaced with the output of the block.

v
NN

When we present a few lines of code that are sections of larger scripts,
we usually omit the start and end tags.

&
. +
152

The point of learning PHP, of course, is to create pages that change, pages that con-
tain dynamic content derived from user input or a database. The first step toward
that goal is to introduce a variable, which is something that can change from run to
run. In this chapter, we don’t use dynamic content. But we can show how to set a
variable to a string as follows:

<?php $outputString = "Hello, world"; ?>
And then rewrite our script as follows:
<?php print $outputString; ?>

Because $outputString has been set to Hello, world, that string is printed as part of
the surrounding HTML page.

The freedom to interleave blocks of PHP statements with HTML is one of the most
powerful features of PHP. A short example is shown in Example 2-2; the variable
$outputString is initialized before the start of the HTML document, and later this

18 | Chapter2: The PHP Scripting Language

variable is output twice, as part of the <title> and <body> elements. We discuss more
about variables and how to use them later in this chapter.

Example 2-2. Embedding three blocks of code in a single document

<?php $outputString = "Hello, world"; ?>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/htm1401/1loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title><?php print $outputString; ?></title>
</head>
<body bgcolor="#ffffff">
<h1><?php print $outputString; ?></h1>
</body>
</html>

The flexibility to add multiple blocks of PHP to HTML can also lead to unwieldy,
hard-to-maintain code. Care should be taken in modularizing code and HTML,; we
discuss how to separate code and HTML using templates in Chapter 7.

Creating PHP scripts

A PHP script can be written using plain text and can be created with any text editor,
such as the Unix editors joe, vi, nedit, Emacs, or pico, or a Microsoft Windows edi-
tor such as Notepad or WordPad. There are also several special-purpose PHP pro-
gramming editors available, and a well-maintained list of these can be found at http://
phpeditors.linuxbackup.co.uk/.

If you save a PHP script in a file with a .php extension under the directory config-
ured as Apache’s document root, Apache executes the script when a request is made
for the resource. Following the installation instructions given in Appendixes A
through C, the document root on a Unix machine is:

/usr/local/apache/htdocs/
and in a Microsoft Windows environment:
C:\Program Files\EasyPHP1-7\www\

Consider what happens when the script shown in Example 2-1 is saved in the file
example.2-1.php in the document root directory and you view the file in a Web
browser on the same machine. Apache—when configured with the PHP module—
executes the script when requests to the URL http:/localhost/example.2-1.php are
made.

If you are working on a Unix host, and directory permissions don’t permit creation
of files in the document root, it’s also possible to work in your user home directory.
If the installation instructions in Appendixes A through C have been followed, a
directory can be created beneath your Unix home directory and the permissions set

Introducing PHP | 19

so that the directory is readable by the web server. You can do this by running a ter-
minal window and typing the following after the shell prompt (shown here as a %):

% mkdir ~/public_html
% chmod a+rx ~/public_html

The example file can then be created with the filename:
~/public_html/example.2-1.php

The file can then be retrieved with the URL http://localhost/~user/example.2-1.php,
where user is the user login name.

You can insert any of the code in this chapter into that file, or another one of your
choice, and see what’s displayed by calling it up in a browser as we have shown.

Comments

Comments can be included in code using several styles used by high-level program-
ming languages. This includes the following styles:

// This is a one-1line comment
This is another one-line comment style

/* This is how you
can create a multi-line
comment */

Outputting data with echo and print

The print statement used in Example 2-1 and Example 2-2 is frequently used and
can output any type of data. The echo statement can be used for the same purpose.
Consider some examples:

print "Hello, world";

// echo works just the same
echo "Hello, world";

// numbers can be printed with echo too
echo 123;

// So can the contents of variables

$outputString = "Hi!";

echo $outputString;
The difference between print and echo is that echo can output more than one param-
eter, each separated by a comma. For example, echo can print a string and an integer
together in the one message:

// prints "The answer is 42"
echo "The answer is ", 42;

The print and echo statements are also often seen with parentheses:

20 | Chapter2: ThePHP Scripting Language

echo "hello";

// is the same as

echo ("hello");
Parentheses make no difference to the behavior of print. However, when they are
used with echo, only one output parameter can be provided.

The echo and print statements can be used for most tasks and can output any combi-
nation of static strings, numbers, arrays, and other variable types discussed later in
this chapter. We discuss more complex output with printf() in the next chapter.

String Literals

One of the most common tasks in a PHP script is to output literal sequences of char-
acters to create messages, headings, and other text that appear on HTML pages. A
literal sequence of characters—a string literal or simply a string—can be included in a
PHP script using quotation characters. PHP can create double- and single-quoted
string literals:

print 'This works';

print "just like this.";
Because quotation marks are used to mark the start and end of strings, a quotation
mark that is actually part of a string must be marked in some way. Marking a charac-
ter so that it is treated as a normal character, instead of being part of the PHP syn-
tax, is called escaping. Quotation marks can be escaped by putting a backslash before
them:

print "This string has a \": a double quote!";

print 'This string has a \': a single quote!';
A simple alternative to including quotation marks in a string is to switch to the sin-
gle-quotation style:

// And here are some strings that contain quotes

print "This string has a ': a single quote!";

print 'This string has a ": a double quote!";
To include a backslash character in a double-quoted string, use the escaped sequence
\\. Tab, newline (line break), and carriage-return characters can be included in a
double-quoted string using the escape sequences \t, \n, and \r, respectively. Insert-
ing the white space characters \t, \n, and \r is often useful to make output more
readable, however as HTML, white space is generally disregarded.

Unlike many other languages, PHP allows newline characters to be included directly
in a string literal. The following example shows the variable $var assigned with a
string that contains a newline character:

// This is Ok. $var contains a newline character

$var = 'The quick brown fox
jumps over the lazy dog';

Introducing PHP | 21

This feature is used in later chapters to construct SQL statements that are easier to
read in the PHP source code, for example:
$query = "SELECT max(order id)

FROM orders
WHERE cust_id = $custID";

Variable substitution

Variable substitution provides a convenient way to embed data held in a variable

directly into string literals. PHP examines, or parses, double-quoted strings and

replaces variable names with the variable’s value. The following example shows how:
$number = 45;

$vehicle = "bus";
$message = "This $vehicle holds $number people";

// prints "This bus holds 45 people"

print $message;
PHP interprets the $ and the following non-space characters as the name of a vari-
able to insert. To include the dollar signs in a double-quoted string you need to
escape the variable substitution meaning with the backslash sequence \$.

When the name of the variable is ambiguous, braces {} can delimit the name as
shown in the following example:

$memory = 256;

// No variable called $memoryMbytes
// Sets $message to "My computer has of RAM"
$message = "My computer has $memoryMbytes of RAM";

// Works: braces are used delimit variable name
// Sets $message to "My computer has 256Mbytes of RAM"
$message = "My computer has {$memory}Mbytes of RAM";

When the string literal containing the characters $memoryMbytes is parsed, PHP tries
to substitute the value of the nonexisting variable $memoryMbytes. Braces are also used
for more complex variables, such as arrays and objects:

print "The array element is {$array["element"]}.";
print "Mars is {$planets['Mars']['dia']} times the diameter of the Earth";

print "There are {$order->count} green bottles ...";
We explain arrays in the next chapter and objects in Chapter 4.

We recommend using the braces syntax when including variables in string literals. It
makes your code more readable, and saves you the trouble of remembering to escape
characters.

Single-quoted strings aren’t parsed in the same way as double-quoted strings for vari-
able substitution. For example, the characters $vehicle and $number aren’t substi-
tuted in the following fragment of code:

22 | Chapter2: ThePHP Scripting Language

$number = 45;
$vehicle = "bus";

// prints "This $vehicle holds $number people"
print 'This $vehicle holds $number people’;

Character encoding

When a PHP script is executed, the PHP engine starts by reading the script from a
file. A file is simply a sequence of characters than are interpreted by PHP as state-
ments, variable identifiers, literal strings, HTML, and so on. To correctly interpret
these characters, PHP needs to know the character encoding of the file. Put more sim-
ply, PHP needs to know what each 8-bit sequence that makes up a character means.

In many cases, you won’t need to worry about character encoding. By default PHP
reads the characters encoded to the ISO-8859-1 standard—a standard that is equiva-
lent to 7-bit ASCII for the first 127 characters. The ISO-8859-1 encoding standard—
also known as Latin-1 encoding—uses the next 128 characters to represent charac-
ters used in Western European languages. By default PHP scripts can include ISO-
8859-1 characters directly, as the following fragment demonstrates:
$gesprachsnotiz =
"von Paulus Esterhazy und Markus Hoff-Holtmannus";

The & and & characters in the previous example are represented by the 8-bit
sequences 11100100 and 11100001—the 228th and 225th characters from ISO-8859-1.

Sometimes, it’s not convenient to work with non-7-bit ASCII characters in an editor
environment. Indeed, some programs can only handle 7-bit ASCII and ignore high-
bit characters—characters with a leading “1”. You can include high-bit characters
using an escape sequence to specify either a hexadecimal or octal value. Hexadeci-
mal sequences start with \x and are followed by two digits—00 to ff—to represent
256 characters. For example, the 4 character can be represented in a string literal
with the hexadecimal sequence \xel since el is the hexadecimal equivalent of
11100001:
$translation =
"von Paulus Esterh\xelzy und Markus Hoff-Holtmannus";

Escape sequence can only be used in string literals—PHP does not allow us to repre-
sent the variable $gesprachsnotiz as $gespr\xe4chsnotiz.

Like PHP’s Zend engine, browsers need to know the character encoding of a page
before the page can be correctly displayed. In this book we assume the default ISO-
8859-1 character encoding, and accordingly we instruct browsers to use this encod-
ing by including the mark-up as follows:

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

Introducing PHP | 23

Other ISO-8859-x character encoding standards allow Cyrillic, Arabic, Greek, and
Hebrew characters to be encoded, and a full description of these encoding standards
can be found at http://en.wikipedia.org/wiki/ISO_8859.

PHP can be configured to support UTF-8; an 8-bit encoding method that can repre-
sent Unicode characters. The Unicode Standard describes a universal character
encoding that defines over 49,000 characters from the world’s scripts. Unicode char-
acters can also be encoded using UTF-16, a 16-bit encoding, however PHP does not
support 16-bit characters. More information about the Unicode standard can be
found at http://www.unicode.org.

Variables

Variables in PHP are identified by a dollar sign followed by the variable name. Vari-
ables don’t need to be declared before you use them; normally you just assign them a
value to create them. The following code fragment shows a variable $var assigned the
integer 15. Therefore, $var is defined as being of type integer.

$var = 15;

Variables in PHP are simple: when they are used, the type is implicitly defined—or
redefined—and the variable implicitly declared.

Variable names are case-sensitive in PHP, so $Variable, $variable, $VAriable, and
$VARIABLE are all different variables.

One of the most common sources of bugs in PHP is failing to detect
that more than one variable has accidentally been created. The flexibil-
ity of PHP is a great feature but is also dangerous. We discuss in
Chapter 14 how to set the error reporting of PHP so that it detects this
type of error.

Types

Data exists in different types so that appropriate operations can be performed on it.
For instance, numeric values can be manipulated with arithmetic operators such as
addition and subtraction; whereas strings of characters can be manipulated by opera-
tions such as converting to uppercase. In this section, we introduce the basic types;
their importance will become clear as we use data in more and more complex opera-
tions.

PHP has four scalar types—boolean, float, integer, and string—and two compound
types, array and object. PHP also supports null—a special type that is used when a
variable doesn’t have a value.

Variables of a scalar type contain a single value. Variables of a compound type—
array or object—are made up of multiple scalar values or other compound values.

24 | Chapter2: ThePHP Scripting Language

Arrays are discussed in detail in the next chapter, and objects are discussed in
Chapter 4. Other aspects of variables—including global variables and scope—are
discussed later in this chapter.

Boolean variables are as simple as they get: they can be assigned either true or false.
Here are two example assignments of a Boolean variable:

$variable = false;

$test = true;
An integer is a whole number, while a float is a number that has an exponent and
mantissa. The number 123.01 is a float, and so is 123.0, while the number 123 is an
integer. Consider the following two examples:

// This is an integer
$varl = 6;

// This is a float
$var2 = 6.0;
A float can also be represented using an exponential notation:
// This is a float that equals 1120
$var3 = 1.12e3;
// This is a float that equals 0.02
$varg = 2e-2

You've already seen examples of strings earlier in the chapter. Here are two more
example string variables:

$variable = "This is a string";

$test = 'This is also a string';
Along with the value, the type of a variable can change over the lifetime of the vari-
able. Consider an example:

$var = 15;

$var = "Sarah the Cat";
This fragment is acceptable in PHP. The type of $var changes from integer to string
as the variable is reassigned. Letting PHP change the type of a variable as the context
changes is very flexible and a little dangerous. Later in Working with Types, we show
ways to avoid problems that can arise with loosely typed variables.

Constants

Constants associate a name with a scalar value. For example, the Boolean values true
and false are constants associated with the values 1 and 0, respectively. It’s also
common to declare constants in a script. Consider this example constant declaration:

define("PI", 3.14159);

// This outputs 3.14159
print PI;

Introducing PHP | 25

Constants aren’t preceded by a $ character. They can’t be changed once they have
been defined and they can be accessed anywhere in a script (regardless of where they
are declared).

Constants are useful because they allow parameters internal to the script to be
grouped. When one parameter changes—for example, if you define a new maxi-
mum number of lines per web page—you can alter this constant parameter in only
one place and not throughout the code.

PHP has a large number of built-in constants that a script can use. For example, the
library of mathematical functions already include a definition of M PI to hold the
constant pi:

// This outputs 3.14159265358979323846

print M PI;
By convention, constant names use uppercase characters, and predefined constants
are often named to indicate the associated library. For example the constants defined
for the mathematical functions library all start with M_. We introduce predefined con-
stants as needed throughout this book.

Expressions, Operators, and Variable Assignment

We’ve already described simple examples of assignment, in which a variable is
assigned the value of an integer, string, or value of some other data type. The value
on the right side of the equal sign is actually the simplest example of an expression.

An expression is anything that can be reduced to a single value, for example the sum 1
+ 2 is an expression with an integer value of 3. Expressions can be complex combina-
tions of operators and values, just as in mathematics. Examples of expressions (the first
involving integers, the second involving integers and one floating point number) are:
6+3-2
(255.0/2)+1
The basic syntax for expressions in PHP is taken from the C language and is familiar
to someone who has worked in almost any high-level programming language. Here
are some examples:

// Assign a value to a variable
$var = 1;

// Sum integers to produce an integer
$var = 4 + 7;

// Subtraction, multiplication, and division might have
// a result that is a float or an integer, depending on
// the initial value of $var
$var = (($var - 5) * 2) / 3;

// These all add 1 to $var
$var = $var + 1;

26 | Chapter2: ThePHP Scripting Language

$var += 1;
$var++;

// And these all subtract 1 from $var
$var = $var - 1;

$var -= 1;

$var--;

// Double a value
$var = $var * 2;
$var *= 2;

// Halve a value
$var = $var / 2;
$var /= 2;

// These work with float types too

$var = 123.45 * 28.2;
There are many mathematical functions available in the math library of PHP for
more complex tasks. We introduce some of these in the next chapter.

String expressions can be created using the dot-operator (.) to concatenate two
strings:

// Assign a string value to a variable
$var = "test string";

// Concatenate two strings using the
// dot operator to produce "test string"
$var = "test" . " string";

// Add a string to the end of another
// to produce "test string"

$var = "test";
$var = $var .

string";

// Here is a shortcut to add a string to
// the end of another
$var .= " test";

The following are all equivalent. The syntax you use is a matter of taste.

echo "test string";

echo "test " . "string";

echo "test ", "string";
The first contains a single string. The second contains an expression combining two
strings, while the third contains two arguments to the echo command.

The values returned from functions and many statements can be used as expressions
including a variable assignment. In the following example, the assignment ($x = 42)
is used as an integer expression with the value of 42:

// assign both $y and $x the value 42
$y = ($x = 42);

Introducing PHP | 27

The parentheses are not needed in the example above; however, they highlight the
fact that $x = 42 is an expression.

PHP automatically converts types when combining values in an expression. For
example, the expression 4 + 7.0 contains an integer and a float; in this case, PHP con-
siders the integer as a floating-point number, and the result is of type float. The type
conversions are largely straightforward; however, there are some traps, which are
discussed later in this chapter.

Operator precedence

The term precedence in mathematics and programming refers to the decision con-
cerning which operator is evaluated first. For instance, in the following expression,
by convention, the multiplication operator is evaluated first, leading to a value of 32:

2+5%*6

PHP defines the precedence of operators in an expression similar to how it is done in
other languages. Multiplication and division occur before subtraction and addition,
and so on. However, reliance on evaluation order leads to unreadable, confusing
code. Rather than memorize the rules, we recommend you construct unambiguous
expressions with parentheses, because parentheses have the highest precedence in
evaluation.

For example, in the following fragment $variable is assigned a value of 32 because of
the precedence of multiplication over addition:

$variable = 2 + 5 * 6;
But the result is much clearer if parentheses are used:

$variable = 2 + (5 * 6);

Conditions and Branches

Conditionals add control to scripts and permit choices. Different statements are exe-
cuted depending on whether expressions are true or false. There are two branching
statements in PHP: if, with the optional else clause, and switch, usually with two or
more case clauses.

if...else Statement

The if statement conditionally controls execution. The basic format of an if state-
ment is to test whether a condition is true and, if so, to execute one or more state-
ments.

The following if statement executes the print statement and outputs the string
when the conditional expression, $var is greater than 5, is true:

if ($var > 5)
print "The variable is greater than 5";

28 | Chapter2: ThePHP Scripting Language

The expressions used in the examples in this section compare inte-
gers. They can be used to compare strings but usually not with the
tt expected results. If strings need to be compared, use the PHP string
" library function stremp(). It’s discussed in more detail in Chapter 3.

Multiple statements can be executed as a block by encapsulating the statements
within braces. If the expression evaluates as true, the statements within the braces
are executed. If the expression isn’t true, none of the statements are executed. Con-
sider an example in which three statements are executed if the condition is true:

if ($var > 5)

{
print "The variable is greater than 5.";
// So, now let's set it to 5
$var = 5;
print "In fact, now it is equal to 5.";
}

Without the braces, an if statement executes only the single, immediately following
statement when the conditional expression evaluates to true.

The if statement can have an optional else clause to execute a statement or block of
statements if the expression evaluates as false. Consider an example:
if ($var > 5)
print "Variable greater than 5";

else
print "Variable less than or equal to 5";

It’s also common for the else clause to execute a block of statements in braces, as in
this example:

if ($var < 5)

{
print "Variable is less than 5";
print "-----memm e "5
}
else
{
print "Variable is equal to or larger than 5";
print M----ee oo "
}

Consecutive conditional tests can lead to examples such as:

if ($var < 5)
print "Value is very small";
else
if ($var < 10)
print "Value is small";
else
if ($var < 20)

Conditions and Branches | 29

print "Value is normal";
else
if ($var < 30)
print "Value is big";
else
print "Value is very big";

The indentation in the preceding example highlights the nested nature of the multi-
ple tests. If consecutive, cascading tests are needed, the elseif statement can be
used. The choice of which method to use is a matter of personal preference. This
example has the same functionality as the previous example:

if ($var < 5)

print "Value is very small";
elseif ($var < 10)

print "Value is small";
elseif ($var < 20)

print "Value is normal";
elseif ($var < 30)

print "Value is big";
else

print "Value is very big";

switch Statement

The switch statement can be used as an alternative to if to select an option from a
list of choices. The following example executes different code for different integer
values, or cases of the variable $menu. A case clause is provided for values 1, 2, 3, and
4, with a default: case provided for all other values:

switch ($menu)
{
case 1:
print "You picked one";
break;
case 2:
print "You picked two";
break;
case 3:
print "You picked three";
break;
case 4:
print "You picked four";
break;
default:
print "You picked another option";

}
This example can be implemented with if and elseif, but the switch method is usu-
ally more compact, readable, and easier to type. The use of break statements is
important: they prevent execution of statements that follow in the switch statement
and force execution to jump to the statement that follows the closing brace.

30 | Chapter2: ThePHP Scripting Language

If break statements are omitted from a switch statement, you can get an unexpected
result. For example, without the break statements, if the user chooses option 3, the
script outputs:

You picked three. You picked four. You picked another option

These results are often a source of difficult-to-detect bugs; however, by intentionally
omitting the break statement, you can group cases together as shown in the follow-
ing switch statement:

$score = "Distinction”;

switch ($score)

{
case "High Distinction":
case "Distinction":
print "Good student";
break;

case "Credit":

case "Pass":
print "Average student";
break;

default:
print "Poor student";
}
While not mandatory, the default: case is useful when default processing is per-
formed on all but selected special cases, or to handle unexpected values when
expected values have corresponding cases.

Conditional Expressions

Now we’ll look at what can go inside the parentheses of an if statement, and other
control statements. The most common conditional comparison is to test the equality
or inequality of two expressions. Equality is checked with the double-equal opera-
tor, ==; if the value on the left-hand side is equal to the value on the right-hand side,
then the expression evaluates to true. The expression ($var == 3) in the following
example evaluates to true:

$var = 3;

if ($var == 3)
print "Equals 3";

Inequality is tested with the not-equals operator, !=. Both evaluate to a Boolean
result of true or false.

Conditions and Branches | 31

If the equality operator == and the assignment operator = are unfamil-
iar, beware: they are easy to inadvertently interchange. This is a very
common bug and hard to detect.

The value of the conditional expression ($var = 1) evaluates as true,
because the expression takes its value from the value on the right hand
side of the assignment operator; in this case 1. Here is an example of a
common mistake, which overwrites the original value of the variable
and always prints the statement:
if ($var = 1)
print "Variable equals 1.";

The error of incorrectly replacing an assignment with == is a far less
common mistake. However, it’s also difficult to detect because an
incorrectly written assignment of $var == 1; is quietly evaluated as
true or false with no effect on $var.

Expressions can be combined with parentheses and with the Boolean operators 8&
(and) and || (or). For example, the following expression returns true and prints the
message if $var is equal to 3 or $var2 is equal to 7:
if (($var == 3) || ($var2 == 7))
print "Equals 3 or 7";
The following expression returns true and prints the message if $var equals 2 and
$var2 equals 6:
if (($var == 2) 8& ($var2 == 6))
print "The variables are equal to 2 and 6";
Interestingly, if the first part of the expression ($var == 2) evaluates as false, PHP
doesn’t evaluate the second part of the expression ($var2 == 6), because the overall
expression can never be true; both conditions must be true for an 8& (and) opera-
tion to be true. Similarly, in the previous example, if ($var == 3), then there’s no
need to check if ($var2 == 7).

This short-circuit evaluation property has implications for design; to speed code,
write the expression most likely to evaluate as false as the left-most expression, and
ensure that computationally expensive operations are as right-most as possible.

Never assume that expressions combined with the Boolean operators

s && and || are evaluated. PHP uses short-circuit evaluation when deter-
N o . .

13, mining the result of a Boolean expression.

Conditional expressions can be negated with the Boolean not operator !. The follow-
ing example shows how an expression that tests if $var is equal to 2 or 6 is negated:

if (($var == 2) || ($var == 6))
print "The variable var is equal to 2 or 6";

if (I(($var == 2) || ($var == 6)))

print "The variable var is not equal to 2 or 6";

32 | Chapter2: ThePHP Scripting Language

Unlike the 8& and || operators, ! works on a single value as the following example

highlights:

// Set a Boolean variable
$found = false;

// The following message is printed
if (!$found)
print "Expression is true";
More complex expressions can be formed through combinations of the Boolean
operators and the liberal use of parentheses. For example, the following expression
evaluates as true and prints the message if one of the following is true: $var equals 6
and $var2 equals 7, or $var equals 4 and $var2 equals 1.
if ((($var == 6) 8& ($var2 == 7)) || (($var == 4) && ($var2 == 1)))
print "Expression is true";
As in assignment expressions, parentheses ensure that evaluation occurs in the
required order.

Loops

Loops add control to scripts so that statements can be repeatedly executed as long as
a conditional expression remains true. There are four loop statements in PHP: while,
do...while, for, and foreach. The first three are general-purpose loop constructs,
while the foreach is used exclusively with arrays and is discussed in the next chapter.

while

The while loop is the simplest looping structure but sometimes the least compact to
use. The while loop repeats one or more statements—the loop body—as long as a
condition remains true. The condition is checked first, then the loop body is exe-
cuted. So, the loop never executes if the condition isn’t initially true. Just as with the
if statement, more than one statement can be placed in braces to form the loop

body.

The following fragment illustrates the while statement by printing out the integers
from 1 to 10 separated by a space character:

$counter = 1;
while ($counter < 11)

{

non,
>

print $counter .
$counter++;

Loops | 33

do...while

The difference between while and do...while is the point at which the condition is
checked. In do. . .while, the condition is checked after the loop body is executed. As
long as the condition remains true, the loop body is repeated.

You can emulate the functionality of the previous while example as follows:

$counter = 1;
do

{

print $counter . 5
$counter++;
} while ($counter < 11);

The contrast between while and do. ..while can be seen in the following example:

$counter = 100;

do

{
print $counter .
$counter++;

} while ($counter < 11);

nou,
1

This example outputs 100, because the body of the loop is executed once before the
condition is evaluated as false.

The do...while loop is the least frequently used loop construct, probably because
executing a loop body once when a condition is false is an unusual requirement.

for

The for loop is the most complicated of the loop constructs, but it also leads to the
most compact code.

Consider this fragment that implements the example used to illustrate while and
do...while:

for($counter=1; $counter<i1; $counter++)

{

print $counter;
print " "
}
The for loop statement has three parts separated by semicolons, and all parts are
optional:

Initial statements
Statements that are executed once, before the loop body is executed.

Loop conditions
The conditional expression that is evaluated before each execution of the loop
body. If the conditional expression evaluates as false, the loop body is not exe-
cuted.

34 | Chapter2: ThePHP Scripting Language

End-loop statements
Statements that are executed each time after the loop body is executed.

The previous code fragment has the same output as our while and do...while loop
count-to-10 examples. $counter=1 is an initial statement that is executed only once,
before the loop body is executed. The loop condition is $counter<i1, and this is
checked each time before the loop body is executed; when the condition is no longer
true (when $counter reaches 11) the loop is terminated. The end-loop statement
$counter++ is executed each time after the loop body statements.

Our example is a typical for loop. The initial statement sets up a counter, the loop
condition checks the counter, and the end-loop statement increments the counter.
Most for loops used in PHP scripts have this format.

Conditions can be as complex as required, as in an if statement. Moreover, several
initial and end-loop statements can be separated by commas. This allows for com-
plexity:

for($x=0,$y=0; $x<1083$y<$z; $x++,$y+=2)

However, complex for loops can lead to confusing code.

Changing Loop Behavior

To break out of a loop early—before the loop condition becomes false—the break
statement is useful. This example illustrates the idea:

for($x=0; $x<100; $x++)

{
if ($x > $y)
break;
print $x;
}

If $x reaches 100, the loop terminates normally. However, if $x is (or becomes)
greater than $y, the loop is terminated early, and program execution continues after
the closing brace of the loop body. The break statement can be used with all loop

types.

To start again from the top of the loop without completing all the statements in the
loop body, use the continue statement. Consider this example:

$x = 1;
while($x<100)
{
print $x;
$x++;
if ($x > $y)
continue;
print $y;
}

Loops | 35

The example prints and increments $x each time the loop body is executed. If $x is
greater than $y, the sequence starts again with the print $x; statement (and $x keeps
the value that was assigned to it during the loop). Otherwise, $y is printed and the
loop begins again normally. Like the break statement, continue can be used with any

loop type.

The use of break and continue statements to change loop behavior makes code
harder to understand and should be avoided.

Functions

A function is another concept that programming derived from mathematics. Some
programming functions are direct implementations of common mathematical func-
tions, such as sines and other trigonometric functions. (Naturally, these are not used
much in PHP.) But you are sure to use functions related to strings, dates, and other
everyday objects in your code. PHP has a large number of useful functions built in,
and you can define your own functions as we describe later in this chapter.

Functions are called in PHP scripts and can often be used as expressions. For
instance, the following example uses the strtoupper() function to change a string to
uppercase:

$var = "A string";

print strtoupper($var); // prints "A STRING"

A function is followed by parentheses, which can contain zero or more parameters.
This function accepts just one parameter. It can be summarized as follows:

string strtoupper(string subject)

The previous statement is called a prototype and is very useful for introducing func-
tions. Prototypes are used throughout PHP documentation, and the following chap-
ters of this book, when a function is described. The first word indicates what is
returned by the function: in this case, its output is a string. The name of the function
follows, and then a list of parameters within parentheses. Each parameter is
described by a type and a parameter name—strtoupper() is defined with a single
string parameter named subject. Names allow us to distinguish multiple parameters
when we describe the function.

Prototypes use brackets to indicate that function parameters that are optional. Con-
sider the following prototype for the date() function:

string date(string format [, integer timestamp)])

The date() function returns the current date and time as a string where the format is
specified by the parameter format. The optional integer parameter timestamp allows
non-current dates and times to be formatted. We discuss the date() function and
timestamps in the next chapter.

36 | Chapter2: ThePHP Scripting Language

When there is more that one optional parameter, then the parameters are shown in
nested brackets:

string x(string p1 [, integer p2 [, integer p3]])

The fictional function x() must be called with at least p1, but optionally p2 and p3.
The nesting of brackets indicates that parameter p3 can’t be included without p2.

Some functions allow an unspecified number of parameters; these are indicated with
three periods:

string y(string p1 , ...)

Working with Types

PHP is a loosely typed language, allowing variables and function parameters to be set
to any type of data. Similarly, functions can return different data types in different
circumstances.

In the last section, we introduced the function prototype as a way of describing the
type of parameters that functions are designed to work with and the types of data
that are returned. Since PHP is loosely typed, PHP can’t enforce these types as
strongly typed languages do. To illustrate this, the PHP library function strtoupper()
is designed to operate on strings, but can be called with an integer parameter:

$var = 42;

print strtoupper($var); // prints the string "42"

When functions are designed to work with different data types, prototypes describe
parameters and return values as mixed. Other functions may not work as expected,
or may not work at all, when the wrong type of data is used.

Type Conversion

PHP provides several mechanisms to allow variables of one type to be considered as
another type. Variables can be explicitly converted to another type with the follow-
ing functions:

string strval(mixed variable)
integer intval(mixed variable [, integer base])
float floatval(mixed variable)

The functions convert the variable into a string, integer, or float respectively. The
intval() function also allows an optional base that determines how the variable is
interpreted.

$year = 2003;

// Sets $yearString to the string value "2003"

Working with Types | 37

$yearString = strval($year);
$var = "abc";

// sets $value to the integer 0
$value = intval($var);

// sets $count to the integer value 2748 - the

// integer value of "abc" as a hexadecimal number

$count = intval($var, 16);
Because the string "abc" doesn’t look anything like an integer, the first call to the
intval() function sets $value to zero.

PHP also supports type conversion with type-casting operators in much the same way
as C, to allow the type of an expression to be changed. When you place the type
name in parentheses in front of a variable, PHP converts the value to the desired

type:

// cast to an integer: the following are equivalent
$int = (int) $var;

$int = (integer) $var;

$int = intval($var);

// cast to a Boolean
$bool = (bool) $var;
$bool = (boolean) $var;

// cast to a float
$float = (float) $var;
$float = floatval($var);

// cast to a string
$str = (string) $var;
$str = strval($var);

// cast to an array
$arr = (array) $var;

// cast to an object
$obj = (object) $var;

In the previous example, type casting, and calls to the strval(), intval(), and floatval()
functions don’t change the value or type of the variable $var. The settype() function
actually modifies the variable that it is called with. For example:

boolean settype(mixed variable, string type)

settype() explicitly sets the type of variable to type, where type is one of array,
boolean, float, integer, object, or string.

// cast to an integer: the following are equivalent
$var = 39;

38 | Chapter2: ThePHP Scripting Language

// $var is now a string
settype($var, "string");

The rules for converting types are mostly common sense, but some conversions may
not appear so straightforward. Table 2-1 shows how various values of $var are con-
verted using the (int), (bool), (string), and (float) casting operators.

Table 2-1. Examples of type conversion in PHP

Value of $var (int) Svar (bool) $var (string) $var (float) $var
null 0 false " 0

true 1 true "1" 1

false 0 false " 0

0 0 false "o" 0

38 3 true "3.8" 38

"0" 0 false "0" 0

"10" 10 true "10" 10

"6 feet" 6 true "6 feet" 6

"foo" 0 true "foo" 0

Automatic Type Conversion

Automatic type conversion occurs when two differently typed variables are com-
bined in an expression or when a variable is passed as an argument to a library func-
tion that expects a different type. When a variable of one type is used as if it were
another type, PHP automatically converts the variable to a value of the required type.
The same rules are used for automatic type conversion as demonstrated previously in
Table 2-1.

Some simple examples show what happens when strings are added to integers and
floats, and when strings and integers are concatenated:

// $var is set as an integer = 115
$var = "100" + 15;

// $var is set as a float = 115.0
$var = "100" + 15.0;

// $var is set as a string = "39 Steps"
$var = 39 . " Steps";

Not all type conversions are so obvious and can be the cause of hard-to-find bugs:

// $var is set as an integer = 39
$var = 39 + " Steps";

// $var is an integer = 42
$var = "3 blind mice" + 39;

Working with Types | 39

// $var is a float, but what does it mean?

$var = "test" * 4 + 3.14159;
Automatic type conversion can change the type of a variable. Consider the following
example:

$var = "
$var +=

"5 // $var is a string == "1"
H // $var is now an integer ==

1

2
$var /= 2; // $var is now a float == 1.5
$var *= 2

; // $var is still a float ==

Care must be taken when interpreting non-Boolean values as Boolean.
Many library functions in PHP return values of different types in dif-
ferent circumstances. For example, many functions return the Bool-
ean value false if a valid result could not be determined. If the function
is successful, they return the valid integer, string, or compound type.
However, a valid return value of 0, 0.0, "0", an empty string, null, or
an empty array is also equal to the Boolean value false and can be mis-
interpreted as failure.

The solution is to test the type of the variable using the functions
described in the next section.

Examining Variable Type and Content

Because PHP is flexible with types, it provides the following functions that can check
a variable’s type:

boolean is_int(mixed variable)
boolean is_float(mixed variable)
boolean is_bool(mixed variable)
boolean is_string(mixed variable)
boolean is_array(mixed variable)
boolean is_object(mixed variable)

All the functions return a Boolean value of true or false depending on whether the
type of variable matches the variable type that forms the name of the function. For
example, is_float() evaluates to true in the following code:

$test = 13.0;

// prints "Variable is a float"
if (is_float($test))
print "Variable is a float";

Is-identical and is-not-identical operators

While the PHP equals operator == tests the values of two variables, it doesn’t test the
variables types. Consider the comparisons of string and integer variables:

$stringVar = "10 reasons to test variable type";
$integerVar = 10;

40 | Chapter2: ThePHP Scripting Language

// Prints "Variables have the same value"
if ($stringVar == $integerVar)
print "Variables have the same value";
Because of PHP’s automatic type conversion, $stringVar == $integerVar evaluates to
true. PHP provides the is-identical operator === that tests not only values, but types.
In the fragment below, the expression $stringVar === $integerVar evaluates to
false:

$stringVar = "10 reasons to test variable type";
$integerVar = 10;

// Does not print anything
if ($stringVar === $integerVar)
print "Variables have the same value and type";
PHP also provides the is-not-identical operator, !==, that returns true if the value or
type of two expressions are different.

Debugging with gettype(), print_r(), and var_dump()

PHP provides the gettype(), print_r(), and var_dump() functions, which print the
type and value of an expression in a human-readable form:

string gettype(mixed expression)
print_r(mixed expression)
var_dump (mixed expression [, mixed expression ...J)

These functions are useful for debugging a script, especially when dealing with arrays
or objects. To test the value and type of $variable at some point in the script, the fol-
lowing code can be used:

$variable = "3 Blind mice" + 39;
var_dump($variable);

This prints:
int(42)

While the var_dump() function allows multiple variables to be tested in one call, and
provides information about the size of the variable contents, print_r() provides a
more concise representation of arrays and objects, and will prove useful later when
we start to use those variables.

The gettype() function simply returns the type name for an expression:
$variable = "3 Blind mice" + 39;
// prints: "integer"
print(gettype($variable));

The name that gettype() returns should only be used for information and not to pro-
grammatically test the type of a variable as the output is not guaranteed to remain
stable with future PHP releases. To programmatically test a variable type, you should

Working with Types | 41

use the is_int(), is_float(), is_bool(), is_string(), is_array(), or is_object() functions
described earlier.

The gettype(), print_r(), and var_dump() functions can be used on variables and
expressions of any type, and we use them throughout the book to help illustrate the
results of our examples.

Testing, setting, and unsetting variables

During the running of a PHP script, a variable may be in an unset state or may not
yet be defined. PHP provides the isset() function and the empty() language construct
to test the state of variables:

boolean isset(mixed var)
boolean empty(mixed var)

isset() tests if a variable has been set with a non-null value, while empty() tests if a
variable is equal to false. The two are illustrated by the following code:

$var = 0;

// prints: "Variable is Set"
if (isset($var)) print "vVariable is Set";

// prints: "Variable is Empty"
if (empty($var)) print "Variable is Empty";

$var = "test";

// prints: "Variable is Set"
if (isset($var)) print "vVariable is Set";

// Doesn't print
if (empty($var)) print "Variable is Empty";
A variable can be explicitly destroyed using unset():
unset(mixed var [, mixed var [, ...]])
After the call to unset in the following example, $var is no longer defined:

$var = "foo";

// Later in the script
unset($var);

// Does not print
if (isset($var)) print "vVariable is Set";

42 | Chapter2: ThePHP Scripting Language

Table 2-2 show the return values for isset($var) and empty($var)when the variable
$var is tested. Some of the results may be unexpected: when $var is set to "0," empty()
returns true.

Table 2-2. Expression values

State of the variable $var isset(Svar) empty($var)
unset $var; false true
$var = null; false true
$var = 0; true true
$var = true; true false
$var = false; true true
$var = "0"; true true
$var = ""; true true
$var = "foo"; true false
$var = array(); true true

A variable is always set when it is assigned a value—with the exception of a null
assignment—and isset() returns true. The empty() function tests the Boolean value
of the variable and returns true if the variable is false. The statement

$result = empty($var);
is equivalent to
$result = not (boolean) $var;

However, PHP issues a warning when a cast operator is used on an unset variable,
whereas empty() doesn’t.

User-Defined Functions

User-defined functions provide a way to group together related statements into a
cohesive block. For reusable code, a function saves duplicating statements and
makes maintenance of the code easier. Consider an example of a simple user-devel-
oped function as shown in Example 2-3.

Example 2-3. A user-defined function to output bold text

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html401/1loose.dtd">

<html>

<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Simple Function Call</title>

</head>

<body bgcolor="#ffffff">

<?php

User-Defined Functions | 43

Example 2-3. A user-defined function to output bold text (continued)

function bold($string)
{

}

print "" . $string . "";

// First example function call (with a static string)
print "this is not bold ";

bold("this is bold ");

print "this is again not bold “;

// Second example function call (with a variable)
$myString = "this is bold";

bold($myString);

>

</body></html>

The script defines the function bold(), which takes one parameter, $string, and
prints that string prefixed by a bold tag and suffixed with a tag. The parame-
ter $string is a variable that is available in the body of the function, and the value of
$string is set when the function is called. As shown in the example, the function can
be called with a string literal expression or a variable as the parameter.

Functions can also return values. For example, consider the following code fragment
that declares and uses a function heading(), which returns a string using the return
statement:

function heading($text, $headinglLevel)

{
switch ($headingLevel)
{
case 1:
$result = "<hi>$text</h1>";
break;
case 2:
$result = "<h2>$text</h2>";
break;
case 3:
$result = "<h3>$text</h3>";
break;
default:
$result = "<p>$text</p>";
}
return($result);
}

$test = "User-defined Functions";
print heading($test, 2);

44 | Chapter2: ThePHP Scripting Language

The function takes two parameters: the text of a heading and a heading level. Based
on the value of $headinglevel, the function builds the HTML suitable to display the
heading. The example outputs the string:

<h2>User-defined Functions</h2>

The variable that is returned by a return statement can optionally be placed in paren-
theses: the statements return($result) and return $result are identical.

Parameter Types and Return Types

The parameter and return types of a function aren’t declared when the function is
defined. PHP allows parameters of any type to be passed to the function, and as with
variables, the return type is determined when a result is actually returned. Consider a
simple function that divides two numbers:

function divide($a, $b)
{

}

The value returned from the function divide() is the value of the expression ($a/$b).
The type that is returned depends on the parameters passed to divide(). For example:

return ($a/$b);

$c = divide(4, 2); // assigns an integer value = 2
$c = divide(3, 2); // assigns a float value = 1.5
$c = divide(4.0, 2.0); // assigns a float value = 2.0

If the types of parameters passed to the function are critical, they should be tested as
shown earlier in “Type Conversion.”

The return statement causes the execution of the function to end. To illustrate this,
consider an improved divide() function definition that tests the parameter $b to avoid
divide-by-zero errors:

function divide($a, $b)

if ($b == 0)

return false;

return ($a/$b);
}

If $b is O, then the function returns false and the division of $a/$b is never executed.

The return statement can also be used to exit from functions that don’t return val-
ues. Consider the following definition of bold() that simply prints the parameter
$string without any bold mark-up when passed non-string values:

function bold($string)
{
if (! is_string($string))
{
print $string;
return;

User-Defined Functions | 45

}

print "" . $string . "";

Variable Scope

Variables used inside a function are different from those used outside a function. The
variables used inside the function are limited to use within the function. This is
called the scope of the variable. There are exceptions to this rule, which are dis-
cussed later in this section. Consider an example that illustrates variable scope:

function doublevalue($var)

{
}

$temp = $var * 2;

$variable = 5;
doublevalue($variable);
print "\$temp is: $temp";

This example outputs the string:
$temp is:

with no value for $temp. The scope of the variable $temp is local to the function
doublevalue() and is discarded when the function returns.

The PHP script engine doesn’t complain about an undeclared variable being used. It
just assumes the variable is empty. However, this use of an undefined variable can be
detected by configuring the error-reporting settings. Error reporting is discussed in
Chapter 14.

The easiest way to use a value that is local to a function elsewhere in a script is to
return the value from the function with the return statement. The calling script can
simply assign the returned value to a local variable. The following example does this:

function doublevalue($var)

{
$returnVar = $var * 2;
return($returnvar);

}

$variable = 5;
$temp = doublevalue($variable);
print "\$temp is: $temp";

The example prints:
$temp is: 10

You could have still used the variable name $temp inside the function doublevalue().
However, the $temp inside the function is a different variable from the $temp outside
the function. The general rule is that variables used exclusively within functions are

46 | Chapter2: ThePHP Scripting Language

local to the function, regardless of whether an identically named variable is used else-
where. There are three exceptions to this general rule: variables passed by reference,
variables declared global in the function, and superglobals that contain user and
environment values and are automatically created by PHP at runtime. Global vari-
ables are discussed in the next section, and superglobals are discussed in Chapter 6.

Global variables

If you want to use the same variable everywhere in your code, including within func-
tions, you can do so with the global statement. The global statement declares a vari-
able within a function as being the same as the variable that is used outside of the
function. Consider this example:

function doublevalue()

{
global $temp;
$temp = $temp * 2;
}

$temp = 5;

doublevalue();

print "\$temp is: $temp";
Because $temp is declared inside the function as global, the variable $temp used in
doublevalue() is a global variable that can be accessed outside the function. Because
the variable $temp can be seen outside the function, the script prints:

$temp is: 10
A word of caution: avoid overuse of global as it makes for confusing code.
The global variable declaration can be a trap for experienced program-

mers. In some other languages, global variables are usually declared
global outside the functions and then used in the functions.

In PHP, it’s the opposite: to use a global variable inside a function,
declare the variable as global inside the function.

Allowing a function to modify global variables solves the problem that a return state-
ment can only pass back one value. An alternative to using global is to return an
array of values—this approach becomes clear when we discuss arrays in Chapter 3. A
better approach is to pass parameters by reference instead of by value, a practice
described later.

Static variables

Variables can also be declared within a function as static. The static variable is avail-
able only in the scope of the function, but the value is not lost between function
calls. Consider simple function count() that declares a static counter variable $count:

function count()

{

User-Defined Functions | 47

static $count = 0;
$count++;
return $count;

}

// prints 1
print count();

// prints 2
print count();

The first time the function count() is called, the static variable $count is set to zero,
and incremented. The value of $count is maintained for subsequent calls.

Passing Variables to Functions

By default, variables are passed to functions by value, not by reference. Consider an
example:

function doublevalue($var)

{
}

$var = $var * 2;

$variable = 5;
doublevalue($variable);
print "\$variable is: $variable”;

This produces the output:
$variable is: 5

The parameter $variable that is passed to the function doublevalue() isn’t changed
by the function. What actually happens is that the value 5 is passed to the function,
doubled to be 10, and the result lost forever! The value is passed to the function, not
the variable itself.

Passing parameters by reference

An alternative to returning a result or using a global variable is to pass a reference to
a variable as a parameter to the function. This means that any changes to the vari-
able within the function affect the original variable. Consider this example:

function doublevalue(&$var)

{
}

$var = $var * 2;

$variable = 5;
doublevalue($variable);
print "\$variable is: $variable";

This prints:

$variable is: 10

48 | Chapter2: ThePHP Scripting Language

The only difference between this example and the previous one is that the parameter
$var to the function doublevalue() is prefixed with an ampersand character: 8$var.
The effect is a bit too hard to understand unless one learns low-level computer lan-
guages, but it means that the parameter doesn’t contain the value of the variable—
instead, it points to where the variable is stored in memory. The result is that
changes to $var in the function affect the original variable $variable outside the
function.

If a parameter is defined as a reference, you can’t pass the function a literal expres-
sion as that parameter because the function expects to modify a variable. PHP
reports an error when the following is executed:

function doublevalue(&$var)

{
}

$var = $var * 2;

// The following line causes an error
doublevalue(5);

Assigning by reference

Referencing with the ampersand can also be used when assigning variables, which
allows the memory holding a value to be accessed from more than one variable. This
example illustrates the idea:

$x = 10;

Sy = 8%

$y++;

print $x;

print $y;

This fragment prints:
1111

Because $y is a reference to $x, any change to $y affects $x. In effect, they are the
same variable. The reference $y can be removed with:

unset($y);
This has no effect on $x or its value.

Assigning variables with a reference to another variable can also be done with the ref-
erence assignment operator =& with exactly the same outcome as shown in the previ-
ous example. The following fragment sets up three variables—s$x, $y, and $z—that
all point to the same value:

$x = 10;

// Use the reference assignment operator =& to assign a reference to $x
$y =& $x;

User-Defined Functions | 49

// Use the assignment operator = to copy a reference to $x
$z = &$x;

$x = 100;

// Prints "x = 100, y = 100, z = 100"
print "x = {$x}, y = {$y}, z = {$z}";

Default parameter values

PHP allows functions to be defined with default values for parameters. A default
value is simply supplied in the parameter list using the = sign. Consider the heading()
function described earlier; here we modify the function definition to include a default
value:

function heading($text, $headinglevel = 2)

{
switch ($headinglevel)
{
case 1:
$result = "<hi>$text</h1>";
break;
case 2:
$result = "<h2>$text</h2>";
break;
case 3:
$result = "<h3>$text</h3>";
break;
default:
$result = "<p>$text</p>";
}
return($result);
}

$test = "User-defined Functions";
print heading($test);

When calls are made to the heading() function, the second argument can be omit-
ted, and the default value 2 is assigned to the $headingLevel variable.

Reusing Functions with Include and Require Files

It’s valuable to be able to reuse functions in many scripts. PHP provides the include
and require statements that allow you to reuse PHP scripts containing statements,
function definitions, and even static HTML.

50 | Chapter2: ThePHP Scripting Language

If you decide to reuse the bold() function from Example 2-3 in more than one script,
you can store it in a separate include file. For example, you can create a file called
functions.inc and put the bold() function in the file:

<?php
function bold($string)
{
print "" . $string . "";
}
>

Any PHP code in an include file must be surrounded by the PHP start
and end script tags. The PHP script engine treats the contents of
include files as HTML unless script tags are used.

You can then use include to provide access to the bold() function:

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html401/loose.dtd">

<html>

<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Simple Function Call</title>

</head>

<body bgcolor="#ffffff">

<?php

include "functions.inc";

// First example function call (with a string expression)
print "this is not bold ";

bold("this is bold ");

print "this is again not bold ";

// Second example function call (with a variable)
$myString = "this is bold";

bold($myString);

>

</body></html>

Include files can also be used to incorporate resources such as static HTML or a set of
variable initializations. The following example could be written to the file release.inc
and included in all the scripts of an application:

<!-- Beta Release Only -->

<?php

$showDebug = true;

2>
Both include and require read external include files, the only difference is in the
behavior when a file can’t be included: include provides a warning whereas require
terminates the script with a fatal error.

User-Defined Functions | 51

When you are including a file that contains user-defined functions, or other manda-
tory content, you should use the require directive. We use the require directive in all
of our code.

The include and require statements can be treated in the same way as other state-
ments. For example, you can conditionally include different files using the following
code fragment:

if ($netscape == true)

{
require "netscape.inc";
}
else
{
require "other.inc";
}

The file is included only if the include statement is executed in the script. The braces
used in this example are necessary: if they are omitted, the example doesn’t behave
as expected.

Scripts can include more than one include file, and include files can themselves
include other files. Writing scripts that use include or require can lead to an include
file being included and evaluated twice. To avoid problems with variable reassign-
ments and function redefinitions, PHP provides the include once or require once
constructs statements that ensure that the contents of the file are included only once.

Managing include files

As you develop reusable code, you should consider how you will arrange your
include files. By default, when a file is included using the include or require state-
ments, PHP searches for the file in the same directory as the script being executed.
You can include files in other directories by specifying a file path in the include or
require statements. The following example shows how relative and absolute file
paths can be used:

// a relative file path
require "../inc/myFunctions.php";

// an absolute file path

require "/library/database/db.inc";
The paths can be specified with forward slashes for both Unix and Microsoft Win-
dows environments, allowing scripts to be moved from one environment to another.
However, using paths can make it difficult to change the directory structure of your
application.

A more sophisticated, and flexible alternative to accessing include files is to set the
include_path parameter defined in the php.ini configuration file. One or more direc-
tories can be specified in the include path parameter, and when set, PHP will search

52 | Chapter2: ThePHP Scripting Language

for include files relative to those directories. The following extract from the php.ini
file shows how to set the include_path parameter:

D333 9922333333330))
; Paths and Directories ;

2233939223393 222333393233))

5 UNIX: "/pathi:/path2”

;include path = ".:/php/includes:/usr/local/php/projectx"

; Windows: "\pathi;\path2"

include path = ".;c:\php\includes;d:\php\projectx"
Path specifications for this parameter are system specific. Unix paths use the for-
ward slash and are separated with the colon (:) character, while Microsoft Windows
paths use the backslash and are separated by semi colons (;).

The php.ini configuration file defines many parameters that are used to define
aspects of PHP’s behavior. Whenever you change php.ini, you need to restart your
Apache web server so that the changes are re-read; instructions for restarting are in
Appendix A.

If you set the include path parameter, include and require directives need only spec-
ify a path relative to a directory listed in the include path. For example, if the
include_path is set to point at /usr/local/php/projectx, and you have an include file
security.inc that’s stored in /usr/local/php/projectx/security, you only need to add:

include "security/security.inc";

to your script file. The PHP engine will check the directory /usr/local/php/projectx,
and locate the subdirectory security and its include file. Include files that are placed
in directories outside of the web server’s document root are protected from access via
the web server. In Chapter 6 we describe how to protect include files that are under
the web server root directory.

For a large project, you might place the project-specific code into one directory,
while keeping reusable code in another; this is the approach we use in our case
study, Hugh and Dave’s Online Wines, as we describe in Chapter 15.

A Working Example

In this section, we use some of the techniques described so far to develop a simple,
complete PHP script. The script doesn’t process input from the user, so we leave
some of the best features of PHP as a web scripting language for discussion in later
chapters.

Our example is a script that produces a web page containing the times tables. Our
aim is to output the 1-12 times tables. The first table is shown in Figure 2-2 as ren-
dered by a Mozilla browser.

AWorking Example | 53

hd The Times-Tables - Mozilla

' Eile Edit Wiew Go Bookmarks Tools Mindow Help

El‘a%k - Fn%éud : R;%’:\d S%égp | hitpsfwaw webdatabase Ir;g‘t -

% 4} Home | WpBookmarks 2 Red Hat, Inc. ¢ Red Hat Metwork @ Support £ Shop @ Products [Trainin{

-

The Times Tables

The 1 Times Tahle
1z1=1
Zx1=2
3xl1=3
dx1=4
sx1=35
Gxl=6
Tx1=7F
§x1-=§
9zx1=9
10x1=10
11x1=11
12x1=12

The 2 Times Tahle
1z2=2
2x2-=4
Fx2=6
dx2=§
5x2=10
6x2=12
Tx2=14
§x2-=16
9x2=18
10x2=20
11 xd =22
12x2=24

The 3 Times Tahle
1x23=3
2x3=4

Document: Done (1.533 secs) .:. ={D=|ﬁ‘“

Figure 2-2. The output of the times-tables script rendered in a Mozilla browser

The completed PHP script and HTML to produce the times tables are shown in
Example 2-4. The first ten lines are the HTML markup that produces the <head> com-
ponents and the <h1>The Times Tables</h1> heading at the top of the web page. Simi-
larly, the last two lines are HTML that finishes the document: </body> and </html>.

Between the two HTML fragments that start and end the document is a PHP script
to produce the times-table content and its associated HTML. The script begins with
the PHP open tag <?php and finishes with the close tag ?>.

Example 2-4. A script to produce the times tables

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html401/1loose.dtd">

<html>

<head>

54 | Chapter2: ThePHP Scripting Language

Example 2-4. A script to produce the times tables (continued)

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>The Times-Tables</title>

</head>

<body bgcolor="#ffffff">

<h1>The Times Tables</h1>

<?php

// Go through each table
for($table=1; $table<13; $table++)

{
print "<p>The " . $table . " Times Table\n";
// Produce 12 lines for each table
for($counter=1; $counter<i3; $counter++)
{
$answer = $table * $counter;
// Is this an even-number counter?
if ($counter % 2 == 0)
// Yes, so print this line in bold
print "
$counter x $table = "
"$answer";
else
// No, so print this in normal face
print "
$counter x $table = $answer";
}
}
?>
</body>
</html>

The script is designed to process each times table and, for each table, to produce a
heading and 12 lines. To do this, the script consists of two nested loops: an outer
and inner for loop.

The outer for loop uses the integer variable $table, incrementing it by 1 each time
the loop body is executed until $table is greater than 12. The body of the outer loop
prints the heading and executes the inner loop that actually produces the body of
each times table.

The inner loop uses the integer variable $counter to generate the lines of the times
tables. Inside the loop body, the $answer to the current line is calculated by multiply-
ing the current value of $table by the current value of $counter.

Every second line of the tables and the times-table headings are encapsulated in the
bold tag and bold end tag , which produces alternating bold lines in the
resulting HTML output. After calculating the $answer, an if statement follows that

AWorking Example | 55

decides whether the line should be output in bold tags. The expression the if state-
ment tests uses the modulo operator % to test if $counter is an odd or even number.

The modulo operation divides the variable $counter by 2 and returns the remainder.
So, for example, if $counter is 6, the returned value is 0, because 6 divided by 2 is
exactly 3 with no remainder. If $counter is 11, the returned value is 1, because 11
divided by 2 is 5 with a remainder of 1. If $counter is even, the conditional expres-
sion:

($counter % 2 == 0)
is true, and bold tags are printed.

Example 2-4 is complete but not especially interesting. Regardless of how many
times the script is executed, the result is the same web page. In practice, you might
consider running the script once, capturing the output, and saving it to a static
HTML file. If you save the output as HTML, the user can retrieve the same page,
with less web-server load and a faster response time.

In later chapters, we develop scripts with output that can change from run to run,
and can’t be represented in a static file. In Chapter 6, we show scripts that interact
with the MySQL database management system; the result is dynamic pages that
change if the underlying data in the database is updated. We also show scripts that
interact with the system environment and with user input from fill-in forms.

56 | Chapter2: ThePHP Scripting Language

CHAPTER 3

Arrays, Strings, and Advanced Data
Manipulation in PHP

In the previous chapter, we introduced the basics of the PHP language. In this chap-
ter we show you some important techniques you’ll need to manipulate data in PHP.
This includes ways of dealing with arrays, strings, dates, and numerical data. The
topics in this chapter cover:

* Arrays and array library functions
* Strings and string library functions
* Regular expressions

* Date and time functions

* Integer and float functions

We don’t attempt to cover every function and library supported by PHP. However,
we provide brief descriptions of them in Appendix E. In later chapters, we discuss
selected specialized library functions that support the topics and techniques pre-
sented here.

Arrays

Programmers continually have to deal with collections of data items. For instance,
when you query a database for products, you may get a collection with multiple
results. In PHP, as with many programming languages, you can handle these results
through an array. An array can be considered a name that refers to many related
items.

Arrays in PHP are sophisticated and more flexible than in many other high-level lan-
guages. A PHP array is an ordered set of variables, in which each variable—called an
element—has an associated key. PHP allows elements to be accessed using either
string or integer keys—PHP automatically assigns integer key values if keys are not
specified when arrays are constructed.

57

Arrays can hold scalar values (integers, Booleans, strings, or floats) or compound val-
ues (objects and even other arrays). The same array can even hold elements of differ-
ent types. In this section, we show how arrays are constructed and introduce several
useful array functions from the PHP library.

Creating Arrays

PHP provides the array() language construct that creates arrays. The following
examples show how arrays of integers and strings can be constructed and assigned to
variables for later use:

$numbers = array(s, 4, 3, 2, 1);
$words = array("Web", "Database", "Applications");

// Print the third element from the array of integers: 3
print $numbers[2];

// Print the first element from the array of strings: "Web"

print $words[0];
By creating arrays this way, PHP assigns integer keys, or indexes to each element. By
default, the index for the first element in an array is 0—this may seem odd but think
of the index as an offset from the starting position in an array. The values contained
in an array can be retrieved and modified using the bracket [] syntax. You can also
create an array by assigning elements to a new, unset variable. The following code
fragment illustrates the bracket syntax with an array of strings:

$newArray[0] = "Potatoes";

$newArray[1] = "Carrots";
$newArray[2] = "Spinach";

// Replace the third element

$newArray[2] = "Tomatoes";
In this example, PHP automatically treats $newArray as an array without a call to
array().

An empty array can be created by assigning to a variable the return value of array().
Values can then be added using the bracket syntax. PHP automatically assigns the
next numeric index as the key (the largest integer key value plus one) when a key isn’t
supplied. The result of the following fragment is an array containing three items.

$shopping = array();
$shopping[] = "Milk";

$shopping[] = "Coffee";
$shopping[] = "Sugar";

It’s also easy to print individual element values themselves:

print $shopping[0]; // prints "Milk"
print $shopping[1]; // prints "Coffee"
print $shopping[2]; // prints "Sugar"

58 | Chapter3: Arrays, Strings, and Advanced Data Manipulation in PHP

When printing array elements in double-quoted strings, you need to use the braces
syntax introduced in Chapter 2, for example:

// prints "The first item in my list is Milk"
print "The first item in my list is {$shopping[0]}";

You can also print out the entire contents of an array using the print_r() function
that we introduced in Chapter 2. Passing the variable $shopping from the previous
example to print_r():

print_r($shopping);

prints the entire array showing each element and associated index:

Array

(
[0] => Milk
[1] => Coffee
[2] => Sugar

)

To include print_r() output as part of a web page, you should use <pre> tags to pre-
serve the formatting, otherwise the output is rendered on one line because one or
more consecutive white space characters is treated as a single space in HTML. Gen-
erally you should avoid the use of the <pre> tag in your HTML output, however pre-
serving the print_r() format makes debugging much easier. Here’s how you can use
the <pre> tags:

<pre>

<?php print r($shopping); 7>

</pre>
While the print_r() function is really only intended for debugging purposes, and the
use of <pre> elements in HTML is discouraged, we use the print_r() function exten-
sively in this chapter to help illustrate our examples.

Associative arrays

An associative array uses string keys to access values stored in the array. An associa-
tive array can be constructed with array() by associating each key to a value using
the => operator as shown in the following example:

$array = array("first"=>1, "second"=>2, "third"=>3);

// Print out the second element: prints "2"
print $array[“second"];

The same array of integers can also be created with the bracket syntax:

$array["first"] = 1;
$array["second"] = 2;
$array["third"] = 3;

Amays | 59

The => operator can also be used to create numerically indexed arrays that start at
any index value. Often it’s convenient to start an array at index 1, as shown in the
following example:

$numbers = array(1=>"one", "two", "three", "four");
Arrays can also be created where each numeric key is specified, such as:
$oddNumbers = array(1=>"one", 3=>"three", 5=>"five");

All arrays in PHP are associative with elements accessed either by a string key or an
integer key. You can create arrays that use both integer and string keys, however
such arrays add complexity to an application and should be avoided. Associative
arrays are common in other languages and are sometimes called hash arrays or hash
tables—a reference to how the array is implemented.

Removing elements from an array

An element can be removed from an array, or an entire array can be deleted, by call-
ing unset(). However, removing an element doesn’t reassign the indexes as the fol-
lowing example shows:

$favorites = array("PHP", "Ace", "COBOL", "Java", "C++");

// remove COBOL from the array
unset($favorites[2]);
print_r($favorites);

Initially, each element is assigned a numeric key starting from zero, and after remov-
ing an element, the script prints:

Array ([0] => PHP [1] => Ace [3] => Java [4] => C++)

There is no longer an element defined for index 2. This example illustrates the asso-
ciative nature of all PHP arrays: after a value is added to an array, the associated key
remains unchanged unlike a true index that would adjust when an array changes.

To destroy a whole array, call unset() on the array variable:

// destroy the whole array
unset($favorites);

Array order

Arrays preserve the order of the elements that they contain, and new elements are
appended to the end of an existing array. The following fragment creates an array
specifying the integer indexes 1, 3, and 5; then adds values with the index values 2,
4, and 6.

$numbers = array(1=>"one", 3=>"three", 5=>"five");

$numbers[2] = "two";
$numbers[4] = "four";

60 | Chapter3: Arays, Strings, and Advanced Data Manipulation in PHP

$numbers[6] = "six";

print_r($numbers);

The resulting order is shown when the array contents are viewed with print_r():

Array

(
[1] => one
[3] => three
[5] => five
[2] => two
[4] => four
[6] => six

)

Heterogeneous arrays

The values that can be stored in a single PHP array don’t have to be of the same type;
PHP arrays can contain heterogeneous values—that is any mix of integer, string,
Boolean, float, object, and even array variables. The following example shows the
heterogeneous array $mixedBag:

$mixedBag = array("cat", 42, 8.5, false);

var_dump($mixedBag);

The function var_dump() displays the types and values of each element (with some
whitespace added for clarity):

array(4)

0] => string(3) "cat"
1 => int(42)

] => float(8.5)

]

[
[
[
[3] => bool(false)

1
2
3

Multidimensional arrays

Often data can’t be represented in a simple array of scalar values—integers, strings,
Booleans, and floats. Some data can only be represented when arrays hold other
arrays of values. Consider representing the results from the twelve times table we
showed in the previous chapter. We could create an array for each table from one to
twelve:

$one = array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12);

$two = array(2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24);

$three = array(3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36);
// etc..

or we can create a multidimensional array like this:

$table = array(
1 => array(1 => 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12),
2 => array(1 => 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24),

Arrays | 61

3 => array(1 => 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36),
)5
The variable $table is a two-dimensional array: each element—accessed by the inte-
ger 1, 2, 3, and so on—is an array that holds the results of a multiplication. Values
can be accessed using [] operators for each dimension. We have explicitly set the
index for the first element in each row, and for each row, allowed the terms used in a

multiplication to be used as keys. For example, the following prints the result of 3
times 8:

// Prints 24
print $table[3][8];

Example 3-1 shows how more complex multidimensional arrays can be constructed.

Example 3-1. Examples of multidimensional arrays in PHP

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html401/loose.dtd">

<html>

<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Multi-dimensional arrays</title>

</head>

<body bgcolor="#ffffff">

<h2>A two dimensional array</h2>

<?php

// A two dimensional array using integer indexes

$planets = array(array("Mercury", 0.39, 0.38),
array("Venus", 0.72, 0.95),
array("Earth", 1.0, 1.0),
array("Mars", 1.52, 0.53));

// prints "Earth"
print $planets[2][0]
?>

<h2>More sophisticated multi-dimensional array</h2>
<?php

// More sophisticated multi-dimensional array
$planets2 = array(
"Mercury"=> array("dist"=>0.39, "dia"=>0.38),
"Venus" => array("dist"=>0.72, "dia"=>0.95),
"Earth" => array("dist"=»>1.0, "dia"=>1.0,
"moons"=>array("Moon")),
"Mars" => array("dist"=»>1.52, "dia"=>0.53,
"moons"=>array("Phobos", "Deimos"))

);

// prints "Moon"

62 | Chapter3: Arays, Strings, and Advanced Data Manipulation in PHP

Example 3-1. Examples of multidimensional arrays in PHP (continued)

print $planets2["Earth"]["moons"][0];
>
</body>
</html>

The first array constructed in Example 3-1 is two-dimensional and is accessed using
integer indexes. The array $planets contains four elements, each of which is an array
that contains three values: the planet’s name, its distance from the Sun relative to the
Earth’s distance, and the planet’s diameter relative to the Earth.

The second array in Example 3-1 is a little more sophisticated: the array $planets2
uses associative keys to identify an array that holds information about a planet. Each
planet has an array of values that are associatively indexed by the name of the prop-
erty that is stored. For those planets that have moons, an extra property is added that
holds an array of the moon names.

To include an element from a multi-dimensional array in a double-quoted string, you
need to use the braces syntax introduced in Chapter 2. When using braces, you don’t
need to escape the double-quotes that surround the array key; for example:

// prints "The Moon is a balloon"
print "The {$planets2["Earth"]["moons"][0]} is a balloon";

Many data structures (such as property lists, stacks, queues, and trees) can be cre-
ated using PHP arrays. We limit our usage of arrays to simple structures; the exami-
nation of more complex data structures is outside the scope of this book.

Using foreach Loops with Arrays

The easiest way to traverse or iterate through an array is using the foreach state-
ment. The foreach statement has two forms:

foreach(array_expression as $value)

// body of loop

}
foreach(array_expression as $key => $value)
{
// body of loop
}

Both step through an array expression, executing the statements contained in the
body of the loop for each element in the array. The first form assigns the value from
the element to a variable identified with the as keyword. The second form assigns
both the key and the value to a pair of variables. Variables assigned with an element
value and key, are available in the body of the loop.

Arays | 63

The following example shows the first form in which the array expression is the vari-
able $1lengths, and each value is assigned to the variable $cm:

// Construct an array of integers
$lengths = array(0, 107, 202, 400, 475);

// Convert an array of centimeter lengths to inches
foreach($lengths as $cm)

$inch = $cm / 2.54;
print "{$cm} centimeters = {$inch} inches\n";

}
The example iterates through the array in the same order it was created:

0 centimeters = 0 inches

107 centimeters = 42.125984251969 inches
202 centimeters = 79.527559055118 inches
400 centimeters = 157.48031496063 inches
475 centimeters = 193.87755102041 inches

The first form of the foreach statement iterates through the values of an associative
array, but keys are not retrieved. The second form assigns both the key and the value
to variables identified as $key => $value. The next example shows how the key is
assigned to $animal, and the value is assigned to $sound to generate verses of “Old
MacDonald”:

// 0ld MacDonald
$sounds = array("cow"=>"moo", "dog"=>"woof",
"pig"=>"0ink", "duck”=>"quack");

foreach ($sounds as $animal => $sound)
{
print "<p>0ld MacDonald had a farm EIEIO";
print "
And on that farm he had a {$animal} EIEIO";
print "
With a {$sound}-{$sound} here";
print "
And a {$sound}-{$sound} there";
print "
Here a {$sound}, there a {$sound}";
print "
Everywhere a {$sound}-{$sound}";
print "<p>0ld MacDonald had a farm EIEIO";
}

This prints a verse for each $animal/$sound pair in the $sounds array; here are the first
two verses:

0ld MacDonald had a farm EIEIO

And on that farm he had a cow EIEIO
With a moo-moo here

And a moo-moo there

Here a moo, there a moo

Everywhere a moo-moo

0ld MacDonald had a farm EIEIO

01d MacDonald had a farm EIEIO
And on that farm he had a dog EIEIO

64 | Chapter3: Arays, Strings, and Advanced Data Manipulation in PHP

With a woof-woof here

And a woof-woof there

Here a woof, there a woof
Everywhere a woof-woof

0ld MacDonald had a farm EIEIO

When the second form of the foreach statement is used with an array with integer
keys, the key is assigned the integer index.

Basic Array Functions

In this section, we introduce selected basic PHP array library functions.

Counting elements in arrays

The count() function returns the number of elements in the array var:
integer count(mixed var)

Using it, the following example prints 7:
$days = array("Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun");
print count($days); // 7

The count() function works on any variable type and returns 0 when either an empty
array or an unset variable is examined. If you want to be sure that count() is called
on an array variable, the is_array() function should be called first.

The array_count_values() function counts the instances of each value in an input
array, returning a new associative array of the resultant counts:

array array_count_values(array input)

The following example illustrates how the function works:

$pets = array("Beth"=>"Dog", "Arabella"=>"Rabbit", "Meg"=>"Cat",
"Louise"=>"Chicken", "Ben"=>"Dog", "Neda"=>"Cat");

$petFrequency = array_count_values($pets);

// prints 2
print $petFrequency["Dog"];

// prints:
// Array ([Dog] => 2 [Rabbit] => 1 [Cat] => 2 [Chicken] => 1)
print_r($petFrequency);

Functions that create arrays

PHP provides two functions that create new arrays with pre-filled values:

array array_fill(integer start, integer count, mixed value)
array range(mixed low, mixed high [, integer step])

Arrays | 65

The function array_fill() returns a new array of count elements, their keys starting at

index start, all set to the same value. The function range() returns a new array filled

with a sequence of elements starting with the value low to the value high. The

optional step value—introduced in PHP 5—determines the increments between ele-

ments in the new array. The following examples show how these two functions work:
// Sets $unity to:

// Array ([2] => one [3] => one [4] => one [5] => one [6] => one)
$unity = array fill(2, 5, "one");

// sets $teens to:

// Array ([0] => 13 [1] => 14 [2] => 15 [3] => 16
// [4] => 17 [5] => 18

$teens = range(13, 19);

// sets $letters to:
// Array ([0] => A [1] => B [2] => C [3] => D [4] => E [5] => F)
$letters = range("A", "F");

// This only works in PHP5

// sets $oddNumbers to

// Array ([0] => 1 [1] => 3 [2] => 5 [3] => 7 [4] => 9)
$oddNumbers = range(1, 10, 2);

// This only works in PHP5

// sets $fifthLetters to

// Array ([0] => a [1] => f [2] => k [3] =>p [4] => u [5] => 2)
$fifthLetters = range("a", "z", 5);

Exploding and imploding strings

PHP provides the explode(), implode(), and join() functions, which convert strings to
arrays and back to strings:

array explode(string separator, string subject [, integer limit])
string implode (string glue, array pieces)
string join(string glue, array pieces)

The explode() function returns an array of strings created by breaking the subject
string at each occurrence of the separator string. The optional integer limit determines
the maximum number of elements in the resulting array; when the limit is met, the
last element in the array is the remaining unbroken subject string. The implode() func-
tion returns a string created by joining each element in the array pieces, inserting the
string glue between each piece. join() is an alias to implode() and operates exactly the
same way. The following example shows both the implode() and explode() functions:

$words = explode(" ", "Now is the time");

// Prints: Array ([0] => Now [1] => is [2] => the [3] => time)
print_r($words);

$animalsSeen = array("kangaroo", "wombat", "dingo", "echidna");

66 | Chapter3: Arrays, Strings, and Advanced Data Manipulation in PHP

// prints:

// Animals I've seen: kangaroo, wombat, dingo, echidna

print "Animals I've seen: " . implode(", ", $animalsSeen);
In the example, explode() creates a new array by breaking the phrase “Now is the
time” at each space. The resulting elements do not incorporate the separating
spaces—they get thrown away. The implode() function turns the array into a string;
the glue results in a comma-separated animal names. It is common to use the
implode() function when you want to print the contents of an array in a message.

Later in “Regular Expressions” we describe the functions split() and spliti() as alter-
natives to the explode(). While these functions use regular expressions to define the
separator and allow more complex behavior, the explode() function is more efficient
and should be used for simple tasks.

Finding the maximum and minimum values in an array

The maximum and minimum values can be found from an array numbers with max()
and min(), respectively:

number max(array numbers)
number min(array numbers)

If an array of integers is examined, the returned result is an integer as in the follow-
ing example:

$var = array(10, 5, 37, 42, 1, -56);
print max($var); // prints 42
print min($var); // prints -56

If an array of floats is examined, min() and max() return a float.
Both min() and max() can also be called with a list of integer or float arguments:

number max(number argl, number arg2, number arg3, ...)
number min(number argl, number arg2, number arg3, ...)

In this case, they return the maximum or minimum value in the list. Neither max()
or min() complain when they’re passed strings or arrays of strings, but the results
may not always be as expected and the string functions we discuss later should be
used instead.

Finding values in arrays with in_array() and array_search()

The in_array() function returns true if an array haystack contains a specific value
needle:

boolean in_array(mixed needle, array haystack [, boolean strict])
The following example searches the array of integers $smallPrimes for the integer 19:

$smallPrimes = array(2, 3, 5, 7, 11, 13, 17, 19, 23, 29);

$var = 19;

Arays | 67

if (in_array($var, $smallPrimes))
print "{$var} is a small prime number"; // Always printed
A third, optional argument can be passed that enforces a strict type check when com-
paring each element with the needle. In the following example, in_array() with two
parameters would return true as automatic type conversion turns the string into an
integer. However, with strict type checking, the string "19 Bridge Rd, Richmond"
doesn’t match the integer 19 held in the array and so the function returns false:

$smallPrimes = array(2, 3, 5, 7, 11, 13, 17, 19, 23, 29);
$var = "19 Bridge Rd, Richmond";

// Strict type checking -- message not printed
if (in_array($var, $smallPrimes, true))
print "{$var} is a small prime number";

// No type checking -- message is printed
if (in_array($var, $smallPrimes))
print "{$var} is a small prime number";
The array_search() function (introduced with PHP 4.0.5) works the same way as the
in_array() function, except the key of the matching value needle is returned rather
than the Boolean value true:

mixed array_search(mixed needle, array haystack [, boolean strict])
The following fragment shows how array_search() works:

$measure = array("inch"=>1, "foot"=»>12, "yard"=>36);

// prints "foot"
print array search(12, $measure);

$units = array("inch", "centimeter", "chain", "furlong");

// prints 2
print array search("chain", $units);

If the value isn’t found, array_search() returns false. The third, optional parameter
strict directs array_search() to compare both value and type when searching for a
match.

A problem can exist when the first element is found, because the return value is 0
and is hard to distinguish from false.

Care must be taken with functions, such as array_search(), that return
a result on success, or the Boolean value false to indicate when a
result can’t be determined. If the return value is used as a Boolean—in
an expression or as a Boolean parameter to a function—a valid result
may be automatically converted to false. If such a function returns 0,
0.0, an empty string, or an empty array, PHP’s automatic type conver-
sion converts the result to false when a Boolean value is required.

68 | Chapter3: Arays, Strings, and Advanced Data Manipulation in PHP

The correct way to test the result of functions that return mixed values is to use the
is-identical operator ===, as shown in the following example:

$units = array("inch", "centimeter", "chain", "furlong");
$index = array search("inch", $units);

if ($index === false)
print "Unknown unit: inch";
else
// OK to use $index
print "Index = {$index}"; // Prints Index = 0

Keys and values

You can check the existence of an element before using it with the array_key_exists()
function. If there is an element in the source array associated with the key, then the
function returns true:

boolean array_key_exists(mixed key, array source)

The following example searches the array $pets for a particular $owner and either
prints the corresponding pet $pets[$owner], or reports that the $owner was not found
as a key in the source array:

$pets = array("Beth"=>"Dog", "Arabella"=>"Rabbit", "Meg"=>"Cat",
"Louise"=>"Chicken", "Ben"=>"Dog", "Neda"=>"Cat");

$owner = "Eddie";

if (array_key exists($owner, $pets))
print "{$owner} has a {$pets[$owner]} as a pet";
else

{
print "{$owner} doesn't have a pet.\n";
print "Pet owners are: " . implode(array keys($pets), ", ");
}
A list of known pet owners is printed by calling the array_keys() function and glu-
ing the result together using the implode() function discussed earlier in the chapter.
The preceding example prints the message:

Eddie doesn't have a pet.
Pet owners are: Beth, Arabella, Meg, Louise, Ben, Neda

The array_keys() function can also be used to find the keys for a particular value:
array array_keys(array input [, mixed search_value])

When the function is called with an optional search_value, only keys associated with
that value are returned:

$pets = array("Beth"=>"Dog", "Arabella"=>"Rabbit", "Meg"=>"Cat",
"Louise"=>"Chicken", "Ben"=>"Dog", "Neda"=>"Cat");

$dogOwners = array keys($pets, "Dog");

Arays | 69

// Prints: Array ([0] => Beth [1] => Ben)

print_r($dogOwners);
Sometimes it’s useful to consider the values of an associative array without the keys.
PHP provides the array_values() function that creates a new array with the values
from the input array and adds a numeric index:

array array_values(array input)

For example, the $pets array in the following fragment is transformed into a numeri-
cally-indexed list of pet types:

$pets = array("Beth"=>"Dog", "Arabella"=>"Rabbit", "Meg"=>"Cat",
"Louise"=>"Chicken", "Ben"=>"Dog", "Neda"=>"Cat");

// Array ([0] => Dog [1] => Rabbit [2] => Cat [3] => Chicken

// [4] => Dog [5] => Cat)

$petTypes = array values($pets);
The following fragment generates a list of unique values from the array $pets by pass-
ing the array returned by array_values() directly into the function array_unique().
The implode() function is called to create a simple message:

$pets = array("Beth"=>"Dog", "Arabella"=>"Rabbit", "Meg"=>"Cat",
"Louise"=>"Chicken", "Ben"=>"Dog", "Neda"=>"Cat");

$uniquePetTypes = array unique(array values($pets));

// Prints
// Pets seen : Dog, Rabbit, Cat, Chicken
print "Pets seen : " . implode(", ", $uniquePetTypes);

Joining two or more arrays

Arrays can be merged using the + operator. However, values with the same index or
key are overwritten. In contrast, the array_merge() function provides a method of
appending two or more arrays together without overwriting values:

array array_merge(array arrayl, array array2 [, array ...])

The behavior of both the + operator and the array_merge() function is illustrated in
this example:

$clothing = array("silk", "satin", "cotton", "rags");
$dwelling = array("house", "tree", "palace");
$cointoss = array("heads", "tails");

$added = $cointoss + $dwelling + $clothing;

// prints:

// Array ([0] => heads [1] => tails [2] => palace [3] => rags)
print r($added);

$merged = array merge($cointoss, $dwelling, $clothing);

70 | Chapter3: Arrays, Strings, and Advanced Data Manipulation in PHP

// prints:

// Array ([0] => heads [1] => tails [2] => house [3] => tree
// [4] => palace [5] => silk [6] => satin [7] => cotton
// [8] => rags)

e

print_r($merged);

The result of the array addition in the previous example deserves some explanation:
$added = $cointoss + $dwelling + $clothing;
PHP calculates the addition from right to left: first the $clothing array is overwritten

by the $dwelling array, then the result of that addition is overwritten by the
$cointoss array.

Reordering elements with array_reverse()

The array_reverse() function returns a new array by reversing the elements from a
source array:

array array_reverse(array source [, bool preserve_keys])
The following example shows how to reverse an indexed array of strings:

$count = array("zero", "one", "two", "three", "four");

$countdown = array reverse($count);
Setting the optional preserve_keys argument to true reverses the order but preserves
the association between the index and the elements. For a numerically indexed array,
this means that the order of the elements is reversed, but the indexes that access the
elements don’t change. The following example shows what happens:

$count = array("zero", "one", "two", "three", "four");
$countdown = array reverse($count, true);
print_r($countdown);

This prints:

Array ([4] => four [3] => three [2] => two [1] => one [0] => zero)

Sorting Arrays

In this section, we show you how to sort arrays. Unlike the array_reverse() function
discussed in the previous section (which returns a copy of the source array), the sort-
ing functions rearrange the elements of the source array itself—the source array
parameter is passed as a reference, not a value. Because of this behavior, the sort
functions must be passed a variable and not an expression.

Sorting with sort() and rsort()

The simplest array-sorting functions are sort() and rsort(), which rearrange the ele-
ments of the subject array in ascending and descending order, respectively:

sort(array subject [, integer sort_flag])
rsort(array subject [, integer sort_flag])

Amays | 71

Both functions sort the subject array based on the values of each element. The follow-
ing example shows the sort() function applied to an array of integers:

$numbers = array(24, 19, 3, 16, 56, 8, 171);
sort($numbers);

foreach($numbers as $n)

print $n ." ";
The output of the example prints the elements sorted by value:
3816 19 24 56 171

The result of the sort() function is further illustrated with the output of print_
1($numbers):

Array

(
[0] => 3
[1] => 8
[2] => 16
[3] => 19
[4] => 24
[5] => 56
[6] => 171

)

The following example shows the rsort() function on the same array:

$numbers = array(24, 19, 3, 16, 56, 8, 171);
rsort($numbers);
print_r($numbers);

The output of the example shows the elements sorted in reverse order by value:

)

By default, PHP sorts strings in alphabetical order and numeric values in numeric
order. An optional parameter, sort_flag, can be passed to force either string or
numeric sorting behavior. In the following example, the PHP constant SORT_STRING
sorts the numbers as if they were strings:

$numbers = array(24, 19, 3, 16, 56, 8, 171);

sort($numbers, SORT STRING);
print_r($numbers);

The output of the example shows the result:

72 | (Chapter3: Arrays, Strings, and Advanced Data Manipulation in PHP

[0] => 16

[1] => 171
[2] => 19

[3] => 24
[4]

[5] => 56

(6]

)

Many of the array sorting functions accept a sort_flag parameter. Other sort flags are
SORT_REGULAR to compare items using the default approach and SORT NUMERIC that
forces items to be compared numerically. When an array that contains both strings
and numeric values is sorted with the SORT REGULAR flag, string values are sorted
alphabetically and appear first, and numeric values are sorted numerically. Consider
the result of sorting the following array $mixed:

$mixed= array(24, "dog", 19, 3, 56, 8, 171, "Bruce", "cat", "Nemo");

sort($mixed, SORT REGULAR);
print _r($mixed);

The sorted elements in the $mixed array are printed with print_r():

Array

(

> Bruce
Nemo
cat
> dog
3

8

19

> 24
56
171

I 1 U I
VoV

U
v

U I
v

>
>

S e
1
v

0
1
2
3
4
5
6
7
8
9

)

sort() and rsort() can be used on associative arrays, but the keys are lost. The result-
ing array contains only the values in the sorted order. Consider the following example:

$map - array("0"=>"kk", e =>"ZZ", "Z"=>"hh", a =>"II");

sort($map);
print_r($map);

The print_r() output shows the modified array without the key values:

Array

(
[0] => hh
[1] => kk
[2] => 11
[3] => zz

)

Amays | 73

Sorting associative arrays

It’s often desirable to keep the key/value associations when sorting associative arrays.
To maintain the key/value association the asort() and arsort() functions are used:

asort(array subject [, integer sort_flag|)
arsort(array subject [, integer sort_flag])

Like sort() and rsort(), these functions rearrange the elements in the subject array
from lowest to highest and highest to lowest, respectively. The sort order reflects the
element values in the array, not the keys. The following example shows a simple
array sorted by asort():

$map - array("o"=>"kk", e =>||ZZ||, "Z"=>"hh", a =>"I1'"),'

asort($map);
print_r($map);

The print_r() function outputs the structure of the sorted array:

Array

(
[z] => hh
[o] => kk
[a] => 1T
[e] => zz

)

When asort() and arsort() are used on non-associative arrays, the order of the ele-
ments is arranged in sorted order, but the indexes that access the elements don’t
change. The indexes are treated as association keys in the resulting array. The follow-
ing example shows what is happening:

$numbers = array(24, 19, 3, 16, 56, 8, 171);

asort($numbers);
print_r($numbers);

This outputs:

Array

(
[2] => 3
[5] => 8
[3] => 16
[1] => 19
[0] => 24
[4] => 56
[6] => 171

)

Sorting on keys

Rather than sort on element values, the ksort() and krsort() functions rearrange ele-
ments in an array by sorting on the keys or the indexes:

74 | Chapter3: Arrays, Strings, and Advanced Data Manipulation in PHP

integer ksort(array subject [, integer sort_flag])
integer krsort(array subject [, integer sort_flag])

ksort() sorts the elements in the subject array from lowest key to highest key, and
krsort() sorts in the reverse order. The following example demonstrates the ksort()
function:

$map - arl’ay("o":>"kk", e :>||ZZ||, "Z":>"hh", a :>urr..>;

ksort($map);
print_r($map);

The sorted array $map is now:

Array
(

Sorting with user-defined element comparison

The sorting functions described so far in this section sort elements in alphabetic or
numeric order. To sort elements based on user-defined criteria, PHP provides three
functions:

usort(array subject, string compare_function)
uasort(array subject, string compare_function)
uksort(array subject, string compare_function)

usort() sorts the subject array based on the value of each element and applies a new,
numeric index, uasort() preserves the key/value associations as described earlier for
the asort() function, and uksort() rearranges the elements based on the key of each
element. When these functions sort the subject array, the user-defined compare func-
tion is called to determine if one element is greater than, lesser than, or equal to
another. The compare function can be written to implement any sort order, but the
function must conform to the prototype:

integer my_compare_function(mixed a, mixed b)

We discuss how to write functions in Chapter 2. Your compare function must take
two parameters, a and b, and return a negative number if a is less than b, a positive
number if a is greater than b, and 0 if a and b are equal. The method that the func-
tion uses to determine that one value is less than, greater than, or equal to another
depends on the requirements of the sorting. The following example shows how
usort() sorts an array of strings based on the length of each string:

// Compare two string values based on the length

function cmp_length($a, $b)
{

Amays | 75

if (strlen($a) < strlen($b))
return -1;

if (strlen($a) > strlen($b))
return 1;

// 1f we've reached this point,
// string lengths must be equal
return 0;

$animals = array("cow", "ox", "hippopotamus", "platypus");
usort($animals, "cmp length");

print r($animals);

The array $animals is printed:

Array
(

(o] =>

[1] => cow

[2] => platypus

[3] => hippopotamus
)

In this example, cmp_length() is defined as the compare function, but it isn’t called
directly by the script. The name of the function, "cmp_length", is passed as an argu-
ment to usort(), and usort() uses cmp_length() as part of the sorting algorithm. User-
defined functions used in this way are referred to as callback functions.

Strings

A string of characters is probably the most commonly used data type when develop-
ing scripts, and PHP provides a large library of string functions to help transform,
manipulate, and otherwise manage strings. We introduced the basics of PHP strings
in Chapter 2. In this section, we show you many of the useful PHP string functions.

Length of a String

The length property of a string is determined with the strlen() function, which
returns the number of eight-bit characters in the subject string:

integer strlen(string subject)

We used strlen() earlier in the chapter to compare string lengths. Consider another
simple example that prints the length of a 16-character string:

print strlen("This is a String"); // prints 16

76 | Chapter3: Arrays, Strings, and Advanced Data Manipulation in PHP

Printing and Formatting Strings

In the previous chapter, we presented the basic method for outputting text with
echo and print. Earlier in this chapter, we showed you the functions print_r() and
var_dump(), which can determine the contents of variables during debugging. PHP
provides several other functions that allow more complex and controlled format-
ting of strings, and we discuss them in this section.

Creating formatted output with sprintf() and printf()

Sometimes, more complex output is required than can be produced with echo or
print. For example, a floating-point value such as 3.14159 might need to be trun-
cated to 3.14 in the output. For complex formatting, the sprintf() or printf() func-
tions are useful:

string sprintf (string format [, mixed args...])
integer printf (string format [, mixed args...])

The operation of these functions is modeled on the identical C programming lan-
guage functions, and both expect a format string with optional conversion specifica-
tions, followed by variables or values as arguments to match any formatting
conversions. The difference between sprintf() and printf() is that the output of
printf() goes directly to the output buffer that PHP uses to build a HTTP response,
whereas the output of sprintf() is returned as a string.

Consider an example printf() statement:

$variable = 3.14159;

// prints "Result: 3.14"

printf("Result: %.2f\n", $variable);
The format string Result: %.2f\n is the first parameter to the printf() statement.
Strings such as Result: are output the same as with echo or print. The %.2f compo-
nent is a conversion specification that describes how the value of $variable is to be
formatted. Conversion specifications always start with the % character and end with a
type specifier; and can include width and precision components in between. The
example above includes a precision specification .2 that prints two decimal places.

A specifier %5.3f means that the minimum width of the number before the decimal
point should be five (by default, the output is padded on the left with space charac-
ters and right-aligned), and three digits should occur after the decimal point (by
default, the output on the right of the decimal point is padded on the right with
ZEeros).

Table 3-1 shows all the types supported by sprintf() and printf(). While width speci-
fiers can be used with all types—we show examples in Example 3-2—decimal preci-
sion can only be used with floating point numbers.

Strings | 77

Table 3-1. Conversion types used in sprintf() and printf()

Type Description

%% Aliteral percent character

%b Aninteger formatted as a binary number

%c Aninteger formatted as an ASCI character

%d Aninteger formatted as a signed decimal number

%u An integer formatted as an unsigned decimal number

%0 Aninteger formatted as an octal number

%X or %X An integer formatted as a hexadecimal number using lowercase letters or uppercase letters
%t A float formatted with specified decimal places

%s Astring

Both sprintf() and printf() allow the formatting of multiple parameters: each conver-
sion specification in the format string formatting the corresponding parameter.
Example 3-2 illustrates the use of printf() and sprintf(), including how multiple
parameters are formatted.

Example 3-2. Using printf to output formatted data

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html401/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Examples of using printf()</title>
</head>
<body bgcolor="#ffffff">
<h1>Examples of using printf()</h1>
<pre>
<?php
// Outputs "pi equals 3.14159"
printf("pi equals %f\n", 3.14159);

// Outputs "3.14"
printf("%.2f\n", 3.14159);

// Outputs " 3.14"
printf("%10.2f\n", 3.14159);

// Outputs "3.1415900000"
printf("%.10f\n", 3.14159);

// Outputs "halfofthe"
printf("%.9s\n", "halfofthestring");

// Outputs "1111011 123 123.000000 test"
printf("%b %d %f %s\n", 123, 123, 123, "test");

78 | Chapter3: Arrays, Strings, and Advanced Data Manipulation in PHP

Example 3-2. Using printf to output formatted data (continued)

// Outputs "Over 55.71% of statistics are made up."
printf("Over %.2f%% of statistics are made up.\n", 55.719);

// sprintf() works just the same except the

// output is returned as a string

$c = 245;

$message = sprintf("%c = %x (Hex) %o (Octal)", $c, $c, $c);

// prints "6 = 5 (Hex) 365 (Octal)"
print($message);?>

</pre>

</body>

</html>

Padding strings
A simple method to space strings is to use the str_pad() function:
string str_pad(string input, int length [, string padding [, int pad_type]])

Characters are added to the input string so that the resulting string has length charac-
ters. The following example shows the simplest form of str_pad() that adds spaces to
the end of the input string:
// prints "PHP" followed by three spaces
print str pad("PHP", 6);
An optional string argument padding can be supplied that is used instead of the space
character. By default, padding is added to the end of the string. By setting the
optional argument pad_type to STR_PAD LEFT or to STR_PAD BOTH, the padding is
added to the beginning of the string or to both ends. The following example shows
how str_pad() can create a justified index:
$players =
array("DUNCAN, king of Scotland"=>"Larry",
"MALCOLM, son of the king"=>"Curly",

"MACBETH"=>"Moe",
"MACDUFF"=>"Rafael");

print "<pre>";

// Print a heading
print str_pad("Dramatis Personae", 50, " ", STR_PAD_BOTH) . "\n";

// Print an index line for each entry
foreach($players as $role => $actor)
print str pad($role, 30, ".")
. str _pad($actor, 20, ".", STR_PAD_LEFT)
. "\n";

print "</pre>";

Strings | 79

A foreach loop is used to create a line of the index: the loop assigns the key and value
of the $players array to $role and $actor. The example prints:

Dramatis Personae

DUNCAN, king of Scotland..................... Larry
MALCOLM, son of the king.........covvvunnen. Curly
L I P Moe
MACDUFF. ot eiieeeeens Rafael

We have included the <pre> tags so a web browser doesn’t ignore the spaces used to
pad out the heading, and that a non-proportional font is used for the text; without
the <pre> tags in this example, things don’t line up.

Changing case

The following PHP functions return a copy of the subject string with changes in the
case of the characters:

string strtolower (string subject)
string strtoupper(string subject)
string ucfirst(string subject)
string ucwords(string subject)

The following fragment shows how each operates:

print strtolower("PHP and MySOL"); // php and mysql
print strtoupper("PHP and MySQL"); // PHP AND MYSQL
print ucfirst("now is the time"); // Now is the time
print ucwords("now is the time"); // Now Is The Time

Trimming whitespace

PHP provides three functions that trim leading or trailing whitespace characters from
strings:

string ltrim(string subject [, string character_list])
string rtrim(string subject [, string character_list])
string trim(string subject [, string character_list])

The three functions return a copy of the subject string: trim() removes both leading
and trailing whitespace characters, ltrim() removes leading whitespace characters,
and rtrim() removes trailing whitespace characters. The following example shows
the effect of each:

$var = trim(" Tiger Land \n"); // "Tiger Land"

$var = ltrim(" Tiger Land \n"); // "Tiger Land \n"
$var = rtrim(" Tiger Land \n"); // " Tiger Land"

By default these functions trim space, tab (\t), newline (\n), carriage return (\r),
NULL (\x00), and the vertical tab (\xob) characters. The optional character_list
parameter allows you to specify the characters to trim. A range of characters can be
specified using two periods (..) as shown in the following example:

80 | Chapter3: Arays, Strings, and Advanced Data Manipulation in PHP

$var = trim("16 MAY 2004", "0..9 "); // Trims digits and spaces
print $var; // prints "MAY"

Comparing Strings

PHP provides the string comparison functions strcmp() and strncmp() that compare
two strings in alphabetical order, str1 and str2:

integer strcmp(string strl, string str2)
integer strncmp (string strl, string str2, integer length)

While the equality operator == can compare two strings, the result isn’t always as
expected for strings with binary content or multi-byte encoding: stremp() and
strnecmp() provide binary safe string comparison. Both stremp() and strncmp() take
two strings as parameters, str1 and str2, and return 0 if the strings are identical, 1 if
strl is less than str2, and -1 if str1 is greater that str2. The function strncmp() takes a
third argument length that restricts the comparison to length characters. String com-
parisons are often used as a conditional expression in an if statement like this:

$a = "aardvark";
$z = "zebra";

// Test if $a and $z are not different (i.e. the same)
if (Istrcmp($a, $z))
print "a and z are the same";
When stremp() compares two different strings, the function returns either -1 or 1
which is treated as true in a conditional expression. These examples show the results
of various comparisons:

print strcmp("aardvark"”, "zebra"); // -1
print strcmp(“zebra", "aardvark"); // 1
print strcmp("mouse”, "mouse"); // 0
print strcmp("mouse”, "Mouse"); /71

print strncmp(“aardvark", "aardwolf", 4); // 0

print strncmp("aardvark", "aardwolf", 5); // -1
The functions strcasecmp() and strncasecmp() are case-insensitive versions of stremp()
and strncmp(). For example:

print strcasecmp("mouse", "Mouse"); // 0

The functions stremp(), strncmp(), strcasecmp(), or strncasecmp() can be used as the
callback function when sorting arrays with usort(). See “Sorting Arrays” earlier in
this chapter for a discussion on usort().

Finding and Extracting Substrings

PHP provides several simple and efficient functions that can identify and extract spe-
cific substrings of a string. As is common with string libraries in other languages,
PHP string functions reference characters using an index that starts at zero for the
first character, one for the next character and so on.

Strings | 81

Extracting a substring from a string

The substr() function returns a substring from a source string:
string substr (string source, integer start [, integer length])

When called with two arguments, substr() returns the characters from the source
string starting from position start (counting from zero) to the end of the string. With
the optional length argument, a maximum of length characters are returned. The fol-
lowing examples show how substr() works:

$var = "abcdefgh";

print substr($var, 2); // "cdefgh"

print substr($var, 2, 3); // "cde"

print substr($var, 4, 10); // ‘“efgh"
If a negative start position is passed as a parameter, the starting point of the returned
string is counted from the end of the source string. If the length is negative, the
returned string ends length characters from the end of the source string. The follow-
ing examples show how negative indexes can be used:

$var = "abcdefgh";

print substr($var, -1); //"h"

print substr($var, -3); /7 "fgh"
print substr($var, -5, 2); // "de"
print substr($var, -5, -2); // "def"

Finding the position of a substring

The strpos() function returns the index of the first occurring substring needle in the
string haystack:

integer strpos(string haystack, string needle [, integer offset])

When called with two arguments, the search for the substring needle is from the start
of the string haystack at position zero. When called with three arguments, the search
occurs from the index offset into the haystack. The following examples show how
strpos() works:

$var = "To be or not to be";

print strpos($var, "T"); /70
print strpos($var, "be"); /13

// Start searching from the 5th character in $var
print strpos($var, "be", 4); // 16

The strrpos() function returns the index of the last occurrence of the single character
needle in the string haystack:

integer strrpos(string haystack, string needle)

82 | Chapter3: Arays, Strings, and Advanced Data Manipulation in PHP

Prior to PHP 35, strrpos() uses the first character of needle to search. The following
example shows how strrpos() works:

$var = "and by a sleep to say we end the heart-ache";

// Prints 18 using PHP 4.3 matching the "s" in "say"
// Prints 9 using PHP 5 matching the whole string "sleep"
print strrpos($var, "sleep");

// Prints 22 using PHP 4.3 matching the "w" of "we"
// The function returns false using PHP 5 as "wally"
/7 is not found

print strrpos($var, "wally");

If the substring needle isn’t found by strpos() or strrpos(), both functions return
false. The is-identical operator ===, or the is-not-identical operator !== should be
used when testing the returned value from these functions. This is because if the sub-
string needle is found at the start of the string haystack, the index returned is zero
and is interpreted as false if used as a Boolean value.

Example 3-3 shows how strpos() can be repeatedly called to find parts of a struc-
tured sequence like an Internet domain name.

Example 3-3. Using strpos() and substr()

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/htm1401/1loose.dtd">

<html>

<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Hello, world</title>

</head>

<body bgcolor="#ffffff">

<?php

$domain = "orbit.mds.rmit.edu.au";

$a = 0;
while (($b = strpos($domain, ".", $a)) !== false)
{

print substr($domain, $a, $b-$a) . "\n";
$a = $b + 1;
}

// print the piece to the right of the last found "."
print substr($domain, $a);

>
</body>
</html>

A while loop is used to repeatedly find the period character (.) in the string $domain.
The body of the loop is executed if the value returned by strpos() is not false—we

Strings | 83

also assign the return result to $b in the same call. This is possible because an assign-
ment can be used as an expression. In Example 3-3, the value of the assignment

($b = strpos($domain, ".", $a))
is the same as the value returned from calling strpos() alone
strpos($domain, ".", $a)

Each time strpos() is called, we pass the variable $a as the starting point in $domain
for the search. For the first call, $a is set to zero and the first period in the string is
found. The body of the while loop uses substr() to print the characters from $a up to
the period character that’s been found—the first time through the loop substr()
prints $b characters from the string $domain starting from position zero. The starting
point for the next search is calculated by setting $a to the location of the next charac-
ter after the period found at position $b. The loop is then repeated if another period
is found. When no more period characters are found, the final print statement uses
substr() to print the remaining characters from the string $domain.

// print the piece to the right of the last found "."
print substr($domain, $a);

The output of Example 3-3 is:

orbit
mds
rmit
edu
au

Extracting a found portion of a string

The strstr() and stristr() functions search for the substring needle in the string hay-
stack and return the portion of haystack from the first occurrence of needle to the end
of haystack:

string strstr(string haystack, string needle)
string stristr(string haystack, string needle)

The strstr() search is case-sensitive, and the stristr() search isn’t. If the needle isn’t
found in the haystack string, both strstr() and stristr() return false. The following
examples show how the functions work:

$var = "To be or not to be";

print strstr($var, "to"); // "to be"

print stristr($var, "to"); // "To be or not to be"

print stristr($var, "oz"); // false
The strrchr() function returns the portion of haystack by searching for the single
character needle; however, strrchr() returns the portion from the last occurrence of
needle:

string strrchr(string haystack, string needle)

84 | Chapter3: Arays, Strings, and Advanced Data Manipulation in PHP

Unlike strstr() and stristr(), strrchr() searches for a single character, and only the first
character of the needle string is used. The following examples show how strrchr()
works:

$var = "To be or not to be";

// Prints: "not to be"

print strrchr($var, "n");

// Prints "o be": Only searches for "o" which
// is found at position 14
print strrchr($var, "or");

Replacing Characters and Substrings

PHP provides several simple functions that can replace specific substrings or charac-
ters in a string with other strings or characters. These functions don’t change the
input string, instead they return a copy of the input modified by the require changes.
In the next section, we discuss regular expressions, which are powerful tools for find-
ing and replacing complex patterns of characters. However, the functions described
in this section are faster than regular expressions and usually a better choice for sim-
ple tasks.

Replacing substrings

The substr_replace() function returns a copy of the source string with the characters
from the position start to the end of the string replaced with the replace string:

string substr_replace(string source, string replace, int start [, int length])

If the optional length is supplied, only length characters are replaced. The following
examples show how substr_replace() works:

$var = "abcdefghij";

// prints "abcDEF";
print substr replace($var, "DEF", 3);

// prints "abcDEFghij";
print substr replace($var, "DEF", 3, 3);

// prints "abcDEFdefghij";
print substr replace($var, "DEF", 3, 0);

The last example shows how a string can be inserted by setting the length to zero.

The str_replace() function returns a string created by replacing occurrences of the
string search in subject with the string replace:

mixed str_replace(mixed search, mixed replace, mixed subject)

Strings | 85

In the following example, the subject string, "old-age for the old", is printed with
both occurrences of old replaced with new:

$var = "old-age for the old.";

print str replace("old", "new", $var);
The result is:
new-age for the new.

Since PHP 4.0.5, str_replace() allows an array of search strings and a corresponding
array of replacement strings to be passed as parameters. The following example
shows how the fields in a very short form letter can be populated:

// A short form-letter for an overdue account
$letter = "Dear #title #name, you owe us $#amount.";

// Set-up an array of three search strings that will be
// replaced in the form-letter
$fields = array("#title", "#name", "#amount");

// Set-up an array of debtors. Each element is an array that
// holds the replacement values for the form-letter
$debtors = array(

array("Mr", "Cartwright", "146.00"),

array("Ms", "Yates", "1,662.00"),

array("Dr", "Smith", "84.75"));

foreach($debtors as $debtor)
print str replace($fields, $debtor, $letter) . "\n";

The $fields array contains a list of strings that are to be replaced. These strings don’t
need to follow any particular format; we have chosen to prefix each field name with
the # character to clearly identify the fields in the letter. The body of the foreach loop
calls str_replace() to replace the corresponding fields in $letter with the values for
each debtor. The output of this script is as follows:

Dear Mr Cartwright, you owe us $146.00.

Dear Ms Yates, you owe us $1,662.00.

Dear Dr Smith, you owe us $84.75.
If the array of replacement strings is shorter than the array of search strings, the
unmatched search strings are replaced with empty strings.

Translating characters and substrings

The strtr() function translates characters or substrings in a subject string:

string strtr(string subject, string from, string to)

string strtr(string subject, array map)
When called with three arguments, strtr() translates the characters in the subject
string that match those in the from string with the corresponding characters in the to

86 | Chapter3: Arays, Strings, and Advanced Data Manipulation in PHP

string. When called with two arguments, you must use an associative array called a
map. Occurrences of the map keys in subject are replaced with the corresponding
map values.

The following example uses strtr() to replace all lowercase vowels with the corre-
sponding umlauted character:

$mischief = strtr("command.com", "aeiou", "3€iI6uU");

print $mischief; // prints commdnd.com
When an associative array is passed as a translation map, strtr() replaces sub-
strings rather than characters. The following example shows how strtr() can
expand acronyms:

// Create an unintelligible email
$geekMail = "BTW, IMHO (IOW) you're wrong!";

// Short list of acronyms used in e-mail

$glossary = array("BTW"=>"by the way",
"IMHO"=>"in my humble opinion",
"IOW"=>"in other words",
"0TOH"=>"on the other hand");

// Maybe now I can understand
// Prints: by the way, in my humble opinion (in other words) you're wrong!
print strtr($geekMail, $glossary);

Regular Expressions

In this section, we show how regular expressions can achieve more sophisticated pat-
tern matching to find, extract, and replace complex substrings within a string. While
regular expressions provide capabilities beyond those described in the last section,
complex pattern matching isn’t as efficient as simple string comparisons. The func-
tions described in the previous section are more efficient than those that use regular
expressions and should be used if complex pattern searches aren’t required.

This section begins with a brief description of the POSIX regular expression syntax.
This isn’t a complete description of all of the capabilities, but we do provide enough
details to create quite powerful regular expressions. The second half of the section
describes the functions that use POSIX regular expressions. Examples of regular
expressions can also be found in Chapter 9.

Regular Expression Syntax

A regular expression follows a strict syntax to describe patterns of characters. PHP
has two sets of functions that use regular expressions: one set supports the Perl Com-
patible Regular Expression (PCRE) syntax, and the other supports the POSIX
extended regular expression syntax. In this book, we use the POSIX functions.

Regular Expressions | 87

To demonstrate the syntax of regular expressions, we introduce the function ereg():
boolean ereg(string pattern, string subject [, array var])

ereg() returns true if the regular expression pattern is found in the subject string. We
discuss how the ereg() function can extract values into the optional array variable
var later in this section.

The following trivial example shows how ereg() is called to find the literal pattern
cat in the subject string "raining cats and dogs":

// prints "Found 'cat'"
if (ereg("cat", "raining cats and dogs"))

print "Found 'cat'";

The regular expression cat matches the subject string, and the fragment prints "Found
"cat

Characters and wildcards

To represent any character in a pattern, a period is used as a wildcard. The pattern
c.. matches any three-letter string that begins with a lowercase c; for example, cat,
cow, cop, and so on. To express a pattern that actually matches a period, use the
backslash character \. For example, .com matches both .com and xcom but \.com
matches only . com.

The use of the backslash in a regular expression can cause confusion. To include a
backslash in a double-quoted string, you need to escape the meaning of the back-
slash with a backslash. The following example shows how the regular expression
pattern "\.com" is represented:

// Sets $found to true

$found = ereg("\\.com", "www.ora.com");
It’s better to avoid the confusion and use single quotes when passing a string as a
regular expression:

$found = ereg('\.com', "www.ora.com");

Character lists

Rather than using a wildcard that matches any character, a list of characters enclosed
in brackets can be specified within a pattern. For example, to match a three-charac-
ter string that starts with a "p", ends with a "p", and contains a vowel as the middle
letter, you can use the following expression:

ereg("p[aeiou]p"”, $var)

This returns true for any string that contains "pap", "pep", "pip", "pop", or "pup".
The character list in the regular expression "p[aeiou]p" matches with exactly one
character, so strings like "paep" don’t match. A range of characters can also be speci-
fied; for example, "[0-9]" specifies the numbers O through 9:

88 | Chapter3: Arays, Strings, and Advanced Data Manipulation in PHP

// Matches "A1", "A2", "A3", "B1", ...
$found = ereg("[ABC][123]", "A1 Quality"); // true

// Matches "00" to "39"

$found = ereg("[0-3][0-9]", "27"); //true

$found = ereg("[0-3][0-9]", "42"); //false
A list can specify characters that aren’t matches using the not operator * as the first
character in the brackets. The pattern "[*123]" matches any character other than 1,
2, or 3. The following examples show regular expressions that make use of the not
operator in lists:

// true for "pap", "pbp", "pcp", etc. but not "php"
$found = ereg("p[*h]p", "pap"); //true

// true if $var does not contain alphanumeric characters

$found = ereg("["0-9a-zA-Z]", "123abc"); // false
The * character can be used without meaning by placing it in a position other than
the start of the characters enclosed in the brackets. For example, "[0-9"]" matches
the characters 0 to 9 and the * character. Similarly, the — character can be matched
by placing it at the start or the end of the list; for example, "[—123]" matches the
characters -, 1, 2, or 3. The characters * and — have different meanings outside the []
character lists.

Anchors

A regular expression can specify that a pattern occurs at the start or end of a subject

string using anchors. The * anchors a pattern to the start, and the $ character anchors

a pattern to the end of a string. (Don’t confuse this use of ~ with its completely dif-

ferent use in character lists in the previous section.) For example, the expression:
ereg("~php", $var)

matches strings that start with "php" but not others. The following code shows the

operation of both:

$var = "to be or not to be";

$match = ereg('~to', $var); // true
$match = ereg('be$', $var); // true
$match = ereg('"or', $var); // false

The following illustrates the difference between the use of * as an anchor and the use
of ~in a character list:

$var = "123467";

// match strings that start with a digit
$match = ereg("~[0-9]", $var); // true

// match strings that contain any character other than a digit
$match = ereg("[*0-9]", $var); // false

Regular Expressions | 89

Both start and end anchors can be used in a single regular expression to match a
whole string. The following example illustrates this:

// Must match "Yes" exactly
$match = ereg('"Yes$', "Yes"); // true
$match = ereg('"Yes$', "Yes sir"); // false

Optional and repeating characters

When a character in a regular expression is followed by a ? operator, the pattern
matches zero or one times. In other words, ? marks something that is optional. A char-
acter followed by + matches one or more times. And a character followed by * matches
zero or more times. Let’s look at concrete examples of these powerful operators.

The ? operator allows zero or one occurrence of a character, so the expression:
ereg("pe?p", $var)

matches either "pep" or "pp", but not the string "peep”. The * operator allows zero or

many occurrences of the "o" in the expression:
ereg("po*p", $var)

and matches "pp", "pop", "poop", "pooop", and so on. Finally, the + operator allows
one to many occurrences of "b" in the expression:

ereg("ab+a", $var)
so while strings such as "aba", "abba", and "abbba" match, "aa" doesn’t.

The operators ?, *, and + can also be used with a wildcard or a list of characters. The
following examples show you how:

$var = "www.rmit.edu.au";
)

// True for strings that start with "www" and end with "au"
$matches = ereg('“www.*au$', $var); // true

$hexString = "x01ff";

// True for strings that start with 'x' followed by at least

// one hexadecimal digit

$matches = ereg('x[0-9a-fA-F]+$', $hexString); // true
The first example matches any string that starts with "www" and ends with "au"; the
pattern ".*" matches a sequence of any characters, including an empty string. The
second example matches any sequence that starts with the character "x" followed by
one or more characters from the list [0-9a-fA-F].

A fixed number of occurrences can be specified in braces. For example, the pattern
"[0-7]{3}" matches three-character numbers that contain the digits 0 through 7:

$valid = ereg("[0-7]{3}", "075"); // true
$valid = ereg("[0-7]{3}", "75"); // false

90 | Chapter3: Arrays, Strings, and Advanced Data Manipulation in PHP

The braces syntax also allows the minimum and maximum occurrences of a pattern
to be specified as demonstrated in the following examples:

$val = "58273";

// true if $val contains numerals from start to end
// and is between 4 and 6 characters in length
$valid = ereg('~[0-9]{4,6}$%", $val); // true

$val = "5827003";
$valid = ereg('~[0-9]{4,6}$%", $val); // false

// Without the anchors at the start and end, the
// matching pattern "582768" is found
$val = "582768986456245003";

$valid = ereg("[0-9]{4,6}", $val); // true

Groups

Subpatterns in a regular expression can be grouped by placing parentheses around
them. This allows the optional and repeating operators to be applied to groups
rather than just a single character. For example, the expression:

ereg("(123)+", $var)

matches "123", "123123", "123123123", and so on. Grouping characters allows com-
plex patterns to be expressed, as in the following example that matches an alpha-
betic-only URL:

// A simple, incomplete, HTTP URL regular expression

// that doesn't allow numbers
$pattern = '~(http://)?[a-zA-Z]+(\.[a-zA-z]+)+$";

$found = ereg($pattern, "www.ora.com"); // true

Figure 3-1 shows the parts of this complex regular expression and how they’re inter-
preted. The regular expression assigned to $pattern includes both the start and end
anchors, * and $, so the whole subject string, "www.ora.com" must match the pattern.
The start of the pattern is the optional group of characters "http://", as specified by
"(http://)?". This doesn’t match any of the subject string in the example but doesn’t
rule out a match, because the "http://" pattern is optional. Next the "[a-zA-Z]+" pat-
tern specifies one or more alpha characters, and this matches "www" from the subject
string. The next pattern is the group "(\.[a-zA-z]+)". This pattern must start with a
period (the wildcard meaning of . is escaped with the backslash) followed by one or
more alphabetic characters. The pattern in this group is followed by the + operator, so
the pattern must occur at least once in the subject and can repeat many times. In the

example, the first occurrence is ".ora" and the second occurrence is ".com".

Regular Expressions | 91

Makes a group from One or more
the characters within of preceding
Makes a group from | g,’g ngm
the characlters within Any ‘etter Any letter Y
3 |
Start of Asshown Zero or one One ormore Dot Oneormore End of
string of preceding of preceding of preceding string
group character character

Figure 3-1. Regular expression with groups

Groups can also define subpatterns when ereg() extracts values into an array. We
discuss the use of ereg() to extract values later in this section.

Alternative patterns

Alternatives in a pattern are specified with the | operator; for example, the pattern
“cat|bat|rat" matches "cat", "bat", or "rat". The | operator has the lowest prece-
dence of the regular expression operators, treating the largest surrounding expres-
sions as alternative patterns. To match "cat", "bat", or "rat" another way, the
following expression can be used:

$var = "bat";
$found = ereg("(c|b|r)at", $var); // true

Another example shows alternative endings to a pattern:

// match some URL damains
$pattern = '(com$|net$|gov$|edus)’;

$found = ereg($pattern, "http://www.ora.com"); // true
$found = ereg($pattern, "http://www.rmit.edu.au"); // false

Escaping special characters

We've already discussed the need to escape the special meaning of characters used as
operators in a regular expression. However, when to escape the meaning depends on
how the character is used. Escaping the special meaning of a character is done with
the backslash character as with the expression "2\+3, which matches the string "2+3".
If the + isn’t escaped, the pattern matches one or many occurrences of the character 2
followed by the character 3. Another way to write this expression is to express the +
in the list of characters as "2[+]3". Because + doesn’t have the same meaning in a list,
it doesn’t need to be escaped in that context. Using character lists in this way can
improve readability. The following examples show how escaping is used and
avoided:
// need to escape '(' and ')’

$phone = "(03) 9429 5555";
$found = ereg("~\([0-9]{2,3}\)", $phone); // true

92 | Chapter3: Arays, Strings, and Advanced Data Manipulation in PHP

// No need to escape (*.+?)| within brackets
$special = "Special Characters are (,), *, +, 2, |";
$found = ereg("[(*.+?)|]", $special); // true

// The backslash always needs to be quoted
$backSlash = 'The backslash \ character';
$found = ereg('"[a-zA-Z \\]*$', $backSlash); //true

// Don't need to escape the dot within brackets

$domain = "www.ora.com";

$found = ereg("[.]com", $domain); //true
Another complication arises due to the fact that a regular expression is passed as a
string to the regular expression functions. Strings in PHP can also use the backslash
character to escape quotes and to encode tabs, newlines, and so on. Consider the fol-
lowing example, which matches a backslash character:

// single-quoted string containing a backslash
$backSlash = '\ backslash';

// Evaluates to true

$found = ereg(""\\\\ backslash", $backSlash);
The regular expression looks quite odd: to match a backslash, the regular expression
function needs to escape the meaning of backslash, but because we are using a dou-
ble-quoted string, each of the two backslashes needs to be escaped.

Metacharacters

Metacharacters can also be used in regular expressions. For example, the tab charac-
ter is represented as \t and the carriage-return character as \n. There are also short-
cuts: \d means any digit, and \s means any whitespace. The following example
returns true because the tab character, \t, is contained in the $source string:

$source

"fast\tfood";

$result = ereg('\s', $source); // true

Special metacharacters in the form [:...:] can be used in character lists to match
other character classes. For example, the character class specifications [:alnum:] can
be used to check for alphanumeric strings:

$str = "abc123";

// Evaluates to true
$result = ereg('~[[:alnum:]]+$", $str);

$str = "abc\xf623";

// Evaluates to false because of the \xf6 character
$result = ereg('~[[:alnum:]]+$", $str);

Regular Expressions | 93

Be careful to use special metacharacter specifications only within a character list.
Outside this context, the regular expression evaluator treats the sequence as a list
specification:

$str = "abc123";

// Oops, left out the enclosing [] pair, Evaluates to false

$result = ereg('~[:alnum:]+$', $str);

Table 3-2 shows the POSIX character class specifications supported by PHP.

Table 3-2. POSIX character classes

Pattern Matches

[:alnum:] Letters and digits

[:alpha:] Letters

[:blank:] The Space and Tab characters

[:entrl:] Control characters—those with an ASCII code less than 32
[:digit:] Digits. Equivalent to \d

[:graph:] Characters represented with a visible character
[:1lower:] Lowercase letters

[:print:] Characters represented with a visible character, and the space and tab characters
[:space:] Whitespace characters. Equivalent to \s

[:upper:] Uppercase letters

[:xdigit:] Hexadecimal digits

The behavior of these character class specifications depends on your locale settings.
By default, the classes are interpreted for the English language, however other inter-
pretations can be achieved by calling setlocale() as discussed in Chapter 9.

Regular Expression Functions

PHP has several functions that use POSIX regular expressions to find and extract
substrings, replace substrings, and split a string into an array. The functions to per-
form these tasks come in pairs: a case-sensitive version and a case-insensitive version.

Finding and extracting values
The ereg() function, and the case-insensitive version eregi(), are defined as:

boolean ereg(string pattern, string subject [, array var])
boolean eregi(string pattern, string subject [, array var])

Both functions return true if the regular expression pattern is found in the subject
string. An optional array variable var can be passed as the third argument; it is popu-
lated with the portions of subject that are matched by up to nine grouped subexpres-

94 | Chapter3: Arrays, Strings, and Advanced Data Manipulation in PHP

sions in pattern. Subexpressions consist of characters enclosed in parentheses. Both
functions return false if the pattern isn’t found in the subject.

To extract values from a string into an array, patterns can be arranged in groups con-
tained by parentheses in the regular expression. The following example shows how
the year, month, and day components of a date can be extracted into an array:

$parts = array();

$value = "2007-04-12";
$pattern = "~([0-9]{4})-([0-9]{2})-([0-9]{2})$";

ereg($pattern, $value, $parts);

// Array ([0] => 2007-04-12 [1] => 2007 [2] => 04 [3] => 12)
print r($parts);

The expression:

"*([0-9]{4})-([0-9]{2})-([0-9]{2})$"
matches dates in the format YYYY-MM-DD. After calling ereg(), $parts[0] is assigned
the portion of the string that matches the whole regular expression, in this case the
whole string 2007-04-12. The portion of the date that matches each group in the
expression is assigned to the following array elements: $parts[1] contains the year

matched by ([0-9]{4}), $parts[2] contains the month matched by ([0-9]{2}), and
$parts[3] contains the day matched by ([0-9]{2}).

Replacing substrings
The following functions create new strings by replacing substrings:

string ereg_replace(string pattern, string replacement, string source)
string eregi_replace(string pattern, string replacement, string source)

They create a new string by replacing substrings of the source string that match the
regular expression pattern with a replacement string. These functions are similar to
the str_replace() function described earlier in “Replacing Characters and Sub-
strings,” except that the replaced substrings are identified using a regular expression.
Consider the examples:

$source = "The quick red fox jumps";

// prints "The quick brown fox jumps"
print ereg replace("red", "brown", $source);

$source = "The quick brown fox jumps
over the lazy dog";

// replace all whitespace sequences with a single space
// prints "The quick brown fox jumps over the lazy dog";
print ereg replace("[[:space:]]+", " ", $source);

Regular Expressions | 95

You can also use include patterns matched by subexpressions in the replacement
string. The following example replaces all occurrences of uppercase letters with the
matched letter surrounded by and tags:

$source = "The quick red fox jumps over the lazy Dog.";

// prints "The quick brown fox jumps over the lazy Dog"

print ereg replace("([A-Z])", '\1", $source);
The grouped subexpression is referenced in the replacement string with the \1
sequence. Multiple subexpressions can be referenced with \2, \3, and so on. The fol-
lowing example uses three subexpressions to rearrange a data from YYYY-MM-DD for-
mat to DD/MM/YYYY format:

$value = "2004-08-24";
$pattern = "~([0-9]{4})-([0-9]{2})-([0-9]{2})$";

// prints "24/08/2004"
print ereg replace($pattern, '\3/\2/\1', $value);

Splitting a string into an array
The following two functions split strings:

array split(string pattern, string source [, integer limit])
array spliti(string pattern, string source [, integer limit])

They split the source string into an array, breaking the string where the matching pat-
tern is found. These functions perform a similar task to the explode() function
described earlier and as with explode(), a limit can be specified to determine the
maximum number of elements in the array.

The following simple example shows how split() can break a sentence into an array
of “words” by recognizing any sequence of non-alphabetic characters as separators:

$sentence = "I wonder why he does\nBuzz, buzz, buzz";
$words = split("[*a-zA-Z]+", $sentence);

print_r($words);
The $words array now contains each word as an element:

Array
(

] =1

1 => wonder
1 => why

] => he

1 => does

] => Buzz

] => buzz

1 => buzz

96 | Chapter3: Arrays, Strings, and Advanced Data Manipulation in PHP

When complex patterns aren’t needed to break a string into an array, the explode()
function is a better, faster choice.

Dates and Times

There are several PHP library functions that work with dates and times. Most either
generate a Unix timestamp or format a Unix timestamp in a human-readable form.
Validation using dates, and working with the flexible PEAR Date package, is dis-
cussed in Chapter 9. In this section, we introduce timestamps and PHP library func-
tions that work with Dates and Times.

Generating a Timestamp

A Unix timestamp consists of the number of seconds since the arbitrarily chosen
time 1 January 1970 00:00:00 Greenwich Mean Time. Most systems represent a
timestamp using a signed 32-bit integer, allowing a range of dates from December
13, 1901 through January 19, 2038. While timestamps are convenient to work with,
care must be taken when manipulating timestamps to avoid integer overflow errors.
While PHP automatically converts integers that overflow to floats, these values aren’t
valid timestamps.

In the Microsoft Windows environment, the timestamp functions
don’t support negative timestamps and can be used only with dates
between January 1, 1970 and January 19, 2038.

Current time

PHP provides several functions that generate a Unix timestamp. The simplest:
integer time()

returns the timestamp for the current date and time, as shown in this fragment:
// prints the current timestamp: e.g., 1064699133
print time();

Creating timestamps with mktime() and gmmktime()

To create a timestamp for a past or future date in the range December 13, 1901
through January 19, 2038, the mktime() and gmmktime() functions are defined:

int mktime(int hour, int minute, int second, int month, int day, int year
[, int is_dst])
int gmmktime(int hour, int minute, int second, int month, int day, int year

[, int is_dst])

Datesand Times | 97

Both create a timestamp from the parameters supplied; the parameters supplied to
gmmbktime() represent a GMT date and time, while the parameters supplied to
mktime() represent the local time. This example creates a timestamp for 9:30 A.M.
on June 18, 1998:

$aDate = mktime(9, 30, 0, 6, 18, 1998);

Both functions correctly handle parameter values that you might consider out-of-
range. For example, the following call passes 14 for the month value, 29 for the day,
and 2004 for the year, creating a time stamp for 1 March 2005:

// Creates a time stamp for 1 March 2005

$aDate = mktime(0, 0, 0, 14, 29, 2004);
Setting the month to 14 and the year to 2004 overflows to February in 2005 and set-
ting the day to 29 overtlows to the first of March. This characteristic allows scripts to
add a quantum of time without range checking. The following example shows how
30 days can be added to a date and time:

$paymentPeriod = 30; // Days

// generates a timestamp for 26 June 2002 by
// adding 30 days to 27 May 2002
$paymentDue = mktime(0, 0, 0, 5, 27 + $paymentPeriod, 2002);

// A different approach adds the appropriate number
// of seconds to the timestamp for 27 May 2002
$paymentDue = mktime(0, 0, 0, 5, 27, 2002)
+ ($paymentPeriod * 24 * 3600);
If the components of a date are outside the range of dates the function is defined for,
-1 is returned. Both functions allow the supplied date to be interpreted as daylight
savings time by setting the flag is_dst to 1.

The order of the arguments to these functions is unusual and easily confused. While
the mktime() and gmmktime() functions are similar to the Unix mktime() function,
the arguments aren’t in the same order.

String to timestamp

The strtotime() function generates a timestamp by parsing a human-readable date
and time (between December 13, 1901 and January 19, 2038) from the string time:

integer strtotime(string time)

The function interprets several standard representations of a date, as shown here:

// Absolute dates and times

$var = strtotime("25 December 2002");

$var = strtotime("14/5/1955");

$var = strtotime("Fri, 7 Sep 2001 10:28:07 -1000");

// The current time: equivalent to time()
$var = strtotime("now");

98 | Chapter3: Arrays, Strings, and Advanced Data Manipulation in PHP

// Relative to now

print strtotime("+1 day"); // tomorrow

print strtotime("-2 weeks"); // two weeks ago

print strtotime("+2 hours 2 seconds"); // in two hours and two seconds
Care should be taken when using strtotime() with user-supplied dates. It’s better to
limit the use of strtotime() to cases when the string to be parsed is under the control
of the script. For example, it’s used here to check a minimum age using a relative
date:

// date of birth: timestamp for 16 August, 1982
$dob = mktime(0, 0, 0, 8, 16, 1982);

// Now check that the individual is over 18
if ($dob < strtotime("-18 years"))
print "Legal to drive in the state of Victoria"; // prints

Subsecond times

A Unix timestamp represents a date and time accurate to the second, but many
applications require times to be represented to the subsecond. PHP provides the
function:

string microtime()

The microtime() function returns a string that contains both a Unix timestamp in
seconds and a microsecond component. The returned string begins with the micro-
second component, followed by the integer timestamp:

// prints the time now in the format "microsec sec"

// Example: 0.55512200 1064700291

print microtime();
One common use of the function microtime() is to generate an integer seed for a ran-
dom-number generator:

// Generate a seed.
$seed = (float)microtime() * 1000000;

// prints (for example) 555206

print $seed;
Because the microsecond component appears at the start of the string returned from
microtime(), the returned value can be converted to a float with the (float) cast
operator. Multiplying the float result by 1,000,000 ensures that you create a suitably
varying integer.

The following fragment shows how you can use both the microsecond and second
components to create a floating point representation of the time:

$parts = explode(" ", microtime());
$f = (float)$parts[o] + (int)$parts[1];

// prints (for example) 1064700291.56
print $f;

Datesand Times | 99

Formatting a Date

While the Unix timestamp is useful in a program, it isn’t a convenient display for-
mat. The date() and gmdate() functions return a human-readable formatted date and
time:

string date(string format [, integer timestamp)])
string gmdate(string format [, integer timestamp])

The format of the returned string is determined by the format argument. Passing in
the optional timestamp argument can format a predetermined date. Otherwise, both
functions format the current time. The format string uses the formatting characters
listed in Table 3-3 to display various components or characteristics of the times-
tamp. To include characters without having the function interpret them as format-
ting characters, escape them with a preceding backslash character. The following
examples show various combinations:

// Set up a timestamp for 08:15am 24 Aug 1974
$var = mktime(8, 15, 25, 8, 24, 1974);

/7 "24/08/1974"
print date('d/m/Y', $var);

/] "08/24/74"
print date('m/d/y', $var);

// prints "Born on Saturday 24th of August"
print date('\B\o\r\n \o\n 1 jS \of F', $var);

Table 3-3. Formatting characters used by the date() function

Formatting character Meaning

a,A “am” or “pm”; “AM” or “PM”

S Two-character English ordinal suffix: “st”, “nd”, “rd", “th”

d, j Day of the month: with leading zeros e.g., “01”; without e.g., “1"

DI Day of the week: abbreviated e.g., “Mon”; in full e.g., “Monday”

M, F Month: abbreviated e.g., “Jan”; in full e.g., “January”

m,n Month as decimal: with leading zeros: “01"-"12"; without: “1"-"12"

h,g Hour 12-hour format: with leading zeros e.g., “09”; without e.g., “9”

H,G Hour 24-hour format: with leading zeros e.g., “01”; without e.g., “1”

i Minutes:"00” to “59”

s Seconds: “00” to “59”

Y,y Year: with century e.g., “2004"; without century e.g., “04”

r RFC-2822 formatted date: e.g., “Tue, 29 Jan 2002 09:15:33 +1000”
(added in PHP 4.0.4)

w Day of the week as number: “0” (Sunday) to “6” (Saturday)

100 | Chapter3: Arrays, Strings, and Advanced Data Manipulation in PHP

Table 3-3. Formatting characters used by the date() function (continued)

Formatting character Meaning

t Days in the month: “28" to “31”

z Days in the year: “0" to “365”

B Swatch Internet time

L Leap year: “0” for normal year; “1” for leap year

Daylight savings time: “0” for standard time; “1” for daylight savings
Difference to Greenwich Mean Time in hours: “+0200"

Time zone setting of this machine

Time zone offset in seconds: “-43200" to “43200”

Seconds since the epoch: 00:00:00 1/1/1970

o N 4 O

PHP also provides the equivalent functions:

string strftime(string format [, integer timestamp])
string gmstrftime(string format [, integer timestamp))

The format string uses the same % sequence formatting character sequences as the C
library function strftime(). For example:

// Prints "24/08/1974 08:15:25"

print strftime("%d/%m/%Y %H:%M:%S", mktime(8, 15, 25, 8, 24, 1974));

// Prints "08/24/1974"

print strftime("%D", mktime(8, 15, 25, 8, 24, 1974));

The result of some % sequences used by strftime() and gmstrftime() depends on the
locale settings. The following sets the locale so the printed date used the Estonian
language and conventions:

setlocale (LC_TIME, 'es');

// prints "laupdev 24 august 1974"
print strftime ("%A %d %B %Y", mktime(8, 15, 25, 8, 24, 1974));

Formatting sequences supported by strftime() and gmstrftime() are shown in
Table 3-4. Some of these % sequences are not supported under Windows as noted.

Table 3-4. Formatting characters used by the strftime() and gmstrftme() functions

Formatting sequence Meaning

%a, %A Day of the week dependant on locale settings: abbreviated e.g., “Mon”; in full
e.g., "Monday”.

9%b, %B Month: abbreviated e.g., “Jan”; in full e.g., “January”

%¢, %x, %X Default Date and Time format for the local settings: with time e.g., “01/27/04
22:06:03"; without time e.qg., “01/27/04"; without the date e.g., “06:03”

%C Century e.g., “04” for 2004 (does not work with Windows)

%d Day of month padded with leading zero e.g., “01”

Datesand Times | 101

Table 3-4. Formatting characters used by the strftime() and gmstrftme() functions (continued)

Formatting sequence Meaning

%D Same as “%m/%d/%y" (does not work with Windows)

%e Day of month padded with leading space e.g., “1” (does not work with
Windows)

%H, %l Hour: 24-hour format with leading zero e.g., “15”; 12-hour format with lead-
ing zero e.g., “03”

%j Day of the year: “001” to “366"

%m Month with leading zero e.g., “01”

%M Minute with leading zero e.g., “01”

%p “AM” or “PM”. Value dependant on locale settings

%r Time in am/pm notation (does not work with Windows)

%R Time in 24 hour notation (does not work with Windows)

%S Seconds with leading zero

%T Same as “%H:%M:%S” (does not work with Windows)

%u, %w Day of the week as a decimal: 1-7 with “1” = Monday, “2" = Tuesday, etc..; 0-
6 with “0” = Sunday, “1” = Monday, etc.. %u (does not work with
Windows)

%U Week number in a year where the first week starts with the first Sunday in the
year

%V Week number in a year where the first week is the week, with at least four

days, starting on a Monday, in the current year. This is the 150 8601:1988 def-
inition of the week number (does not work with Windows)

%W Week number in a year where the first week starts with the first Monday in
the year
%y, %Y Year: without the century e.g., “04” for 2004; with the century e.g., “2004”
%L Time zone information e.g., “AUS Eastern Standard Time”
%% Literal % character
Validating a Date

The function checkdate() returns true if a given month, day, and year form a valid
Gregorian date:

boolean checkdate(integer month, integer day, integer year)

This function isn’t based on a timestamp and so can accept any dates in the years 1
to 32767. It automatically accounts for leap years.

// Works for a wide range of dates
$valid = checkdate(1, 1, 1066); // true
$valid = checkdate(1, 1, 2929); // true

// Correctly identify bad dates
$valid = checkdate(13, 1, 1996); // false
$valid = checkdate(4, 31, 2001); // false

102 | Chapter3: Arrays, Strings, and Advanced Data Manipulation in PHP

// Correctly handles leap years
$valid = checkdate(2, 29, 1996); // true
$valid = checkdate(2, 29, 2001); // false

Integers and Floats

As we discussed in Chapter 2, PHP supports both integer and floating-point num-
bers. PHP stores integers as a 32-bit signed word, providing a range of integers from
-2147483647 to +2147483647. PHP automatically converts numbers that overflow
out of this range to floats. You can see this behavior by adding one to the largest
integer value:

// Largest positive integer (for a 32 bit signed integer)
$variable = 2147483647;

// prints int(2147483647)
var_dump($variable);

$variable++;

// prints float(2147483648)

var_dump($variable);
Floating-point numbers can store a wide range of values, both very large and very
small, by storing a mantissa and an exponent. However a floating-point number
can’t precisely represent all numbers—for example, the fraction 2/3—and some pre-
cision can be lost.

Integers can be represented in a decimal, hexadecimal, or octal notation:

$var = 42; // a positive integer

$var = -186; // a negative integer

$var = 0654; // 428 expressed as an octal number
$var = 0xf7; // 247 expressed as a hexadecimal number

Floating-point numbers can represented in a decimal or exponential notation:

$var = 42.0; // a positive float

$var = -186.123; // a negative float

$var = 1.2e65; // a very big number

$var = 10e-75; // a very small number
Apart from the basic operators +, -, /, *, and %, PHP provides the usual array of
mathematical library functions. In this section, we present some of the library func-
tions that are used with integer and float numbers.

Absolute Value
The absolute value of an integer or a float can be found with the abs() function:

integer abs(integer number)
float abs(float number)

Integers and Floats | 103

The following examples show the result of abs() on integers and floats:

print abs(-1); // prints 1
print abs(1); // prints 1
print abs(-145.89); // prints 145.89
print abs(145.89); // prints 145.89

Ceiling and Floor

The ceil() and floor() functions return the integer value above and below a fractional
value, respectively:

float ceil(float value)
float floor(float value)

The return type is a float because an integer may not be able to represent the result
when a large value is passed as an argument. Consider the following examples:

print ceil(27.3); // prints 28
print floor(27.3); // prints 27

Rounding

The round() function uses 4/5 rounding rules to round up or down a value to a given
precision:

float round(float value [, integer precision])

By default, rounding is to zero decimal places, but the precision can be specified with
the optional precision argument. The 4/5 rounding rules determine if a number is
rounded up or down based on the digits that are lost due to the rounding precision.
For example, 10.4 rounds down to 10, and 10.5 rounds up to 11. Specifying a nega-
tive precision rounds a value to a magnitude greater than zero, for example a preci-
sion of -3 rounds a value to the nearest thousand. The following examples show
rounding at various precisions:

print round(10.4); // prints 10

print round(10.5); // prints 11

print round(2.40964, 3); // prints 2.410

print round(567234.56, -3); // prints 567000
print round(567234.56, -4); // prints 570000

Number Systems

PHP provides the following functions that convert numbers between integer decimal
and the commonly used number systems, binary, octal, and hexadecimal:

string decbin(integer number)
integer bindec (string binarystring)
string dechex (integer number)
integer hexdec(string hexstring)

104 | Chapter3: Arrays, Strings, and Advanced Data Manipulation in PHP

string decoct(integer number)
integer octdec(string octalstring)

The decimal numbers are always treated as integers, and the numbers in the other
systems are treated as strings. Here are some examples:

print decbin(45); // prints "101101"
print bindec("1001011"); // prints 75

print dechex(45); // prints "2D"
print hexdec("5a7b"); // prints 23163
print decoct(45); // prints "55"
print octdec("777"); // prints 511

It is possible to represent binary, octal, and hexadecimal numbers that are bigger
than can be held in a 32-bit integer. The results of such conversions automatically
overflow to a float value. For example:

// $a is an integer assigned the largest possible value
$a = hexdec("TFFFFFFF);

// $a is a float
$a = hexdec("80000000");

Basic Trigonometry Functions

PHP supports the basic set of trigonometry functions listed in Table 3-5.

Table 3-5. Trigonometry functions supported by PHP

Function Description

float sin(float arg) Sine of arg in radians

float cos(float arg) Cosine of arg in radians

float tan(float arg) Tangent of arg in radians

float asin(float arg) Arcsine of arg in radians

float acos(float arg) Arc cosine of arg in radians

float atan(float arg) Arctangent of arg in radians

float atan2(float y, float x) Arc tangent of x/y where the sign of both arguments determines the quad-
rant of the result

float pi() Returns the value 3.1415926535898

float deg2rad(float arg) Converts arg degrees to radians

float rad2deg(float arg) Converts arg radians to degrees

Powers and Logs

The PHP mathematical library includes the exponential and logarithmic functions
listed in Table 3-6.

Integers and Floats | 105

Table 3-6. Exponential and logarithmic functions

Function Description

float exp(float arg) e to the power of arg

float pow(float base, number exp) Exponential expression base to the power of exp
float sqrt(float arg) Square root of arg

float log(float arg [, float base]) Natural logarithm of arg, unless a base is specified, in
which case the function returns log (arg)/
log(base)

float logi0(float arg) Base-10 logarithm of arg

Testing Number Results

Many of the functions described in this section can return values that are undefined,
or are too big or small to hold in a floating point number. PHP provides three func-
tions that can be used to test numeric results before they cause problems later in a
script:

boolean is_nan(float val)
boolean is_infinite(float val)
boolean is_finite(float val)

The function is_nan() tests the expression val and returns true if val is not a num-
ber. For example, the square root of a negative number is not a real number. is_
finite() returns true if the number val can be represented as a valid float, and is_
infinite() returns true if val can’t. Here are some examples:

// square root of a negative number

$a = -1;
$result = sqrt($a);

print $result; // prints -1.#IND

// Test if not a number
if (is_nan($result))

print "Result not defined"; // prints
else

print "Square root of {$a} = {$result}";

Random Number Generation

PHP provides the function rand(), which returns values from a generated sequence
of pseudo-random numbers. The sequence generated by rand() is pseudo random
because the algorithm used appears to have random behavior but isn’t truly random.
The function rand() can be called in one of two ways:

integer rand()
integer rand(integer min, integer max)

106 | Chapter3: Arrays, Strings, and Advanced Data Manipulation in PHP

When called with no arguments, rand() returns a random number between 0 and the
value returned by getrandmax(). When rand() is called with two arguments, the min
and max values, the returned number is a random number between min and max.
Consider an example:

// Generate some random numbers

print rand(); // between 0 and getmaxrand()

print rand(1, 6); // between 1 and 6 (inclusive)
Prior to PHP 4.2.0, you needed to seed the random number generator with a call to
srand() before the first use of rand(), otherwise the function returns the same num-
bers each time a script is called. Since 4.2.0, the call to srand() is not required, how-
ever you can reliably reproduce a random sequence by calling srand() with the same
argument at the start of the script. The following example reliably prints the same
sequence of numbers each time it is called:

srand(123456);
// Prints six random numbers

for ($i=0; $i<6; $i++)
print rand() . " "

Integers and Floats | 107

CHAPTER 4

Introduction to Object-Oriented
Programming with PHP 5

Object-oriented programming is a several-decades-old concept that has spread to
almost every aspect of modern programming languages and practices. The reason is
clear as soon as you start to use a convenience such as the powerful PHP-related
packages. We introduce PEAR packages in Chapter 7; many operate by defining
objects, providing a wealth of useful features in a simple form. You should under-
stand the basics of object-oriented programming in order to make use of packages
and an error-recovery feature called exceptions. You may also find object-oriented
programming a useful practice in your own code. We'll give you an introduction in
this chapter, and present some advanced features in Chapter 14.

While many of the concepts and techniques presented in this chapter work in PHP 4,
support is greatly enhanced in PHP 5. In this chapter we describe what you can and
can’t do in each version of PHP.

Classes and Objects

The basic idea of object-oriented programming is to bind data and functions in con-
venient containers called objects. For instance, in Chapter 7 we’ll show you how to
standardize the look of your own web pages through an object called a template.
Your PHP code can refer to this object through a variable; we’ll assume here you’ve
decided to call the variable $template. All the complex implementation of templates
is hidden: you just load in the proper package and issue a PHP statement such as:

$template = new HTML Template IT("./templates");

As the statement suggests, you've just created a new object. The object is called
$template and is built by the HTML_Template_IT package—a package whose code
you don’t need to know anything about. Once you have a template object, you can
access the functionality provided by the HTML_Template_IT package.

After various manipulations of the $template object, you can insert the results into
your web page through the PHP statement:

$template->show();

108

The syntax of this statement is worth examining. As the parentheses indicate, show()
is a function. However the -> operator associates show() with the object variable
$template. When the function show() is called, it uses the data that is held by the
$template object to calculate a result: put another way, show() is called on the
$template object.

The functions that you can call depend on the support provided by the package—the
show() function is provided by the HTML_Template_IT package and can be called
on HTML_Template_IT objects such as $template. In traditional object-oriented par-
lance, show() is called a method or member function of the HTML_Template_IT
object.

HTML_Template_IT is called a class because you can use it to create many similar
template objects. Each time you issue a new statement you are said to create an
instance of the class. Thus, the $template object is an instance of the HTML_
Template_IT class.

We’ve shown how to use objects created by other packages. However, to under-
stand objects better, it’s time to define a class of our own. Example 4-1 shows a sim-
ple class invented for the purposes of this chapter that’s called UnitCounter. The
UnitCounter class provides two trivial features: we can use a UnitCounter object to
keep a count of things, and to calculate the total weight of the things we have
counted. Later in this chapter, and in Chapter 14 we use the UnitCounter class,
together with other classes, to develop a simple freight-cost calculator.

Example 4-1 shows how the class UnitCounter is defined using the class keyword.
The UnitCounter class defines two member variables $units and $weightPerUnit, and
two functions add() and totalWeight(). Collectively, the variables and the functions
are members of the class UnitCounter.

Example 4-1. Definition of the user-defined class UnitCounter
<?php

// Definition of the class UnitCounter
//
class UnitCounter
{
// Member variables
var $units = 0;
var $weightPerUnit = 1.0;

// Add $n to the total number of units, default $n to 1
function add($n = 1)
{

}

$this->units = $this->units + $n;

// Member function that calculates the total weight

Classes and Objects | 109

Example 4-1. Definition of the user-defined class UnitCounter (continued)

function totalWeight()
{

}

return $this->units * $this->weightPerUnit;

}
?>

The class definition defines how data and functionality are actually bound
together—member variables and functions take their meaning from the class of
which they’re a part. The class definition shown in Example 4-1 does not actually
run any code or produce any output. Instead a class definition creates a new data
type that can be used in a PHP script. In practice, you might save the class definition
in an include file, and include that file into any script that makes use of the class.

To use the member variables and functions defined in a class, an instance of the class
or object needs to be created. Like other data types such as integers, strings, or
arrays, objects can be assigned to variables. However, unlike other types, objects are
created using the new operator. An object of class UnitCounter can be created and
assigned to a variable as follows:

// Create a new UnitCounter object

$bottles = new UnitCounter;
Unlike variable names, class names in PHP are not case sensitive. While we start all

our class names with an wuppercase letter, UnitCounter, unitcounter, and
UNITCOUNTER all refer to the same class.

Once a new UnitCounter object is created and assigned to the $bottles variable, the
member variables and functions can be used. Members of the object, both variables
and functions, are accessed using the -> operator. The $units member variable can
be accessed as $bottles->units and used like any other variable:

// set the counter to 2 dozen bottles
$bottles->units = 24;

// prints "There are 24 units"

print "There are {$bottles->units} units";
To include the value of an object’s member variables in a double-quoted string lit-
eral, the braces syntax is used. String literals and the braces syntax are discussed in
Chapter 2.

The add() member function can be called to operate on the $bottles variable by call-
ing $bottles->add(). The following fragment increases the value of $bottles->units
by 3:

// Add three bottles

$bottles->add(3);

110 | Chapter4: Introduction to Object-Oriented Programming with PHP 5

// prints "There are 27 units"

print "There are {$bottles->units} units";
Many objects of the same class can be created. For example, you can use the follow-
ing fragment to create two UnitCounter objects and assign them to two variables:

// Create two UnitCounter objects

$books = new UnitCounter;
$cds = new UnitCounter;

// Add some units
$books->add(7);
$cds->add(10);

// prints "7 books and 10 CDs"

print "{$books->units} books and {$cds->units} CDs";
Both the $books and $cd variables reference UnitCounter objects, but each object is
independent of the other.

Member Variables
Member variables are available in PHP4 and PHPS5.

Member variables are declared as part of a class definition using the var keyword.
Member variables can also be defined with the private and protected keywords as
we describe later in the chapter. Member variables hold the data that is stored in an
object.

The initial value assigned to a member variable can be defined in the class definition.
The UnitCounter class defined in Example 4-1 sets initial values for both member
variables:

var $units = 0;

var $weightPerUnit = 1.0;
The var keyword is required to indicate that $units and $weightPerUnit are class
member variables. When a new UnitCounter object is created, the initial values of
$units and $weightPerUnit are set to 0 and 1.0 respectively. If a default value is not
provided in the class definition, then the member variable is not set to any value.

You don’t have to explicitly declare member variables as we have in Example 4-1.
However, we recommend that you always declare them and set an initial value
because it makes the initial state of the variables obvious to users of your code.

Member Functions
Member functions are available in PHP4 and PHP5.

Member functions are defined as part of the class definition—the UnitCounter class
defined in Example 4-1 includes two member functions add() and totalWeight().

Classes and Objects | 111

Both these functions access the member variables of the object with the special vari-
able $this. The variable $this is special because PHP uses it as a placeholder until a
real object is created. When a member function is run, the value of $this is substi-
tuted with the actual object that the function is called on. Consider the implementa-
tion of the add() member function of UnitCounter from Example 4-1:

// Add $n to the total number of units, default $n to 1 if

// no parameters are passed to add()

function add($n = 1)

{

}
The function adds the value of the parameter $n to the member variable $this->
units. If no parameter is passed, $n defaults to 1. When the add() function is called
on the $bottles object in the following example,

$this->units = $this->units + $n;

// Create a new UnitCounter object
$bottles = new UnitCounter;

// Call the add() function
$bottles->add(3);

the placeholder $this in the add() function acts as the object $bottles.

The totalWeight() member function also accesses member variables with the $this
placeholder: the function returns the total weight by multiplying the value of the
member variables $this->units and $this->weightPerUnit.

// Create a new UnitCounter object
$bricks = new UnitCounter;

$bricks->add(15);

// Prints 15 - 15 units at 1 Kg each

print $bricks->totalWeight();
PHP5 allows the result of a member function to be included into a string literal using
the braces syntax. The following fragment shows how, and shows an alternative that
can be used with PHP4:

// This line only works for PHP5
print "total weight = {$bottles->totalWeight()} kg";

// This works for both PHP4 and PHP5
print "total weight = " . $bottles->totalWeight() . " kg";

Using include Files for Class Definitions

By placing the definition in Example 4-1 into a file—for example UnitCounter.inc—
you can include or require the UnitCounter class in other scripts. Example 4-2 uses
the require directive to include the UnitCounter class definition.

112 | Chapter4: Introduction to Object-Oriented Programming with PHP 5

Example 4-2. Using the UnitCounter class

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html401/1oose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Using UnitCounter</title>
</head>
<body>
<?php
require "UnitCounter.inc";

// Create a new UnitCounter object
$bottles = new UnitCounter;

// set the counter to 2 dozen bottles
$bottles->units = 24;

// Add a single bottle
$bottles->add();

// Add three more
$bottles->add(3);

// Show the total units and weight
print "There are {$bottles->units} units, ";
print "total weight = " . $bottles->totallWeight() . " kg";

// Change the default weight per unit and show the new total weight
$bottles-> weightPerUnit = 1.2;
print "
Correct total weight = " . $bottles->totalWeight() . " kg";

7>
</body>
</html>

We introduce the include and require directives in Chapter 2, and further examples
are given in Chapter 6 and Chapter 16 where we develop practical libraries for our
case study, Hugh and Dave’s Online Wines.

Constructors

Two different methods of defining constructors are available in PHP5, and one
method is available in PHP4.

As discussed previously, when an object is created from the UnitCounter class
defined in Example 4-1, PHP will initialize the member variables $units and
$weightPerUnit to O and 1.0 respectively. If you needed to set the weight per unit to
another value, you can set the value directly after creating the object. For example:

// Create a new UnitCounter object
$bottles = new UnitCounter;

Classes and Objects | 113

// Set the true weight of a bottle

$bottles->weightPerUnit = 1.2;
However, a better solution is to define a constructor function that correctly sets up
the initial state of a new object before it is used. If a constructor is defined, you don’t
have to do anything in your code because PHP automatically calls it when a new
object is created.

PHPS5 allows you to declare a constructor method by including the member function
_ _construct() in the class definition—the function name _ _construct() is reserved
for this purpose (the characters preceding the word construct are two consecutive
underscores). Example 4-3 shows a modified UnitCounter class with a constructor
that automatically sets the weight per unit.

Example 4-3. Defining a constructor for the class UnitCounter

<?php
class UnitCounter
{
var $units;
var $weightPerUnit;
function add($n = 1)
{
$this->units = $this->units + $n;
}
function totalWeight()
{
return $this->units * $this->weightPerUnit;
}
// Constructor function that initializes the member variables
function __construct($unitWeight = 1.0)
{
$this->weightPerUnit = $unitWeight;
$this->units = 0;
}
}
>

The class definition works the same as the definition shown in Example 4-1. How-
ever, the initial values for $units and $weightPerUnit are no longer defined with the
variable declaration instead they are set in the __construct() member function. A
new UnitCounter object that uses the class defined in Example 4-3 is created as fol-
lows:

// Create a UnitCounter where each unit is 1.2 kg -- the

// weight of a full wine bottle.
$bottles = new UnitCounter(1.2);

114 | (Chapter4: Introduction to Object-Oriented Programming with PHP 5

When the object is created, PHP automatically calls the __construct() with the
parameters supplied after the class name. So, in this example, 1.2 is passed as a value
to the __construct() method and the $bottles->weightPerUnit variable is set to 1.2.
UnitCounter objects can still be created without passing a value to the constructor as
the parameter variable $unitWeight defaults to 1.0.

You can also define a constructor method by including a function with the same
name as the class. This is the only way constructors can be defined in PHP 4, but it
can also be used as an alternative in PHP5. For example, using this technique, the
_construct() function in Example 4-3 could be replaced with:

function UnitCounter($weightPerUnit = 1)

{ $this->weightPerUnit = $weightPerUnit;
$this->units = 0;
}
Using the __construct() function makes managing large projects easier, because it
allows classes to be moved, renamed, and reused in a class hierarchy without chang-
ing the internals of the class definition. We discuss class hierarchies in Chapter 14.

Destructors
Destructors are available in PHPS5.

If it exists, a constructor function is called when an object is created. Similarly, if it
exists, a destructor function is called when an object is destroyed. Like other PHP
variables, objects are destroyed when they go out of scope or when explicitly
destroyed with a call to the unset() function. We discuss variable scope in Chapter 2.

A destructor function is defined by including the function _ _destruct() in the class
definition (again, the prefix before the keyword destruct is two consecutive under-
score characters, and _ _destruct() is a reserved function name). __destruct() can’t
be defined to take any parameters (unlike the _ _construct() function). However, the
_ _destruct() function does have access to the member variables of the object that is
being destroyed—PHP calls _ _destruct() just before the member variables are
destroyed.

Destructor functions are useful when you want to perform some housekeeping tasks
when a process has ended. For example, you might want to gracefully close down a
connection to a DBMS or save user preferences to a file. Destructors can also be used
as a debugging tool when developing object-oriented applications. For example, by
adding the following __destruct() function to the UnitCounter defined in
Example 4-3, you can track when objects are destroyed:

// Destructor function called just before a UnitCounter object

// is destroyed
function _ destruct()

{

Classes and Objects | 115

print "UnitCounter out of scope. Units: {$this->units}";
}

We give another example of __destruct() later in the chapter in “Static Member
Variables.”

Private Members Variables
Private member variables are available in PHPS5.

When using the UnitCounter class defined previously in Example 4-3, a script can
use the member variables $units and $weightPerUnit directly, the UnitCounter class
doesn’t implement any safeguards that prevent inconsistent values being assigned.
For example, consider the following fragment that erroneously sets the number of
units to a fractional value and the weight per unit to a negative number:

// Construct a new UnitCounter object
$b = new UnitCounter;

// Set some values
$b->units = 7.3;
$b->weightPerUnit = -5.5;

$b->add(10);

// Show the total units and weight

print "There are {$b->units} units, ";
print "total weight = {$b->totalWeight()} kg";

This prints:
There are 7.3 units, total weight = -40.15 kg

In PHPS, a better solution is to define member variables as private and provide mem-

ber functions that control how the variables are used. Example 4-4 shows both the
$units and $weightPerUnit member variables defined as private.

Example 4-4. Private member variables

<?php
class UnitCounter

{
private $units = 0;
private $weightPerUnit = 1.0;

function numberOfUnits()

{
return $this->units;
}
function add($n = 1)
{

if (is_int($n) && $n > 0)
$this->units = $this->units + $n;

116 | Chapter4: Introduction to Object-Oriented Programming with PHP 5

Example 4-4. Private member variables (continued)

}
function totalWeight()
{
return $this->units * $this->weightPerUnit;
}
function _ construct($unitWeight)
{
$this->weightPerUnit = abs((float)$unitWeight);
$this->units = 0;
}
}
>

When a UnitCounter object is created using the class defined in Example 4-4, the
$units and $weightPerUnit member variables can only be accessed by code defined in
the class. Attempts to access the private member variables cause an error:

// Construct a UnitCounter object as defined in Example 4-4
$b = new UnitCounter(1.1);

// These lines cause an error

$b->units = 7.3;

$b->weightPerUnit = -5.5;
The member function numberOfUnits() provides access to the value of $units, and
the member function add() has been improved so only positive integers can be added
to the count value. We have also improved the _ _construct() function to ensure that
$weightPerUnit is only set with a positive value.

Providing member functions that control how member variables are used is good
object-oriented practice. However, without making member variables private, there
is little point in providing such safeguards, because users can directly access and
modify the member variable values.

Private Member Functions
Private member functions are available in PHP5.

Member functions can also be defined as private to hide the implementation of a
class. This allows the implementation of a class to be modified, or replaced without
any effect on the scripts that use the class. Example 4-5 demonstrates how the class
FreightCalculator hides the internal methods used by the publicly-accessible mem-
ber function totalFreight(). The method calculates a freight cost using two private
functions perCaseTotal() and perKgTotal().

Classes and Objects | 117

Example 4-5. Private member functions

class FreightCalculator

{
private $numberOfCases;
private $totallWeight;
function totalFreight()
{
return $this->perCaseTotal() + $this->perKgTotal();
}
private function perCaseTotal()
{
return $this->numberOfCases * 1.00;
}
private function perKgTotal()
{
return $this->totallWeight * 0.10;
}
function _ construct($numberOfCases, $totalWeight)
{
$this->numberOfCases = $numberOfCases;
$this->totalWeight = $totalWeight;
}
}

Like private member variables, private functions can only be accessed from within
the class that defines them. The following example causes an error:

// Construct a FreightCalculator object as defined in Example 4-5
$f = new FreightCalculator(10, 150);

// These lines cause an error
print $f->perCaseTotal();
print $f->perKgTotal();

// This is OK -- prints "25"
print $f->totalFreight();

Static Member Variables
Static member variables are available in PHP5.

PHP allows member variables and functions to be declared as static using the static
keyword. As we have shown in our examples so far, normal member variables are
independent from object to object. In contrast, static member variables are shared
across all instances of a class. This allows you to share values between several
instances of a class without declaring a global variable that’s accessible throughout
your application.

118 | Chapter4: Introduction to Object-Oriented Programming with PHP 5

Example 4-6 defines the class Donation that records a donor name and donation
amount in the private member variables $name and $amount. The class keeps track of
the total amount donated, and the total number of donations using two static vari-
ables $totalDonated and $numberOfDonors. The values of these two variables are
accessible to all instances of the class, and each instance can update and read the val-
ues. Static member variables are accessed using a class reference rather than the ->
operator. In Example 4-6, the static variables $totalDonated and $numberOfDonors are
prefixed by the class reference Donation:: when they are used.

Example 4-6. Static member variables

<?php
class Donation

{
private $name;
private $amount;

static $totalDonated = 0;
static $numberOfDonors = 0;

function info()

{
$share = 100 * $this->amount / Donation::$totalDonated;
return "{$this->name} donated {$this->amount} ({$share}%)";
}
function _ construct($nameOfDonor, $donation)
{
$this->name = $nameOfDonor;
$this->amount = $donation;
Donation::$totalDonated = Donation::$totalDonated + $donation;
Donation: :$numberOfDonors++;
}
function destruct()
{
Donation::$totalDonated = Donation::$totalDonated - $donation;
Donation: :$numberOfDonors--;
}
}
>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html401/1oose.dtd">

<html>

<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Using Donation</title>

</head>

<body>

<pre>

Classes and Objects | 119

Example 4-6. Static member variables (continued)

<?php
$donors = array(
new Donation("Nicholas", 85.00),
new Donation("Matt", 50.00),
new Donation("Emily", 90.00),
new Donation("Sally", 65.00));

foreach ($donors as $donor)
print $donor->info() . "\n";

$total = Donation::$totalDonated;
$count = Donation::$numberOfDonors;
print "Total Donations = {$total}\n";
print "Number of Donors = {$count}\n";

>
</pre>
</body>
</html>

The static variables $totalDonated and $numberOfDonors are updated in the _ _
construct() function: the $donation amount is added to the value of $totalDonated,
and $numberOfDonors is incremented. We have also provided a _ _destruct() function
that decreases the value of $totalDonated and $numberOfDonors when a Donation
object is destroyed.

After the class Donation is defined, Example 4-6 creates an array of donation objects,
then prints the total donated and the total number of donations:

$total = Donation::$totalDonated;

$count = Donation::$numberOfDonors;

print "Total Donations = {$total}\n";

print "Number of Donors = {$count}\n";
The previous fragment demonstrates that static variables can be accessed from out-
side the class definition with the Donation:: class reference prefix. You don’t access
static member variable with the -> operator (which is used with instances of a class)
because they are not associated with any particular object.

A foreach loop is used to print information about each donation by calling the mem-
ber function info() for each Donation object. The info() member function returns a
string that contains the donor name, amount, and the percentage of the total that the
donor has contributed. The percentage is calculated by dividing the value stored for
the instance in $this->amount by the static total value Donation: :$totalDonated.

The output of Example 4-6 is as follows:

Nicholas donated 85 (29.3103448276%)
Matt donated 50 (17.2413793103%)
Emily donated 90 (31.0344827586%)
Sally donated 65 (22.4137931034%)

120 | Chapter4: Introduction to Object-Oriented Programming with PHP 5

Total Donations = 290

Number of Donors = 4
Unlike other member variables, you don’t need to create an object to use static mem-
ber variables. As long as the script has access to the class definition, static variables
are available using the class reference as shown in the following fragment:

// provide access to the Donation class definition
require "example.4-6.php";

// Now set the static total
Donation::$totalDonated = 124;
Donation: :$numberOfDonors = 5;

Static Member Functions

Static member functions are available in PHP5.

Static member functions are declared using the static keyword, and like static mem-
ber variables, aren’t accessed via objects but operate for the whole class and are
accessed using a class reference. We can modify Example 4-6 to provide access to the
static member variables using static member functions:

private static $totalDonated = 0;
private static $numberOfDonors = 0;

static function total()

{
return Donation::$totalDonated;
}
static function numberOfDonors()
{
return Donation::$numberOfDonors;
}

Code that uses the modified Donation class can then access the $totalDonated and
$number0fDonors values by calling the static functions Donation::total() and
Donation::numberOfDonors() respectively.

Static functions can only operate on static member variables and can’t operate on
objects, and therefore the function body can’t refer to the placeholder variable $this.

Like static member variables, you can access static functions without actually creat-
ing an object instance. Indeed we could have implemented the static member vari-
ables defined in Example 4-6, and the static member functions total() and
numberOfDonors() described earlier using global variables and normal user-defined
functions. Defining member variables and functions as static provides a way of
grouping related functionality together in class definitions, promoting a modular
approach to code development.

Classes and Objects | 121

Cloning Objects

Objects can optionally be cloned in PHP5, and are always cloned in PHP4. We
explain how this works in this section.

Cloning in PHP5

When a new object is created, PHPS5 returns a reference to the object rather than the
object itself. A variable assigned with an object is actually a reference to the object.
This is a significant change from PHP4 where objects are assigned directly to vari-
ables. Copying an object variable in PHP5 simply creates a second reference to the
same object. This behavior can be seen in the following fragment of code that cre-
ates a new UnitCounter object, as defined earlier in Example 4-1:

// Create a UnitCounter object
$a = new UnitCounter();

$a->add(5);
$b = $a;
$b->add(5);

// prints "Number of units = 10";

print "Number of units = {$a->units}";
The __clone() method is available if you want to create an independent copy of an
object. PHP5 provides a default __clone() function that creates a new, identical
object by copying each member variable. Consider the following fragment:

// Create a UnitCounter object
$a = new UnitCounter();

$a->add(5);
$b = $a->__clone();
$b->add(5);

// prints "Number of units = 5"
print "Number of units = {$a->units}";

// prints "Number of units = 10"

print "Number of units = {$b->units}";
The code creates an object $a, and adds five units to it using $a->add(5) to give a
total of 5 units in object $a. Then, $a is cloned and the result is assigned to a new
object $b. Five units are then added to the new object $b, to give a total of 10 units in
$b. Printing out the number of units for the original object $a outputs 5, and printing
the number of units for $b outputs 10.

You can control how an object is copied by including a custom _ _clone() function in
a class definition. If you wanted cloned UnitCounter objects to maintain the
$weightPerUnit value, but to reset the $units value to zero, you can include the fol-
lowing function in the class definition:

122 | Chapter4: Introduction to Object-Oriented Programming with PHP 5

function _ clone()

{ $this->weightPerUnit = $that->weightPerUnit;
$this->units = 0;
}
The original, source object is referred to in the __clone() function using the special
place-holder variable $that, and the variable $this is used to reference the new,
cloned object.

Cloning in PHP4

Rather than use references by default, new objects created with PHP4 can be
assigned directly to variables. When an object variable is copied, PHP4 automati-
cally clones the object. For example, consider the following PHP4 fragment:

// Create a UnitCounter object
$a = new UnitCounter();

$a->add(5);
$b = $a;
$b->add(5);

// prints "Number of units =5
print "Number of units = {$a->units}";

// prints "Number of units = 10"
print "Number of units = {$b->units}";

The variable $b is a clone or copy of $a, and so modifying $b does not affect $a.

If you don’t want to clone an object, use the reference assignment =8 to copy a refer-
ence. The following shows how $b is assigned as a reference to UnitCounter object
assigned to $a:

// Create a UnitCounter object
$a = new UnitCounter();

$a->add(5);
$b =& $a;
$b->add(5);

// prints "Number of units = 10"
print "Number of units = {$a->units}";

// prints "Number of units = 10"
print "Number of units = {$b->units}";

We discuss variable references and the reference assignment operator =& in
Chapter 2.

Classes and Objects | 123

Inheritance
Inheritance is available in PHP4 and PHPS5.

One of the powerful concepts in object-oriented programming is inheritance.
Inheritance allows a new class to be defined by extending the capabilities of an exist-
ing base class or parent class. PHP allows a new class to be created by extending an
existing class with the extends keyword.

Example 4-7 shows how the UnitCounter class from Example 4-4 is extended to cre-
ate the new class CaseCounter. The aim of the extended class is to track the number
of cases or boxes that are needed to hold the units accumulated by the counter. For
example, if bottles of wines are the units, then a case might hold 12 bottles.

Example 4-7. Defining the CaseCounter class by extending UnitCounter
<?php

// Access to the UnitCounter class definition
require "example.4-1.php";

class CaseCounter extends UnitCounter

{
var $unitsPerCase;
function addCase()
$this->add($this->unitsPerCase);
}
function caseCount()
{
return ceil($this->units/$this->unitsPerCase);
}
function CaseCounter($caseCapacity)
{
$this->unitsPerCase = $caseCapacity;
}
}
>

Before we discuss the implementation of the CaseCounter, we should examine the
relationship with the UnitCounter class. Figure 4-1 illustrates this relationship in a
simple class diagram. There are several different notations for representing class dia-
grams; we show the inheritance relationship by joining two classes with an anno-
tated line with a solid arrowhead.

The new CaseCounter class provides features related to counting cases worth of
units—for example, bottles of wine—while the UnitCounter base class provides the

124 | Chapter4: Introduction to Object-Oriented Programming with PHP 5

UnitCounter

ExtendsT

CaseCounter

Figure 4-1. Class diagram showing UnitCounter and CaseCounter

counting and total weight capabilities. To create a CaseCounter object, the number
of units that are stored in a case needs to be specified. This value is passed to the
constructor when new CaseCounter object is created,

// Create a CaseCounter that holds 12 bottles in a case
$order = new CaseCounter(12);

the value is then recorded in the member variable $unitsPerCase.

The addCase() member function uses the $unitsPerCase member variable to add a
case of units to the counter:

function addCase()

// The add() function is defined in the

// base class UnitCounter

$this->add($this->unitsPerCase);

}

The units are added by calling the base UnitCounter member function add(). Unless
they are declared as private, member variables and functions defined in the base class
can be called in derived classes using the -> operator and the special placeholder
variable $this.

The caseCount() member function calculates the number of cases needed to contain
the total number of units. For example, if there are 50 bottles of wine, and a case can
hold 12 bottles, then 5 cases are needed to hold the wine. The number of cases is
therefore calculated by dividing the total number of units—stored in the member
variable $unit defined in the UnitCounter class—by the member variable
$unitsPerCase. The result of the division is rounded up to the next whole case with
the ceil() function. The ceil() function is described in Chapter 3.

When a new CaseCounter object is created and used, all of the publicly accessible
member variables and functions of the base class are also available. This means that
you can use a CaseCounter object as if it were a UnitCounter but it also has the extra
features of the CaseCounter class. Consider an example:

// Create a CaseCounter that holds 12 bottles in a case
$order = new CaseCounter(12);

// Add seven bottles using the UnitCounter defined function
$order->add(7);

Inheritance | 125

// Add a case using the CaseCounter defined function
$order->addCase();

// Print the total number of Units : 19
print $order->units;

// Print the number of cases: 2

print $order->caseCount();
Unlike some other object-oriented languages, PHP only allows a single base class to
be specified when defining new classes. Allowing inheritance from multiple base
classes can lead to unnecessarily complex code and, in practice, isn’t very useful. In
Chapter 14, we explore advanced techniques that eliminate the need for multiple
inheritance.

Calling Parent Constructors
The ability to call parent constructors is available in PHP5.

CaseCounter objects use three member variables: two are defined in the UnitCounter
class, and the third is defined in CaseCounter. When a CaseCounter object is cre-
ated, PHP calls the _ _construct() function defined in CaseCounter and sets the value
of the member variable $unitsPerCase with the value passed as a parameter. In the
following fragment, the value passed to the _ _construct() function is 12:

// Create a CaseCounter that holds 12 bottles in a case

$order = new CaseCounter(12);
PHP only calls the __construct() function defined in CaseCounter; the constructor of
the parent class UnitCounter is not automatically called. Therefore, objects created
from the CaseCounter class defined in Example 4-7 always have the weight defined as
1 kg, the value that’s set in the member variable of the parent class. The CaseCounter
class shown in Example 4-8 solves this problem by defining a _ _construct() function
that calls the UnitCounter __construct() function using the parent: : reference.

Example 4-8. Calling parent constructor function

<?php

// Access to the UnitCounter class definition
include "example.4-4.php";

class CaseCounter extends UnitCounter
{

private $unitsPerCase;

function addCase()
{

}

$this->add($this->unitsPerCase);

126 | Chapter4: Introduction to Object-Oriented Programming with PHP 5

Example 4-8. Calling parent constructor function (continued)

function caseCount()

{
return ceil($this->numberOfUnits()/$this->unitsPerCase);
}
function _ construct($caseCapacity, $unitWeight)
{
parent:: _construct($unitWeight);
$this->unitsPerCase = $caseCapacity;
}
}
>

As Example 4-8 is written to use features provided by PHP5, we extend the more
sophisticated UnitCounter class defined in Example 4-4. Also, the member variable
$unitsPerCase is now defined to be private and we use the PHP5 _ _construct() func-
tion. The constructor function of the improved CaseCounter shown in Example 4-8
takes a second parameter, $unithWeight which is passed to the __construct() function
defined in the UnitCounter class.

Redefined Functions

Both PHP4 and PHP5 allow functions to be redefined, and the parent:: and class ref-
erence operators are available in PHPS5.

Functions defined in a base class can be redefined in a descendant class. When
objects of the descendant class are created, the redefined functions take precedence
over those defined in the base class. We have already seen the __construct() func-
tion of the base UnitCounter class redefined in the CaseCounter class in Example 4-8.

Consider the Shape and Polygon classes defined in the following code fragment:

class Shape

{
function info()
{
return "Shape.";
}
}

class Polygon extends Shape

function info()

{
}

return "Polygon.";

Inheritance | 127

The class Shape is the base class to Polygon, making Polygon a descendant of Shape.
Both classes define the function info(). So, following the rule of redefined functions,
when an object of class Polygon is created, the info() function defined in the Polygon
class takes precedence. This is shown in the following example:

$a = new Shape;
$b = new Polygon;

// prints "Shape."
print $a->info();

// prints "Polygon."
print $b->info();

With PHP 5, we can use the parent:: reference to access the info() function from

the parent class. For example, we can modify the Polygon class definition of info() as
follows:

class Polygon extends Shape

function info()

{
}

return parent::info() . "Polygon.";

}
$b = new Polygon;

// prints "Shape.Polygon."
print $b->info();

This approach can be used in descendant classes, proving a way of accumulating the
result of ancestor functionality. Consider a Triangle class that extends the Polygon
class:

class Triangle extends Polygon

{
function info()
{
return parent::info() . "Triangle.";
}
}

$t = new Triangle;

// prints "Shape.Polygon.Triangle."

print $t->info();
The parent:: reference operator only allows access to the immediate parent class.
PHP allows access to any known ancestor class using a class reference operator—we
introduced the class reference earlier in our discussion of static member variables
and functions in “Classes and Objects.” We can rewrite the Triangle class to call the
ancestor version of the info() functions directly:

128 | Chapter4: Introduction to Object-Oriented Programming with PHP 5

class Triangle extends Polygon

{
function info()
{
return Shape::info() . Polygon::info() . "Triangle.";
}
}

$t = new Triangle;

// prints "Shape.Polygon.Triangle."

print $t->info();
Using the class access operators makes code less portable. For example, you would
need to modify the implementation of the Triangle class if you decided that Triangle
would extend Shape directly. Using the parent:: reference operator allows you to re-
arrange class hierarchies more easily.

Protected Member Variables and Functions
Protected members are available in PHPS5.

Member variables and functions can be defined using the protected keyword. This
offers a compromise between being public and private: it allows access to member
variables and functions defined in a class from within descendant classes, but it pre-
vents access to the member variables and functions from code outside of the class
hierarchy. So, for example, a child class can access a parent class’s protected func-
tions, but the parent class protected functions can’t be accessed from an unrelated
class or from within a script that uses the class.

In Example 4-5, we introduced the FreightCalculator class to work out freight costs
based on the number of cases and the total weight of a shipment. The
FreightCalculator class defined in Example 4-5 calculates the per case and per kilo-
gram costs using the two private functions perCaseTotal() and perKgTotal().

In Example 4-9, we rewrite the FreightCalculator class to define these functions as
protected. This allows a new class AirFreightCalculator to extend FreightCalculator
and redefine the functions to apply different rates per kilogram and case count.

Example 4-9. An air freight calculator

class FreightCalculator

{

protected $numberOfCases;
protected $totalWeight;

function totalFreight()
{

}

return $this->perCaseTotal() + $this->perKgTotal();

Inheritance | 129

Example 4-9. An air freight calculator (continued)
protected function perCaseTotal()

{
return $this->numberOfCases * 1.00;
}
protected function perKgTotal()
{
return $this->totallWeight * 0.10;
}
function _ construct($numberOfCases, $totalWeight)
{
$this->numberOfCases = $numberOfCases;
$this->totalWeight = $totalWeight;
}

class AirfFreightCalculator extends FreightCalculator

{
protected function perCaseTotal()
{
// $15 + $1 per case
return 15 + $this->numberOfCases * 1.00;
}
protected function perKgTotal()
{
// $0.40 per kilogram
return $this->totalWeight * 0.40;
}
}

Because the AirFreightCalculator implementation of perCaseTotal() and perKgTotal()
requires access to the FreightCalculator member variables $totallWeight and
$numberOfCases, these have also been declared as protected.

Final Functions

Declaring final functions is available in PHP5.

The AirFreightCalculator class defined in Example 4-9 doesn’t redefine the
totalFreight() member function because the definition in FreightCalculator correctly
calculates the total. Descendant classes can be prevented from redefining member
functions in base classes by declaring them as final. Declaring the totalFreight()
member function with the final keyword prevents accidental redefinition in a
descendant class:

final function totalFreight()
{

130 | Chapter4: Introduction to Object-Oriented Programming with PHP 5

return $this->perCaseTotal() + $this->perKgTotal();

Throwing and Catching Exceptions

PHP 5 has introduced an exception model that allows objects to be thrown and
caught using the throw and try...catch statements.

The throw and try...catch statements provide a way of jumping to error handling
code in exceptional circumstances: rather than terminating a script with a fatal error,
exceptions are thrown, and can be caught and processed. The throw statement is
always used in conjunction with the try...catch statement, and the following frag-
ment shows the basic structure:

$total = 100;
$n = 5;

$result;

try
{

// Check the value of $n before we use it
if ($n == 0)
throw new Exception("Can't set n to zero.");

// Calculate an average
$result = $total / $n;

}
catch (Exception $x)
{
print "There was an error: {$x->getMessage()};
}

The block of statements contained in the braces that follow the try keyword are exe-
cuted normally as part of the script; the braces are required, even for a single state-
ment. If a throw statement is called in the try block, then the statements contained in
the braces that follow the catch keyword are executed. The throw statement throws
an object and the catch block of code catches the thrown object, assigning it to the
variable specified.

The catch statement specifies the type of object that is caught by placing the class
name before the variable: the following fragment catches Exception objects and
assigns them to the variable $x:

catch (Exception $x)
{

}

Specifying the type of object that is caught in the catch block is an example of a class
type hint. We discuss class type hints in Chapter 14.

print "There was an error: {$x->getMessage()};

Throwing and Catching Exceptions | 131

The Exception Class

While objects of any class can be thrown, PHP5 predefines the Exception class that
has useful features suitable for exception reporting.

Exception objects are constructed with a message and an optional integer error code.
The message and error code are retrieved using the getMessage() and getCode()
member functions. The line number and filename of the script that creates an
Exception object is also recorded and retrieved with the getLine() and getFile() mem-
ber functions. These functions are used in Example4-10 to define the
formatException() function that returns a simple error message for a given Exception
object $e.

Example 4-10. Simple try-catch
<?php

function formatException(Exception $e)

{
return "Error {$e->getCode()}: {$e->getMessage()}

(line: {$e->getline()} of {$e->getfile()})";

function average($total, $n)

{
if ($n == 0)
throw new Exception("Number of items = 0", 1001);
return $total / $n;
}

// Script that uses the average() function
try
{
$a = average(100, 0);
print "Average = {$a}";
}

catch (Exception $error)

{
}

print formatException($error);

>

Example 4-10 shows how a try. . .catch statement is used to catch exceptions thrown
by the function average(). The Exception object is created—with a message and error
code—and thrown from the average() function if the value of $n is zero.
Example 4-10 calls the average() function inside a try block. If average() throws an
exception, it is caught by the catch block and the formatException() function is called

132 | Chapter4: Introduction to Object-Oriented Programming with PHP 5

to format the caught Exception object $error. When Example 4-10 is run the call to
average() causes an Exception object to be thrown, and the following is output:
Error 1001: Number of items = 0
(1ine: 13 of c:\htdocs\book\example.4-10.php)
If you called the average() as shown in Example 4-10 without a try...catch state-
ment, any exceptions thrown wouldn’t be caught and PHP 5 terminates the script
with a fatal “Uncaught exception” error.

The throw and try...catch statements provide an alterative to calling the PHP exit()
or die() functions that terminate a script. Using throw and try...catch statements
allow you to develop applications that can handle exceptional circumstances in a
controlled manner. However, exceptions are quite different from the errors and
warnings that PHP generates when things go wrong. Unfortunately, a try...catch
statement can’t be used to catch fatal errors such as divide by zero. (You can sup-
press errors with the @ operator; we explain how in Chapter 6.) In Example 4-10, the
code that implements the average() function tests the value of $n before using it in a
division to avoid the fatal “Divide by Zero” error.

We discuss the management of PHP errors and warnings in Chapter 12.

Throwing and Catching Exceptions | 133

CHAPTER 5

SQL and MySQL

In this chapter, we introduce the SQL database query language and the MySQL™"
database management system. Using our case study winestore database as a worked
example, we show you how to use SQL to define, manipulate, and query databases.
At the end of this chapter, you’ll have the database skills to build a database tier for
your web database applications.

In this chapter, we cover the following topics:

e A short introduction to relational databases

* A quick start guide to the example winestore database and its entity-relationship
model

* The MySQL command interpreter and the basic features of MySQL
* Using SQL to create and drop databases and tables

* Using SQL to insert, delete, and update data

* Querying with SQL, illustrated through examples and a case study

We assume that you have already installed MySQL and loaded the sample winestore
database. If not, the guides in Appendixes A through C will help you.

The techniques that we discuss are used to interact with MySQL after a database has
been designed and expressed as SQL statements. An introduction to relational mod-
eling and design can be found in Appendix E. Managing and using the MySQL data-
base server, and more advanced SQL features, are discussed in Chapter 15.
Chapter 8 covers issues that arise when multiple users are writing to web databases.

* MySQL is a trademark of MySQL AB.

134

Database Basics

The field of databases has its own terminology. Terms such as database, table,
attribute, row, primary key, and relational model have specific meanings and are
used throughout this chapter. In this section, we present an example of a simple
database to introduce the basic components of relational databases, and we list and
define selected terms used in the chapter. We then show you our winestore database
that we use throughout our examples in this chapter, and as the basis of our sample
application in Chapters 16 through 20. More detail on the database can be found in
Appendix E.

Introducing Relational Databases

A simple example relational database is shown in Figure 5-1. This database stores
data about wineries and the wine regions they are located in. A relational database is
organized into tables, and there are two tables in this example: a winery table that
stores information about wineries, and a region table that has information about
wine regions. Tables collect together information that is about one object.

Winery Table
Winery ID | Winery name Address | Region ID
1 Moss Brothers Smith Rd. 3
2 Hardy Brothers Jones St. 1
3 Penfolds Arthurton Rd. 1
4 Lindemans Smith Ave. 2
5 Orlando Jones St. 1
Region Table
RegionID | Region name State
1 Barossa Valley | South Australia
2 Yarra Valley Victoria
3 Margaret River | Western Australia

Figure 5-1. An example relational database containing two related tables

Databases are managed by a database management system (DBMS) or database
server. A database server supports a database language to create and delete data-
bases and to manage and search data. The database language used by almost all data-
base servers is SQL, a set of statements that define and manipulate data. After
creating a database, the most common SQL statements used are INSERT, UPDATE,
DELETE, and SELECT, which add, change, remove, and search data in a database,
respectively.

In this book, we use the MySQL database server to manage databases. MySQL runs
as a server (daemon) process or service, like Apache or IIS, and supports several dif-
ferent clients including a command-line interpreter (that we use in this chapter) and

Database Basics | 135

a PHP function library (that we use throughout later chapters). One MySQL server
can manage multiple databases for you for multiple applications, and each can store
different data organized in different ways.

A database table may have multiple attributes, each of which has a name. For exam-
ple, the winery table in Figure 5-1 has four attributes, winery ID, winery name, address,
and region ID. A table contains the data as rows, and a row contains values for each
attribute that together represent one related object. (Attributes are also known as
fields or columns, while rows are also known as records. We use attribute and row
throughout this book.)

Consider an example. The winery table has five rows, one for each winery, and each
row has a value for each attribute. For example, in the first winery row, the attribute
winery ID has a value of 1, the winery name attribute has a value of Moss Brothers, the
attribute address has a value of Smith Rd., and the region ID attribute has a value of
3. There is a row for region 3 in the region table and it corresponds to Margaret River
in Western Australia. Together this data forms the information about an object, the
Moss Brothers Winery in Western Australia.

In our example, the relationship between wineries and regions is maintained by
assigning a region ID to each winery row. The region ID value for each region is
unique, and this allows you to unambiguously discover which region each winery is
located in. Managing relationships using unique values is fundamental to relational
databases. Indeed, good database design requires that you can make the right choice
of which objects are represented as tables and which relationships exist between the
tables. We discuss good database design in Appendix E.

In our example of the relationship between wineries and regions, there’s a one-to-
many mapping between regions and wineries: more than one winery can be situated
in a region (three wineries in the example are situated in the Barossa Valley) but a
winery can be situated in only one region. It’s also possible to have two other types
of relationship between tables: a one-to-one relationship where, for example, each
bottle of wine has one label design, and a many-to-many relationship where, for
example, many wines are delivered by many couriers. As we show you later, unique
values or primary keys allow these relationships to be managed and they’re essential
to relational databases.

Attributes have data types. For example, in the winery table, the winery ID is an inte-
ger, the winery name and address are strings, and the region ID is an integer. Data
types are assigned when a database is designed.

Tables usually have a primary key, which is formed by one or more values that
uniquely identify each row in a table. The primary key of the winery table is the
winery ID, and the primary key of the region table is the region ID. The values of these
attributes aren’t usually meaningful to the user, they’re just unique ordinal numbers
that are used to uniquely identify a row of data and to maintain relationships.

136 | Chapter5: SQLand MySQL

Figure 5-2 shows our example database modeled using entity-relationship (ER) mod-
eling. An ER model is a standard method for visualizing a database and for under-
standing the relationships between the tables. It’s particularly useful for more
complex databases where relationships of different types exist and you need to
understand how to keep these up-to-date and use them in querying. As we show you
later, our winestore database needs a moderately complex ER model.

In the ER model in Figure 5-2, the winery and region tables or entities are shown as
rectangles. An entity is often a real-world object and each one has attributes, where
those that are part of the primary key are shown underlined. The relationship
between the tables is shown as a diamond that connects the two tables, and in this
example the relationship is annotated with an M at the winery-end of the relation-
ship. The M indicates that there are potentially many winery rows associated with
each region. Because the relationship isn’t annotated at the other end, this means
that there is only one region associated with each winery. We discuss ER modeling in
more detail in Appendix E.

(wineryID) (wineryname) (region ID) (region name)

Figure 5-2. An example relational model of the winery database

Database Terminology

Database
A repository to store data. For example, a database might store all of the data
associated with finance in a large company, information about your CD and
DVD collection, or the records of an online store.

Table
A part of a database that stores data related to an object, thing, or activity. For
example, a table might store data about customers. A table has columns, fields,
or attributes. The data is stored as rows or records.

Attributes
The columns in a table. All rows in a table have the same attributes. For exam-
ple, a customer table might have the attributes name, address, and city. Each
attribute has a data type such as string, integer, or date.

Rows
The data entries stored in a table. Rows contain values for each attribute. For
example, a row in a customer table might contain the values “Matthew Richard-
son,” “Punt Road,” and “Richmond.” Rows are also known as records.

Database Basics | 137

Relational model
A formal model that uses database, tables, and attributes to store data and man-
ages the relationship between tables.

(Relational) database management system (DBMS)
A software application that manages data in a database and is based on the rela-
tional model. Also known as a database server.

SQL
A standard query language that interacts with a database server. SQL is a set of
statements to manage databases, tables, and data. Despite popular belief, SQL
does not stand for Structured Query Language and isn’t pronounced Sequel: it’s
pronounced as the three-letter acronym S-Q-L and it doesn’t stand for anything.

Constraints
Restrictions or limitations on tables and attributes. A database typically has
many constraints: for example, a wine can be produced only by one winery, an
order can’t exist if it isn’t associated with a customer, and having a name
attribute is mandatory for a customer.

Primary key
One or more attributes that contain values that uniquely identify each row. For
example, a customer table might have the primary key named cust ID. The cust
ID attribute is then assigned a unique value for each customer. A primary key is a
constraint of most tables.

Index
A data structure used for fast access to rows in a table. An index is usually built
for the primary key of each table and can then be used to quickly find a particu-
lar row. Indexes are also defined and built for other attributes when those
attributes are frequently used in queries.

Entity-relationship (ER) modeling
A technique used to describe the real-world data in terms of entities, attributes,
and relationships. This is discussed in Appendix E.

Normalized database
A correctly designed database that is created from an ER model. There are differ-
ent types or levels of normalization, and a third-normal form database is gener-
ally regarded as being an acceptably designed relational database. We discuss
normalization in Appendix E.

The Winestore Database

This section is a summary of the entity-relationship model of the winestore database.
It’s included for easy reference, and you’ll find it useful to have at hand as you work
through this chapter.

138 | Chapter5: SQLand MySQL

The winestore entity-relationship model

Figure 5-3 shows the complete entity-relationship model for our example winestore
database; this model is derived from the system requirements listed in Chapter 16,
and is derived following the process described in Appendix E. Appendix E also
includes a description of the meaning of each shape and line type used in the figure.

inventory
M
date_added

N

wine_name)

! orders] urchase

|Countries| | Titles |

I T

country_id)(country title_id title

Figure 5-3. The winestore ER model

The winestore model can be summarized as follows:
* A customer at the online winestore purchases wines by placing one or more
orders.
* Each customer has exactly one set of user details.
* Each customer has a title (such as "Mr" or "Dr") and lives in a country.
* Each order contains one or more items.
* Each item is a specific quantity of wine at a specific price.
* A wine is of a type such as “Red,” “White,” or “Sparkling.”

* A wine has a vintage year; if the same wine has two or more vintages from differ-
ent years, these are treated as two or more distinct wines.

Database Basics | 139

* Each wine is made by one winery.
* Each winery is located in one region.

* Each wine has one or more grape_variety entries. For example, a wine of wine_
name “Archibald” might be made of the grape_variety entries “Sauvignon” and
“Cabernet.” The order of the entries is important. For example, a “Cabernet
Sauvignon” is different from a “Sauvignon Cabernet.”

* Each inventory for a wine represents the on-hand stock of a wine. If a wine is
available at two prices, there are two inventories. Similarly, if the stock arrived at
the warehouse at two different times, there are two inventories.

* Each wine may have one or more inventories.

MySQL Command Interpreter

The MySQL command interpreter is commonly used to create databases and tables
in web database applications and to test queries. Throughout the remainder of this
chapter we discuss the SQL statements for managing a database. All these state-
ments can be directly entered into the command interpreter and executed. In later
chapters, we’ll show how to include SQL statements in PHP scripts so that web
applications can get and change data in a database.

Once the MySQL server is running, the command interpreter can be used. The com-
mand interpreter can be run using the following command from the shell in a Unix
or Mac OS X system, assuming you’ve created a user hugh with a password shhh:

% /usr/local/bin/mysql -uhugh -pshhh
The shell prompt is represented here as a percentage character, %.

On a Microsoft Windows platform, you can access the command interpreter by
clicking on the Start menu, then the Run option, and typing into the dialog box:

"C:\Program Files\EasyPHP1-7\mysql\bin\mysql.exe" -uhugh -pshhh
Then, press the Enter key or click OK.

(For both Unix and Microsoft Windows environments, we’re assuming you’ve
installed MySQL in the default directory location using our instructions in Appen-
dixes A through C.)

Running the command interpreter displays the output:

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 3 to server version: 4.0.15-log

Type ‘help;' or "\h' for help. Type '\c' to clear the buffer.

mysql>

140 | Chapter5: SQLand MySQL

The command interpreter displays a mysql> prompt and, after executing any com-
mand or statement, it redisplays the prompt. For example, you might issue the
statement:

mysql> SELECT NOW();

This statement reports the time and date in the following output:

R G EL L LR E L +
| NOW() |
Fommmmme e n +
| 2004-03-01 13:48:07 |
Fommm oo +

1 row in set (0.00 sec)

mysql>

After running a statement, the interpreter redisplays the mysql> prompt. We discuss
the SELECT statement later in this chapter.

As with all other SQL statements, the SELECT statement ends in a semicolon. Almost
all SQL command interpreters permit any amount of whitespace (spaces, tabs, or
carriage returns) in SQL statements, and they check syntax and execute statements
only after encountering a semicolon that is followed by a press of the Enter key.

We have used uppercase for the SQL statements throughout this book so that it’s
clear what’s an SQL statement and what isn’t. However, any mix of upper- and low-
ercase is equivalent in SQL keywords. Be careful, though: other parts of SQL state-
ments such as database and table names are case sensitive. You also need to be
careful with values: for example, Smith, SMITH, and smith are all different.

On startup, the command interpreter encourages the use of the help command. Typ-
ing help produces a list of commands that are native to the MySQL interpreter and
that aren’t part of SQL. All non-SQL commands can be entered without the termi-
nating semicolon, but the semicolon can be included without causing an error.

The MySQL command interpreter provides a lot of flexibility and many shortcuts:
* To quit the interpreter, type quit.
* The up- and down-arrow keys allow you to browse previously entered com-
mands and statements. On most platforms, the history of commands and state-
ments is kept when you quit the interpreter. When you run it again, you can

once again scroll up using the up arrow and execute commands and statements
that were entered in the previous session.

* The interpreter has command completion. If you type the first few characters of
a string that has previously been entered and press the Tab key, the interpreter
automatically completes the command. For example, if wines is typed and the
Tab key pressed, the command interpreter outputs winestore, assuming the
word winestore has been previously used.

MySQL Command Interpreter | 141

* If there’s more than one option that begins with the characters entered, or you
wish the strings that match the characters to be displayed, press the Tab key
twice to show all matches. You can then enter additional characters to remove
any ambiguity and press the Tab key again for command completion.

* If you’re a Unix user, you can use a text editor to create SQL statements by
entering the command edit in the interpreter. This invokes the editor defined by
the EDITOR shell environment variable. After you exit the editor, the MySQL
command interpreter reads, parses, and runs the file created in the editor.

* You can run single commands and SQL statements without waiting for a
MySQL command prompt. This is particularly useful for adding SQL state-
ments to startup scripts. For example, to run SELECT now() from a Unix shell,
enter the following command:

% lusr/local/mysql/bin/mysql -uhugh -pshhh -e "SELECT now();"

* You can create MySQL statements in a file using a text editor, and then load and
run them. For example, if you have statements stored in the file statements.sql,
type the following into the command interpreter to load and run the statements:

mysql> source statements.sql

You can also include a directory path before the filename. This feature is dis-
cussed in more detail in Chapter 15.

* Sometimes, you’ll find you’ve mistyped a statement, forgotten a semicolon, or
forgotten a quote character. In most cases, to solve the problem you can type a
semicolon and press Enter: this causes MySQL to report an error and you can
then start again. If you’re missing a matching quote character, type it in, then a
semicolon, and then press Enter. If you’re in a real mess, type Control-C (by hold-
ing the Ctrl key and pressing C): this aborts the command interpreter completely.

Managing Databases and Tables

In this section, we use the MySQL command interpreter to create databases and
tables using the winestore database as a case study. We also show you the state-
ments that remove databases and tables.

A discussion of advanced features is in Chapter 15. We show you how to manage
indexes and alter tables after they’ve been created, and delete and update data using
queries and multiple tables. We also show you how the details of how to store multi-
ple statements in a file and execute them; this is how we created our winestore script
that you used in the installation steps in Appendixes A through C.

Creating Databases

The CREATE DATABASE statement creates a new, empty database without any tables or
data. The following statement creates a database called winestore:

mysql> CREATE DATABASE winestore;

142 | Chapter5: SQLand MySQL

A database name can be 64 characters in length at most and can contain any charac-
ter except the forward slash, backward slash, or period characters.

Database and table names are used as the disk file names that store the data. There-
fore, if your operating system has case-sensitive filenames, MySQL is case-sensitive
to database and table names; in general, Unix platforms are case sensitive and
Microsoft Windows platforms aren’t. Attribute names are not case sensitive on all
platforms. Aliases (which are discussed in Chapter 15) are partially case sensitive:
table aliases follow the same rule as table names (and so are case sensitive on some
platforms), while attribute aliases are case insensitive.

For the rest of this chapter, we omit the mysql> prompt from the command exam-
ples. To work with a database, the command interpreter requires the user to be using
a database before SQL statements can be issued. Database servers have different
methods for using a database and these aren’t part of the SQL standard. In the
MySQL interpreter, you issue the command:

use winestore;

Creating Tables

After issuing the use winestore command, you then usually enter statements to cre-
ate the tables in the database. Let’s look one table from the winestore database, the
customer table. The statement that creates this table is shown in Example 5-1.

Example 5-1. Creating the customer table with SQL

CREATE TABLE customer (
cust_id int(5) NOT NULL,
surname varchar(50),
firstname varchar(s0),
initial char(1),
title id int(3),
address varchar(50),
city varchar(s0),
state varchar(20),
zipcode varchar(10),
country_id int(4),
phone varchar(15),
birth date char(10),
PRIMARY KEY (cust_id)

) type=MyISAM;

The CREATE TABLE statement has three parts:

* Following the CREATE TABLE statement is a table name, which in this case is
customer.

* Following an opening bracket is a list of attribute names, types and lengths, and
modifiers. These are comma separated.

Managing Databases and Tables | 143

e After this is a list of other information about the structure and use of the table.
In this example, a PRIMARY KEY is defined and the table type is set to MyISAM.

* Like all SQL statements, this one ends with a semi-colon.

We explain most of these in detail later in this section. Tables types are discussed in
Chapter 15.

The CREATE TABLE statement for the customer table is derived from the entity-relation-
ship model in Figure 5-3, and the process of converting this model to CREATE TABLE
statements is described in Appendix E. The complete list of tables in the winestore
database and a brief description of each and its relationships is shown in Table 5-1.

Table 5-1. The tables in the winestore database

Table Description

countries Lookup table containing country names. Related to customer.

customer Customer details, including address, contact details, and date of birth. Related to
countries, orders, titles,and users.

grape_variety Lookup table containing grape variety names. Related towine variety.

inventory Stock records that show much wine is available and its price. Related to wine.

items The wines in an order and their quantity and price. Related to wine and orders.

orders Orders placed by customer, which contain items. Related to customexr and items.

region Wine growing districts that contain wineries. Related to winery.

titles Lookup table containing titles (such as Mr. or Miss). Related to customer.

users Email addresses (which are also used as user names) and encrypted passwords for each cus-
tomer. Related to customer.

wine Details about the wines. Related to items, inventory,wine type,wine variety,
andwinery.

wine_type Lookup table containing wine categories (such as red or white). Related to wine.

wine variety The link between a wine and its grape varieties. Related towine and grape variety.

winery Winery details. Related towine and region.

If you followed our installation instructions in Appendixes A through C, you've
already downloaded the installation script that contains the statements to create all
of the winestore database tables and this has been loaded into your MySQL installa-
tion (along with example data). To view the CREATE TABLE statements for the other
tables in database, you can use the SHOW CREATE TABLE command in the command
interpreter. For example, to see the statement used to create the wine table, type:

SHOW CREATE TABLE wine;

This statement is discussed in more detail in Chapter 15. You can also view the
CREATE TABLE statements by opening the installation file winestore.data in a text edi-
tor; this is a good way to view all of the statements at once.

144 | Chapter5: SQLand MySQL

Tables and attributes

A table name can be 64 characters in length at most and may contain any character
except a forward slash or a period. As you’ve seen, the name is usually the name of
an entity created in the ER model. Attribute names may be up to 64 characters in
length and can contain any character.

There are many possible data types for attributes, and details of selected commonly-
used types are shown in Table 5-2. A complete list is provided in Section 6.2 of the
MySQL manual. The MySQL manual is found at http://www.mysql.com/
documentation. You can also download a copy from the same location and open it as
a local file using your web browser; we recommend this approach, as it allows you
fast access to the manual.

Table 5-2. Common SQL data types for attributes

Data type Comments

int(Iength) Integer with a maximum Iength; used for IDs, age, counters, etc.

decimal(width[,decimal digits]) A number with awidth including an optional number of decimal _
digits after the decimal point; used for currency, measurements, etc.

datetime Stores a date and time in the format YYYY-MM-DD HH:MM: SS.

time Stores a time in the format HH: MM: SS.

date Stores a date in the format YYYY-MM-DD.

timestamp Stores the date and time in the format YYYYMMDDHHMMSS.

The first-occurring t imestamp attribute in a row has a special property:
itis set to the current date and time when the row that contains it s cre-
ated and it updates each time the row that contains it is modified. You
can also update it to the current date and time by setting the attribute to
NULL.

Any other timestamp attributes in a row do not have this special prop-
erty, but they can be updated to the current date and time by assigning

NULL.

varchar(length) An unpadded, variable-length text string with a specified maximum
length.

char(length) A padded, fixed-length text string of size Iength.

blob An attribute that stores up to 64 KB of data.

For situations where the data stored is always much smaller or larger than the usual
maximum possible value, most attribute types can be defined as tiny, small, medium,
and big. For example, int can be specified as tinyint, smallint, mediumint, and bigint
that are for signed integers in the ranges -128 to 127, -32768 to 32767, -8388608 to
8388607, and -9223372036854775808 to 9223372036854775807 respectively. The
normal-size int has the range -2147483648 to 2147483647. We recommend choosing
the smallest type that is suitable for a task: this saves space, and makes data retrieval
and updates faster.

You’ll find more detail of attribute types in Section 6.4 of the MySQL manual.

Managing Databases and Tables | 145

Modifiers

Modifiers may be applied to attributes. The most common modifier is NOT NULL,
which means that a row can’t exist without this attribute having a value. For example:

cust_id int(5) NOT NULL,

Another common modifier is DEFAULT, which sets the data to the value that follows
when no data is supplied. For example, suppose you want to set the state attribute
to the value Unknown when it isn’t provided. You can do this using:

state varchar(20) DEFAULT "Unknown",

DEFAULT and NOT NULL can be used in combination: if a value isn’t supplied for an
attribute, NULL can be avoided by using the DEFAULT value; we return to this later in
the section “Inserting, Updating, and Deleting Data.”

All numeric attributes have optional zerofill and unsigned modifiers. The former
left-pads a value with zeros up to the size of the attribute type. The latter allows only
positive values to be stored and roughly doubles the maximum positive value that
can be stored.

Finally, the useful auto_increment modifier is described in the section “Inserting,
Updating, and Deleting Data.”

Keys

A primary key is one or more attributes that uniquely identify a row in a table. As we
discussed previously, primary keys are essential to maintaining relationships between
tables in the database, and every table should have one. In the customer table in
Example 5-1, the primary key is the cust_id attribute: each customer has a unique
cust_id, and these are assigned sequentially as customers are added to the table.

You don’t always have to create an extra attribute that serves the purpose of being
the primary key. For example, in our users table we could choose the user name
attribute as the primary key, because each customer must have a unique email
address. In our customer table, we could also have defined the primary key to be the
combination of the surname plus the firstname plus the initial plus the zipcode (in
the hope that’s enough information to uniquely identify a customer!). As this exam-
ple illustrates, if you don’t already have an attribute that unique, it’s easier to add an
extra attribute that’s purpose is to be the primary key. Determining primary keys
from an ER model is discussed in detail in Appendix E.

The final component of the CREATE TABLE statement includes a specification of the keys.
In Example 5-1, we specify that the unique identifier is the cust_id attribute by adding
the statement PRIMARY KEY (cust id). The PRIMARY KEY constraint has two restric-
tions: the attribute must be defined as NOT NULL, and any value inserted must be unique.

You can add other non-primary keys to a table. As we show you in Chapter 15, extra
keys can make querying and updating of data in the database much faster. Each

146 | Chapter5: SQLand MySQL

additional key definition creates an additional index that permits fast access to the
data using the attributes defined in the key. As an example, suppose you want to
access the customer data by a surname and firstname combination. In this case, you
can add a KEY definition to the end of the CREATE TABLE statement:

PRIMARY KEY (cust_id),

KEY names (surname,firstname)

) type=MyISAM;

Each new KEY is given a unique label that you choose, in this case we’ve chosen the
label names.

In many cases, without yet knowing what kinds of queries will be made on the data-
base, it is difficult to determine what keys you should specify. MySQL permits at
least 16 indexes to be created on any table (this depends on the table type), but
unnecessary indexes should be avoided. Each index takes additional storage space,
and it must be updated by the database server as the data stored in the table is
inserted, deleted, and modified. In addition, indexes on multiple attributes can only
be used to speed up certain queries. We discuss how to use indexes and index tun-
ing in Chapter 15.

Deleting Databases and Tables

The DROP statement is used to remove tables and databases. Removing a table or
database also deletes the data contained in it. For example, to remove the customer
table and its data, use:

DROP TABLE customer;

To remove the complete winestore database (including all tables, indexes, and data),
use:

DROP DATABASE winestore;

Take care with DROP—the command interpreter won’t ask you if you’re sure. How-
ever, we show you how to prevent accidental deletion (and prevent other database
users from deleting databases, tables, and data) in Chapter 15.

Both DROP TABLE and DROP DATABASE support an optional IF EXISTS keyword which
can be used to prevent an error being reported if the database or table doesn’t exist.
For example, to drop the winestore database and avoid an error if it’s already been
dropped (or was never created), use:

DROP DATABASE IF EXISTS winestore;

We’ve used this feature at the beginning of the winestore.data file that contains the
SQL statements for loading the winestore database. The first three lines remove the
database if it exists, create a new database, and use the new database:

DROP DATABASE IF EXISTS winestore;

CREATE DATABASE winestore;
USE winestore;

Managing Databases and Tables | 147

You can therefore reload the file by following our instructions in Appendixes A
through C, and it’ll create and load a new winestore database every time.

Inserting, Updating, and Deleting Data

There are four major statements for working with data in SQL: SELECT, INSERT,
DELETE, and UPDATE. We describe the latter three statements in this section. SELECT is
covered it in its own section later in this chapter.

Inserting Data

Having created a database and the accompanying tables and indexes, the next step is
to insert data into the tables. Inserting a row can follow two different approaches. We
show both approaches by inserting the same data for a new customer, Lucy Williams.

Consider an example of the first approach using the customer table:

INSERT INTO customer VALUES (1,'Williams','Lucy','E',3,

'272 Station St','Carlton North','VIC','3054',12,"'(613)83008460",

'2002-07-02");
The statement creates a new row in the customer table, then the first value 1 is
inserted into the first attribute, cust_id. The second value 'Williams' is inserted into
the second attribute surname, 'Lucy' into firstname, and so on.

The number of values inserted is the same as the number of attributes in the table
(and an error is generated if the number of values doesn’t match the number of
attributes). If you don’t want to supply data for an attribute, you can include NULL
instead of a value (as long as the attribute isn’t defined as NOT NULL and NULL is valid
for that data type). For example, to create a partial customer row, you could use:
INSERT INTO customer VALUES (1, 'Williams','Lucy',NULL,3,
NULL,NULL,NULL,NULL,12,NULL,NULL);
To create an INSERT statement using this first format, you need to know the ordering of
the attributes in the table. You can discover the table structure by typing SHOW COLUMNS
FROM customer into the MySQL command interpreter or by reviewing the CREATE TABLE
statement used to create the table. The SHOW statement is described in detail in
Chapter 15.

If you want to insert more than one row, you can write more than one INSERT state-
ment. Alternatively, you can write one INSERT statement and separate each row with
a comma. Consider an example that uses the latter approach and inserts the details
for two customers:

INSERT INTO customer VALUES (1,'Williams','Lucy','E',3,

'272 Station St','Carlton North','VIC','3054',12,'(613)83008460",

'2002-07-02"), (2,'Williams','Selina',"'3]",4,"'12 Hotham St',

"Collingwood','VIC','3066',12," (613)99255432", '1980-06-03");

This approach is the fastest way to insert data into MySQL.

148 | Chapter5: SQLand MySQL

Data can also be inserted using a second approach. Consider this example:
INSERT INTO customer SET cust_id = 1, surname = 'Williams',
firstname = 'Lucy', initial="E', title id=3,
address="'272 Station St', city='Carlton North',
state="VIC', zipcode='3054", country id=12,
phone="'(613)83008460"', birth date="'2002-07-10";
In this approach, the attribute name is listed, followed by the assignment operator
(=) and then the value to be assigned. This approach doesn’t require the same num-
ber of values as attributes, and it also allows arbitrary ordering of the attributes. This
can save you lots of typing when a row has many attributes but is sparsely populated
with values. For example, to create a partial customer row, you could use:
INSERT INTO customer SET cust_id = 653, surname = 'Williams',
firstname = 'Lucy', title id = 3, country_ id = 12;
The first approach can actually be varied to function in a similar way to the second
by including parenthesized attribute names before the VALUES keyword. For example,
you can create an incomplete customer row with:
INSERT INTO customer (cust id, surname, city)
VALUES (1, 'Williams','North Carlton');
When inserting data, non-numeric attributes must be enclosed in either single or
double quotes. If a string contains single quotation marks, the string can be enclosed
in double quotation marks. For example, consider the string “Steve 0’Dwyer”. Like-
wise, strings containing double quotation marks can be enclosed in single quotation
marks. An alternative approach is to escape the quotation character by using a back-
slash character; for example, as in the string ‘Steve 0\’Dwyer’. Numeric values can
also be enclosed in quotes but they aren’t mandatory.

There are other ways to insert data in addition to those discussed here. For example,
a popular variation is to insert data from another table using a query or to insert data
from a formatted text file. These two approaches and other variants are discussed in
Chapter 15.

Defaults

If you don’t include the value for an attribute, it is set to the DEFAULT value if it’s sup-
plied in the table definition or to NULL otherwise (if it is valid for the attribute to be
NULL). If an attribute is defined as being NOT NULL and does not have a DEFAULT value,
the value that’s set depends on the attribute type; for example, integer attributes are
set to 0 (which causes an auto_increment attribute to be populated with a new identi-
fier, as discussed next) and strings to the empty string. However, rather than worry
about what happens, we recommend that you define a DEFAULT value for any
attribute that you don’t always want to list in an INSERT statement. Even if you want
NULL to be inserted when nothing is provided, you can define it as the DEFAULT.

Inserting, Updating, and Deleting Data | 149

Inserting NULL into a TIMESTAMP (or any date or time type) attribute stores the current
date and time. Inserting O into a TIMESTAMP attribute doesn’t have the same effect as
inserting NULL, because O is a valid date and time combination.

Auto-increment

MySQL provides a non-standard SQL auto_increment modifier that makes manage-
ment of primary keys easy; most other database servers provide a similar non-stan-
dard feature. The goal of using auto_increment is to make sure that each row in your
table has a unique primary key so that you can refer to it in other tables; as dis-
cussed previously, this is a common requirement in databases.

The following is a simple table definition that uses the auto_increment feature to cre-
ate a unique value for the primary key:
CREATE TABLE names (
id smallint(4) NOT NULL auto_increment,
name varchar(20),
PRIMARY KEY (id)
)s

You can insert data into this table by setting only the name attribute:
INSERT INTO names SET name = "Bob";

In this example, the id is set to the next available identifier because the default value
of an integer attribute is 0 and this invokes the auto_increment feature.

In general, when you insert NULL (or zero) as the next value for an attribute with the
auto_increment modifier, the value that is stored is the maximum value + 1. For
example, if there are already 10 rows in the names table with id values of 1 to 10,
inserting a row with NULL as the id (or not providing an id and invoking the default
behavior) creates a row with an id value of 11.

The auto_increment modifier is a useful feature when you want to insert data with a
unique primary key, but don’t want to have to read the data first to determine the
next available value to use. As we show you later in Chapter 8, this also helps avoid
concurrency problems (and, therefore, the need for locking) when several users are
using the same database. The disadvantage is that it’s a proprietary MySQL feature.
However, we also show you how to develop a generic approach to managing identifi-
ers in Chapter 9 and we also show you how it’s done with PHP’s PEAR DB.

Only one attribute in a table can have the auto_increment modifier.

The result of an auto_increment modifier can be checked with the MySQL-specific
function last_insert_id(). For the previous example, you can check which id was cre-
ated with the statement:

SELECT last_insert id();

This statement reports:

150 | Chapter5: SQLand MySQL

1 row in set (0.04 sec)

You can see that the new row has id=11. To check an identifier value, the function
should be called immediately after inserting the new row.

Deleting Data

The DELETE statement removes data from tables. For example, the following deletes
all data in the customer table but doesn’t remove the table:

DELETE FROM customer;

A DELETE statement with a WHERE clause can remove specific rows; WHERE clauses are
frequently used in querying, and they are explained later in the section “Querying
with SQL SELECT.” Consider a simple example:

DELETE FROM customer WHERE cust id = 1;
This deletes the customer with a cust_id value of 1. Consider another example:
DELETE FROM customer WHERE surname = 'Smith';

This removes all rows for customers with a surname value of Smith.

Updating Data
Data can be updated using a similar syntax to the INSERT statement. Consider an
example:

UPDATE customer SET state = upper(state);

This replaces the string values of all state attributes with the same string in upper-
case. The function upper() is one of many MySQL functions discussed in Chapter 15.

You can update more than one attribute in a statement. For example, to set both the
state and city to uppercase, use:

UPDATE customer SET state = upper(state), city = upper(city);

The UPDATE statement is also often used with the WHERE clause. For example:
UPDATE customer SET surname = 'Smith' WHERE cust id = 7;

This updates the surname attribute of customer #7. Consider a second example:
UPDATE customer SET zipcode = '3001" WHERE city = 'Melbourne’;

This updates the zipcode of all rows with a city value Melbourne.

After an UPDATE is completed, MySQL returns the number of rows that were changed.
If MySQL finds that a value doesn’t need to be changed (because it’s already set to

Inserting, Updating, and Deleting Data | 151

the value you want to change it to), it isn’t updated and isn’t included in the count
that’s returned.

Querying with SQL SELECT

The SELECT statement is used to query and retrieve one or more rows from a data-
base. We introduce it in this section, and then show you the WHERE clause for select-
ing data that matches a condition. The section concludes with an introduction to the
more advanced features of SELECT statements and a short case study.

Basic Querying
Consider an example SELECT statement:
SELECT surname, firstname FROM customer;

This outputs the values of the attributes surname and firstname from all rows in the
customer table. Assuming we previously inserted four rows when we created the
winestore database, the output from the MySQL command interpreter is:

EREEEEEEE EREEEEEEE +
| surname | firstname |
e e +
| Marzalla | Dimitria |
| LaTrobe | Anthony |
| Fong | Nicholas |
| Stribling | James |
Hmmmmmm e Hmmmmmm e +
4 rows in set (0.04 sec)

Any attributes of a table may be listed in a SELECT statement by separating them with
a comma. If all attributes are required, the shortcut of an asterisk character (*) can be
used. Consider the statement:

SELECT * FROM region;

This outputs all the data from the table region:

ALl |
Goulburn Valley |
Rutherglen

Coonawarra

Upper Hunter Valley |
Lower Hunter Valley |
Barossa Valley |
Riverland

Margaret River |
Swan Valley |
4o R R e TP +
10 rows in set (0.01 sec)

O O~y OV B W N

=
o

152 | Chapter5: SQLand MySQL

SELECT statements can also output data that isn’t from a database. Consider the fol-
lowing example:

SELECT curtime();

This example runs a function that displays the current time:

1 row in set (0.02 sec)

The SELECT statement can even be used as a simple calculator, using the MySQL
mathematical functions described in Chapter 15:

SELECT pi()*(4*4);
This outputs:

1 row in set (0.01 sec)

WHERE Clauses

A WHERE clause is used as part of most SELECT queries to limit the rows that are
retrieved to those that match a condition.

Consider this grape-growing region table containing the details of ten regions:

mysql> SELECT * from region;

Hmmm e Hmmm e +
| region id | region_name |
----------- Hmmm ey
| ALl

| Goulburn Valley |
| Rutherglen

| Coonawarra

| Upper Hunter Valley |
| Lower Hunter Valley |
| Barossa Valley |
| Riverland |
| Margaret River |
| Swan Valley |
----------- oy
10 rows in set (0.09 sec)

O W oo~NOUL B WN K

=

+
\
\
\
\
\
\
\
\
\
\
+

To show only the first three regions, you can type:

SELECT * FROM region WHERE region id <= 3;

Querying with SQLSELECT | 153

This outputs all attributes for the first three rows:

EREEEEEEE E EERCEEEEEEEEEE +
| region id | region_name \
Hmmm e Hmmm e +
\ 1| All

| 2 | Goulburn Valley |
\ 3 | Rutherglen \
EREEEEEEE E EERCEEEEEEEEEE +
3 rows in set (0.03 sec)

You can combine the attribute and row restrictions and select only the region name
attribute for the first three regions:

mysql> SELECT region_name FROM region WHERE region_id <= 3;

e +
| region name \
Hmm o +
| All

| Goulburn Valley |
| Rutherglen \
e +

3 rows in set (0.01 sec)

The SQL Boolean operators AND and OR have the same function as the PHP 8& and | |
operators introduced in Chapter 2. These can be used to develop more complex
WHERE clauses (and these can be combined with the MySQL functions described in
Chapter 15). Consider an example query:

SELECT * FROM customer WHERE surname='Marzalla' AND firstname='Dimitria‘;

This retrieves rows that match both criteria, that is, those customers with a surname
Marzalla and a firstname Dimitria. In this example, you need to be careful to type
the strings 'Marzalla' and 'Dimitria’ using the correct case because string values are
case sensitive.

Consider a more complex example:

SELECT cust_id FROM customer
WHERE (surname='Marzalla' AND firstname LIKE 'M%') OR
birth date='1980-07-14";
This finds rows with either the surname Marzalla and a firstname beginning with M,
or customers who were born on 14 July 1980; the LIKE operator is discussed in more
detail in Chapter 15. The OR operator isn’t exclusive, so a row can contain a birth
date of 14 July 1980, a surname of Marzalla, and a firstname beginning with M. This
query, when run on the winestore database, returns:

Frmmmmmee +
| cust_id |
oo +
\ 440 |
\ 493 |
oo +

2 rows in set (0.01 sec)

154 | Chapter5: SQLand MySQL

SELECT queries are often sophisticated and a long WHERE clause may include many AND
and OR operators. More complex examples of queries are shown later in this chapter.
As discussed previously, the WHERE clause is also a common component of UPDATE and
DELETE statements.

Sorting and Grouping Output

Listing attributes in the SELECT statement and using WHERE allows you to decide what
rows and columns in a table are returned from a query. However, you might also
want to sort the data after it’s returned, or you might want to group it together
beforehand so that you can count the number of rows with different values, find a
minimum or maximum value, or sum a numeric field. This section shows you how
to pre- and post-process your data.

ORDER BY

The ORDER BY clause sorts the data after the query has been evaluated. Consider an
example:

SELECT surname, firstname FROM customer

WHERE city = 'Portsea’ and firstname = 'James' ORDER by surname;

This query finds all customers who live in Portsea and who have the first name
James. It then presents the results sorted alphabetically by ascending surname:

B REEEEE B REEEEE +

| surname | firstname |

R EREEEEEE R EREEEEEE +

| Leramonth | James \

| Mockridge | James |

| Ritterman | James |

EREEEEEEE EREEEEEEE +
3 rows in set (0.00 sec)

Sorting can be on multiple attributes. For example:

SELECT surname, firstname, initial FROM customer
WHERE city = 'Coonawarra' OR city = 'Longwood'
ORDER BY surname, firstname, initial;
This presents a list of customers who live in Coonawarra or Longwood, sorted first
by ascending surname, then (for those customers with the same surname) by
firstname, and (for those customers with the same surname and first name), by
initial. The output for the winestore customer table is:

oo Hmmmmm e Hmmmmm e +
| surname | firstname | initial |
Hmmmmm e men Hmmm e Hmmmmmmmem +
| Archibald | Belinda | Q |
| Chester | Marie 'S |
| Dalion | Marie | C |
| Eggelston | Martin | E |

Querying with SQL SELECT | 155

| Florenini | Melinda | O |
| Holdenson | Jasmine | F

| Mellaseca | Craig |y |
| Mockridge | Dimitria | I |
| Morfooney | Chris | K |
| Nancarral | Samantha | W |
| Oaton | Joel | v |
| Oaton | Rochelle | F |
| Patton | Joel | Z |
| Patton | Penelope | E |
| Patton | Samantha |

| Rosenthal | Chris | A |
| Tonkin | Michelle | Z |
| Tonnibrook | Belinda | T |
Hmmm e men Hmmm e Hmmmmmmnen +

18 rows in set (0.00 sec)

By default, the ORDER BY clause sorts in ascending order, or ASC. To sort in reverse or
descending order, DESC can be used. Consider an example:

SELECT * FROM customer WHERE city='Melbourne' ORDER BY surname DESC;

GROUP BY

The GROUP BY clause is different from ORDER BY because it doesn’t sort the data for out-
put. Instead, it sorts the data early in the query process, for the purpose of grouping
or aggregation. Grouping data using a sort is the easiest way to discover properties
such as maximums, minimums, averages, and counts of values.

Consider an example:
SELECT city, COUNT(*) FROM customer GROUP BY city;

This query first sorts the rows in the customer table by city and groups the rows with
matching values together. The output of the query consists of two columns. The first
is a sorted list of unique cities. The second shows, for each city, the COUNT of the
number of customers who live in that city. The number of rows that are output is
equal to the number of different city values in the customer table, and the effect of
COUNT(*) is to count the number of rows per group.

Here are the first few lines output by the query:

O EEECEEEEEE Hmmm e +
| city | COUNT(*) |
Hmmmmm e e +
| Alexandra | 14 |
| Armidale | 7
| Athlone | 9 |
| Bauple | 6 |
| Belmont | 11

| Bentley | 10 |
| Berala \ 9 |
| Broadmeadows | 11 |

156 | Chapter5: SQLand MySQL

So, for example, there are 14 customers who live in Alexandra, that is, 14 rows in the
customer table are grouped together because they have a city value of Alexandra.

The GROUP BY clause can find different properties of the aggregated rows. Here’s an
example:
SELECT city, MIN(birth date) FROM customer GROUP BY city;

This query first groups the rows by city and then shows the oldest customer in each
city. The first few rows of the output are as follows:

E EEECEEEEEEEE EECEEEEEEEEEE +

| city | MIN(birth date) |

R EEEEEE R Hommm oo +

| Alexandra | 1938-04-01 |

| Armidale | 1943-04-04 |

| Athlone | 1943-04-04 |

| Bauple | 1922-11-26 |

A w
< The GROUP BY clause should be used only when the query is designed to
.‘s‘ . find a characteristic of a group of rows, not the details of individual

t ek rows.

There are several functions that can be used in aggregation with the GROUP BY clause.
Five particularly useful functions are:
AVG()

Finds the average value of a numeric attribute in a set
MIN()

Finds a minimum value of a string or numeric attribute in a set
MAX()

Finds a maximum value of a string or numeric attribute in a set
SUM()

Finds the sum total of a numeric attribute
COUNTY()

Counts the number of rows in a set

The SQL standard places a constraint on the GROUP BY clause that MySQL doesn’t
enforce. In the standard, all attributes that are selected (those that are listed immedi-
ately after the SELECT statement) must appear in the GROUP BY clause. Most examples
in this chapter don’t meet this unnecessary constraint.

HAVING

The HAVING clause permits conditional aggregation of data into groups. For example,
consider the following query:

SELECT city, count(*), min(birth date) FROM customer
GROUP BY city HAVING count(*) > 10;

Querying with SQL SELECT | 157

The query groups rows by city, but only for cities that have more than 10 resident
customers. For those groups, the city, count of customers, and earliest birth date of a
customer in that city is output. Cities with less than 10 customers are omitted from
the result set. The first few rows of the output are as follows:

Hmmm e e mmm e T EEE R +
| city | count(*) | min(birth date) |
Hmmmmmm e Hmmmmmmmee e mmm e +
| Alexandra \ 14 | 1938-04-01 | |
| Belmont | 11 | 1938-04-01 |
| Broadmeadows | 11 | 1955-10-13 |
| Doveton | 13 | 1943-04-04 |
| Eleker | 11 | 1938-04-01 |
| Gray \ 12 | 1943-04-04 |

The HAVING clause must contain an attribute or expression (such as a function or an
alias) from the SELECT clause; in this example, count(*) is listed after the SELECT and
is used in the HAVING condition.

The HAVING clause should be used exclusively with the GROUP BY clause. It is slow and
should never be used instead of a WHERE clause. For example, don’t do this:

SELECT cust_id, surname FROM customer HAVING surname = "Leramonth";
Do this instead:
SELECT cust_id FROM customer WHERE surname = "Leramonth";

Combining clauses

You can combine ORDER BY, GROUP BY, HAVING, and WHERE. When all four are used, they
must appear in the order WHERE, then GROUP BY, then HAVING, and then ORDER BY. This is
intuitive because the WHERE clause picks the rows from the table, then GROUP BY orga-
nizes the rows into sets, then HAVING picks the sets that match a condition, and then
the data is sorted by the ORDER BY condition just before it’s output.

Consider an example. Suppose we want to find the number of customers with the
same name who live in each city in the state of Victoria, where the same name is
defined as the same first name and surname. For example, this might determine that
there are five John Smiths who live in Inverloch and three Tuong Nguyens in Carl-
ton. Here’s the query:
SELECT city, surname, firstname, count(*) FROM customer

WHERE state = 'VIC'

GROUP BY surname, firstname, city HAVING count(*) > 2

ORDER BY city;
The query first uses the WHERE clause to pick the rows of customers that live in the
state of Victoria. The rows are then grouped together into sets, where the grouping
condition is that the customer surname and firstname are the same. Then, only those
sets that have more than one customer with the same name are kept by the HAVING
clause; this gets rid of unique names. Last, the ORDER BY clause sorts the customers by

158 | Chapter5: SQLand MySQL

their city, and the city, first name, surname, and count of the number of customers is
output. Here is the output from the winestore customer table:

O EEECEEEEEE EREEEEEEE EREEEEEEE Hmmm e +
| city | surname | firstname | count(*) |
Hmmmmm e Hmmmmm e Hmmmmm e e +
| Broadmeadows | Mellaseca | Anthony | 2|
| Eleker | Leramonth | Harry | 2
| Kalimna | Galti | Nicholas | 2|
| Lucknow | Mellili | Derryn \ 2
| McLaren | Chester | Betty | 2
Hmmmmm e Hmmmmm e Hmmmmm e e +

5 rows in set (0.00 sec)

The output shows, for example, that there are two Betty Chesters who live in
McLaren city in the state of Victoria.

The GROUP BY clause sorts before it groups the rows into sets. Therefore, you don’t
need to use ORDER BY if you want the data to be output in the sort order used by the
GROUP BY. For example, you don’t need to do this:

SELECT * FROM customer GROUP BY surname ORDER BY surname;
If you leave out the ORDER BY clause, you’ll get the same output:
SELECT * FROM customer GROUP BY surname;

However, in practice, it doesn’t really matter: the MySQL query optimizer will ignore
the ORDER BY clause if it’s unnecessary. We discuss the query optimizer in Chapter 15.

DISTINCT

Suppose we want to find out which different cities our customers live in. The follow-
ing query shows the cities for all of the customers:

SELECT city FROM customer;

The problem is that a city name appears more than once if more than one customer
lives in that city. What we really want is a list of unique cities that the customers live in.

The DISTINCT clause presents only one example of each identical row from a query.
We can use it to find out the unique cities the customers live in:

SELECT DISTINCT city FROM customer;
This shows one example of each different city in the customer table.
This example has exactly the same result as:

SELECT city FROM customer GROUP BY city;

The DISTINCT clause is often slow to run, much like the GROUP BY and HAVING clauses.
We discuss how indexes and query optimization can speed queries in Chapter 15.

Querying with SQLSELECT | 159

Limiting Output in MySQL

The LIMIT operator is MySQL-specific and is used to control the size of the output.
For example, the following query returns only the first five rows from the customer
table:

SELECT * FROM customer LIMIT 5;
This saves query evaluation time and reduces the size of the result set that’s buffered
in memory by MySQL. It’s particularly useful in a web database application where
one page of results is presented from a large table.
You can also specify which row to begin at, and then how many rows you want:
SELECT * FROM customer LIMIT 100,5;
This returns the 100th to 104th rows from the customer table.
Row numbering begins at row zero. For example, if you want the first five rows of
the customer table, use:
SELECT * FROM customer LIMIT 0,5;
The following statement produces five rows beginning with row two:
SELECT * FROM customer LIMIT 1,5;

Be careful: forgetting to count from zero is a common mistake.

If you want all rows after a particular row, the second parameter can be set to -1:
SELECT * FROM customer LIMIT 600,-1;

For the winestore customer table, this returns 50 rows with cust_id values of 601 to
650.

The LIMIT operator is included at the end of an SQL statement, after the optional
WHERE, GROUP BY, HAVING, and ORDER BY clauses.

Join Queries

You’ll often want to output data that’s based on relationships between two or more
tables. For example, in the winestore database, you might want to know which cus-
tomers have placed orders, which customers live in Australia, or how many bottles of
wine Lucy Williams has bought. These are examples of join queries, queries that
match rows between tables based (usually) on primary key values. In SQL, a join
query matches rows from two or more tables based on a condition in a WHERE clause
and outputs only those rows that meet the condition.

As part of the process of converting the winestore entity-relationship model to SQL
statements, we’ve included the attributes required in any practical join condition. To
understand which tables can be joined in the winestore database, and how the joins
are processed, it’s helpful to have a copy of the ER model at hand as you work your
way through this section.

160 | Chapter5: SQLand MySQL

Beware of the Cartesian Product

Suppose you want to find out the names of the wineries in the winestore database
and, for each winery, the name of the region that it’s located in. To do this, you
examine the ER model and discover that the region and winery tables are related, and
that they both contain attributes that you need in the answer to your query. Specifi-
cally, you need to retrieve the winery name attribute from the winery table and the
region name attribute from the region table, and you need to join the two tables
together to find the result.

Consider this query, which we might intuitively, but wrongly, use to find all the win-
eries in a region:

SELECT winery_name, region_name FROM winery, region;

This query produces (in part) the following results:

e Hmmm e +
| winery name | region_name |
mmm e e fmmmmmmmm e +
| Durham and Sons Premium Wines | Coonawarra |
| Durham Brook Group | Coonawarra |
| Durham Creek | Coonawarra |
| Durham Estates | Coonawarra |
| Durham Hill Vineyard | Coonawarra |

The impression here is that, for example, Durham Creek winery is located in the
Coonawarra region. This might not be the case. Why? First, you can use the tech-
niques covered so far in this chapter to check which region the Durham Creek win-
ery is located in:

SELECT region_id FROM winery WHERE winery name='Durham Creek';

The result is:

Hmmm e +
| region_id

Hmmm e +
| 9 |
Hmmmmmmmeens +

1 row in set (0.01 sec)
Now, you can query the region table to find the name of the region using:

mysql> SELECT region_name FROM region WHERE region_id=9;

o +
| region_name |
Hmm e +
| Margaret River |
fmm o +

1 row in set (0.00 sec)
So, Durham Creek winery isn’t in Coonawarra at all!

What happened in the first attempt at a join query? The technical answer is that you
just evaluated a Cartesian product: you produced as output all the possible combina-

Join Queries | 161

tions of wineries and regions, most of which don’t make any sense. These odd results
can be seen if you add an ORDER BY clause to the original query:

SELECT winery _name, region_name FROM winery, region
ORDER BY winery name, region_name;

Recall that the ORDER BY clause sorts the results after the query has been evaluated
and that it has no effect on which rows are returned from the query. Here is the first
part of the output:

o o m e eceleio_
| winery name

¥
|
¥
Anderson and Sons Premium Wines | All
Anderson and Sons Premium Wines | Barossa Valley
Anderson and Sons Premium Wines | Coonawarra
| Goulburn Valley
|
|
|
|
|
|

|

|

|

Anderson and Sons Premium Wines |
Lower Hunter Valley |
|

|

|

|

|

\
\
|
\
| Anderson and Sons Premium Wines
| Anderson and Sons Premium Wines
| Anderson and Sons Premium Wines
| Anderson and Sons Premium Wines
| Anderson and Sons Premium Wines
| Anderson and Sons Premium Wines

Margaret River

Riverland

Rutherglen

Swan Valley

Upper Hunter Valley

The query produces all possible combinations of the 10 region names and 300 winer-
ies in the sample database! In fact, the number of rows output is the total number of
rows in the first table multiplied by the total rows in the second table. In this case,

the output is 10 x 300 = 3,000 rows.

Elementary Natural Joins

A cartesian product isn’t the join we want. Instead, we want to limit the results to
only the sensible rows, where the winery is actually located in the region. To do this,
you need to understand how the relationship between the region and winery tables is
maintained. If you examine the ER model, you’ll see that many wineries are located
in a region.

In the database tables, the relationship between the winery and region tables is main-
tained using the primary key of the region table, the attribute region_id that’s also an
attribute in the winery table. To understand this, consider the first three rows from
the winery table:

mysql> SELECT * FROM winery LIMIT 3;

e e e +
| winery id | winery name | region_id
Hmmmmmm e Hmmm e Hmmmmmm e +
\ 1 | Hanshaw Estates Winery | 2
| 2 | De Morton and Sons Wines | 5
| 3 | Jones's Premium Wines | 3
e e e +

3 rows in set (0.04 sec)

162 | Chapter5: SQLand MySQL

The first winery has a region_id of 2, the second a region id of 5, and the third a
region_id of 3. Consider now the first five rows of the region table:

mysql> SELECT * FROM region LIMIT 5;

oo L E R E R +
| region id | region_name |
R EREEEE R nECEE e TR +
\ 1] All

| 2 | Goulburn Valley |
\ 3 | Rutherglen

| 4 | Coonawarra

\ 5 | Upper Hunter Valley |
R EREEEE R nECEE e TR +

5 rows in set (0.04 sec)

If you match up each winery’s region_id value with a region’s region_id value, you
can determine the relationship and answer the query. For example, you can now see
that the first winery (Hanshaw Estates Winery) is located in region 2, the Goulburn
Valley.

From a querying perspective, we want to output winery name and region_name values
where the region_id in the winery table matches the corresponding region_id in the
region table. This is a natural join.

You can perform a natural join on the winery and region tables using:

SELECT winery name, region_name FROM winery NATURAL JOIN region
ORDER BY winery name;

The query produces (in part) the following sensible results:

Anderson Daze Vineyard
Anderson Daze Wines
Anderson Ridge Wines

Margaret River
Barossa Valley
Lower Hunter Valley |

| Anderson and Sons Premium Wines | Coonawarra |
| Anderson and Sons Wines Coonawarra |
| Anderson Brothers Group Rutherglen

| Anderson Creek Group Riverland

| Anderson Daze Group Rutherglen |
| |
|

A natural join query relies on the DBMS matching attributes with the same name
across the two tables. In this example, MySQL discovers that there’s a region_id
attribute in the winery and region tables, and it only outputs combinations where the
region id in both tables is the same.

You can write a join query that explicitly specifies which attributes should be
matched to produce the correct result. The following query uses a WHERE clause to
produce identical results to our previous example:
SELECT winery name, region_name FROM winery, region
WHERE winery.region id = region.region id
ORDER BY winery name;

Join Queries | 163

We recommend writing out your joins so that they include the join condition in the
WHERE clause. This is safer and clearer than relying on the NATURAL JOIN operator to
discover common attribute names across tables and allowing the DBMS to figure out
how the join is done.

Several features are shown in this second example:

* The FROM clause contains the two table names winery and region, and so retrieves
rows from both tables.

* Attributes in the WHERE clause are specified using both the table name and
attribute name, separated by a period. This is useful because the same attribute
name is often used in different tables, and the query can’t figure out which table
is meant unless you include it. When an attribute name occurs in only one table,
you can omit the table name.

* In this example, region_id in the region table and region_id in the winery table
have to be specified unambiguously as region.region_id and winery.region_id.
In contrast, winery name and region_name don’t need the table name because they
occur only in the winery and region tables respectively.

The use of both the table and attribute name can also be used for clarity in que-
ries, even if it isn’t required. So, for example, you could write winery.winery
name in the example query. It can also be used in all parts of the query, not just
the WHERE clause.

* The WHERE clause includes a join clause that matches rows between the multiple
tables. In this example, the output is reduced to those rows where wineries and
regions have matching region_id attributes, resulting in a list of all wineries and
which region they are located in. This is the key to joining two or more tables to
produce sensible results.

Examples

A join can be used to find lots of useful information from the winestore database.
Suppose we want to find the names of wineries and the wines they make. Again, after
examining the ER model, you’ll see that you need to join together the related wine
and winery tables to get the required names. Here’s the query you’d need to write to
get the correct result:
SELECT winery name, wine_name FROM winery, wine
WHERE wine.winery id = winery.winery id;

This query joins the winery and wine tables by matching the winery id attributes.
The result is the names and wineries of the 1,048 wines stocked at the winestore.

You can extend this query to produce a list of wines made by a specific winery or
group of wineries. For example, to find all wines made by wineries with a name
beginning with Borg, use:

164 | Chapter5: SQLand MySQL

SELECT winery_name, wine_name FROM winery, wine
WHERE wine.winery id = winery.winery id
AND winery.winery name LIKE 'Borgk';

The LIKE clause is discussed in detail in Chapter 15.
Here are two more example join queries:

* To find the name of the region that the Ryan Ridge Winery is situated in:

SELECT region_name FROM region, winery
WHERE winery.region_id=region.region_id
AND winery name='Ryan Ridge Winery';
* To find which wineries make Tonnibrook wines:
SELECT winery name FROM winery, wine

WHERE wine.winery id=winery.winery id
AND wine_name='Tonnibrook';

Using DISTINCT in joins
The next example uses the DISTINCT operator to find wines that cost less than $10:
SELECT DISTINCT wine.wine id FROM wine, inventory

WHERE wine.wine_id=inventory.wine_id AND cost<10;
Wines can have more than one inventory row, and the DISTINCT operator shows each
wine_id once by removing any duplicates.

Here are two examples that use DISTINCT to show only one matching answer:

* To find which countries the customers live in:

SELECT DISTINCT country FROM customer, countries
WHERE customer.country id = countries.country id;

* To find which customers have ordered wines:

SELECT DISTINCT surname,firstname FROM customer,orders
WHERE customer.cust_id = orders.cust id
ORDER BY surname,firstname;

Joins with More than Two Tables

Queries can join more than two tables. Suppose you want to find the details of the
wine purchases made by a customer, including the customer’s details, the dates they
made an order, and the quantity and price of the items purchased. You examine the
ER model, and see that the customer table that contains the customer information is
related to the orders table that contains the date, and the orders table is related to the
items table that contains the quantities and prices. So, to get the information you
need, you have to join all three tables together.

By examining the database structure or the CREATE TABLE statements, you can see that
the cust_id attribute can be used to join together the customer and the orders table.
Joining the orders table and items table is a little trickier: the primary key of the

Join Queries | 165

orders table isn’t just the order id, it’s both the cust_id and the order id. So, for
example there are many rows with an order_id of 1, but what makes a row unique is
the combination of the cust id for a customer and the order id. These two
attributes together are used to join the orders and items tables.

Suppose now that we want run this query for customer #2. Here’s the query you’d
use:
SELECT * FROM customer, orders, items
WHERE customer.cust id = orders.cust _id AND

orders.order id = items.order id AND
orders.cust _id = items.cust id AND customer.cust id = 2;

The WHERE clause contains the join condition between the three tables, customer,
orders, and items, and the rows selected are those in which the cust_id is the same
for all three tables, the cust_id is 2, and the order id is the same in the orders and
items tables. The example illustrates how frequently the Boolean operators AND and
OR are used.

If you remove the cust_id=2 clause, the query outputs all items from all orders by all
customers. This is a large result set, but still a sensible one that is much smaller than
the cartesian product!

Here are two more examples that join three tables:

* To find which wines are made in the Margaret River region:

SELECT wine_id FROM wine, winery, region
WHERE wine.winery_ id=winery.winery id AND
winery.region_id=region.region_id AND
region.region name='Margaret River';

* To find which region contains the winery that makes wine #28:

SELECT region_name FROM wine, winery, region
WHERE wine.winery id=winery.winery id AND
winery.region_id=region.region_id AND
wine.wine_id=28;

Extending to four or more tables generalizes the approach further. To find the details
of customers who have purchased wines from the Ryan Estates Group winery, use:

SELECT DISTINCT customer.cust id, surname, firstname
FROM customer, winery, wine, items
WHERE customer.cust_id=items.cust_id AND
items.wine_id=wine.wine_id AND
wine.winery id=winery.winery id AND
winery.winery_name='Ryan Estates Group'
ORDER BY surname, firstname;

This query is the most complex so far and has four parts. The easiest way to under-
stand a query is usually to start at the end of the WHERE clause and work toward the
SELECT clause:

166 | Chapter5: SQLand MySQL

1. The WHERE clause restricts the winery rows to the Ryan Estates Group (which, in
this case, only matches one winery).

2. The resultant winery row is joined with the wine table to find all wines made by
the Ryan Estates Group.

3. The wines made by Ryan Estates Group are joined with the items that have been
purchased by joining to the items table.

4. The purchased wines are then joined with the customer rows to find the purchas-
ers. You can leave out the orders table, because the items table contains a cust_id
for the join; if you need the order number or credit card number (or another
orders attribute), the orders table needs to be included in the query.

5. The result is the details of customers who have purchased Ryan Estates Group
wines. The DISTINCT clause is used to show each customer only once. ORDER BY
sorts the customer rows into telephone directory order.

Designing a query like this is a step-by-step process. We began by testing a query to
find the winery id of wineries with the name Ryan Estates Group. Then, after test-
ing the query and checking the result, we progressively added additional tables to the
FROM clause and the join conditions. Finally, we added the ORDER BY clause.

The next example uses three tables. It queries the complex many-to-many relation-
ship that exists between the wines and grape_variety tables via the wine_variety table.
A wine can have one or more grape varieties and these are listed in a specific order (e.
g., Cabernet, then Sauvignon). From the other perspective, a grape variety such as
Cabernet can be in hundreds of different wines. The many-to-many relationship is
managed by creating an intermediate table between grape_variety and wine called
wine_variety. The id attribute value stored in that table represents the order in which
the grape varieties should appear for the wine. You can find a longer discussion of
how these tables were designed and how they’re used in Appendix E.

Here is the example query that joins the three tables to find what grape varieties are
in wine #1004:
SELECT variety FROM grape variety, wine_variety, wine
WHERE wine.wine id=wine variety.wine id AND
wine_variety.variety id=grape_variety.variety id AND
wine.wine_id=1004
ORDER BY wine variety.id;

The result of the query is:

| Cabernet |
| Sauvignon

2 rows in set (0.00 sec)

Join Queries | 167

The join condition is the same as any three-table query. The only significant differ-
ence is the ORDER BY clause that presents the results in id order (the first listed variety
was stored with ID=1, the second ID=2, and so on).

Case Study: Adding a New Wine

In this section, we show you an example that combines some of the statements we’ve
discussed in this chapter, and shows you the basics of writing data to databases.

In this example, let’s insert a new wine into the database using the MySQL com-
mand-line interpreter. Let’s suppose that 24 bottles of a new wine, a Curry Cabernet
Merlot 1996 made by Rowley Brook Winery, have arrived, and you wish to add a
row to the database for the new wine. This new wine costs $14.95 per bottle.

The addition has several steps, the first of which is to find out the next available
wine_id. You need to do this because we’re not using the MySQL-proprietary auto_
increment feature in the winestore database. Here’s the query:

SELECT max(wine_id) FROM wine;

This reports:

Hommmmmm e +
| max(wine_id) |
Hmmmmmmmmmees +
| 1048 |
e +

1 row in set (0.00 sec)

Now, we can use an INSERT INTO statement to create the basic row for the wine in the
wine table:

INSERT INTO wine SET wine id=1049, wine name='Curry Hill', year=1996,
description="A beautiful mature wine. Ideal with red meat.';

This creates a new row and sets the basic attributes. The wine_id is set to the 1048 +
1 = 1049. The remaining attributes (the wine_type identifier, the winery id identifier,
and the varieties in the wine_variety table) require further querying and then subse-
quent updates.

The second step is to set the winery id for the new wine. We need to search for the
Rowley Brook Winery winery to identify the winery_id:

SELECT winery id FROM winery WHERE winery name='Rowley Brook Winery';

The result returned is:

R EREEEEEE +
| winery id |
mmm e +
\ 298 |
B REEEEE +

1 row in set (0.00 sec)

168 | Chapter5: SQLand MySQL

We can now update the new wine row to set the winery id=298:
UPDATE wine SET winery id = 298 WHERE wine_id = 1049;

The third step is similar to the second, and is to set the wine_type identifier in the
wine table. You can discover the wine_type_id for a Red wine using:

SELECT wine type id FROM wine type WHERE wine type = "Red";

This reports that:

Hmmmmm oo +
| wine_type id |
Hmmm oo +
\ 6 |
Hmmm e +

1 row in set (0.01 sec)
Now, you can set the identifier in the wine table:
UPDATE wine SET wine type = 6 WHERE wine id = 1049;

The fourth step is to set the variety information for the new wine. We need the
variety id values for Cabernet and Merlot. These can be found with a simple query:

SELECT * FROM grape variety;

In part, the following results are produced:

+
|

+

| | Riesling |
| | Chardonnay |
| | Sauvignon |
| | Blanc |
\ | Semillon |
| | Pinot |
| | Gris |
\ | Verdelho |
| | Grenache |
| | Noir |
| | Cabernet |
| | Shiraz |
| | Merlot |

13
Cabernet has variety id=11 and Merlot variety id=13. We can now insert two rows
into the wine_variety table. Because Cabernet is the first variety, set its ID=1, and ID=2
for Merlot:

INSERT INTO wine_variety SET wine_id=1049, variety id=11, id=1;

INSERT INTO wine variety SET wine id=1049, variety id=13, id=2;
The final step is to insert the first inventory row into the inventory table for this wine.
There are 24 bottles, with a per-bottle cost of $14.95:

INSERT INTO inventory SET wine_id=1049, inventory id=1, on_hand=24,
cost=14.95, date_added="04/03/01";

Case Study: Adding aNew Wine | 169

We've finished inserting the wine into the database. Now, to conclude, let’s retrieve
the details of the wine to make sure everything is as it should be. We’ll retrieve the
wine name, its year, the winery, the varieties, the wine type, and its cost. Here’s the

query:

SELECT year, wine name, winery name, variety, wine type.wine type, cost
FROM wine, winery, wine variety, grape variety, wine_type, inventory
WHERE wine.wine id = 1049 AND
wine.wine_id = wine_variety.wine_id AND
wine variety.variety id = grape variety.variety id AND
wine.wine type = wine type.wine type id AND
wine.winery id = winery.winery id AND
wine.wine_id = inventory.wine_ id
ORDER BY wine variety.id;

The WHERE clause looks complicated, but it just joins together all of the tables in the
FROM clause by matching up the identifier attributes and specifies we want for wine
#1049. Here’s the output:

Hmmmoe- EEEEEEEEE tom e Hmmmmmmmme tommmmm e tommme- +
| year | wine name | winery name | variety | wine_type | cost |
4o Hmmmm e Hom e Hmmmmmmmm e tommm e tommme +
| 1996 | Curry Hill | Rowley Brook Winery | Cabernet | Red | 14.95 |
| 1996 | Curry Hill | Rowley Brook Winery | Merlot | Red | 14.95 |
4o Hmmmm e Hom e Hmmmmmmmm e tommm e tommme +

2 rows in set (0.01 sec)

Two rows are returned because there are two varieties for this wine in the wine_
variety table.

We’ve now covered as much complex querying in SQL as we need for you to develop
most web database applications. You’ll find a discussion of advanced features you can
use in Chapter 15. Beginning in the next chapter, we show you how to include SQL
statements in PHP scripts to automate querying and build web database applications.

170 | Chapter5: SQLand MySQL

CHAPTER 6
Querying Web Databases

This chapter is the first of eight that introduce practical web database application
development. In the first section, we introduce the basics of connecting to the
MySQL server with PHP. We detail the key MySQL functions used to connect, query
databases, and retrieve result sets, and we present the five-step process for dynami-
cally serving data from a database. In the second section, we show you how to drive
the queries by user input from an HTML form and by clicking on hypertext links.

The first section of this chapter introduces you to the following techniques:

* Using the five-step web database querying approach to develop database-driven
queries

* Using the MySQL library functions for querying databases

* Handling MySQL server errors during development

* Using include and require files to modularize database code
After we’ve covered the basics, the second section introduces you to using user data
in the querying process. We show you the following techniques:

* Passing data from a web browser to a web server

* Accessing user data in scripts

* Securing an application

* Querying databases with user data

The final section is a MySQL function reference that explains each library function in
detail.

The focus of this chapter is database server and user interaction, not presentation in
the browser. Presentation is a subject of Chapter 7. Extended examples of querying
that use the techniques of Chapters 6 and 7 can be found in Chapters 16 to 20.

17

Querying a MySQL Database Using PHP

In PHP, library functions are provided for executing SQL statements, as well as for
managing result sets returned from queries, error handling, and controlling how data
is passed from the database server to the PHP engine. We overview these functions
here and show how they can be combined to access the MySQL server.

At the time of writing, PHP4.3 and MySQL 4.0 were the stable releases. The MySQL
library functions that are discussed here work with those versions. The PHP5
MySQL library functions also work with MySQL 4.0.

However, the MySQL functions discussed here do not work with the alpha release of
MySQL 4.1. Instead, a new improved library is being developed for MySQL 4.1, and
it is intended to be part of PHPS5 in addition to the regular library. An introduction to
this library is included as Appendix H.

Opening and Using a Database Connection

In this section, we introduce the basic PHP scripting techniques to query a MySQL
server and produce HTML for display in a web browser.

Connecting to and querying a MySQL server with PHP is a five-step process.
Example 6-1 shows a script that connects to the MySQL server, uses the winestore
database, issues a query to select all the records from the wine table, and reports the
results as pre-formatted HTML text. The example illustrates four of the key func-
tions for connecting to and querying a MySQL database with PHP. Each function is
prefixed with the string mysql_.

Example 6-1. Connecting to a MySQL database with PHP

<!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html401/1loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Wines</title>
</head>
<body>
<pre>
<?php
// (1) Open the database connection
$connection = mysql connect("localhost","fred","shhh");

// (2) Select the winestore database
mysql select db("winestore", $connection);

172 | Chapteré6: Querying Web Databases

Example 6-1. Connecting to a MySQL database with PHP (continued)

2>

// (3) Run the query on the winestore through the connection
$result = mysql query ("SELECT * FROM
wine", $connection);

// (4) While there are still rows in the result set, fetch the current
// row into the array $row
while ($row = mysql fetch array($result, MYSQL NUM))
{
// (5) Print out each element in $row, that is, print the values of
// the attributes
foreach ($row as $attribute)
print "{$attribute} ";

// Print a carriage return to neaten the output
print "\n";

}

</pre>
</body>
</html>

The five steps of querying a database are numbered in the comments in Example 6-1,
and they are as follows:

1. Connect to the server with the MySQL function mysql_connect(). We use three

parameters here: the hostname of the database server, a username, and a pass-
word. Let’s assume here that MySQL is installed on the same server as the script-
ing engine and, therefore, localhost is the hostname. If the servers are on
different machines, you can replace localhost with the domain name of the
machine that hosts the database server.

The function mysql_connect() returns a connection resource that is used later to
work with the server. Many server functions return resources that you pass to
further calls. In most cases, the variable type and value of the resource isn’t
important: the resource is simply stored after it’s created and used as required.
In Step 3, running a query also returns a resource that’s used to access results.

To test this example—and all other examples in this book that connect to the
MySQL server—replace the username fred and the password shhh with those
you selected when MySQL was installed following the instructions in Appen-
dixes A through C. This should be the same username and password you used
throughout Chapter 5.

. Select the database. Once you connect, you can select a database to use through
the connection with the mysql_select_db() function. In this example, we select
the winestore database.

Querying a MySQL Database Using PHP | 173

3.

Run the query on the winestore database using mysql_query(). The function
takes two parameters: the SQL query itself and the server connection resource to
use. The connection resource is the value returned from connecting in the first
step. The function mysql_query() returns a result set resource, a value that can
retrieve the result set from the query in the next step.

. Retrieve a row of results. The function mysql_fetch_array() retrieves one row of

the result set, taking the result set resource from the third step as the first param-
eter. Each row is stored in an array $row, and the attribute values in the array are
extracted in Step 5. The second parameter is a PHP constant that tells the func-
tion to return a numerically accessed array; we explain how array indexing
affects query processing later in this section.

A while loop is used to retrieve rows of database results and, each time the loop
executes, the variable $row is overwritten with a new row of database results.
When there are no more rows to fetch, the function mysql_fetch_array() returns
false and the loop ends.

. Process the attribute values. For each retrieved row, a foreach loop is used with a

print statement to display each of the attribute values in the current row. For the
wine table, there are six attributes in each row: wine_id, wine name, wine type,
year, winery id, and description.

The script prints each row on a line, separating each attribute value with a sin-
gle space character. Each line is terminated with a carriage return using print "\
n” and Steps 4 and 5 are repeated.

The first ten wine rows produced by the script in Example 6-1 are shown in
Example 6-2. The results are shown marked up as HTML.

Example 6-2. Marked-up HTML output from the code shown in Example 6-1

<IDOCTYPE HTML PUBLIC

"-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html401/1loose.dtd">

<html>

<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Wines</title>

</head>

<body><pre>

O~ oYUV B WN R

Archibald Sparkling 1997 1
Pattendon Fortified 1975 1
Lombardi Sweet 1985 2
Tonkin Sparkling 1984 2
Titshall White 1986 2
Serrong Red 1995 2
Mettaxus White 1996 2
Titshall Sweet 1987 3

174

| Chapter6: Querying Web Databases

Example 6-2. Marked-up HTML output from the code shown in Example 6-1 (continued)

9 Serrong Fortified 1981 3
10 Chester White 1999 3

</pre>
</body>
</html>

PHP does programmatically what you have done by hand in Chapter 5 with the
MySQL command line interpreter. The function mysql_connect() performs the
equivalent function to running the interpreter. The mysql_select_db(') function pro-
vides the use database command, and mysql_query() permits an SQL statement to
be executed. The mysql_fetch_array() function manually retrieves a result set that’s
automatically output by the interpreter.

The basic principles and practice of using MySQL with PHP are shown in the four
functions we’ve used. These key functions and all others are described in detail in
“MySQL Function Reference.”

Using mysql_fetch_array()

In our first example, we accessed attributes in order using the foreach loop state-
ment. In many cases, you'll also want to access the attributes in another way, and
this is usually best achieved by using the attribute names themselves. It’s much eas-
ier to remember that you want to show the user the vintage year, the wine’s name,
the varieties, and the price, than to remember you want to show attributes four, two,
six, and one from the SELECT statement. It’s also a much better programming meth-
odology because your code will be independent of the structure of the SQL state-
ment and it’ll be more readable. What’s more, it’s faster to access only the values you
need.

Consider a fragment of PHP that displays information about wineries:

$result = mysql_query("SELECT winery name, phone, fax FROM winery");

while($row = mysql fetch array($result))
{

print "The {$row["winery name"]} winery's fax is {$row["fax"]}".
print "Their phone is {$row["phone"]}.\n";
}
The array $row contains one row of the results, and each of the attributes of the win-
ery table is accessible using its attribute name as the associative key. We’ve used the
curly brace style discussed in Chapter 2 to output variables within a double-quoted
string: you can see its usefulness here!

There are four tricks to using mysql_fetch_array():

Querying a MySQL Database Using PHP | 175

* Table names aren’t used to access values in the array. Even though an attribute
might be referenced as customer.name in the SELECT statement, it must be refer-
enced as $row["name"] in the associative array.

* Because table names are not used to access an array, if two attributes from differ-
ent tables are used in the query and have the same name, only the last-listed
attribute in the SQL statement can be accessed associatively. This is a good rea-
son to design databases so that attribute names are unique across tables, or to
use attribute aliases. We discuss aliases later in “MySQL Function Reference,”
and you’ll find a discussion from a MySQL perspective in Chapter 15.

» Aggregates fetched with mysql_fetch_array() are associatively referenced using
their function name. So, for example, SUM(cost) 1is referenced as
$row["SUM(cost)"].

* In versions of PHP prior to 4.0.5, NULL values are ignored when creating the
returned array. This changes the numbering of the array elements for numeric
access. Even if you’re using a recent version of PHP, this is a good reason to
avoid NULL values by declaring a DEFAULT value for each attribute.

Error Handling of MySQL Database Functions

Database functions can fail. There are several possible classes of failure, ranging from
critical—the server is inaccessible or a fixed parameter is incorrect—to recoverable,
such as a password being entered incorrectly by the user. In this section, we show
you how to detect and handle these errors during code development. Chapter 12 dis-
cusses how to develop a professional error handler that you can use when your appli-
cation is deployed.

PHP has two error-handling functions, mysql_error() and mysql_errno(), for detect-
ing and reporting errors. Example 6-3 shows the script illustrated earlier in
Example 6-1 with additional error handling: it does exactly the same thing, but we’ve
added error handling. In addition, we’ve deliberately included an error so that you
can see what happens when one occurs: the keyword SELECT is misspelled as SELEC.
The error handler is a function, showerror(), that prints a phrase in the format:
Error 1064 : You have an error in your SQL syntax near
'SELEC * FROM wine' at line 1

(Error messages often change between MySQL versions, so the error message might
be worded differently when you run the example on your system.)

The error message shows both the numeric output of mysql_errorno() and the string
output of mysql_error(). The die() function outputs the message and then gracefully
ends the script. Ending the script is often useful—it prevents the PHP engine from
outputting several warnings as consecutive database functions fail; for example, if a
connection can’t be established, the PHP engine will issue a warning, and this will be
followed by warnings as each subsequent database function is attempted and fails.

176 | Chapter6: Querying Web Databases

You should be aware of three consequences of an error, and how each
affects your processing.

First, a function that fails to carry out what you requested normally
returns false. We’ll show you how to check for a false value rou-
tinely so you can catch errors before the program goes too far. How-
ever, some unexpected outcomes, such as a query that returns no
results, don’t count as errors.

Second, after you establish a connection, any function that returns
false also sets an error code. You can retrieve the code through
mysql_errno() and an associated string through mysql_error(). The
mysql_connect() and mysql_pconnect() functions don’t set either the
error number or error string on failure and so must be handled manu-
ally. This custom handling can be implemented using the die() func-
tion call and an appropriate text message, as in Example 6-3.

Third, you may issues queries that return no results. If no data is
returned, a subsequent call to mysql_num_rows() will report no rows
in the result set. Alternatively, a call to mysql_affected_rows() will
report that no rows were modified. These functions are discussed later
in this chapter.

Example 6-3. Querying a database with error handling

<IDOCTYPE HTML PUBLIC

<html>
<head>

"-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html401/loose.dtd">

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Wines</title>

</head>
<body><pre>
<?php

function showerror()

{
}

die("Error

. mysql errno() . " : " . mysql error());

// (1) Open the database connection
if (!($connection = @ mysql connect("localhost","fred","shhh")))
die("Could not connect");

// (2) Select the winestore database
if (1(@ mysql_select db("winestore", $connection)))
showerror();

// (3) Run the query on the winestore through the connection

// NOTE :

'SELECT' is deliberately misspelt to cause an error

if (!($result = @ mysql query ("SELEC * FROM wine", $connection)))
showerror();

// (4) While there are still rows in the result set,
// fetch the current row into the array $row

Querying a MySQL Database Using PHP

177

Example 6-3. Querying a database with error handling (continued)

while ($row = @ mysql fetch array($result, MYSQL NUM))
{

// (5) Print out each element in $row, that is, print the values of
// the attributes
foreach ($row as $attribute)

print "{$attribute} ";

// Print a carriage return to neaten the output
print "\n";
}
>
</pre>
</body>
</html>

MySQL functions should be used with the @ operator that suppresses default output
of error messages by the PHP script engine. Omitting the @ operator produces mes-
sages that contain both the custom error message and the default error message pro-
duced by PHP. Consider an example where the string localhost is misspelled, and
the @ operator is omitted:
if (!($connection = mysql connect("localhos",
"fred",:"shhh")))
die("Could not connect");

This fragment outputs the following error message that includes first the PHP error
and second the custom error message:

Warning: mysql connect() [function.mysql-connect]:
Unknown MySQL Server Host 'localhos' (2) in bug.php on line 42

Could not connect.

The error handling approach we’ve described here works well when you’re develop-
ing and testing an application. However, when your application is finished and in
production, it isn’t a good approach: the error messages that are output interrupt the
look and feel of the application, and stopping the processing with the die() function
is likely to result in non-compliant HTML. We show you how to build a production
error handler in Chapter 12.

Working with Table Structures

Example 6-4 is a script that uses the mysql_fetch_field() function to discover infor-
mation about attributes in a table; field is another way of saying attribute, and you’ll
also find some database users call it a column. The script emulates most of the behav-
ior of the SHOW COLUMNS or DESCRIBE commands discussed in Chapter 15. The code
uses the same five-step query process discussed earlier, with the exception that
mysql_fetch_field() is used in place of mysql_fetch_array(). Sample output for the
table wine is shown in Example 6-5.

178 | (Chapter6: Querying Web Databases

Example 6-4. Using mysql_fetch_field() to describe the structure of a table

<IDOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html401/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Wine Table Structure</title>
</head>
<body><pre>
<?php
// Open a connection to the server and USE the winestore
$connection = mysql connect("localhost","fred","shhh");
mysql select db("winestore", $connection);

// Run a query on the wine table in the winestore database to retrieve
// one row
$result = mysql _query ("SELECT * FROM wine LIMIT 1", $connection);

// Output a header, with headers spaced by padding
print str pad("Field", 20) .

str_pad("Type", 14) .

str_pad("Null", 6) .

str_pad("Key", 5) .

str_pad("Extra", 12) . "\n";

// How many attributes are there?
$x = mysql num_fields($result);

// for each of the attributes in the result set
for($y=0; $y<$x; $y++)
{

// Get the meta-data for the attribute
$info = mysql fetch field ($result);

// Print the attribute name
print str pad($info->name, 20);

// Print the data type
print str pad($info->type, 6);

// Print the field length in parentheses e.g.(2)
print str pad("({$info->max_length})", 8);

// Print out YES if attribute can be NULL
if ($info->not null != 1)

print " YES ";
else

print " "3

// Print out selected index information
if ($info->primary key == 1)

print " PRI ";
elseif ($info->multiple key == 1)

Querying a MySQL Database Using PHP

179

Example 6-4. Using mysql_fetch_field() to describe the structure of a table (continued)

print " MUL ";
elseif ($info->unique_key == 1)
print " UNI ";

// If zero-filled, print this
if ($info->zerofill)
print " Zero filled";

// Start a new line
print "\n";
}
7>
</pre>
</body>
</html>

Example 6-5. HTML output of the DESCRIBE WINE emulation script in Example 6-4

<!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html401/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Wine Table Structure</title>

</head>

<body><pre>

Field Type Null Key Extra
wine_id int (1) PRI
wine_name string(9) MUL
type string(9)

year int (4)

winery id int (1) MUL
description blob (0) YES
</pre>

</body>

</html>

Formatting Results

So far we’ve shown you the basic techniques for connecting to and querying a
MySQL server using PHP. In this section, we extend this to produce results with
embedded HTML that have better structure and presentation. We extend this fur-
ther in Chapter 7, where we show you how to separate HTML from PHP code using

templates.

Let’s consider an example that presents results in an HTML table environment.
Example 6-6 shows a script to query the winestore database and present the details of
wines. Previously, in Example 6-1 and Example 6-3, the details of wines were dis-
played by wrapping the output in HTML <pre> tags. The script in Example 6-6 uses

180 | Chapter6: Querying Web Databases

the function displayWines() to present the results as an HTML table. The main body
of the script has a similar structure to previous examples, with the exceptions that
the query is stored in a variable, and the username, password, and the showerror()
function are stored in separate files and included in the script with the require direc-
tive. We introduced the require directive in Chapter 2 and discuss it in more detail
later in this section.

The displayWines() function first outputs a <table> tag, followed by a table row <tr>
tag with six <th> header tags and descriptions matching the six attributes of the wine
table. We could have output these using mysql_fetch_field() to return the attribute
names rather than hard-coding the heading names. However, in most cases, the
headers are hard-coded because attribute names aren’t meaningful to users. Also, as
we discuss later, giving users details about your database design can contribute to a
security problem.

Example 6-6. Producing simple table output with MySQL

<IDOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html401/1loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Wines</title>
</head>
<body>
<?php
require 'db.inc';

// Show the wines in an HTML <table>
function displayWines($result)
{

print "<h1>Our Wines</h1i>\n";

// Start a table, with column headers

print "\n<table>\n<tr>\n" .
"\n\t<th>Wine ID</th>" .
"\n\t<th>Wine Name</th>" .
"\n\t<th>Type</th>" .
"\n\t<th>Year</th>" .
"\n\t<th>Winery ID</th>" .
"\n\t<th>Description</th>" .
"\n</tr>";

// Until there are no rows in the result set, fetch a row into
// the $row array and ...
while ($row = @ mysql fetch row($result))
{
// ... start a TABLE row ...
print "\n<tr>";

Querying a MySQL Database Using PHP | 181

Example 6-6. Producing simple table output with MySQL (continued)

// ... and print out each of the attributes in that row as a
// separate TD (Table Data).
foreach($row as $data)

print "\n\t<td> {$data} </td>";

// Finish the row
print "\n</tr>";

}

// Then, finish the table
print "\n</table>\n";
}

$query = "SELECT * FROM wine";

// Connect to the MySQL server
if (!($connection = @ mysql connect($hostname, $username, $password)))
die("Cannot connect");

if (!(mysql _select db($databaseName, $connection)))
showerror();

// Run the query on the connection
if (!($result = @ mysql query ($query, $connection)))
showerror();

// Display the results
displayWines($result);
>
</body>
</html>

After producing the HTML <table> open tag, the displayWines() function retrieves the
rows in the result set, showing each row as a separate table row using the <tr> tag.
Each attribute value for each wine, where the attributes match the headings, is dis-
played within the row as table data using the <td> tag. Carriage returns and tab charac-
ters are used to lay out the HTML for readability; this has no effect on the presentation
of the document by a web browser, but it makes the HTML much more readable if the
user views the HTML source. It also makes debugging your HTML easier.

The results of using a table environment instead of <pre> tags are more structured
and more visually pleasing. The output in the Mozilla browser is shown in Figure 6-1,
along with a window showing part of the HTML source generated by the script.

The downside of the approach we’ve shown is that the HTML is embedded in the
script, making it difficult to work with the presentation and the code separately. In
our simple example, this isn’t a huge problem. In a larger application such as our
online winestore, it makes changing the overall look and feel of the application diffi-
cult, and it can also make the code harder to modify. In Chapter 7, we show you
how to solve this problem using templates.

182 | (Chapter6: Querying Web Databases

] Wines - Mozilla - XN
M Eile Edit ¥iew Go Bookmarks Tools Window Help

| nttptrvsunn: comfwdazich ple -6 php |vH&SEaﬂ:h| ;—f‘%‘ -

: w3 @
i Back Forward Reload Siop

I AhHoms | wfBookmarks £ Red Hat Inc. ¢ Red Hat Netwark (14 Support ((4Shop (fProdusts £ Training
s
.
Our Wines
\NI';;IE Wine Name Type Year Wl]‘l‘;ry Description
1 Archibald 2 1997 1
2 Paftendon 2 19751
3 Loml?ard1 4 19852 fod Source of: hitp:/iwww.webdatabasebook.com/wdaZ/ché/example.6-6.php - Mozilla
4 Tonkin 2 1984 2 B i s
File Edit View Help
5 Titshall & 1986 2 =1 sl a
{POCTYPE HTML PUBLIC =
6 Serrong 6 1995 2 h - £ MACY /OED HIME 801 Tramsitiomal //ENC = 'ﬁs
7 Mettaxus 5 1996 2 “BEEp: /S W oxrg /TR Abtml 4 0 Sl oose did & 4
& Titshall 4 19873 o
<meta http-equive"Content-Type® content="text/htnl; charset=izo-8859-1">
Serrong 3 1981 2 <€§t§e>w3&§?‘/‘:‘i’;le§n ent-Type" content="tex! charset=izo
Chester & 1999 3 </head>
; <body>
Chemnis 2 19803 hivE: vinesmLs
Holdenson 6 1979 4 e
e
Skerry 2 1975 4 <tr>
Pattendon 5 1978 4 <thsWine ID</ths
Titshall 2 1999 4 <th>Wine Name</ths
Belcombe 3 1998 4 sthie it
imitri <they: ID¢/ths
Gimirde, &5 I%l:5 CthiDescraptioncthy
Titshall 5 1977 5 </t
<tr>
Holdenson 4 1986 6 = SEAN L e
Sears 2 1999 6 <[I
Sorrenti 2 1970 &
Belcombe 3 19727 ¥
L 2 EE | Document Done (5.064 se:s) [[T 3

i
FEYRC S B @Q@Qm Sa=

|@ wines- mozila | @®Source of: hitp:fwww, - 12:32:53 Thu Dec 18 2

Figure 6-1. Presenting wines from the winestore in an HTML table environment

Using Require Files in Practice

Example 6-7 shows the file included with the require directive in Example 6-6. As
discussed in Chapter 2, the require directive allows common functions, variables,
and constants in other files to be accessible from within the body of a script without
directly adding the functions to the code.

Example 6-7. The db.inc require file

<?php
$hostName = "localhost";
$databaseName = "winestore";
$username = "fred";
$password = "shhh";

function showerror()

{
}

>

die("Error " . mysql errno() . mysql_error());

A require file is usually referenced by all code developed for an application and, in
this case, allows easy adjustment of the database server name, database name, and

Querying a MySQL Database Using PHP | 183

server username and password. The flexibility to adjust these parameters in a central
location allows testing of the system on a backup or remote copy of the data, by
changing the database name or hostname in one file. This approach also allows the
use of different username and password combinations with different privileges, for
testing purposes.

We have chosen to name our include files with the .inc extension. This presents a
minor security problem. If the user requests the file, the source of the file is shown in
the browser. This may expose the username and password for the server, the source
code, the database structure, and other details that should be secure.

There are three ways to address this problem:

1. You can store the require files outside the document tree of the Apache web
server installation. For example, store the require files in the directory /ust/local/
include/php on a Unix system or in C\winnt\php or C:\windows\php on a
Microsoft Windows system and use the complete path in the include directive.

2. You can configure Apache so that files with the extension .inc are forbidden to
be retrieved.

3. You can use the extension .php instead of .inc. In this case, the require file is pro-
cessed by the PHP script engine and produces no output because it contains no
main body.

All three approaches to securing require files work effectively in practice. Using the
extension .php for require files is the simplest solution but has the disadvantage that
require files can’t be easily distinguished from other files; however, this is the best
approach if you’re in a shared hosting environment and can’t change Apache’s con-
figuration.

In the online winestore, we have configured Apache to disallow retrieval of files with
the extension .inc. We did this by adding the following lines to Apache’s httpd.conf
file, and restarting the web server:
<Files ~ "\.inc$">
Order allow,deny

Deny from all
</Files>

Case Study: Producing a Select List

To conclude this section, we present a longer case study of dynamically producing
values for an HTML select input type in a form. The example shows you how the
PHP MySQL functions can be put to use to develop one of the components of an
application. You’ll find this a useful tool when you want the user to choose an item
from a list of values stored in the database.

184 | Chapter6: Querying Web Databases

Consider an example where we want our users to be able to choose one of the wine
regions from a drop-down list so that we can display the wineries in the area. For the
wine regions, the select input might have the following structure:
<select name="regionName">
<option value="All">All</option>
<option value="Barossa Valley">Barossa Valley</option>
<option value="Coonawarra">Coonawarra</option>
<option value="Goulburn Valley">Goulburn Valley</option>
<option value="Lower Hunter Valley">Lower Hunter Valley</option>
<option value="Margaret River">Margaret River</option>
<option value="Riverland">Riverland</option>
<option value="Rutherglen">Rutherglen</option>
<option value="Swan Valley">Swan Valley</option>
<option value="Upper Hunter Valley">Upper Hunter Valley</option>
</select>

With only a small number of wine regions, it’s tempting to develop a static HTML
page with an embedded list of region names. However, this is poor design. If the
region database table changes because you add, delete, or change a region_name
value, you have to remember to update the HTML page. Moreover, a spelling mis-
take or an extra space when creating the HTML page renders a select option useless,
because it no longer matches the values in the database when used in a query. A bet-
ter approach is to dynamically query the database and produce a select element using
the region_name values stored in the region table.

Let’s consider dynamically producing HTML. First, the set of different values of the
region_name attribute in the region table need to be retrieved. Then, the values need
to be formatted as HTML option elements and presented as an HTML form to the
user. When the user chooses a region and submits the form, a query needs to be run
that uses the region name the user selected as one of the query parameters to match
against data in the database and to produce a result set. Because the values chosen by
the user in the form are compared against database values, it makes sense that the list
values should originate from the database. We show you how to incorporate user
data in a query in the next section.

In this section, we develop a component that can be reused to produce select lists in
different modules of a web database application. An example fragment that uses this
new component is shown in Example 6-8. The selectDistinct() function that pro-
duces the drop-down list isn’t shown and we show you it in the next section.

Example 6-8. Producing an HTML form that contains a database-driven select list

<!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html401/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Wines</title>

Querying a MySQL Database Using PHP | 185

Example 6-8. Producing an HTML form that contains a database-driven select list (continued)

</head>
<body>
<form action="example.6-14.php" method="GET">
<?php
require "db.inc";

// selectDistinct() function shown in Example 6-9 goes here
require "example.6-9.php";

// Connect to the server
if (!($connection = @ mysql connect($hostName, $username, $password)))
showerror();

if (!mysql select db($databaseName, $connection))
showerror();

print "\nRegion: ";

// Produce the select list
// Parameters:
// 1: Database connection
// 2. Table that contains values
// 3. Attribute that contains values
// 4. <SELECT> element name
// 5. Optional <OPTION SELECTED>
selectDistinct($connection, "region", "region name", "regionName",
"ALL");
?>

<input type="submit" value="Show Wines">
</form>
</body>
</html>

The component itself is discussed later but is encapsulated in the function
selectDistinct(), which takes the following parameters:

* A database connection handle, in this case, a connection opened with mysql_
connect() and stored in $connection. The database that contains the values that
are used in the list must have been selected on the connection using a call to
mysql_select_db().

* The database table from which to produce the list. In this case, the table region
contains the region name data.

* The database table attribute with the values to be used as the text for each
option shown to the user in the list. In this example, it’s region_name from the
region table.

* The name of the HTML <select> tag. We use regionName, but this can be any-
thing and isn’t dependent on the underlying database.

186 | Chapter6: Querying Web Databases

* An optional default value to output as the selected option in the list; this option
is shown as selected when the user accesses the page. All is used as a default
here.

The output of the function for the parameters used in Example 6-8 is shown in
Figure 6-2.

v Mozilla

EEiIe Edit VWiew Go Bookmarks Tools Window Help

B?c-k ¥ Fl::%;arri X F{:%a\d ;%g’p @ rﬁﬁt i

T 4}Home | WgBookmarks g Red Hat, Inc. ¢ Red Hat Metwork 5 Support 1 Shal

Region; | Al ~|
Show wines |
Home
3% £l w2 E3) | Document Done (0.535. | [—adarl

Figure 6-2. The selectDistinct() function in action

The remainder of the script fragment in Example 6-8 produces the other required
tags in the HTML document.

Implementing the selectDistinct() function

This section details the implementation of the general-purpose selectDistinct() func-
tion. The function produces a select list, with an optional selected item, using
attribute values retrieved from a database table. The body of the function is shown in
Example 6-9.

Example 6-9. The body of the selectDistinct() function for producing select lists

<?php
function selectDistinct ($connection, $tableName, $attributeName,
$pulldownName, $defaultValue)

{
$defaultWithinResultSet = FALSE;

// Query to find distinct values of $attributeName in $tableName
$distinctQuery = "SELECT DISTINCT {$attributeName} FROM
{$tableName}";

// Run the distinctQuery on the databaseName
if (!($resultId = @ mysql query ($distinctQuery, $connection)))
showerror();

// Start the select widget
print "\n<select name=\"{$pulldownName}\">";

Querying a MySQL Database Using PHP | 187

Example 6-9. The body of the selectDistinct() function for producing select lists (continued)

// Retrieve each row from the query
while ($row = @ mysql fetch array($resultId))

{
// Get the value for the attribute to be displayed

$result = $row[$attributeName];

// Check if a defaultValue is set and, if so, is it the
// current database value?
if (isset($defaultValue) 88 $result == $defaultValue)
// Yes, show as selected
print "\n\t<option selected value=\"{$result}\">{$result}";
else
// No, just show as an option
print "\n\t<option value=\"{$result}\">{$result}";
print "</option>";

print "\n</select>";
} // end of function
>

The implementation of selectDistinct() is useful for most cases in which a select list
needs to be produced. The first section of the code queries the table $tableName
passed as a parameter and produces a select element with the name attribute
$pulldownName.

The second part of the function retrieves the database results row by row using a
while loop. Inside the while loop, the value of the attribute to be displayed is saved in
$result and then an option element is printed using that value. If a $defaultvalue is
passed through as a parameter and the current value in $result is equal to the
default, the code produces the option as the selected option. If there’s no default
value or the current value doesn’t match the default value, the current value is out-
put without the selected attribute.

General-purpose, database-independent or table-independent code is a useful addi-
tion to a web database application. Similar functions to selectDistinct() can be devel-
oped to produce radio buttons, checkboxes, multiple-select lists, or even complete
form pages based on a database table. As we discussed in the previous section, the
code can be improved with the use of templates that we show you in Chapter 7, and
you’ll find a template version of the code in this section on our book’s web site http:/
www.webdatabasebook.com/.

Processing User Input

In this section, we build on the querying techniques discussed so far in this chapter.
We focus on user-driven querying, in which the user provides data that controls the
query process. To input parameters into the querying process, the user usually selects
or types data into an HTML form environment, or clicks on links that request scripts.

188 | Chapter6: Querying Web Databases

We show you user-driven querying by introducing how to:

* Pass data from a web browser to a web server.
* Access user data in scripts.

* Secure interactive query systems.

* Query databases with user data.

* Process data using one-component querying, where the user clicks on a link that
runs a query but leaves the user on the same page. This querying process is often
used to add items to a shopping cart.

Passing Data from the Browser to the Server

Three techniques can be used to pass data that drives the querying process in a web
database application:

* Data entry through HTML form environments. For example, form environ-
ments can capture textual input, and input is made by selecting radio buttons,
selecting one or more items from a drop-down menu, clicking on buttons, or
through other data entry widgets.

* Typing in a URL. For example, a user may open a URL using the Open Page
option in the File menu of the Mozilla web browser, and typing in a URL such as
http://www.webdatabasebook.com/example.6-10.php?regionName=Riverland.

* Embedded hypertext links that can be clicked to retrieve a PHP script resource
and provide parameters to the script.

Of these, using an HTML form and clicking on hypertext links are the two most com-
mon techniques for providing user input for querying in web database applications.

User data or parameters are passed from a web browser to a web server using HTTP;
Chapter 1 contains an introduction to HTTP and more details can be found in
Appendix D. Using HTTP, data is passed with one of two methods, GET or POST. In
the GET method, data is passed as part of the requested URL; the GET method gets a
resource with the parameters modifying how the resource is retrieved. In the POST
method, the data is encoded separately from the URL and forms part of the body of
the HTTP request; the POST method is used when data is to be posted or stored on
the server, and when large amounts of data is being transferred.

The HTML form environment can specify either the GET or POST method, while an
embedded link or a manually entered URL with parameters always uses the GET
method. In any case, the browser looks after encoding the parameters and transfer-
ring them to the server.

Processing User Input | 189

Passing Data with the HTML Form Environment

The first technique that captures data passed from a browser to a server is the HTML
form environment.

Users enter data into an HTML form that is then encoded by the browser as part of
an HTTP request. Example 6-10 is an HTML document that contains a form in
which to enter the name of a wine region.

Example 6-10. An HTML form for entry of a regionName

<!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html401/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Explore Wines in a Region</title>
</head>
<body bgcolor="white">
<form action="example.6-11.php" method="GET">

Enter a region to browse :
<input type="text" name="regionName" value="AIl">
(type All to see all regions)

<input type="submit" value="Show wines">
</form>

Home
</body>
</html>

The page, rendered with a Mozilla browser, is shown in Figure 6-3.

v Explore Wines in a Region - Mozilla
Eile Edit ¥iew Go Bookmarks Tools Window Help
o

E:?c‘k Y o H:%a\d :%Ep “&hnpfm %t .

T % Home Bookmarks Red Hat, Inc. Red Hat Metwark @9 Suppart Shop @4 Produt
& Al pp P E3

Enter aregion to browse : [Al (tvpe All to see all regions)

Show wines |

Home

%% £ <2 () | Document Dane (0,535 secs) | ==

Figure 6-3. A simple page to capture user input

When the user presses the button labeled Show Wines, the data entered in the form is
encoded in an HTTP request for the resource example.6-11.php. The resource to be

190 | Chapter6: Querying Web Databases

requested is specified in the action attribute of the form tag, as is the method used for
the HTTP request:

<form action="example.6-11.php" method="GET">

In this form, there is only one input widget with the attribute type="text" and
name="regionName". When the GET method is used, the name of this attribute and its
value result are appended to the URL as query string parameters. If the user types
Riverland into the text widget and then clicks on Show Wines, the following URL is
requested:

http://localhost/example.6-11.php?regionName=Riverland

The resource that’s requested is example.6-11.php and it’s separated from the param-
eters by a question mark character ?.

The script example.6-11.php is shown in Example 6-11. Before this script is pro-
cessed by the PHP scripting engine, variables associated with any parameters to the
resource are initialized and assigned values. In this example, the array $ GET is initial-
ized and contains an element with the key regionName. The value of $_
GET[“regionName"] is then automatically initialized by the PHP engine to Riverland.
This variable and its value are then accessible from within the script, making the data
passed by the user available in PHP.

Example 6-11. Printing a parameter value passed to the script with an HTTP request

<IDOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html401/1loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Parameter</title>
</head>
<body>
<?php
require 'db.inc';

print "regionName is {$_GET["regionName"]}\n";
2>
</body>
</html>

Therefore, after submitting the form, the script in Example 6-11 outputs as a
response an HTML document containing the phrase:

regionName is Riverland

The HTTP POST method can be used in a form instead of the GET method by chang-
ing the method="CET" attribute of the form tag to method="POST"; the merits of POST
versus GET are discussed in more detail in Appendix D. This change of method has no
effect on automatic variable initialization in PHP scripts, except that the data is

Processing User Input | 191

stored in the array $ POST instead. You can change a script to process attributes that
are passed with a POST request by changing all references to $ GET to $ POST.

A s
8 All form fields are automatically stored in either the PHP array $ GET
"Q.\ L or $_POST for direct use in scripts.
%" This is one of the best features of PHP, making it far simpler to write

web-enabled scripts in PHP than in other languages. However, it intro-
duces a security risk discussed later in the section “Security and User
Data.”

Passing Data with URLs

The second technique that passes data from a web browser to a web server is man-
ual entry of a URL in a web browser.

Consider an example user request with a parameter. In this example, the user types
the following URL directly into the location bar of a Mozilla browser:

http://localhost/example.6-11.php?regionName=Yarra+Valley

The URL specifies that the resource to be retrieved is example.6-11.php with a query
string parameter of regionName=Yarra+Valley appended to the resource name. The
user then presses the Enter key to issue an HTTP request for the resource and to use
the GET method that passes the parameter to the resource. The query string parame-
ter consists of two parts: a parameter name regionName and a value for that parame-
ter of Yarra+Valley.

As with the form example in the previous section, an HTML document is created
with the value of the query string parameter printed as part of the output:

regionName is Yarra Valley

The plus (+) character that was used instead of a space (since spaces aren’t allowed
in URLs) has been decoded back to a space character by the PHP scripting engine. A
list of characters that must be encoded in URLs and an explanation of how encoding
works can be found in Appendix D.

More than one parameter can be passed with an HTTP GET request by separating
each parameter with the ampersand character; the browser performs this automati-
cally when a form is used. For example, to pass two parameters regionName and type
with the values Yarra and Red, respectively, the following URL can be created:

http://localhost/test.php?regionName=Yarra&type=Red

The values of these parameters can then be printed in the script test.php using the
fragment:

print $ GET["regionName"];
print $ GET["type"];

192 | Chapter6: Querying Web Databases

Passing Data with Embedded Links

The third technique that passes data from a web browser to a web server is embedding
links in an HTML document. It’s conceptually similar to manually entering a URL.

Example 6-12 shows how embedded links in an HTML document are created in
almost the same way as a URL is typed into a web browser.

Example 6-12. An HTML document with three links that pass two different parameters

<!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html401/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Explore Wines</title>
</head>
<body bgcolor="#ffffff">
Explore all our
 wines

Explore our
 red wines

Explore our
 premium
reds from the Riverland

Home</body>
</html>

The script is rendered in a Mozilla browser in Figure 6-4.

¢ Explore Wines - Mozilla *

EEiIe Edit ¥iew Go Bookmarks Tools Window Help

B?Ek i Fn:%farri T R:%a\d -:%Ep & hﬂp:ﬁm ;ﬁt E

v tr Home Bookmarks Red Hat, Inc. Red Hat Metwark 75 Support Shop g% Produd
i Rp P

Ezplore all our wines

Ezplore our red wines

Ezplore our premium reds from the Eiverland
Home

i &b ~2 (3 | Document Done (0.518 secs) [=ﬂ@=[ﬂ“

Figure 6-4. The HTML document shown in Example 6-12 rendered in a Mozilla browser

The script contains three links that can request the resource example.6-13.php and
pass different parameters to the resource. For example, the first link in the HTML
document is:

Explore all our
 wines

Processing User Input | 193

Clicking on this link creates an HTTP request for the URL:
http://localhost/example.6-13.php?regionName=Al1l&wineType=All

The result of the request is that the script in Example 6-13 is run. The script doesn’t
query the database—we show you how to do that in the next section. Instead, the
following simple HTML document is created:

<!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html401/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Parameters</title>
</head>
<body>
regionName is All

wineType is All
</body>
</html>

Example 6-13. A simple script to print out HTTP attributes and values

<!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html401/1loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Parameters</title>
</head>
<body>
<?php
require 'db.inc';

print "regionName is {$_GET["regionName"]}\n";
print "
wineType is {$_GET["wineType"]}\n";
>
</body>
</html>

The ampersand characters in the URLs in the HTML document are replaced with
8amp; because the ampersand character has a special meaning in HTML and should
not be included directly in a document. When the link is clicked, the encoded &
is translated by the browser to 8 in forming the HTTP request.

More on Accessing User Data

As we discuss in this section, in PHP 4.2 or later, user data that is passed from the
browser to the server using the GET or POST methods can be found in the PHP arrays
$ GET and $_POST. Similarly:

194 | Chapter6: Querying Web Databases

* Cookie variables can be found in the array $_COOKIE.
* Environment variables can be found in the array $_ENV.
* Session variables can be found in the array $ SESSION.

* Server variables can be found in the array $_SERVER.
Cookies and sessions are discussed in Chapter 10.

The arrays that hold the external data are superglobals. This makes them a little dif-
ferent from the global variables that are discussed in Chapter 2. Superglobals are
accessible anywhere within a script, even in functions, without declaring them using
the global keyword. For example, the following code prints out the value of the vari-
able input that was passed using the GET method:

function printout()

{

}
The variable $_GET shouldn’t be declared as global in the function.

print $ GET["input"];

Before PHP 4.2

Prior to PHP 4.2, variables were, by default, initialized differently. This behavior was
controlled by the option register globals=true in the php.ini configuration file; this
option used to be set to true, but it is now set to false by default. The effect of this set-
ting being on is that a PHP variable is automatically initialized for every external vari-
able or parameter that is set. For example, if the user passes parameters with a URL:

http://localhost/example.4-11.php?regionName=Yarra+Valley

then a variable $regionName is automatically initialized and set to Yarra Valley when
the script engine starts.

This feature is useful, and allows you to forget about the different arrays that contain
external data. However, the problem is that it is a security risk if you’re not careful: a
user can override an internal parameter such as a path by passing a variable of the
same name from the browser. The degree of risk depends on the configuration of the
initialization process and how you go about validating the data. However, in this edi-
tion of the book, we follow the post-PHP 4.2 approach of accessing variables through
their arrays. We recommend you leave the register globals feature turned off.

If you are using a version of PHP prior to PHP 4.2 and you decide to turn off the
register globals feature, you'll find the arrays that contain the variables are differ-
ent to PHP 4.2 and later. GET variables are found in $HTTP_GET_VARS, POST variables in
$HTTP_POST_VARS, session variables in $HTTP_SESSION VARS, environment variables in
$HTTP_ENV_VARS, and server variables in $HTTP_SERVER VARS. For backwards compati-
bility, you can still use these variable names in newer versions of PHP.

Processing User Input | 195

Processing Form Data

In this section, we discuss selected peculiarities of the HTML form environment and
what is actually submitted from a form in an HTTP request.

The MULTIPLE attribute

As you’ve seen so far, simple form elements, such as the input element, allow only
one value to be associated with them. For example, the tag <input name="surname">
may have an associated value of Smith, and a URL using the GET method, this associa-
tion is represented as surname=Smith.

The <select multiple> tag allows users to select zero or more items from a list.
When the selected values are sent through using the GET or POST methods, each
selected item has the same variable name but a different value. For example, con-
sider what happens when the user selects options b and ¢ from the following:

<select multiple name="choice">

<option value="a">a</option>
<option value="b">b</option>

<option value="c">c</option>
<option value="d">d</option>
</select>

When the user clicks Submit, the following URL is requested with the GET method:
http://localhost/click.php?choice=b&choice=c

From a PHP perspective, this means that the variable $ GET["choice"] is overwritten
as the request is decoded, and $_GET["choice"] has the last value that was selected.
In this example, print $ GET["choice"] outputs c.

The most elegant and simple solution to the multiple choice problem is to use a PHP
array feature. This works as follows. First, you modify the form and replace the name
of the select multiple element with an array-like structure, name="choice[]". In the

previous example, the select multiple element is renamed as choice[]:
<select multiple name="choice[]">
<option value="a">a</option>
<option value="b">b</option>
<option value="c">c</option>
<option value="d">d</option>

</select>

Then, the PHP engine treats the variable as an array and adds the multiple values to
the array $ GET["choice"], and the elements can be accessed as, for example, $_
GET[“choice"][0] and $ GET["choice"][1].

If the user selects options b and c, the following PHP fragment prints out all selected
values, in this case both b and c:

foreach($ _GET["choice"] as $value)
print $value;

196 | Chapter6: Querying Web Databases

The bracket array notation in a form can cause some problems with
client-side scripts (such as those written in JavaScript, which is dis-
1o cussed in Chapter 9) and such form elements should be referenced
" wrapped in single quotes in a JavaScript script.

Interestingly, the names of <textarea> and <input> tags can also be suffixed with
brackets to put values into an array, should the need arise.

Other form issues
Checkbox elements in a form have the following format:
<input type="checkbox" name="showgraphics">

A checkbox has two states, on and off, and is usually rendered as a small clickable
square in a graphical web browser. Assuming the form action requests the script
click.php and the checkbox in the example is clicked, the following URL is requested:

http://localhost/click.php?showgraphics=on
However, if the checkbox isn’t clicked, the URL requested is as follows:
http://localhost/click.php

The important difference is that a checkbox is never submitted with a value of off. If
the checkbox isn’t clicked, no variable or value is submitted to the server. Therefore,
in a PHP script, a checkbox should be tested with the following fragment:
if ($_GET["showgraphics"] == "on")
echo "Checkbox is on";
else
echo "Checkbox is off";
Sometimes, if a checkbox is the only widget in a form and it isn’t clicked, it isn’t pos-
sible to determine whether the form has been submitted or has never been dis-
played. An easy solution is to add a name attribute to the submit input element. For
example:
<form method="GET" action="click.php">
<input type="checkbox" name="showgraphics">
<input type="submit" name="submit" value="Submit Query">
</form>
If this form is submitted with the checkbox in the off state, the following URL is
requested:

http://localhost/click.php?submit=Submit+Query

The variable $ GET["submit"] is now set when the form is submitted, even when the
checkbox is in the off state. You can use this to identify when the checkbox is off
using a PHP fragment such as the following:

// Was the form submitted but the checkbox not clicked?

if (isset($ GET["submit"]) &8 !isset($_GET["showgraphics"]))
print "Checkbox wasn't clicked";

Processing User Input | 197

Multiple select elements have the same property as checkboxes: if no item in the list
is selected, no variable or value is submitted to the server.

Security and User Data

This section introduces simple techniques that preprocess user data to solve many
common security holes in web database applications. User data that has not been
preprocessed or cleaned is often known as tainted data, a term originating from the
Perl scripting language. Rectifying this through the processing we describe untaints
user data. You should untaint user data before using it in your application.

Using the techniques described here doesn’t completely secure a sys-
tem. Remember that securing a web database application is impor-
tant, and that the advice offered here isn’t a complete solution. A
discussion of other security issues is presented in Chapter 11.

Data that is passed from a web browser to a web server should be secured using the
steps described here. For this purpose, we have authored the shellclean() and
mysqlclean() functions to ensure that the data passed to a script is of the correct
length and that special characters aren’t misused to attack the system. To under-
stand why the functions are needed, we describe example attacks throughout this
section. The functions are part of the require file db.inc that is used in all example
scripts in Chapters 6 through 13.

Consider the following script. It uses the PHP exec() library function to run a pro-
gram on the web server. The exec() function takes two parameters, the program to
run and an array that is subsequently populated with any output of the program. In
this example, the script uses exec() to run the unix cal program and to pass the user-
entered parameter $ GET["userString"] to the program. The information in the
parameter userString can be provided by using an HTML form with a text input
widget, by manually creating a URL, or by embedding a link in an HTML document.

<?php
/* DO NOT INSTALL THIS SCRIPT ON A WEB SERVER */
?>
<!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html401/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Calendar</title>
</head>
<body>
<pre>
<?php
// Run "cal" with the parameter $userString
// Store the results in the array $result

198 | Chapter6: Querying Web Databases

exec("/usr/bin/cal {$ GET["userString"]}", $result);

// Print out each line of the calendar
foreach($result as $element)
echo "$element\n";

>
</pre>
</body>
</html>

Never use exec() or other commands to run programs from a web
script or to query a database without untainting the user data. Do not
install the calendar example on a web server.

The Unix cal program is a useful utility that produces monthly or yearly calendars
for any date. For example, to produce a calendar for the whole of 2003, a user could
request the URL:

http://localhost/cal.php?userString=2003

This runs the command /usr/bin/cal 2003 and outputs the complete 2003 calendar,
as shown in Figure 6-5.

hod Calendar - Mozilla G 7
File Edit Miew Go Bookmarks Tools Window Help

i : Ao : = [~ S
E?c'k Fm%ard R:%ad S%gp J hitpiiflocalhostical php7usersting=2003 el

| 4} Home | WhBookmarks g Red Hat, Inc. 2 Red Hat Network £ Support @ Shop [Products (f Training

*

2003
January February March
Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa 5u Mo Tu We Th Fr Sa
12 3 4 1 i

5 6 7 8 91011 2 345 6 7 8 2 34 5 6 7 8
12 13 14 15 16 17 18 910 11 12 13 14 15 91011 12 13 14 15
19 20 21 22 23 24 25 16 17 18 19 20 21 22 16 17 18 19 20 21 22

26 27 28 20 30 31 23 24 25 26 27 28 23 24 25 26 27 28 29
a0 31
April May Tune
Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa
1 5.8 i 6 21 53 1 34 5 &

o

1 7
8 8910 11 12 4 5 6 7T 8 910 a 10 11 12 13 14
13 14 15 16 17 18 19 11 12 13 14 15 1e 17 15 16 17 18 19 20 21
20 21 22 23 24 265 26 18 19 20 21 22 23 24 22 23 24 25 26 27 28

@
-

a7 28 29 30 45 26 27 28 20 30 31 29 20
July Augqust September
Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa
AL L ¢ G i 1 2 3 4 5 6
E 7T 8 01011 12 24 5 6 7 8 90 T8 91011 12 13

13 14 15 16 17 18 19 10 11 12 13 14 15 16 14 15 16 17 18 13 20
en 21 22 23 24 25 26 17 18 19 20 21 22 23 21 22 23 24 B5 26 27

27 28 29 30 11 24 25 26 27 28 20 30 28 20 30
31
October Nowvenber Decenber
Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa
1 2 3 4 1 1 2 3 4 5 6
E 6 7T 8 951011 2 34 5 86 T 8 T 8 91011 12 13

12 13 14 15 16 17 18 910 11 12 13 14 15 14 15 16 17 18 19 20
19 20 21 22 23 24 25 16 1V 18 10 20 21 22 21 28 23 24 25 26 27

26 27 28 20 30 31 23 24 25 26 27 28 20 28 20 30 31
a0

v

b £k 2 E&l | Document Done (0.211 secs) | #ﬂ

Figure 6-5. Output of the dangerous calendar example when the user requests a 2003 calendar

Processing User Input | 199

To produce a calendar for February 2007, the user requests:
http://localhost/cal.php?userString=2+2007

Requesting the URL without any parameters produces the calendar for the current
month:

http://localhost/cal.php

While this script might seem useful and innocuous, this script is a major security
hole and should never be installed on a web server.

Consider how the script can be misused. If a user wants to enter two or more com-
mands on a single line, he can do so by separating the commands with a semicolon
character. For example, to see who is logged in and then to list the files in the cur-
rent directory, he can type the following commands at a Unix shell:

% who ; 1s
Now consider what happens if he exploits this feature by requesting this URL:
http://localhost/cal.php?userString=2004;cat+/etc/passwd

The script produces a 2004 calendar, followed by the system password file, as shown
in Figure 6-6! The script allows a creative user to do things the web server process
can do. The identity of the owner of the web server process affects the severity of the
actions that can be performed, but this is at best a major security hole. Similar prob-
lems can occur on a Microsoft Windows machine.

Semicolons, colons, greater-than and less-than signs, and other special characters can
cause a script or a query to provide undesirable functions. This is especially a prob-
lem if the script uses the PHP library functions system(), shell_exec(), passthru(),
and exec(), because these functions potentially give hackers access to programs on
the server. Even if a form makes it difficult for a user to enter undesirable data, he
can manually create his own request by entering a URL and authoring a query string.

Never trust anything you don’t have control of, which is anything not
in the middle or database tiers.

To improve security and prevent special-character attacks, user data that is passed to
programs should be processed with the shellclean() function:

function shellclean($array, $index, $maxlength)

if (isset($array["{$index}"]))

{
$input = substr($array["{$index}"], 0, $maxlength);
$input = EscapeShellArg($input);
return ($input);

}

return NULL;

}

200 | Chapter6: QueryingWeb Databases

k4 Calendar - Mozilla

T Elle Edit ¥iew Go Bookmarks Tools Window Help

| - = . 3 B hitp:#focalhostical phpTuserSting=2004;catfete/passw Hm =4
| Back 7 Forward | Reload Siop & np g d Gt . Print

5| 4% Home | W Bookmarks 2 Red Hat, Inc. g Red Hat Network (4 Support ¢ Shop £ Products £ Training

[+

2004
Jamiary February March
Su Mo Tu We Th Fr S5a S0 Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa
1 3 1 2 3 45 68 7 1 2:.3 4.5 .6

4 5 6 7 8 910 4 91011 12 13 14 T 8 91011 12 13
11 12 13 14 15 16 17 15 16 17 18 19 20 21 14 15 16 17 18 10 20
18 19 20 21 22 23 24 22 23 24 25 26 27 28 21 22 23 24 25 2g 27

25 26 27 28 29 30 31 29 28 29 30 31
April May June
Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa 5u Mo Tu We Th Fr Sa

12 3 1 12 3 45
4 5 6 7 8 910 2 34 5 6 7 8 6 T 8 91011 12
11 12 13 14 15 16 17 910 11 12 13 14 15 13 14 15 16 17 18 19
18 19 20 21 22 23 24 16 17 18 19 20 21 22 20 21 22 23 24 25 26

25 26 27 28 29 30 23 24 25 26 27 28 20 27 28 29 30
30 31
July ABugust September
Su Mo Tu We Th Fr Sa S0 Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa

12 3 1 2 3.4 .6 7 1 2 .3 .4
4 5 6 7 8 910 4 91011 12 13 14 E 6 7 8 81011
11 12 13 14 15 16 17 15 16 17 18 189 20 21 12 13 14 15 16 17 18
18 19 20 21 22 23 24 22 23 24 25 26 27 28 19 20 21 22 23 24 25

25 26 27 28 29 30 31 29 30 31 26 27 28 20 30
October November December
Su Mo Tu We Th Fr 5a Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa
12 1. 2.3 4.5 6 L 2.3 .4 1
34 5 6 7 8 9 7T 8 91011 12 13 E & 7 8 91011

10 11 1213 14 15 16 14 15 16 17 18 19 20 12 13 14 15 16 17 18
17 18 19 20 21 22 23 21 22 23 24 25 26 27 19 20 21 22 23 24 25
24 25 26 27 28 20 30 28 29 30 26 27 28 29 30 31

root:x:0:0:root: froot: /bin/bash
bin:x:1:1:bin:/bin:/sbin/mologin

daemonx: 2: 2:dasmon: /sbin: fshin/nologin
adm:x:3:4:adn: fvar fadn: Sshinfnologin

Ip:x:4:7:1p: fvar/spool/lpd: fshinfnologin
sync:x:5:0: sync: /sbin: /bin/sync
shutdown:x:6:0: shutdown: /shin: /shin/shutdown
halt:.x: 7:0:halt: fshin: /shin/halt

mail:x:8:12:mail: frar/spool/mail: fsbindnologin

news:x:9: 13 news: Seto/news [+l
e A0 1A men: frar fenaa]l Amen: fshinfnnlacin : |
i fl ~# EAl | Document Done (0.19 secs) =¢D=H"[|
e e S — —— G T T =

Figure 6-6. Output when the user requests a 2004 calendar and the system password file

The function expects an array (usually $ GET or $_POST) as the first parameter, and a
name of a user variable as an index into the array as the second parameter. The third
parameter specifies the maximum allowed length of the variable.

The first line of shellclean() checks if there’s an element in $array with the name
$index. If so, the second line uses the substr() function to reduce the variable $input
to a maximum length of $maxlength by taking a substring beginning at the first char-
acter. For the calendar example you might use a maximum length of seven. The third
line calls the library function EscapeShellArg(), which encloses the string argument
$input in single quotation marks. This has the same effect on a shell command as it
does in PHP: it causes all characters except the single quotation to be treated as
strings of symbols with no function. This makes special characters harmless when
they’re passed as parameters to programs.

For many purposes, the shellclean() steps are sufficient to ensure data is safe. As an
example, if a parameter userString is passed with the GET method and has a value of:

2001;cat /etc/passwd

Processing User Input | 201

then a call of:
shellclean($_GET, "userString", 7)

produces the harmless single-quoted string '2001;cat'. This string has no detrimen-
tal effect and provides the user with no hidden data.

Our philosophy for processing data is to allow all input except the subset of strings
that may cause problems. A stricter approach is to deny all strings except the subset
of strings that are allowed for a particular field. For example, in our calendar exam-
ple, we might only allow strings that consist entirely of numbers and at most one
space that match a template of allowed strings. We could do this with a regular
expression such as:
if (ereg("~(([0-91{1,2}[1[0-91{4})|([0-9]{4}))$", $_GET["userString"]))
// Parameter is OK

We show you field validation techniques, including using regular expressions, in
Chapter 9.

SQL querying also has problems. For example, a user can guess the structure of data-
base tables and how a query is formed from user input. A user might guess that a
query uses an AND clause and that a particular form text widget provides one of the
values to the query. The user might then add additional AND and OR clauses to the
query by entering a partial SQL query in the text widget. While such tricks may
expose data that should remain hidden from the user, problems compound if the
user inserts or deletes data with the techniques discussed in Chapter 8.

To deal with attacks that change your SQL statements, you can use the shellclean()
function to enclose the user string in single quotations. This works reasonably well,
but a better special-purpose approach is to make use of the mysql_real_escape_string()
function that we discuss later in this chapter. This function inserts a backslash charac-
ter before each special character, taking into consideration the character set being
used on the current connection. We use this function together with substr() in our
mysqlclean() function that we include in the db.inc file:

function mysqlclean($array, $index, $maxlength, $connection)

if (isset($array["{$index}"]))

{
$input = substr($array["{$index}"], 0, $maxlength);
$input = mysql real escape string($input, $connection);
return ($input);

}
return NULL;

}

As with running shell programs, many of the problems of SQL attacks can also be
solved with careful server-side validation, and we return to this in Chapter 9.

202 | Chapter6: QueryingWeb Databases

Querying with User Input

To introduce querying with user input, we begin by explaining a script that retrieves
the wines made in a wine region that is specified by a user. This script, shown in
Example 6-14, is a companion to the HTML form from Example 6-10. (If you’ve
installed our examples using the instructions in Appendixes A through C, you’ll find
a modified version of Example 6-10 in the file example.6-14b.php. Load the file

example.6-14b.php in your browser to test Example 6-14.)

Example 6-14. A script to display all wineries in a region

<IDOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html401/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Exploring Wines in a Region</title>
</head>

<body bgcolor="white">
<?php

require 'db.inc';

// Show all wines in a region in a <table>

function displayWinesList($connection,
$query,
$regionName)

// Run the query on the server
if (!($result = @ mysql query ($query, $connection)))
showerror();

// Find out how many rows are available
$rowsFound = @ mysql num_rows($result);

// If the query has results ...
if ($rowsFound > 0)
{
// ... print out a header
print "Wines of $regionName
";

// and start a <table>.

print "\n<table>\n<tr>" .
"\n\t<th>Wine ID</th>" .
"\n\t<th>Wine Name</th>" .
"\n\t<th>Year</th>" .
"\n\t<th>Winery</th>" .
"\n\t<th>Description</th>\n</tr>";

// Fetch each of the query rows

Processing User Input

203

Example 6-14. A script to display all wineries in a region (continued)

while ($row = @ mysql fetch array($result))
{
// Print one row of results
print "\n<tr>\n\t<td>{$row["wine_id"]}</td>" .
"\n\t<td>{$row["wine name"]}</td>" .
"\nm\t<td>{$row["year"]}</td>" .
"\n\t<td>{$row["winery name"]}</td>" .
"\n\t<td>{$row["description”]}</td>\n</tr>";
} // end while loop body

// Finish the <table>
print "\n</table>";
} // end if $rowsFound body

// Report how many rows were found
print "{$rowsFound} records found matching your criteria
";
} // end of function

// Connect to the MySQL server
if (!($connection = @ mysql connect($hostName, $username, $password)))
die("Could not connect");

// Secure the user parameter $regionName
$regionName = mysqlclean($ GET, "regionName", 30, $connection);

if (!mysql select db($databaseName, $connection))
showerror();

// Start a query ...

$query = "SELECT wine_id, wine_name, description, year, winery name
FROM winery, region, wine
WHERE winery.region id = region.region id
AND wine.winery id = winery.winery id";

// ... then, if the user has specified a region, add the regionName
// as an AND clause ...
if (isset($regionName) &8 $regionName != "AIl")

$query .= " AND region name = \"{$regionName}\"";

// ... and then complete the query.
$query .= " ORDER BY wine name";

// run the query and show the results
displayWinesList($connection, $query, $regionName);
>
</body>
</html>

The script in Example 6-14 uses the querying techniques discussed so far in this
chapter. However, this example differs from the previous ones in several ways:

* It expects input of a wine region to be provided through a form input element
with the name regionName.

204 | Chapter6: Querying Web Databases

* The automatically initialized variable $ GET["regionName"] is untainted with the
mysqlclean() function we discussed in the previous section and then stored in
$regionName.

* The value of the variable $regionName is used in querying.

The script builds an SQL query to find wine and winery information for the region
entered by the user through the form in Example 6-10. If the user enters a
regionName into the form, an additional AND clause is added to the query that restricts
the r.region_name to be equal to the user-supplied region name. For example, if the
user enters Margaret River, the clause:

AND r.region_name = "Margaret River"
is added to the query.

If the $regionName is All, no restriction on region is made, and the query retrieves
wines for all regions.

The function displayWinesList() is called to run the query. It produces a table with
headings, processes the result set and produces table rows, and finishes the table
with a message indicating how many rows are present in the table. This is similar
functionality to that discussed earlier in this chapter.

Other than the processing of the user parameter and the handling of the A1l regions
option, no new functionality is introduced in allowing the user to drive the query
process in this example.

One-Component Querying

Many applications allow the user to click on a link that redisplays the same resource
but incorporates a change, such as adding a shopping item chosen by the user. This
is one-component querying, in which the query input component and the results are
displayed on the same page. In this section, we discuss how one-component query-
ing is used and the principles of adding one-component queries to an application.

Figure 6-7 illustrates the principle of one-component querying. Let’s assume the user
is viewing the page browse.php in which we refer to this as the calling page. When
the user selects a link on the calling page, an HTTP request for a PHP script addcart.
php is sent to the server. At the server, the script addcart.php is interpreted by the
PHP script engine and, after carrying out the database actions in the script, no out-
put is produced. Instead (and this is the key to one-component querying) an HTTP
Location: header is sent as a response to the web browser, and this header causes the
browser to request the original calling page, browse.php. The result is that the calling
page is redisplayed, and the user has the impression that she remained on the query
input component page.

A good example of an application of one-component querying is adding items to a
shopping cart. One excellent way to support this in our winestore would be to

Processing User Input | 205

Web Browser

User clicks on cart in

clrgpuge ouseaty ~» GET addcar t.phpZitem=19 Web Server
Server adds item
to cart and issues
redirection to

301 Moved alling page
Location: browse.php

redirection to browse.php

and immediately issues

e GET browse, php

Browser receives W
|

Server processes
request for
l browse.php and
turns HTML
0K i
Browser redisplays 200 o> document
calling page browse.php ‘ <html> <head><title>...
and user continues . 4
shopping

Figure 6-7. The principle of one-component querying

author a script that adds the wine to the user’s cart and then redirects the user back
to continue shopping. The cart is updated after a click, and the user can continue
purchasing wines. We use this technique in Chapter 17.

Example 6-15 shows a one-component script that is requested by a calling page. In
practice, the script adds items to a user’s shopping cart. However, for simplicity the
database queries are not included here.

Example 6-15. Implementing one-component querying

<?php
require 'db.inc';

// Database activity occurs here -- process $ GET["input"]

// This is the key to one-component querying:
// Redirect the browser back to the calling page, using
// the HTTP response header "Location:" and the PHP server
// variable $ SERVER["HTTP_REFERER"]
header("Location: {$ SERVER["HTTP_REFERER"]}");
exit;
>

The key to Example 6-15 is the final two lines of a successful execution of the script:

header("Location: {$ SERVER["HTTP_REFERER"]}");
exit;

The header() function sends an additional HTTP response header. In one-component
querying, the response includes the Location header that redirects a browser to another

206 | Chapter6: QueryingWeb Databases

URL, in this case the URL of the calling page. The URL of the calling page is automati-
cally initialized into the PHP web server environment variable $ SERVER[“HTTP_
REFERER"]. The exit statement causes the script to abort after sending the header so
any further statements in the script won’t be executed.

We’ve used the superglobal array element $_SERVER[“HTTP_REFERER"]
in conjunction with the header() function to redirect to the calling
page. This doesn’t work on all Microsoft Windows environments. To
fix this problem, you need to replace $_SERVER[“HTTP_REFERER"] with a
script file name. For example, in Example 6-15, replace it with
example.6-16.php.

Example 6-16 shows an example calling page for the script in Example 6-15. By
clicking on the links in the page, the user can submit different values for the input
variable to the one-component script for processing. In practice, the links them-
selves might be generated using an SQL query.

Example 6-16. An example calling page for one component querying.

<!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html401/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>One Component Test Page</title>
</head>
<body>

Add Item 1

Add Item 2

Add Item 3

Add Item 4

Add Item 5
</body>
</html>

A
The header() command can be issued only before data is sent. In one-
.‘s\ component querying, the script that carries out the database actions
9 shouldn’t produce any output, so this usually isn’t a problem. A call to
" the header() function should also be followed by an exit statement if
no further processing of statements after the header() function call is
desired. We discuss the symptoms of header() function problems and
how to solve them in Chapter 12.

One-component querying is useful in situations where only the query screen is
required, or the results page and the query page are the same resource. For example,
in the winestore, one-component querying is used to update quantities in the shop-
ping cart when the user alters the quantities of wine. In general, one-component que-
rying works well for simple update operations; these are the subject of Chapter 8.

Processing User Input | 207

MySQL Function Reference

This section lists PHP functions for interacting with a MySQL server. We’ve divided
them into those that are frequently used and those that are less frequently used.
We've also included a list of the functions we don’t use, and the reasons why you
should avoid them. We recommend that at a minimum you read the information
about the five main functions we’ve used in this chapter: mysql_connect(), mysql_
select_db(), mysql_query(), mysql_fetch_array(), and mysql_error().

Web database applications can be developed with only a few functions. However, in
many cases, additional functionality is required. For example, you may want to
choose performance-conscious alternatives and it’s often useful to retrieve only a
part of the data without processing the complete dataset. Functions for all of these
tasks are described in this section. Writing data to a database and the functions
mysql_affected_rows() and mysql_insert_id() are discussed in more detail in
Chapter 8.

Frequently Used Functions

int mysql_affected_rows([resource connection])
Returns the number of rows affected by the last UPDATE, DELETE, or INSERT SQL
statement, and -1 if the last query failed. The function takes as an optional
parameter a server connection resource handle. If no parameter is passed, the
most recently opened connection is assumed.

This function doesn’t work for SELECT statements; mysql_num_rows() should be
used instead.

For example, if a customer is deleted with the SQL statement:

DELETE FROM customer WHERE CUST_ID=1
then mysql_affected_rows() returns a value of 1 if that customer has been suc-
cessfully deleted.

The function may report that zero rows were affected, even if a statement works
successfully, because it is possible that an operation may not modify the data-
base. For example, the statement:

UPDATE customer SET zipcode='3053' WHERE city = 'Carlton'
always executes but mysql_affected_rows() returns 0 if there are no customers
who live in Carlton or if the Zip Code of the customers who live in Carlton is
already 3053.

If all rows in a table are deleted using a DELETE statement without a WHERE clause,
mysql_affected_rows() reports 0 rows were affected.

Examples using mysql_affected_rows() are in Chapter 8.

208 | Chapter6: QueryingWeb Databases

resource mysql_connect([string hostname[, string username [, string password [,
bool new connection [, int flags]]]]])

Establishes a connection to the MySQL server. The function returns a connec-
tion resource handle on success that can be used to access databases through

subsequent commands. Returns false on failure.

The command has five optional parameters. In practice, the first three parame-
ters hostname, username, and password are almost always used. The first permits
both a hostname and an optional port number; the default port for MySQL is
3306 (ports are discussed in more detail in Appendix D). The value localhost is
usually supplied as the hostname when the server runs on the same machine as

the PHP scripting engine.

This function should be called once in a script, assuming you don’t close the
connection (see mysql_close()) and you don’t want a connection with different
parameters. Indeed, subsequent calls to the function in the same script with the
same parameters don’t return a new connection: they return the same connec-
tion resource returned from the first successful call to the function. The excep-
tion is if the fourth parameter new _connection is supplied and set to true: if this
is the case, a new connection is always opened. This parameter was added in

PHP 4.2.

The fifth parameter flags was added in PHP 4.3, and doesn’t work reliably at

the time of writing. We don’t discuss it here.

The mysql_pconnect() function is a performance-conscious alternative to mysql_

connect(), and it’s discussed later in this section.

int mysql_errno([resource connection])

Returns the MySQL error number of the last error on the connection resource, or
zero if no error occurred. If no connection is provided, the most recently opened
connection is assumed. Any successful MySQL-related function call resets the
value of this function to zero, with the exception of mysql_error() and mysql_

errno(), which do not change the value.

string mysql_error(resource connection)

Returns a descriptive string of the last error on the connection resource or an
empty string if no error occurred. An optional connection can be supplied; other-
wise the most-recently opened connection is assumed. Any successful MySQL-
related function call resets the text to the empty string, with the exception of

mysql_error() and mysql_errno(), which do not change this value.

array mysql_fetch_array(resource result_set [, int result_type])

Fetches the result set data one row at a time. The first parameter is a result
resource result_set that was returned from a mysql_query() function call. The
results are returned as an array. The function returns false when no more rows

are available.

MySQL Function Reference |

The second parameter, result type, controls whether the returned array can be
accessed associatively by attribute name (MYSQL_ASSOC), numerically (MYSQL_NUM),
or using both styles (MYSQL BOTH). The default is MYSQL BOTH, and changing the
parameter won’t improve the speed of your code.

The default second parameter to mysql_fetch_array() of MYSQL_BOTH
works well, except when you plan to print out elements of a row with
the foreach loop statement. Because the elements are referenced both
numerically and associatively, each element prints out twice. If you
plan to use foreach, set the second parameter to MYSQL_ASSOC for asso-
ciative access or MYSQL_NUM for numeric access, and you’ll get only one
copy of the data in the array.

When associative access is used, values can be referenced in the array by their
table attribute names. Consider an example query on the wine table using the
mysql_query() function:

$result = mysql query("SELECT * FROM wine", $connection)
A row can then be retrieved into the array $row using:

$row = mysql fetch array($result)
After retrieving the row, elements of the array $row can be accessed by their
attribute names in the wine table. For example, print $row["wine_name"] prints
the value of the wine name attribute from the retrieved row. In this example,
because the default second parameter is MYSQL _BOTH, you can still access
attributes by their element numbers. For example, print $row[1] also works.

If more than one attribute has the same name in a SELECT clause, only the last-
listed attribute is available via the associative array, and the other attributes with
identical names must be accessed using another approach. The easiest tech-
nique is to avoid the problem altogether by making attribute names unique
within the database. Another approach is to use numeric access instead, but this
leads to hard to maintain, unreadable code. Yet another approach you can use is
attribute aliases. Attribute aliases allow you rename an attribute to another
name, and this name can be used instead throughout the query and in your PHP
code; attribute aliases use the SQL AS clause and are discussed in Chapter 15.
Let’s assume you’re stuck with a query that has duplicate attribute names. Con-
sider the following PHP fragment that deals with dates in the orders and items
tables:

$result = mysql query("SELECT orders.date AS odate, items.date AS idate,
FROM items, orders WHERE items.order id = orders.order id
AND items.cust id = orders.cust id", $connection);

$row = mysql_fetch_array($result);

print "Order: {$row["cust id"]}-{$row["order id"]} “;
print "Created: {$row["odate"]} Item added: {$row["idate"]}\n";

210

| Chapter6: Querying Web Databases

In this example, the orders.date attribute is renamed to odate and items.date is
renamed to idate. The new names can then be used to access the row values in
the $row array that’s returned from mysql_fetch_array(). If you use attribute
aliases, the alias must be used to access the data; access with the original
attribute name won’t work.

You can also use attribute aliases to alias functions in queries, and with mysql_
fetch_array() this leads to easier to write and read code when accessing the
result data. For example, the following fragment shows how the count of cus-
tomers of the winestore can be aliased and used:

$result = mysql query("SELECT count(cust id) AS custcount FROM customer”,
$connection);

$row = mysql fetch array($result);

print "There are {$row["custcount"} customers"”;

int mysql_insert_id([resource connection])
Returns the AUTO_INCREMENT identifier value associated with the most recently
executed SQL INSERT statement. The function returns 0 if the most recent query
doesn’t use AUTO_INCREMENT. The last connection opened is assumed if the
connection resource is omitted. This function is discussed in more detail in
Chapter 8.

This function should be called immediately after the insertion of a row and the
result saved in a variable, because the function works for a connection and not
on a per-query basis. Subsequent queries through the same connection make it
impossible to retrieve previous key values using this function.

The mysql_insert_id() function doesn’t work with the MySQL BIGINT
attribute type. If you use BIGINT for an AUTO_INCREMENT attribute, use
the MySQL function LAST_INSERT_ID() (that’s discussed in
Chapter 15) in an SQL SELECT statement to discover the value instead.

Consider an example where the AUTO_INCREMENT feature is used on the cust_id
attribute of the customer table. The function can be used to find out which cust_
id primary key value was assigned after a NULL or O was inserted into the
attribute during an INSERT INTO customer operation.

int mysql_num_rows(resource result_set)
This function returns the number of rows associated with the result_set query
result resource handle. Queries that modify a database should use mysql_

affected_rows().
A

The function mysql_num_rows() works only for SELECT queries, and it
.‘s‘ . doesn’t work with mysql_unbuffered_query() until all rows have been

* wke; retrieved from the result set. Unbuffered querying is discussed later in
this section.

MySQL Function Reference | 211

If the number of rows in a table is required but not the data itself, it is usually
more efficient to run an SQL query of the form SELECT count(*) FROM table and
retrieve the result, rather than running SELECT * FROM table and then using
mysql_num_rows() to determine the number of rows in the table.

resource mysql_pconnect([string host[:port] [, string user [, string password [,

int flags]]]])

This function is a performance-oriented alternative to mysql_connect() that reuses
open connections to the MySQL server. The p in mysql_pconnect() stands for per-
sistent, meaning that a connection to the server stays open after a script terminates.

This function opens a connection and returns the same results as its non-persis-
tent sibling mysql_connect(). It has the same first three optional parameters as
mysql_connect(), and since PHP 4.3, it has a fourth optional parameter that is
the same as the fifth parameter of mysql_connect(). This function, unlike it’s
non-persistent sibling mysql_connect(), doesn’t offer an argument that lets you
force open a new connection.

Open connections are maintained as a pool that is available to PHP. When a call
to mysql_pconnect() is made, a pooled connection is used in preference to creat-
ing a new connection. Using pooled connections saves the costs of opening and
closing connections. Whether persistency is faster in practice depends on the
server configuration and the application. However, in general, for web database
applications with many users running on a server with plenty of main memory,
persistency is likely to improve performance.

A connection opened with mysql_pconnect() can’t be closed with mysql_close().
It stays open until unused for a period of time. The timeout is a MySQL server
parameter, not a PHP parameter, and is set by default to 28800 seconds! It can
(and should) be adjusted with a command-line option to the MySQL server
script mysqld_safe or by changing the MySQL configuration file. For example, to
start your MySQL with the timeout set to a more realistic 10 seconds on the
command line, on a Unix system use:
% lusr/local/mysql/bin/mysqld_safe --set-variable interactive_timeout=10

To set the parameter permanently in your global MySQL configuration file, add
the following line under the [mysql] heading;:

set-variable= interactive timeout = 10
If you followed the installation instructions in Appendixes A through C, you’ll
find the file as /etc/my.cnf on a Unix system or C:\winnt\my.ini under Windows
2000/2003/NT and C:\windows\my.ini under Windows XP.

string mysql_real_escape_string (string query [, resource connection])

Escapes a query string so that it can be used as a parameter to mysql_query() or
mysql_unbuffered_query(). The function returns a copy of the input string that
has any special characters escaped so that is safe to use in an SQL query. This is
useful when querying with user data, or when loading data from an external
source; we discuss processing user data later in this chapter.

212

| Chapter6: Querying Web Databases

To carry out the escaping, the function checks the character set associated with
the optional connection. If no connection is provided, the most recently opened
connection is assumed. As an example, for the ASCII character set, this function
escapes single quote, double quote, NULL, carriage return, line feed, and SUB (sub-
stitute) characters by inserting a backslash character before them.

This function is available since PHP 4.3. If you’re using an older version, use
mysql_escape_string() which does not support the second parameter (and, there-
fore, does not take into account the character set of the connection).

resource mysql_query(string SOL [, resource connection [,int mode]])
Runs an SQL statement. The second argument is a connection resource returned
from a call to mysql_connect(). On success, the function never returns a false
value. For SELECT, SHOW, EXPLAIN, or DESCRIBE queries, the function returns a
query result resource that can be used to fetch data. For other SQL queries, the
function returns true on success. The function returns false on failure.

The query string passed to mysql_query() doesn’t need to be terminated with a
semicolon.

If the second parameter to mysql_query() is omitted, PHP tries to use any open
connection to the MySQL server starting with the most-recently opened. If no
connections are open, a call to mysql_connect() with no parameters is issued. In
practice, the second parameter should be supplied.

The third parameter defaults to MYSQL STORE RESULT, and we recommend not
changing it. Use the mysql_unbuffered_query() function that’s discussed later in
this section if you don’t want query results to be stored.

bool mysql_select_db (string database [, resource connection])
Uses the specified database on a connection. If the second parameter is omitted,
the last connection opened is assumed, or an attempt is made to open a connec-
tion with mysql_connect() and no parameters. We caution against omitting the
connection parameter. The function returns true on success and false on failure.

resource mysql_unbuffered_query(string query [, resource connection [, int
mode]])
This function starts a query, but returns immediately without retrieving and
buffering the whole result set. The parameters and return values are the same as
mysql_query().
This function is useful for queries that return large result sets or that are slow to
execute, as it allows the script to continue with the processing or formatting of
data while the query runs. Another advantage is that no resources are required to
store a large result set. In contrast, by default, the function mysql_query()
doesn’t return until the query is complete and the results have been buffered.

The third parameter defaults to MYSQL USE RESULT, and we recommend not
changing it. Use the mysql_query() function that’s discussed earlier in this sec-
tion if you want query results to be buffered.

MySQL Function Reference | 213

There are four important issues associated with the function:

* The number of rows produced by the query can’t be checked with mysql_
num_rows() until the total number of rows are known after the query fin-
ishes.

* Specific rows can’t be retrieved with mysql_data_seek() because data is
retrieved sequentially, and it’s not possible to seek to a row until it has been
retrieved.

* You must completely process each query on a connection before you run
another query. This means you have to retrieve all of the query results using,
for example, a while loop, even if you don’t need them. A workaround is to
use two server connections to run two queries at the same time, or to better
design your queries so that they only retrieve the data you really need.

* A script won’t finish until its server connections are no longer active. This
behavior confuses new users: the function call will return immediately, but
the script won’t end and free its resources until all of its queries finish run-
ning.

* The function is otherwise identical to mysql_query(). It is available in PHP
4.0.6 or later.

Other Functions

string mysql_client_encoding([resource connection])

Returns the name of the character set in use on the connection. If a connection
isn’t provided, the most recently opened connection is assumed. Available since
PHP 4.3.0.

bool mysql_close([resource connection])

Closes a MySQL connection that was opened with mysql_connect(). The
connection parameter is optional. If it is omitted, the most recently opened con-
nection is closed. Returns true on success and false on failure.

The primary use of this function is to save resources when you don’t want a con-
nection to stay open while a script runs. Most programs do not need to call this
function because they use the connection until shortly before they terminate,
and their termination automatically cleans up open connections.

This function has no effect on persistent connections opened with mysql_
pconnect().

bool mysql_data_seek(resource result, int row)

This function lets you retrieve only selected results from a query, which is useful
to reduce processing in an application. For example, executing the function for a
result with a row parameter of 10, and then issuing a mysql_fetch_array()
retrieves the eleventh row of the result set; rows are numbered from zero.

The parameter result is a result resource returned from mysql_query(). The
function returns true on success and false on failure. A common source of fail-

214

| Chapter6: Querying Web Databases

ure is that there are no rows in the result set associated with the result resource.
A prior call to mysql_num_rows() can be used to determine if results were
returned from the query.

N w

X The mysql_data_seek() function cannot be used with mysql_
,“.“ . unbuffered_query().

4

object mysql_fetch_field(resource result [, int attribute number])
Returns the metadata for each attribute associated with a result resource
returned from a query function call. An optional attribute number can be speci-
fied to retrieve the metadata associated with a specific attribute. However,
repeated calls process the attributes one by one.
The properties of the object returned by the function are:

name
The attribute name

table
The name of the table to which the attribute belongs.

max_length
The maximum length of the attribute.

not_null

Set to 1 if the attribute cannot be NULL.
primary_ key

Set to 1 if the attribute forms part of a primary key.
unique_key

Set to 1 if the attribute is a unique key.
multiple_key

Set to 1 if the attribute is a non-unique key.
numeric

Set to 1 if the attribute is a numeric type.

blob
Set to 1 if the attribute is a BLOB type.
type
The type of the attribute.
unsigned
Set to 1 if the attribute is an unsigned numeric type.

zerofill
Set to 1 if the numeric column is zero-filled.

def
The default value of the attribute (if specified).

MySQL Function Reference | 215

array mysql_fetch_lengths(qresource query)

Returns an array of attribute lengths associated with the most-recently retrieved
row of data. The argument to the function is a query result resource that has
been used to retrieve at least one row. The elements of the returned array corre-
spond to the length of the values in the array returned from the most-recent call
to mysql_fetch_array() or mysql_fetch_object(). It returns false on error.

This function returns the length of a value within the query results, not the max-
imum length of an attribute as defined in the database table. Use the function
mysql_fetch_field() to retrieve the maximum allowed length of an attribute.

object mysql_fetch_object(resource result)

This function is an alternative for returning results from a query. It returns an
instance of an object that contains one row of results associated with the result
resource, permitting access to values in an object by their table attribute names.
It returns false when no more rows are available.

For example, after a query to SELECT * from wine, a row can be retrieved into the
object $object using:

$object = mysql fetch object($result)
The attributes can then be accessed in $object by their attribute names. For
example:

print $object->wine_name
prints the value of the wine_name attribute from the retrieved row.

N
It’s hard work to use objects returned from mysql_fetch_object() to
s access aggregate functions, and sometimes you’ll get into trouble with
%k attribute names and corresponding variable name limitations. Also,
* attributes can’t be accessed numerically. However, attribute aliases
(which are discussed in Chapter 15) can help in most cases.

In our applications, we exclusively use mysql_fetch_array() instead.

bool mysql_free_result(resource result)

This function frees the resources associated with a query result resource.
Resources are cleaned-up when a script finishes, so this function is only needed
if a script repeatedly queries the server or if several large result sets are buffered.
The function returns true on success and false on failure.

string mysql_get_client_info()

Returns a string that describes the MySQL client library used by PHP. Available
since PHP 4.0.5.

string mysql_get_host_info([resource connection])

Returns a string that describes a MySQL server connection. The string contains
the type of connection (TCP or Unix socket) and the host name. An optional
connection resource handle may be provided as the parameter; otherwise the
most recently opened connection is assumed. Available since PHP 4.0.5.

216

| Chapter6: Querying Web Databases

int mysql_get_proto_info([resource connection])
Returns an integer that is the protocol version used in a MySQL server connec-
tion. An optional connection resource handle may be provided as the parameter;
otherwise the most recently opened connection is assumed. Available since PHP
4.0.5.

string mysql_get_server_info([resource connection])
Returns as a string the version of the MySQL server. An optional connection
resource handle may be provided as the parameter, otherwise the most recently
opened connection is assumed. Available since PHP 4.0.5.

string mysql_info([resource connection])

Returns a descriptive string such as Records: 20 Duplicates: 0 Warnings: 0 that
describes the results of the last INSERT, LOAD DATA INFILE, ALTER TABLE or UPDATE
query; the ALTER TABLE and LOAD DATA INFILE statements are discussed in
Chapter 15. The string is the same as returned in the MySQL command inter-
preter after running the query. This is useful to display to database administra-
tors, or can be parsed and used in application logic when mysql_affected_rows()
doesn’t serve the purpose. Available since PHP 4.3.0.

resource mysql_list_processes([resource connection])
Returns a resource that can be used with mysql_fetch_array() to retrieve infor-
mation about active processes running on the database server. An optional
connection can be provided or the most recently opened connection is assumed.
The data that is returned has the following array keys: Id (process ID), User, Host,
db (currently selected database), Command (the currently running command in the
process), Time (elapsed run time), State, and Info. Available since PHP 4.3.0.

int mysql_num_fields(resource result_set)
Returns the number of attributes associated with a result set handle result_set.
The result set handle is returned from a prior call to mysql_query().

In practice, you probably don’t need to use this function. If you use mysql_fetch_
array(), the count() function gives you the same result.

bool mysql_ping([resource connection])
Checks whether a connection is working. Returns true on success, and false on
failure. If a connection isn’t provided, the most recently opened connection is
assumed. When the connection isn’t working, an automatic attempt is made to
reestablish the connection.

The function’s primary use is checking if a remote connection is still working
during a lengthy operation, and trying to recover if it isn’t. Most of the time, in
simple PHP scripts, you’ll be able to detect errors with the MySQL error func-
tions that are discussed in the next section. Available since PHP 4.3.0.

int mysql_thread_id([resource connection])
Returns the current thread or process identifier. An optional connection can be
provided, or the last opened connection is assumed. It returns false on failure,
although it very rarely fails. Even if a connection is not open, a sensible value is

MySQL Function Reference | 217

returned—the function will fail only if the MySQL server isn’t running. Avail-
able since PHP 4.3.0.

Functions to Avoid

Several MySQL functions don’t need to be used:

The functions of mysql_fetch_field() are also available in the non-object-based
alternatives mysql_fetch_length(), mysql_field_flags(), mysql_field_name(),
mysql_field_len(), mysql_field_table(), and mysql_field_type(); as these func-
tions are almost a complete subset of mysql_fetch_field(), we don’t describe
them here and we don’t use them in our applications.

The function mysql_result() is a slower alternative to fetching and processing a
row with mysql_fetch_array() and shouldn’t be used in practice.

mysql_fetch_assoc() and mysql_fetch_row() retrieve one row of results from a
query. Each provides half the functionality of mysql_fetch_array(). Because
mysql_fetch_array() provides both sets of functionality—or can provide the
same functionality by passing through MYSQL ASSOC or MYSQL NUM as the second
parameter—it can be used instead.

mysql_field_seek() can seek to a specific field for a subsequent call to mysql_
fetch_field(), but this is redundant because the field number can be supplied
directly to mysql_fetch_field() as the optional second parameter.
mysql_db_query() was popular in PHP 3, and combines the functionality of
mysql_select_db() and mysql_query(). This function has been deprecated in
recent releases of PHP because it is slower than selecting the database once with
mysql_select_db(), and then issuing queries.

mysql_change_user() is used to change the username associated with an open
connection. This function is broken in PHP 4.

mysql_escape_string() is a deprecated version of mysql_real_escape_string() that
ignores the current character set for a MySQL connection.

mysql_drop_db() has been deprecated because it’s easy to issue a MySQL DROP
DATABASE statement instead.

mysql_create_db() performs the same function as a MySQL CREATE DATABASE
statement.

mysql_db_name() and mysql_list_dbs() perform the same function as a MySQL
SHOW DATABASES, and then using mysql_fetch_array() to retrieve the database
names.
mysql_tablename() and mysql_list_tables() perform the same function as a
MySQL SHOW TABLES, and then using mysql_fetch_array() to retrieve the table
names.

mysql_stat() performs a subset of the functions of the MySQL SHOW STATUS
command.

218

| Chapter6: Querying Web Databases

CHAPTER 7
PEAR

PEAR is the PHP Extension and Application Repository and is pronounced the same
as the fruit. It provides standard, structured, maintained packages of code for com-
mon tasks such as data validation, accessing database servers, payment processing,
using web services, processing images, and reading and writing files. Installing,
updating, and using the PEAR packages is easy, and core components are now
installed with the standard PHP installation. In this chapter, we explain how to build
robust, maintainable middle-tier software using PEAR.

One of the original design features of PHP was its flexibility for adding scripts to
HTML documents. For simple applications, this is an excellent feature. For complex
applications, it leads to difficult-to-maintain code and inflexible HTML. We show
you how to solve separating scripts from HTML using PEAR’s Integrated Tem-
plates. We also show you how make your PHP code independent of the database
server you choose with PEAR’s DB layer. With these two techniques, you’ll be able
to develop maintainable code that’s independent of the client and database tiers.

In addition to database access and templates, we also explain how to install PEAR
packages and introduce 40 popular PEAR packages. Our case study application,
Hugh and Dave’s Online Wines, is built with several of these PEAR packages, as well
as PEAR DB and Integrated Templates. It’s discussed in detail in Chapters 16
through 20.

Overview

PEAR is a web-based repository for common application components and PHP
extensions. Version 1.0 was released as an integrated part of PHP 4.3.0 for Unix sys-
tems, and in PHP 4.3.2 for Microsoft Windows. The current release of PEAR
includes packages for:

* Working with HTML and HTTP

* Manipulating and validating user data

219

* Sending, receiving, and processing email

* Credit card payment processing

* Using web services including SOAP

* Encryption

* Reading and writing files including compressed archives
* Graphing and image processing

e Using XML

Each package is a separate product, with its own development team, but each uses
PEAR foundation classes and almost all adhere to the PEAR coding standards. Simi-
larly to PHP, the complete source code of the packages is available, and it’s often
useful as a supplement to the sparse and sometimes dated online documentation.

The package installation process is easy: packages are installed by typing a com-
mand at the shell prompt in Unix-style systems or by running a batch utility in
Microsoft Windows. This is possible because all packages are registered and stored
in the central http://pear.php.net repository that also provides account and version
management to the developers. In addition, the packages are arranged so that if they
depend on each other, you’ll be alerted if you’re missing a package during the instal-
lation process. We discuss installation in the section “Optional Packages.”

Our focus in this chapter is describing how you can install and use packages, and
how to work with the Integrated Templates and PEAR DB packages. We also briefly
discuss other packages, and some are discussed further in Chapter 9 where we dis-
cuss data validation.

PEAR has other components that we don’t discuss in detail here:

* A PHP coding standard primarily for the developers of packages.
* PECL (pronounced pickle), a repository of C programming language extensions
that have traditionally been distributed with PHP.

* Gtk packages for use with the PHP-GTK project that provides tools for develop-
ing window-based applications. See http://gtk.php.net.

Core Components

PEAR’s core components are general-purpose, reliable packages that work with most
web servers, database servers, browsers, and operating systems. If you’re using PHP
4.3 or later on a Unix system, the PEAR core components and the PEAR installer for
adding other packages are already installed and ready for use. For Microsoft Win-
dows, the integration occurred in PHP 4.3.2.

The list of core components can change but at the time of writing it includes:

220 | Chapter7: PEAR

PEAR base and error handling classes
These are the foundations of other PEAR packages, and you don’t need a
detailed understanding of them unless you plan to develop your own package.
We discuss error handling in our introduction to PEAR DB in the next section.

PEAR Console command-line parsing
Used for non-web scripts.

PEAR DB
Database server abstraction. Discussed in detail in the next section.

HTTP methods
Used to format HTTP-compliant dates, negotiate language, and compress data
for fast transfer.

PEAR Mail
Used for mail sending, including platform independence, MIME attachments,
and correct email address validation.

PEAR System
Platform-independent commands for making and removing directories and files,
concatenating files, and finding the full path of a program.

What'’s Installed?

Now, let’s check the core components distributed with your PHP installation.

Unix systems—PHP 4.3.0 and later

For the instructions in this section to work, you must have followed our installation
instructions in Appendixes A to C. You also need an active Internet connection.

To check the list of components installed, you need to login as the root user; to do
this, type su at a shell prompt and provide the root user password.

If you’re working with Mac OS X, type at a shell prompt:
% cd /usr/local/bin

Then, on all systems, type the following at a shell prompt:
% pear list

You’ll see a list in the following format:

Installed packages:

Hmmm e Hmmmmm e Hmmmmm e +
| Package | Version | State |
| Archive Tar | 0.9 | stable |
| Console Cetopt | 1.0 | stable |
| DB | 1.3 | stable |
| HTTP | 1.2 | stable |
| Mail | 1.0.1 | stable |

Core Components | 221

| Net SMTP | 1.0 | stable |
| Net Socket | 1.0.1 | stable |
| PEAR | 1.0b3 | stable |
| XML_Parser | 1.0 | stable |
| XML_RPC | 1.0.4 | stable |

You may find that the versions you have are different. This isn’t a problem.

Microsoft Windows—PHP 4.3.2 and later

For the instructions in this section to work, you must have followed our installation
instructions in Appendixes A to C. You also need an active Internet connection.

Start by launching a command window. You can do this by running the file
command.com or running a DOS prompt window (if it’s listed in your Accessories
group under Programs in your Start Menu).

To run command.com, click on the Start Menu, then the Run option. Now, type
command. com and press Enter.

In your command window, change directory to the pear install directory. If you've
followed our install instructions in Appendixes A to C, type:

C:\> cd c:\Progra~1\EasyPH 1\php\pear
Then, type the following:
C:\> pear.bat list
A list of installed packages is shown in the following format:

INSTALLED PACKAGES:

PACKAGE VERSION STATE

Archive_Tar 0.9 stable
Console_Getopt 1.0 stable
DB 1.3 stable
HTTP 1.2 stable
Mail 1.0.1 stable
Net SMTP 1.0 stable
Net_Socket 1.0.1 stable
PEAR 1.0b3 stable
XML_Parser 1.0 stable
XML_RPC 1.0.4 stable

You may find that the versions you have are different. This isn’t a problem.

If you want to close the command window, type exit. However, you’ll need this win-
dow later in this chapter, so keeping it open is fine.

Using PEAR DB

In most PHP applications, one of the server-specific database libraries is used to
access the database server. In Chapter 6, we showed you how to access the MySQL

222 | Chapter7: PEAR

sever using the MySQL library functions. In this section, we show you how to
develop reasonably server-independent scripts using PEAR’s DB component. We also
use the PEAR DB class throughout our online winestore in Chapters 16 through 20.

Should I use PEAR DB?

If you want server-independent function calls, PEAR’s DB component is ideal
because the code usually doesn’t change when you change the underlying database
server. However, there are sometimes needs for small changes, such as catering for
different function return values or rewriting code because a database server doesn’t
support a feature. For example, only some of the underlying servers support the
tableInfo() method for returning metadata about table attributes.

If you don’t use PEAR DB, changing database servers can be time-consuming. If you
switch between similar libraries—such as the MySQL and PostgreSQL libraries—
then updating the code usually doesn’t require too much work: it’s largely a case of
changing the mysql_ prefix to a pgsql_ prefix, and perhaps tackling complex querying
in a different way. However, if you change to a less-similar library—such as one of
the Oracle libraries or ODBC—then more work is required even for the simple tasks.

PEAR DB will almost give you function library independence, but it won’t give you
complete database server independence. SQL isn’t the same between any two serv-
ers: as we discussed in Chapter 1, combinations of the features of SQL-89, SQL-92,
and SQL-99 are often implemented, and many servers have proprietary statements
for tasks. For example, MySQL supports entry-level SQL-92, but uses proprietary
clauses such as LIMIT and AUTO_INCREMENT, and attribute types such as LONGINT and
TIMESTAMP. Even if you use PEAR DB, it’s almost impossible (and probably not sensi-
ble) to avoid using proprietary SQL.

For many developers, it isn’t clear whether database abstraction offers an advantage:
many developers don’t bother writing server-independent code because their SQL is
tied to the database server. In fact, if you’re sure you’ll be using one database server
for the lifetime of an application, we recommend using the proprietary library so that
you can take advantage of the specialized functions designed for the database server.

In most of the applications we’ve developed, we’ve used the MySQL library func-
tions outlined in Chapter 6. However, to illustrate how to use PEAR DB and to give
you code that will work with minimal modification for other database servers, we’ve
used it to develop our online winestore in Chapters 16 through 20.

Getting started

In this section, we assume you’ve read Chapter 6 and are familiar with the basic que-
rying processes and the core MySQL library functions. Also, you’ll need to be famil-
iar with the basic object-oriented PHP features discussed in Chapter 4.

Example 7-1 shows how to connect, query, and retrieve results using PEAR DB. The
example is an extended version of Example 6-1 that includes error handling.

Core Components | 223

Example 7-1. Using PEAR DB to query the winestore database

<IDOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html401/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Wines</title>
</head>
<body><pre>
<?php
require once "DB.php";
require "db.inc";

$dsn = "mysqgl://{$username}:{$password}@{$hostName}/{$databaseName}";

// Open a connection to the DBMS
$connection = DB::connect($dsn);

if (DB::isError($connection))
die($connection->getMessage());

// (Run the query on the winestore through the connection
$result = $connection->query("SELECT * FROM wine");

if (DB::isError($result))
die ($result->getMessage());

// While there are still rows in the result set, fetch the current
// row into the array $row

while ($row = $result->fetchRow(DB_FETCHMODE ASSOC))

{

// Print out each element in $row, that is, print the values of
// the attributes
foreach ($row as $attribute)

print "{$attribute} ";

print "\n";
}
>
</pre>
</body>
</html>

As discussed previously, there’s no need to download or install any extra compo-
nents to use the PEAR core components. The PEAR DB class is used within a script
by requiring it:

require_once "DB.php";

If you find that your PHP engine can’t find DB.php, it’s likely that your include_path
directive in your php.ini configuration file doesn’t include the PEAR directory. Check
the installation instructions for your platform in Appendixes A to C.

224 | Chapter7: PEAR

Connecting to a database server uses a URL-style string. In the example, this string
consists of the familiar $username, $password, $hostName, and $databaseName from the
db.inc require file:

$dsn = "mysql://{$username}:{$password}@{$hostName}/{$databaseName}";
For the defaults in the db.inc file, this gives the string:
mysql://fred:shhh@localhost/winestore

We store the string in a variable with the acronym $dsn to signify this is the data
source name. The prefix mysql:// indicates the MySQL server, and the string fred:
shhh@localhost specifies the username, password, and host parameters that are used
with the mysql_connect() and mysql_pconnect() functions. Rather than use the sepa-
rate mysql_select_db() function to use the database, it’s specified following a for-
ward slash character.

The connection itself is established with the method DB::connect():
$connection = DB::connect($dsn);
The notation DB:: means that the method connect() is a member of the class DB.

Error handling is discussed in the next section.

The DB::query() method works similarly to mysql_query(), taking the SQL query as
a parameter and returning a result resource that can be used to retrieve data from a
SELECT query:

$result = $connection->query("SELECT * FROM wine");
The result rows are retrieved using the DB::fetchRow() method:
while ($row = $result->fetchRow(DB_FETCHMODE ASSOC))

The method behaves similarly to mysql_fetch_array(). The parameter DB_FETCHMODE _
ASSOC specifies that the return array has associatively-accessible elements that are
named with the database attribute names or attribute aliases; however, this isn’t
important in this example because we use foreach to iteratively process all elements
of the array.

Handling errors in PEAR DB

The error status of any database server method can be tested using DB::isError().
Unlike in the MySQL library, this method can be used regardless of whether a con-
nection has been established yet or not. If an error occurs, the getMessage() method
can be used to retrieve a descriptive string as in the following example:

// Open a connection to the DBMS
$connection = DB::connect($dsn);

if (DB::isError($connection))
die($connection->getMessage());

Core Components | 225

The getMessage() method is part of the core PEAR error class. The method works
similarly for testing errors from queries:

$result = $connection->query("SELECT * FROM wine");

if (DB::isError($result))
die ($result->getMessage());
Note that the method can be used with many types of objects: for connections, we
use the $connection object and for results we use $result.

If a method or parameter is unsupported by the underlying database server, you’ll
find that the following error is reported:

DB error: database not capable

Essential functions for accessing MySQL with PEAR DB

Methods for interacting with database servers using PEAR DB are the subject of this
section. We’ve included the essential methods, and omitted those that are less-fre-
quently used, redundant, or aren’t used with MySQL. More detail on all methods
can be found in the PEAR manual at http://pear.php.net/manual/en/package.database.
php#package.database.db.

For most PEAR DB methods, we’ve noted which native MySQL functions are used in
the library to implement the functionality that’s described. Chapter 6 presents the
detail of the underlying MySQL functions, and you’ll find that the limitations and
advantages of those functions affects PEAR DB too. We recommend reading the
MySQL function notes in conjunction with the PEAR DB descriptions.

mixed DB::affectedRows()
Returns the number of rows that were affected by the previous database-modify-
ing query. Returns a DB_ERROR object on failure. (The return type mixed indicates
that the type of the value returned by the method isn’t always one type.)

For MySQL, the underlying function is mysql_affected_rows(). However, unlike
mysql_affected_rows() a workaround ensures affectedRows() provides the cor-
rect value when all rows are deleted from a table. DB_Result::numRows() should
be used for queries that do not modify the database.

This method, and database modifications in general, are discussed in Chapter 8.

mixed DB::connect(string dsn [, bool persistent])
Connect to a DBMS using the parameters specified in the data source name dsn.
If persistent is true and the DBMS supports persistent connections, a persistent
connection is used, otherwise the default of false returns a non-persistent con-
nection. The function returns a database connection object on success or a DB_
error object on failure.

The data source name dsn is specified in the following format or one of its sim-
plifications:

dbms://username:password@protocol+host:port/database

226 | Chapter7: PEAR

where the following is applicable:

dbms
The type of DBMS to connect to. The options that are supported in release
1.17 are dbase (dBase file support), fbase (FrontBase), ibase (InterBase), ifx
(Informix), mssql (Microsoft SQL server), msql (mSQL), mysql (MySQL 3.x),
mysqla (MySQL 4.x), oci8 (Oracle OCIS8), odbc (ODBC), pgsql (Postgre-
SQL), and sybase (Sybase).

username
The username to connect with.

password
The password associated with the username.

protocol
Communication protocol such as tcp or unix. Often omitted.

host
The hostname of the DBMS server. Often localhost for the local machine.

port
The port to connect to on the host.

database
The name of the database to use on the connection.

Several simplifications of the dsn are possible and are described in the manual.
By far the most common format uses the default protocol and port:

dbms://username:password@host/database

For MySQL, mysql_connect() is used if the second parameter is false or omit-
ted, and mysql_pconnect() is used when it’s true.

mixed DB::createSequence(string name)
Creates a new sequence name. Returns the result of the query that creates the
sequence, or a DB_ERROR object on failure. See DB::nextld() for an introduction to
sequences. An example of using sequences in presented in Chapter 8.

mixed DB::dropSequence(string name)
Deletes a sequence name. Returns the result of the query that deletes the
sequence, or a DB_ERROR object on failure. See DB::nextld() for an introduction to
sequences. An example of using sequences in presented in Chapter 8.

mixed DB_Result::fetchRow([int mode [, int row]])
Retrieve a row of results using an optional mode and an optional row. By default,
the rows are returned into a numerically-accessed array. The function returns the
row on success and NULL when there is no more data to fetch. On error, it returns
a DB_ERROR object.

The mode can be one of DB_FETCHMODE ORDERED (a numerically accessed array,
which is the default when no parameter is supplied), DB_FETCHMODE ASSOC (an
associatively accessed array), or DB_FETCHMODE _OBJECT (an object with attribute
names as properties). An optional row to retrieve can be specified after the mode.

Core Components | 227

For MySQL, the current release uses mysql_fetch_array() to provide the func-
tionality of DB_FETCHMODE ASSOC and DB_FETCHMODE OBJECT, and its numeric-only
sibling mysql_fetch_row() for numeric access. The function mysql_data_seek() is
used to retrieve specific rows.

bool DB::isError(DB_error object)
Reports true when the parameter object is of type DB error, and false other-
wise. It is often used with the return values of DB::connect() and DB::query() as
the parameter. The error is usually output using getMessage() as shown in the
previous section.

mixed DB::mextld(string name [, bool create])
Returns the next unique identifier value associated with the string name or a DB_
ERROR object on failure. The identifier that is returned is usually used as input
into an INSERT statement to create a new row with a unique primary key value. If
the sequence name does not exist, it is automatically created if create is set to
true (which is the default). Sequences can be manually created with DB::
createSequence() and deleted with DB::dropSequence().

In the PHP MySQL library, the mysql_insert_id() function returns the unique
value associated with an INSERT operation after the operation has occurred. In
contrast, the DB::nextId() method reports a table-independent value prior to the
INSERT operation occurring. Database modifications are discussed further in
Chapter 8, and an example of using DB::nextlId() is presented there.

int DB_Result::numRows()
Returns the number of rows associated with a query result object, or a DB_ERROR
object on failure. DB::affectedRows() should be used for queries that modify the
database.

In MySQL, the function mysql_num_rows() provides the underlying functional-
ity.
mixed DB::query (string query [, array parameters])

Executes an SQL query. An optional array of parameters can be provided to pre-
pare a query; we discuss query preparation in Appendix F.

For MySQL, the function returns a MySQL result resource for SELECT queries on
success, the constant DB_OK for other successful queries, and a DB_ERROR object on
failure.

string DB::quote(string query)
Escapes a query string so that it can be used a parameter to DB::query(). It
returns a copy of the input string that has any special characters escaped. For a
MySQL connection, the function uses mysql_real_escape_string() in PHP 4.3 or
later, and mysql_escape_string() otherwise.

228 | Chapter7: PEAR

mixed DB_Result::tableInfo(DB_Result result [, int mode])
Returns an array of metadata about the attributes of the result set using an

optional mode. Returns a DB_ERROR object on failure. The function works for
MySQL, MS-SQL, FrontBase, and PostgreSQL.

With no second parameter, the array that is returned is two-dimensional. The
first dimension is the attribute number, and the second has the following asso-
ciative keys:
name

The name of the attribute.
type

The attribute type.
len

The attribute maximum length.

flags
A string containing a list of attribute flags. For example, in MySQL the flags
can include not_null, primary key, auto_increment, and timestamp.

table
The name of the table associated with the attribute.

You can pass a second parameter, DB_TABLEINFO ORDER, which makes one addi-
tional element available. This element can be retrieved through the associative
key order. Its second dimension is filled with the names of the attributes and the
values are set to the attribute numbers. This allows you to determine the
attribute number using the attribute name, so that the metadata can be accessed
in two steps by attribute name. For example, to access the attribute length meta-
data for the attribute wine_name:

$array = $result->tableInfo($result, DB_TABLEINFO ORDER);

// What's the attribute number of wine name?
$number = $array["order"]["wine_name"];

// Print out the length of the wine_name
print "Attribute length: {$array[$number]["len"]}";
Another second parameter is available, but it is unnecessary if you use attribute

aliases in your queries to avoid duplicate attribute names as discussed in
Chapter 6.

The function is similar in concept to mysql_fetch_field() but it returns an array
instead of an object. It is implemented for MySQL using the non-object based
siblings of mysql_fetch_field() (which are listed in Chapter 6 as functions we
don’t recommend you use).

Core Components | 229

Packages

In this section, we discuss the optional packages that are available with PEAR, how
to find out about them, how to find new ones, and how to install the ones you need.
However, our focus is the optional HTML Integrated Template (IT) package, which is
used to separate HTML presentation from PHP code. We show you how to use tem-
plates in an application, present working examples, and detail the key functions from
the package and its extended child ITX templates. A longer template case study is
presented in Chapter 16.

After our discussion of the IT package, we list the other packages that are available,
and point to where selected packages are used in other chapters of this book.

Installing, Upgrading, and Understanding Packages

This section describes how to install and upgrade PEAR packages, and how to find
out more information about them. For Unix platforms, including Mac OS X, the
instructions are valid for PHP 4.3.0 or later versions. For Microsoft Windows, PEAR
installation and upgrade is available after PHP 4.3.2.

Finding out about packages

At the time of writing, the PEAR documentation available at http://pear.php.net/
manual/en/ was incomplete. However, you’ll find some useful information there, par-
ticularly about the core components and a handful of the popular optional packages.

To go beyond the limited documentation, the first step is to access the package
browser at hitp://pear.php.net/packages.php or search for a known package directly at
http://pear.php.net/package-search.php. You can also access the same information
using the PEAR installer, as described later in this section. This process provides you
with concise information that sums up a package, and often a link to the project’s
homepage that may contain more details and code examples.

To begin to use a package, the best approach is to install it, review the source code of
the package, and read any relevant postings to the php.pear.general newsgroup
which is accessible at http://news.php.net/. To review the source code, you can follow
two approaches: first, visit the source at http://cvs.php.net/cvs.php/pear/; or, second,
view it on your system after the install process using the approach described later in
this section. This process can sometimes be laborious but it’s worth remembering
that many of these packages are new, emerging, and supported to different degrees
by their development teams. Reading source code is definitely worthwhile.

Using the PEAR installer

You need an Internet connection to complete this section.

230 | Chapter7: PEAR

As we discussed previously, a list of the packages installed with your PHP installa-
tion can be obtained at a shell prompt in a Unix system (when you’re logged in as
root) using:

% pear list
On a Microsoft Windows platform, you do this in a command window with:
C:\> pear.bat list

In the remainder of this section, we only list the Unix commands and show a Unix
shell prompt. To use the command in Microsoft Windows, replace pear with pear.bat.

To find out about one of the packages installed on your system, you can ask for
details or visit the package browser at http://pear.php.net/packages.php. For example,
to find out more about the HTML_Template_IT package type:

% pear info HTML_Template_IT

In response, you’ll get a page of information that describes the package, its current
release, licensing requirements, and its release state. The release state is one of Sta-
ble, Beta, Alpha, or Devel(opment). The majority of packages are Stable, with the
remaining majority in Beta testing. Use non-stable packages with caution.

If your computer has an Internet connection, you can check whether your packages
can be upgraded to later releases by typing:
% pear list-upgrades

This requests information from the pear.php.net server. In response, the pear installer
will report information such as:

Available Upgrades (stable):

B T e R +
| Package | Version | Size |
| Archive Tar | 1.0 | 12.4kB

| Mail | 1.0.2 | 12.1kB |
| Net SMTP | 1.1.2 | 5.2kB |
| PEAR | 1.0.12 | 75kB |
| XML Parser | 1.0.1 | 4.9kB |

You can obtain the same information by browsing the packages at the PEAR web site
http://pear.php.net/.

All information is for stable releases of packages, which can be safely installed and
used. You can choose to upgrade a specific package or upgrade all out-of-date pack-
ages. For example, to upgrade only the PEAR base class:

% pear upgrade PEAR
The PEAR installer retrieves the package and responds with:

downloading PEAR-1.0.1.tar ...
...done: 395,776 bytes
upgrade ok: PEAR 1.0.1

Packages | 231

Sometimes, the upgrade process can fail but helpful information is provided as to
why. For example, an upgrade of the Net_SMTP package often fails for PHP 4.3.2:

% pear upgrade Net SMTP

downloading Net SMTP-1.1.2.tar ...

...done: 29,184 bytes

requires package “Auth SASL'

Net SMTP: dependencies failed
In order to proceed, the Auth_SASL package is needed first. This can be achieved
with:

% pear install Auth_SASL
You can then try again to install the Net_SMTP package using pear upgrade.

As discussed in the previous section, viewing source code is an excellent method to
understand how a package works. After you've installed a package, you’ll find it
below the directory /usr/local/lib/php/ on most Unix systems, in /ust/local/php/lib/php
under Mac OS X, or in C:\Program Files\EasyPHP1-7\php\pear\pear on a Microsoft
Windows system if you’ve followed our PHP installation instructions in Appendixes
A to C. The majority of the core packages are in the directory itself, while the
optional packages are stored in subdirectories that are named according to the pack-
age category. For example, the IT templates that are discussed in the next section are
found in the HTML subdirectory. Other popular package categories are listed later in
the section “Optional Packages.”

The PEAR installer isn’t always reliable or well-configured on every system. If you
have problems installing or upgrading packages, you can download packages from
the PEAR web site and put them in the PEAR directories manually. This is also a use-
ful trick for getting PEAR packages working without root or administrator user
access: download the packages you need, uncompress them, put them in a directory
that you’ve created, and then include the package file in your PHP script.

Using HTML Templates

Separating code from HTML can be difficult in PHP. As we discussed in Chapter 1
and have shown so far in this book, one of the best features of PHP is that scripts can
be embedded anywhere in HTML documents. However, this can lead to mainte-
nance problems: if you want to redesign the presentation of the web site, you may
need to rewrite code or, at the very least, understand how PHP and HTML are inter-
leaved in the application. This also makes it difficult to maintain code when it is
interleaved with presentational components.

A good solution for medium- to large-scale web database applications is to use tem-
plates to separate markup and code. In this section, we illustrate how PEAR Inte-
grated Templates (IT) can be used in PHP applications through simple examples, and
also show you an example with Extended Integrated Templates (ITX).

232 | Chapter7: PEAR

There are many other good templating environments, including a few others in
PEAR itself. Outside of PEAR, the Smarty PHP template engine is popular and flexi-
ble, and available from http://www.phpinsider.com/php/code/Smarty.

To use the IT and ITX packages, you need to install the package HTML_Template_
IT. To do this, you can follow the general instructions in the previous section or the
detailed instructions for Linux, Mac OS X, and Microsoft Windows platforms in
Appendices A to C.

Working with blocks and placeholders

In our first example, we show you how to develop the basic components needed in
most templated PHP code: an HTML template and its accompanying PHP script.
Our aim in this example is to display a list of customers in an HTML table environ-
ment. The customer data is stored in a customer table in MySQL that was created
with the following statement:

CREATE TABLE customer (
cust_id int(5) NOT NULL,
surname varchar(50),
firstname varchar(50),
initial char(1),
title id int(3),
address varchar(50),
city varchar(s0),
state varchar(20),
zipcode varchar(10),
country id int(4),
phone varchar(15),
birth date char(10),
PRIMARY KEY (cust_id)

) type=MyISAM;

Example 7-2 is the template that acts as a placeholder to show selected customer
information. In our example, the template is saved in the file example.7-2.tpl and

stored in a templates directory below our main htdocs directory that contains the
PHP scripts.

Perhaps the most surprising thing about a template is that it is usually well-formed
HTML 4.01. Indeed, when it’s viewed in a Mozilla browser as shown in Figure 7-1, it
has the features of a customer listing but with only one row and with placeholders in
curly braces shown instead of the customer details. We always use uppercase charac-
ters for our placeholders so that they stand out in the template and in the code, but
this isn’t required.

A s
iy Placeholder and block names can consist of alphabetic and numeric
.‘s‘ characters, as well as underscores and hyphens. Spaces and other char-
e = s
1k acters aren’t allowed.

For blocks, a single space must precede and follow the keywords BEGIN
and END, and a single space must follow the block name.

Packages | 233

The other difference between a typical HTML page and a template is that the tem-
plate contains comments that include the tags BEGIN and END. These comment tags
are in pairs that have matching labels that define a block. In this example, there’s one
block that has the label CUSTOMER.

Blocks represent units of information that are optional or can repeat. In
Example 7-2, the CUSTOMER block surrounds a prototype data row that is output once
for each customer in the database. In our PHP script, we control the presentation by
assigning each row of data from the database to the block, and then parsing and out-
putting the completed row as HTML to the browser.

Example 7-2. A template for displaying customer details

<IDOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html401/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Customer Details</title>
<body>
<table>
<tr><th>Name<th>Address<th>City<th>State<th>Zipcode
<!-- BEGIN CUSTOMER -->
<tr><td>{FIRSTNAME} {SURNAME}<td>{ADDRESS}
<td>{CITY}<td>{STATE}<td>{ZIPCODE}
<!-- END CUSTOMER -->
</table>
</body>
</html>

The template, as viewed in a Mozilla browser, is shown in Figure 7-1 (to view it, we
renamed the .fpl file with an .html extension).

ars =
¥ Customer Details - Mozilla

g'gEiIe Edit ¥iew Go Bookmarks Tools Window Help

;; B?c’k - F-j:%érrj - R;%;d %%% <9,;ht'tp:a’a’\J\r\J\rw.Wet:ndata\t:la\sebook.com ;ﬁ%t -

v ZhHome | WpBookmarks ¢ Red Hat, Inc. ¢ Red Hat Network [Support (i Shop ffProducts f Training

Name Address City State Zipcode
{FIRSTNAME} {SURNAME} {ADDRESS} {CITY} {STATE} {ZIPCQDE}

%6 £L 2 EZ | Document Done (1482 secs) ' |

Figure 7-1. The customer template from Example 7-2 viewed in a Mozilla browser.

The script that populates the template with the customer data is shown in
Example 7-3. To access the DBMS, no new functionality is included: the script uses

234 | Chapter7: PEAR

the query process explained in Chapter 6 to connect, query, and extract results.
What is new is the use of templates: the script itself doesn’t output data using print
but instead assigns data to elements of the customer template.

Example 7-3. A PHP script that populates the customer template in Example 7-2

<?php
require_once "HTML/Template/IT.php";
include "db.inc";

// Connect to the MySQL server
if (!($connection = @ mysql connect($hostname, $username, $password)))
die("Cannot connect");

if (1(mysql select db($databaseName, $connection)))
showerror();

// Run the query on the connection
if (!($result = @ mysql query ("SELECT * FROM customer LIMIT 50",
$connection)))
showerror();

// Create a new template, and specify that the template files are
// in the subdirectory "templates"
$template = new HTML Template IT("./templates");

// Load the customer template file
$template->loadTemplatefile("example.7-2.tpl", true, true);

while ($row = mysql fetch array($result))
{
// Work with the customer block
$template->setCurrentBlock("CUSTOMER");

// Assign the row data to the template placeholders
$template->setVariable("FIRSTNAME", $row["firstname"]);
$template->setVariable("SURNAME", $row["surname"]);
$template->setVariable("ADDRESS", $row["address"]);
$template->setVariable("CITY", $row["city"]);
$template->setVariable("STATE", $row["state"]);
$template->setVariable("ZIPCODE", $row["zipcode"]);

.~ = o~ o~

// Parse the current block
$template->parseCurrentBlock();

}

// Output the web page
$template->show();
>

The code fragment:

require_once "HTML/Template/IT.php";

Packages | 235

loads PEAR’s Integrated Template class into the script. After this, we create a new IT
template $template, and specify that the templates we’re using are found in the
templates subdirectory:

$template = new HTML Template IT("./templates");

(The period and forward slash in ./templates means the templates directory is a sub-
directory of the directory that contains the PHP script.)

After that, we load in our template file from Example 7-2:
$template->loadTemplatefile("example.7-2.tpl", true, true);
The two additional parameters are discussed later in this section.

Having set up our template, we can now use it with the data from our query. This is
a three-step process:

1. Select the block to work with; in this example, there’s only the CUSTOMER block.
2. Assign data to the placeholders within the block.
3. Parse the block.

This process is repeated each time we want to output a block (which, in this case, is
a row of customer data). By default, if you don’t use a block, it’s assumed you don’t
want to output it and it isn’t included in the HTML output.

In our script, the repeating three-step process is encapsulated in the following code
fragment:

// Work with the customer block
$template->setCurrentBlock ("CUSTOMER");

// Assign the row data to the template placeholders
$template->setVariable("FIRSTNAME", $row["firstname"]);
$template->setVariable("SURNAME", $row["surname"]);
$template->setVariable("ADDRESS", $row["address"]);
$template->setVariable("CITY", $row["city"]);
$template->setVariable("STATE", $row["state"]);
$template->setVariable("ZIPCODE", $row["zipcode"]);

// Parse the current block
$template->parseCurrentBlock();

The parameter to HTML_Template_IT::setCurrentBlock() is the name of the block
you want to work with in the template file. The parameters to HTML_Template_IT::
setVariable(') are a placeholder name within the block, and the data to assign to the

placeholder. The method HTML_Template_IT::parseCurrentBlock() processes the
currently selected block.

The script repeats the three-step process until there’s no more data to process from
the query. After that, the entire web page is output by the statement:

$template->show();

236 | Chapter7: PEAR

The result of running the script and using the template is shown in Figure 7-2.

Customer Details - Mozilla ”
i Eile Edit ¥iew Go Bookmarks Tools Window Help

4. = .3 & 4
T . &ht'tpff\wn,«rwehdatahasehnnkcandaEfthTfexarr e

' Home ¢ Bookmarks Red Hal, Inc. Red Hat Metwork 5 Support @5 Shoj A Products [Trainin
4 (Ey Support (@ Shop & ()]

Name Address City State Zipcode
Joshua Rosenthal 34 Mellili Ln Earlwood VIC &750
IMartin Serrong 45 Rosenthal Cel - Doveton VIC 6779
Tazob Leramonth 59 Dalion P1 Belmont 3A 7ésd
Perry Keisling 146 MarzallaTcl Tara NEW 7161

Joel Mockridge 133 Rosenthal 5t Teottenham WA 5518
Richard Ritterman 14 Dalion Creg Mohogany NT 7143
SandraMorfooney 176 Holdenson Crt - Olinda QLD %62

Betty Krennan 21 Dimitria Cel Underwood VIC 7872

Steven FPatton 197 Cheater St Torquay WA 8868

Horacio Dalion 197 Barneshaw Clcl - Bauple SA TE64

Betty Kelsling 172 PattendonLn Eleker BEW 6366

Bandra Tonnibrook 158 Mettaxus F1 Hadina SA 6796

Chriz Dalion 36 Woodburne Cres Essendon WA 6950

Caitlyn Sorrenti 21 Qaton Pl Fortsea WA THe2 |
| Derrvn Cagsisi 9 Morfoonev Cres Portsea OLD 5966 2 s

e £l 2 | Document: Done (1.03 secs) #Iﬂ

Figure 7-2. The output of running Example 7-3 shown in a Mozilla web browser

Nested blocks

Example 7-4 shows a more complex template example. This template is designed to
display information about wine regions and, for each region, a list of the wineries

that are situated there.

We use two database tables in our example, winery and region. These are created

with the following statements:

CREATE TABLE winery (
winery id int(4) NOT NULL,
winery name varchar(100) NOT NULL,
region_id int(4) NOT NULL,
PRIMARY KEY (winery id),

)s

CREATE TABLE region (

region_id int(4) NOT NULL,
region_name varchar(100) NOT NULL,
PRIMARY KEY (region id),

)s

There’s a one-to-many relationship between the tables: each winery row has a

region_id attribute that stores the identifier of a row in the region table.

Packages

| 237

The blocks in the template in Example 7-4 are nested. The REGION block spans most
of the HTML listing and contains within it a WINERY block. The nesting matches the
table relationship: there can be many region blocks, and many winery blocks within
each region.

Example 7-4. A template with nested blocks for showing regions and wineries

<!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html401/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Regions and Wineries</title>
<body>

<!-- BEGIN REGION -->
Region: {REGIONNAME}

<!-- BEGIN WINERY -->
<1i>{WINERYNAME}.
<l-- END WINERY -->

<l-- END REGION -->

</body>
</html>

Sample output from Example 7-4 is shown in Figure 7-3.

Example 7-5 shows the PHP script that works with the template. The logic of the
script flows similarly to the template. The three-step process of selecting a block,
assigning data to placeholders, and parsing is repeated for each region in the data-
base. Nested inside that looping process, the same three steps occur for the wineries
within each region.

One simple rule needs to be followed when a nested template is used: the innermost
block must be parsed first, followed by the second innermost block, and so on until
the outermost block has been parsed. In our example, this means that each repeat-
ing WINERY block must be parsed before the REGION block it belongs in. After all
blocks that need to be populated have been parsed, the web page is output using
HTML_Template_IT::show().

238 | Chapter7: PEAR

K4 Regions and Wineries - Mozilla

i Eile Edit View Go Bookmarks Tools Window Help

.3 3 SO | =
B?c’k - Fn%&rd R:%é\d S%Iﬂ.%p \& hitpeifwny webdatabasebook comAwdaz/ch?example 7-5.php prrt -

5| 4% Home | wpBookmarks 2 Red Hat, Inc. o Red Hat Network 1 Support £ Shop fProducts 2§ Training
i ¢ FArFer HIIT FTEmO W ITes,
o Ryan.
+ Region: Lower Hunter Valley
o Binns Group.
o Bickley Station.
o Borg Creek Vineyard.
o Anderson 3tation Winery. I
o Dennis's Wines.
o Hanshaw Estates.
o Williams Daze Vineyard.
o Gosk Group.
o Lord Station Vineyard.
o Grabowski Ridge.
o Dennis Hill Vineyard.
o Hayne Wines.
o Lane Wines.
o Grehan Ridge Winery. [

o Hayne Brothers Premium “Wines.
o Rogerson Estates Winery.
o Scally Daze Vineyard.
o Grehan Gully.
o Hayne Daze Group.
o Scally Hill Vineyard.
o Anderson Ridge Wines.
o Grabowski and Sons Wines.
o Borg Gully,
o Korab Estates Winery,
o Buonopane Brook Winery,
o De Morten Gully Vineyard,
+ Region: Barossa Walley
o Ryan Estates Premivm Wines,
o Willlams's Wines,

1;5& Elk ~# E& | Document Done (1.73 secs)

Figure 7-3. The output of running Example 7-4 shown in a Mozilla web browser

Example 7-5. The PHP script that works with the template in Example 7-4
<?php

require_once "HTML/Template/IT.php";

require "db.inc";

if (!($connection = @ mysql connect($hostname, $username, $password)))
die("Cannot connect");

if (1(mysql select db($databaseName, $connection)))
showerror();

if (!($regionresult = @ mysql query ("SELECT * FROM region LIMIT 10",
$connection)))
showerror();

$template = new HTML Template IT("./templates");
$template->loadTemplatefile("example.7-4.tpl", true, true);

while ($regionrow = mysql fetch array($regionresult))

{
$template->setCurrentBlock ("REGION");

$template->setVariable("REGIONNAME", $regionrow["region name"]);

Packages | 239

Example 7-5. The PHP script that works with the template in Example 7-4 (continued)

if (!($wineryresult =
@ mysql _query ("SELECT * FROM winery
WHERE region_id = {$regionrow["region_id"]}",
$connection)))
showerror();

while ($wineryrow = mysql fetch array($wineryresult))
{
$template->setCurrentBlock ("WINERY");
$template->setVariable("WINERYNAME", $wineryrow["winery name"]);
$template->parseCurrentBlock();
}
$template->setCurrentBlock ("REGION");
$template->parseCurrentBlock();
}
$template->show();
2>

Make sure you remember to use HTML_Template_IT::setCurrentBlock()
to select the block before you call either HTML_Template IT:
setVariable() or HTML_Template_IT::parseCurrentBlock(). Failing to do
so can cause unpredictable results and difficult-to-detect errors.

Also, be careful that you don’t have two blocks with the same name.
Unpredictable results are likely.

Preserving and removing blocks
In our previous example, we used the following fragment to load a template file:
$template->loadTemplatefile("example.7-4.tpl", true, true);

The second and third parameters specify sensible default behavior for working with
unused placeholders and blocks. The second parameter specifies that if a block isn’t
used in a template, it shouldn’t be output. This is useful if you have an optional
block that that’s sometimes used, as we discuss in the next section. The third param-
eter behaves similarly for placeholders: when set to true, placeholders that haven’t
had data assigned to them are removed during parsing.

If you have chosen to remove empty blocks but need to preserve a block at runtime,
this is possible using the HTML_Template_IT::touchBlock() method. Touching
means a block is marked as needing to be output, even if nothing has been assigned
to its placeholders. For example, to preserve a DETAILS block you can use:

$template->touchBlock("DETAILS");

This is a useful feature in two situations: first, when you want to output a block but
don’t want to assign data to its placeholders; or, second, if a block has no placehold-
ers and you want it to be shown. We show you an example in the next section.

240 | Chapter7: PEAR

More on nesting and optional blocks

Blocks aren’t always nested: if data isn’t related, it shouldn’t be nested. For example,
if we wanted to output information about the ten most popular wineries and the ten
best customers, we might use the following template:

<IDOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html401/1loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Details</title>
<body>
<h1>0ur best customers</hi>
<!-- BEGIN CUSTOMER -->
Name: {FIRSTNAME SURNAME}
<!-- END CUSTOMER -->
<h1>0ur most popular wineries</hi>
<!-- BEGIN WINERY -->
Name: {WINERYNAME}
<l-- END WINERY -->
</body>
</html>

In this structure, we can choose to repeat the CUSTOMER block zero or more times, and
to independently repeat the WINERY block zero or more times. There is no relation-
ship between the two blocks, and it doesn’t matter whether you work with the cus-
tomers or wineries first. Unrelated, unnested blocks can be assigned and parsed in
any order. However, regardless of how you process and assign the data, all CUSTOMER
blocks will always appear before all WINERY blocks because that’s how the template is
structured.

In the previous example, if you don’t assign any data to the CUSTOMER block, the head-
ing Our best customers will still be output because it isn’t part of a block that you can
control in your code. Moving the heading inside the CUSTOMER block doesn’t solve the
problem because the heading would then be repeated for each customer. One solu-
tion is to add another unnested block to the template so that the heading is optional:

<!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html401/1loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Details</title>
<body>
<!-- BEGIN CUSTOMERHEADING -->
<h1>0ur best customers</hi>
<l-- END CUSTOMERHEADING -->
<!-- BEGIN CUSTOMER -->
Name: {FIRSTNAME SURNAME}

Packages | 241

<!-- END CUSTOMER -->

<h1>0ur most popular wineries</h1>
<!-- BEGIN WINERY -->

Name: {WINERYNAME}

<!-- END WINERY -->

</body>

</html>

You can then use program logic to choose whether to output a CUSTOMERHEADING or
not, depending on whether there are any CUSTOMER blocks being used. Note, how-
ever, that the CUSTOMERHEADING block doesn’t contain any placeholders, and so with
the default behavior you’ll need to call $template->touchBlock (“CUSTOMERHEADING”) so
that it’s displayed in the output.

Our previous example can be improved. To avoid having to use program logic and
the HTML_Template_IT::touchBlock() method, you can restructure the template so
that it’s nested:

<IDOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html401/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Details</title>
<body>
<!-- BEGIN CUSTOMERHEADING -->
<h1>0ur best customers</hi>
<!-- BEGIN CUSTOMER -->
Name: {FIRSTNAME SURNAME}
<l-- END CUSTOMER -->
<!-- END CUSTOMERHEADING -->
<h1>0ur most popular wineries</hi>
<l-- BEGIN WINERY -->
Name: {WINERYNAME}
<l-- END WINERY -->
</body>
</html>

This works better because the CUSTOMERHEADING block contains the CUSTOMER block.
With nesting, if the CUSTOMER block is used, there’s no need to use HTML_Template_
IT::touchBlock() on CUSTOMERHEADING. Similarly, if nothing is assigned to a CUSTOMER
block, CUSTOMERHEADING hasn’t been touched and won’t be output. This is another
example of our basic relationship rule: if data is related, use nesting; if it isn’t, don’t.

So far, we've dealt with related and unrelated blocks that appear in a fixed order.

Sometimes, however, you may want to display data in an arbitrary order that you

want to be flexible at runtime. To do this, you can create a block that contains sev-

eral nested blocks at the same level. For example, if we wanted to output several red,

green, or blue messages in any order on a page, we could use the following template:
<!DOCTYPE HTML PUBLIC

"-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html401/loose.dtd">

242 | Chapter7: PEAR

<html>

<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Color lines</title>

<body>

<!-- BEGIN COLORLINES -->

<!-- BEGIN RED -->

{MESSAGE}

<!-- END RED -->

<!-- BEGIN GREEN -->

{MESSAGE}

<!-- END GREEN -->

<!-- BEGIN BLUE -->

{MESSAGE}

<!-- END BLUE -->

<!-- END COLORLINES -->

</body>

</html>

So, to output a blue line, you select the BLUE block, assign the data to MESSAGE place-
holder, parse the BLUE block, and then select and parse the COLORLINES block. To out-
put another color, you repeat the same process for that different colored block.
Using this technique, the COLORLINES block repeats, but with each repeat you can
choose a different inner block. In Chapters 10 and 16, we explain a template for dis-
playing form widgets that uses this technique.

Extended Integrated Templates (ITX)

Optional blocks allow most of the flexibility you’ll need to develop template applica-
tions. However, sometimes you may need to dynamically create a template at runt-
ime. Usually, this is done by using a main template file, and then adding template
fragments in the PHP script. A popular use of this technique is to store a standard
header and footer for an application in a main template file, and then to dynamically
add the page body at runtime. This is what we do in our sample application in Chap-
ters 16 through 20.

The Extended Integrated Template (ITX) class extends IT templates, adding the func-
tionality to dynamically construct templates at runtime. The following is an example
main template file stored in the file about_today.tpl:

<IDOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html401/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>About Today</title>
</head>
<body>
{MESSAGE}
</body>
</html>

Packages | 243

The placeholder MESSAGE is the position at which our choice of template fragment is
inserted. In this example, our script will insert a different template depending on the
day of the week. If today is a weekday, the following template fragment stored in the
file weekday.tpl is inserted:

Oh no. It's {DAY}, which is a weekday.

If today is on a weekend, this fragment stored in the file weekend.tpl is inserted:
Good news. It's {DAY}, which is on the weekend.

All of the template files are stored in the same directory.

The script that works with the templates is as follows:

<?php
require_once "HTML/Template/ITX.php";

$template = new HTML_Template ITX('.');
$template->loadTemplatefile("about today.tpl", true, true);

$daynumber = date("w");

// Is it a weekday?
if ($daynumber != 0 8& $daynumber != 6)
// Include the weekday template fragment
$template->addBlockfile("MESSAGE", "NEWMESSAGE", "weekday.tpl");
else
// Include the weekend template fragment
$template->addBlockfile("MESSAGE", "NEWMESSAGE", "weekend.tpl");

$template->setCurrentBlock ("NEWMESSAGE");

$template->setvariable("DAY", date("1"));

$template->parseCurrentBlock();

$template->show();

>

Rather than work with IT.php library, this script uses the ITX.php file. The ITX tem-
plates provide several new methods, the most useful of which is HTML_Template_
ITX::addBlockFile(). This method takes three parameters: the placeholder to replace,
the name of the block to replace it with, and the template fragment file that forms

the body of the block.

In our example, depending on the day of week determined with the date() function,
a choice is made as to whether to replace the MESSAGE placeholder with the fragment
weekday.tpl or the fragment weekend.tpl; the date() function is discussed in
Chapter 3. After the replacement, the script proceeds in the same way as previous
examples by selecting our new block, assigning values to placeholders, parsing, and
outputting the results. The template fragments do not include the name of the new
block, this is supplied as the second parameter to HTML_Template ITX::
addBlockFile().

244 | Chapter7: PEAR

As we’ve shown you, the HTML_Template_ITX::addBlockFile() inserts a file into a
template at a location defined by a placeholder and then redefines the replaced sec-
tion as a block. Blocks can also be replaced at runtime by other blocks using the
HTML_Template_ITX::replaceBlockFile() method that’s explained in the next section.

Essential IT and ITX functions

void HTML Template IT::HTML Template IT ([string root])
This is the constructor for the HTML_Template_IT class. It is called to create a
new template and takes an optional root directory as a parameter. If the root
directory is provided, the template file that is loaded with HTML_Template_IT::
loadTemplateFile() is assumed to be based in this directory. (The return type of
void means that the method does not return a value.)

Boolean HTML_Template_ITX::addBlock(string placeholder, string block, string
template)
Replaces a placeholder in the current template with a block that is stored in the
template file. The template file should not contain the block BEGIN and END tags:
these are created by the method and associated with the block name.

array HTML_Template_ITX::blockExists(string block)
Returns true if the block exists and false otherwise.

array HTML_Template_ITX::BlockvariableExists(string placeholder)
Returns true if the placeholder exists and false otherwise.

string HTML_Template_IT::get([string block])
Returns a block after all placeholders have been replaced. If a parameter isn’t
supplied, the entire template is returned. In most applications, the template is
output using HTML_Template_IT::show() rather than returned with this
method. However, this method can be used, for example, to produce template-
based emails (as used in Chapter 19) or textual reports.

array HTML_Template_ITX::getBlockList()
Returns a list of template block names in a one-dimensional array.

array HTML_Template_ITX::getBlockVariables(string block)
Returns a list of block placeholder names in a one-dimensional array.

Boolean HTML_Template_IT::loadTemplatefile(string file [, Boolean removeVars [,

Boolean removeBlocks]])
Reads a template file from disk. The directory is a concatenation of any root
directory supplied to the constructor plus the file provided. If removeVars is
true, unassigned placeholders are deleted from the output. If removeBlocks is set
to true, unused blocks are removed except if the block has been accessed with
HTML_Template_IT::touchBlock(). Both optional parameters are set to true by
default. Returns true on success and false on failure.

Packages | 245

void HTML_Template_IT::parse ([string block])
Process a block by replacing all placeholders with their assigned values. If no
parameter is supplied, the entire template is parsed. Child blocks should be
parsed before their parents, that is, blocks should be processed from most- to
least-nested.

void HTML_Template_IT::parseCurrentBlock ()
Process the current block selected with HTML_Template_IT::setCurrentBlock()
by replacing all placeholders with their assigned values. Child blocks should be
parsed before their parents, that is, blocks should be processed from most- to
least-nested.

string HTML_Template_ITX::placeholderExists(string placeholder [, string

block])
Returns the name of the first block that contains the placeholder in the template
or in an optional block. If no block contains the placeholder, the empty string is
returned.

Boolean HTML_Template_ITX::replaceBlock(string block, string file [, Boolean
preserve])
Replaces a block in the current template with a block of the same name that is
stored in a file. The file should not contain the block BEGIN and END tags: these
are created by the method. The existing assignments to placeholders can be pre-
served if the optional parameter preserve is set to true; by default it is false.
Returns true on success and false on failure.

Boolean HTML_Template_IT::setCurrentBlock ([string block])
Makes a block the currently selected block. If no parameter is provided, no block
is set but instead any placeholders that are outside of blocks are made current;
all of our examples use only placeholders inside blocks, but several examples
without blocks are in later chapters. Returns true on success and false on fail-
ure.

A call to this method should be made prior to assigning variables to placehold-
ers with HTML_IT_Template::setVariable().

void HTML_Template_IT::setVariable(string placeholder, string variable)
Assign a variable to the placeholder in the currently selected block. Blocks are
selected with HTML_Template_IT::setCurrentBlock().

The function has an alternate, array parameter that isn’t useful for the majority
of applications, and we ignore it here.

void HTML_Template_IT::show([string block])
Outputs a block after all replacements have been made. Without the parameter,
the complete template is output. In our examples, the parameter is not provided
and this is the final step in working with the template.

246 | Chapter7: PEAR

Boolean HTML_Template_IT::touchBlock(string block)
Preserves an empty block in the output when no data has been assigned to its
placeholders. This works even if the third parameter to HTML_Template_IT::
loadTemplateFile() is set to true. Returns true on success and false on failure.

Optional Packages

Of the 154 PEAR packages at the time of writing, this section lists the 40 most popu-
lar as determined by download frequency at http://pear.php.net/package-stats.php. As
discussed at the beginning of this section, the complete list is available by requesting
the package installer to provide the information or by browsing packages in the
repository. Selected packages are used in other sections of the book, and we’ve noted
this next to those packages.

Authentication
There are six packages available, and two are popular.

* Auth is a session-based authentication class that supports all PEAR DB DBMSs,
as well as authentication for text files, LDAP servers, POP3 servers, IMAP serv-
ers, vpopmail accounts, RADIUS, and SOAP. Our authentication in Chapter 11
supports similar features.

* Auth_HTTP provides methods for HTTP authentication. We discuss HTTP
authentication in Chapter 11.

Benchmarking
There’s only one package, and it’s in the top 40.

* Benchmark is a framework for benchmarking the performance of PHP functions
and scripts. Its similar in style to the popular GNU C programming tool gprof.

Caching
Two packages are available, and one is popular.

* Cache stores the results of previous function calls, script executions, and other
activities so that they can be used in the future. Caching often speeds-up pro-

gram execution if results or scripts are re-used frequently, and your web site is
under high load.

Console

Five packages are available. The popular one is the core component Console_Getopt
for retrieving command-line arguments from non-web scripts.

Packages | 247

Database
There are fourteen packages, of which four are popular.

* DB is a core component described in its own section in this chapter.
* DB_DataObject is an SQL builder and object interface to database tables.

* DB_Pager retrieves data in chunks after a query using PEAR DB. The aim is to
allow you to retrieve and display data for subsequent display in pages.

* MDB is a merging of PEAR DB and Metabase; Metabase is an alternative to
PEAR DB. The MDB package provides a superset of the functionality of PEAR
DB.

Date
There is one package that’s popular.

* Date is classes for manipulating and working with dates and time zones without
timestamps, and without year range restrictions. We use Date in Chapter 9.

Filesystem
There are six packages, of which two are popular.
» Archive_Tar supports creating, listing, extracting, and adding to tar (Unix

archive) files, a common format of zip-like archives on Unix-style systems. This
is a core component of PEAR that’s used by the installer.

* File provides methods to read and write files, and to deal with paths. It also pro-
vides an interface for working with comma-separated value (CSV) files.

HTML
There are fifteen packages, including five popular ones.

* HTML_QuickForm for creating, processing, and validating HTML form environ-
ments. We develop our own framework for creating template-based forms in
Chapter 16.

* HTML_Table for developing, manipulating, and reusing HTML <table> environ-
ments.

* HTML_Template_IT is a templating environment described in its own section in
this chapter. It includes the extended template package ITX.

* HTML_TreeMenu creates attractive menus for display using JavaScript at the cli-
ent. We discuss developing simple menus using JavaScript in Chapter 9.

* Pager is a class for viewing data in pages with previous and next buttons. We
develop our own approach to this in Chapter 17.

248 | Chapter7: PEAR

HTTP
There are six packages and three are popular.

* HTTP is a core component discussed at the beginning of this chapter.

* HTTP_Request is designed for easy formatting of HTTP requests, including all
methods, basic authentication, proxy authentication, and redirection. We dis-
cuss HTTP in Appendix D, HTTP authentication in Chapter 11, and redirection
in Chapter 6.

* HTTP_Upload allows easy management of files uploaded from browsers to web
servers using form environments.

Internationalization
There’s one popular package for internationalization.

* 18N is designed to help you localize applications by determining browser lan-
guage, currency, date and time, and numbers.

Logging
There is one package, and it’s popular.

* Log is a logging system that can log data to many different targets including
PEAR DB, files, and email.

Mail
There are six packages, and two are popular.

* Mail is described in the core components section at the beginning of this chap-
ter. It’s used in Chapter 19.

* Mail_Mime provides classes to encode and decode Mime-encoded attachments.

Networking
There are twenty-nine packages, of which four are popular: we use the Net_DNS
package (which isn’t discussed here) in Chapter 9.

* Net_POP3 is a class for accessing POP3 mail servers.

* Net_Socket is a core component for working with network sockets and is
described at the beginning of this chapter.

* Net_URL provides easy parsing of URLs, allowing components to be extracted
without difficult string processing

* Net_UserAgent_Detect determines the web browser, version, and platform from
the HTTP headers.

Packages | 249

PEAR
There are three packages and two are popular.

* PEAR is a set of core classes described at the beginning of this chapter.

* PEAR_Frontend_Web is a web interface to the PEAR package manager. We
describe the command-line version in this chapter, but it’s likely that this pack-
age will become popular for configuration on all platforms when it leaves the
beta-testing phase.

PHP
There are nine packages and three are popular.

* apd is a profiler and debugger that helps in optimizing code.

* bcompiler allows you to protect your code by compiling it rather than distribut-
ing PHP source.

* PHPDoc generates documentation from source code.

XML
There are eleven packages, of which three are popular.

* XML_Parser is designed to parse XML.
* XML_RPC is a core package that implements XML-RPC.

* XML_Tree represents XML data as a tree structure.

Web services
There are three packages, of which one is popular.

* SOAP is a client and server package for implementing Simple Object Access Pro-
tocol (SOAP) protocols and services. SOAP is an emerging standard, and a good
introduction to SOAP is available at http://www.w3.0rg/TR/SOAP/.

250 | Chapter7: PEAR

CHAPTER 8
Writing to Web Databases

Many web database applications are not only information resources for users but
also tools for storing new information. For example, in an online store, users and
administrators write data to the database in several situations: they can purchase
products by creating an order, they can become members, they can manage a shop-
ping cart, and the administrator can manage the stock.

Writing data in web database applications requires different techniques from read-
ing data. Issues of transactions and concurrency become important, and we intro-
duce these issues and the principles of dealing with them in this chapter. The
introduction is practical: we focus on the basic management techniques of locking
and unlocking tables, and show you how to safely implement simple database writes
in MySQL when there is more than one user simultaneously accessing a database.
Most importantly, we identify when special approaches are required, and when these
can be safely omitted from a web database application.

At the conclusion of this chapter, you will have covered the skills to build a simple
but complete web database application.

Database Inserts, Updates, and Deletes

Simple database modifications are much the same as queries. We begin this section
with a simple case study similar to the querying examples we presented in the previ-
ous two chapters. However, inserting, updating, and deleting data does require some
additional care. After this first example, we show you why it suffers from the reload
problem and discuss a solution. After that, we return to further, richer examples of
writing to a database and discuss more complex problems and solutions.

For this case study, we won’t use the winestore database because it doesn’t make use
of MySQL’s auto_increment feature that we want to use in this section. Instead, let’s
assume you need to maintain a list of names (surnames and first names) of people
and their phone numbers, and that you want to write a script to add new data to the

251

database. To begin, let’s create a new telephone database and a phonebook table to
store the details. Start the MySQL command interpreter and login as the root user.
Then, type the following SQL statements into the command interpreter:

mysql> CREATE DATABASE telephone;
Query OK, 1 row affected (0.01 sec)

mysql> use telephone
Database changed
mysql> CREATE TABLE phonebook (
-> phonebook_id int(6) NOT NULL auto_increment,
-> surname CHAR(50) NOT NULL,
-> firstname CHAR(50) NOT NULL,
-> phone CHAR(20) NOT NULL,
-> PRIMARY KEY (phonebook_id)
->) type=MyISAM;
Query OK, 0 rows affected (0.00 sec)

We’ve created a phonebook_id attribute that is the primary key to uniquely identify
each row in the table and we’ve used the auto_increment modifier with it. As we dis-

cussed in Chapter 5, inserting NULL into an auto_increment PRIMARY KEY attribute allo-
cates the next available key value, and we use this feature in our script.

We also need a new user who can access the new database. To set one up with the
right privileges, you can use the same approach used in Appendixes A through C to
configure MySQL. In the MySQL command interpreter, type:

mysql> GRANT SELECT, INSERT, UPDATE, DELETE, LOCK TABLES ON telephone.* TO

-> fred@127.0.0.1 IDENTIFIED BY 'shhh';
Query OK, 0 rows affected (0.00 sec)

Replace fred and shhh with the username and password you want to use (and do the
same later in all of the PHP scripts in this chapter).

Now we need an HTML form that allows users to provide the details to create a new
row in the phonebook table. Example 8-1 shows such a form that’s laid out for pre-
sentation using a table element. It collects three values into three input elements with
the names surname, firstname, and phone, and it uses the GET method to pass values
to the script example.8-2.php.

Example 8-1. An HTML form to capture the name of a new region

<!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html401/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Add a Phonebook Entry</title>
</head>
<body>
<h1>Add a Phonebook Entry</h1>
<form method="GET" action="example.8-2.php">

252 | Chapter8: Writing to Web Databases

Example 8-1. An HTML form to capture the name of a new region (continued)

<table>
<tr>
<td>Surname:
<td><input type="text" name="surname" size=50>
</tr>
<tr>
<td>First name:
<td><input type="text" name="firstname" size=50>
</tr>
<tr>
<td>Phone number:
<td><input type="text" name="phone" size=20>
</tr>
</table>

<input type="submit">
</form>
</body>
</html>

Example 8-2 shows the script that adds the new data to the phonebook table. It
works as follows: if a surname, first name, and phone number are supplied by the
user, an INSERT SQL statement is prepared to insert the new row; the mysqlclean()
function (and the db.inc include file where it’s stored) are discussed in Chapter 6. As
described in Chapter 5, inserting NULL results in the auto_increment modifier allocat-
ing the next available key value. If any of the values are missing, it redirects back to
the form using the header() function that’s discussed in Chapter 6.

Example 8-2. A script to insert a new phonebook entry

<?php
require "db.inc";
require_once "HTML/Template/ITX.php";

// Test for user input

if (lempty($_GET["surname"]) &&
lempty($ GET["firstname"]) &&
lempty($_GET["phone"]))

if (!($connection = @ mysql connect("localhost", "fred", "shhh")))
die("Could not connect to database");

$surname = mysqlclean($_GET, "surname", 50, $connection);
$firstname = mysqlclean($ GET, "firstname", 50, $connection);
$phone = mysqlclean($_GET, "phone", 20, $connection);

if (!mysql select db("telephone", $connection))
showerror();

// Insert the new phonebook entry
$query = "INSERT INTO phonebook VALUES
(NULL, '{$surname}', '{$firstname}', '{$phone}')";

Database Inserts, Updates, and Deletes | 253

Example 8-2. A script to insert a new phonebook entry (continued)

if (!(@mysql_query ($query, $connection)))
showerror();

$template = new HTML Template ITX("./templates");
$template->loadTemplatefile("example.8-3.tpl", true, true);
$template->setCurrentBlock();
$template->setVariable("SURNAME", $surname);
$template->setVariable("FIRSTNAME", $firstname);
$template->setVariable("PHONE", $phone);
$template->parseCurrentBlock();

$template->show();
} /7 if empty()
else
// Missing data: Go back to the <form>
header("Location: example.8-1.html");
?>

If the query is successful, then a template that shows the results is loaded and dis-
played (this is discussed next). If an error occurs, error handling using the methods
described in Chapter 6 is used.

We use a PEAR IT template file in Example 8-2. The template file is stored as
example.8-3.tpl and shown in Example 8-3. This template has three placeholders to
show the details of the new row. The PEAR template package is explained in
Chapter 7.

Example 8-3. The template file used in Example 8-2

<!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html401/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Added a Phonebook Entry</title>
</head>
<body>
<h1>Added a Phonebook Entry</h1>
<table>
<tr>
<td>Surname:
<td>{SURNAME}
</tr>
<tr>
<td>First name:
<td>{FIRSTNAME}
</tr>
<tr>
<td>Phone number:

254 | Chapter8: Writing to Web Databases

Example 8-3. The template file used in Example 8-2 (continued)

<td>{PHONE}
</tr>
</table>
</body>
</html>

Most write operations can use a format similar to that of Example 8-2. In particular,
where database changes are reasonably infrequent and can be performed in one step,
most of the more complex issues we describe later in “Issues in Writing Data to
Databases” can be ignored. However, as noted earlier, Example 8-2 does have one
undesirable side effect that is common in web database applications. The problem
isn’t really related to modifying the database but rather to the statelessness of the
HTTP protocol. We discuss this side effect, the reload problem, and an effective
solution in the next section.

Reloading Data and Relocation Techniques

Simple updates using the approach shown in Example 8-2 are susceptible to a com-
mon problem of the stateless HTTP protocol that we call the reload problem. Con-
sider what happens when a user successfully enters a new phonebook entry, and
clicks the Submit button. The code in Example 8-2 is executed, a new row is inserted
in the phonebook table, and a success message is displayed. So far, everything is
going according to plan.

Consider now what happens if the user reloads the success message page with the
Reload or Refresh button in the browser. The variables and values are resubmitted to
the same script, and another identical row (except for the phonebook_id value, which
is automatically incremented) is added to the phonebook table. There is no way in
this example that the first click of the Submit button to add the first row can be dis-
tinguished from a second action that sends the same variables and values to the
script. A representation of the reload problem is shown in Figure 8-1.

The reload problem occurs in many situations. Actions that re-request
a document from the server include pressing the Reload or Refresh
buttons, printing, saving the URL in the browser and returning to the
page using a bookmark or favorite, using the Back or Forward but-
tons, pressing the Enter key in the URL Location entry box, and resiz-
ing the browser window.

The reload problem isn’t always a significant problem. For example, if you use the
SQL UPDATE statement to update phonebook details, and the values are amended
with the same correct values repeatedly, there is no data duplication. Similarly, if a
row is deleted and the user repeats the operation, the row can’t be deleted twice.
However, while some UPDATE and DELETE operations are less susceptible to the reload

Database Inserts, Updates, and Deletes | 255

Web Browser

User presses Submit w

button. GET example.-2 php?s
-$-2.phpZsumame=smithegi _ Web Server
~P address=Richmong Irsthame=Fredg

Script processes

request and adds
anew phonebook
entry.

Y.
200 0K Responds with
<M>0KI< /h1>... success message.
G
Script processes

ET example 8- h
-0-2. p?surname:sm,-th &fi _
address=Richmong Isthame="rede
request and adds
a second identical
phonebook entry.
200 0K Responds with
1 } <h1>0KI< Mh1>... success message.

~7

User presses Reload or
Refresh in web browser.

-~

Figure 8-1. The reload problem

problem, a well-designed system avoids the problem altogether. Avoidance prevents
user confusion and unnecessary DBMS activity. We discuss a solution in a moment.

The HTTP POST method is a little less susceptible to the reload problem than the GET
method. If a user again retrieves the script after the first database change, the
browser should ask the user is they’re sure they want to repeat the action. Most of
the time, this will prevent the problem because the user will click Cancel. However,
if the user does click OK, the database operation will be repeated and cause the
reload problem.

A solution to the reload problem is shown in Figure 8-2. It is based on the HTTP
Location: header, the same header used for one-component querying in Chapter 6.

The reload solution works as follows:
1. The user submits the form with the variables and values for a database write
operation (an SQL INSERT, UPDATE, or DELETE).
2. The SQL write operation is attempted.

3. Whether or not the modification is successful, an HTTP Location: header is sent
to the browser to redirect the browser to a new, receipt page.

HTTP GET encoded variables and values are usually included with the Location:
header to indicate whether the action was successful. Additionally, text to dis-
play might be sent as part of the redirection URL.

4. An informative receipt page is displayed to the user, including a success or fail-
ure message, and other appropriate text. The script that displays the message
doesn’t perform any database writes.

256 | Chapter8: Writing to Web Databases

Web Browser

User presses Submit m

button. GET example.8-2.php3syr
PhpIsurname=smithgi _ Web Server
~ ad drﬂSS:Richmond Irsthame=Freqg,

Script processes
request and adds
anew phonebook
entry.
301 Moved oK Responds with
- i 75tatus= redirectiontoa
receipt.php!? .
Browser receives Location:recelp P receipt page.
redirection to receipt.php m

and immediately issuesa "

request. GET receipt.php IStatus=0K

Script produces a
receipt reporting a
success (r;1e55(;]ge.
Responds witl
lk 200 0K HTML document.
User presses Reload or 1 l</Mh1>...
:] <h1>0K!<
Refresh in web browser. el .
\ Script produces a

notoccurs.

2000K Responds with
‘k' <h1>0K‘.</h1>--~ HTML document.

receipt. Database
modification does

~P

Figure 8-2. Solving the reload problem with a redirection to a receipt page

The HTTP redirection solves the reload problem. If the user reloads the receipt page,
he sees the receipt again, and no database write operations occur. Moreover, because
the receipt page receives information about the write operation encoded in the URL,
the receipt page URL can be saved and reloaded in the future without any undesir-
able effect.

Solving the reload problem in practice

A modified version of Example 8-2 with the redirect functionality is shown in
Example 8-4. The code that works with the database is identical to that of
Example 8-2. A template is no longer used in the script because it doesn’t produce
any output and, regardless of whether the database insert succeeds or fails, the
header() function is called. This redirects the browser to the script shown in
Example 8-5 by sending a Location: example.8-5.php HTTP header.

The difference between the success and failure cases is what is appended to the URL
as a query string. When it works, status=T and the value of the phonebook id
attribute are sent. A value of status=F is sent on failure. On success, the value for

Database Inserts, Updates, and Deletes | 257

phonebook_id (which is created using the auto_increment feature) is found by calling
mysql_insert_id(); the function is described in Chapter 6.

Example 8-4. A modified insertion script that solves the reload problem

<?php
require "db.inc";

// Test for user input

if (lempty($_GET["surname"]) &&
lempty($ _GET["firstname"]) &&
lempty($_GET["phone"]))

if (!($connection = @ mysql connect("localhost", "fred", "shhh")))
die("Could not connect to database");

$surname = mysqlclean($_GET, "surname", 50, $connection);
$firstname = mysqlclean($ GET, "firstname", 50, $connection);
$phone = mysqlclean($_GET, "phone", 20, $connection);

if (!mysql select db("telephone", $connection))
showerror();

// Insert the new phonebook entry
$query = "INSERT INTO phonebook VALUES
(NULL, '{$surname}', '{$firstname}', '{$phone}')";

if (@mysql_query ($query, $connection))
{

header("Location: example.8-5.php?status=T&" .
"phonebook_id=". mysql insert id($connection));
exit;
}
} /7 if empty()

header("Location: example.8-5.php?status=F");
>

The script in Example 8-5 produces the receipt page. Its accompanying template is
shown in Example 8-6. When requested with a parameter status=T, the script que-
ries the database and displays the details of the newly inserted phonebook entry. The
entry is identified by the value of the query string variable phonebook_id. On failure,
where status=F, the script displays a database failure message. If the script is unex-
pectedly called without a status parameter, an error message is displayed.

Example 8-5. The phonebook receipt script

<?php
require "db.inc";
require once "HTML/Template/ITX.php";

if (!($connection = @ mysql_connect("localhost", "fred", "shhh")))

258 | Chapter8: Writing to Web Databases

Example 8-5. The phonebook receipt script (continued)

die("Could not connect to database");
$status = mysqlclean($_GET, "status", 1, $connection);

$template = new HTML Template ITX("./templates");
$template->loadTemplatefile("example.8-6.tpl", true, true);

switch ($status)

{
case "T":
$phonebook_id = mysqlclean($ GET, "phonebook id", 5, $connection);
if (!empty($phonebook id))
{
if (!mysql select db("telephone", $connection))
showerror();
$query = "SELECT * FROM phonebook WHERE
phonebook _id = {$phonebook id}";
if (!($result = @mysql query ($query, $connection)))
showerror();
$row = @ mysql_fetch_array($result);
$template->setCurrentBlock("success");
$template->setVariable("SURNAME", $row["surname"]);
$template->setVariable("FIRSTNAME", $row["firstname"]);
$template->setVariable("PHONE", $row["phone"]);
$template->parseCurrentBlock();
break;
}
case "F":
$template->setCurrentBlock("failure");
$template->setVariable("MESSAGE", "A database error occurred.");
$template->parseCurrentBlock();
break;
default:
$template->setCurrentBlock("failure");
$template->setVariable("MESSAGE", "You arrived here unexpectedly.");
$template->parseCurrentBlock();
break;
}

$template->show();
?>

Database Inserts, Updates, and Deletes

259

Example 8-6. The redirection receipt template

<!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html401/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Phonebook Entry Receipt</title>
</head>
<body>
<!-- BEGIN success -->
<h1>Added a Phonebook Entry</h1>
<table>
<tr>
<td>Surname:
<td>{SURNAME}
</tr>
<tr>
<td>First name:
<td>{FIRSTNAME}
</tr>
<tr>
<td>Phone number:
<td>{PHONE}
</tr>
</table>
<l-- END success -->
<!-- BEGIN failure -->
<h1>{MESSAGE}</h1>
<!-- END failure -->
</body>
</html>

Inserting, Updating, and Deleting Data

In this section, we complete our discussion of the basics of modifying data by indi-
vidually considering inserting, updating, and deleting data. We illustrate the princi-
ples of each technique in PHP through introductory case study examples; longer
examples are presented in Chapters 16 through 20.

Inserting data

We have already illustrated a worked example of inserting data. In this section, we
discuss the principles of insertion and expand our example to use a template to cre-
ate a form. Inserting data is a three-step process:

1. Data is entered by the user into a form.

2. The data is validated and, if it passes the tests, written into the database using an
SQL INSERT statement. A key value is usually created during this process. If the

260 | Chapter8: Writing to Web Databases

validation fails, then error information is displayed and the third step doesn’t
oceur.

3. The user is shown a receipt page, which is generally used to display the inserted
data using the key value passed from the second step. If the insert operation
fails, an error message is displayed.

Stage one of the insertion process is data entry. Example 8-7 shows a script that cre-
ates an HTML form for capturing data to be inserted into the phonebook table we
created in the previous section. The form allows details to be entered into text input
controls and is shown rendered in a Mozilla browser in Figure 8-3. A more sophisti-
cated form using the same techniques is used to gather customer details for our
online winestore in Chapter 17.

The script makes extensive use of the template shown in Example 8-8. The template
has three configurable components:

* Placeholders for a MESSAGE that gives the user instructions on how to fill out the
form and for a SUBMITVALUE on the submit button widget. For the customer inser-
tion in Example 8-7 the message asks the user to Please fill in the details below to
add an entry. and the button says Add Now!.

* A hiddeninput block for creating hidden form input widgets. We don’t use this
for insertion, and we discuss it later when we introduce updates.

* A mandatoryinput block for creating mandatory text input widgets. The block
has placeholders for the text that the user sees and for the input’s name, its size,
and its initial value.

The template isn’t complicated and just uses the techniques we discussed in
Chapter 6. It allows you to create text inputs as you need by repeatedly selecting the
mandatoryinput block, assigning values to it, and parsing it. This makes the template
very useful: it allows us to dynamically create different forms at runtime, and it can
easily be adapted for other applications. We extend this template in Chapter 17 to
support optional inputs, select inputs, and other components.

Example 8-7. A script to collect phonebook data

<?php
require 'db.inc';
require_once "HTML/Template/ITX.php";

$template = new HTML Template ITX("./templates");
$template->loadTemplatefile("example.8-8.tpl", true, true);

$template->setVariable("MESSAGE",
"Please fill in the details below to add an entry");
$template->setVariable("SUBMITVALUE", "Add Now!");

$template->setCurrentBlock("mandatoryinput");
$template->setVariable("MINPUTTEXT", "First name");

Database Inserts, Updates, and Deletes | 261

Example 8-7. A script to collect phonebook data (continued)

$template->setVariable("MINPUTNAME", "firstname");
$template->setVariable("MINPUTVALUE", "");
$template->setVariable("MINPUTSIZE", 50);
$template->parseCurrentBlock("mandatoryinput");

$template->setCurrentBlock("mandatoryinput™);
$template->setVariable("MINPUTTEXT", "Surname");
$template->setVariable("MINPUTNAME", "surname");
$template->setVariable("MINPUTVALUE", "");
$template->setVariable("MINPUTSIZE", 50);
$template->parseCurrentBlock("mandatoryinput");

$template->setCurrentBlock("mandatoryinput");
$template->setVariable("MINPUTTEXT", "Phone");
$template->setVariable("MINPUTNAME", "phone");
$template->setVariable("MINPUTVALUE", "");
$template->setVariable("MINPUTSIZE", 20);
$template->parseCurrentBlock("mandatoryinput");

$template->parseCurrentBlock();
$template->show();
>

Example 8-8. The PEAR IT template that collects phonebook data

<!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html401/1loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Phonebook Details</title>
</head>
<body bgcolor="white">
<form method="post" action="example.8-9.php">
<h1>Phonebook Details</h1>
<h2>{MESSAGE}.
Fields shown in red are mandatory.</h2>
<table>
<!-- BEGIN hiddeninput -->
<tr>
<td><input type="hidden" name="{HINPUTNAME}" value="{HINPUTVALUE}"></td>
</tr>
<!-- END hiddeninput -->
<!-- BEGIN mandatoryinput -->
<tr>
<td>{MINPUTTEXT}:</td>
<td>
<input type="text" name="{MINPUTNAME}" value="{MINPUTVALUE}"
size={MINPUTSIZE}>
</td>
</tr>
<!-- END mandatoryinput -->

262 | Chapter8: Writing to Web Databases

Example 8-8. The PEAR IT template that collects phonebook data (continued)

<tr>
<td><input type="submit" value="{SUBMITVALUE}"></td>
</tr>
</table>
</form>
</body>
</html>

Figure 8-3 shows the forms created in Examples 8-7 and 8-8.

had Phonebook Details - Mozilla

' Eile Edit X¥iew Go Bookmarks Tools Window Help

EI?C'K i Fn%éud : R;%m fsgéu%p & hﬁp:fm- r;ﬁft 7

' 7Y Home | wWfBaookmarks ¢ Red Hat, Inc. ¢®Red Hat Network £ Support @ Shop @ Produg

Phonebook Details

Please fill in the details below to add an entry.
Fields shown in red are mandatory.

First name: |

Surname: |
FPhone: |

ﬁddNDW!l

: e b A Ed Document: Done (0536 secs) =£D=-Lﬂ

Figure 8-3. The phonebook entry form from Examples 8-7 and 8-8 rendered in a Mozilla browser

The second phase of insertion is data validation, followed by the database operation
itself. Example 8-9 shows the PHP script to validate and insert a new phonebook
entry. The script has a simple structure, with naive validation that tests only whether
values have been supplied for the fields. If an error occurs, the function formerror()
is called that flags the error by setting the $errors variable and populates an error
template placeholder with a message.

Example 8-9. A validation example that tests for mandatory fields and then stores data in the
customer table

<?php
require 'db.inc';
require_once "HTML/Template/ITX.php";

Database Inserts, Updates, and Deletes | 263

Example 8-9. A validation example that tests for mandatory fields and then stores data in the
customer table (continued)

function formerror(&$template, $message, &$errors)
{
$errors = true;
$template->setCurrentBlock("error");
$template->setVariable("ERROR", $message);
$template->parseCurrentBlock("error");

}

if (!($connection = @ mysql connect("localhost", "fred", "shhh")))
die("Could not connect to database");

$firstname = mysqlclean($ POST, "firstname", 50, $connection);
$surname = mysqglclean($_POST, "surname", 50, $connection);
$phone = mysqlclean($_POST, "phone", 20, $connection);

$template = new HTML Template ITX("./templates");
$template->loadTemplatefile("example.8-10.tpl", true, true);

$errors = false;

if (empty($firstname))
formerror($template, "The first name field cannot be blank.", $errors);

if (empty($surname))
formerror($template, "The surname field cannot be blank.", $errors);

if (empty($phone))
formerror($template, "The phone field cannot be blank", $errors);

// Now the script has finished the validation, show any errors
if ($errors)
{

$template->show();

exit;

}

// If we made it here, then the data is valid
if (!mysql_select db("telephone", $connection))
showerror();

// Insert the new phonebook entry
$query = "INSERT INTO phonebook VALUES
(NULL, '{$surname}', '{$firstname}’, '{$phone}')";

if (1(@ mysgl _query ($query, $connection)))
showerror();

// Find out the phonebook_id of the new entry
$phonebook_id = mysql insert id();

264 | Chapter8: Writing to Web Databases

Example 8-9. A validation example that tests for mandatory fields and then stores data in the
customer table (continued)

// Show the phonebook receipt
header("Location: example.8-5.php?status=T8phonebook id={$phonebook id}");
>

After all validation is complete, all errors are displayed using the template in
Example 8-10. After the error messages are output to the browser, an embedded link
is shown to allow the user to return to the form in Example 8-8. Unfortunately, if the
user does click on this link (instead of pressing the Back button) she is returned to an
empty form. A solution to this problem is presented in Chapter 10.

Example 8-10. The error display template

<IDOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html401/1loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Phonebook Details Error</title>
</head>
<body bgcolor="white">
<h1>Phonebook Data Errors</h1>
<l-- BEGIN error --»

{ERROR}

<!-- END error -->

Return to the form
</body>

</html>

If the validation succeeds, the second phase of the insertion process continues. The
INSERT query is executed and NULL is inserted as the phonebook_id attribute to use the
auto_increment feature. Using auto_increment avoids the problems discussed later in
section “Issues in Writing Data to Databases.”

If the query succeeds, the third phase of the insertion process occurs when the script
redirects to a receipt page that reports the results. As part of the redirection, the new
phonebook_id is passed to the receipt as a URL query string parameter and the status
of the operation is set to T (for True). The receipt script then queries the database
and displays the phonebook details that match the phonebook_id. For this step, we
reuse the receipt script shown in Example 8-5 and its template in Example 8-6.

Updating data

Updating data is usually a more complex process than inserting it. A four-step pro-
cess that extends the insertion process is used in most web database applications:

1. Using a key value, matching data is read from the database.

Database Inserts, Updates, and Deletes | 265

2. The data is presented to the user in a form for modification.

3. Once the user submits the form, the data is validated and, if that succeeds, the
database is updated using an SQL UPDATE statement. The key value from the first
step is used in the WHERE clause.

4. The user is redirected to a receipt page. If the update was successful, the page
displays the modified data. If the update fails, an error message is displayed.

The first step of this process is usually user-driven: the user provides information that
identifies the data to be updated. The information to identify the data (for example, a
primary key value such as a phonebook_id) might be gathered in one of several ways:

* It may be entered into a form by the user. For example, the user may be asked to
type in or select from a list the phonebook identifier of the entry he wishes to
modify.

* It may be determined from another user-driven query. For example, the user
might provide a phone number through a form, and a SELECT query can then
retrieve the unique identifier of the entry from the database (assuming the phone
number is unique).

* It may be formatted into an embedded link by a script. For example, a list of
phonebook entries might be produced, where each entry in the list is a hyper-
text link that has the unique phonebook_id identifier encoded as a query string.

These methods of gathering data from the user are discussed in Chapter 6. Let’s
assume here that a primary key is provided through one of these techniques, and the
value of the primary key has been encoded in an HTTP request that can be pro-
cessed by the update script. The first phase is then completed by retrieving the data
that matches the primary key value provided by the user.

Phase two is to present the data to the user. To achieve this, a form is usually cre-
ated that contains the values of each attribute that can be modified. In some cases,
some attributes may not be presented to the user. For example, the primary key is
usually hidden because you don’t want the user to change it.

In addition to presenting the data to the user, a method is required to store the pri-
mary key value associated with the data, because it is needed in phases three and
four. There are several approaches to maintaining this key across the update pro-
cess, and one simple approach is presented in the next section. Better solutions are
the subject of Chapter 10.

Phase two is complete when the user submits the form containing the modified data.
Phase three validates the data and updates the database, and phase four shows a
receipt; these phases use the same techniques as inserting new data.

Case study: updates in practice

Example 8-11 shows a modified version of Example 8-7 that supports database
updates and uses a copy of the template shown in Example 8-8 (that’s modified so it

266 | Chapter8: Writing to Web Databases

requests example.8-12.php). The script implements the first two phases of the update
process described in the previous section. We discuss the third and fourth phases

later in this section.

Example 8-11. Updating and adding new phonebook details

<?php
require 'db.inc';
require_once "HTML/Template/ITX.php";

if (!($connection = @ mysql connect("localhost", "fred", "shhh")))
die("Could not connect to database");

$phonebook_id = mysqlclean($_GET, "phonebook id", 5, $connection);

// Has a phonebook_id been provided?
if (empty($phonebook id))
die("You must provide a phonebook id in the URL.");

$template = new HTML Template ITX("./templates");
$template->loadTemplatefile("example.8-8b.tpl", true, true);

// Retrieve details for editing
if (!mysql select db("telephone", $connection))
showerror();

$query = "SELECT * FROM phonebook WHERE phonebook id = {$phonebook id}";

if (!($result = @ mysql _query($query, $connection)))
showerror();

$row = mysql_fetch_array($result);

$template->setVariable("MESSAGE",
"Please amend the details below");
$template->setVariable("SUBMITVALUE", "Update Details");

$template->setCurrentBlock("hiddeninput");
$template->setVariable("HINPUTNAME", "phonebook id");
$template->setVariable("HINPUTVALUE", $row["phonebook id"]);
$template->parseCurrentBlock("hiddeninput");

$template->setCurrentBlock("mandatoryinput");
$template->setVariable("MINPUTTEXT", "First name");
$template->setVariable("MINPUTNAME", "firstname");
$template->setVariable("MINPUTVALUE", $row["firstname"]);
$template->setVariable("MINPUTSIZE", 50);
$template->parseCurrentBlock("mandatoryinput");

$template->setCurrentBlock("mandatoryinput™);
$template->setVariable("MINPUTTEXT", "Surname");
$template->setVariable("MINPUTNAME", "surname");
$template->setVariable("MINPUTVALUE", $row["surname"]);
$template->setVariable("MINPUTSIZE", 50);

Database Inserts, Updates, and Deletes

267

Example 8-11. Updating and adding new phonebook details (continued)

$template->parseCurrentBlock("mandatoryinput");

$template->setCurrentBlock("mandatoryinput™);
$template->setVariable("MINPUTTEXT", "Phone");
$template->setVariable("MINPUTNAME", "phone");
$template->setVariable("MINPUTVALUE", $row["phone"]);
$template->setVariable("MINPUTSIZE", 20);
$template->parseCurrentBlock("mandatoryinput");

$template->parseCurrentBlock();
$template->show();
>

Phase one of the update process works as follows. The script in Example 8-11 pro-
cesses a phonebook id passed through with an HTTP request. If it is set, the script
queries the database for the matching phonebook row and stores it in the variable
$row. If it isn’t set, the script reports an error and stops. Because there’s only one row
of results that match the unique primary key value, we don’t need a loop to retrieve
the data.

The second phase, displaying the retrieved data for modification by the user, is
achieved by initializing template placeholders with the results of the query. For
example, when a surname is retrieved for an entry, the placeholder MINPUTVALUE is ini-
tialized using;:

$template->setVariable("MINPUTVALUE", $row["surname"]);
This allows the user to edit the database surname in the surname text input widget.

The second phase of the process also embeds the value of $phonebook_id in the form
as a hidden input element that the user can’t see or edit. The $phonebook id is
embedded so it is passed to the next script and used to construct the SQL query to
perform the update operation. We use the hiddeninput placeholder for this purpose
and initialize it using the following fragment:
$template->setCurrentBlock("hiddeninput");
$template->setVariable("HINPUTNAME", "phonebook_id");
$template->setVariable("HINPUTVALUE", $row["phonebook id"]);
$template->parseCurrentBlock("hiddeninput");
There are other ways this value can be passed throughout the update process; these
techniques are the subject of Chapter 10.

Example 8-12 implements the third phase. The process is the same as inserting new
data, with the exception of the SQL query that uses the phonebook_id from the form
to identify the row to be updated. As previously, after the database operation, the
browser is redirected to a receipt page to avoid the reload problem. However, the
update process is now susceptible to other problems that are described in “Issues in
Writing Data to Databases.”

268 | Chapter8: Writing to Web Databases

Example 8-12. Updating existing and inserting new phonebook rows

<?php
require 'db.inc’;
require once "HTML/Template/ITX.php";

function formerror(&$template, $message, &$errors)
{
$errors = true;
$template->setCurrentBlock("error");
$template->setVariable("ERROR", $message);
$template->parseCurrentBlock("error");

}

if (!($connection = @ mysql connect("localhost”, "fred", "shhh")))
die("Could not connect to database");

$phonebook_id = mysqlclean($_POST, "phonebook id", 5, $connection);
$firstname = mysqlclean($_POST, "firstname", 50, $connection);
$surname = mysqlclean($_POST, "surname", 50, $connection);

$phone = mysqlclean($_POST, "phone", 20, $connection);

$template = new HTML Template ITX("./templates");
$template->loadTemplatefile("example.8-10.tpl", true, true);

$errors = false;

if (empty($firstname))
formerror($template, "The first name field cannot be blank.", $errors);

if (empty($surname))
formerror($template, "The surname field cannot be blank.", $errors);

if (empty($phone))
formerror($template, "The phone field cannot be blank", $errors);

// Now the script has finished the validation, show any errors
if ($errors)
{

$template->show();

exit;

}

// If we made it here, then the data is valid
if (!mysql select db("telephone", $connection))
showerror();

// Update the phonebook entry

$query = "UPDATE phonebook SET surname = '{$surname}’,
firstname = '{$firstname}’,
phone = '{$phone}’
WHERE phonebook id = {$phonebook id}";

if (1(@ mysql query ($query, $connection)))
showerror();

Database Inserts, Updates, and Deletes

269

Example 8-12. Updating existing and inserting new phonebook rows (continued)

// Show the phonebook receipt
header("Location: example.8-5.php?status=T&phonebook_id={$phonebook_id}");
>

Deleting data
Deletion is a straightforward two-step process:

1. Using a key value, data is removed with an SQL DELETE statement.

2. On success, the user is redirected to a receipt page that displays a confirmation
message. On failure, an error is reported.

As with updates, the first phase requires a key value be provided, and any technique
used for capturing keys in updates can be used.

Deleting rows using a primary key value is very similar to the update process. First, a
phonebook_id key value is pre-processed using mysqlclean(), validated, and assigned
to $phonebook_id. Then, the following fragment uses a query to delete the customer
identified by the value of $phonebook_id:

// We have a phonebook_id. Set up a delete query
$query = "DELETE FROM phonebook WHERE phonebook id = {$phonebook id}";

if ((@ mysql_query ($query, $connection)) 8&&
@ mysql affected rows() == 1)
// Query succeeded and one row was deleted
header("Location: delete receipt.php?status=T");
else
// Query failed or one row wasn't deleted
header("Location: delete receipt.php?status=F");

The function mysql_affected_rows() reports how many rows were modified by the

query and, if everything is successful, this should be 1; the function is described in
Chapter 6. The delete receipt lets the user know that the operation succeeded or

failed.

Issues in Writing Data to Databases

In this section, we discuss issues that emerge in web database applications when
multiple users access an application. Typically, a few users are inserting, updating, or
deleting data, while most are running queries. This environment requires careful
code design: without it, data can unexpectedly or unreliably change. This may lead
to database inconsistencies and confused users.

Some of the problems we describe in this section can be solved with restrictive sys-
tem requirements, knowledge of how the DBMS behaves, and careful script develop-

270 | Chapter8: Writing to Web Databases

ment. Others solutions require an understanding of database theory. We discuss
both types of solution in the next section.

Transactions and Concurrency

Problems can occur when users read and write to a web database at the same time,
that is, concurrently. The management of groups of SQL statements that read and
write, or transactions, is one important area of the theory and practice of relational
databases. Here are four of the more common problems of concurrent read and write
transactions:

Lost update problem
User A reads from the database, recording a value. User B reads the same value,
then updates the value immediately. User A then updates the value, overwriting
the update written by User B.

Consider an example. Imagine that a winestore manager wants to order one
dozen more bottles of a popular wine, but only if there are less than two dozen
bottles currently in stock. The manager runs a query to sum the total stock for
that wine from the inventory. The result is that there are fifteen bottles left, so
the manager decides to place an order. However, he heads off to fill his coffee
cup first, leaving the system displaying the query result.

A second stock manager arrives at her desk with the same intention: to order
more of this popular wine if there are less than two dozen bottles. The result of
the query is the same: fifteen bottles. The second manager orders a dozen bot-
tles, and updates the inventory to 27, knowing the bottles will arrive in the after-
noon. The problem occurs when the first manager returns: he doesn’t rerun the
query and he too orders 12 bottles and updates the inventory to 27. Now the
system has record of 27 bottles, but 24 will arrive in the afternoon to take the
actual stock total to 39!

Dirty read problem
User A reads a value from the database, changes the value, and writes it back to
the database. User B then reads the value, changes the value, and writes it back
to the database. User A then decides not to confirm the changes for some reason
and undoes the changes he made. The problem is that User B has read and used
the changed value, resulting in a dirty read problem.

Consider an example. A manager decides to add a 3% surcharge to a particular
wine inventory, so she reads and updates the cost of that wine. Another man-
ager decides to apply a 10% discount to all wines made by a particular winery,
which happens to include the wine just surcharged. After all this, the first man-
ager realizes she has made a mistake: the wrong wine was updated! Unfortu-
nately, the second manager has already used this incorrect value as input into his
update, and the change can’t be undone correctly.

Issues in Writing Data to Databases | 271

Incorrect summary problem
User A updates values while User B reads and summarizes the same values. Val-
ues summarized may be read before or after each individual update, resulting in
unpredictable results.

Consider an example in the online winestore where a manager wants to produce
a management stock report. The report details wine sales, winery sales, wine
region sales, and total sales. The reporting process has four steps: first, the sales
of each wine are tallied; second, the total sales of wines for each winery are tal-
lied; third, the total sales of wines for each region are tallied; and, last, the over-
all total sales of wines is determined. The report uses four queries and takes a
few minutes to run.

Now, imagine that during this process, a customer purchases a bottle of Para-
dise Pinot Noir wine from the Paradise Enough winery. Specifically, let’s imag-
ine this happens after the total sales of the Paradise Pinot Noir wine are tallied
but before the Paradise Enough winery sales are tallied. The result is that the
tally of the Pinot Noir’s sales doesn’t include this purchase, but the tally of Para-
dise Enough winery sales does. The result is an inconsistency: adding together all
of the wine sales won’t give the same value that’s reported for the winery.

Unrepeatable read problem
A value is read in by User A, updated by User B, and subsequently reread by
User A for verification. Despite not modifying the value, User A encounters two
different values, that is, the read operation is unrepeatable.

Consider an example. Imagine a user of an online winestore wants to buy the
last bottle of an expensive, rare wine that’s in stock. He browses the database
and finds the wine. There is only bottle left, and he quickly adds this to his shop-
ping cart; in our implementation, this creates new rows in two tables in the data-
base. Now, he decides to finalize the purchase and is presented with a summary
of the shopping cart.

However, while the user fumbles about finding his password to log in, another
user enters the system. She quickly locates the same wine, sees that there is only
one bottle left, adds it to her shopping cart, logs in to the system, and purchases
the wine. When our first user finally logs in to finalize the order, all the details
look fine, but the wine has actually been sold. Our database operation to deduct
from the inventory reports an error because the stock value is already zero (the
value has changed during the transaction), and we end up reporting the error to
our original (now very unhappy and confused!) user.

Fortunately, most of these problems can be solved through locking or careful design
of scripts that carry out database transactions. However, you might choose not to
solve some problems because they restrict the system requirements or add unneces-
sary complexity. We discuss locking in the next section.

272 | Chapter8: Writing to Web Databases

Locking to Achieve Concurrency in MySQL

It has been shown that a simple scheme called locking (actually, it’s correctly known as
two-phase locking) solves the four transaction problems identified in the last section.

When and how to lock tables

Locking is needed only when multiple steps must be performed together, and when
two or more operations can be going on at the same time. If scripts are being imple-
mented that write to the database but aren’t multi-step operations susceptible to the
problems described in the previous section, locks aren’t needed.

Specifically, the following situations do not require a lock:

* Simple queries that insert rows, delete rows, or update rows, and that don’t use
results of a previous SELECT or data entered by the user as input. For example,
updating a customer’s details, adding a new phonebook entry, or uncondition-
ally deleting a row do not require a lock.

* Single-user applications or applications where only one user can alter the data do
not require locks regardless of what queries are used.

The following situations do require locks:

* Multi-user applications require locks, but only if either of the next two points
are true.

* A script first reads a value from a database and later writes that value to the data-
base. For example, to create a row without using MySQL proprietary features,
you first need to find the highest value used for the primary key using a SELECT
and then INSERT a new row with the next available key value.

* A script first writes a value to a database and later reads that value from the data-
base. For example, to update and display an inventory, you might first add an
extra quantity with an UPDATE and then read it back with a SELECT to check the
total and show it to the user.

Locking may not be required for all parts of a web database application: parts of the
application can still be safely used without violating any locking conditions.

With its default settings, each MySQL table has two associated lock variables. If a
user sets or holds a lock variable for a particular table, no other user can perform par-
ticular actions on that table. There are two kinds of locks for each table: read locks,
when a user is only reading from a table, and write locks, when a user is both read-
ing and writing to a table.

Having locks in a DBMS leads to four rules of use:

* If a user wants to write to a table, and she is performing a transaction suscepti-
ble to a concurrency problem, she must obtain a write lock on that table.

Issues in Writing Data to Databases | 273

* If a user only wants to read from a table, and she is performing a transaction sus-
ceptible to a concurrency problem, she must obtain a read lock on that table.

* If a user requires a lock, she must lock all tables used in the transaction in a sin-
gle LOCK statement.

* A user must release all locks when a database transaction is complete using the
UNLOCK statement.

When a user holds a write lock on a table, no other users can read or write to that
table. When a user holds a read lock on a table, other users can also read or hold a
read lock, but no user can hold a write lock on that table, or write to that table.

SELECT, UPDATE, INSERT, or DELETE operadonsthatdon’tuseLOCKTABLES
are held up if locks are held in other transactions that would logically

3+ prevent their operation. For example, if a user holds a write lock on a
table, no other user can issue a SELECT, UPDATE, INSERT, DELETE, or LOCK
operation on that table.

The following segment of an interaction with the MySQL command interpreter illus-
trates the use of locks in a summarization task that requires locking:

mysql> LOCK TABLES items READ, temp_report WRITE;

mysql> SELECT sum(price) FROM items WHERE cust_id=1;

R i +
| sum(price) |
Fommmmmeee +
| 438.65 |
mmmm e +

1 row in set (0.04 sec)

mysql> UPDATE temp_report SET purchases=438.65
WHERE cust_id=1;

mysql> UNLOCK TABLES;
In this example, a temporary table called temp_report is updated with the result of a
SELECT operation on an items table. If locks aren’t used, the items table can be modi-
fied by another user, possibly altering the summary value of $438.65 used as input to
the UPDATE operation. There are two locks obtained for this transaction: first, a read
lock on items because we don’t need to change items but we don’t want another user
to make a change to it; and, second, a write lock on temp_report because we want to
change the table, and we don’t want other users to read or write to the report while
we make changes. The UNLOCK TABLES operation releases all locks held; locks can’t be
progressively released.

MySQL doesn’t permit us to lock only one of the two tables used in the transaction
above. The following rules apply to locks:

274 | Chapter8: Writing to Web Databases

* If a lock is held, all other tables that are to be used must also be locked. Failing
to do so results in a MySQL error.

* If aliases are used in queries, the alias must be locked. For example, in the fol-
lowing query:
SELECT * from customer c where c.custid=1
the alias must be locked with one of:
LOCK TABLES customer ¢ READ
or:
LOCK TABLES customer ¢ WRITE

If different aliases for the same table are used, each different alias must be
locked. Aliases are discussed in Chapter 15.

In many cases, locking can be avoided through careful query design:

* Use MySQL’s auto_increment feature to create new primary key values. Alterna-
tively, use PEAR DB’s DB::nextld() method that we discuss later in this chapter.

* Use mysql_insert_id() (as opposed to using the max() function in a SELECT
query) to find the value of a newly-created primary key. Again, PEAR DB’s DB::
nextld() method can be alternatively used.

* Use advanced features of SQL to combine two queries into one; these features
are discussed in Chapter 15. For example, you can use a single nested query to
discover the total value in our previous example and then use that to create a
new row in the temporary report.

* Perform updates that are relative. For example, UPDATE customer SET discount =
discount*1.1.

The LOCK TABLES and UNLOCK TABLES statements in MySQL

The LOCK TABLES statement is used to lock the listed tables in either READ or WRITE
mode. As discussed earlier, all tables that are accessed in the transaction must be
locked in either READ or WRITE mode, and must be listed in a single LOCK TABLES state-
ment.

A script that issues a LOCK TABLES statement is suspended until all locks listed are suc-
cessfully obtained. There is no time limit in waiting for locks. If the lock is held by
another user or an operation is running on the table already, a request is placed at
the back of either the write- or read-lock queue for the table, depending on the lock
required. The write-lock queue has priority over the read-lock queue, so a user who
wants a write lock obtains it when it becomes available, regardless of how long
another user has been waiting in the read-lock queue.

MySQL gives priority to database modifications over read queries. This can lead to a
problem called starvation, where a transaction never completes because it can’t
obtain its required read locks. However, most web database applications read from

Issues in Writing Data to Databases | 275

databases much more than they write, and locks are required in only a few situa-
tions, so starvation is very uncommon in practice.

If low-priority writing is essential to an application, a LOW_PRIORITY option can be
prefixed before the WRITE clause. If a transaction is queued for a LOW_PRIORITY WRITE,
it receives the lock only when the read lock queue is empty and no other users are
reading from the table. Again, consideration of possible starvation is important.

Locks can’t be progressively obtained through several LOCK TABLES statements.
Indeed, issuing a second LOCK TABLES is the same as issuing an UNLOCK TABLES to
release all locks and then issuing the second LOCK TABLES. There are good reasons for
this strict rule, related to a locking problem called deadlock, which we don’t discuss
here. However, MySQL is deadlock-free because it enforces the risk-free use of the
LOCK TABLES and UNLOCK TABLES statements.

If an unlocked table needs to be accessed or locking must be avoided for a particular
table, a second server connection can be opened and used.

MySQL has a feature called INSERT DELAYED for insertion that is
described in the MySQL manual.

Don’t use locking with INSERT DELAYED for insert operations. The
INSERT DELAYED process is carried out by the MySQL server at a later
time and the locks held by the user can’t be used by the server.

Locking for performance

Locking is primarily designed to ensure that concurrent transactions can execute
safely. However, locking is also a useful performance tool to optimize the perfor-
mance of important transactions.

Consider, for example, a situation where we urgently require a complex report that
uses a slow query. With other users running queries and using system resources, this
query may run even slower. A solution is to use LOCK TABLES with the WRITE option to
stop other users running queries or database updates, and to have exclusive access to
the database for the query duration. This permits better optimization of the query
processing by the server, dedication of all the system resources to the query, and
faster disk access.

The downside of locking for performance is the reduction in concurrent access to the
database. Users may be inconvenienced by slow responses or timeouts from the web
database application. Locking for performance should be used sparingly.

Locking Tables in Web Database Applications

Example 8-13 shows a PHP script that requires locking to ensure that the value
returned from the SELECT query can’t change before the INSERT operation. The script
adds a row to the phonebook table and does exactly same thing as Example 8-9.

276 | Chapter8: Writing to Web Databases

However, it doesn’t use the MySQL proprietary auto_increment modifier and so it
needs to read the maximum primary key value that’s in use and then write a new row

based on that value.

Without the auto_increment modifier and with no locking, it’s possible that two
rows could be created with the same phonebook_id. This can happen if two or more
users run the script at the same time and get the same result from the SELECT query.
Both users would then attempt to INSERT a new row with the same primary key value
and, if this happens, MySQL will report an error because the primary key value must
be unique. Locking solves the problem because it stops users running the queries in

the script at the same time.

Example 8-13. Creating a phonebook entry using locking

<?php
require 'db.inc';
require_once "HTML/Template/ITX.php";

function formerror(&$template, $message, &$errors)

{

$errors = true;
$template->setCurrentBlock("error");
$template->setVariable("ERROR", $message);
$template->parseCurrentBlock("error");

}

if (!($connection = @ mysql_connect("localhost", "fred", "shhh")))
die("Could not connect to database");

$firstname = mysqlclean($_POST, "firstname", 50, $connection);
$surname = mysqlclean($_POST, "surname", 50, $connection);
$phone = mysqlclean($_POST, "phone", 20, $connection);

$template = new HTML Template ITX("./templates");
$template->loadTemplatefile("example.8-10.tpl", true, true);

$errors = false;

if (empty($firstname))
formerror($template, "The first name field cannot be blank.", $errors);

if (empty($surname))
formerror($template, "The surname field cannot be blank.", $errors);

if (empty($phone))
formerror($template, "The phone field cannot be blank", $errors);

// Now the script has finished the validation, show any errors
if ($errors)
{

$template->show();

exit;

Issues in Writing Data to Databases

277

Example 8-13. Creating a phonebook entry using locking (continued)
}

// If we made it here, then the data is valid
if (!mysql select db("telephone", $connection))
showerror();

// Lock the table

$query = "LOCK TABLES phonebook WRITE";

if (1(@ mysql query ($query, $connection)))
showerror();

// Find the maximum phonebook id value that's in use

$query = "SELECT max(phonebook id) FROM phonebook";

if (!($result = @ mysql _query ($query, $connection)))
showerror();

$row = @ mysql fetch array($result);

// Set the new value for the primary key
$phonebook_id = $row["max(phonebook id)"] + 1;

// Insert the new phonebook entry
$query = "INSERT INTO phonebook VALUES
({$phonebook_id}, '{$surname}', '{$firstname}', '{$phone}')";
if (1(@ mysgl _query ($query, $connection)))
showerror();

// Unlock the table

$query = "UNLOCK TABLES";

if (1(@ mysql query ($query, $connection)))
showerror();

// Show the phonebook receipt
header("Location: example.8-5.php?status=T8&phonebook id={$phonebook id}");
>

The locking of the phonebook table is performed before the SELECT query, and the
UNLOCK TABLES statement is issued after the INSERT. As you can see, the lock and
unlock statements are executed just like any other query using mysql_query().

Locking methods that dont work in web database applications

There are several locking paradigms that don’t work in a web database application
because of the statelessness of HTTP. Each approach fails because there is either no
guarantee or no possibility that the locked tables will be unlocked. If tables are
locked indefinitely, other transactions can’t proceed, and the DBMS will most likely
need to be shut down and restarted.

278 | Chapter8: Writing to Web Databases

Be careful with locking in web database applications. Remember the
basic rule that all locks should be unlocked by the same script during
the same execution of the script.

All web scripts that require locking should have the sequence 1) lock,
2) query, 3) update, delete, or insert, and 4) unlock. There must be no
user interaction or intervening calls to other scripts that require input.

The following must be avoided in web database applications:

* Failing to issue an UNLOCK TABLES on a locked persistent database connection
(such as one that opened with mysql_pconnect()). The locks aren’t released
when the script terminates.

It isn’t necessary to issue an UNLOCK TABLES if a nonpersistent connection is used
(such as one opened with mysql_connect()). Locks are automatically released
when the script finishes and the connection closes. However, it is good practice
to include the UNLOCK TABLES statement.

* Locking one or more tables during the first execution of a script, leaving them
locked, and then querying or updating during a second or subsequent execution
of the script. Remember that each database connection in a script is indepen-
dent and is treated as a different user by MySQL.

* Retrieving a value such as the next available primary key value, presenting this to
the user, waiting for the user to enter further details, and then adding a row to
the database with that identifier. Remember that another user may add a row
while the first user is entering the required details, and locks should never be car-
ried across several scripts or different executions of the same script.

Locking with an auxiliary table

Locking limits concurrency in your web database application. If tables are locked,
then other users won’t be able to run the same script at the same time and other
scripts may also not be able to proceed. For example, suppose you write lock the
phonebook table we’ve used in our examples throughout this chapter. With the table
locked, any other query on the phonebook table in any script won’t proceed until you
unlock the table; this means, for example, while you insert one row, no other users
can search for a phone number. Sometimes, you want to avoid this and this section
shows you how.

One technique you can use to minimize locking of your frequently used tables is to
add an additional table to the database. This additional table stores and manages the
next available primary key values for all other tables in the database. The additional
table is then locked, queried, updated, and unlocked each time a new primary key
value is needed; the main tables in the database are then never locked when data is
inserted. In the remainder of this section, we show you how to do this using the

Issues in Writing Data to Databases | 279

MySQL function library; the next section shows you how to do the same thing using
PEAR DB.

Let’s consider an example. Suppose you want to add new rows to the phonebook
table without locking it and without using the proprietary MySQL auto_increment
modifier. You first create an additional table in the telephone database using the fol-
lowing CREATE TABLE statement:

CREATE TABLE identifiers (phonebook id int(5));

As we show you next, this table only contains one row and therefore there’s no need
to declare or use a primary key.

The new identifiers table stores one row that contains the next available value of the
phonebook_id primary key attribute from the phonebook table. To set this up, you add
the row to the table and set the phonebook_id attribute to the next available value.
Let’s suppose your phonebook table is empty, and so the next primary key value for
phonebook_id is 1. Here’s the INSERT statement you use to set up the table:

INSERT INTO identifiers VALUES (1);

Now you can use the identifiers table to read and write a primary key value for the
phonebook table. Having done this, you use the primary key value to create a new
row without locking the phonebook table. Here’s how you do it using the MySQL
command interpreter:

mysql> LOCK TABLES identifiers WRITE;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT phonebook_id FROM identifiers;

et +
| phonebook_id

R R T T +
\ 1|
e +

1 row in set (0.00 sec)

mysql> UPDATE identifiers SET phonebook_id = phonebook_id + 1;
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: O

mysql> UNLOCK TABLES;
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO phonebook VALUES (1, "Williams",
"Lucy", "61388763452");
Query OK, 1 row affected (0.01 sec)
The locking, querying, modifying, and unlocking process proceeds similarly to our
example in the previous section, except that it doesn’t use the phonebook table.
Instead, the new row is inserted into the phonebook table without a lock using the
value discovered with the SELECT query from the identifiers table, thereby maximiz-

280 | Chapter8: Writing to Web Databases

ing concurrency (but requiring three SQL queries instead of two). Example 8-14
shows a rewritten version of Example 8-13 that uses this approach.

Example 8-14. Maintaining the phonebook table using an external identifiers table

<?php
require 'db.inc';
require_once "HTML/Template/ITX.php";

function formerror(&$template, $message, 8$errors)
{
$errors = true;
$template->setCurrentBlock("error");
$template->setVariable("ERROR", $message);
$template->parseCurrentBlock("error");

}

if (!($connection = @ mysql connect("localhost", "fred", "shhh")))
die("Could not connect to database");

$firstname = mysqlclean($_POST, "firstname", 50, $connection);
$surname = mysglclean($_POST, "surname", 50, $connection);
$phone = mysglclean($ POST, "phone", 20, $connection);

$template = new HTML Template ITX("./templates");
$template->loadTemplatefile("example.8-10.tpl", true, true);

$errors = false;

if (empty($firstname))
formerror($template, "The first name field cannot be blank.", $errors);

if (empty($surname))
formerror($template, "The surname field cannot be blank.", $errors);

if (empty($phone))
formerror($template, "The phone field cannot be blank", $errors);

// Now the script has finished the validation, show any errors
if ($errors)
{

$template->show();

exit;

}

// If we made it here, then the data is valid
if (!mysql select db("telephone", $connection))
showerror();

// Lock the identifiers table

$query = "LOCK TABLES identifiers WRITE";

if (1(@ mysql query ($query, $connection)))
showerror();

Issues in Writing Data to Databases | 281

Example 8-14. Maintaining the phonebook table using an external identifiers table (continued)

// Find the maximum phonebook id value that's in use

$query = "SELECT phonebook_id FROM identifiers";

if (!($result = @ mysql query ($query, $connection)))
showerror();

$row = @ mysql fetch array($result);
$phonebook_id = $row["phonebook id"];

// Update the phonebook id identifier

$query = "UPDATE identifiers SET phonebook_id = phonebook_id + 1";

if (!($result = @ mysql query ($query, $connection)))
showerror();

// Unlock the table

$query = "UNLOCK TABLES";

if (1(@ mysql query ($query, $connection)))
showerror();

// Insert the new phonebook entry
$query = "INSERT INTO phonebook VALUES
({$phonebook_id}, '{$surname}', '{$firstname}', '{$phone}')";
if (1(@ mysql query ($query, $connection)))
showerror();

// Show the phonebook receipt
header("Location: example.8-5.php?status=T8&phonebook id={$phonebook id}");
>

To extend this scheme for a database containing several tables, there are two possi-
ble approaches: first, add an additional attribute (or more than one attribute if the
primary key isn’t on only one attribute) to the identifiers table for each additional
table; or, second, add an additional identifier table for each additional table. The first
approach is the simplest (and the one we recommend) but it does have the potential
disadvantage that concurrency could be limited by excessive locking of the identifiers
table if too many tables are maintained by using it. The second approach maximizes
concurrency but is probably only necessary for high-throughput applications.

Managing identifiers with PEAR DB

In the previous section, we showed you how to maintain identifiers using an addi-
tional table. PEAR DB allows you to do the same thing using its DB:nextld()
method and this is useful if you want to write database independent code. We show
you how to use it in this section. The PEAR DB sequence methods are also briefly
described in Chapter 7.

A sequence is a value associated with a name and it’s typically used to create pri-
mary key values. A sequence is always initialized to 1, and increments each time you

282 | Chapter8: Writing to Web Databases

access it with DB::nextId(). For example, suppose you want to maintain the primary
key value for the phonebook id from the phonebook table that we’ve used in our
examples in this chapter. To do this, you can use the DB::nextID() method as shown
in Example 8-15:

// Get a new primary key value for phonebook id
$phonebook_id = $connection->nextId("phonebook id");

When this is called for the first time, DB:nextld() creates a new sequence named
phonebook_id, assigns it the value 1, and returns the value. When you call it for the
second time, it returns 2, and so on. It performs exactly the same function as our
identifiers table approach in Example 8-14.

Example 8-15. Using PEAR DB to maintain primary key values

<?php

require "db.inc";

require_once "HTML/Template/ITX.php";
require once "DB.php";

function formerror(&$template, $message, &$errors)

{
$errors = true;
$template->setCurrentBlock("error");
$template->setVariable("ERROR", $message);
$template->parseCurrentBlock("error");

}
$dsn = "mysql://fred:shhh@localhost/telephone";
$connection = DB::connect($dsn, false);
if (DB::isError($connection))
die($connection->getMessage());
$firstname = mysqlclean($ POST["firstname"], 50, $connection);
$surname = mysqglclean($_POST["surname"], 50, $connection);

$phone = mysqlclean($_POST["phone"], 20, $connection);

$template = new HTML Template ITX("./templates");
$template->loadTemplatefile("example.8-10.tpl", true, true);

$errors = false;

if (empty($firstname))
formerror($template, "The first name field cannot be blank.", $errors);

if (empty($surname))
formerror($template, "The surname field cannot be blank.", $errors);

if (empty($phone))
formerror($template, "The phone field cannot be blank", $errors);

// Now the script has finished the validation, show any errors

Issues in Writing Data to Databases | 283

Example 8-15. Using PEAR DB to maintain primary key values (continued)

if ($errors)

{
$template->show();
exit;

}

// Get a new primary key value for phonebook_id

$phonebook_id = $connection->nextId("phonebook id");

if (DB::isError($connection))
die($connection->getMessage());

// Insert the new phonebook entry
$query = "INSERT INTO phonebook VALUES
({$phonebook_id}, {$surname}, {$firstname}, {$phone})";
$result = $connection->query($query);
if (DB::isError($result))
die($result->getMessage());

// Show the phonebook receipt

header("Location: example.8-5.php?status=T&phonebook id={$phonebook id}");

7>

Behind the scenes, PEAR DB maintains a sequence in a table of the same name.
When you create a sequence, it creates a table and an attribute and initializes the
attribute to 1. When you call DB::nextld(), it adds 1 and returns the value. PEAR DB

correctly looks after safe concurrent access.

If you call DB::nextID() without its optional second parameter or with the second
parameter set to true, a sequence with the name supplied as the first parameter is
created if it doesn’t exist. You can also manually create a sequence using DB::

createSequence() and you can remove it using DB::dropSequence().

284 | Chapter8: Writing to Web Databases

CHAPTER 9
Validation with PHP and JavaScript

Validation is essential to web database applications. In this chapter, we begin by dis-
cussing the types of validation that can be implemented in a web database applica-
tion, and then show you how to validate data at the server using PHP and at the
client using JavaScript.

This chapter extends our discussion of validation in PHP. We have already intro-
duced basic security validation and empty field checks in Chapter 6. We continue
here by introducing the principles of validation and the practice of validating form
variables and values with PHP. We show you how to validate strings, numbers,
dates, times, and Internet addresses, and how some of these tasks can be simplified
using PEAR packages.

This chapter also introduces client-side JavaScript. We compare it to PHP and show
you the basic techniques used in most common applications. We then describe how
simple validation can be performed at the client to save network costs and improve
responsiveness of an application to the user. We also introduce other simple tasks
that can be effectively accomplished with JavaScript.

This chapter is about user data and helping users to meet system requirements. Parse
errors, database server failures, debugging code, and other PHP and database server
problems are the subject of Chapter 12.

Validation and Error Reporting Principles

There is nothing worse for a user than annoying, overly persistent, inaccurate, or
uninformative validation. For example, error messages that describe an error but
don’t specify which field contains the error are difficult to correct. However, there is
no recipe for balancing validation with system requirements: what is pleasing or
mandated by requirements in one application might be annoying or useless in
another. In this section, we consider practical validation models for web database
applications.

285

Validation is actually two processes: finding errors and presenting error messages.
Finding errors can be interactive, where data is checked as it’s entered, or post-valida-
tion, where the data is checked after entry. Presenting errors can be field-by-field—
where a new error message is presented to the user for each error found—or it can be
batched, where all errors are presented as a single message. There are other dimen-
sions to validation and error processing, such as the degree of error that is tolerated
and the experience level of the user. However, considering only the basic processes,
the choice of when to error-check and when to notify the user, leads to four com-
mon approaches:

Interactive validation with field-by-field errors
The data in each field is validated when the user exits or changes the field. If
there is an error, the user is alerted to that error and may be required to fix the
error before proceeding.

Interactive validation with batched errors
The data in all fields is validated when the user leaves one field. If there are one
or more errors, the user is alerted to these, and can’t proceed beyond the current
page without fixing all errors.

Post-validation with field-by-field errors
The user first enters all data with no validation. The data is then checked and
errors are reported for each field, one by one. The user fixes each error in turn
and resubmits the data for revalidation.

Post-validation with batched errors
The user first enters all data with no validation. The data is then checked, and all
errors in the data are reported in one message to the user. The user then fixes all
errors and resubmits the data for revalidation.

In Chapter 8—without discussing the details—we covered several simple post-vali-
dation techniques to check whether mandatory form data was entered before insert-
ing or updating data in the database. In addition, we used a batch reporting method,
where errors were reported as a list by constructing an error page using a template.

In the examples in this chapter, we discuss additional validation techniques to
inspect both mandatory and optional fields. We use these techniques to create a
batch error report in Chapter 10. Examples of complete validation code for a cus-
tomer details form are listed in Chapter 17.

Models That Don’t Work

Interactive models are difficult to implement in the web environment. Server-side
scripts are impractical for this task, because an HTTP request and response is
required to validate each field that’s entered. This is usually unacceptable, because
the user is required to submit the data after entering each field. The result is that
response times are likely to be slow and the server load high.

286 | Chapter9: Validation with PHP and JavaScript

Client-side scripts can implement an interactive model. However, validation on the
client side should not be the only method of validation because the user can pas-
sively or actively bypass the client-side processes. We discuss the partially interactive
solution of including client-side scripts with an HTML form later in this chapter.

Models That Do Work

Post-validation models are practical in web database applications. Both client- and
server-side scripts can validate all form data during the submission process.

In many applications, reasonably comprehensive validation is performed on the cli-
ent side when the user clicks the form submit button. Client-side validation reduces
server and network load, because the user’s browser ensures the data is valid prior to
the HTTP request. Client-side validation is also usually faster for the user.

If client-side validation succeeds, data is submitted to the server and the same (or
often more comprehensive) validation is performed. Duplicating client validation on
the server is essential because of the unreliability of client-side scripts and lack of
control over the client environment.

The post-validation model can be combined with either field-by-field or batch error
reporting. For server-side validation, the batch model is preferable to a field-by-field
implementation, as the latter approach has more overhead and is usually slower
because each form error requires an additional HTTP request and response.

For client-side post-validation, either error-reporting model can be used. The advan-
tage of the field-by-field model is that it leads the user through the process of correct-
ing the data and the cursor can be directed to the field containing the error, making
error correction easier. The disadvantage is that several errors require several error
messages, and this can be frustrating for the user. The advantage of the batch
approach is that all errors are presented in one message but the disadvantage is that
the cursor can’t easily be directed to the field requiring correction and its sometimes
unclear to the user how to correct the data.

Server-side validation is essential to secure a web database and to
ensure that system and DBMS constraints are met.

Client-side validation may be implemented in addition to server-side
validation, but all client-side functionality should be duplicated at the
server side. Never trust the user or the client browser.

The choice of which reporting model to use depends on the size and
complexity of the form and on the system requirements.

Server-Side Validation with PHP

In this section, we introduce validation on the server using PHP. We show you how
to validate numbers including currencies and credit cards, strings including email

Server-Side Validation with PHP | 287

addresses and Zip Codes, and dates and times. We also show you how to check for
mandatory fields, field lengths, and data types. Many of the PHP functions we use—
including the regular expression and string functions—are discussed in detail in
Chapter 3.

We illustrate many of our examples in this section with a case study of validating
customer details. The techniques described here are typical of those that validate a
form after the user has submitted data to the server. We show how to extend and
integrate this approach further in Chapter 10 so that the batch errors are reported as
part of a customer form, and we show a completed customer entry form and valida-
tion in Chapter 17.

Mandatory Data

Testing whether mandatory fields have been entered is straightforward, and we have
implemented this in our examples in Chapter 8. For example, to test if the user’s sur-
name has been entered, the following approach is used:

/// Validate the Surname

if (empty($surname))

formerror($template, "The surname field cannot be blank.", $errors);

The formerror() function outputs the error message as a batch error using a tem-
plate and is discussed in detail in Chapter 8. For simplicity and compactness in the
remainder of our examples in this chapter, we omit the formerror() function from
code fragments and simply output the error messages using print.

Validating Strings

In this section, we discuss nonnumeric validation. We begin with the basics of vali-
dating strings, and then discuss the specifics of email addresses, URLs, and Zip or
post codes.

Basic techniques

It’s likely that most of the data entered by users will be strings and require valida-
tion. Indeed, checking that strings contain legal characters, are of the correct length,
or have the correct format is the most common validation task. Strings are popular
for two reasons: first, all data from a form that is stored in the superglobals $_GET and
$_POST is of the type string; and, second, some nonstring data such as a date of birth
or a phone number is likely to be stored as a string in a database table because it may
contain brackets, dashes, and slashes. However, despite dates and phone numbers
being sometimes stored as strings, we discuss their validation in the section “Validat-
ing numbers.”

The simplest test of a string is to check if it meets a minimum or maximum length
requirement. For example:

288 | Chapter9: Validation with PHP and JavaScript

if (strlen($password) < 4 || strlen($password) > 8)
print "Password must contain between 4 and 8 characters”;
Length validation can also be performed using a regular expression, as we show in
later examples in this section. Our mysqlclean() and shellclean() functions also
include an implicit maximum length validation. As discussed in Chapter 6, these func-
tions should be used as a first step in validation that helps to secure an application.

Common tests for legal characters include checking if strings are uppercase, lower-
case, alphabetic, or are drawn from a defined character set (such as, for example,
alphabetic strings that may include hyphens or apostrophes). In PHP, the is_string()
function can be used to check if a variable is a string type. However, this is of limited
use in validation because a string can contain any character including (or even exclu-
sively) digits or special characters. It’s more useful to test what characters are in the
string or detect characters that shouldn’t be there.

Regular expressions offer three shortcuts for use in basic tests that are discussed in
Chapter 3. To test if a string is alphabetic, use:

if (lereg("~[[:alpha:]]+$", $string))
print "String must contain only alphabetic characters.";

To test if a string is uppercase or lowercase, use:

if (ereg("~[[:upper:]]+$", $string))
print "String contains only uppercase characters."”,;

if (ereg("~[[:lower:]]+$", $string))
print "String contains only lowercase characters"”;
The expressions work for the English character sets, and also work for French if you
set your locale at the beginning of the script using, for example, setlocale('LC_ALL’,
’fr’). In the future, it should work for all localities and, therefore, these techniques are
useful for internationalizing your application.

If you’re working with only the English language a simpler alphabetic test works:
if (leregi("~[a-z]*$", $string))
print "String must contain only alphabetic characters.”;
For other character sets (or if you want detailed control over English validation), a
handcrafted expression works well. For example, the following works as an alpha-
betic test for Spanish:
if (leregi("~[a-zn]*$", $string))
print "La cadena debe contener solamente caracteres alfabeticos";
Sometimes it’s easier to check what characters shouldn’t be there. For example, at
our university, student email accounts must begin with an S:

if (lereg("~S", $text))
print "Student accounts must begin with S.";

Server-Side Validation with PHP | 289

However, for this simple example, a regular expression will run slower than using a
string library function. Instead, a better approach is to use substr():

if (substr($text, o, 1) != "S")
print "Student accounts must begin with S.";

In general, you should use string functions for low complexity tasks.

For our customer case study, we might allow the firstname and surname of the cus-
tomer to contain only alphabetic characters, hyphens, and apostrophes; white space,
numbers, and other special characters aren’t allowed. For the firstname we use:

elseif (leregi("~[a-z'-]*¢$", $firstName))
print "The first name can contain only alphabetic

"characters or - or '";

Length validation and character checks are often combined. For example, the cus-
tomer’s middle initial might be limited to exactly one alphabetic character:
if (lempty($initial) 88 leregi("~[a-z]$", $initial))
print "The initial field must be empty or one character in length.";

The if statement contains two clauses: a check as to whether the field contains data
and, if that’s true, a check of the contents of the field using eregi(). As discussed in
Chapter 2, the second clause is checked only if the first clause is true when an AND (8&)
expression is evaluated. If the variable is empty, the eregi() expression isn’t evaluated.

The expression *[a-z]$ is the same as *[a-z]{1}$. To check if a string is exactly four
alphabetic characters in length use ~[a-z]{4}$. To check if it’s between two and four
characters use “[a-z]{2,4}$.

Validating Zip and postcodes

Zip or postcodes are numeric in most countries but are typically stored as strings
because spaces, letters, and special characters are sometimes allowed. In our cus-
tomer case study, we might validate Zip Codes using a simple regular expression:

// Validate Zipcode

if (lereg("~([0-9]{4,5})$", $zipcode))

print "The zipcode must be 4 or 5 digits in length.";

This permits a Zip Code of either four or five digits in length; this works for both U.S.
Zip Codes, and Australia’s and several other countries’ postcodes, but it’s unsuitable
for many other countries. For example, postcodes from the United Kingdom include
letters and a space and have a complex structure.

For complete validation, we could adapt our Zip or postcode validation to match the
country that the user has entered. Example 9-1 shows a validation function that
adapts for many Zip and postcodes. The final five case statements check postcodes
that must include spaces, dashes, and letters.

290 | Chapter9: Validation with PHP and JavaScript

Example 9-1. A code fragment to validate many popular Zip and postcodes

function checkcountry($country, $zipcode)
{
switch ($country)
{
case "Austria":
case "Australia":
case "Belgium":
case "Denmark":
case "Norway":
case "Portugal":
case "Switzerland":
if (lereg("~[0-9]{4}$", $zipcode))

{
print "The postcode/zipcode must be 4 digits in length";
return false;

}

break;

case "Finland":
case "France":
case "Germany":

case "Italy":

case "Spain":

case "USA":
if (lereg("~[0-9]1{5}$", $zipcode))
{

print "The postcode/zipcode must be 5 digits in length";
return false;
}
break;
case "Greece":
if (lereg(""[0-9]{3}[][0-9]{2}$", $zipcode))
{

print "The postcode must have 3 digits, a space,
and then 2 digits";
return false;
}
break;
case "Netherlands":
if (lereg("~[0-91{4}[1[A-Z]{2}$", $zipcode))
{

print "The postcode must have 4 digits, a space, and then 2
letters"”;
return false;
}
break;
case "Poland":
if (lereg("~[0-9]{2}-[0-9]{3}$", $zipcode))
{

print "The postcode must have 2 digits, a dash,
and then 3 digits";
return false;

}

break;

Server-Side Validation with PHP | 291

Example 9-1. A code fragment to validate many popular Zip and postcodes (continued)

case "Sweden":
if (lereg("~[0-91{3}[1[0-9]{2}$", $zipcode))
{

print "The postcode must have 3 digits, a space,
and then 2 digits";
return false;
}
break;
case "United Kingdom":

if (lereg("~(([A-Z][0-9]{1,2})|([A- Z]{z}[o 9l{1,21) " .
"([A-Z]{2}[0-9][A-Z]) | ([A-Z][0-9][A-Z])|"
"([A-Z]{3}))[1l[0-9][A- Z]{Z}$", $zipcode))

{
print "The postcode must begin with a string of the format
A9, A99, AA9, AAQY, AA9A, AQA, or AAA,
and then be followed by a space and a string
of the form 9AA.
A is any letter and 9 is any number.";
return false;

}
break;
default:
// No validation
}

return true;

}

Another common validation check with Zip Codes is to check that they match the
city or state using a database table, but we don’t consider this approach here.

Validating email addresses

Email addresses are another common string that requires field organization check-
ing. There is a standard maintained by the Internet Engineering Task Force (IETF)
called RFC-2822 that defines what a valid email address can be, and it’s much more
complex than might be expected. For example, an address such as the following is
valid:

<test> "@webdatabasebook.com

In our customer case study, we might use a regular expression and network func-
tions to validate an email address. A function for this purpose is shown in
Example 9-2.

Example 9-2. A function to validate an email address

function checkemail($email)
{
// Check syntax
$validEmailExpr = "~[0-9a-z~!#$%8 -]([.]?[0-9a-z~!#$%8 -])*" .
"@[0-9a-z~1#$%8& -1([.]?[0-9a-z~!1#$%& -1)*$";

292 | Chapter9: Validation with PHP and JavaScript

Example 9-2. A function to validate an email address (continued)

// Validate the email
if (empty($email))
{

print "The email field cannot be blank";
return false;

}
elseif (leregi($validEmailExpr, $email))

print "The email must be in the name@domain format.";
return false;

elseif (strlen($email) > 30)
{

print "The email address can be no longer than 30 characters.";
return false;

}

elseif (function exists("getmxrr") 8&% function_exists("gethostbyname"))

{

// Extract the domain of the email address
$maildomain = substr(strstr($email, '@'), 1);

if (!(getmxrr($maildomain, $temp) ||
gethostbyname($maildomain) != $maildomain))

{

print "The domain does not exist.";
return false;
}
}

return true;

}

If any email test fails, an error message is output, and no further checks of the email
value are made. A valid email passes all tests.

The first check tests to make sure that an email address has been entered. If it’s omit-
ted, an error is generated. It then uses a regular expression to check if the email
address matches a template. It isn’t RFC-2822-compliant but works reasonably for
most email addresses:

* It uses eregi(), so either upper- or lowercase are matched by the use of a-z.

* It expects the string to begin with a character from the set 0-9, a-z, and ~!#$%& -.
There has to be at least one character from this set at the beginning of the email
address for it to be valid.

* After the first character matches, there is an optional bracketed expression:

([.12[0-9a-z~1#$%8 -]1)*
This expression is optional because it’s suffixed with the * operator. However, if
it does match, it matches any number of the characters specified. There can only
be one consecutive full-stop if a full-stop occurs, as determined by the expres-
sion [.]?. The expression, for example, matches the string fred.williams but not
fred..williams.

Server-Side Validation with PHP | 293

* After the initial part of the email address, the character @ is expected. The @ has
to occur after the first word for the string to be valid; our regular expression
rejects an email address such as fred that has only the initial or local component.

* Qur validation expects there to be another word of at least one character after
the @ symbol, and this can be followed by any combination of the permitted
characters. Strings of permitted characters can be separated by a single full-stop.

The function is imperfect. It allows several illegal email addresses and doesn’t allow
many that are legal but unusual.

The third step is to check the length of the email address. If it exceeds 30 characters,
an error is generated.

The fourth and final step is to check whether the domain of the email address actu-
ally exists. The fragment only works on platforms that support the network library
functions getmxrr() and gethostbyname():

elseif (function_exists("getmxrr") 8& function_exists("gethostbyname"))

{

// Extract the domain of the email address
$maildomain = substr(strstr($email, '@'), 1);

if (!(getmxrr($maildomain, $temp) ||
gethostbyname($maildomain) != $maildomain))
{

print "The domain does not exist.";
return false;

}
}
The function getmxrr() queries an Internet domain name server (DNS) to check if
there is a record of the email domain as a mail exchanger (MX). If the domain isn’t
an ‘MX’, the domain is checked with gethostbyname() to see if it has an ‘A’ record;
the relevant standard RFC-974 states that when a domain does not have an ‘MX’, it
should be interpreted as having one equal to the host name. If both tests fail, the
domain of the email address isn’t valid and we reject the email address.

For platforms (such as Microsoft Windows) that don’t have the getmxrr() and
gethostbyname() functions, the PEAR Net_DNS package can be used instead. It
must be installed using the PEAR installer. The DNS lookup package must then be
included into the source code using;:

require once "Net/DNS.php";
Installation of packages is discussed in Chapter 7.

The following fragment is a function checkMailDomain() that uses PEAR Net_DNS
to check if the domain parameter $domain has a record of the type matching the
parameter $type:

// Call with $type of MX, then A to check if an email address
// domain is valid

294 | Chapter9: Validation with PHP and JavaScript

function checkMailDomain($domain, $type)

{
// Create a DNS resolver, and look up an $type record for $domain
$resolver = new Net DNS Resolver();
$answer = $resolver->search($domain, $type);

// Is there an answer record?
if (isset($answer->answer))
// Iterate through the answers
foreach($answer->answer as $ans)
// If it's a $type answer, return true
if ($ans->type == $type)
return true;

return false;
}
The function returns true if the DNS server responds with an answer that includes a
record of the type that’s been requested; it returns false otherwise.

The following code fragment can then be used to validate an email address:

// Extract the domain of the email address
$maildomain = substr(strstr($email, '@'), 1);

if (!(checkMailDomain($maildomain, "MX") ||
checkMailDomain($maildomain, "A")))
{

print "The domain does not exist.";
return false;

}
As in the previous example that uses getmxrr() and gethostbyname(), we check if
there is a record of the email domain as a mail exchanger (MX). If the domain isn’t
an ‘MX’, the domain is checked to see if it has an ‘A’ record. If both tests fail, the
domain of the email address isn’t valid and we reject the email address.

Validating URLs

Home pages, links, and other URLs are sometimes entered by users. In PHP, validat-
ing these is straightforward because the library function parse_url() can do most of
the work for you.

The parse_url() function takes one parameter, a URL string, and returns an associa-
tive array that contains the components of the URL. For example:
$bits =
parse_url("http://www.webdatabasebook.com/test.php?status=F#message");

foreach($bits as $var => $val)
echo "{$var} is {$val}\n";

produces the output:

scheme is http
host is www.webdatabasebook.com

Server-Side Validation with PHP | 295

path is /test.php
query is status=F
fragment is message

The parse_url() function can be used in validation as follows:

$bits = parse url($url);

if ($bits["scheme"] != "http")
print "URL must begin with http://.";
elseif (empty($bits["host"]))
print "URL must include a host name.";
elseif (function exists('checkdnsrr') 8& !checkdnsrr($bits["host"], 'A"))
print "Host does not exist.";
You might also add elseif clauses to check for specific path, query, or fragment
components. In addition, you could modify the test of the scheme to check for other

valid URL types, including ftp://, https://, or file://.

Unfortunately, at the time of writing, parse_url() is slightly broken in PHP 4.3; it
works fine in earlier and later versions of PHP. The bug is that if no path is present in
the URL, all following components (such as a query or fragment) are incorrectly
appended to the host element. To fix this, you can include the following fragment
after the call to parse_url():
// Fix the hostname (if needed) in PHP 4.3
if (strpos($bits["host"], '?'))
$bits["host"] = substr($bits["host"], 0, strpos($bits["host"], '?"));
if (strpos($bits["host"], '#'))
$bits["host"] = substr($bits["host"], 0, strpos($bits["host"], '#'));
For non-Unix environments, you can check the host domain exists by using the
PEAR-based approach described in the previous section.

Validating numbers

Checking that values are numeric, are within a range, or have the correct format is a
common validation task. For our case study customer example, there might be sev-
eral semi-numeric fields such as fax and telephone numbers, the customer’s salary,
or a credit card number. Zip and post codes aren’t always numeric, and are dis-
cussed in the Section “Validating Strings.”

The two most common checks for numbers are whether they are in fact numeric and
whether they’re within a required range. In PHP, the is_numeric() function can be
used to check if a variable contains only digits or if it matches one of the legal num-
ber formats. For example, to check if a salary is numeric, you can use:

if (lis_numeric($salary))
print "Salary must be numeric";

296 | Chapter9: Validation with PHP and JavaScript

The is_numeric() function doesn’t always behave in the way you
expect. Leading and trailing spaces, carriage returns, commas, and
spaces after minus signs can result in a false return value. Leading and
trailing spaces can be removed with the trim() function, while allowing
specialized formats may instead require the use of a regular expression.

The legal number formats to is_numeric() include integers such as 87000, scientific
notation such as 12e4, floating point numbers such as 3.14159 (or 3,14159 if your
locale is set to France), hexadecimal notation such as oxff, and negative numbers
such as -1.

Before checking variables initialized from form data, they should be converted to a
numeric type using the functions intval() or floatval() that convert a string to a num-
ber. A test such as if ($_GET["year"] < 1902) may not work as expected, because $_
GET[“year"] is a string and 1902 is an integer. The test if (intval($ GET["year"]) <
1902) works reliably. Both functions are discussed in Chapter 3.

Consider an example. Suppose that a whole-dollar salary is provided from a form
through the POST method and is stored as $ POST["salary"]. To check if it’s a valid
number, use the following steps:
if (lis_numeric($salary))
print "Salary must be numeric";
else

// remove spaces and convert to an integer
$salary = intval($_POST["salary"]);

After type conversion to numbers, form data can be validated to check whether it
meets range requirements using the basic comparison operators. For example, to
check that an age is in a sensible range, you could use:
if ($age < 5 || $age > 105)
print "Age must be in the range 5 to 105";

Another common type of numeric validation is checking currencies. Generally, these
have one of two common formats: only a currency amount (for example, 10 dollars,
10 cents, or 25 Yen), or a currency amount and a unit amount (for example, $10.15).
Currencies should be checked to see if they match the required format, and then (if
needed) to see if they’re within a range. For example, to check if a currency amount
is in whole dollars and between four and six digits in length, you could use:

if (lereg("~[0-9]{4,6}", $salary))
print "Salary must be in whole dollars";

To check if a value is in the currency and unit format, you could use:

if (lereg("~[0-9]{1,3}[.][0-9]{2}$", $price))
print "Item price must be between US$0.00 and US$999.99,
"and must include the cent amount.";

It’s important for an internationalized web database application to inform the user
what currencies are allowed.

Server-Side Validation with PHP | 297

Simple variations of the currency validation techniques can be used to check the for-
mat of floating point numbers. For example, if a maximum of five decimal places are
allowed for a length value, use:
if (lereg("~[0-9]*([.]1[0-9]1{1,5})?$", strval($length)))
print "Length can have a maximum of five decimal places";

The expression *[0-9]* allows any number of digits at the beginning of the number
and before the optional decimal place. The ? in the expression ([.][0-9]{1,5})?$
implements an optional mantissa by allowing either zero or one copies of a string
that matches the bracketed expression that precedes the ?. The bracketed expression
itself requires a decimal point (represented by [.]), and then between one and five
digits (represented by [0-9]{1,5}). The end of the number is expected after the
optional mantissa. To allow positive or negative values to be specified, you could
add [+-]? immediately after the * at the beginning of the expression.

It doesn’t always make sense to range check numeric data. For example, phone and
fax numbers aren’t usually added, subtracted, or tested against ranges. In our cus-
tomer example, we might validate a phone number using a regular expression that
checks it has a reasonable structure:

// Phone is optional, but if it is entered it must have

// correct format
$validPhoneExpr = "~([0-91{2,3}[1*)?[0-9]{4}[1*[0-9]{4}$";

if (lempty($phone) 88 !ereg($validPhoneExpr, $phone))
print "The phone number must be 8 digits in length,
"with an optional 2 or 3 digit area code";

This is an AND (88) expression, so the ereg() function is only evaluated if the $phone
variable is not empty.

The first expression *([0-9]{2,3}[]*)? matches either zero or one occurrence of the
bracketed expression at the beginning of the value. Inside the brackets, the expres-
sion that is matched is two or three digits and any number of optional space charac-
ters (represented as []*). For example, a string 03 matches, as does 835. The second
part of the expression [0-9]{4}[1*[0-9]{4}$ matches exactly four digits, followed
by any number of optional spaces, followed by another four digits, and then the end
of the string is expected. For example, the strings 1234 1234 and 12341234 both match
the expression.

Validating credit cards

The last numeric type we consider in this section is credit card numbers. There are
two steps to validating a credit card that’s entered for payment of goods or services:
first, we need to check the credit card number and its expiration date are valid; and,
second, we need to verify that the payment will be honored by the bank or other
credit card provider. If the user’s entering their credit card as part of the account cre-
ation process, the second step isn’t usually needed until they make a payment.

298 | Chapter9: Validation with PHP and JavaScript

In this section, we show you how to validate a credit card number. Expiration dates
can be validated using the date checking functions discussed later in this section.

Checking that payment will be honored by the credit card provider is outside the
scope of this book. However, many credit card payment validation network libraries
are available for this purpose: PEAR contains a few, several are available as PHP
libraries as listed in Appendix G, and open source solutions have been developed
and are readily available on the Web. All credit checking facilities require a paid sub-
scription to a validation service.

Example 9-3 shows a function checkcard() that validates credit card numbers. The
function works as follows. First, it checks the card number contains only digits and
spaces, and after the check it removes the spaces using ereg_replace() leaving only
the card number. Second, it extracts the first four digits and checks which of the dif-
ferent credit cards it matches and uses this to determine the correct length of the
number; we discuss this further next. Third, it rejects cards that aren’t supported or
where the length doesn’t match the correct length for the card. Last, the credit card is
validated using the Luhn algorithm, which we return to in a moment.

Example 9-3. A function to validate credit card numbers

function checkcard($cc, $ccType)

{
if (lereg("~[0-9]*$", $cc))
{

print "Card number must contain only digits and spaces.";
return (false);

}

// Remove spaces
$cc = ereg replace('[1", "', $cc);

// Check first four digits

$firstFour = intval(substr($cc, 0, 4));
$type =)
$length = 0;

if ($firstFour >= 8000 && $firstFour <= 8999)

{
// Try: 8000 0000 0000 1001
$type = "SurchargeCard";
$length = 16;

}

elseif ($firstFour >= 9100 && $firstFour <= 9599)

{
// Try: 9100 0000 0001 7
$type = "AustralianExpress"”;
$length = 13;

}

if (empty($type) || strcmp($type, $ccType) != 0)
{

Server-Side Validation with PHP | 299

Example 9-3. A function to validate credit card numbers (continued)

print "Please check your card details.";
return (false);

}

if (strlen($cc) != $length)

{
print "Card number must contain {$length} digits.";

return (false);

}
$check = 0;

// Add up every 2nd digit, beginning at the right end
for($x=$length-1;$x>=0; $x-=2)
$check += intval(substr($cc, $x, 1));

// Add up every 2nd digit doubled, beginning at the right end - 1.
// Subtract 9 where doubled value is greater than 10
for($x=$length-2;$x>=0; $x-=2)

$double = intval(substr($cc, $x, 1)) * 2;
if ($double >= 10)
$check += $double - 9;
else
$check += $double;
}

// Is $check not a multiple of 10?
if ($check % 10 != 0)
{

print "Credit card invalid. Please check number.";
return (false);

}

return (true);

}

Table 9-1 shows the prefixes of the four most popular credit cards and the card num-
ber length for those cards. For example, MasterCard cards always begin with four
digits in the range 5100 to 5599, and are sixteen digits in length. The function in
Example 9-2 supports two fictional cards: SurchargeCard that begins with numbers
in the range 8000 to 8999 and has 16 digits, and AustralianExpress with prefixes
from 9100 to 9599 and 13 digits in length. Example valid card numbers for these fic-
tional cards are included as comments in the code. You can find sample numbers for
all popular cards at hitp://www.verisign.com/support/payflow/link/pfltestprocess.html.

Table 9-1. Popular credit card prefixes and lengths

(Card name Four-digit prefix Length
American Express 3400-3499, 3700-3799 15
Diners Club 3000-3059, 3600-3699, 3800-3889 14

300 | Chapter9: Validation with PHP and JavaScript

Table 9-1. Popular credit card prefixes and lengths (continued)

Card name Four-digit prefix Length
MasterCard 5100-5599 16
Visa 4000-4999 130r16

Credit card validation is performed with the Luhn algorithm. This works as follows:

1. Sum up every second digit in the credit card number, beginning with the last
digit and proceeding right-to-left.

2. Sum up the double of every second digit in the credit card number, beginning
with the second to the last digit and proceeding right-to-left. If the double of the
digit is greater than 10, subtract 9 from the value before adding it to the sum.

3. Determine if the sum of the two steps is a multiple of 10. If it is, the credit card
number is valid. If not, the number is rejected.

Consider an example credit card of ten digits in length: 1234000014. In the first step,
we add every second digit from the right, beginning with the last. So,
4+0+0+4+2=10. Then, in the second step, we add the double of each digit begin-
ning with the second last (subtracting 9 if any doubling is over 10) and then add the
sum to the total from the first step. So, 2+0+0+6+2=10, and adding to 10 from the
first step gives 20. Since 20 is exactly divisible by 10, the card has a valid number.

Validating Dates and Times

Dates of birth, expiry dates, order dates, and other dates are commonly entered by
users. Most dates require specialized checks to see if the date is valid and if it’s in a
required date range. Times are less complicated, but specialized checks are still useful.

Dates

Dates can be given in several different formats and using many different calendars.
We only discuss the Gregorian calendar here.

In the U.S., months are listed before days, but the majority of the rest of the world
uses the opposite approach. Years can be provided as two or four digits, although we
recommend avoiding two digit years for the obvious confusion caused when 99
comes before 00. This leads to four formats: DDMMYY, DDMMYYYY, MMDDYY, and MMDDYYYY,
where Y is a year digit, M is month digit, and D is a day digit.

In all date formats, a forward slash, a hyphen, or (rarely) a colon can be used to sepa-
rate the groups, leading to twelve formats in total. For sorting, a thirteenth (conve-
nient) format is YYYYMMDD without the separators. Dates can also be specified using
month names, leading to strings such as 11-Aug-1969 and 11 August 1969.

Date values have complex validation requirements, and are difficult to manipulate.
Months have different numbers of days, some years are leap years, and some annual

Server-Side Validation with PHP | 301

holidays fall on different days in different years. Adding and subtracting dates, work-
ing out the date of tomorrow or next week, and finding the first Sunday of the month
aren’t straightforward. A particularly non-straightforward task is finding when the
Christian religion’s Easter holiday falls in a year, as explained at the Astronomical
Society of South Australia web site, http://www.assa.org.au/edm.html.

Consider an example from our customer case study. Let’s suppose the user is
required to provide a date of birth in the format common to most of the world, DD/
MM/YYYY. We then need to validate this date of birth to check that it has been entered
and to check its format, its validity, and whether it’s within a range. The range of
valid dates in the example begins with the user being alive—for simplicity, we
assume alive users are born after 1902—and ends with the user being at least 18
years of age.

Date-of-birth checking is implemented with the code in Example 9-4.

Example 9-4. Date-of-birth validation

function checkdob($birth date)

{
if (empty($birth_date))
{

print "The date of birth field cannot be blank.";
return false;
}
// Check the format and explode into $parts
elseif (lereg("*([0-9]{2})/([0-9]{2})/([0-9]{4})$",
$birth date, $parts))
{

print "The date of birth is not a valid date in the
format DD/MM/YYYY";
return false;
}
elseif (!checkdate($parts[2],$parts[1],$parts(3]))
{
print "The date of birth is invalid. Please check that the month is
between 1 and 12, and the day is valid for that month.";
return false;
}
elseif (intval($parts[3]) < 1902 ||
intval($parts[3]) > intval(date("Y")))
{
print "You must be alive to use this service.";
return false;
}
else

{
$dob = mktime(0, 0, 0, $parts[2], $parts[1], $parts[3]);

// Check whether the user is 18 years old.
if ((float)$dob > (float)strtotime("-18years"))

302 | Chapter9: Validation with PHP and JavaScript

Example 9-4. Date-of-birth validation (continued)

print "You must be 18+ years of age to use this service";
return false;

}
}

return true;

}

If any date test fails, an error is reported, and no further checks of the date are made.
A valid date passes all the tests.

The first check tests if a date has been entered. The second check uses a regular
expression to check whether the date consists of numbers and if it matches the tem-
plate 99/99/9999 (where 9 means a number):

elseif (lereg("~([0-9]{2})/([0-9]1{2})/([0-9]{4})$", $birth date, $parts))
{

print "The date of birth is not a valid date in the format DD/MM/YYYY";
return false;

}
You can adapt this check to match any of the other thirteen basic formats we out-
lined at the beginning of this section.

Whatever the result of this formatting check, the expression also explodes the date
into the array $parts so that the component that matches the first bracketed expres-
sion ([0-9{2}) is found in $parts[1], the second bracketed expression in $parts[2],
and the third bracketed expression in $parts[3]. Using this approach, the day of the
month is accessible as $parts[1], the month as $parts[2], and the year as $parts[3].
The ereg() function also stores the string matching the complete expression in
$parts[0].

The third check uses the exploded data stored in the array $parts and the function
checkdate() to test if the date is a valid calendar date. For example, the date 31/02/1970
would fail this test. The fourth check tests if the year is in the range 1902 to the cur-
rent year. The function date(“Y”) returns the current year as a string.

The fifth and final check tests if the user is 18 years of age or older, and uses the
approach described in Chapter 3. It finds the difference between the date of birth
and the current date using library functions, and checks that this difference is more
than 18 years. We use the mktime() function to convert the date of birth to a large
numeric Unix timestamp value, and the strtotime() function to discover the time-
stamp of exactly 18 years ago. Both are cast to a large floating number to ensure reli-
able comparison, and if the user is born in the past 18 years, an error is produced.

The mktime() function works for years between 1901 and 2038 on Unix systems,
and only from 1970 to 2038 for variants of Microsoft Windows. The PEAR Date
package doesn’t suffer from year limitations, and we discuss how to use it later in
this section.

Server-Side Validation with PHP | 303

Times

Times are easier to work with than dates, but they also come in several valid formats.
These include the 24-hour clock format 9999, the 12-hour clock formats 99:99am or
99:99pm (or with a period instead of a colon), and formats that include seconds and
hundredths of seconds. In each format, different ranges of values are allowed.

Consider an example where a user is required to enter a date in the 12-hour format
using a colon as the separator. With this format, 12:42p.m. and 1:01a.m. are valid
times. You can validate this format using the following regular expression:
if (leregi("~(1[0-2]|0[1-9]):([0-5][0-9])(am|pm)$", $time))
print "Time must be a valid 12-hour clock time in the format
HH:MMam or HH:MMpm.";

The first part of the expression #(1[0-2]|0[1-9]) requires that the time begins with a
number in range 10 to 12, or 01 to 09. After the colon, the second part of the expres-
sion requires the minute value to be in the range 00 to 59 as specified by the expres-
sion ([0-5][0-9]). Either AM or PM (in either upper- or lowercase) must then follow
to conclude the time string.

For 24-hour times, a simple variant works:

if (leregi("~([0-1][0-9]|2[0-3])([0-5][0-9])$", $time))
print "Time must be a valid 24-hour clock time in the format HHMM.";
Working out differences between times is reasonably straightforward, after the time
has been parsed into its components! For example, to check if a 12-hour clock arrival
time is before a 12-hour clock departure time, use the following fragment:

// Explode departure time into the array $depBits
if (leregi("~(1[0-2]|[1-9]): ([0-5][0-9])(an|pm)$", $depTime, $depBits))
print "Departure time must be a valid 12-hour clock time
in the format HH:MMam or HH:MMpm.";

// Explode arrival time into the array $arrBits
if (leregi("~(2[0-2]|[2-9]):([0-5][0-9])(am|pm)$", $arrTime, $arrBits))
print "Arrival time must be a valid 12-hour clock time
in the format HH:MMam or HH:MMpm.";

if (($depBits[3] == "pm" 8& $arrBits[3] == "am")) ||

($depBits[1] > $arrBits[1] 8& $depBits[3] == $arrBits[3]) ||

($depBits[2] >= $arrBits[2] && $depBits[1] == $arrBits[1]

8& $depBits[3] == $arrBits[3]))

print "Arrival time must be after departure time.";

The two ereg() expressions validate the format of a time using the approach we
described previously. Similarly to our date validation, both expressions also explode
the times into the arrays $arrBits and $depBits. The arrays contain the hour as ele-
ments $arrBits[1] and $depBits[1], the minutes as $arrBits[2] and $depBits[2],
and the AM or PM sulffix as $arrBits[3] and $depBits[3].

304 | Chapter9: Validation with PHP and JavaScript

To determine if the arrival time is earlier than the departure time, there are three
tests: first, if the arrival time is AM, the departure time can’t be PM; second, if both
times are AM or both times are PM the arrival hour can’t be earlier than the depar-
ture hour; and, last, if both times are AM or both times are PM, and the departure
hour is the arrival hour the arrival minutes can’t be less than or equal to the depar-
ture minutes. With 24-hour times, only one test is needed; this is perhaps a good rea-
son to use them in preference to 12-hour times in your applications.

For this type of validation, you could also convert a time to an integer value and then
compare values. For example, you could convert two times to Unix timestamps and
then compare these to determine if the arrival time is earlier than the departure time.
However, as discussed in the previous section, the PHP date and time functions
don’t behave the same on all platforms, and so this approach isn’t always portable
between operating systems. For this reason, using logic as in our previous example or
using a reliable package, such as the PEAR Date package discussed in the next sec-
tion, is preferable.

Using the PEAR Date package

The PEAR Date package introduced in Chapter 7 is not limited in year ranges and
provides a wide range of date validation and manipulation tools. It must be installed
using the PEAR installer (as discussed in Chapter 7) and then the date calculation
package must be included into the source code using:

require once "Date/Calc.php";
An object can then be created using:
$date = new Date_Calc();

Using the PEAR Date package, we can rewrite our date of birth checking in
Example 9-4. Our third date of birth check can be rewritten to use the method
isValidDate() as follows:

elseif (!$date->isvValidDate($parts[1], $parts[2], $parts[3]))

{
print "The date of birth is invalid. Please check that the month

is between 1 and 12, and the day is valid for that month.";
return false;

}

The fourth check can be modified slightly to use the isFutureDate() method to check
if the user has been born:

elseif (intval($parts[3]) < 1902 ||
$date->isFutureDate($parts[1], $parts[2], $parts[3]))
{

print "You must be alive to use this service.";
return false;

}

Server-Side Validation with PHP | 305

The fifth check can make use of the compareDates() method to avoid the use of
strtotime() and mktime() and solve the year limitation problem. The method com-
pares two dates each specified as a day, month, and year. In our check, we test the
difference between the date of birth and eighteen years earlier than today:

else

// Check whether the user is 18 years old.

if ($date->compareDates($parts[1], $parts[2], $parts[3],
intval(date("d")), intval(date("m")), intval(date("Y"))-18) > 0)

{

print "You must be 18+ years of age to use this service.";
return false;

}
The compareDates() method returns 0 if the two dates are equal, -1 if the first date is
less than the second, and 1 if the first date is greater than the second.

We’ve used three of the methods from the PEAR Date package. The package also has
useful methods for determining if a year is a leap year, discovering the date of the
beginning or end of the previous or next month, finding the date of the beginning or
end of the previous or next week, finding the previous or next day or weekday,
returning the number of days or weeks in a month, finding out the day of the week,
converting dates to days, and returning formatted date strings.

Like many other PEAR packages, this one contains almost no documentation or
examples. However, the methods are readable code and easy to use, and most are
simple and reliable applications of the date functions that are discussed in Chapter 3.
If you followed our PHP installation instructions in Appendixes A through C and our
PEAR installation instructions in Chapter 7, you’ll find Date.php in /usr/local/lib/php/
. The Date package also includes code in the file TimeZone.php for working with and
finding the date and time in different time zones. If you’re working with dates, PEAR
Date is worth investigation and avoids most of the limitations of the PHP library
functions.

Logic, the date function, and MySQL

There are other approaches to working with dates that don’t use PEAR Date or Unix
timestamps. Logic and the date(') function can be combined to check and compare
days, months, and years, similarly to our approach to testing times. For example, to
check if a user is over 18, you can use this fragment after exploding the date into the
array $parts:

// Were they born more than 19 years ago?
if (!((intval($parts[3]) < (intval(date("Y") - 19))) ||

// No, so were they born exactly 18 years ago, and
// has the month they were born in passed?
(intval($parts[3]) == (intval(date("Y")) - 18) 8&
(intval($parts[2]) < intval(date("m")))) ||

306 | Chapter9: Validation with PHP and JavaScript

// No, so were they born exactly 18 years ago in this
// month, and was the day today or earlier in the month?
(intval($parts[3]) == (intval(date("Y")) - 18) 8&
(intval($parts[2]) == intval(date("m"))) &&
(intval($parts[1]) <= intval(date("d"))))))

print "You must be 18+ years of age to use this service.";

You can also use the MySQL functions described in Chapter 15 through an SQL
query as a simple calculator. However, the MySQL approach, which involves com-
munication with the database, adds a lot more overhead and therefore is often less
desirable than using PHP. However, if one or more dates are extracted from a data-
base, MySQL date and time functions are a useful alternative for pre-processing prior
to working with dates in PHP.

JavaScript and Client-Side Validation

In this section, we introduce the JavaScript scripting language as a client-side method
for validation and other simple tasks. JavaScript isn’t a full-fledged programming lan-
guage like PHP: it can’t connect to databases, it offers only limited interaction with
certain system resources, and it can’t do most tasks a web database application
requires. However, JavaScript is good for interacting with a form and for controlling
the display of data to the user.

Client-side validation with JavaScript is optional but has benefits, including faster
response to the user than server-side validation, a reduction in web server load, and a
reduction in network traffic. Also, unlike server-side validation, it can be imple-
mented as interactive validation where errors are checked as they occur and field-by-
field reporting where error messages are shown individually. However, validation in
the client tier is unreliable: the user can bypass the validation through design, error,
or misconfiguration of their web browser. For that reason, client-side validation
should be used only to improve speed, reduce load, and add features, and never to
replace server-side validation.

A
S The client-side scripting language we use here is best known as Java-
.“.\ Script. However, in June 1998, the European Computer Manufactur-
AN ® .. ;
113 ers Association (ECMA) agreed to be responsible for the standard

implementations of the scripting language by Microsoft, Netscape,
and Sun. Accordingly, the real name of the language is now ECMA-
Script, based on the standard ECMA-262. The most recent version of
ECMA-262 is the third edition, dated December 1999. Netscape still
use the name JavaScript, and JavaScript 1.5 is fully compatible with
ECMA-262 Version 3.

The standard is available from http://'www.ecma-international.org/
publications/standards/ECMA-262.htm

JavaScript and Client-Side Validation | 307

Besides validation, there are many other common uses of JavaScript in web database
applications including:

* Simple interaction with form data. For example, JavaScript is often used to cal-
culate values and display these in an input widget.

* Enhancing user interactions by adding dynamic elements to a web page. Com-
mon features include pull-down menus, mouseover changes to the presentation
(rollovers), and dialog boxes.

* Customizing the browser and using information from the browser to enhance
presentation.

Most of these techniques are oriented around events. An event is an action that can
be trapped through JavaScript code, such as a mouse passing over an object, a win-
dow opening, or a user clicking on a button.

The next section introduces JavaScript through a simple example. After that, we
show you the basics of JavaScript by contrasting and comparing it with PHP, and
then we show you several more examples including a case study. However, this sec-
tion isn’t comprehensive and isn’t aimed as a replacement for many of the excellent
resources that are available; selected resources are listed in Appendix G.

Introducing JavaScript

Consider the short JavaScript validation example in Example 9-5.

Example 9-5. A simple JavaScript example to check if a form field is empty

<IDOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html401/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Simple JavaScript Example</title>
<script type="text/javascript">
<!-- Hide the script from old browsers
function containsblanks(s)

{
for(var i = 0; i < s.value.length; i++)
{
var ¢ = s.value.charAt(i);
if ((c="") [(c=="\n") [] (c=="\t"))
{
alert('The field must not contain whitespace');
return false;
}
}
return true;
}

// end hiding -->

308 | Chapter9: Validation with PHP and JavaScript

Example 9-5. A simple JavaScript example to check if a form field is empty (continued)

</script>

</head>

<body>

<h1>Username Form</h1>

<form onSubmit="return(containsblanks(document.userform.username));"
method="POST" name="userform" action="test.php">

<input type="text" name="username" size=10>

<input type="submit">

</form>

</body>

</html>

This example is designed to check if an optional username field contains whitespace
and, if so, to show a dialog box containing an error message to the user. The dialog
box is shown in Figure 9-1. The example contains a mixture of HTML and JavaScript,
and almost all the JavaScript is encapsulated between the <script> and </script> tags
in the <head> tag of the document.

(% Simple JavaScript Example - Mozilla
vi File Edit ¥iew Go Bookmarks Tools Window Help

‘V.)

- -9 &
Back Foruward Reload Stop

| & nitptmwnuswendatanasebosk comtudazichsreample -5t [|| 42 Search| E‘t -
Tin

Ij{ﬂHnma| ‘whBookmarks #Red Hat, Inc. ¢ Red Hat Network (4 Support Z§Shop fProducts (4 Training
Username Form
festname ™ {2 Sibind Qe -
v [JavaScript i 1l x
& The field must not contain whitespace
% EL 2 EE | Document Done (0.11 secs) |\ — |_¢_II

=

‘“@?‘Q%‘@ éggi}@ ‘[@® Smpk Javascript Example - Mazila I 101404 Thu Dec 15 e

Figure 9-1. The dialog box produced when whitespace is entered in the username field

The JavaScript function containsBlanks(') is called when the user submits the form.
The function call is part of the form element:

JavaScript and Client-Side Validation | 309

<form onSubmit="return(containsblanks(document.userform.username));"

method="post" name="userform" action="test.php">
When the submission event occurs (when the user presses the Submit button or
presses the Enter key while the cursor is in the text widget) the onSubmit event is trig-
gered. In this case, the result is that the function containsblanks() is called with one
parameter, document.userform.username. The object document refers to the document
loaded in the browser window, the userform is the name of the form itself, and
username is the name of the input widget within the form. The function call itself is
wrapped in a return() expression. The overall result of executing containsblanks() is
that if the function returns false, the form isn’t submitted to the server; if the func-
tion returns true, the HTTP request proceeds as usual.

The function containsblanks() works as follows:

* A for loop iterates through the characters entered by the user. The expression s.
value.length refers to the length of the string value entered by the user into the
username widget. The length property is one of the predefined properties of the
value attribute of the <input> widget.

* Each character in the string entered by the user is assigned to a character vari-
able c using the expression s.value.charAt(i) to return the characters in the
value entered by the user. The value attribute of the widget has an associated
method charAt() that returns the value of the character at the position passed as
a parameter. For example, if the user enters test in the widget, s.value.
charAt(0) returns t, and s.value.charAt(1) returns e.

* The if statement checks whether the current character is a space, a tab charac-
ter, or a carriage return. If so, the alert() method is called with an error string as
a parameter. The alert() method presents a dialog box in the browser that shows
the error message and has an OK button, as shown in Figure 9-1. When the user
clicks OK, the function returns false, and the submission process stops.

If the string doesn’t contain any whitespace, the function containsblanks()
returns true, and the form submits as usual.

HTML comment tags are included inside the <script> tags and surround the Java-
Script script. This is good practice, because if JavaScript is disabled or the user has an
old browser that knows nothing about scripts, the comments hide the script from a
potentially confused browser. An old browser happily displays the HTML page as
usual. In addition, an old browser or one that has JavaScript turned off will ignore
the onSubmit event handler in the form element.

JavaScript and PHP

The syntax of JavaScript is similar to PHP and to other languages such as C and Java.
Table 9-2 compares some of the basic features of PHP and JavaScript that we used in
Example 9-5 and others that are used later in this chapter. The key differences are

310 | Chapter9: Validation with PHP and JavaScript

that JavaScript variables aren’t prefixed with a dollar sign, local variables must be
declared in JavaScript, different open and close script tags are used, and string con-
catenation in JavaScript uses a plus sign and PHP uses a period. Other than that, the
languages are very similar when used for basic tasks.

Table 9-2. The language basics in PHP and JavaScript

Language component PHP JavaScript

Open and close script tags <?php 2> <script type="text/javascript">
</script> or <% %>

Block statement {1} {1}

Multi-line comment /* hello */ /* hello */

Single-line comment // hello // hello

Constant declaration define("z", 1); const a = 1;

Variable declaration Not required Required for local variables, vara =0;
Variable assignment $a = 0; a=0;

Assignment shortcut style $a += 5; a+=5;

Variable typing At runtime At runtime

Statement terminator
Equality value testing

>

Double-equals, ==

; or the end-of-line

Double-equals, ==

Equality type and value testing Triple-equals, === Triple equals, ===
Inequality testing I= I=

Strings "string" 'string’ "string" 'string’
String constants \n and \t \n and \t

String concatenation $a = $b . $c; $a = $b + $c;
Boolean values true false true false

Logical AND && 88

Logical OR [[

Logical NOT ! !

Generating output

In PHP, output to the browser is generated using the print or printf statements, or
by using a template and template methods as discussed in Chapter 7. In JavaScript,
there are several different ways output can be produced including writing output to
the browser window as a document is created, creating dialog boxes, updating val-
ues in form widgets, and creating new windows.

To write output to a window, the writeln() method can be used:

<script type="text/javascript">
document.writeln("Hello, world.");
</script>

JavaScript and Client-Side Validation | 311

The document object refers to the document that is displayed in the browser window,
and writeln() is a method associated with that document. You can write to a docu-
ment only as it’s created, you can’t use this method to write text to the document
after it’s been rendered in the browser. The basic objects and methods are discussed
later in this section.

In Example 9-5, a dialog box with an OK button is created with the alert() method.
For example, you can pop up a dialog box when the user clicks on a button:
<form action="test.php">

<input type="button" value="Pop a box" onclick="alert('Pop!"');">
</form>

The onclick attribute causes the box to appear when the user clicks on the button.

It’s also possible to create dialog boxes using the confirm() method that displays
both an OK and Cancel button:

<script type="text/javascript">
if (confirm("Are you sure?"))
alert("Great!");
else
alert("what a pity!");
</script>

The confirm() method returns true when the user clicks Ok and false otherwise.

Another approach to producing output is to write to the browser window status line.
However, this isn’t a very effective mechanism: the status bar may be hidden or dis-
abled, and it’s easy to overlook messages displayed at the base of the window. Yet
another approach is to create a new fully-featured non-dialog browser window,
which we discuss later in this chapter. The final approach is to update values in input
widgets, an approach we use later in our examples.

Loops and conditionals

Loops and conditionals are almost the same in both languages. As discussed in
Chapter 2, PHP has the for, while, foreach, and do...while loops, and the if and
switch conditionals. JavaScript has the for, while, do...while, and for...in loops,
and the if and switch statements. The continue and break statements are available in
both languages.

The for, while, and do...while loops are the same in PHP and JavaScript, with the
exception that in JavaScript it’s possible to declare a variable in a for loop with the
var statement; an example is shown in Example 9-5. JavaScript also has the for...in
statement which allows you to iterate through properties of objects, while PHP has
the foreach statement for iterating through elements in arrays. An example with the
for...in statement is presented later in this section.

312 | Chapter9: Validation with PHP and JavaScript

Functions

Functions are similar in PHP and JavaScript. Consider the following JavaScript
example:

function bold(string)
{

document.writeln("" + string + "\n");

}
When called with the function call bold(“this is bold”), the function prints the string
this is bold as part of the document. Similarly to PHP, functions are
declared with the statement function, parameters are listed in brackets and sepa-
rated by commas, and the function body is surrounded by curly braces. Functions

can optionally return values using the return statement, which behaves identically in
PHP and JavaScript.

Variables that are declared within a function are local to that function. Local vari-
ables must be declared using the var statement as in the following example:

function count()

{

var x=1;
while (x<6)
{
document.writeln(x + " ");
X++;
}
}
Variables that are used or declared outside functions are global variables. Declaring
globals with var is optional: as in PHP, they can be declared implicitly by assigning
values to them. However, unlike PHP, global variables in JavaScript are accessible
everywhere in the current document; global variables are not declared in functions
using the global keyword.

Debugging JavaScript

JavaScript has two types of errors that report messages: load-time and run-time
errors. Load-time errors are sometimes reported by the user agent before it runs the
JavaScript, and you’ll be shown a warning box that details the error, its line number,
and the code fragment itself. Run-time errors occur when a code fragment is running
and, again, a warning box is sometimes displayed with the line number of the code
that caused the error.

The inconsistent nature of error reporting can be annoying: often, you’ll get no mes-
sages at all but the script won’t run. However, in many browsers (including Mozilla
and Netscape), you can get more detailed error information by typing javascript: in
the Location box and pressing Enter. The JavaScript console that pops up lists all
errors that have occurred since the browser began running. You can remove old mes-
sages by clicking on the Clear button that’s shown at the top of the console window;

JavaScript and Client-Side Validation | 313

periodically doing this is a good way to avoid confusion about which errors are appli-
cable to what.

Errors can also be annoying because they are often platform- or browser-dependent
and change from one release to the next. Complex JavaScript adds a thicker client to
a web database application, and this may reveal differences between browser applica-
tions, browser versions, and different platforms.

If complex JavaScript is required or desired, make sure it’s tested on all the popular
platforms with the popular browser products and versions. However, we recom-
mend that JavaScript be kept simple: complex tasks should be left to PHP scripts,
and you should ensure that user interfaces function correctly even if JavaScript is
faulty or disabled.

Objects

Objects associated with the browser, windows, and the document are accessible in
JavaScript. For example, in Example 9-5, the form object and its child (an input text
widget) are accessed and used. Historically, the definition of these objects (and the
events, properties, and methods described in the next sections) was part of the Java-
Script standard and they were loosely known as the Navigator objects. This has now
changed, and the objects are defined as part of the Document Object Model (DOM).

In this section, we informally describe the objects and properties that are accessible
from within JavaScript, and avoid the details of DOM. However, the complete speci-
fication is accessible at http://www.w3.0rg/TR/2003/REC-DOM-Level-2-HTML-
20030109/.

The window object is the top of the DOM hierarchy, and it contains the toolbars and
menus of the browser, as well as the document and its sub-components. The hierar-
chy of the objects that descend from window is shown in Figure 9-2.

| Window i

| History i |Documenti | Location i

| Anchor i | Applet i | Area i | Form i | Image i | Link i

|
[| | | | | | | | | |
| Button i |(he(kBoxi | FiIeUpIoadi | Hiddeni | Password i | Radio i | Reset i |Sele(ti |Submiti Text | | TextArea

Figure 9-2. The hierarchy of window objects in the DOM

314 | Chapter9: Validation with PHP and JavaScript

In JavaScript code, the document object can be referenced using the same notation as
in PHP’s object-oriented model using window.document, or just document for short
(because there is only one window when you’re not using frames, which we don’t in

this book).

Each of the objects in the hierarchy has properties and methods, and creates events.
Properties are characteristics that describe the appearance of the object, while the
methods are its behaviors. Events are actions that the object can act on such as
mouse clicks or key presses. Events are discussed in the next section, and methods
and properties in the following section. However, selected events, methods, and
properties are used in examples here.

Consider a document that contains a form that has a text input widget and a submit
button:

<form name="custform" method="GET" action="cust.php">

Surname: <input type="text" name="surname">

<input type="submit" name="submit">

</form>
The text widget is accessible using the names associated with the objects in the hier-
archy. In this example, the form widget has the attribute name="custform", and the
input widget has the attribute name="surname". You can therefore reference the text
widget’s value as document.custform.surname.value. The value is a property of the
text input widget and it contains the data the user has entered, or it can be assigned a
value to modify the data that’s shown in the widget.

The value could be output when an onchange event is triggered in the widget itself:

<input type="text" name="surname"
onchange="alert('You entered ' + document.custform.surname.value);">
The browser automatically generates an onchange event when the text in the widget
changes; we explain events more later.

Alternatively, you could output the value when the submission process itself occurs:

<form name="custform" method="GET" action="cust.php"
onsubmit="alert('You entered ' + document.custform.surname.value);">

Another way to access the properties of an object is to access the DOM element

array. For example, the value of the text input widget in the custform can be refer-
enced as:

document.forms[0].elements[0].value

The notation forms[0] means the first form in the document, and elements[0] means
the first element of that form. You can iterate through all properties in an object
using the for...in statement that we introduced previously. For example, to show
the names of all elements in the form, use:

for (o in document.custform)

[

string += o + H
alert("Here are the elements:

+ string);

JavaScript and Client-Side Validation | 315

The loop assigns each element in document.custform in turn to the variable o, and
then o is appended to string. If you include this fragment in a document containing
the custform, you may be surprised that it outputs not just the surname widget and
the submit button, but more than 50 properties. Some of these are discussed in the
next section.

Some browsers are fussier than others. For example, Microsoft’s Internet Explorer
complains when you reference an object before it’s defined. This means that you
can’t reference a form earlier in your HTML source than where the form is actually
declared. You’ll find that these kinds of issues make developing complex or portable
code difficult. As we’ve already discussed, we recommend you use JavaScript for sim-
ple tasks and leave the complex ones to PHP on the server side.

In JavaScript, there are also several other pre-defined objects. These include core
objects such as Array, RegExp, Date, and Math that are discussed in detail in the Core
JavaScript Guide available from http://devedge.netscape.com/library/manuals/.

Events

Events are triggered by both the user agent (usually a web browser), and the user
working with the document and browser. These events are useful triggers for Java-
Script actions. For example, a function might be called as a page loads, when the
user presses the submit button, when a form field changes, or when the mouse
passes over a document element. Examples using many of these events are included
in later examples in this chapter.

The key events that can be trapped and handled by JavaScript are as follows:

onblur
When a user removes focus from form elements or a window. This occurs when
the user presses the Tab key to move to the next widget, clicks on another widget
or window, or carries out some other action that takes the focus away from the
current window or widget.

onchange
When a select, text, or textarea input loses focus and has been modified since it
gained focus.

onclick
When a pointing device (usually a left mouse button) clicks on an area, button,
checkbox, hypertext link, radio button, reset, or submit.
onfocus
When a user brings focus to form elements or a window, normally by clicking in it.
onload
When a user agent finishes loading a window (or all frames in a frameset).

onmouseout
When the pointing device moves out from an element, area, or hypertext link.

316 | Chapter9: Validation with PHP and JavaScript

onmouseover
When the pointing device moves over an element, area, or hypertext link.

onreset
When a form is reset.

onsubmit
When a form is submitted.

onunload
When the user exits a page, that is, when the user agent unloads the document
from the window. For example, this happens when a new page is loaded, a
browser window or tab is closed, or the browser program ends.

We have omitted other events related to key presses and text selection, as well as
other types of mouse clicks and movements. These are detailed in the HTML 4.01
documentation at http://www.w3.0rg/TR/html4/interact/scripts.html. and in the DOM
documentation listed in the previous section.

Methods and properties

The window, document, form, and input element objects have properties and meth-
ods that are commonly accessed and used in validation tasks. This section lists
selected methods and properties, and examples later in this chapter show many of
these used in scripts. Images, tables, the document body, document styles, and frames
also have their own methods and properties, but we don’t discuss these here. The
complete list of objects, methods, and properties can be found at hitp://www.w3.org/
TR/2003/REC-DOM-Level-2-HTML-20030109/ecma-script-binding. html.

The navigator object is outside of the window hierarchy we showed in Figure 9-2
and the standards. However, it is useful because it describes the browser environ-
ment. Its properties include:

platform
The operating system.

userAgent
The same information as sent in the HTTP request that includes the user agent
name and version.

The window object properties and methods include:

location.href
The URL in the location box.

name
The window’s name. Can be used to retrieve or set the window name. For exam-
ple, window.name = "Hello!" sets the title to Hello!.

locationbar.visible
Determines whether the location bar is visible. It can be set to true or false,
making the location bar visible or hidden respectively.

JavaScript and Client-Side Validation | 317

menubar.visible
Determines whether the menu bar is visible. It can be set to true or false, mak-
ing the menu bar visible or hidden respectively.

personalbar.visible
Determines whether the personal or directories bar is visible. It can be set to true
or false, making the personal bar visible or hidden respectively.

scrollbars.visible
Determines whether the horizontal and vertical scroll bars are visible. It can be
set to true or false, making the scroll bars visible or hidden respectively.

statusbar.visible
Determines whether the status bar is visible. It can be set to true or false, mak-
ing the status bar visible or hidden respectively.

toolbar.visible
Determines whether the toolbar is visible. It can be set to true or false, making
the toolbar visible or hidden respectively. It can be set or unset only before the
window is opened.

status
The text displayed in the status bar at the base of window. This can be set to dis-
play a message to the user.

alert()
Shows a dialog box with an OK button, and takes text as a parameter.

back()
Causes the user agent to return to the previous resource in its history list. This
has the same effect as pressing the Back button in the web browser.

close()
Closes the current window.

confirm()
Shows a dialog box with OK and Cancel buttons, and takes text as a parameter.
Returns true when the user presses OK and false otherwise.

forward()
Causes the user agent to go forward to the next resource in its history list. This
has the same effect as pressing the Forward button in the web browser.

open()
Opens a new window, taking a URL, name, and features as parameters.

print()
Sends the contents of the window to a printer.

prompt()
Shows a dialog box with an input widget and OK and Cancel buttons. Takes a
text question to display, and optional default text to display in the input widget.
Returns true when the user presses OK and false otherwise.

318 | Chapter9: Validation with PHP and JavaScript

The document object properties and methods include:

lastModified
The date the resource was last modified.
title
The text contained in the <title> tag of the document.
URL
The URL of the current document.
write() and writeln()

Writes text to the current document during its creation. The latter adds a car-
riage return character to the string.

The form objects in a document include the following properties and methods:

name
The value of the name attribute.
action
The value of the action attribute.
method
The value of the method attribute (GET or POST).
submit()
Sends the form to the server.
reset()
Clears all user-entered input from the form. If the form was shown with pre-
filled values, it is reset to those values. If the form was initially empty, it is reset
to empty.
The form elements select, textarea, input, and button have common methods and
properties that include:
type
The type of input as defined by the type attribute in the form element.
value
The value contained or selected in the form element.
value.length
The length of the value contained or selected in the form element.
name
The value of the name attribute in the form element.
focus()
Brings the focus to the form element (not used with button elements).

blur()

Removes the focus from the form element (not used with button elements).

JavaScript and Client-Side Validation | 319

select()
Selects (usually by highlighting) the text in an input or textarea element (not
used with select or button elements).

value.charAt()
Returns the character in the value at the position of the integer parameter. For
example, value.charAt(0) returns the first character in the value.

JavaScript Examples

The short examples in this section implement simple, common, and useful Java-
Script web database application features that use the techniques we have discussed
so far. These include:

* Checking if two passwords are the same

* Mouse rollovers, where an image is changed to highlight an option as the mouse
CUrsor passes over it

* Calculating and updating form fields based on user changes to data

* Interacting with the web browser and windows to trigger events and manipulate
presentation

* Detecting the browser application and version

* Drop-down menus that load a new URL into the current window

A password form validation function

Example 9-6 is an example of JavaScript validation that checks whether a password
is the same when the user enters it twice. The validation is interactive: an onchange
event is trapped for the two password widgets, formPasswordl and formPassword2,
and the function thesame() is called whenever the user changes the data in a widget
and then leaves it. The error reporting is field-by-field.

Example 9-6. Using JavaScript for interactive validation of password fields

<!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.0 Transitional//EN"
"http://www.w3.0rg/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Password Validation</title>
<script type="text/javascript">
<!-- Hide the script
function thesame(valuel, value2)
{
if (((valuei != null) || (value1l != ""))
& value2 != "" && valuel != value2)
{
alert("The passwords must be identical.");
return (false);

320 | Chapter9: Validation with PHP and JavaScript

Example 9-6. Using JavaScript for interactive validation of password fields (continued)

}

return (true);
}
// end hiding -->
</script>
</head>

<body>
<h1>Username Form</h1>
<form method="post" action="test.php" name="userForm">

Username: <input type="text" name="userName" size=10>

Password:
<input type="password" name="formPasswordl" size=10
onchange="thesame(document.userForm.formPassword1.value,
document.userForm. formPassword2.value);">

Re-enter password:
<input type="password" name="formPassword2" size=10
onchange="thesame(document.userForm.formPassword2.value,
document.userForm.formPasswordi.value);">

<input type="submit" value="SUBMIT">
</form>
</body>
</html>

The function thesame() checks if the current widget contains data. If it does, and the
other password widget also contains data, the data in the two widgets is compared. If
the data in the widgets is different, an error message is shown to the user. It’s neces-
sary to test whether both widgets actually contain data in interactive validation;
without this check, the function annoyingly displays an error before the user has the
opportunity to enter data into both widgets.

Rollover presentation with mouseover events

Example 9-7 shows a basic implementation of the common rollover feature used in
many web applications.

Example 9-7. mouseover example with JavaScript

<IDOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html401/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>MouseOver Example</title>
</head>

<body bgcolor="#ffffff">
<a href="add_to_cart.php" onmouseout="cart.src="cart_off.jpg'"
onmouseover="cart.src="cart_on.jpg'">

JavaScript and Client-Side Validation | 321

Example 9-7. mouseover example with JavaScript (continued)

</body>
</html>

When the page is first loaded, an un-highlighted image of a shopping cart is shown;
the image is used in the front page of the winestore in Chapter 16. The image is
loaded with the HTML fragment:

The only difference to the usual approach of loading images is that the tag has
the attribute name="cart".

If the mouse passes over the cart image, an onmouseover event is triggered, and the
JavaScript action carried out is:

onmouseover="cart.src="cart on.jpg""

The event handler changes the value of the src attribute of the tag with the
name="cart". The result is that a new highlighted image is loaded to replace the un-
highlighted image. In the case of our winestore, a shopping cart with a blue fore-
ground is shown.

When the mouse leaves the image region, the onmouseout event is generated and han-
dled with the following JavaScript fragment:

onmouseout="cart.src="cart off.jpg""

This restores the original image. The impression to the user is that the cart element is
highlighted as the user focuses on the element.

Rollovers are straightforward to develop and the approach we’ve shown you works
in all graphical browsers. You can even use the same technique to highlight menu
options, and to produce pop-up and pull-down menus.

Prefilling form data with JavaScript calculations

Another common use of JavaScript is to pre-fill a form with data from a calculation.
Example 9-8 shows how data can be managed and updated in a shopping cart.

When the user changes the quantity of a wine he intends to purchase, an onchange
event is generated. This change event is handled by the update(') function, which
modifies the value attribute of the total widget, showing the new total cost to the
user. The new value shown to the user is calculated by multiplying together the
quantity.value and the unit.value. Of course, as in all web database applications,
the values and mathematics should be rechecked at the server when the form is sub-
mitted to the server.

322 | Chapter9: Validation with PHP and JavaScript

Example 9-8. Using JavaScript to dynamically update values of form widgets

<IDOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html401/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Dynamic Form Update Example</title>
</head>

<body>
<h1>Your Shopping Cart</h1>
<form method="get" action="test.php">
<table border="0" width="100%" cellpadding="0" cellspacing="5">
<tr>
<td>Quantity </td>
<td>Wine</td>
<td>Unit Price</td>
<td>Total</td>
</tr>

<tr>
<td><input type="text" name="quantity" value="1" size=3
onchange="total.value = unit.value * quantity.value;">
<td>1997 Anderson and Sons Wines Belcombe Grenache</td>
<td>$<input type="text" value="17.29" name="unit" readonly></td>
<td>$<input type="text" value="17.29" name="total"
align="right" readonly></td>

</tr>

</table>

<input type="submit" value="Purchase Wines">
</form>

</body>

</html>

Interacting with the web browser

Example 9-9 shows four examples of handlers for buttons that use the methods
defined for the window object. The method window.close(') closes the focused win-
dow, window.print() shows the print dialog window, window.back() goes back one
page, and window.open() opens a new browser window.

Example 9-9. Closing and opening windows with JavaScript, printing the current page, and adding a
Back button to a form

<IDOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html401/1loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Playing with the Browser and Windows</title>
</head>

JavaScript and Client-Side Validation | 323

Example 9-9. Closing and opening windows with JavaScript, printing the current page, and adding a
Back button to a form (continued)

<body>

<h1>Playing with the Browser and Windows</h1>

<form action="example.9-6.php">

<input type="button" value="Close Window" onClick="window.close();">

<input type="button" value="Print Window" onClick="window.print();">

<input type="button" value="Go Back" onclick="window.back();">

<input type="button" value="Visit the book site"
onClick="window.open("http://www.webdatabasebook.com/", 'BookSite",
'toolbar=yes,location=yes,menubar=yes,directories=yes,scrollbars=yes,
resizable=yes');">

</form>

</body>

</html>

Only window.open() is complex. The first parameter is the URL to request in the
new window, the second is a title, and the third is a set of properties of the new win-
dow. Without the list of properties that are included, the default new window has no
Location box, no toolbars, no scrollbars, and can’t be resized.

Which browser is the user using?

As discussed previously, even simple JavaScript sometimes highlights annoying dif-
ferences in the way browsers support standard features. Indeed, even different ver-
sions of the same browsers support different JavaScript features from the same
version of the standard.

Example 9-10 shows how the browser application name and version can be detected
with both JavaScript and PHP. If a JavaScript script requires customization for a par-
ticular product, if statements can carry out actions in different ways. Another com-
mon approach in JavaScript-intensive web database applications is to write two sites:
one that uses Internet Explorer JavaScript (known as Jscript), and another that uses
Netscape Navigator or Mozilla JavaScript. However, as we recommended earlier,
complex JavaScript is often best avoided in favor of server-side scripts.

Example 9-10. Which browser is the user using?

<IDOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html401/loose.dtd">
<html>
<head>
<title>Playing with the Browser and Windows</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>
<body>
<script type="text/javascript">
<!-- Hide the script from old browsers
alert("You are using " + navigator.userAgent);

324 | Chapter9: Validation with PHP and JavaScript

Example 9-10. Which browser is the user using? (continued)

// end the hiding -->
</script>

This page should pop up a box if you have a JavaScript-capable and enabled
browser.

But, using PHP, we can tell you that you're using the

<?php print $_SERVER["HTTP_USER_AGENT"]; ?> browser.

</body>

</html>

Drop-down menus

A common use of JavaScript is to automatically load a new page when a user selects
a menu option from a drop-down list. Example 9-11 shows how to do this using a
select widget and its properties. The JavaScript in the body of the document is
straightforward: when the user changes their selection of menu item, an onchange

event is triggered, and the loadNewPage() function is called.

Example 9-11. Drop-down menus that load a new URL

<IDOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html401/1loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Menu Example</title>
<script type="text/javascript">
<!--
function loadNewPage()
{
var listItem = document.menuForm.newPage.selectedIndex;
var newPage = document.menuForm.newPage.options[listItem].value;
location.href = newPage;
}
//-=>
</script>
<body>
Where do you want to go now?

<form method="GET" action="menus.html" name="menuForm">
<select name="newPage" onchange="loadNewPage();">
<option value="menus.html">This page
<option value="http://www.webdatabasebook.com/">The book web site
<option value="http://www.oreilly.com/">0'Reilly and Associates
<option value="http://www.hughwilliams.com/">Hugh's homepage
<option value="http://www.mds.rmit.edu.au/~dave/">Dave's homepage
</select>
</form>
</body>
</html>

JavaScript and Client-Side Validation

325

The form in Example 9-11 has a name attribute of menuForm and the select list has a name
attribute of newPage. Therefore, the list is referenced as document.menuForm.newPage.
The loadNewPage() function references the list to load the new page in three steps:

1. The local variable listItem is assigned the ordinal number of the selected value
from the list. To discover which item is selected, the selectedIndex property of
the newPage <select> is inspected. For example, if the first item is selected then
the value is 0.

2. The value of the selected item (which contains the new URL) is determined by
accessing the options array property of the list and retrieving the value of the
element listItem. This value is stored in the local variable newPage. For exam-
ple, if the first item in the list is selected listItem is 0, the value is the URL
http://www.webdatabasebook.com/, and newPage is set to that value.

3. To load the new URL in the current window, the location.href property is set
to newPage. This causes the new document to load.

Case Study: A Generic JavaScript Validation Function

The example in this section shows how JavaScript can be used as a validation tool
across multiple HTML pages or templates. An example of errors produced by apply-
ing the techniques described in this section to customer validation is shown in
Figure 9-3. We show you the JavaScript code, the PEAR IT template, and the PHP
code in this section.

The JavaScript validation script

The general-purpose verify() function for post-validation and field-by-field error
reporting is shown in Example 9-12. The code is stored in the file example.9-12.js
and is designed to be added to a template, such as the phonebook template devel-
oped in Chapter 8. Later in this section, we show you how to add it to a customer
details template that has diverse validation needs.

By storing JavaScript code in its own file, it can be reused across multiple HTML
pages or templates. To do this, instead of including code between the <script> and
</script> tags, you add a src attribute to the <script> element that specifies the file
that contains the JavaScript code. For example, to load the code in Example 9-12
into a document or template, you use:

<script type="text/javascript" src="example.9-12.js">

</script>
This approach saves cutting and pasting the code into more than one file, and avoids
the need to update several pages when the script changes. It also has the additional
advantage of reducing network traffic if the user has a web browser cache, because a
copy of the script can be reused in multiple HTML pages without retrieving it again
from the web server.

326 | Chapter9: Validation with PHP and JavaScript

% Customer Details - Mozilla - X
|'| Eile Edit Yiew Go Eookmarks Tools Window Help

B?c-k - Fuﬁvam - H\e%ad :;% |;£mw X .com mpl .9—13.[|V‘|£_Sean:h‘ ﬁt -

Ij{ﬂHnmal ‘WhBaokmarks 4 Red Hat, Inc. ¢ Red Hat Network (1 Support 4 Shop g Products 4 Training

. e —

Customer Details N
s]

Please fill in the details below to join. Fields shown in red are mandatory. st

First name; l_ [JavaScript Application] K B

Zurname: l_ & The fleld First Mame must be filled in 3

Address:]

Diate of Birth (dd/mm/yyys: [|

Email: l_

Annual salary (whole dollars):

i Jain Nowl I

Figure 9-3. A dialog box showing an error produced by the JavaScript validation function

Example 9-12. A general-purpose JavaScript form validation function

// A utility function that returns true if a string contains only
// whitespace characters.
function isblank(e)

if (e.value == null || e.value == "")
return true;

for(var i = 0; i < e.value.length; i++)

{
var ¢ = e.value.charAt(i);
if ((c!="") 88
(c!="\n") &&
(c 1= "\t"))
return false;
}
return true;

}

// Checks if an optional field is blank
function checkblank(e)

if (isblank(e))
{

JavaScript and Client-Side Validation | 327

Example 9-12. A general-purpose JavaScript form validation function (continued)

alert("The field " + e.description + " must be filled in.");
return false;

}

return true;

}

// Checks if a field is numeric.

// If the optional min property is set, it checks it is greater than
// its value

// If the optional max property is set, it checks it is less than

// its value

function checknumber(e)

{

var v = parseFloat(e.value);

if (isNaN(v))

{
alert("The field " + e.description +
return false;

}

must be a number");

if ((e.minNumber != null) && (v < e.minNumber))
{
alert("The field " + e.description +
" must be greater than or equal to
return false;

}

+ e.minNumber);

if (e.maxNumber != null &3 v > e.maxNumber)
{
alert("The field " + e.description +
" must be less than or equal to " + e.maxNumber);
return false;

}

return true;

}

// Checks if a field looks like a date in the 99/99/9999 format
function checkdate(e)
{

var slashCount = 0;

if (e.value.length != 10)

{

alert(" The field " + e.description +
" must have the format 99/99/9999" +

and be 10 characters in length");
return false;

}

for(var j = 0; j < e.value.length; j++)

328 | Chapter9: Validation with PHP and JavaScript

Example 9-12. A general-purpose JavaScript form validation function (continued)

var c = e.value.charAt(j);

if ((c == "/"))
slashCount++;

if (¢ !="/7"8 (c<'0" || c>'9"))
{
alert(" The field " + e.description +
" can contain only numbers and forward-slashes");
return false;
}
}

if (slashCount != 2)
{
alert(" The field " + e.description +
" must have the format 99/99/9999");
return false;

}

return true;

}

// Checks if a field contains any whitespace
function checkwhitespace(e)

{

var seenAt = false;

for(var j = 0; j < e.value.length; j++)

{

var c = e.value.charAt(j);

if (e=="") 11 (c=="\n") || (c=="\t"))
alert("The field " + e.description +
" must not contain whitespace");
return false;
}
}

return true;

}

// Now check for fields that are supposed to be emails.
// Only checks that there's one @ symbol and no whitespace
function checkemail(e)

{

var seenAt = false;

for(var j = 0; j < e.value.length; j++)

{

var ¢ = e.value.charAt(j);

JavaScript and Client-Side Validation

329

Example 9-12. A general-purpose JavaScript form validation function (continued)

{if ((c=="") Il (c=="\n") [[(c =="\t"))

alert("The field " + e.description +
" must not contain whitespace");
return false;

}

if ((c == '@") & (seenAt == true))
{

alert("The field " + e.description +
return false;

}

if ((c == 'e"))
seenAt = true;
}

if (seenAt == false)

must contain only one @");

alert("The field " + e.description + " must contain one @");
return false;
}

return true;

}

// This is the function that performs <form> validation.
// It is invoked from the onSubmit() event handler.
// The handler should return whatever value this function
// returns.
function verify(f)
{
// Loop through the elements of the form, looking for all
// text and textarea elements. Report errors using a post validation,
// field-by-field approach
for(var i = 0; i < f.length; i++)
{

var e = f.elements[i];
if (((e.type == "text") || (e.type == "textarea")))
{

// first check if the field is empty and shouldn't be
if (le.isOptional &3 !checkblank(e))
return false;

// Now check for fields that are supposed to be numeric.
if (!isblank(e) 8& e.isNumeric &8 !checknumber(e))
return false;

// Now check for fields that are supposed to be dates
if (lisblank(e) 8& e.isDate &8 !checkdate(e))
return false;

330 | Chapter9: Validation with PHP and JavaScript

Example 9-12. A general-purpose JavaScript form validation function (continued)

// Now check for fields that are supposed to be emails
if (lisblank(e) 8& e.isEmail 8& !checkemail(e))
return false;

// Now check for fields that are supposed
// not to have whitespace
if (lisblank(e) && e.hasNospaces 8& !checkwhitespace(e))
return false;
} // if (type is text or textarea)
} // for each character in field

// There were no errors if we got this far
return true;

}

Example 9-12 contains several functions and the main function is the last one in the
file, verify(). The verify() function is called when a form is submitted, and it expects
the form object to be passed to it as a parameter. The function iterates through the
elements in the form and carries out validation checks on each field, depending on
what properties you set for that field. If any check fails, the function returns false. If
all checks succeed, the function returns true. We show you how to call the function
and set the element properties later.

The first fragment of the verify() function is as follows:

function verify(f)

{
// Loop through the elements of the form, looking for all

// text and textarea elements. Report errors using a post validation,

// field-by-field approach

for(var i = 0; i < f.length; i++)

{ var e = f.elements[i];
A form object f is expected as a parameter. The for loop iterates through each ele-
ment object in f. The first element is numbered 0 and the total elements in the form
is stored in the property f.length. As discussed previously, the element objects are
stored in the elements array and so, for example, f.elements[0] is the object repre-
sentation of the first element in f. For compactness in the code, with each iteration
of the loop, we assign the current element object to the local variable e.

The next fragment in verify() checks whether the current input element is of type
text or textarea:

if (((e.type == "text") || (e.type == "textarea")))
{

We’ve only written validation functions for these types of element, and we leave it to
you to extend this further to meet your needs.

JavaScript and Client-Side Validation | 331

The remainder of the verify() function tests different properties of the current ele-
ment and calls functions to validate it. For example, the following fragment tests if
the element contains a value (that is, it’s not blank), if the isNumeric property is set,
and if the value is not a number:

// Now check for fields that are supposed to be numeric.

if (lisblank(e) && e.isNumeric 8& !checknumber(e))
return false;

The result of this check is that if the element isn’t blank and is supposed to be
numeric and isn’t a number, the function returns false. In the same way as PHP’s
short-circuit evaluation discussed in Chapter 2, the second and subsequent tests in
the if expression are only carried out if all preceding tests are true. The isblank() and
checknumber() functions are validation functions in Example 9-12, and the
isNumeric property is a user defined property that we discuss later.

There are several functions in Example 9-12 that each begin with the prefix check. In
addition to testing if a mandatory field is blank and if a field is numeric, these check
whether mandatory fields have data in them, dates are in a reasonable format, email
addresses look plausible, and whether there’s whitespace within a value. As an exam-
ple, we discuss the checkdate() function next; we don’t discuss the others in detail
but they use the same ideas and validation steps.

The checkdate() functions perform very simple date format checking: it tests if a date
has the format 99/99/9999 where 9 is a digit. More explicitly, it checks that the value
is exactly 10 characters in length, contains only forward slashes and digits, and has
only two forward slashes. It doesn’t check the ordering of the characters, nor the
validity of the date by the calendar. It’s therefore a simple first step in validation: if
the check succeeds, there’s more chance it’ll pass the more detailed server-side vali-
dation that occurs after the form is submitted. The checkdate() function returns true
if validation succeeds and false otherwise.

The checkdate() function begins as follows:

// Checks if a field looks like a date in the 99/99/9999 format
function checkdate(e)

{

var slashCount = 0;

if (e.value.length != 10)
{

alert(" The field " + e.description +
" must have the format 99/99/9999" +
" and be 10 characters in length");
return false;

}

It expects a form element e as a parameter. The local variable slashCount is used later
to count the number of forward slashes. The first test checks if the value is ten char-
acters in length and, if not, it shows an error dialog and the function returns false.

332 | Chapter9: Validation with PHP and JavaScript

The description property of the element is set before the verify() function is called
and we show you this later.

The next fragment is as follows:

for(var j = 0; j < e.value.length; j++)
{

var c = e.value.charAt(j);

The for loop iterates through each character of the value in the element; the first ele-
ment is 0 and the last is determined from the property e.value.length. For compact-
ness in the later code, we store the current character in the local variable ¢ by
retrieving is using the built-in charA#() method discussed previously.

The body of the loop has two straightforward steps. First, if the current character is a
forward slash, we increment the counter:
if ((c=="/"))

slashCount++;
Second, if the current character isn’t a forward slash and isn’t a digit we pop up an
error dialog and the function returns false:

if (c!="7"8 (c<'0" || c>'9"))

{

alert(" The field " + e.description +
" can contain only numbers and forward-slashes");
return false;

}
}

If the execution of the function makes it to the next fragment only digits and for-
ward slashes have been encountered in the value. Now, we check whether there were
two forward slashes:

if (slashCount != 2)
{
alert(" The field " + e.description +
" must have the format 99/99/9999");
return false;

}

return true;

}

If the check fails, we pop up an error dialog and return false. If all checks have suc-
ceeded the value looks like a date and the function returns true.

Using the JavaScript validation function

To use the verify() function, you call it from the onsubmit handler of a form. For
example, suppose you have authored the customer details input form that’s shown in
Figure 9-4.

JavaScript and Client-Side Validation | 333

b Customer Details - Mozilla
File Edit Wiew Go Bookmarks Tools

B?c-k - Foﬁard - R:%ad é%égp |- & http:a’f\uww.webdatahasehoc]:||£g‘33arch| ;ﬁt -

i 4} Home | W Bookmarks 2 Red Hat, Inc. ¢ Red Hat Network g4 Support £ Shop 4 Products @ Training

Window Help

Customer Details

Please fill in the details below to join. Fields shown in red
are mandatory.

First name:

Surname;
Address:

Crate of Birth (dd/mm/yyyy):

|

|

|

|
Email: |
Annual salary (whole dollars): [

@_ﬁ-ﬁ‘_ E;]_E Document Done (0.639 secy) ._ - ~ if%,ﬁ;g

Figure 9-4. A customer form with JavaScript validation

The form requires users to provide a first name, surname, address, email address,
date of birth, and salary. For this form, the onsubmit handler that’s used is as follows:

<form action="test.php" method="post" name="custform"
onsubmit="document.custform.firstname.hasNospaces = true;
document.custform.firstname.description = 'First Name';
document.custform.surname.description = 'Surname';
document.custform.address.description = 'Address’;
document.custform.email.description = 'Email';
document.custform.email.isEmail = true;
document.custform.dob.isDate = true;
document.custform.dob.description = 'Date of Birth (99/99/9999)";
document.custform.salary.description = 'Salary’;
document.custform.salary.isNumeric = true;
document.custform.salary.minNumber = 1;
document.custform.salary.maxNumber = 1000000;
document.custform.salary.hasNospaces = true;

return verify(document.custform);">

This code fragment creates and sets properties for each form element. These are
properties that we’ve created (and not part of JavaScript itself), and each is used by
some part of our verify() function. For example, when validation fails, the validation
functions show error messages that inform the user which field contains the error.

334 | Chapter9: Validation with PHP and JavaScript

To pass this string to the validation function, we create a description property for all
elements that are validated. For instance, the fragment:

document.custform.email.description = 'Email';

sets the description property of the email input element to ‘Email’. As shown in the
previous section, this description is displayed in a dialog box when an error occurs.

To control validation, you set a property that triggers a validation function in the
verify() function. For example, if you want an element to be validated using the
checkdate() function we described previously, you set the isDate property to be true:

document.custform.dob.isDate = true;

The verify() function inspects this property and, because it’s true, it calls the
checkdate() function to validate the dob field.

The other properties we’ve set up can be used to trigger other types of validation.
You can set are isEmail (for an email address), hasNoSpaces (if an element should not
contain whitespace), isNumeric (for integers), minNumber (a minimum value for an
isNumeric element), maxNumber (a maximum value for an isNumeric element), and
isOptional (for an element that can be left blank).

The PHP and template components

To complete our JavaScript validation case study, Example 9-13 and Example 9-14
show the PHP script and template respectively that create the customer details form.

Example 9-13 is a variation of Example 8-7 (which displays the phonebook form)
with three differences. The first is that it displays several more elements than the
phonebook script. The second is that it sets a new SUBMITACTION placeholder in the
template to the JavaScript code fragment discussed in the previous section. The final
difference is that it also sets the name of the form into a new placeholder, FORMNAME.

Example 9-13. The PHP script to produce the customer details form

<?php
require 'db.inc';
require once "HTML/Template/ITX.php";

$template = new HTML Template ITX("./templates");
$template->loadTemplatefile("example.9-11.tpl", true, true);

$template->setVariable("MESSAGE",

"Please fill in the details below to join");
$template->setVariable("SUBMITVALUE", "Join Now!");
$template->setVariable("FORMNAME", "custform");
$template->setVariable("SUBMITACTION", "

document.custform.firstname.hasNospaces = true;
document.custform.firstname.description = 'First Name';
document.custform.surname.description = 'Surname';
document.custform.address.description = 'Address’;
document.custform.email.description = "Email’;

JavaScript and Client-Side Validation | 335

Example 9-13. The PHP script to produce the customer details form (continued)

document.custform.email.isEmail = true;
document.custform.dob.isDate = true;
document.custform.dob.description = 'Date of Birth (99/99/9999)';
document.custform.salary.description = 'Salary’;
document.custform.salary.isNumeric = true;

document. custform.salary.minNumber = 1;

document. custform.salary.maxNumber = 1000000;
document.custform.salary.hasNospaces = true;

return verify(document.custform);");

$template->setCurrentBlock("mandatoryinput");
$template->setVariable("MINPUTTEXT", "First name");
$template->setVariable("MINPUTNAME", "firstname");
$template->setVariable("MINPUTVALUE", "");
$template->setVariable("MINPUTSIZE", 50);
$template->parseCurrentBlock("mandatoryinput");

$template->setCurrentBlock("mandatoryinput");
$template->setVariable("MINPUTTEXT", "Surname");
$template->setVariable("MINPUTNAME", "surname");
$template->setVariable("MINPUTVALUE", "");
$template->setVariable("MINPUTSIZE", 50);
$template->parseCurrentBlock("mandatoryinput");

$template->setCurrentBlock("mandatoryinput");
$template->setVariable("MINPUTTEXT", "Address");
$template->setVariable("MINPUTNAME", "address");
$template->setVariable("MINPUTVALUE", "");
$template->setVariable("MINPUTSIZE", 50);
$template->parseCurrentBlock("mandatoryinput");

$template->setCurrentBlock("mandatoryinput");
$template->setVariable("MINPUTTEXT", "Date of Birth (dd/mm/yyyy)");
$template->setVariable("MINPUTNAME", "dob");
$template->setVariable("MINPUTVALUE", "");
$template->setVariable("MINPUTSIZE", 50);
$template->parseCurrentBlock("mandatoryinput");

$template->setCurrentBlock("mandatoryinput");
$template->setVariable("MINPUTTEXT", "Email");
$template->setVariable("MINPUTNAME", "email");
$template->setVariable("MINPUTVALUE", "");
$template->setVariable("MINPUTSIZE", 30);
$template->parseCurrentBlock("mandatoryinput");

$template->setCurrentBlock("mandatoryinput");
$template->setVariable("MINPUTTEXT", "Annual salary (whole dollars)");
$template->setVariable("MINPUTNAME", "salary");
$template->setVariable("MINPUTVALUE", "");
$template->setVariable("MINPUTSIZE", 6);
$template->parseCurrentBlock("mandatoryinput");

336 | Chapter9: Validation with PHP and JavaScript

Example 9-13. The PHP script to produce the customer details form (continued)

$template->parseCurrentBlock();
$template->show();
>

Example 9-14 is almost identical to the template in Example 8-8.
Example 9-14. The template used to produce the customer form

<IDOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html401/1loose.dtd">
<html>
<head>
<script type="text/javascript" src="example.9-12.js">
</script>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Customer Details</title>
</head>
<body bgcolor="white">
<form name="{FORMNAME}" method="post" action="test.php"
onsubmit="{SUBMITACTION}">
<h1>Customer Details</h1>

<h2>{MESSAGE}.
Fields shown in red are mandatory.</h2>
<table>
<!-- BEGIN mandatoryinput -->
<tr>
<td>{MINPUTTEXT}:</td>
<td>

<input type="text" name="{MINPUTNAME}" value="{MINPUTVALUE}"
size={MINPUTSIZE}>
</td>
</tr>
<!-- END mandatoryinput -->
<tr>
<td><input type="submit" value="{SUBMITVALUE}"></td>
</tr>
</table>
</form>
</body>
</html>

The differences are that the JavaScript code from Example 9-12 is included using the
src attribute (as discussed at the beginning of this case study), and that the FORMNAME
and SUBMITACTION placeholders have been added to the form element. The FORMNAME is
the name of the form, and the SUBMITACTION supports the onsubmit function call.

JavaScript and Client-Side Validation | 337

CHAPTER 10
Sessions

A fundamental characteristic of the Web is the stateless interaction between brows-
ers and web servers. As discussed in Chapter 1, HTTP is a stateless protocol. Each
HTTP request sent to a web server is independent of any other request. The stateless
nature of HTTP allows users to browse the Web by following hypertext links and
visiting pages in any order. HTTP also allows applications to distribute or even repli-
cate content across multiple servers to balance the load generated by a high number
of requests.

This stateless nature suits applications that allow users to browse or search collec-
tions of documents. However, applications that require complex user interaction
can’t be implemented as a series of unrelated, stateless web pages. An often-cited
example is a shopping cart in which items are added to the cart while searching or
browsing an on-line store. The state of the shopping cart (the selected items) needs
to be stored somewhere to be displayed when the user visits the order page.

Stateful web database applications can be built using sessions, and session manage-
ment is the topic of this chapter. In this chapter, we:

* Discuss how sessions are managed in the stateless environment of the Web and
introduce the three characteristics of server-side session management

* Show you how to use the PHP session management library, and discuss design
strategies for session-based applications

* Use PHP session management to improve the phonebook entry form

* Provide a brief list of reasons for using, or avoiding, session management over
the Web

* Provide details of the PHP session management API and configuration

There are two ways to build an application that keeps state: variables that hold the
state can be stored in the browser and included with each request, or variables can be
stored on the server. The focus of this chapter is storing variables on the server using
PHP session management techniques. Storing variables on the client is usually a less

338

attractive option: it requires additional network traffic, is insecure, and relies on the
user’s browser configuration.

Introducing Session Management

A session manages the interaction between a web browser and a web server. For
example, a session allows an application to track the items in a shopping cart, the sta-
tus of a customer account application process, whether or not a user is logged in, or
the finalizing of an order. Sessions are essential to most web database applications.

A session has two components: session variables and a session identifier (ID). The ses-
sion variables are the state information that’s related to a user’s interaction with an
application. For example, the session variables might store that the user’s shopping
cart contains five items, what those items are, their price, what items the user has
viewed, and that the user is logged into the application. The session variables are
stored at the web server or database server, and are located using the session ID.

When a session is started, the user’s browser is given a session ID. This ID is then
included with subsequent requests to the server. When a browser makes a request,
the server uses the session ID to locate the corresponding session variables, and the
variables are read or written as required. In practice, session variables are typically
stored at the web server in a file (the PHP default) or at the database server in a table.
Figure 10-1 shows how the session variables for Beth’s session are identified and
stored in the web server environment; the session ID distinguishes between Beth’s
session and other users of the system.

Using sessions, all of the variables that represent the state of an application don’t
need to be transmitted over the Web. The session ID is transmitted between the
browser and server with each HTTP request and response, but the session data itself
is stored at the server. The session ID is therefore like the ticket given at a cloak-
room. The ticket is much easier to carry around and ensures that you get back your
own hat and coat. Storing variables at the server also helps prevent accidental or
intentional tampering with state information.

The session ID is usually transmitted as a cookie. A cookie is a named piece of text
that is stored in a web browser, and is sent with HTTP requests, like data sent with
the GET or POST methods. You can find out more about cookies from the interesting
Cookie Central web site at http://www.cookiecentral.com/faq/ or more formally in
RFC 2109 at http://ietf.org/rfc/rfc2109.txtnumber=2109.

When you manage session variables at the web server, they need to be stored for
each browser session. But for how long should the session variables be stored?
Because HTTP is stateless, there is no way to know when a user has finished with a
session. Ideally, the user logs out of an application by requesting a logout script that
explicitly ends the session. However, because a server can never be sure if a user is
still there, the server needs to clean up old sessions that have not been used for a

Introducing Session Management | 339

start.ph p
PHPSESS\D=1234 Beth’s session: 1234
Session variables:
PHPSESSID:1234 D — > zg’urrt]t:i?;sam
current_order=5%45.60
Beth Web Server
/ Lucy’s session: 6576
Session variables:
PHPSESSID:1234 zg&:]rrt]t::‘B;Sam
current_order=5%2.40
/ Will's session: 2456

Session variables:

Figure 10-1. Session 1Ds and session variables

period of time. Unused sessions consume resources on the server and present a secu-
rity risk. How long the timeout should be depends on the needs of the application,
and we discuss this in more detail later in this chapter.

In summary, there are three characteristics of session management over the Web:

e Information or state must be stored. Information that must be maintained across
multiple HTTP requests is stored in session variables.

* Each HTTP request must carry an identifier that allows the server to process the
request with the correct session variables.

* Sessions need to have a timeout. Otherwise, if a user leaves the web site, there is
no way the server can tell when the session should end.

PHP Session Management

Developing applications that use PHP sessions is straightforward. The three impor-
tant features of session management—identifying sessions, storing session variables,
and cleaning up old sessions—are mostly taken care of by the PHP session manage-
ment library.

In this section, we show you how sessions are started and ended, and how session
variables are used, and provide strategies for designing session-based applications.

The out-of-the-box configuration of PHP session management uses disk-based files
to store session variables, and our discussion in this section assumes this default PHP
4.3 behavior. Using files as the session store is adequate for most applications in
which the number of concurrent sessions is limited. A more scalable solution that
uses a MySQL database as a session store is provided in Appendix F.

340 | Chapter10: Sessions

Starting a Session

The session_start() function is used to create a new session. A session is unique to
the interaction between a browser and a web database application. If you use your
browser to access several sites at once, you’ll have several unrelated sessions. Simi-
larly, if several users access your application each has their own session. However, if
you access an application using two browsers (or two browser windows) at the same
time, in most cases the browsers will share the same session; this can lead to unpre-
dictable behavior—that’s the reason why many web sites warn against it.

The first time a user requests a script that calls session_start(), PHP generates a new
session ID and creates an empty file to store session variables. PHP also sends a
cookie back to the browser that contains the session ID. However, because the
cookie is sent as part of the HTTP headers in the response to the browser, you need
to call session_start() before any other output is generated, just as with other func-
tions that set HTTP header fields (this is a common source of error and it’s dis-
cussed in more detail in Chapter 12).

The session identifier generated by PHP is a random string of 32 hexadecimal digits,
such as fcc17f071bcagbf785ca281094390b4. When a new session is started, PHP cre-
ates a session file, using the session identifier, prefixed with sess_, for the filename.
For example, the filename associated with our example session ID on a Unix system
is /tmp/sess_fcc17f071bca9bf7f85ca281094390b4.

Using Session Variables

The session_start() function is also used to find an existing session. If a call is made to
session_start(), and a session has previously been started, PHP attempts to find the
session file and initialize the session variables. PHP does this automatically by looking
for the session cookie in the browser request whenever you call session_start(). You
don’t need to do anything different when starting a new session or restoring an exist-
ing one. Even if the identified session file can’t be found, session_start() simply cre-
ates a new session file.

Once a script has called session_start(), PHP provides access to session variables
through the superglobal associative array $ SESSION. When an existing session is
found, PHP automatically reads the session variables from the session file into the
array. PHP also automatically writes changes to the array back to the session file
once the script ends. However, be careful: if your script doesn’t call session_start(),
the $ SESSION array behaves like any other variable and any values are lost when the
script ends.

The script shown in Example 10-1 uses session variables to record the number of
times a user requests the page and the time of the first visit. The script is used with
the template shown in Example 10-2.

PHP Session Management | 341

Example 10-1. A simple PHP script that uses a session

<?php
require_once "HTML/Template/ITX.php";

// This call either creates a new session or finds an existing one.
session_start();

// Check if the value for "count" exists in the session store
// If not, set a value for "count" and "start"
if (lisset($ SESSION["count"]))
{
$ SESSION["count"]
$ SESSION["start"]
}

0;
time();

// Increment the count
$_SESSION["count"]++;

$template = new HTML_Template ITX("./templates");
$template->loadTemplatefile("example.10-2.tpl", true, true);

$template->setVariable("SESSION", session_id());
$template->setVariable("COUNT", $ SESSION["count"]);
$template->setVariable("START", $ SESSION["start"]);
$duration = time() - $ SESSION["start"];
$template->setVariable("DURATION", $duration);

$template->parseCurrentBlock();

$template->show();
>

Example 10-2. The session display template used with Example 10-1

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html401/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type"
content="text/html; charset=iso-8859-1">
<title>Session State Test</title>
</head>
<body>
<p>This page points at a session {SESSION}

count = {COUNT}

start = {START}
<p>This session has lasted {DURATION} seconds.
</body>
</html>

Example 10-1 starts by initializing a session with a call to session_start(). When the
script is called for the first time, this creates a new session and initializes an empty $_
SESSION array. When the script is called for the second or subsequent time, the

342 | Chapter10: Sessions

stored values from the previous time the script was run are restored into the $_
SESSION array. Whenever the script ends, the current values in the $ SESSION array
are written back to the session store.

After initializing a session, the script tests if the $_SESSION array contains a value for
the element count as follows:

// Check if the value for "count" exists in the session store
// If not, set a value for "count" and "start"
if (!isset($_SESSION["count"]))

{
$ SESSION["count"] = 0;

$_SESSION["start"] = time();
}
If there’s no value set, then this is the first time the script has been run and values for
count and start are set up in the $ SESSION array. If count is set, then values have
been read from the session store and these values are used instead.

The remainder of the script does the same thing whether or not this is the first time
the script has been called. The value of count is incremented, and then the session ID
(retrieved with the PHP library function session_id()), count, start time, and session
duration (the start time subtracted from the current time) are displayed.

The overall effect of the script is that each time you call it, the count increases by one
and the duration updates to the length of time since you first called the script. How-
ever, as we explain later, if you don’t request the script for a while, your session may
be automatically destroyed by PHP’s garbage collection and the count will begin
again from one.

Unsetting session variables

To unset a session variable, you use the unset() function. To remove all the session
variables, you can unset the whole $ SESSION array or re-assign a new array. Here are
two examples:

// To remove the "count" session variable only
unset($_SESSION["count"]);

// To remove all the session variables without destroying the session
$ SESSION = array();

Session variable types

Session variables can be of any type supported by PHP. However, if objects are saved
as session variables, you should include class definitions for those objects in all
scripts that call session_start(), regardless of whether the scripts use the objects or
not. This is needed so that PHP can correctly read and write objects from the session
store (the file that stores the session variables).

PHP Session Management | 343

To do this, you might store your class definition in an require file such as my_class.inc
as shown in the following example:

require "my class.inc";

// Find the session
start_session();

// later on in the script, store an object as a session variable
$ SESSION["some object"] = new my class();

Objects and classes are described in Chapter 4.

Serialization of session variables

PHP stores session variables in the session file by serializing the values. The serial-
ized representation of a variable includes the name, the type, and the value as a
stream of characters suitable for writing to a file. Here’s an example of a file that was
created when the script shown in Example 10-1 was run several times:

count|i:3;start|i:1049624957;

You don’t need to worry how serialization occurs; PHP session management takes
care of reading and writing session variables automatically.

Ending a Session

At some point in an application, sessions should be destroyed. For example, when a
user logs out of an application, a call to the session_destroy() function should be
made to clean-up the session variables and remove the session file. Be aware that
while a call to session_destroy() removes the session file from the system, it doesn’t
remove the session cookie from the browser. In practice, it doesn’t matter that the
cookie is still there because PHP can transparently handle a session cookie being pre-
sented without a matching file on the server; in this case, it just creates a new session
store with the name that matches the cookie value.

Example 10-3 shows how the session_destroy() function is called. Note that a ses-
sion must be initialized with a call to session_start() before the session_destroy() call
can be made. In the example, after destroying the session, the script redirects to a
receipt page, logout.html. This avoids the reload problem discussed in Chapter 8.

Example 10-3. Ending a session

<?php
session start();
session_destroy();
header("Location: logout.html");
>

344 | Chapter10: Sessions

Designing Session-Based Applications

The PHP session management library provides a way of storing state but does not
dictate how sessions are used in an application. When you design a session-based
application, you therefore need to give thought to:

* How and when a session is started

* What data needs to be stored as session variables

* When a session is destroyed
Sessions can be used in a variety of ways, and in this section, we describe two dis-

tinctly different types of session-based applications and provide design strategies for
both. The following section uses a case study to show a third application of sessions.

Session to track authenticated users

Applications that require a user to log in—such as online banking—often use ses-
sions to manage the user interaction. Figure 10-2 shows a typical flow of pages in
such an application, and interaction with PHP session management.

Application
login setup Welcome pages logout receipt

I
!

PHP Session Management

!
=

session store

Figure 10-2. Typical session-based application

The login page collects the user credentials using an HTML form and passes these
using the POST method to the setup script. The setup script is responsible for creat-
ing the new session with the first call to session_start() and for setting up the initial
session variables. After the session is started, the setup script sends a Location
header field, instructing the browser to relocate to the welcome page. Relocating to
the welcome page prevents the setup script being re-run during the session, and
avoids the reload problem we described in Chapter 8. The following fragment
shows the sequence of code in the setup script:

// Process the POST variables
$username = $ POST["username"];

PHP Session Management | 345

// Start the session
session_start();

// Set up the session variables
$ SESSION["name"] = $username;
$ SESSION["counter"] = 0;

// Relocate to the welcome page
header("Location: welcome.php");

The welcome page, and the other application pages, begin by calling session_start()
to set up the $_SESSION superglobal array with the session variables. Each page of the
application then interacts with the $_SESSION variables as required. For example, con-
sider the following fragment:

// Find the session
session_start();

// Welcome the user to the application
print "Hi {$_SESSION["name"]), Welcome to my Application";
/7 ...

// Update session variables
$ SESSION["counter"]++;
/...

Finally, the session is destroyed when the user requests the logout page. As with all
the other pages that interact with the session, the logout script must begin by calling
session_start(). As discussed previously, a logout page should also redirect to a
receipt page to avoid the reload problem. Here’s an example logout script:

<?

// Find the session
session start();

// Destroy the session
session_destroy();

// Redirect to a receipt page.

header("Location: logout.html");

?>
We develop a session-based user authentication framework that follows this pattern
in Chapter 11.

Sessions to track anonymous users

Not all session-based applications follow the pattern presented in Figure 10-2, and
not all require a user to log in. For example, consider an application that tracks the
pages a user has visited. Multiple pages share information using session variables,
however the user can enter the web site from any page. Each page in the application
can potentially start the session, so each page should be written to test for the exist-
ence of the session variable.

346 | Chapter10: Sessions

The following fragment of code shows how a session variable $_SESSION["visited_
pages"] is tested and set up prior to being used:

// Start or find the session
session_start();

// Test for the required session variables and add

// them to the session store if they don't exist

if (lisset($ SESSION["visited pages"]))
$_SESSION["visited pages"] = array();

// Now use the session

// Add the name of this page to the end of the array

$_SESSION["visited pages"][] = $_SERVER["PHP_SELF"];
If the variable isn’t in the session store, it’s initialized as a new arrays; if it is in the ses-
sion store, it’s restored automatically by the PHP session handler. After this first step,
the name of the current page is added to the end of the array; the superglobal $_
SERVER contains many elements that describe the server environment, including PHP_
SELF which is the name of the current PHP script. This same fragment would be
added to each script in the application. For compactness, you might put the frag-
ment into a function in a require file.

The result of using this code is that, for every page the user visits, a new element is
added to the array that contains the name of the page. If a user visits a page twice, a
second element for that page is added. You could determine how many pages the
user has visited by inspecting the size of the array with count(), or you could print
out the list of pages as in the following fragment:

// Print out all of the pages the user has visited

foreach ($_SESSION["visited pages"] as $page)

print "Thanks for visiting the {$page} page
";

For applications that record sensitive information in session variables, you should
offer a page that destroys the session. However, for a non-sensitive application, set-
ting a short session timeout and letting the PHP session management garbage collec-
tion remove the session is adequate. We discuss garbage collection and how to
change the default session timeout later in this chapter.

Case Study: Using Sessions in Validation

In this section, we use sessions to improve the user interaction with the phonebook
details form developed in Chapter 8. The improvements focus on the interaction
when the form is submitted and fields fail validation. We modify the scripts to:

* Display error messages interleaved with the phonebook’s entry form widgets.

* Use session variables to pass back the submitted fields to the form generation
script, saving the user the trouble of re-keying the data to correct the errors.

Case Study: Using Sessions in Validation | 347

Improving the Phonebook Details Form

We designed several phonebook scripts in Chapter 8. In Example 8-7, the form gen-
erated by the script collects values to create a new entry. The script shown in
Example 8-9 performs simple server-side validation of the form data, and inserts a
row in the phonebook table if there are no errors. We improve these scripts in this
section, but the techniques we show you can be easily adapted to the other phone-
book scripts or to any form pages you’ve authored.

If validation fails, the script shown in Example 8-9 generates a page to display the
errors to the user, and the user then follows a hypertext link back to the phonebook
entry form to reenter the fields. The solution provided by Example 8-7 and
Example 8-9 has three problems:

* The user is forced to reenter the entire phonebook entry form from scratch when
an error is encountered during validation

* Example 8-9 displays all the errors in a stand-alone page with no connection to
the form page, so the user cannot easily see the relation between errors and the
original input fields.

* The error page generated by Example 8-9 isn’t safe from the reload problem
described in Chapter 8.

In this section we develop scripts that make use of session variables to solve these
problems. Rather than displaying the error messages on a page generated by the vali-
dation script, we show you how to display the errors in red above the appropriate
input fields on the data entry form, as shown in Figure 10-3 (the red text appears as a
light gray in the figure).

Figure 10-4 shows how the improved form and the validate scripts interact with ses-
sion management to communicate errors and submitted fields.

Because the validation script processes the fields collected in the phonebook form and
generates any associated errors, we look at the changes required for that script first.

The Validation Script

We begin the improvements to the validation script with the changes required to
support an error message session variable and then discuss how to record the values
to pass back to the phonebook entry form generation code. We then show you the
complete structure of the modified validation script.

Improving error messages

The validation script checks each variable submitted from the phonebook form to
make sure data has been entered. The script shown in Example 8-9 builds up a tem-
plate by adding blocks as errors are found. In the modified script we use in this case

348 | Chapter10: Sessions

[%] Phonebook Details - Mozilla

=

File Edit Miew Go Bookmarks Tools Window Help

B?c-k o Fn%éud = R::Iaua\d g%égp | & http:.-’f\uww.webdatabasehoc]V||£g_Search| ;ﬁ&t -

i 4} Home | W Bookmarks 2 Red Hat, Inc. ¢ Red Hat Network @4 Support @ Shop 4 Products @ Training

Phonebook Details

Please correct the errors shown below. Fields shown in red
are mandatory.

First name: |Lucy

The surname field cannot be blank.
Surname; |

The phone number must be 8 digits in length.. with an optional 2 or 3 digit area code
Fhone: |

Try again I

,ga._m_ig._g;]] Documat Done (1.137 secs) | _‘_

Figure 10-3. The phonebook entry form showing error messages

form validate receipt
i b\ Client b
Client validate Acknowledge
entry and success
<form> database
update

$_SESSION["errors”]
$_SESSION["formVars”]

PHP Session Management |

!
=

session store

Figure 10-4. Phonebook entry form and validation

study, an associative array is registered instead to hold error messages associated
with each field, providing greater flexibility when displaying the error messages.

Case Study: Using Sessions in Validation | 349

First, we need to initialize the session with a call to session_start() and set up $errors
to hold an array of errors:

// Initialize a session
session_start();

// Set-up an empty $errors array to hold errors

$errors = array();
The script then checks each variable and adds an error message to the associative
array $errors if an error is encountered. The error message array is indexed by the
name of the field being checked. For example, the validation of the surname is coded
as:

// Validate the Surname
if (empty($surname))
$errors["surname"] = "The surname field cannot be blank.";

Once all the fields have been validated, the size of the $errors array is tested to deter-
mine if any errors were encountered. If the size of the array is zero, we create or
update the row as before, otherwise we carry out several steps as shown in the fol-
lowing fragment:

// Now the script has finished the validation, check if

// there were any errors
if (count($errors))

{
// Set up a $lastformVars array to store the previously-entered data
$lastformvars = array();
$lastFormVars["surname"] = $surname;
$lastFormVars["firstname"] = $firstname;
$lastFormvars["phone"] = $phone;

// Save the array as a session variable
$ SESSION["lastFormVars"] = $lastFormVars;

// Store the $errors array as a session variable
$_SESSION["errors"] = $errors;

// Relocate to the phonebook form
header("Location: example.10-5.php");
exit;
}
The setup and use of the lastFormVars array is discussed in the next section. The
remainder of the fragment saves the $errors array as a session variable and relocates
to the phonebook entry form script.

In Example 8-9, the script itself displays any errors, and because the request con-
tains variables in a POST method request, the error page suffers from the reload prob-
lem discussed in Chapter 8. The script has to display the errors immediately, in
isolation, because without sessions there is no convenient way to save the errors and
retrieve them again when displaying the form. In the validation script developed

350 | Chapter10: Sessions

here, we relocate to the phonebook entry form (shown later in Example 10-5) and let
it display the errors held in the session variable $ SESSION["errors"].

Saving last-entered values as a session variable

We now show you how to pass the field data from the validation script back to the
phonebook entry form, so the user does not have to re-key data after an error occurs.
The fields are passed back in the session array variable lastFormvars.

The following code fragment saves each value entered into the form into a
$lastFormvars array, indexed by the name of the variable. The $lastFormvars array is
then saved as the session variable $ SESSION["lastFormvars"].

// Set up a $lastformVars array to store the previously-entered data

$lastformvars = array();

$lastFormVars["surname"] = $surname;

$lastFormVars["firstname"] = $firstname;
$lastFormvVars["phone"] = $phone;

// Save the array as a session variable

$ SESSION["lastFormVars"] = $lastFormVars;
When the modified form is run, the most recent values entered from the session vari-
able $ SESSION["lastFormVars"] are shown.
The final change needed is to destroy the session when the script successfully saves a
row in the phonebook table:

// Destroy the session
session_destroy();

However, your application may make use of the session for other purposes and you
may not want to destroy the session at this point. If this is the case then you should
unset the variables used in these scripts.

// Clean up the lastFormVars from the session store
unset($ SESSION["lastFormVars"]);

The final validation script

Example 10-4 shows the final validation script derived from Example 8-9.

Example 10-4. The complete validation script derived from Example 8-9

<?php
require 'db.inc';

if (!($connection = @ mysql pconnect("localhost", "fred", "shhh")))
die("Could not connect to database");

$firstname = mysqlclean($_POST, "firstname", 50, $connection);
$surname = mysqglclean($_POST, "surname", 50, $connection);
$phone = mysglclean($ _POST, "phone", 20, $connection);

Case Study: Using Sessions in Validation | 351

Example 10-4. The complete validation script derived from Example 8-9 (continued)

// Initialize a session
session_start();

// Set-up an empty $errors array to hold errors
$errors = array();

// Validate the Firstname
if (empty($firstname))
$errors["firstname"] = "The firstname field cannot be blank.";

// Validate the Surname
if (empty($surname))
$errors["surname"] = "The surname field cannot be blank.";

// Validate the Phone number. It must have the correct format
$validPhoneExpr = "~([0-9]{2,3}[1?)?[0-9]1{4}[1?[0-9]{4}$";

if (empty($phone) || !ereg($validPhoneExpr, $phone))
$errors["phone"] = "The phone number must be 8 digits in length,.
with an optional 2 or 3 digit area code";

// Now the script has finished the validation, check if
// there were any errors
if (count($errors))
{
// Set up a $lastformVars array to store
// the previously-entered data
$lastformvars = array();
$lastFormVars["surname"] = $surname;
$lastFormVars["firstname"] = $firstname;
$lastFormvars["phone"] = $phone;

// Save the array as a session variable
$ SESSION["lastFormVars"] = $lastFormVars;

// Store the $errors array as a session variable
$_SESSION["errors"] = $errors;

// Relocate to the phonebook form
header("Location: example.10-5.php");
exit;

}

// If we made it here, then the data is valid
if (!mysql select db("telephone", $connection))
showerror();

// Insert the new phonebook entry
$query = "INSERT INTO phonebook VALUES
(NULL, '{$surname}', '{$firstname}', '{$phone}')";

if (1(@ mysgl _query ($query, $connection)))

352 | Chapter10: Sessions

Example 10-4. The complete validation script derived from Example 8-9 (continued)

showerror();

// Find out the phonebook id of the new entry
$phonebook_id = mysql insert id();

// Destroy the session
session_destroy();

// Show the phonebook receipt
header("Location: example.8-5.php?status=T8&phonebook id={$phonebook id}");
>

The Phonebook Entry Form Script

Now let’s turn to the changes required for the script that generates the phonebook
entry form shown in Example 8-7. In the last section, we set up two session vari-
ables: $ SESSION["errors"] to hold an associative array of error messages found by
the validation script, and $_SESSION["lastFormVars"] to hold an associative array
filled with the form values. Both session variables are read and incorporated into a
new form in this section.

Displaying previously entered form values

In our update phonebook details form in Example 8-11, we read data from the
phonebook table and display it in the input widgets so that the user can amend it.
The form uses the array $row to populate the data entry fields from a phonebook row
when editing an existing entry in the database. In this section, we adapt this
approach to displaying previously-entered data that has failed validation.

Adapting the approach from Example 8-11 to our sessions-based script is straightfor-
ward. Consider the following fragment:

$row = array();

// Has previous data been entered?
// If so, initialize $row from $ SESSION["lastFormVars"]
if (isset($ SESSION["lastFormvars"]))

{
$row = $ SESSION["lastFormVars"];

$template->setVariable("MESSAGE",
"Please correct the errors shown below");
$template->setVariable("SUBMITVALUE", "Try again");

}
If the ¢ SESSION["lastFormVars"] wvariable is set, $row is set to $_
SESSION[“lastFormVars"], and a message and submit button value set to inform the
user that errors have occurred. Then, for each widget in the form, the script displays
the value the user previously entered (or an empty widget if no previous value was
supplied):

Case Study: Using Sessions in Validation | 353

if (lempty($row))

$template->setVariable("MINPUTVALUE", $row["firstname"]);
else

$template->setVariable("MINPUTVALUE", "");

Displaying error messages

To display the error messages above the input widgets, we’ve modified our phone-
book template; the phonebook template is discussed in more detail in Chapter 8. It
now includes the following fragment:
<!-- BEGIN mandatoryinput -->
<tr>
<!-- BEGIN mandatoryerror --»>
<td>
<td>{MINPUTERROR}
</tr>
<tr>
<!-- END mandatoryerror -->
<td>{MINPUTTEXT}:</td>
<td>
<input type="text" name="{MINPUTNAME}" value="{MINPUTVALUE}"
size={MINPUTSIZE}>
</td>
</tr>
<!-- END mandatoryinput -->

The mandatoryerror block is an optional block that’s included before the input
element and is used to show an error message in a red font using the placeholder

MINPUTERROR. If no error occurs, we don’t set MINPUTERROR and don’t use the
mandatoryerror block.

To decide whether to display an error message or not, we check the contents of the
$ SESSION[“errors"] array. If there’s an entry for the input name in the associative
array of error messages, we use the mandatoryerror block and display the message.
Here’s an example for the firstname element:

if (lempty($_SESSION["errors"]["firstname"]))
{

$template->setCurrentBlock("mandatoryerror");
$template->setVariable("MINPUTERROR", $ SESSION["errors"]["firstname"]);
$template->parseCurrentBlock("mandatoryerror");
}
Figure 10-4 shows the final results: a form with error messages placed over the corre-
sponding fields.

The final phonebook entry script

Example 10-5 shows the complete data entry script, derived from Example 8-7, that
displays the previous form values and the error messages held in session variables.
Example 10-6 shows the template.

354 | Chapter10: Sessions

Example 10-5. Phonebook entry form derived from Example 8-7

<?php
require 'db.inc’;
require once "HTML/Template/ITX.php";

if (!($connection = @ mysql_connect("localhost", "fred", "shhh")))
die("Could not connect to database");

session start();

$template = new HTML Template ITX("./templates");
$template->loadTemplatefile("example.10-6.tpl", true, true);

$row = array();

// Has previous data been entered?
// If so, initialize $row from $ SESSION["lastFormVars"]
if (isset($ SESSION["lastFormvars"]))
{
$row = $ SESSION["lastFormVars"];
$template->setVariable("MESSAGE",
"Please correct the errors shown below");
$template->setVariable("SUBMITVALUE", "Try again");
}
else
{
// If they're not correcting an error show a
// "fill in the details" message
$template->setVariable("MESSAGE",
"Please fill in the details below to add an entry");
$template->setVariable("SUBMITVALUE", "Add Now!");

}

$template->setCurrentBlock("mandatoryinput");
$template->setVariable("MINPUTTEXT", "First name");
$template->setVariable("MINPUTNAME", "firstname");
if (lempty($row))

$template->setVariable("MINPUTVALUE", $row["firstname"]);
else

$template->setVariable("MINPUTVALUE", "");
if (lempty($_SESSION["errors"]["firstname"]))
{

$template->setCurrentBlock("mandatoryerror");
$template->setVariable("MINPUTERROR", $ SESSION["errors"]["firstname"]);
$template->parseCurrentBlock("mandatoryerror");
}
$template->setCurrentBlock("mandatoryinput™);
$template->setVariable("MINPUTSIZE", 50);
$template->parseCurrentBlock("mandatoryinput");

$template->setCurrentBlock("mandatoryinput");
$template->setVariable("MINPUTTEXT", "Surname");
$template->setVariable("MINPUTNAME", "surname");

Case Study: Using Sessions in Validation

355

Example 10-5. Phonebook entry form derived from Example 8-7 (continued)

if (lempty($row))
$template->setVariable("MINPUTVALUE", $row["surname"]);
else
$template->setVariable("MINPUTVALUE", "");
if (lempty($_SESSION["errors"]["surname"]))
{

$template->setCurrentBlock("mandatoryerror");
$template->setVariable("MINPUTERROR", $ SESSION["errors"]["surname"]);
$template->parseCurrentBlock("mandatoryerror");
}
$template->setCurrentBlock("mandatoryinput");
$template->setVariable("MINPUTSIZE", 50);
$template->parseCurrentBlock("mandatoryinput");

$template->setCurrentBlock("mandatoryinput™);
$template->setVariable("MINPUTTEXT", "Phone");
$template->setVariable("MINPUTNAME", "phone");
if (lempty($row))

$template->setVariable("MINPUTVALUE", $row[“phone"]);
else

$template->setVariable("MINPUTVALUE", "");
if (lempty($ SESSION["errors"]["phone"]))
{

$template->setCurrentBlock("mandatoryerror");
$template->setVariable("MINPUTERROR", $ SESSION["errors"]["phone"]);
$template->parseCurrentBlock("mandatoryerror");
}
$template->setCurrentBlock("mandatoryinput");
$template->setVariable("MINPUTSIZE", 20);
$template->parseCurrentBlock("mandatoryinput");

$template->setCurrentBlock();
$template->parseCurrentBlock();
$template->show();

>

Example 10-6. The template to display the phonebook form

<IDOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html401/1loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Phonebook Details</title>
</head>
<body bgcolor="white">
<form method="post" action="example.10-4.php">
<h1>Phonebook Details</h1>
<h2>{MESSAGE}.
Fields shown in red are mandatory.</h2>
<table>

356 | Chapter10: Sessions

Example 10-6. The template to display the phonebook form (continued)

<!-- BEGIN mandatoryinput -->
<tr>
<!-- BEGIN mandatoryerror --»>
<td>
<td>{MINPUTERROR}
</tr>
<tr>
<!-- END mandatoryerror -->
<td>{MINPUTTEXT}:</td>
<td>
<input type="text" name="{MINPUTNAME}" value="{MINPUTVALUE}"
size={MINPUTSIZE}>
</td>
</tr>
<!-- END mandatoryinput -->
<tr>
<td><input type="submit" value="{SUBMITVALUE}"></td>
</tr>
</table>
</form>
</body>
</html>

When to Use Sessions

So far in this chapter we’ve described how to implement stateful applications using
sessions, but we have not discussed when you should or should not use them. Ses-
sions allow some kinds of applications to be developed that otherwise would be diffi-
cult to implement on the Web. However, because HTTP is a stateless protocol,
building a stateful application can present problems and restrictions. Avoiding the
need to maintain state information is often a desirable goal. In this section, we list
some reasons sessions are used and some reasons to avoid them.

Reasons to Use Sessions

Sessions can be used in web database applications for several reasons. Many tradi-
tional database applications use sessions to help control user interaction, while other
applications use sessions to reduce server processing.

Performance

In a stateless environment, an application may need to repeat a computationally
expensive or slow operation. An example might be a financial calculation that
requires many SQL statements and calls to mathematics libraries before displaying
the results on several web pages. An application that uses a session variable to
remember the result exposes the user, and the server, to the cost of the calculation
only once.

When to Use Sessions | 357

Sequence of interaction

Often a web database application needs to present a series of screens in a controlled
order. One style of application (known as a wizard) guides a user through what
would otherwise be a complex task using a sequence of screens. Wizards are some-
times used for complex configurations, such as some software installations, and
often alter the flow of screens based on user input.

Intermediate results

Many web database applications validate data before creating or updating a row in
the database, preventing erroneous data from being saved. Sessions can keep the
intermediate data, so that incomplete data can be corrected when errors are detected.
Earlier in this chapter, we used sessions to improve the interaction between the
phonebook entry form and its validation script. In the case study, the fields entered
by the user are held in an array as a session variable until the validation is successtul.

Another example where intermediate results can be used is when a database applica-
tion collects and validates data for a single row over several fill-in forms. We show
you an example in Chapter 19 for the ordering process of our online winestore.

Personalization

Sessions can be used to personalize a web site by tracking a user’s preferences. For
example, a user might specify a background color, layout preferences, or their inter-
ests. This information is then saved in the session store, and can be accessed by all
scripts to personalize the application. In addition, the information might be saved in
a database when the user logs out and restored later when they log in again.

Reasons to Avoid Sessions

The reasons to avoid sessions focus mainly on the stateless nature of HTTP. HTTP
provides many features that enhance the performance and robustness of web brows-
ing, and these are often limited by the requirements of a stateful application.

Need for centralized session store

In an application that uses sessions, each HTTP request needs to be processed in the
context of the session variables to which that request belongs. The state information
recorded as the result of one request needs to be available to subsequent requests.
Most applications that implement sessions store session variables at the web server.
Once a session is created, all subsequent requests must be processed on the web
server that holds the session variables. This requirement prevents such applications
from using HTTP to distribute requests across multiple servers and therefore can’t
easily scale horizontally to handle large numbers of requests.

358 | Chapter10: Sessions

One way for a web database application to allow multiple web servers is to store ses-
sion variables in the database tier. This approach is described in Appendix F, where
we provide a PHP and MySQL implementation of a database-tier session store.

Performance

When a server that offers session management processes a request, identifying and
accessing session variables introduces unavoidable overhead. The session overhead
results in longer processing times for requests, which affects the performance and
capacity of a site. While sessions can improve application performance (for example,
a session can keep the result of an expensive operation) the gains may be limited and
outweighed by the extra processing required.

You can configure PHP session management to store session variables in memory,
however as the amount of memory used by the web server grows, a system may need
to move portions of memory to disk through an operation known as swapping.
Swapping memory in and out of disk storage is slow and can severely degrade the
performance of a server. Servers that use files—such as the default PHP session man-
agement—incur the cost of reading and writing a file on disk each time a session is
accessed.

Timeouts

Sessions can also cause synchronization problems. Because HTTP is stateless, there
is no way of knowing when a user has really finished with an application. Other net-
work applications can catch the fact that a connection has been dropped and clean
up the state that was held on behalf of that user, even if the user did not use a logout
procedure (such as typing exit or clicking on a logout button).

In the Telnet application, a user makes a connection to a system over the Internet.
However, unlike HTTP, the TCP/IP connection for Telnet is kept for the length of
the session, and if the connection is lost—says, if the client’s PC crashes or the power
is lost—the user is logged out of the remote system. With a session over the Web,
the server doesn’t know about these events and has to make a decision as to how
long to keep the session information. In the case of PHP session management, a gar-
bage collection scheme is used; garbage collection is discussed in the next section.

Bookmark restrictions

Because HTTP is stateless, browsers allow users to save URLSs as a list of bookmarks
or favorite sites. The user can return to a web site at a later date by simply selecting a
bookmarked URL. Web sites that provide weather forecasts, stock prices, and even
search results from a web search engine are examples of the sites a user might want
to bookmark. Consider the URL for a fictional site that provides stock prices:

http://www.someexchange.com/stockprice.php?code=TLS

When to Use Sessions | 359

The URL encodes a query that identifies a particular stock, and presumably, the
script stockprice.php uses the query to display the current stock price of the com-
pany. The URL can be bookmarked because it contains all that is needed to generate
the stock price page for the given company code.

Bookmarking can fail when sessions are used in the script that’s bookmarked. For
example, if a user bookmarks a session-based stock price page and comes back in a
week, the session that stored the company details is unlikely to still exist, and the
script fails to display the desired company’s stock price.

When you develop an application, you need to be aware that users frequently book-
mark pages that use sessions. To deal with this, you need to gracefully handle a user
unexpectedly arriving at a page when their session has been destroyed. For example,
you might check if a session variable is set and, if not, you might redirect the user to
the log in page. We show you how to do this in Chapter 11.

Security

Sessions can provide a way for an intruder to break into a system. Sessions can be
open to hijacking; an intruder can take over after a legitimate user has logged into an
application. There is much debate about the security of session-based applications
on the Web, and we discuss some issues of session security in Chapter 11.

PHP Session APl and Configuration

This section describes the PHP Session Management API and Configuration parame-
ters. We also discuss how to configure PHP to use sessions without cookies, and
how PHP garbage collection removes old unused session files.

Functions for Accessing Sessions in PHP

In this section we list the key functions used to build session-based applications in
PHP. By accessing session variables using the $ SESSION array, you can write com-
plete session-based applications using just four functions:

Boolean session_start()

Creates a new session, or finds an existing one. Checks for a session ID in the
HTTP request—either as a cookie or a GET variable named PHPSESSID. If a ses-
sion ID isn’t included in the request, or an identified session isn’t found, a new
session is created. If a session ID is included in the request, and a session isn’t
found, a new session is created using the session ID encoded in the request.
When an existing session is found, the session variables are read from the ses-
sion store and initialized. Using PHP’s default settings, a new session is created
as a file in the /tmp directory. This function always returns true.

360 | Chapter10: Sessions

string session_id([string id])
Can be used in two ways: to return the session ID of an initialized session or to
set the value of a session ID before a session is created. When used to return the
session ID, the function must be called without arguments after a session has
been initialized. When used to set the value of the session ID, the function must
be called with the id as the parameter before the session has been initialized.

Boolean session_destroy()
Removes the session from the PHP session management. With PHP’s default set-
tings, a call to this function removes the session file from the /tmp directory.
Returns true if the session is successfully destroyed and false otherwise.

void session_readonly()
Initializes an existing session in read-only mode. This allows session variables to
be read without PHP placing a write lock on the session store. This can improve
performance if you expect simultaneous requests on the session; such is the case
when a browser loads a HTML frame set and makes a parallel request for the
framed pages.

Functions used when register_globals is enabled

PHP provides several functions that register variables in your code as session vari-
ables. Once registered, the values of these variables are tracked and automatically
updated in the session store. However, as we have already shown, session variables
can be set and accessed using the global array $_SESSION, and these functions need
not be used. Also these functions should not be used if register globals is disabled.
We include a description of these functions because you are likely to find them used
in older code:

Boolean session_register(mixed name [, mixed ...])
Registers one or more variables in the session store. Each argument is the name
of a variable, or an array of variable names. Once a variable is registered, it
becomes available to any script that identifies that session. Registering variables
with this function calls the session_start() code internally if a session has not
been initialized. Returns true if registration is successful and false otherwise.

Boolean session_is_registered(string variable name)
Returns true if the variable variable name has been registered with the current
session and false otherwise. Older code would use this function to test if a vari-
able is registered to determine if a script has created a new session or initialized
an existing one.

Boolean session_unregister(string variable name)
Unregisters the variable variable name from the initialized session. Like the
session_register(') function, the argument is the name of the variable, not the
variable itself. Unlike the session_register() function, the session needs to be ini-
tialized before calling this function. Once a variable has been removed from a
session with this call, it is no longer available to other scripts that initialize the

PHP Session APl and Configuration | 361

session. However, the variable is still available to the rest of the script that calls
session_unregister(). Returns true when the variable is unregistered and false
otherwise.

void session_unset()
Unsets the values of all session variables. This function doesn’t unregister the
actual session variables. A call to session_is_registered() still returns true for the
session variables that have been unset.

Session Management Without Cookies

While cookies are used in a large number of web sites around the world—including
popular sites such as Amazon and Google—you may need to build session-based
applications that don’t rely on them. This section shows how your application code
can pass the session ID encoded in the URL and avoid the need to set a cookie. We
also discuss turning off cookies altogether. To begin, we look at what happens when
cookie support is turned off.

No cookie?

A simple experiment that illustrates what happens when a user disables cookies is to
request the script shown in Example 10-1 from a browser that has cookie support
turned off. When repeated requests are made, the counter doesn’t increment, and
the session duration remains at zero seconds. Because a cookie isn’t sent from the
browser, PHP never looks for an existing session, but creates a new session each time
the script is run. Some users configure their browsers to not accept cookies, so ses-
sion-based applications should include an alternative communication mechanism.

Requests that don’t contain the cookie can identify an existing session by setting the
value of the session ID as a variable in the URL with the name PHPSESSID. For exam-
ple, an initial request can be made to Example 10-1 with the URL:

http://localhost/example.10-1.php
This creates a session and its associated file.

Subsequent requests can be made that include the PHPSESSID in the URL as shown
(we’ve truncated the session ID to fit on the page):

http://localhost/example.10-1.php?PHPSESSID=be20081806199800da22e24. ..

The response shows the counter set to 2 and the correct session duration. Repeated
requests to this URL behave as expected: the counter increments, and the calculated
duration increases.

If you write session-based applications to use the URL to identify sessions, the appli-
cation doesn’t fail for users who disable cookies. Applications can test if $_
COOKIE[“PHPSESSID"] is set and then start encoding the session ID in URLs, or just
not use cookies at all.

362 | Chapter10: Sessions

Some browsers, such as Netscape, Mozilla, and Internet Explorer, share cookies
across all windows or tabs that are running for the same user on the same machine.
Because the cookies are shared, users cannot log into a web database application
more than once and have independent sessions. If the session ID is stored in the
URL, then this problem is solved.

There are some security issues with having the session ID encoded in the URL: ses-
sion IDs can be stored in log files and bookmarks, and sessions can be shared
amongst users. For example, if a users wants to share a session with another user, he
can log in to the site and email the session URL to a friend who then has access to
the session.

Including the session ID in URLs

Scripts that generate embedded links to pages that use session variables need to
include a GET attribute named PHPSESSID in the URL. This can be done using the
basic PHP string support and calls to session_id(). For example:
<?php
// Initialize the session
session start();

// Generate the embedded URL to link to

// a page that processes an order

$orderUrl = "/order.php?PHPSESSID=" . session_id();
>

<a href="<?php print $orderUrl ?>">Create Order

To aid the creation of URLs that link to session-based scripts, PHP sets the constant
SID to the session ID in a name=id format suitable to use as a URL query string. If no
session has been initialized, PHP sets the value of SID to be a blank string. If a ses-
sion is initialized, it sets the SID to a string containing the session ID in the form:

PHPSESSID=be20081806199800da22€24081964000

By including the value of SID when URLs are constructed, the hypertext links cor-
rectly identify the session. A link that points to a script that expects a session ID can

be encoded like this:

<?php
// Initialize the session
session start();

>

<a href="/order.php?<?php print SID;?>">Create Order

URL rewriting

As an alternative to writing code to formulate the session ID into the URL, PHP
includes a URL rewrite feature that automatically modifies URLs embedded in HTML.

PHP Session APl and Configuration | 363

To activate this feature you need to set the parameter session.use trans_sid in the
php.ini file to 1. To activate the URL rewrite feature prior to PHP 4.2, the PHP source
also needs to be configured with the --enable-trans-id directive and then recompiled.

After URL rewrite is activated, PHP parses the HTML generated by scripts and auto-
matically alters embedded URLs to include the PHPSESSID query string. PHP allows
you to specify which URLs to be rewritten in the url rewriter.tags parameter in the
php.ini file.

The URL rewrite feature has the disadvantage that extra processing is required to
parse every page generated by a PHP script, and modify embedded URLs.

Turning off cookies

PHP session management can be instructed not to set the PHPSESSID cookie by chang-
ing the session.use_cookies parameter to 0 in the php.ini file. The session configura-
tion parameters in the php.ini file are described later in this section.

Garbage Collection

While it is good practice to build applications that provide a way to end a session—
such as with a logout script that makes a call to session_destroy()—there is no guaran-
tee that a user will log out by requesting the appropriate PHP script. PHP session
management has a built-in garbage collection mechanism that ensures unused session
files are eventually cleaned up. This is important for two reasons: it prevents the direc-
tory from filling up with session files that can cause performance to degrade and,
more importantly, it reduces the risk of someone guessing session IDs (more on this
later) and hijacking an old unused session.

There are three parameters that control garbage collection: session.gc_maxlifetime,
session.gc_probability, and session.gc_dividend, all defined in the php.ini file. A
garbage collection process is run when a session is initialized, for example, when
session_start() is called. The garbage collection process examines each session, and
any sessions that have not been accessed for a specified period of time are removed.
This period is specified as seconds of inactivity in the gc_maxlifetime parameter; the
default value is 1,440 seconds, which is 24 minutes. The file-based session manage-
ment uses the last access time of the file to determine if a session is to be destroyed.

If you are running PHP on Microsoft Windows and storing session
files on a FAT file system, the last access time is not recorded when
session variables are read. If a session is actively being read, but not
updated for a period of gc_maxlifetime seconds, garbage collection
may remove the session incorrectly. You can write your own session
handlers to define when garbage collection removes old sessions.
Appendix F shows how to write your own session handlers.

364 | Chapter10: Sessions

The garbage collection process can become expensive to run, especially in sites with
high numbers of users, because the last accessed time of every session file must be
examined. The parameters gc_probability and gc_dividend set the percentage proba-
bility that the garbage collection process will check for timed-out sessions. If gc_
probability is set to 1 and gc_dividend is set to 100—the default settings—garbage
collection occurs with a probability of 1 in 100." Setting gc_probability to 100 ensures
that sessions are examined for garbage collection with every session initialization.
Depending on the requirements, some figure between these two extremes balances the
needs of the application and performance. Unless a site is receiving less than 1,000 hits
per day, you should set the probability quite low. For example, an application that
receives 1,000 hits in a 10-hour period with a probability set to 10%, runs the garbage
collection function, on average, once every 6 minutes. Setting the probability of run-
ning the garbage collection too high adds unnecessary processing load on the server.

Prior to PHP 4.3 probability was simply the value of gc_probability as a percentage;
a value of 12 represented a 12% probability. The gc_dividend parameter allows prob-
abilities to be set below 1%, which is useful for heavily loaded sites.

Configuration Parameters

Several parameters can be manipulated to change the behavior of the PHP session
management. These parameters are set in the php.ini file under the heading
[Session].

session.save_handler

This parameter specifies the method used by PHP to store and retrieve session
variables. The default value is files, to indicate the use of session files as
described in the previous sections. The other values that this parameter can have
are: mm to store and retrieve variables from shared memory, and user to store and
retrieve variables with user-defined handlers. In Appendix F we show you how
to create your own handlers to store session variables in a MySQL database. We
don’t recommend using the mm shared memory approach, as locking isn’t cor-
rectly implemented to avoid the transaction problems discussed in Chapter 8.

session.save path
This parameter specifies the directory in which session files are saved when the
session.save_handler is set to files. The default value is the temporary direc-
tory, /tmp. On Unix systems, you may want to use a directory only accessible to
the owner of the Apache process to prevent other users reading session files. For
Microsoft Windows systems, you will need to change this to an appropriate
path. The specified directory must exist.

* Perhaps the gc_maxlifetime parameter should have been called gc_minlifetime, because the value represents
the minimum time garbage collection permits an inactive session to exist. Remember that garbage collection
is performed only when a request that initializes a session is made, and then only with the probability set by
gc_probability.

PHP Session APl and Configuration | 365

As of PHP 4.0.1, you can modify the save path to store session files in deeper
level sub-directories. This can improving efficiency for operating systems that
don’t perform well with large numbers of session files in a single directory. We
don’t discuss this in detail.

session.use_cookies
This parameter determines if PHP sets a cookie to hold the session ID. Setting
this parameter to 0 stops PHP from setting cookies and may be considered for
the reasons discussed in the previous section. The default value is 1, meaning
that a cookie stores the session ID.

session.only_use_cookies
When this parameter is set to 1 PHP is prevented from overwriting the session
ID set from a cookie with the value from URL, thereby improving the security of
an application. This parameter was introduced in PHP 4.3 and has a default
value of 0, which is also the default behavior in earlier versions of PHP. How-
ever, if you use this parameter and cookies are not enabled in sessions or in a
user’s browser, then sessions will not be able to be used.

session.name
This parameter controls the name of the cookie, GET attribute, or POST attribute
that is used to hold the session ID. The default is PHPSESSID, and there is no rea-
son to change this setting unless there is a name collision with another variable.

session.auto_start
With the default value of 0 for this setting, PHP initializes a session only when a
session call such as session_start() or session_register() is made. If this parame-
ter is set to 1, sessions are automatically initialized if a session ID is found in the
request. Allowing sessions to autostart adds unnecessary overhead if session val-
ues aren’t required for all scripts.

session.cookie lifetime
This parameter holds the life of a session cookie in seconds and is used by PHP
when setting the expiration date and time of a cookie. The default value of 0 sets
up a session cookie that lasts only while the browser program is running. When
a user quits their browser, their session is destroyed (and the user is logged out
of the application).

Setting this value to a number of seconds other than 0 sets up the cookie with an
expiration date and time. The expiration date and time of the cookie is set as an
absolute date and time, calculated by adding the cookie lifetime value to the
current date and time on the server machine.”

* The actual expiration of the cookie is performed by the browser, which compares the expiration date and
time of the cookie with the client machine’s date and time. If the date and time are incorrectly set on the
client, a cookie might expire immediately or persist longer than expected.

366 | Chapter10: Sessions

session.cookie path

This parameter sets the valid path for a cookie. The default value is /, which
means that browsers include the session cookie in requests for resources in all
paths for the cookie’s domain. Setting this value to the path of the session-based
scripts can reduce the number of requests that need to include the cookie. For
example, setting the parameter to /winestore on a server hosting the www.
webdatabasebook.com domain instructs the browser to include the session
cookie only with requests that start with http://www.webdatabasebook.com/
winestorel/.

session.cookie domain
This parameter can override the domain for which the cookie is valid. The
default is a blank string, meaning that the cookie is set with the domain of the
machine running the web server, and the browser includes the cookie only in
requests sent to that domain.

session.cookie secure

This parameter sets the secure flag of a cookie, which prevents a browser from
sending the session cookie over non-encrypted connections. When this setting is
1, the browser sends the session cookie only over a network connection that is
protected using the Secure Sockets Layer, SSL. Setting this parameter to 1 only
makes sense when you have configured your Web server to use SSL. We discuss
SSL in the next chapter and show how to install and configure Apache with SSL
for Unix platforms in Appendixes A-C. The default value of 0 allows a browser
to send the session cookie over encrypted and non-encrypted services. This
parameter was added in PHP 4.0.4.

session.serialize handler
This parameter sets up the method by which variables are serialized, that is, how
they are converted into a stream of bytes suitable for the chosen session store.
The default value is php, which indicates use of the standard PHP serialization
functions. An alternative is wddx, which uses the WDDX libraries that encode
variables as XML, the library is described in Appendix G.

session.gc_probability and session.gc_dividend
The probability that the garbage collection process will be performed when a
session is initialized is the value of gc_probability divided by the value of gc_
dividend. The default values of 1 and 100 result in a 1% chance of garbage collec-
tion each time the collector runs. See the discussion in the previous section for a
full explanation of garbage collection.

session.gc_maxlifetime
This parameter sets the life of a session in number of seconds. The default value
is 1440, or 24 minutes. Garbage collection destroys a session that has been inac-
tive for this period. See the discussion in the previous section for a full explana-
tion of garbage collection.

PHP Session APl and Configuration | 367

session.referer check

This parameter can restrict the creation of sessions to requests that have the
HTTP Referer header field set. This is a useful feature if access to an application
is allowed only by following a hypertext link from a particular page, such as a
welcome page. If the HTTP Referer header of a request that is external to the
host doesn’t contain the value of this parameter, PHP creates a session, but the
session is marked as invalid and unusable. Subsequent requests will fail to ini-
tialize session variables from the session. The default value of a blank string
applies no restriction.

session.entropy file

PHP generates the session IDs from a random number seeded by the system date
and time. Because the algorithm is known—it can be looked up in the PHP
source code—it makes guessing session IDs a little easier. If this parameter is set
to the name of a file, the first n bytes from that file (where n is specified by the
session.entropy length parameter) are used to seed the random number genera-
tor, making the ID less predictable. The default value is left blank, meaning the
default seeding method is used. On Unix systems, an alternative is to use /dev/
urandom, a special Unix device that produces a pseudo-random number.

session.entropy length

This parameter is the number of bytes to use when generating a session ID from
the file specified by session.entropy file. The default value of 0 is required
when no entropy file is set.

session.cache limiter

This parameter controls how clients and proxy servers cache responses. Web
applications—and especially session-based web applications—can be adversely
affected when pages are cached. The default value of nocache prevents caching in
both clients and proxy servers. Setting this parameter to public allows caching in
both clients and proxy servers, while the value of private allow caching in the
client only. PHP 4.2 allows the value private no_expire in this parameter, which
avoids problems in some browsers when the Expire header field is used to con-
trol caching. See Appendix D for more details about HTTP caching.

session.cache_expire

This parameter is used when caching is allowed; it sets the expiration date and
time of the response to be the current system time plus the parameter value in
minutes. The default value is 180.

session.bug compat 42 and session.bug_compat_warn

Prior to PHP 4.2, session variables could be initialized in the global scope, even
when register globals was disabled. While this is considered a bug, PHP allows
code written with this behavior to run with bug_compat_42 set to 1 and provides
warnings with bug_compat_warn set to 1 (the default values). Setting these param-
eters to 0 turns off compatibility and warnings respectively. If you are writing
new code, we recommend that bug_compat_42 is set to 0.

368

| Chapter10: Sessions

CHAPTER 11
CHAPTER 11

Authentication and Security

Many web database applications require restrictions to control user access. Some
applications deal with sensitive information such as bank account details, while oth-
ers only provide information or services to paying customers. These applications
need to authenticate and authorize user requests, typically by collecting a username
and password that are checked against a list of valid users. As well as authenticating
those who have access to a service, web applications often need to protect the data
that is transmitted over the Internet from those who shouldn’t see it.

In this chapter, we show you the techniques used to build web database applications
that authenticate and authorize users and protect the data that is transmitted over
the Web. The topics covered in this chapter include:

* How HTTP authentication works and how it can be used with Apache and PHP

* Writing PHP scripts to manage user authentication and authorization

* Authorizing access from an IP address or a range of IP addresses

* Writing PHP scripts that authenticate users against a table in a database

* The practical aspects of building session-based web database applications to
authenticate users, including techniques that don’t use HTTP authentication

* A case study example that develops an authentication framework, demonstrat-
ing many of the techniques presented in this chapter

* The features of the encryption services provided by the Secure Sockets Layer

HTTP Authentication

This section assumes an understanding of HTTP. If you’re not familiar with it, you’ll
find an introduction in Appendix D.

The HTTP standard provides support to authenticate and authorize user access.
When a browser sends an HTTP request for a resource that requires authentication,
a server can challenge the request by sending a response with the status code of 401

369

Unauthorized. When it receives an unauthorized response, the browser presents a
dialog box that collects a username and password; a dialog box presented by a
Morzilla browser is shown in Figure 11-1. After the username and password have
been entered, the browser then resends the original request with an extra header field
that encodes the user credentials.

Prompt

—

Enter username and password for "Flat Foot" at wwwwehdatabasebook.com
User Mame:

ﬂ_a_t

%

FPassword:

xxmx

Use Password Manager to remember these values.é

| 0K || Cancel |

Figure 11-1. Moxzilla requests a username and password

The HTTP header just collects the name and password; it doesn’t authenticate a user
or provide authorization to access a resource or service. The server must use the
encoded username and password to decide if the user is authorized to receive the
requested resource. For example, you might configure your Apache web server to
require authentication by using a file that contains a list of usernames and encrypted
passwords. In another application, you might use a table of usernames and pass-
words stored in a database and develop PHP code for the authentication process.

How HTTP Authentication Works

Figure 11-2 shows the interaction between a web browser and a web server when a
request is challenged. The user requests a resource stored on the server that requires
authentication and the server sends back a challenge response with the status code
set to 401 Unauthorized. Included in this response is the header field WwWW-
Authenticate that contains parameters that instruct the browser on how to meet the
challenge. The browser may then need to prompt for a username and password to
meet the challenge. The browser then resends the request, including the
Authorization header field that contains the credentials the server requires.

The following is an example of an HTTP response sent from an Apache server when
a request is made for a resource that requires authentication:

HTTP/1.1 401 Authorization Required

Date: Thu, 2 Dec 2004 23:40:54 GMT

Server: Apache/2.0.48 (Unix) PHP/5.0.0
WWW-Authenticate: Basic realm="Marketing Secret"”

370 | Chapter11: Authentication and Security

Web Browser

User requests a page
requiring authorization

GET /auth/keys.ph p Web Server
User does not have
401 Unauthorized
_Authenticate: Bas'\c"realm:

credentials.
Responds asking
for credentials.
WWW -
“Marketing Secret

User is challanged for
username and password.
User enters these and 2. 4

(redentials are

presses OK. GET /auth/ke s.php
Authorizeg: Basic ZGFom TB==
I provided.
. (redentials are
201 0K 2|
PR Hello... <title> document sent.

i
—~

Figure 11-2. The sequence of HTTP requests and responses when an unauthorized page is requested

Connection: close
Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html401/1loose.dtd">

<html>

<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>401 Authorization Required</title>

</head>

<body>

<h1>Authorization Required</h1>

This server could not verify that you

are authorized to access the document

requested. Either you supplied the wrong

credentials (e.g., bad password), or your

browser doesn't understand how to supply

the credentials required.

<p><hr>

</body>

</html>

The WwhW-Authenticate header field contains the challenge method, instructing the
browser how to collect and encode the user credentials. In the example, the method
is set to Basic. The header also contains the name of the realm that the authentica-
tion applies to, in this case Marketing Secret. The realm is used by the browser as a
key for a username and password pair, and it is also displayed when the credentials
are collected.

HTTP Authentication | 371

Figure 11-1 shows the dialog displayed for the realm Flat Floot. Once the browser
has collected the credentials from the user, it resends the original request with an
additional Authorization header field that contains the credentials. The following is
an example of an HTTP request that contains credentials in the Authorization

header field:

GET /auth/keys.php HTTP/1.1

Connection: Keep-Alive

User-Agent: Mozilla/4.51 [en] (WinNT; I)

Host: localhost

Accept: image/gif, image/jpeg, image/pjpeg, image/png, */*

Accept-Encoding: gzip

Accept-Language: en

Accept-Charset: iso0-8859-1,*,utf-8

Authorization: Basic ZGF2ZTpwbGFoeXBlcw==
A browser can automatically respond to a challenge if credentials have previously
been collected for the realm, and it will continue to include authorization credentials

with requests until the browser program is terminated or another realm is entered.

The Basic encoding method sends the username and password in the Authorization
header field after applying base-64 encoding. Base-64 encoding isn’t designed to pro-
tect data and so isn’t a form of encryption: it simply allows binary data to be trans-
mitted over a network At best, it protects data from only casual inspection.

Some web servers, including Apache, support the Digest encoding method. The
Digest method is more secure than the Basic method because the user’s password
isn’t sent over the network. However, to use it, the browser must also include sup-
port. The major browsers that support digest authentication are Opera, Microsoft
Internet Explorer, Amaya, Mozilla, and Netscape. Therefore, because digest authen-
tication is not as widely implemented as basic authentication, you should use it only
when you have control over your users’ browser choice.

While the Basic encoding method provides no real security, the Secure Sockets Layer
(SSL) protocol can protect the HTTP requests and responses sent between browsers
and servers. This means that SSL also provides protection for the usernames and
passwords sent with the Basic method. Therefore, for web database applications that
transmit sensitive information, we recommend SSL be used. We discuss SSL later in
this chapter.

Using Apache to Authenticate

The simplest method to restrict access to an application is to use your web server’s
built-in authentication support. The Apache web server can easily be configured to
use HTTP authentication to protect the resources it serves. For example, Apache
allows authentication to be set up on a directory-by-directory basis by adding param-
eters to the Directory setting in the httpd.conf configuration file.

372 | Chapter11: Authentication and Security

The following example shows part of an httpd.conf file that protects the resources
(such as HTML files, PHP scripts, images, and so on) stored in the /usr/local/apache/
htdocs/auth directory:
Set up an authenticated directory
<Directory "/usr/local/apache/htdocs/auth">
AuthType Basic
AuthName "Secret Mens Business"
AuthUserFile /usr/local/apache/allow.users
require hugh, dave, jim
</Directory>
If you’re using Microsoft Windows, you can replace /usr/Iocal/apache/htdocs/auth
with a directory such as C:\Program Files\EasyPHP1-7\www\auth. On a Mac OS X
platform, use a directory such as /Library/WebServer/Documents/auth. In all cases,
the auth directory must exist.

A user must pass the Apache authentication before access is given to resources—
including PHP scripts—placed in an authenticated directory. The Apache server
responds with a challenge to unauthorized requests for any resources in the pro-
tected directory. The AuthType is set to Basic to indicate the method used to authenti-
cate the username and password collected from the browser, and the AuthName is set
to the name of the realm. Apache authorizes users who are listed in the require set-
ting by checking the username and password against those held in the file listed after
the AuthUserFile directive. There are other parameters that aren’t discussed here;
you should refer to the Apache references listed in Appendix G for full configuration
details.

If you don’t have administrator or root access to your web server machine, you can
still protect a directory (or selected resources in a directory). You do this by creating an
.htaccess file in the directory you want to protect and include in it what resources are
protected, who has access to them, and where to find the passwords. It’s easy to use
PHP to protect resources—as we discuss in the next section—we don’t discuss this
process in detail. You can find more information at http://httpd.apache.org/docs-2.0/
howto/htaccess.html.

For many web database applications, Apache authentication provides a simple solu-
tion. However, when usernames and passwords need to be checked against a data-
base, or when HTTP authentication can’t meet the needs of the application,
authentication can be managed by PHP instead. The next section describes how PHP
can manage HTTP authentication directly without configuring Apache. Later, we
also describe how to provide authentication without using HTTP.

HTTP Authentication with PHP

Writing PHP scripts to manage the authentication process allows for flexible authori-
zation logic. For example, an application might apply restrictions based on group

HTTP Authentication with PHP | 373

membership: a user in the finance department gets to see the reports from the bud-
get database, while others can’t. In another application, a user of a subscription-
based service might supply a correct username and password, but be denied access
when a fee is 14 days overdue. Or, access might be denied on Thursday evenings
during Australian Eastern Standard Time when system maintenance is performed.

PHP scripts give you more control over the authentication process than Apache files or
configuration. In this section, we show you how PHP scripts can use authentication
credentials, and how to develop simple, flexible authentication scripts that use HTTP.

Accessing User Credentials

When PHP processes a request that contains user credentials encoded in the
Authorized header field, access is provided to those credentials through the superglo-
bal variable $ SERVER. The element $_SERVER["PHP_AUTH_USER"] holds the username
that’s supplied by the user, and $ _SERVER["PHP_AUTH_PW"] holds the password.

The script shown in Example 11-1 reads the authentication superglobal variables and
displays them in the body of the response. In practice, you wouldn’t display them
back to the user because it’s insecure—we’ve just done this to illustrate how they can
be accessed. Instead, you’d use the credentials to authenticate the user, and allow or
deny access to the application. We explain how to do this in the next section.

For the PHP code in Example 11-1 to display the authentication credentials, the
script needs to be requested after a user has been challenged for a username and
password. For example, the challenge can be triggered by placing the script file in a
directory configured by Apache to require authentication as discussed in the previ-
ous section. The use of the superglobal variables doesn’t trigger authentication, it
just provides access to the values the user has provided.

Example 11-1. PHP access to authentication

<!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html401/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Authentication</title>
</head>
<body>
<?php
if (isset($_SERVER["PHP_AUTH USER"]))
print "<h2>Hi there {$_SERVER["PHP_AUTH_USER"]}</h2>";
else
print "You need to be authenticated for this to work!";

if (isset($_SERVER["PHP_AUTH PW"]))
print "<p>Thank you for your password {$ SERVER["PHP_AUTH PW"]}!";

374 | Chapter11: Authentication and Security

Example 11-1. PHP access to authentication (continued)

?>
</body>
</html>

With access to the authentication header field information, simple applications that
rely on identifying the user can be developed. For example, an application that
charges on a per-page view basis might use the $ SERVER["PHP_AUTH USER"] variable
when recording an access to a particular page. In this way, Apache can provide the
authentication, and the application records the users’ behavior.

While this simple approach to developing an application removes the need to write
any PHP code to implement authentication, users and passwords need to be main-
tained in an Apache password file. In the next section, we describe how to manage
HTTP authentication from within a PHP script, thus relieving Apache of authentica-
tion responsibilities and allowing more complex logic to be applied to request
authorization.

Managing HTTP Authentication with PHP

PHP scripts can manage the HTTP authentication challenges. To do this, you check
if the variables $_SERVER["PHP_AUTH USER"] and $ SERVER["PHP_AUTH PW"] are set. If
they’re not, the user hasn’t been authenticated and you send a response containing
the WWW-Authenticate header to the browser. If the variables are set, the user has
answered the challenge, and you check them against the credentials stored in the
script using any logic that’s required. If the user’s credentials match those stored in
the script, the user is allowed to use the script; if not, the challenge is sent again to
the browser.

In Example 11-2, the user credentials are passed to the function authenticated(). This
function uses the unsophisticated authentication scheme of checking that the pass-
word matches one that’s hard-coded into the script and, if so, it allows the user to
access the application. To test the script, you can use any username and the pass-
word kwAlIphIdE (the case is important). The template that’s used with the example
is shown in Example 11-3.

Example 11-2. A script that generates an unauthorized response

<?php
require once "HTML/Template/ITX.php";
require "db.inc";

function authenticated($username, $password)
{
// If either the username or the password are
// not set, the user is not authenticated
if (lisset($username) || !isset($password))
return false;

HTTP Authentication with PHP | 375

Example 11-2. A script that generates an unauthorized response (continued)

// Is the password correct?
// If so, the user is authenticated
if ($password == "kwAlIphIdE")
return true;
else
return false;

}

$template = new HTML Template ITX("./templates");
$template->loadTemplatefile("example.11-3.tpl", true, true);

$username = shellclean($_SERVER, "PHP_AUTH USER", 20);
$password = shellclean($ SERVER, "PHP_AUTH PW", 20);

if(lauthenticated($username, $password))
{
// No credentials found - send an unauthorized
// challenge response
header ("WWW-Authenticate: Basic realm=\"Flat Foot\"");
header("HTTP/1.1 401 Unauthorized");

// Set up the body of the response that is
// displayed if the user cancels the challenge
$template->touchBlock("challenge");
$template->show();
exit;

}

else

{
// Welcome the user now they're authenticated
$template->touchBlock("authenticated");
$template->show();

}

?>

Example 11-3. The template that’s used with Example 11-2

<!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html401/1loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Web Database Applications</title>
</head>
<body>
<!-- BEGIN challenge -->
<h2>You need a username and password to access this service</h2>
<p>If you have lost or forgotten your password, tough!
<!-- END challenge -->
<!-- BEGIN authenticated -->
<h2>Welcome!</h2>

376 | Chapter11: Authentication and Security

Example 11-3. The template that’s used with Example 11-2 (continued)

<!-- END authenticated --»>
</body>
</html>

The authenticated() function returns false if either the $username or $password hasn’t
been set, or if the password isn’t equal to the string kwAlIphIdE. If the user creden-
tials fail the test, the script responds with the header field WWW-Authenticate, and sets
the encoding scheme to Basic and the realm name to Flat Foot. It also includes the
status code 401 Unauthorized. The PHP manual suggests sending the WWW-
Authenticate response line before the HTTP/1.1 401 Unauthorized response line to
avoid problems with some versions of the Internet Explorer browser.

The first time a browser requests this page, the script sends the challenge response
containing the 401 Unauthorized header field. If the user cancels the authentication
challenge, usually by clicking the Cancel button in a dialog box that collects the cre-
dentials, the HTML encoded in the challenge response is displayed. When they pro-
vide the correct credentials (a username and the password kwAlIphIdE), a welcome
message is displayed. If they don’t provide the correct credentials and don’t press
Cancel, the authentication dialog is redisplayed until they do.

Limiting Access by IP Address

Sometimes it’s useful to limit access to an application, or part of an application, to
users who are on a particular network or using a particular machine. For example,
access to administrative functions in an application could be restricted to a single
machine, or the latest version of your application could be limited to only those users
in the testing department. In PHP, implementing this type of restriction is straight-
forward: you can check the IP address of the machine from which a request was sent
by inspecting the variable $_SERVER[“REMOTE_ADDR"]. You can do the same thing in
Apache, but we don’t discuss that here. (In addition, IP addresses can also be used to
help prevent session hijacking, a problem discussed later in this chapter.)

The script shown in Example 11-4 allows access for users who have machines on a
particular network subnet. The script limits access to the main content of the script
to requests sent from clients with a range of IP addresses that begins with 141.190.17.
Because that is just the start of an address, we test just the first 10 characters. The
template used with the example is shown in Example 11-5.

Example 11-4. PHP script that forbids access from browsers outside an IP subnet
<?php
require_once "HTML/Template/ITX.php";

$template = new HTML Template ITX("./templates");
$template->loadTemplatefile("example.11-5.tpl", true, true);

HTTP Authentication with PHP | 377

Example 11-4. PHP script that forbids access from browsers outside an IP subnet (continued)

if(strncmp("141.190.17", $ SERVER["REMOTE_ADDR"], 10) != 0)

// Not allowed
header ("HTTP/1.1 403 Forbidden");
$template->touchBlock("noaccess");
$template->show();
exit;

}

else

// Allowed
$template->touchBlock("authenticated");
$template->show();

}

7>

Example 11-5. The template used with Example 11-4

<!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html401/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Web Database Applications</title>
</head>
<body>
<!-- BEGIN noaccess -->
<h2>403 Forbidden</h2>
<p>You cannot access this page from outside the Marketing Department.
<!-- END noaccess -->
<!-- BEGIN authenticated -->
<h2>Marketing secrets!</h2>
<p>Need new development team - the old one says <i>No</i> far too often.
<!-- END authenticated -->
</body>
</html>

There are several HTTP status codes that are appropriate to use when denying access
to a user. In the previous section, we used the response code of 401 Unauthorized to
control HTTP authentication. However, the response status code of 403 Forbidden is
more appropriate if an explanation as to why access has been denied is required and
this is used in Example 11-4. The HTTP/1.1 standard describes 17 4xx status codes
that have various meanings. The infamous 404 Not Found is returned by Apache if
the requested resource doesn’t exist, and a PHP script can return this code if the
exact reason for the refusal needs to be hidden.

378 | Chapter11: Authentication and Security

Authentication Using a Database

In this section, we show you how scripts can authenticate by querying a database
table that contains usernames and passwords. Because users’ credentials are sensi-
tive information, we show how to protect passwords with encryption, and how the
encrypted password is used in the authentication process.

Creating a database and table

To demonstrate the principles of using a database to manage authentication, we
need a table that stores usernames and passwords, and we need a user who can
access the database and the table. It’s important to note that these are two different
issues: the database table is used to store the usernames and passwords for the users
of our application, while the MySQL database user is just used in our PHP scripts to
read and write data to the database. We set up the database, table, and the MySQL
account in this section.

In our examples in the remainder of the chapter, we use an authentication database
that contains a users table. To create both, you need to log in as the MySQL root
user and type the following into the MySQL command interpreter:

mysql> create database authentication;
Query OK, 1 row affected (0.05 sec)

mysql> use authentication;
Database changed
mysql> CREATE TABLE users (
-> user_name char(50) NOT NULL,
-> password char(32) NOT NULL,
-> PRIMARY KEY (user_name)
->) type=MyISAM;
Query OK, 0 rows affected (0.02 sec)
The users table defines two attributes: user_name and password. The user name must

be unique and is defined as the primary key.

It’s also necessary to have a MySQL user that has access to this database. You can
create a user lucy with a password secret using the following statement, again
entered into the MySQL command interpreter:

mysql> GRANT SELECT, INSERT, UPDATE, DELETE ON authentication.users TO

-> lucy@127.0.0.1 IDENTIFIED BY 'secret';

Query OK, 0 rows affected (0.00 sec)
The syntax of this statement is discussed in Chapter 15. We use the user lucy in our
scripts in the remainder of the chapter.

Protecting passwords

Storing user passwords as plain text represents a security risk because insiders, exter-
nal hackers, and others may gain access to a database. Therefore, a common prac-

HTTP Authentication with PHP | 379

tice is to encrypt the password using a non-reversible, one-way encryption algorithm
and store the encrypted version in the database. The encrypted version is then used
in the authentication process. (One-way or asymmetric encryption is discussed later
in this chapter.)

The process of protecting a password works as follows. First, a new username and
password are collected from the user. Then, the password is encrypted and a new
row is inserted into the users table that contains the plain text username and the
encrypted password. Later, when the user returns and wants to log in to the applica-
tion, they provide their username and password. The password provided by the user
is encrypted, the row is retrieved from the users table that matches the provided user-
name, and the encrypted version of the password supplied by the user is compared
to the encrypted version stored in the table. If the username and encrypted pass-
words match, the credentials are correct and the user passes the authentication.

PHP provides two functions that can be used for one-way encryption of passwords.
We define the functions next, and then show you examples that explain their behav-
ior in more detail.

string crypt(string message [, string salt])

On most platforms, this function returns an encrypted string that’s calculated
with a popular (if somewhat old) encryption algorithm known as DES. The plain
text message to be encrypted is supplied as the first argument, with an optional
second argument used to salt the DES encryption algorithm. By default, only the
first eight characters of the message are encrypted, and the salt is a two-charac-
ter string used by DES to make the encrypted string harder to crack. PHP gener-
ates a random salt if one isn’t provided. The first two characters of the returned
value is the salt used in the encryption process.

As we show later, a salt is used to help prevent two passwords that are identical
being encrypted to the same string. The salt and the password are both inputs to
the encryption function and, therefore, when two passwords are the same but
have different salts, the output is different. To encrypt another string to test if
it’s the same as the encrypted string, you need to know what salt was used so
that you can re-use it. For this reason, the salt is returned as the first two charac-
ters of the encrypted string.

This function is one-way: the returned value can’t be decrypted back into the
original string.

Several PHP constants control the encryption process, and the default behavior
is assumed in the description we’ve provided. However, on some platforms, the
internals of the function actually use the MD5 approach discussed next or the
salt can be longer. You should consult the PHP manual for more details.

string md>5 (string message)

Returns a 32-character message digest calculated from the source message using
the RSA Data Security, Inc. MD5 Message Digest Algorithm (http://'www.fags.org/

380 | Chapter11: Authentication and Security

rfes/rfc1321.html). A digest is a 32-character fingerprint or signature of a mes-
sage, and is not an encrypted representation of the message itself. The MD35 mes-
sage digest is calculated by examining the whole message, and messages that
differ by a single character produce very different digest results. Like the crypt()
function, md5() is one-way.

It is impossible to generate the original message from a digest. The digest of the
message is always 32 characters, and it’s not an encrypted representation of the
message. Instead, it’s a string that’s calculated from the message that is almost
guaranteed to be unique to that message.

This function is widely supported on most platforms, and should be used in
preference to crypt() for code that needs to be portable. Note that MD5 mes-
sage digests and Apache’s Digest authentication are unrelated concepts.

Example 11-6 shows how crypt() and md5() are used. The script generates the fol-
lowing output:

md5(aardvark7) = 94198c7f71931fdeboa7f4b75a603586
crypt(aardvark7, 'aa') = aaE/1j3.0Ky/Y
crypt(aardvark7, 'bb') = bbptug8K4zé6vA

md5 (aardvark8) = 4a68f92613baa5202d523134e768db13
crypt(aardvark8, 'aa') = aak/1j3.0Ky/Y
crypt(aardvark8, 'bb') = bbptug8K4z6vA

Example 11-6. Using crypt() and md5()

<!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html401/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Passwords</title>

</head>

<body>

<?php

$passwords = array();
$passwords[] = "aardvark7";
$passwords[] = "aardvarks8";

foreach($passwords as $password)
print "\n<p> md5({$password}) = "
print "\n
 crypt({$password}, 'aa') =
print "\n
 crypt({$password}, 'bb') =

}

>

</body>

</html>

. md5($password);
" . crypt($password, "aa");
. crypt($password, "bb");

Both functions have advantages and disadvantages:

HTTP Authentication with PHP | 381

* md5() works with strings of any length. It returns a fixed-length string of 32
characters that’s different if the input strings are different. It differentiates
between aardvark7 and aardvark8 in Example 11-6 as one would expect.

* crypt() uses only the first eight characters of a password and a salt to calculate
the encrypted string and so, if the first eight characters and the salt are the same,
the encrypted strings are the same. In Example 11-6, it does not differentiate
between aardvark7 and aardvark8 when the salt is the same.

* The salt in crypt() adds a useful extra feature that isn’t automatically supported
by md5(): when the string is encrypted with a different salt string, it produces a
different encrypted text even when two users have chosen the same password. In
Example 11-6, the result of encrypting aardvark7 with the salts aa and bb is a
very different string.

A common strategy is to use the first two characters of the username as the salt to
crypt(). In general, this results in different encrypted strings even if the users choose
the same password, because it’s unlikely they’d also have the same first two charac-
ters in their username. If you want to salt the md5() input, you could pass both the
username (or part of the username) and the password to the md5() function by con-
catenating the strings.

The users table has been defined to store the 32-character result of the md5() func-
tion. The following fragment of code shows how the password is protected using the
md5 () function and a new user is inserted into the users table.

function newUser($connection, $username, $password)

{
// Create the digest of the password

$stored password = md5(trim($password));

// Insert the user row
$query = "INSERT INTO users SET password = '$stored password',

user_name = '$username'";

if (!$result = @ mysql query ($query, $connection))
showerror();
}

The function expects three parameters: a MySQL database connection that has the
authentication database as the selected database, a plain text username, and a plain
text password. In the next section, we show you how to authenticate a user by com-
paring a password that’s provided by the user to the stored password. Later in this
chapter, we show you how passwords are updated in the users table as part of a com-
plete authentication framework.

Because both crypt() and md5() are one-way, after a password is stored, there is no
way to read back the original value. This prevents desirable features such as remind-
ing a user of his forgotten password. However, importantly, it prevents all but the
most determined attempts to get access to the passwords.

382 | Chapter11: Authentication and Security

Authenticating

When a script needs to authenticate a username and password collected from an
authentication challenge, it needs to check the credentials against the database. To
do this, the user-supplied password is encrypted, and then a query is executed to find
a row in the users table that has a matching username and encrypted password. If a
row is found, the user is valid.

Example 11-7 shows the authenticateUser() function that validates credentials. The
function is called by passing in a handle to a connected MySQL server that has the
authentication database selected and the username and password collected from the
authentication challenge. The script begins by testing $username and $password, and
if either variable is not set, the function returns false. The script then constructs a
SELECT query to search the users table using $username and the digest of $password
created using the md5() function. The query is executed and if a row is found, the
$username and $password have been authenticated, and the function returns true.

Example 11-7. Authenticating a user against an encrypted password in the users table

<?php

function authenticateUser($connection, $username, $password)
{
// Test the username and password parameters
if (lisset($username) || !isset($password))
return false;

// Create a digest of the password collected from
// the challenge
$password digest = mds(trim($password));

// Formulate the SQL find the user
$query = "SELECT password FROM users WHERE user name = '{$username}’

(Kl

AND password = '{$password digest}'";

if (1$result = @ mysql query ($query, $connection))
showerror();

// exactly one row? then we have found the user
if (mysql _num rows($result) != 1)

return false;
else

return true;

}

>

The authenticateUser() function is likely to be used in many scripts, so it’s useful to
store it in a require file. For example, if the code is stored in the file authentication.
inc, we could rewrite Example 11-4 to use the database authentication function by
requiring the file. The rewritten version is shown in Example 11-8.

HTTP Authentication with PHP | 383

Example 11-8. A rewritten version of Example 11-4 that uses database authentication

<?php

require "authentication.inc";

require "db.inc";

require_once "HTML/Template/ITX.php";

$template = new HTML Template ITX("./templates");
$template->loadTemplatefile("example.11-3.tpl", true, true);

if (!($connection = mysql connect("localhost", "lucy", "secret")))
die("Could not connect to database");

if (!mysql selectdb("authentication", $connection))
showerror();

$username = mysqlclean($_SERVER, "PHP_AUTH_ USER", 50, $connection);
$password = mysqlclean($ SERVER, "PHP_AUTH PW", 32, $connection);

if (lauthenticateUser($connection, $username, $password))
{
// No credentials found - send an unauthorized
// challenge response
header ("WWW-Authenticate: Basic realm=\"Flat Foot\"");
header ("HTTP/1.1 401 Unauthorized");

// Set up the body of the response that is
// displayed if the user cancels the challenge
$template->touchBlock("challenge");
$template->show();
exit;

}

else

{
// Welcome the user now they're authenticated
$template->touchBlock("authenticated");
$template->show();

}

>

Encrypting other data in a database

The PHP crypt() and md5() functions can be used only to store passwords, personal
identification numbers (PINs), and so on. These functions are one-way: after the
original password is encrypted and stored, you can’t get it back (in fact, as discussed
previously, an md5() return value is a signature or fingerprint and not an encrypted
copy of the message). Therefore, these functions can’t be used to store sensitive
information that an application needs to retrieve. For example, you can’t use them to

store and retrieve credit card details or to encrypt a sensitive document.

To store sensitive information, you need two-way functions that use a secret key to
encrypt and decrypt the data. One significant problem when using a key to encrypt
and decrypt data is the need to securely manage the key. The issue of key manage-

384 | Chapter11: Authentication and Security

ment is beyond the scope of this book, however we discuss encryption briefly in the
section“Protecting Data on the Web.”

If you need to store data using two-way encryption, a good set of tools are in the
mcrypt encryption library. PHP provides a set of functions that access it but, to use
them, you must install the libmcrypt library and then compile PHP with the --with-
mcrypt parameter; ready-to-use Microsoft Windows software is also available from
the PHP web site. We don’t discuss the mcrypt library in this book, but you can find
more information at http://www.php.net/manual/en/ref.mcrypt.php and at http:/
mcrypt.sourceforge.net/.

MySQL also offers the reversible encode() and decode() functions described in
Chapter 15.

Form-Based Authentication

So far in this chapter, we have presented authorization techniques based on HTTP.
In this section, we describe how to build applications that don’t rely on HTTP
Authentication, but instead use HTML forms to collect user credentials and sessions
to implement an authentication framework. We discuss why you might want to
avoid HTTP authentication, and the types of applications that benefit from manag-
ing the authentication with forms.

Reasons to Use HTTP Authentication

Before you decide to build an application that manages its own authentication, you
should consider the advantages of using HTTP Authentication:

* It is easy to use. Protecting an application can be as simple as configuring your
web server or creating a file.

* The HTTP authentication process can be managed by PHP code when an appli-
cation needs to take over the checking of user credentials. We described how to
do this in the section “Managing HTTP Authentication with PHP” earlier in this
chapter.

* Support to collect and remember user credentials is built into browsers.

* HTTP authentication works well with stateless applications.

Reasons to Avoid HTTP Authentication

Some applications, particularly session-based applications that track authenticated
users, have requirements that are difficult to meet using HT TP authentication.

Browsers remember passwords
Usernames and passwords entered into a browser authentication dialog box
(such as that shown in Figure 11-1) are remembered until the browser program is
terminated or a new set of credentials is collected. You can force a browser to for-

Form-Based Authentication | 385

get credentials by deliberately responding with an unauthorized code even when
a request contains authenticated credentials. The following fragment does this:

// Force the browser to forget with an unauthorized

// challenge response ...

header ("WWW-Authenticate: Basic realm=\"Flat Foot\"");

header ("HTTP/1.1 401 Unauthorized");
However if a user forgets to log out—and the page that sends the WWW-
Authenticate header field is not requested—then an unattended browser
becomes a security risk. By typing in a URL or simply using the Back button,
another user can access the application unchallenged.

Limited to the browser authentication dialog
When an application uses HTTP authentication, the method for collecting user
credentials is limited to the authentication dialog box provided by the browser.
An online application might want to present the login page in a style that’s con-
sistent with the application, perhaps by using a template, or in another language.

HTTP does not support multiple realms
Some applications require multiple logins. For example, an application might be
a corporate information system that requires all users to log in for basic access
but then requires an additional username and password to access a restricted
part of the site. HTTP doesn’t allow for multiple Authorization header fields in
the one request.

Authentication and Session-Based Applications

In Chapter 10, we presented session management as a technique for building state-
ful applications. For many applications that require authentication, a session is cre-
ated when a user logs in, and tracks his interaction until he logs out or the session
times out. We introduced this pattern in Chapter 10.

The basic pattern of session-based authentication is to authenticate a user’s creden-
tials once, and set up a session that records this authenticated status in session vari-
ables. Credentials are collected using a form and processed by the set-up script. Then,
the authenticated status is recorded in the session; this contrasts with HTTP authenti-
cation, which sends the authenticated credentials with each request. If the session
times out (or the user destroys the session), the authenticated status is destroyed;
therefore, unlike authenticated HTTP credentials, the session ID cookie can’t be used
after the session has timed out and this makes the application more secure.

Collecting user credentials in a form and storing the authenticated state in a session
has two disadvantages. First, the username and password aren’t encrypted when
passed from the browser to the web server. Therefore, in the PHP examples we
present in the rest of this chapter, the username and password are transmitted as
plain text; using the Secure Sockets Layer protocol, as discussed later in this chapter,
solves this problem. Second, session hijacking is possible because the state of the ses-
sion is used to control access to the application; session hijacking is discussed next.

386 | Chapter11: Authentication and Security

Session hijacking

By using session variables to maintain authentication, an application can be open to
hijacking. When a request is sent to a session-based application, the browser
includes the session identifier, usually as a cookie, to access the authenticated ses-
sion. Rather than snoop for usernames and passwords, a hacker can use a session ID
to hijack an existing session.

Consider an online banking application in which a hacker waits for a real user to log
in. The hacker then includes the session ID in a request, and transfers funds into his
own account. If the session isn’t encrypted, it’s easy to read the session ID. We rec-
ommend that any application that transmits usernames, passwords, cookies that
identify sessions, or personal details should be protected using encryption.

Even if the connection is encrypted, the session ID may still be vulnerable. If the ses-
sion ID is stored in a cookie on the client, it is possible to trick the browser into
sending the cookie unencrypted. This can happen if the cookie was set up by the
server without the secure parameter that prevents cookie transmission over an inse-
cure connection. How to set up PHP session management to secure cookies is dis-
cussed in Chapter 10.

Hijack attempts can also be less sophisticated. A hacker can hijack a session by ran-
domly trying session IDs in the hope that an existing session can be found. On a busy
site, many thousands of sessions might exist at any one time, increasing the chance of
success for such an attack. One precaution is to reduce the number of idle sessions by
setting a short maximum lifetime for dormant sessions, as discussed in Chapter 10.

Recording IP addresses to detect session hijack attempts

Earlier in this chapter, we showed how to access the IP address of the browser when
processing a request. The script shown in Example 11-4 checks the IP address set in
the $_SERVER["REMOTE_ADDR"] variable against a hard-coded string that limits access to
users whose machines are on a particular subnet.

The IP address of the client can also be used to help prevent session hijacking. If the
IP address set in the $ SERVER["REMOTE_ADDR"] variable is recorded as a session vari-
able when a user initially connects to an application, subsequent requests can be
checked and allowed only if they are sent from the same IP address. We show you
how to do this in the next section.

Using the IP address as recorded from the HTTP request has limita-
tions. Network administrators often configure proxy servers to hide
the originating IP address by replacing it with the address of the proxy
server. All users who connect to an application via such a proxy server
appear to be located on the one machine. Some large sites—such as
that of a large university campus—might even have several proxy serv-
ers to balance load, so successive requests coming from a single user
might appear to change address.

Form-Based Authentication | 387

Session-Based Authentication Framework

The authentication framework developed in this section follows the pattern
described in Chapter 10 and uses techniques developed earlier in the chapter. In this
section we:

* Develop a login script that uses a form to collect user credentials

* Authenticate the user credentials against protected passwords stored in the users

table

* Show how session variables are set up to support session authentication and
hijacking detection

* Develop the sessionAuthenticate() function that protects each page that requires
authentication

* Develop a logout function that destroys a session

* Develop scripts that allow a user to change his password

The scripts presented in this section have been kept as simple as possible to illus-
trate the concepts. They use the authentication database and users table described
earlier in this chapter, and the MySQL database connection is established with the
user lucy and the password secret. A more complex authentication framework that’s
based on the scripts described here is presented with the online winestore in Chap-
ters 16 through 20.

Code overview

The basic pattern of session-based authentication is to authenticate a user’s creden-
tials once, and set up a session that records this authenticated status as session vari-
ables. Credentials are collected with the login.html page shown in Example 11-9, and
processed by the logincheck.php script shown in Example 11-10.

Applications scripts—such as the home.php script shown in Example 11-12—start
by checking the status of the authentication session variables before running any
other code. This check is performed by the sessionAuthenticate() function. If this
check fails, the user is redirected to the logout.php script shown in Example 11-14
that explicitly destroys the session. The logout.php script can also be called directly,
and it’s typically included as a link on most application pages such as home.php.

The functions that are reused in the framework are implemented in a require file
authentication.inc shown in Example 11-11. The file contains the authenticateUser()
function that compares user-supplied credentials to those in the database (the func-
tion is shown in Example 11-7) and the sessionAuthenticate() function.

The password change module is shown in Example 11-16 and Example 11-18.
Example 11-16 lists the password.php script that displays a password change form to
collect the current password and a new password, and Example 11-18 is the script
changepassword.php that validates the user data and, if that succeeds, changes the

388 | Chapter11: Authentication and Security

password. On success or failure, the changepassword.php script redirects to the pass-
word change page and displays a message to inform the user.

Login page

Example 11-9 shows the login.html page with a form that collects a username and
password. The login page does not contain any PHP code.

Example 11-9. Login page

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html401/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Login</title>
</head>
<body>
<h1>Application Login Page</h1>
<form method="POST" action="logincheck.php">
<table>
<tr>
<td>Enter your username:</td>
<td><input type="text" size="10" name="loginUsername"></td>
</tr>
<tr>
<td>Enter your password:</td>
<td><input type="password" size="10" name="loginPassword"></td>
</tr>
</table>
<p><input type="submit" value="Log in">
</form>
</body>
</html>

Proxy servers, web gateways, and web servers often log the URLs that are requested,
so the page submits the form input fields using the POST method, rather than using
the GET method that encodes field values in the URL. This prevents user credentials
from appearing in log files.

Setup script

The logincheck.php script shown in Example 11-10 authenticates the user by process-
ing the POST variables collected in the login.html page, and sets up the session vari-
ables that record the authenticated status. This script does not generate any output
except a Location header to relocate to the home page of the application or the
logout page if authentication fails.

Example 11-10. Setup script

<?php
require 'authentication.inc’';

Form-Based Authentication | 389

Example 11-10. Setup script (continued)

require 'db.inc';

if (!$connection = @ mysql connect("localhost”, "lucy", "secret"))
die("Cannot connect");

// Clean the data collected in the <form>
$loginUsername = mysqlclean($_POST, "loginUsername", 10, $connection);
$loginPassword = mysqlclean($ POST, "loginPassword", 10, $connection);

if (!mysql selectdb("authentication", $connection))
showerror();

session_start();

// Authenticate the user
if (authenticateUser($connection, $loginUsername, $loginPassword))
{

// Register the loginUsername

$_SESSION["loginUsername"] = $loginUsername;

// Register the IP address that started this session
$_SESSION["loginIP"] = $_SERVER["REMOTE_ADDR"];

// Relocate back to the first page of the application
header("Location: home.php");
exit;
}
else
{
// The authentication failed: setup a logout message
$_SESSION["message"] =
"Could not connect to the application as '{$loginUsername}'";

// Relocate to the logout page
header("Location: logout.php");
exit;

}

2>

The username and password are read from the $ POST superglobal array and
untainted. Then, the username and password are passed to the authenticateUser()
function. If the authenticateUser() function returns true, the user has successfully
been authenticated and the script sets up the $_SESSION["loginUsername"] and $_
SESSION[“loginIP"] session variables, and the Location header field is sent to re-
locate the browser to the home.php script. If the user credentials do not authenticate,
the script sets up the message session variable and relocates to the logout.php script.

The authentication.inc require file

All pages that are protected by the authentication framework need to check the $_
SESSION[“loginUsername"] and $_SESSION["loginIP"] session variables to ensure that

390 | Chapter11: Authentication and Security

the user has successfully authenticated before running any other code. The
sessionAuthenticate() function shown in Example 11-11 performs these checks and is
included in the authentication.inc file.

Example 11-11. The sessionAuthenticate() and authenticateUser() functions

<?php

function authenticateUser($connection, $username, $password)

{

}

// Test the username and password parameters
if (lisset($username) || !isset($password))
return false;

// Create a digest of the password collected from
// the challenge
$password_digest = md5(trim($password));

// Formulate the SQL find the user
$query = "SELECT password FROM users WHERE user name = '{$username}’

(X0l

AND password = '{$password digest}'";

// Execute the query
if (!$result = @ mysql query ($query, $connection))
showerror();

// exactly one row? then we have found the user
if (mysgl num_rows($result) != 1)

return false;
else

return true;

// Connects to a session and checks that the user has
// authenticated and that the remote IP address matches
// the address used to create the session.

function sessionAuthenticate()

{

// Check if the user hasn't logged in
if (lisset($ SESSION["loginUsername"]))
{
// The request does not identify a session
$ SESSION["message"] = "You are not authorized to access the URL
{$_SERVER["REQUEST URI"]}";

header("Location: logout.php");
exit;

}

// Check if the request is from a different IP address to previously
if (lisset($_SESSION["loginIP"]) ||

($_SESSION["loginIP"] != $ SERVER["REMOTE_ADDR"]))
{

Form-Based Authentication

391

Example 11-11. The sessionAuthenticate() and authenticateUser() functions (continued)

// The request did not originate from the machine
// that was used to create the session.
// THIS IS POSSIBLY A SESSION HIJACK ATTEMPT

$ SESSION["message"] = "You are not authorized to access the URL
{$_SERVER["REQUEST URI"]} from the address
{$_SERVER["REMOTE_ADDR"]}";

header("Location: logout.php");
exit;
}
}

>

The sessionAuthenticate() function carries out two tests: first, if the session variable
$ SESSION["loginUsername"] isn’t set, the user isn’t logged in; and, second, if session
variable $ SESSION["loginIP"] isn’t set or it doesn’t have the same value as the IP
address of the client that sent the current request, a possible hijack attempt has
occurred. If either test fails, a $ SESSION["message"] variable is set with an appropri-
ate message and the Location header field is used to relocate the browser to the
logout script.

Example 11-11 also includes the authenticateUser() function that’s reproduced from
Example 11-7.

Application scripts and pages

Example 11-12 shows how the home.php script uses the authentication.inc file and
the sessionAuthenticate() function. If the user requests this page before logging in,
they’re redirected to the logout.php page. If they have logged in, the home.php page is
displayed.

Example 11-12. The home page of an application
<?php

require "authentication.inc";

require_once "HTML/Template/ITX.php";

session start();

// Connect to an authenticated session or relocate to logout.php
session_authenticate();

$template = new HTML Template ITX("./templates");
$template->loadTemplatefile("home.tpl"”, true, true);

$template->setVariable("USERNAME", $ SESSION["loginUsername"]);
$template->parseCurrentBlock();

$template->show();

>

392 | Chapter11: Authentication and Security

The script uses the home.tpl template shown in Example 11-13 to display the $_
SESSION[“loginUsername"] variable that shows who is logged on. This script also pro-
vides links to log out and to change the user’s password.

Example 11-13. The home.tpl template that’s used with Example 11-12

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html401/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Home</title>
</head>
<body>
<h1>Welcome to the application</h1>
You are logged on as {USERNAME}
<p>Change Password
<p>Logout
</body>
</html>

Logout script

The logout.php script is shown in Example 11-14. It’s either requested by another
script (such as logincheck.php) when the user fails the authentication process, or a
user can explicitly end a session by requesting it (for example, from the home.php
page shown in the previous section).

Example 11-14. Logout script

<?php
require once "HTML/Template/ITX.php";
session start();

$message = "";

// An authenticated user has logged out -- be polite and thank them for
// using your application.
if (isset($ SESSION["loginUsername"]))
$message .= "Thanks {$_SESSION["loginUsername"]} for
using the Application.”;

// Some script, possibly the setup script, may have set up a
// logout message
if (isset($ SESSION["message"]))
{
$message .= $ SESSION["message"];
unset($_SESSION["message"]);
}

// Destroy the session.
session_destroy();

Form-Based Authentication | 393

Example 11-14. Logout script (continued)

// Display the page (including the message)
$template = new HTML Template ITX("./templates");
$template->loadTemplatefile("logout.tpl”, true, true);
$template->setVariable("MESSAGE", $message);
$template->parseCurrentBlock();
$template->show();

>

The logout.php script doesn’t call the sessionAuthenticate() function to check that a
user is authenticated, and so we don’t need to include the authentication.inc file.
Instead, the logout.php function calls session_start() and then tests if either of the ses-
sion variables $ SESSION["loginUsername"] and $ SESSION["message"] are set. If either
is set, they are used to create a message to show the user:

* The $ SESSION["message"] variable is created in the logincheck.php or
authentication.inc scripts when user credentials fail to authenticate and it’s used
to explain why the process failed.

* The $ SESSION["loginUsername"] variable is used in logout.php to thank the user
for using the application.

With the message complete, the script destroys the session by calling the session_
destroy() function. The logout page prints the $message variable using the template
logout.tpl shown in Example 11-15, and this page provides a link back to the login.
html page.

Example 11-15. The logout.tpl template file that’s used with Example 11-14

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html401/1oose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Logout</title>
</head>
<body>
<h1>Application Logout Page</h1>
{MESSAGE}
<p>Click here to log in.
</body>
</html>

Password management

The password.php script in Example 11-16 and the changepassword.php script in
Example 11-18 allow a user to change their password. Both scripts start by requiring
the authentication.inc file and calling the sessionAuthenticate() function, allowing
access only when a user has successfully authenticated.

394 | Chapter11: Authentication and Security

Example 11-16. The password.php password change form

<?php
require "authentication.inc";
require once "HTML/Template/ITX.php";

session start();

// Connect to an authenticated session or relocate to logout.php
sessionAuthenticate();

$message =

// Check if there is a password error message
if (isset($ SESSION["passwordMessage"]))
{
$message = $ SESSION["passwordMessage"];
unset($_SESSION["passwordMessage"]);
}

// Display the page (including the message)

$template = new HTML Template ITX("./templates");
$template->loadTemplatefile("password.tpl", true, true);
$template->setVariable("USERNAME", $ SESSION["loginUsername"]);
$template->setVariable("MESSAGE", $message);
$template->parseCurrentBlock();

$template->show();

>

The password.php script displays a form that collects the original password and the
new password twice; the new password is collected twice to minimize the chances of
a typing error rendering the new password unusable. The script uses the password.tpl
template shown in Example 11-17. There are two template placeholders: USERNAME is
used to display the name of the logged-in user, and MESSAGE is used to display a mes-
sage that is stored in a session variable that is set by changepassword.php. Once a
message has been recorded for display, it’s unset in the session store so that it
doesn’t appear again.

Example 11-17. The password.tpl template used with Example 11-16

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html401/1oose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Password Change</title>
</head>
<body>
<h1>Change Password for {USERNAME}</h1>
{MESSAGE}
<form method="POST" action="changepassword.php">
<table>
<tr>

Form-Based Authentication | 395

Example 11-17. The password.tpl template used with Example 11-16 (continued)

<td>Enter your existing password:</td>
<td><input type="password" size="10" name="oldPassword"></td>
</tr>
<tr>
<td>Enter your new password:</td>
<td><input type="password" size="10" name="newPasswordi"></td>
</tr>
<tr>
<td>Re-enter your new password:</td>
<td><input type="password" size="10" name="newPassword2"></td>
</tr>
</table>
<p><input type="submit" value="Update Password">
</form>
<p>Home
<p>Logout
</body>
</html>

The data that’s entered into the password form is processed by the changepassword.
php script in Example 11-18.

Example 11-18. The changepassword.php script

<?php
require "authentication.inc";
require "db.inc";

session start();

// Connect to an authenticated session or relocate to logout.php
sessionAuthenticate();

if (!$connection = @ mysql connect("localhost”, "lucy", "secret"))
die("Cannot connect");

// Clean the data collected from the user

$oldPassword = mysqlclean($_POST, "oldPassword", 10, $connection);
$newPasswordl = mysqlclean($_POST, "newPasswordi", 10, $connection);
$newPassword2 = mysqlclean($_POST, "newPassword2", 10, $connection);

if (!mysql selectdb("authentication", $connection))
showerror();

if (strcmp($newPasswordl, $newPassword2) == 0 8&
authenticateUser($connection, $ SESSION["loginUsername"], $oldPassword))

{
// OK to update the user password

// Create the digest of the password
$digest = md5(trim($newPassword1));

396 | Chapter11: Authentication and Security

Example 11-18. The changepassword.php script (continued)

// Update the user row
$update query = "UPDATE users SET password = '{$digest}’
WHERE user name = '{$_SESSION["loginUsername"]}'";

if (!$result = @ mysql query ($update query, $connection))
showerror();

$_SESSION["passwordMessage"] =
"Password changed for '{$_SESSION["loginUsername"]}'";
}

else

{
$_SESSION["passwordMessage"] =
"Could not change password for '{$ SESSION["loginUsername"]}'";

}

// Relocate to the password form
header("Location: password.php");
>

The oldPassword, newPasswordl, and newPassword2 fields are read from the $ POST
superglobal array, and made safe with the mysglclean() function. Then, if both the new
password fields are identical, and the current password is valid for the currently logged
in user, the update code runs. As discussed previously, collecting the new password
twice helps prevent the introduction of typing errors, and calling the authenticateUser()
function ensures that only the user herself can change the password.

Once the collected fields have been verified, the password can be updated in the
database. The user’s row is updated with the MD5 digest of the new password, and
the $ SESSION["passwordMessage"] variable is set to indicate that the password has
been changed. The message is displayed by the password.php script.

If the collected fields can’t be verified—the two new passwords don’t match or the
current password isn’t valid—the $ SESSION["passwordMessage"] variable is set to
indicate that the password couldn’t be changed.

The changepassword.php script doesn’t display any output, but sets the Location
header field to relocate the browser to the password.php page.

Protecting Data on the Web

The Web isn’t a secure environment. The open nature of the networking and the
web protocols TCP, IP, and HTTP has allowed the development of many tools that
can listen in on data transmitted between web browsers and servers. It is possible to
snoop on passing traffic and read the contents of HTTP requests and responses.
With a little extra effort, a hacker can manipulate traffic and even masquerade as
another user.

Protecting DataontheWeb | 397

If an application transmits sensitive information over the Web, an encrypted connec-
tion should be provided between the web browser and server. For example, an
encrypted connection is warranted when:

¢ Sensitive information is held on the server such as commercial-in-confidence
documents or bank account balances.

* User credentials are used to gain access to sensitive services such as online bank-
ing or the administration of an application.

* Personal details are collected from the user, such as credit card numbers.

* Session IDs are used by the server to link HTTP requests to session variables,
and the session needs to be secure from hijacking.

Even if none of these reasons apply to your application, sometimes it’s a good idea to
use encryption anyway for a commercial application. Bad publicity from a security
breach can be equally bad when private or public data is compromised.

In this section, we focus on encrypting data sent over the Web using the Secure Sock-
ets Layer. We discuss the basic mechanics of SSL in this section. An installation and
configuration guide for SSL and the Apache web server for Unix and Mac OS X plat-
forms is part of Appendixes A through C. It’s possible to set up a secure web server
under Microsoft Windows, but we don’t cover it in this book.

This section isn’t designed to completely cover the topic of encryption. We limit our
brief discussion to the features of SSL, and how SSL can protect web traffic. More
details about cryptographic systems can be found in the references listed in
Appendix G.

The Secure Sockets Layer Protocol

The data sent between web servers and browsers can be protected using the encryp-
tion services of the Secure Sockets Layer protocol, SSL. The SSL protocol addresses
three goals:

Privacy or confidentiality

The content of a message transmitted over the Internet is protected from observers.
Integrity

The contents of a message received are correct and have not been tampered with.
Authentication

Both the sender and receiver of a message can be sure of each other’s identity.

SSL was originally developed by Netscape, and there are two versions: SSL v2.0 and
SSL v3.0. We don’t detail the differences here, but Version 3.0 supports more secu-
rity features than 2.0. The SSL protocol isn’t a standard as such, and the Internet
Engineering Task Force (IETF) has proposed the Transport Layer Security 1.0 (TLS)
protocol as an SSL v3.0 replacement; at the time of writing SSL v3.0 and TLS are
almost the same. See http://ietf.org/rfc/rfc2246.txt’number=2246 for more informa-
tion on TLS.

398 | Chapter11: Authentication and Security

SSL architecture

To understand how SSL works, you need to understand how browsers and web serv-
ers send and receive HTTP messages.

Browsers send HTTP requests by calling on the host systems’ TCP/IP networking
software, which does the work of sending and receiving data over the Internet. When
a request is to be sent (for example, when a user clicks on a hypertext link) the
browser formulates the HTTP request and uses the host’s TCP/IP network service to
send the request to the server. TCP/IP doesn’t care that the message is HTTP; it is
responsible only for getting the complete message to the destination. When a web
server receives a message, data is read from its host’s TCP/IP service and then inter-
preted as HTTP. We discuss the relationship between HTTP and TCP/IP in more
detail in Appendix D.

As shown in Figure 11-3, the SSL protocol operates as a layer between the browser
and the TCP/IP services provided by the host. A browser passes the HTTP message
to the SSL layer to be encrypted before the message is passed to the host’s TCP/IP
service. The SSL layer, configured into the web server, decrypts the message from the
TCP/IP service and then passes it to the web server. Once SSL is installed and the
web server is configured correctly, the HTTP requests and responses are automati-
cally encrypted. PHP scripting is not required to use the SSL services.

Browser Web server
SSL SSL
TCP/IP Internet TCP/IP
(lient machine Server machine

Figure 11-3. HTTP clients and servers, SSL, and the network layer that implements TCP/IP

Because SSL sits between HTTP and TCP/IP, secure web sites technically don’t serve
HTTP, at least not directly over TCP. URLs that locate resources on a secure server
begin with https://, which means HTTP over SSL. The default port for an SSL service
is 443, not port 80 as with HTTP; for example, when a browser connects to https:/
secure.example.com, it makes a TCP/IP connection to port 443 on secure.example.
com. Most browsers and web servers can support SSL, but keys and certificates need
to be included in the configuration of the server (and possibly the browser, if client
certification is required). In addition, web browsers need to be preconfigured with
certificates from root CAs; fortunately, all browsers come with these. We discuss
CAs and certificates later.

Protecting DataontheWeb | 399

Cipher suites

To provide a service that addresses the goals of privacy, integrity, and authentica-
tion, SSL uses a combination of cryptographic techniques. These include message
digests, digital certificates, and, of course, encryption. There are many different stan-
dard algorithms that implement these functions, and SSL can use different combina-
tions to meet particular requirements (such as the legality of using a technique in a
particular country!).

When an SSL connection is established, clients and servers negotiate the best combi-
nation of techniques—based on common capabilities—to ensure the highest level of
protection. The combinations of techniques that can be negotiated are known as
cipher suites.

SSL sessions

When a browser connects to a secure site, the SSL protocol performs the following
four steps:

1. A cipher suite is negotiated. The browser and the server identify the major SSL
version supported, and then the configured capabilities. The strongest cipher
suit that can be supported by both systems is chosen.

2. A secret key is shared between the server and the browser. Normally the browser
generates a secret key that is one-way (asymmetrically) encrypted using the
server’s public key. Only the server can learn the secret by decrypting it with the
corresponding private key. The shared secret is used as the key to encrypt and
decrypt the HTTP messages that are transmitted. This phase is called the key
exchange.

3. The browser authenticates the server by examining the server’s X.509 digital cer-
tificate. Often browsers are preloaded with a list of certificates from Certifica-
tion Authorities, and authentication of the server is transparent to a user. If the
browser doesn’t know about the certificate, the user is warned, usually by a dia-
log box that pops up and asks whether the user wants to proceed in the face of
failed authentication.

4. The server examines the browser’s X.509 certificate to authenticate the client.
This step is optional and requires that each client be set up with a signed digital
certificate. Apache can be configured to use fields from the browser’s X.509 cer-
tificate as if they were the username and password encoded into an HTTP
Authorization header field. Client certificates aren’t commonly used on the Web.

These four steps briefly summarize the network handshaking between the browser
and server when SSL is used. Once the browser and server have completed these
steps, the HTTP request can be encrypted by SSL and sent to the web server.

The SSL handshaking is slow, and if this was to occur with every HTTP request, the
performance of a secure web site would be poor. To improve performance, SSL uses

400 | Chapter11: Authentication and Security

the concept of sessions to allow multiple requests to share the negotiated cipher
suite, the shared secret key, and the certificates. An SSL session is managed by the
SSL software and isn’t the same as a PHP session.

Certificates and certification authorities

A signed digital certificate encodes information so that the integrity of the informa-
tion and its signature can be tested. The information contained in a certificate used
by SSL includes details about the organization and the organization’s public key. The
public key that is contained in a certificate is paired with a secret private key that is
configured into the organization’s web server; if you’ve followed our setup instruc-
tions for Unix or Mac OS X platforms in Appendixes A through C, you’ll recall gen-
erating the pair of keys and adding the private key to the web server.

The browser uses the public key when an SSL session is established to encrypt a
secret. The secret can be decrypted only using the private key configured into the
organization’s server. Encryption techniques that use a public and private key are
known as one-way or asymmetric, and SSL uses asymmetric encryption to exchange a
secret key. The secret key can then be used to encrypt the messages transmitted over
the Internet.

You cannot, of course, trust an unknown server to be what it claims to be; you have
to depend on a known authority to validate that the server is telling the truth and
you have to trust that authority. That is the role of a Certification Authority (CA).
Each signed certificate contains details about the CA. The CA digitally signs a certifi-
cate by adding its own organization details, an encrypted digest of the certificate
(created using a technique such as MD35), and its own public key. With this informa-
tion encoded, the complete signed certificate can be verified as being correct.

There are dozens, perhaps hundreds, of CAs. A browser (or the user confronted by a
browser warning) can’t be expected to recognize the digital signatures from all these
authorities. The X.509 certificate standard solves this problem by allowing issuing
CAs to have their signatures digitally signed by a more authoritative CA, who can in
turn have its signature signed by yet another, more trusted CA. Eventually the chain
of signatures ends with that of a root Certification Authority. As discussed previ-
ously, the certificates from the root CAs are usually pre-installed with browser soft-
ware. In addition, most browsers allow users to add their own trusted certificates.

If you don’t want to pay for a certificate or you need one for testing, free certificates
can be created and used to configure a web server with SSL. We show how to create
free self-signed certificates for Unix and Mac OS X platforms in Appendixes A
through C, or you can obtain a free trial certificate for any platform from VeriSign at
http://www.verisign.com/. However, self-signed or trial certificates are normally use-
ful only in restricted environments such as corporate networks. They won’t be
trusted by users of secure applications on the Internet, and you’ll probably need to
pay to have yours signed before the application is actually deployed.

Protecting DataontheWeb | 401

CHAPTER 12
Errors, Debugging, and Deployment

So far in this book, we’ve shown you the techniques to build the popular compo-
nents of a web database application. This chapter shows you how to find bugs in
those components and prepare your application for deployment by adding the finish-
ing touches that will make it a professional web database application.

The first two sections introduce PHP errors, common causes of programming error,
and how to find them. We show you examples of error types, and explain how error
reporting can be configured for debugging while you’re coding and adjusted later for
deployment. We also discuss the common sources of error in PHP, their symptoms,
and how to rectify them.

The second half of this chapter discusses application deployment. We show you how
to add your own error handler that reports errors to the user in a framework that’s
managed by the application, sends errors to a log or the system administrator, and
handles custom errors you can trigger from your code.

Chapters 16 through 20 present a complete, annotated online winestore web data-
base application. The application is built using the techniques and components dis-
cussed in earlier chapters, and debugged using the approaches discussed in this
chapter. It includes a full-featured custom error handler.

Errors

If you’ve written PHP code before you’ve read this chapter, you're already familiar
with PHP errors. However, you’ve probably not thought much about the different
error types and the situations in which they occur. This section discusses errors in
detail, and shows you how to change the error reporting levels in PHP and make the
most of debugging information during development.

PHP problems break down into four types or levels: errors, parse errors, warnings,
and notices. They can occur in four different situations: internally within PHP itself

402

(in the PHP core), during compilation when your script is first loaded, at run time
when your script is being executed, or when explicitly triggered by you in your code.

While all this might seem complicated, the variety leads to more informed debug-
ging, configurable error handling, and flexibility across all phases of the develop-
ment of web database applications. In any case, to some extent it’s unavoidable. A
missing bracket is always discovered during compilation and aborts the run immedi-
ately, whereas division by zero or a failed connection to a database must wait till the
script has run up to the point of the error.

Table 12-1 lists the problems and in what situations they occur; for simplicity, we
refer to all of the possible problems and situation combinations as errors. The most
serious of the error types are the ERROR and PARSE classes: both are fatal, that is, by
default they stop script execution and report an error message. The WARNING class is
also serious and still reports messages, but by default doesn’t stop script execution.
The least serious of the errors are in the NOTICE class, which by default don’t report
messages or stop the script. We discuss how to adjust the default behaviors later in
this section.

Table 12-1. Errors in PHP

Constant Description Halts script?
E_ERROR Fatal runtime error Yes

E_WARNING Non-fatal runtime error No

E_PARSE Compile-time parser error Yes

E_NOTICE Runtime notice No

E_CORE_ERROR Fatal PHP startup error Yes
E_CORE_WARNING Non-fatal PHP startup error No

E_COMPILE ERROR Fatal compile-time error Yes
E_COMPILE_WARNING Non-fatal compile time error No

E_USER_ERROR Fatal programmer-generated error Programmer-defined
E_USER_WARNING Non-fatal programmer-generated error Programmer-defined
U_USER_NOTICE Programmer notice Programmer-defined
E_ALL All of the above -

The ERROR class includes errors such as calling undefined functions, instantiating
objects of a non-existent class, and issuing a statement when it isn’t allowed (for
example, a break or continue outside of a loop). The PARSE class includes syntax
errors from missing semicolons, missing quotes and brackets, and statements with
incorrect numbers of parameters. The WARNING class covers less serious problems—
where a script may be able to continue successfully—such as the MySQL connection
problems discussed in Chapter 6, divide by zero errors, passing the wrong number of
parameters to a function, and including a file that doesn’t exist. The NOTICE class

Errors | 403

errors are usually minor and informational and include, for example, warnings about
using undefined variables.

The WARNING and ERROR class errors can be produced by the PHP core Zend engine,
the compilation process, runtime processing, or deliberate triggering by the program-
mer. Notices can be produced by the latter two. While this sounds complicated to
deal with, most of the time the only problems that your code needs to handle after
it’s deployed are the runtime E_WARNING errors; the E_USER_ERROR, E_USER_WARNING, and
E_USER_NOTICE errors may also be handled in your code, and we discuss this later in
the section “Custom Error Handlers.” We’ve deliberately omitted E_PARSE, E_ERROR,
and E_NOTICE from the list of errors your code needs to worry about: these are usu-
ally fixed by the programmer during development.

By default, error messages are displayed to the user agent (usually a web browser),
along with whatever output has been produced up to the point the error occurred;
the exception is E_NOTICE errors, which are ignored with the default settings. For
example, consider the following script that contains an E_WARNING error that’s
detected at runtime:

<!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html401/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Error</title>
<body>
<h1>Two times!</h1>
<?php
function double($number)
{
return $number*2;

}

print "Two times ten is: " . double();
print "
Two times five is: " . double(5);
>
</body>
</html>

The function double() is called without its parameter in the first print statement,
and so a warning is produced as shown in the Mozilla browser in Figure 12-1. The
PHP-generated warning occurs after the HTML <h1> text has been output, but before
the output of the print statement that contains the error. Because it’s a warning, the
script continues, and both print statements produce output. The error itself is use-
ful for debugging: it contains a description of what caused the error, and the source
file and line number. We discuss the common sources of errors and how to find
them later in this section.

404 | Chapter12: Errors, Debugging, and Deployment

Error - Mozilla
Eile Edit Miew Go Bookmarks Tools Window Help

El?c’k - F-ﬁ%’%érd r F-:;%:a\d 'S%EF a ht‘tp:a’a’localhosb‘\uarning.pm_ %t hd

i 4} Home | Wi Bookmarks ¢ Red Hat, Inc. ¢ Red Hat Network (3§ Support £ Shop @ Products 4 Training

Two times!

Warning: IMissing argument 1 for double) in fusr/localfapache2/htdocs/error.php on line 11
Two times ten is: O
Two times five is: 10

| e El 2 Eal Document Done (0,196 secs) |= = |

Figure 12-1. Script output that contains an E_WARNING error

When you use templates, you’ll find that the errors are usually output before the out-
put of the script. This is because template output is buffered until you call the show()
method, while error output is sent directly to the user agent. This can make debug-
ging a little harder, but it does help prevent error messages from being confused
amidst the script output.

The E_ERROR runtime errors stop script execution, so the script produces output only
up to the point where the error occurred. In the case of templates, it’s typical that no
output except the error will be produced. Similarly, E_PARSE errors prevent any script
output, as the problems are detected before runtime.

Accessing the PHP Manual

During development, the errors produced by PHP are useful tools for debugging
your code. For example, suppose you attempt to establish a mysql_connect() connec-
tion but misspell localhost. This produces the error:
Warning: mysql connect() [function.mysql-connect.html]:

Unknown MySQL Server Host 'localhos' (1) in

/usr/local/apache2/htdocs/examples/buggy.php on line 18
By default, because a library function is involved, PHP produces a link to the PHP
manual function reference for mysql_connect(), which is shown surrounded by
square braces. You can click on this link and visit the manual. However, as dis-
cussed in Chapter 6, if you prefix your function calls with @ then these error mes-
sages are suppressed.

To support development, it’s useful to have a copy of the PHP manual in the docu-
ment tree of your development environment. To do this, download a copy of the

Errors | 405

Many Files HTML version from http://www.php.net/download-docs.php. Then create
a directory below your htdocs directory and uncompress the file into that directory.
For example, if you’ve followed our Unix installation instructions in Appendixes A
through C, you could use mkdir /usr/locallapache2/htdocs/php-manual to create the
directory, move the file there, and then uncompress it with bunzip2. If you’ve fol-
lowed our EasyPHP installation instructions for Microsoft Windows, create the
folder C:\Program Files\EasyPHP1-7\www\php-manual and put the file there. On
Mac OS X, use /Library/WebServer/Documents/php-manual. The PHP site has a use-
ful FAQ entry for Microsoft Windows users who aren’t familiar with the bzip2 com-
pressed file format: hitp://au.php.net/manual/en/faq.misc.php#faq.misc.bz2.

After downloading the file, you need to configure your PHP to link to your local
manual. To do this, open your php.ini file in an editor and locate the line beginning
docref root =. Change the line to point to your new directory below your document
root (for example, docref root = /php-manual), ensure that the immediately follow-
ing line reads docref_ext = .html, and that the line ;html_errors = has a semicolon
at the beginning. Save the file, and restart your Apache web server using the instruc-
tions in Appendixes A through C.

Configuring Error Reporting

Errors provide useful information when you’re debugging your application. How-
ever, when it’s deployed, displaying PHP errors among the application output is
messy, confusing for users, and uninformative for those who need to be alerted to rec-
tify the problems. Most importantly, it’s also a security problem: program internals
are displayed as part of error messages and these shouldn’t be displayed to end users.

Error reporting is configured in PHP in two common ways. First, by setting a global
default in the php.ini file; and, second, by setting error reporting on a script-by-script
basis. By default, in the php.ini file, you’ll find that error reporting is globally set to:

error_reporting = E ALL & ~E_NOTICE

This means that all error types are reported, except E_NOTICE errors; the & operator is
the bitwise AND discussed in Chapter 2, and the ~ is the bitwise NOT used to negate E_
NOTICE. The list of possible constants that can be used in shown in Table 12-1.

You can adjust this configuration to suit your requirements by modifying the global
default for all scripts or by setting a specific value in a script that’s used only in that
script. For example, to change the global value to detect only the ERROR and PARSE
classes, you can use:

error_reporting = E_COMPILE ERROR|E_ERROR|E_CORE_ERROR|E_PARSE

By default, all warnings and notices are then ignored; the | operator is the bitwise OR.
As before, after making any change to php.ini, you need to restart your Apache web
server.

406 | Chapter12: Errors, Debugging, and Deployment

To set an error-reporting level for one script, you can use the error_reporting()
library function. For example, to detect all error types, you can add:

<?php

error_reporting(E_ALL);

to the beginning of the script. The function also takes a constant from Table 12-1 as
the parameter, and you can use the bitwise 8, |, and ~ to combine the constant val-
ues. As we discussed in Chapter 6, you can also suppress error reporting for a spe-
cific function using the @ operator. For example, to prevent errors from a call to
mysql_connect(), you can use:

$connection = @ mysql connect("localhost","fred","shhh");
We recommend that during development you turn on all error reporting using the
global php.ini setting. Change it to:

error_reporting = E_ALL
However, we don’t recommend this setting for deployment for the reasons we dis-
cussed previously. When you deploy your application, you can follow two
approaches to handling errors: turn them off—a very optimistic approach!—or write
a handler that tries to deal with them gracefully during the application’s run. Turn-
ing them off is easy (set the php.ini setting error_reporting = 0) but it isn’t recom-
mended because it’ll prevent any problems with your application being detected.
Adding a professional error handler to your application is discussed later in “Cus-
tom Error Handlers.”

Common Programming Errors

Now that we’ve discussed what errors PHP can produce, let’s discuss how to fix
them. In this section, we focus on situations where error messages aren’t produced
or are less useful in helping to find the bug. In particular, we focus on the common
mistakes that even experienced programmers make.

A Page That Produces Partial or No Output

One of the most common problems in debugging PHP scripts is seeing:
* Nothing rendered by the web browser
* A pop-up dialog box stating that the “Document Contains No Data”
* A partial document when more is expected

Most of these problems are caused not by a bug in a script, but by a bug in the HTML
produced by the script or template. For example, if </table>, </forms, or </frame>
closing tags are omitted, a document may not be rendered in some browsers.

Common Programming Errors | 407

An HTML problem can often be identified by viewing the HTML page source using
the web browser. For example, on a Linux platform running Mozilla or Netscape,
the page source can be accessed with a right-mouse click anywhere over the docu-
ment and by then selecting View Page Source from the pop-up menu.

For compound or hard-to-identify HTML bugs, the W3C validator at http:/
validator.w3.org/ analyzes the correctness of the HTML and issues a report. It’s an
excellent assistant for debugging and final compliance checks before delivery of an
application. You can enter the URL of your resource into the W3C validator, or you
can upload the HTML output and have it checked. The former is easiest, but the lat-
ter is sometimes the only option if your page can’t be retrieved from behind a fire-
wall or because a PHP session or authentication is needed to access it.

If you want to upload a page to the validator, the easiest method is to use the Save
Page As... menu option in your browser to save the document. Then, upload the
saved file by clicking on Browse next to the Local File box at http://validator.w3.org.
Remember when using the validator that you need to validate the script under all its
different output conditions: for example, if your page can produce a form or display
the results of a query in a table, you need to check both scenarios.

If an HTML problem still proves hard to find, and it doesn’t use templates, consider
adding calls to the flush(') function after print or printf statements. The flush()
function empties the output buffer maintained by the PHP engine, sending all cur-
rently buffered output to the web server; without flush(), buffered output usually
isn’t sent to the browser when an error occurs and the script stops. The function has
no effect on buffering at the web server or the web browser, but it does ensure that
all data output by the script is available to the web server to be transmitted and ren-
dered by a browser. Remember to remove the flush() function calls after debugging,
because unnecessary flushing may prevent efficient buffering of output by the PHP
scripting engine. Buffering and its use in error reporting is discussed in more detail in
“Custom Error Handlers.”

A common problem that shouldn’t be confused with those described here is not
receiving a response from the web server and getting a “no response” error message.
This problem is a symptom of the bugs described in the next section, and can be dis-
tinguished from the problems described here by observing the web browser. Most of
the popular graphical browsers show they are waiting for a response by animating
the logo in the top-right corner. For the HTML problems described here, the page
loading process will be complete, the logo animation will have stopped, and the
HTML page source can be viewed through the web browser menus.

Variable Problems

In this section, we discuss problems that cause a page never to arrive at the web
browser, or complete pages to appear with missing output from variables. Many of

408 | Chapter12: Errors, Debugging, and Deployment

these problems can be avoided if you follow our recommendation to report E_NOTICE
errors during development.

Variable naming

If you haven’t turned on E_NOTICE errors, making a mistake with a variable name
sometimes inadvertently creates never-ending loops. The result of a never-ending
loop is that one of two problems occurs: first, the web browser eventually times out
and alerts the user that the web server isn’t responding to an HTTP request; or, sec-
ond, PHP complains that the maximum script execution time (usually 30 seconds)
has been exceeded. Which error you see depends on your configuration: you’ll see
whichever timeout problem occurs first.

The following loop never ends, and no output is produced:

for($counter=0; $counter<10; $Counter++)
myFunction();
The variable $counter is never incremented because $Counter and $counter are differ-
ent variables. Therefore, $counter is always less than 10. Common bugs result from
subtle changes in variable names through changing case, omitting or including
underscores, or simple typing errors.

Never-ending loops can also produce unexpected output. The following loop can
render thousands of greetings in a web browser in a very short time:
for($counter=0; $Counter<10; $counter++)
echo "
hello";
With error reporting set to detect E_ALL errors (or to a setting that include E_NOTICE),
the error is detected. For example, the following fragment:
error_reporting(E_ALL);

for($counter=0; $Counter<10; $counter++)
echo "
hello";

produces a never-ending number of notice messages stating:

Notice: Undefined variable: Counter in /usr/local/apache2/htdocs/count.php
on line 3
The script keeps on running because it’s only an E_NOTICE error. You can prevent the
endless output of error messages from the same source file and line by changing your
php.ini file to include the setting:

ignore_repeated errors = On

As usual, you need to restart your Apache web server after the change. For the
$Counter example, this will ensure one error message but it won’t prevent endless
greetings. However, this setting can also have the undesirable side-effect that the
error will be reported exactly once: if you press reload or refresh, you’ll never see the
error again!

Common Programming Errors | 409

Missing output

If you still haven’t turned on E_NOTICE errors, an uninitialized variable can leave you
with no output but without an explicit error. This seems obvious, but it can be hard
to identify if the problem is a subtle error. Consider this example of a change in case:

$testvariable = "hello";
echo "The value of test is $testVariable";

This produces the string:
The value of test is

If output appears but isn’t as expected, an uninitialized variable is a possibility. The
simplest approach to detecting the error is then to check for a bug by setting error_
reporting(E_ALL) at the top of the script or in your php.ini as discussed in the last
section.

A similar problem that can’t be detected with PHP errors can also occur when single
quotes are used instead of double quotes. As discussed in Chapter 2, the content of
single-quoted strings is always output directly, and the string isn’t interpreted like a
double-quoted string is. For example, consider the fragment:

echo 'the value of test is $test’;
This produces:
the value of test is $test

It doesn’t output the value of the variable $test.

Less Common Problems

The two problem categories we have outlined so far are the most common mistakes
programmers make in PHP. We outline three less common and less PHP-specific
problems here.

Complaints about headers

Functions that output HTTP headers are discussed in Chapters 5, 10, and 11. Such
functions include header(), setcookie(), and session_start(). A common problem
seen when using these is an error message such as:
Warning: Cannot modify header information - headers already sent by (output started
at /usr/local/apache2/htdocs/test.php:2) in /usr/local/apache2/htdocs/redirect.php on
line 3
Headers can be sent only before any HTML is output, and this includes any
whitespace at the top of the file. So, for example, if there is a blank line or single
space character before the script open tag <?php, HTML has been output (albeit not
very interesting HTML) and any function that sends an HTTP header will fail. Fortu-
nately, the error message gives you a hint where to look. In the above example, the

410 | Chapter12: Errors, Debugging, and Deployment

location that triggered the error is listed within parentheses, as a filename followed
by the line number, which is 2.

It’s possible to avoid header problems by altering how PHP buffers data using the
output control library functions. We discuss these later in “Custom Error Handlers.”

Missing semicolons, braces, and quotes

Omitting a semicolon at the end of a statement is usually easy to detect. The PHP
interpreter continues to parse the script and, when it reaches a threshold of confu-
sion or exceeds the maximum statement length, reports an error one or more lines
later that indicates a semicolon has been missed. In most cases, this is easy to fix
because the line missing the semicolon is identified in the error message.

However, in some cases, a missing semicolon can be as hard to identify as a missing
closing brace or a missing quotation mark. The following erroneous code is missing a
closing brace:
<?php
for($x=0; $x<100 ;$x++)
{
for($y=0; $y<100; $y++) {
echo "test1";
for($z=0; $z<100; $z++)
echo "test2";

}

>
The error reported is:

Parse error: parse error, UﬂeXpeCted $ in

/usr/local/apache2/htdocs/bug.php on line 9
Line 9 is the last line of the script, so the nature and cause of the problem aren’t
immediately clear. However, parse errors that aren’t immediately obvious on the
reported line in the error message are usually on the line above, or there may be a
missing brace or quotation mark.

It takes only a minute or so to identify the missing brace in this example, but more
complex functions can take much longer to fix. This highlights the importance of
indentation in code and of avoiding the practice of placing opening braces at the
ends of lines. Braces should always be placed on lines of their own and match up ver-
tically with their partner. If you use an editor that has syntax highlighting, this also
makes spotting bracket and quotation problems much easier.

Source shown in the browser

Missing open and close script tags can cause problems similar to missing quotation
marks or braces, but are much easier to identify. If an open script tag is missing, it’s
obvious because code is displayed in the browser. A missing close tag usually causes

Common Programming Errors | 411

a parse error, because the PHP script engine is confused when it tries to parse HTML
and interpret it as PHP, or it unexpectedly reaches the end of the file.

If script source is always displayed and never run, it’s likely that Apache is misconfig-
ured. Specifically, it’s likely that the AddType directive for processing PHP scripts was
not added in the Apache installation process; for example, this seems to be the
default in some recent Red Hat Linux distributions.

Another possible cause of scripts being displayed and not run is that the PHP scripts
aren’t saved in files ending with the .php suffix. This problem often occurs with leg-
acy PHP3 code, because PHP3 scripts usually use the .php3 suffix. The problem can
be corrected by renaming the script files so they end in the .php suffix or by adding
an additional AddType directive to the Apache httpd.conf file:

AddType application/x-httpd-php .php3

Custom Error Handlers

The errors produced by PHP are useful when developing scripts, but aren’t sufficient
for deployment in a web database application. Errors should inform users without
confusing them, not expose secure internal information, report details to administra-
tors, and have a look and feel consistent with the application. This section shows
you how to add a professional error handler to your application, and also how to
improve the internal PHP error handler to produce even more information during
development.

If you’re not keen to develop a custom handler (or don’t want to use ours!), you’ll
find an excellent class that includes one at http://www.phpclasses.org/browse.html/
package/345.

A Basic Custom Handler

To begin, we show you how to implement a simple custom handler. The set_error_
handler() function allows you to define a custom error handler that replaces the
internal PHP handler for non-critical errors:

string set_error_handler(string error_handler)
The function takes one parameter, a user-defined error handler function that is
called whenever an error occurs. On success, the function returns the previously
defined error handler function name, which can be saved and restored later with
another call to set_error_handler(). The function returns false on failure.

The custom error handler is not called for the following errors: E_ERROR, E_PARSE,
E_CORE_ERROR, E_CORE_WARNING, E_COMPILE_ERROR, and E_COMPILE WARNING. For
these, the PHP internal error handler is always used.

412 | Chapter12: Errors, Debugging, and Deployment

For example, to set up a new error handler that’s defined in the function
customHandler(), you can register it with:

set_error handler("customHandler");

The function name is passed as a quoted string, and doesn’t include the brackets.
After the new handler is defined, the error reporting level in php.ini or defined in
the script with error_reporting() has no effect: all errors are either passed to the cus-
tom handler or, if they’re critical, to the PHP internal default handler. We discuss
this more later.

A custom error handler function must accept at least two parameters: an integer
error number and a descriptive error string. Three additional optional parameters
can be also be used: a string representing the filename of the script that caused the
error; an integer line number indicating the line in that file where the error was
noticed; and, an array of additional variable context information.

Our initial implementation of the customHandler() function is shown in
Example 12-1. It supports all five parameters, and uses them to construct an error
string that displays more information than the default PHP internal handler. It han-
dles only E_NOTICE and E_WARNING errors, and ignores all others.

After running the example, the handler outputs the following:

<hr>

Custom Error Handler -- Warning/Notice

An error has occurred on 38 line in the
/usr/local/apache2/htdocs/example.12-1.php file.

The error is a "Missing argument 1 for double()" (error #2).

Here's some context information:

<pre>

Array

(

)
</pre>
<hr>

[number] =>

The useful additional information is the output of a call to the print_r() that dumps
the state of all variables in the current context. In this case, there’s only one variable
which doesn’t have a value: that’s not surprising, because the warning is generated
because the parameter is missing!

The context information is extracted from the fifth, array parameter to the
customHandler() function. It contains as elements all of the variables that are in the
current scope when the error occurred. In our Example 12-1, only one variable was
in scope within the function, $number. If the customHandler() function is called from
outside of all functions (in the main body of the program), it shows the contents of
all global variables including the superglobals $ GET, $ POST, and $_SESSION.

Custom Error Handlers | 413

Example 12-1. A script with a custom error handler

<IDOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html401/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Error</title>
<body>
<h1>Two times!</h1>
<?php
function customHandler($number, $string, $file, $line, $context)
{
switch ($number)
{
case E_WARNING:
case E_NOTICE:
print "<hr>\n";
print "Custom Error Handler -- Warning/Notice\n";
print "
An error has occurred on {$line} line in
the {$file} file.\n";
print "
The error is a \"{$string}\" (error #{$number}).\n ";
print "
Here's some context information:
\n<pre>\n";
print _r($context);
print "\n</pre>\n<hr>\n";
break;
default:
// Do nothing
}
}

function double($number)

{

return $number*2;

}

set_error handler("customHandler");

// Generates a warning for a missing parameter
print "Two times ten is: " . double();

>

</body>

</html>

As we stated earlier, the customHandler() function isn’t called for the critical error

types. For example, if we omit the semi-colon from the end of the first print statement:
print "Two times ten is: " . double()

then the parse error that’s output is the PHP default:

Parse error: parse error, unexpected T PRINT in
/usr/local/apache2/htdocs/example.12-1.php on line 46

414 | Chapter12: Errors, Debugging, and Deployment

You can’t change this behavior.” Custom handlers work only for the E_WARNING and
E_NOTICE errors, and for the entire USER class. The techniques to generate USER class
errors are discussed in the next section.

The custom handler we’ve shown here deliberately doesn’t support USER class errors.
If, for example, an E_USER_ERROR is generated, the handler is called, but nothing is
output and the script doesn’t stop. It’s the responsibility of the programmer to deal
with all error types, and to stop or continue the execution as appropriate. We
develop a handler for all errors in the next section.

A Production Error Handler

The simple custom error handler in the previous section has several disadvantages:

* The handler offers only slightly more information than the PHP internal han-
dler. Ideally, it should also include a backtrace, showing which function called
the one containing the error, and so on back to the beginning of the script.

* It shows technical information to the user, which is both confusing and a secu-
rity risk. It should explain to the user that there’s a problem with their request,
and then log or send the technical information to someone who can fix it.

* It can’t handle programmer-generated errors. For example, in Chapter 6, we’ve
used the showerror() function to handle database server errors. These errors
should be integrated with our custom handler.

* Our handler doesn’t stop script execution, and doesn’t leave the application in a
known state. For example, if a session is open or the database is locked, the error
handler doesn’t clean these up.

In this section, we improve our custom handler to address these problems.

Including debugging information

Example 12-2 shows an improved error handler that reports more information about
how and where the error occurred. For example, if an E_WARNING error is generated by
the fragment:

// Generates a warning for a missing parameter
print "Two times ten is: " . double();

then the handler outputs:

[PHP Error 20030616104153]E WARNING on line 67 in bug.php.
[PHP Error 20030616104153]Error: "Missing argument 1 for double()"

* This isn’t strictly true. It isn’t possible to change the behavior within your scripts or in the php.ini file. How-
ever, it is possible to force all output produced by your script through a function, and to catch them after
they’ve been output; this has a significant performance penalty. See http://www.webkreator.com/php/
configuration/handling-fatal-and-parse-errors.html for detailed information.

Custom Error Handlers | 415

(error #2).
PHP Error 20030616104153
PHP Error 20030616104153

[Backtrace:
[

[PHP Error 20030616104153
[

[

0: double (line 67 in bug.php)
1: double (line 75 in bug.php)
Variables in double ():

number is NULL
Client IP: 192.168.1.1

PHP Error 20030616104153
PHP Error 20030616104153
[PHP Error 20030616104153

[

The backTrace(') function uses the PHP library function debug_backtrace() to show
a call graph, that is, the hierarchy of functions that were called to reach the function
containing the bug. In this example, call #1 was from the main part of the script
(though this is shown as a call from double(), which is the function name that was
called—this is a bug in debug_backtrace(')) and call #0 was the double() function
that caused the error.

The debug_backtrace() function stores more details than the function name, but they
are in a multidimensional array. If you're interested in using the function directly, try
adding the following to your code:

var_dump(debug_backtrace());
Our custom handler also includes the following fragment:

$prepend = "\n[PHP Error " . date("YmdHis") . "]";
$error = ereg replace("\n", $prepend, $error);

This replaces the carriage return at the beginning of each error line with a fragment
that includes the date and time. Later in this section, we write this information to an
error log file.

Example 12-2. A custom handler with a backtrace

<?php

function backTrace($context)

{
// Get a backtrace of the function calls
$trace = debug backtrace();

$calls = "\nBacktrace:";

// Start at 2 -- ignore this function (0) and the customHandler() (1)
for($x=2; $x < count($trace); $x++)
{
$callNo = $x - 2;
$calls .= "\n {$callNo}: {$trace[$x]["function"]} ";
$calls .= "(line {$trace[$x]["line"]} in {$trace[$x]["file"]})";
}

$calls .= "\nVariables in {$trace[2]["function"]} ():";

// Use the $context to get variable information for the function
// with the error
foreach($context as $name => $value)

{

416 | Chapter12: Errors, Debugging, and Deployment

Example 12-2. A custom handler with a backtrace (continued)

if (lempty($value))

$calls .= "\n {$name} is {$value}";
else

$calls .= "\n {$name} is NULL";

}
return ($calls);
}
function customHandler($number, $string, $file, $line, $context)
{
$error = "";
switch ($number)
{
case E_WARNING:
$error .= "\nE_WARNING on line {$line} in {$file}.\n";
break;
case E_NOTICE:
$error .= "\nE_NOTICE on line {$line} in {$file}.\n";
break;
default:
$error .= "UNHANDLED ERROR on line {$line} in {$file}.\n";
}
$error .= "Error: \"{$string}\" (error #{$number}).";
$error .= backTrace($context);
$error .= "\nClient IP: {$ SERVER["REMOTE_ADDR"]}";
$prepend = "\n[PHP Error " . date("YmdHis") . "]";
$error = ereg replace("\n", $prepend, $error);
// Output the error as pre-formatted text
print "<pre>{$error}</pre>";
// Log to a user-defined filename
// error_log($error, 3, "/home/hugh/php_error log");
}

Logging and notifying the user

Output of errors to the user agent (usually a web browser) is useful for debugging
during development but shouldn’t be used in a production application. Instead, you
can use the PHP library error_log() function to log to an email address or a file. Also,
you should alert the user of actions they can take, without providing them with
unnecessary technical information.

The error_log() function has the following prototype:

int error_log (string message, int message type [, string destination [, string extra_
headers]])
The string message is the error message to be logged. The message_type can be 0,
1, or 3. A setting of O sends the message to the PHP system’s error logger, which
is configured using the error_log directive in the php.ini file. A setting of 1 sends

Custom Error Handlers | 417

an email to the destination email address with any additional email extra_
headers that are provided. A setting of 3 appends the message to the file
destination. A setting of 2 isn’t available.

In practice, you should choose between logging to an email address or to a user-
defined file; it’s unlikely that the web server process will have permissions to write to
the system error logger. To log to a file using our customHandler() in Example 12-2,
uncomment the statement:

error_log($error, 3, "/home/hugh/php error log");

This will log to whatever is set as the logging destination by the third parameter; in
this example, we’re writing into a file in the administrator’s home directory. You
could use the directory C:\Windows\temp on a Microsoft Windows platform. If you’d
prefer that errors arrive in email, replace the error_log() call with:

// Use a real email address!

error log($error, 1, "hugh@asdfgh.com");
In practice, we recommend logging to a file and monitoring the file. Receiving emails
might sound like a good idea, but in practice if the DBMS is unavailable or another
serious problem occurs, you're likely to receive hundreds of emails in a short time.

When the application goes into production, we also recommend removing the print
statement that outputs messages to the browser. Instead, you should add a generic
message that alerts the user to a problem and asks them contact the system adminis-
trator. You might also follow these statements with a call to die(') to stop the pro-
gram execution; remember, it’s up to you whether you stop the program when an
error occurs.

A better approach than adding print statements to show the error to the user is to
create a template with the same look and feel as your application, and include the
error messages there; we use this approach in our online winestore in later chapters.
This approach also has the additional advantage that it prevents the problem we
describe next.

An additional problem with printing errors without a template is that they can still
appear anywhere in a partial page. This can lead to user confusion, produce non-
compliant HTML, and look unattractive. If you use a template, you can choose
whether to output the page or not: nothing is output until you call the show()
method. However, even without a template, it’s possible to prevent this happening
by using the PHP library output buffering library.

The output buffering approach works as shown in the simplified error handler in
Example 12-3. The call to ob_start() at the beginning of the script forces all output
to be held in a buffer. When an error occurs, the ob_end_clean() function in the
customHandler() function throws away whatever is in the buffer, and then outputs
only the error message and stops the script. If no errors occur, the script runs as nor-
mal and the ob_end_flush() function outputs the document by flushing the bulffer.
With this approach, partial pages can’t occur.

418 | Chapter12: Errors, Debugging, and Deployment

Example 12-3. Using output buffering to prevent partial output pages
<?php
// start buffering
ob_start();
>
<IDOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html401/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Error</title>
<body>
<?php
function customHandler($number, $string, $file, $line, $context)

{

// Throw away the current buffer
ob_end clean();

print "An error occurred!";
die();
}

set_error handler("customHandler");

// Generates an E_NOTICE
print $a;

// Output the buffer
ob_end flush();

>
</body>
</html>

Triggering your own errors

In Chapter 6, we triggered our own errors by calling the showerror() function, which
outputs MySQL error messages. We added our own calls to die() to handle PEAR DB
errors in Chapter 7. However, these approaches aren’t consistent with using the cus-
tom error handler we’ve built in this chapter. Now that we have an error handler, it
would be useful to be able to trigger its use through programmer-generated errors. This
is where the USER class of errors and the PHP library function trigger_error() are useful:

void trigger_error (string error_message [, int error type])
The function triggers a programmer-defined error using two parameters: an
error message and an optional error type that’s set to one of E_USER_ERROR, E_
USER_WARNING, or E_USER_NOTICE. The function calls the current error handler, and
provides the same five parameters as other PHP error types.

Custom Error Handlers | 419

Example 12-4 is a modified handler that processes errors generated by trigger_error().
In addition, it stops the script when WARNING or ERROR class errors occur.

Example 12-4. A custom error handler that supports programmer-generated errors

function customHandler($number, $string, $file, $line, $context)

{

$error = "";
switch ($number)
{
case E_USER_ERROR:
$error .= "\nERROR on line {$line} in {$file}.\n";
$stop = true;
break;
case E_WARNING:
case E_USER_WARNING:
$error .= "\nWARNING on line {$line} in {$file}.\n";
$stop = true;
break;
case E_NOTICE:
case E_USER_NOTICE:
$error .= "\nNOTICE on line {$line} in {$file}.\n";
$stop = false;
break;
default:
$error .= "UNHANDLED ERROR on line {$line} in {$file}.\n";
$stop = false;
}
$error .= "Error: \"{$string}\" (error #{$number}).";
$error .= backTrace($context);
$error .= "\nClient IP: {$ SERVER["REMOTE_ADDR"]}";

$prepend = "\n[PHP Error " . date("YmdHis") . "]";
$error = ereg replace("\n", $prepend, $error);

// Throw away the buffer
ob_end clean();

print "<pre>{$error}</pre>";
// Log to a user-defined filename
// error log($error, 3, "/home/hugh/php error log");

if ($stop == true)
die();
}

You can use this handler for several different purposes. For example, if a MySQL con-
nection fails, you can report an error and halt the script:
// Connect to the MySOL server

if (!($connection = @ mysql connect($hostname, $username, $password)))
trigger error("Could not connect to DBMS", E_USER_ERROR);

420 | Chapter12: Errors, Debugging, and Deployment

You can also send error codes and messages through to the handler that are reported
as the error string:

if (!(mysql select db($databaseName, $connection)))

trigger error(mysql_errno() . " : " . mysql error(), E_USER_ERROR);
You could even use this to log security or other problems. For example, if the user
fails to log in with the correct password, you could store a NOTICE:

if ($password != $storedPassword)
trigger error("Incorrect login attempt by {$username}", E_USER_NOTICE);

We use trigger_error() extensively for error reporting in the online winestore in
Chapters 16 through 20.

Cleaning up the application

An advantage of a custom error handler is that you can add additional features to
gracefully stop the application when an error occurs. For example, you might delete
session variables, close database connections, unlock a database table, and log out
the user. What actions are carried out is dependent on the application requirements,
and we don’t discuss this in detail here. However, our online winestore error han-
dler in Chapter 16 carries out selected cleanup actions based on the state of session
variables, and leaves the application in a known state.

Custom Error Handlers | 421

CHAPTER 13
Reporting

In many web database applications, you’ll want to produce printable paper reports.
For example, you might want to produce a stock report from an online store, a cus-
tomer receipt, a printable version of an HTML page, or a fill-in form to be faxed.
Unfortunately, this isn’t easy: PHP doesn’t have great built-in tools for reporting that
are portable across all platforms. Because of this, reporting is one of the more diffi-
cult tasks in PHP.

This chapter shows you how to produce reports using PHP. We show you how to
use R&OS Ltd.’s excellent pdf-php library to produce PDF (Adobe Portable Docu-
ment Format) files that can be downloaded, saved, and printed by your users. PDF is
now the most common format for providing reports on the Web, and the pdf-php
library allows you to produce complex, configurable reports, and to include graphics
and images. It’s similar to a PEAR package, and we include a detailed discussion of
almost all of its methods.

We don’t discuss other reporting schemes for PHP, but we do discuss how to find
out more about them in the next section.

Creating a Report

After you've decided you need to produce printable output, the next step is to decide
what format to produce it and what tools to use to create it. As Andrew Tanenbaum
said in his classic quote from the first edition of his book, Computer Networks, “The
nice thing about standards is that you have so many to choose from; furthermore, if
you do not like any of them, you can just wait for next year’s model.” He might have
foreseen web reporting!

So, there are many things to think about in deciding on reporting tools and formats:

Middle-tier platform
What platform is your middle-tier installed on? If it’s Microsoft Windows, a
choice for creating reports is Microsoft Word and a portable format to produce

422

is RTF (Rich Text Format). If it’s a Unix environment, PostScript can be pro-
duced with several tools and is a well-supported format by Unix users. How-
ever, for almost all platforms, Adobe’s PDF (Portable Document Format) has a
wide range of tools and libraries for production.

Client platform
What platform do your users use? The answer is most likely to be mostly
Microsoft Windows, and so a format that’s friendly to those users is essential.
Importantly, reporting tools are similar to browsers: you are unlikely to have
control over the environment the user has, and the best approach is to choose a
format that is likely to be used by the majority.

Richness of content
What features do you need? Are you producing reports that contain images, text,
graphics, tables, forms, graphs, or a combination of those? Do you only need to
produce a printable copy of the web page? The answers determine if you can use
a simple library (or a template) for text and tables, or whether you need the full
power of tools that can create pixels and lines.

Speed
How fast does reporting have to be? There are several easy-to-use tools that are
slow to create a report file, and several hard-to-use tools that are fast. However,
most tools allow you to save output in a file or database so that it can be deliv-
ered to many clients without recreating the report.

Price
Do you want to pay? Are you prepared to purchase tools for reporting, or do you
want free or open source software?

Flexibility
Do you need to be flexible? Do you want to offer more than one format to mini-
mize the chance that a user will need to install a third-party tool?

We discuss these issues in the remainder of this section.

Formats

There are many possible formats for reports, and this section discusses most of the
popular choices for web reporting.

Portable Document Format (PDF)

Adobe’s Portable Document Format (PDF) is a well-documented, well-understood
and powerful format for reporting. It’s now the dominant reporting format on the
Web and we use it in this chapter because it meets most of our criteria in the previ-
ous section:

CreatingaReport | 423

* It’s ideal for reporting because it supports a wide range of fonts, colors, and
graphics. Moreover, it doesn’t matter what tools are used to create or view a
report, it’ll produce the same, high-quality output.

* It’s portable. Adobe’s free PDF viewer (known as Adobe Reader) is available for
almost all platforms, including Mac OS X, Linux, Free BSD, Solaris, all
Microsoft Windows variants, Pocket PC, and Palm. There are also Open Source
viewers available such as xpdf and ghostview.

* It’s full of features. It’s simple to use, but it’s also powerful: fonts can be embed-
ded in a document, it can be combined with XML markup (which is discussed
later in this section), embedded links can be included, forms are easy to inte-
grate, and multimedia can be linked in. Adobe’s distiller (a commercial product)
is a powerful tool for creating PDFs, and it also allows you to create templates
that you can later populate with data.

* It’s used by very large organizations. For example, the U.S. government (includ-
ing the IRS) delivers most of its documents to its users in PDF, as do newswire
services such as Associated Press (AP). This means most of your users will
already be familiar with the format.

* It’s flexible for the Web. You can deliver one page from a large document and it
can be rendered at the client without retrieving the rest of the document. (How-
ever, this requires some configuration that we don’t discuss.)

* There’s a wide variety of tools to produce it. We discuss this next.

You can read the PDF specification at hitp://partners.adobe.com/asn/tech/pdf/
specifications.jsp.

There are two major external libraries that can be used to create PDF with PHP:
PDFlib (available from http://www.pdflib.com/) and ClibPDF (available from http://
www.fastio.com/). Both are function libraries that integrate into PHP, but both need
to be downloaded, purchased (if you’re doing commercial work), and configured,
and then PHP needs to be recompiled to support them. The integration process is
sometimes tricky, but good notes on the process can be found in the user-contrib-
uted comments in the online PHP manual. At the time of writing, PDFlib was more
popular.

Both PDFlib and ClibPDF allow creation of low- and high-level report features. For
example, you can create a text-only document using a few lines of code, or you can
draw lines and shapes by moving a cursor with tens or hundreds of lines of code in a
complex program. Both libraries also allow you to include external graphics in
reports, and to use almost all of the features of PDF.

Because both function libraries are commercial products and require integration, we
favor other, free solutions that are now becoming popular. Later in this chapter, we
show you how to use the R&OS PDF class library. It’s almost as powerful as PDFlib,
and we show you how to use it create and format documents that contains tables,
images, and reports.

424 | Chapter13: Reporting

There are also other, simpler libraries. For example, RustyPart’s HTML_ToPDF is a
simple tool to turn your HTML page into a PDF document for printing, and it makes
use of freely available tools to carry out the process. You can find out more from
http://'www.rustyparts.com/pdf.php.

Rich Text Format (RTF)

Microsoft’s Rich Text Format (RTF) is an interchange format for documents. Simi-
larly to PDF, it’s an open standard that’s implemented in a wide range of tools on
many platforms. For example, Microsoft Word can save and read documents in RTF
format, as can tools such as the writers in OpenOffice, StarOffice, and most com-
mercial word processors. However, much like HTML, there’s no guarantee that an
RTF document will look the same in a different word processor or on a different
platform.

Reports in RTF are different from those in PDF. An RTF format document is
designed to be opened, edited, and manipulated in the same way as any other word
processor document. It’s therefore a good format for reports that need to be edited
or documents that need to be exchanged, but it’s not a good format when you want
to produce a report that’s the same on all platforms. However, as a reporting format,
it’s preferable to Microsoft Word’s proprietary .doc binary format.

You can find out more about the RTF specification from http://msdn.microsoft.com/
library/default.aspurl=/library/en-us/dnrtfspec/html/rtfspec.asp

PostScript

Adobe’s PostScript format is a printer language. Most laser printers understand Post-
Script, and can convert a PostScript description into a high-quality printout. Post-
Script has within it tools to control whether printing is simplex or duplex, what
paper to use, and even whether to staple. It’s not designed for users in the same way
as Adobe’s PDF: for example, it doesn’t support hypertext-style linking, embedding
of sounds and movies, or pages being downloaded individually.

Despite its focus as a printer language, most Unix users are familiar with PostScript
and happy with it as a report format. Tools such as GhostView (or GSView or ggv)
are commonly installed on Unix platforms, and do a good job of rendering Post-
Script documents on a screen. Adobe’s Reader and Mac OS X’s Preview also display
PostScript documents.

You can find out more about the PostScript language from http://partners.adobe.com/
asnftech/psfindex.jsp.

HTML and XML

Perhaps the most obvious report type for a web database application is the web page
itself.

CreatingaReport | 425

This works as follows: using PHP code in an application you produce HTML, it’s
sent to the user, the user’s browser renders the page, and (in most browsers) the user
can then print the page directly. But despite its simplicity, this doesn’t work well for
most reporting: different browsers render pages differently, window width and depth
doesn’t usually align with paper width and depth, and there’s no guarantee that col-
ors, fonts, and images will transpose well into the printed environment. However, as
discussed previously, there are some good tools available to convert HTML to PDF
for printing.

So far in this section, we’ve described several different formats in which documents
or reports are described using a language or markup. The Extensible Markup Lan-
guage, XML, is another markup language designed to identify structure in text and it
is a sibling of HTML (their parent is SGML). XML is conceptually simple, yet devel-
opers have found uses for it in a wide range of applications:

Storing content in large and dynamic web sites
Storing content marked-up with XML can make content re-use and manage-
ment much easier.

Standardizing transporting data between applications
When applications are difficult to integrate, XML provides a common protocol
that allows data to be shared.

To define new standards
Scalable Vector Graphics (SVG) and XSL-Flow Objects (XSL-FO) are both
examples of standards that are represented with XML. It’s also used in conjunc-
tion with PDF to, for example, mark up forms within a document.

As a component for other technologies
The Simple Object Access Protocol (SOAP) provides a mechanism for manipu-
lating objects over a wide area network—such as the Web—using XML to
encode the object messages.

Much like RTF, XML is a possible choice for a reporting format (and for many other
tasks): it’s powerful and independent of presentation, platform, and operating sys-
tem. PHP has excellent XML support, and this has been completely redeveloped in
PHP5. However, a detailed discussion of XML is outside the scope of this book.

Email and plain text

Plain text without markup is a simple report format, as is a plain text email to a user.
What’s more, text is compact, easy to format, and fast to send by email or to a
browser. However, you have even less control than with HTML over presentation or
printing, and it’s unlikely to be an effective way to lay out information except for the
shortest reports. Despite this, as we show in Chapter 19, email receipts are still a use-
ful reporting tool to acknowledge actions in a web database application.

426 | Chapter13: Reporting

Producing PDF

In this section, we show you how to use R&OS Ltd’s free PHP PDF creation library
(we refer to this as pdf-php throughout this section). The library has two advantages
over other approaches: it’s free and it doesn’t require any additional PHP configura-
tion. What’s more, it’s powerful and you can do most things you need, including
producing tables containing results from database queries and inserting images into a
document.

You can find out more about pdf-php from http://www.ros.co.nz/pdf and you can
download the source, documentation, and get involved in the project at http://
sourceforge.net/projects/pdf-php/. Instructions for installing pdf-php are included in
Appendixes A through C.

Hello, world

Example 13-1 shows a simple PHP example.
Example 13-1. A simple example that produces Hello, world on an A4 page
<?php

require "class.ezpdf.php";

// Create a new PDF document
$doc =& new Cezpdf();

// Add text to the document
$doc->ezText("Hello, world");

// Output the document
$doc->ezStream();

>

This PHP example produces the PDF document shown in Figure 13-1.

v xpdf: fimp/file.pdf e <
peed

Hallo, world J

¥

2| o

] |

ﬂlﬂﬂﬂm up Page Ili of 1 7o+l |J

Figure 13-1. The PDF document produced by Example 13-1

The base class for producing PDF files is class.pdf.php, but we’ve used its extension
class.ezpdf.php in our simple example. The extension has several useful utilities for
document creation and it still includes all the methods of the base class, and so we
recommend always using it instead.

ProducingPDF | 427

In Example 13-1, it’s assumed both class files are in the same directory as the exam-
ple code (or in a directory set by the include_path directive in your php.ini file). In
addition, it’s assumed that the fonts are in a subdirectory of the example directory
named fonts; the fonts are part of the pdf-php install package.

The constructor Cezpdf() creates a new PDF document with the default A4 paper
size and the default portrait orientation. The =& operator creates an instance of a
class, and returns a reference to the instance (and not the whole object itself). The =&
operator is a faster, more memory efficient alternative to the = operator. It’s dis-
cussed in Chapter 4.

The ezText() method adds text to the document at the current cursor position
(which defaults to the top-left corner; there are, however, top and left margins of 30
points, where a point is 1/72 of an inch), with the current font (which defaults to
Helvetica), and the current font size (which defaults to 12). The ezStream() method
cleans up and then creates the PDF output and sends it to the browser; this is a simi-
lar approach to templates (as described in Chapter 7), where a document is first pre-
pared and later output using a method.

In many browsers, when a PDF document arrives as part of an HTTP response, a
window containing the PDF document will automatically appear. However, in some
browsers, the arrival of a PDF document will cause a dialog box to pop up that asks
whether to save or open the PDF file. If you choose open and have a PDF viewer cor-
rectly installed, you’ll see the output. Now is a good time to get yourself a PDF
viewer, as you’ll need it throughout this chapter.

You might be wondering what the content of a PDF file looks like. The answer is that
it’s an ASCII text file that contains instructions on how to render and present the
document content; however, it can be compressed, and so you might find it isn’t
always readable with a text editor. For a document containing graphics, the text can
be a complicated list of instructions about lines and points. However, for simple text
that’s rendered using a font, it’s basically human-readable text that you could con-
ceivably edit. For example, here’s the part of the file output from Example 13-1 that
creates the Hello, world message:

7 0 obj

«

/Length 55 >>
stream

BT 30.000 800.330 Td /F1 10.0 Tf (Hello, world) Tj ET
endstream
endobj

A Full-Featured Document

Example 13-2 shows a more complex example that makes use of many of the fea-
tures of the pdf-php library. The example prints the first two pages of Lewis Carroll’s

428 | Chapter13: Reporting

Alice’s Adventures in Wonderland in a two-column format, with a title on the first

page and an image from the book.

Example 13-2. Formatting Alice’s Adventures in Wonderland for printing

<?php
require "class.ezpdf.php";
require "alice.inc";

// Create a new PDF document
$doc =& new Cezpdf();

// Use the Helvetica font for the headings
$doc->selectFont("./fonts/Helvetica.afm");

// Output the book heading and author

$doc->ezText("<u>Alice's Adventures in Wonderland</u>", 24,
array("justification"=>"center"));

$doc->ezText("by Lewis Carroll", 20, array("justification"=>"center"));

// Create a little bit of space
$doc->ezSetDy(-10);

// Output the chapter title
$doc->ezText("Chapter 1: Down the Rabbit-Hole", 18,
array("justification"=>"center"));

// Number the pages
$doc->ezStartPageNumbers (320, 15, 8,"",
"{PAGENUM} of {TOTALPAGENUM} pages");

// Create a little bit of space
$doc->ezSetDy(-30);

// Switch to two-column mode
$doc->ezColumnsStart(array("num"=>2, "gap"=>15));

// Use the Times-Roman font for the text
$doc->selectFont("./fonts/Times-Roman.afm");

// Include an image with a caption
$doc->ezImage("rabbit.jpg", "", "", "none");
$doc->ezText("White Rabbit checking watch",

12,array("justification"”=>"center"));

// Create a little bit of space
$doc->ezSetDy(-10);

// Add chapter text to the document
$doc->ezText($text,10,array("justification"=>"full"));

// Output the document
$doc->ezStream();
>

Producing PDF

429

The first page is shown rendered by the xpdf viewer in Figure 13-2.

[xpdf: fimp/file-1.pdf -

u |
L3

lfl|

Alice's Adventures in Wonderlan
by Lewis Carroll

Chapter 1: Down the Rabbit-Hole

even if T fell off the top of the house! {Which was very likely
true.}

Down, down, down. Would the fall NEVER come to an end!
T wonder how many miles Tve fallen by this time?" she said
aloud. "T must be petting somewhere near the centre of the
earth. Let me see: that would be four thousand miles down, T
think—" (for, you see, Alice had learnt several things of this sort
in her lessons in the schoolroom, and though this was not a
VERY pood opportunity for showing off her knowledge, as
there was no one to listen to her, still it was good practice to say
it over) "—yes, that's about the right distance--but then I wonder
what Latitnde or Longitude I've pol 107" (Alice had no idea
what Latitude was, or Longitnde either, but thought they were
nice grand words to say. b

Presently she bepan apain. "I wonder if T shall fall right

5 i 5 THROUGH the earth! How funny ifll seem to come out

White Rabibit'checking wafch among the people that walk with their heads downward! The

Alice was beginning o pet very tired of sitting by her siser on Affipathies, I think-" {she was rather glad there WAS no one
the bank, and of having nothing to de: once or twice she had Listening, this fite, as it didn't sonnd at all the right word) "
peeped into the book her sister was reading, but il had no but T shall have to ask them what the name of the country is,
pictires or conversations in i, “and what is the use of a book” ¥°U know. Please, Ma'am, is this New Zealand or Australia™
thought Alice “without pictures or conversation?' {and she:tried:t0.curisey, as she-spoke.- oy CURTSEYTNG as

So she was considering in her own mind {as well s she could, you're falling mmu.gh the aLr.! Lo yon U.unk.)'ou coma, S o
For the hot day made her feel very sleepy and stupid), whether it? _;-:md what an ignorant litle girl she'll think me for asking!
the pleasire of making a daisy-chain would be worth the Mo, it'll never do to ask: perhaps I shall see it written up
trouble of getting up and picking the daisies, when suddenly a ~ Somewhere . .
White Rabbit with pink eves mn close by her. Down, down, down. There was {mﬂung else to do, so Alice

There was nothing so VERY remarkable in that, nor did Alice 5000 began Lilking again - Dinalill miss me very much {o-
think it so VERY much out of the way to hear the Rabbit say to night, T should think! ‘D%m“ was [J\e cat.r. T hope they'll
itself,"Oh dear! Oh dear! Ishallbe late?’ (whenshe thought it~ femember her saucer of milk at tea-time. Dinah my dear] I
over afterwards, it occurred to her that she ought o have wrmh you, wrere. dawi “‘“‘." sl el There are ninice T et =

TR R R T PR R air Tm afraid_hnt won micht caich a hat_and that's very like a

[
IR S L)

Figure 13-2. The output of Example 13-2 shown in the xpdf viewer

I

(2 o

The following code fragment from Example 13-2 sets the font:

// Use the Helvetica font for the headings
$doc->selectFont("./fonts/Helvetica.afm");

We use Helvetica for the headings, and Times-Roman for the body of the document.
The available fonts are in the subdirectory fonts in the pdf-php install package, and
are passed to the selectFont() method using their path and the full file name. The
font name must include the .afim extension, and only .afm format files are sup-
ported; however, there are free utilities, such as t1utils and ttf2pt1, that convert other
font formats (such as .ttf) into .afm files.

This next fragment outputs the headings:

// Output the book heading and author

$doc->ezText("<u>Alice's Adventures in Wonderland</u>", 24,
array("justification"=>"center"));

$doc->ezText("by Lewis Carroll", 20, array("justification"=>"center"));

430 | Chapter13: Reporting

The ezText() method has three parameters, but only the first is mandatory. The first
parameter is the text to add to the document, and it can include simple HTML-like
markup elements such as <u> for underline and for bold. Text is output by the
method, and followed with a carriage return in the same way as echo or print in
PHP. The second parameter is the font size to use (the default is 12), and the third
parameter is an array of options. In this example, we’ve set the justification param-
eter to center, but it can also be set to left, right, or full; we use full for the text.
The complete list of options is described later in the section “PDF-PHP Reference”

The ezSetDy() method is used to create space between text and images. For exam-
ple, the following fragment moves the cursor down the page by 10 points:

// Create a little bit of space

$doc->ezSetDy(-10);
A negative value is downwards, and a positive value is upwards. In PDF, the bottom-
left-hand corner of a page is coordinate X=0, Y=0, and the top-right has the maxi-

mum X and Y values. For an A4 page, the top-right corner has a point value of
X=595.28 and Y=841.89, and for US letter of X=612.00 and Y=792.00.

The class includes the useful ezStartPageNumbers() method for numbering pages.
We use it as follows:

// Number the pages

$doc->ezStartPageNumbers (320, 15, 8, "",

"{PAGENUM} of {TOTALPAGENUM} pages");

The first two parameters are the X and Y coordinates of where to put the page num-
ber text, and the third parameter is the font size to use; the first three parameters are
mandatory. The optional fourth parameter can be set to left or right, and indicates
whether to put the text to the left or right of the X coordinate; by default, the text is
written to the left of the X coordinate. The optional fifth parameter specifies how to
present the page numbering; by default, it is {PAGENUM} of {TOTALPAGENUM} but we’ve
set it to {PAGENUM} of {TOTALPAGENUM} pages to get strings such as 1 of 2 pages. The
optional sixth parameter is a page number and, if it is supplied, the current page is
numbered beginning with the number.

We've presented the text of the book in a two column newspaper-like format. This is
achieved by calling the ezColumnsStart() method as follows:

// Switch to two-column mode

$doc->ezColumnsStart(array("num"=>2, "gap"=>15));
The method takes one optional parameter. The parameter is an array that specifies
the number of columns and the gap in points between the columns. If the parameter
is omitted, the number of columns defaults to 2 and the gap to 10. The method
ezColumnsStop() stops multi-column mode, but we don’t use it here because we’re
working with only one chapter.

ProducingPDF | 431

To include an image in the text, you can use the ezlmage() method. We use it to
include a picture of the white rabbit after the headings:

$doc->ezImage("rabbit.jpg", , 'none");

A great feature of this method is that it doesn’t require any additional configuration:
you don’t need to install any graphics libraries (such as GD) and it’ll work on all
platforms without modification. The method takes six parameters. The first parame-
ter is a mandatory image file path and name, and only JPEG and PNG format images
are supported. All of the remaining parameters are optional. The second parameter is
the amount of padding in points to place around the image, and it defaults to 5. The
third parameter is the width of the image, and the default is the image’s actual width.
The fourth parameter is a resize value that controls how the image fits in a column,
and we’ve used none so that the image isn’t resized at all. The fifth parameter speci-
fies justification, and can be set to left, right, or center with a default of center.
The sixth parameter is a border to place around the image, and defaults to none.
More details on all parameters are provided in the section “PDF-PHP Reference.”

After we’ve finished with headings and images, the following fragment includes the
text of the book into the PDF document:

$doc->ezText($text,10,array("justification"=>"full"));

The variable $text contains the text of the book. It is set in the alice.inc include file.
Here are the first few lines of alice.inc:

<?php

$text = "Alice was beginning to get very tired of sitting by her sister on
the bank, and of having nothing to do: once or twice she had peeped into
the book her sister was reading, but it had no pictures or conversations

in it, ... ";

Carriage returns and whitespace characters are preserved in the output. So, for exam-
ple, a carriage return creates a new line in the PDF file; this is unlike HTML, where
whitespace is ignored. The book text itself is sourced from the Project Gutenberg
homepage at http://gutenberg.net.

A Database Example

Example 13-3 shows a script that produces a page containing one customer’s details
from a customer table. The customer table is discussed in Chapter 5 and created with
the following CREATE TABLE statement:

CREATE TABLE customer (
cust_id int(5) NOT NULL,
surname varchar(50),
firstname varchar(50),
initial char(1),
title id int(3),
address varchar(50),
city varchar(s0),

432 | Chapter13: Reporting

state varchar(20),

zipcode varchar(10),

country id int(4),

phone varchar(15),

birth date char(10),

PRIMARY KEY (cust_id)
) type=MyISAM;

The example also uses the titles lookup table that contains title id values and titles

(such as Mr. and Miss), and the countries lookup table that contains country_id val-
ues and country names. The output of Example 13-3 is shown in Figure 13-3.

Example 13-3. Producing customer information from the customer table

<?php
require "class.ezpdf.php";
require "db.inc";

$query = "SELECT * FROM customer, titles, countries
WHERE customer.title id = titles.title id
AND customer.country_id = countries.country id
AND cust_id = 1";

if (!($connection = @ mysql_connect($hostName, $username, $password)))
die("Could not connect to database");

if (!(mysql_selectdb($databaseName, $connection)))
showerror();

if (!($result = @ mysql_query($query, $connection)))
showerror();

$row = mysql_fetch_array($result);

// Construct the title and name
$name = "{$row["title"]} {$row["firstname"]}";
if (lempty($row["initial"]))
$name .= " {$row["initial"]} ";
$name .= "{$row["surname"]}";

// Create a new PDF document
$doc =& new Cezpdf();

// Use the Helvetica font
$doc->selectFont("./fonts/Helvetica.afm");

// Create a heading
$doc->ezText("<u>Customer Details for {$name}</u>",

14, array("justification"=>"center"));

// Create a little bit of space
$doc->ezSetDy(-15);

// Set up an array of customer information

ProducingPDF | 433

Example 13-3. Producing customer information from the customer table (continued)

$table = array(
array("Details"=>"Title and name",
"Value"=>$name),
array("Details"=>"Address",
"Value"=>"{$row["address"]} {$row["city"]} {$row["zipcode"]}"),
array("Details"=>"State and country",
"Value"=>"{$row["state"]} {$row["country"]}"),
array("Details"=>"Telephone",
"Value"=>$row["phone"]),
array("Details"=>"Date of birth",
"Value"=>$row["birth date"]));

$doc->ezTable($table);

// Output the document
$doc->ezStream();
>

The database processing in Example 13-3 is similar to that of most examples in pre-
vious chapters. The script queries and retrieves the customer details for customer #1,
including the customer’s title and country. The results are stored in the array $row,
and the array is then used as the source of data for the PDF document.

% xpdf: ftmp/file-3.pdf - X
3
Customer Details for Mr Joshua B Rosenthal J
Detalls Value
Title and name Mr Joshua B Rosenthal
Address 34 Melllli Ln Earlwood 6750
State and country | VIC Australia
Telephane (613)83008460
Date of birth 1969-01-26

=
ﬂlililllm up | Page |1 of 1 P

Figure 13-3. The customer details page output by Example 13-3

The use of the pdf-php library is also similar to that in our previous examples, with
the exception that the customer details are shown in a table using the ezTable()
method. The ezTable() method is a flexible tool that allows you to present data in
different table styles and to configure the column headings, column widths, shading,
borders, and alignment.

434 | Chapter13: Reporting

In this example, we only use the basic features of the ezTable() method. First, we’ve
created an array that contains the data we want to display in the table:
// Set up an array of customer information
$table = array(
array('Details"=>"Title and name",
"Value"=>$name),
array("Details"=>"Address",
"Value"=>"{$row["address"]} {$row["city"]} {$row["zipcode"]}"),
array("Details"=>"State and country",
"Value"=>"{$row["state"]} {$row["country"]}"),
array("Details"=>"Telephone",
"Value"=>$row["phone"]),
array("Details"=>"Date of birth",
"Value"=>$row["birth date"]));
The array contains five elements, each of which is itself an array. Each of these five
inner arrays has two associatively-labeled elements: Details and Value. The Details
element holds as a row label value such as Title and name, and the Value element
holds the data that matches the label.

The PDF table itself is created with the fragment:
$doc->ezTable($table);

The method creates a table with the number of rows equal to the number of ele-
ments in the array (in our example, five rows). The number of columns in the table is
equal to the number of elements in the inner arrays and, in our example, they each
have two elements. By default, column headings are taken from the associative-
access keys, and the data in the tables comes from the values. The default mode is to
create a bordered table with shading in every second row, and to center the table in
the output.

Creating a Report

Example 13-4 shows a script that produces a more complex purchase report. The
report is a table that lists the customers in the winestore database, the number of
orders they’ve placed, the number of bottles of wine they’ve bought, and the total
dollar value of their purchases. We also show totals at the end of each page, and an
overall total on the final page.

Example 13-4. A script to produce a customer purchasing report

<?php
require "class.ezpdf.php";
require "db.inc";

// Do the querying to produce the customer report
$query = "SELECT customer.cust_id, surname, firstname,
SUM(qty), SUM(price), MAX(order id)
FROM customer, items

ProducingPDF | 435

Example 13-4. A script to produce a customer purchasing report (continued)

WHERE customer.cust id = items.cust_id
GROUP BY customer.cust id";

if (!($connection = @ mysql connect($hostName, $username, $password)))
die("Could not connect to database");

if (1(mysql selectdb($databaseName, $connection)))
showerror();

if (!($result = @ mysql query($query, $connection)))
showerror();

// Now, create a new PDF document
$doc =& new Cezpdf();

// Use the Helvetica font
$doc->selectFont("./fonts/Helvetica.afm");

// Number the pages
$doc->ezStartPageNumbers (320, 15, 8);

// Set up running totals and an empty array for the output
$counter = 0;

$table = array(
$totalOrders =
$totalBottles = 0;
$totalAmount = 0;

)s
0;

// Get the query rows, and put them in the table
while ($row = mysql fetch array($result))
{
// Counts the total number of rows output
$counter++;

// Add current query row to the array of customer information
$table[] = array(
"Customer #"=>$row["cust id"],
"Name"=> "{$row["surname"]}, {$row["firstname"]}",
"Orders Placed"=>$row["MAX(order id)"],
"Total Bottles"=>$row["SUM(qty)"],
"Total Amount"=>"\${$row["SUM(price)"]}");

// Update running totals
$totalOrders += $row["MAX(order id)"];
$totalBottles += $row["SUM(qty)"];
$totalAmount += $row["SUM(price)"];

}

// Today's date is used in the table heading
$date = date("d M Y");

// Right-justify the numeric columns

436 | Chapter13: Reporting

Example 13-4. A script to produce a customer purchasing report (continued)

$options = array("cols" =>
array("Total Amount" =>
array("justification" => "right"),
"Total Bottles" =>
array("justification" => "right"),
"Orders Placed" =>
array("justification" => "right")));

// Output the table with a heading
$doc->ezTable($table, "", "Customer Order Report for {$date}",
$options);

$doc->ezSetDy(-10);

// Show totals

$doc->ezText("Total customers: {$counter}");
$doc->ezText("Total orders: {$totalOrders}");
$doc->ezText("Total bottles: {$totalBottles}");
$doc->ezText("Total amount: \${$totalAmount}");

// Output the document
$doc->ezStream();
>

The first page of the output of Example 13-4 is shown in Figure 13-4 and the final
page of the output in Figure 13-5.

The report makes use of two tables, the customer table shown in the previous sec-
tion and an items table that’s described in more detail in Chapter 5. The items table is
created with the following statement:

CREATE TABLE items (

cust_id int(5) NOT NULL,

order id int(5) NOT NULL,

item_id int(3) NOT NULL,

wine_id int(4) NOT NULL,

qty int(3),

price decimal(s,2),

PRIMARY KEY (cust_id,order id,item_id)
) type=MyISAM;

We only use the order_id (which is used to count how many orders each customer

has placed), qty (quantity of wine ordered in bottles), and price (per bottle price)
attributes from the items table in this section.

We use the following query in our report:

$query = "SELECT customer.cust id, surname, firstname,
SUM(qty), SUM(price), MAX(order id)
FROM customer, items
WHERE customer.cust id = items.cust id
GROUP BY customer.cust_id";

ProducingPDF | 437

hd xpdf: ftmp/file-4.pdf
Customer Order Repor for 18 Dec 2003
Customer # | Name Orders Placed | Total Bottles | Total Amount
1 Rosenthal, Joshua 4 &0 $925.80
2 Sarrong, Marin 3 118 $1535.07
3 Leramonth, Jacob 5 57 $898.27
4 Kelsling, Perry 2 56 $979.17
5 Mockridge, Joel 5 22 $240.70
& Ritterman, Richard 2 44 44872
7 Morooney, Sandra 4 48 $972.74
B Krannan, Batty 1 3 $69.98
a Patton, Steven 4 102 $1613.24
10 Dalion, Horaclo 6 111 §2221 60
11 Kelsling, Betty 1 10 $236.40
12 Tonnibrook, Sandra 3 59 $1003.66
13 Dalien, Chris 4 39 $745.88
14 Sarrantl, Caltlyn 2 31 $703.36
15 Cassisl, Darryn 5 54 $865.71
16 Dimitria, Lynette 1 28 $619.35
17 Tankin, Hugh 4 41 $670.84 |
18 Stribling, James 1 17 $293.20
19 Mellili, Melissa 2 15 $246.50
20 Leramorth, Harry 1 21 $284 84
21 Ruscina, Jasmina 3 &1 $1361.27
22 Patton, Panalope 4 78 $1541 50
23 Lombardi, Hugh 5 B89 41594 .85
24 Pattan, Richard 2 48 $887.82
25 Pattendon, Magan 5 70 $1066.57
26 Titshall, Richard 5 43 $570.82
27 Marzalla, Sandra 5 B4 $1448.69
28 Chestar, Jasmine B 80 4130913
29 Triskit, Perry 1 18 $224 28
an Marralla fEanrma 5 RO 44naa 71 3
|4 [=

L{_ulilﬂﬂm up | Page [1— of 14

7o+ |m

2 Gty

Figure 13-4. The first page of output from Example 13-4

The query groups each customer’s items together by his unique cust_id, and we then
discover the customer’s name, cust_id, the sum of bottles sold using SUM(qty), the
total value of the sales using SUM(price), and the number of orders placed using
MAX(order_id). We run the query using the usual MySQL functions, and then
retrieve each row of the results and add it to the PDF document as a table row.

We use the class constructor and the SelectFont(), ezStartPageNumbers(), ezText(),
ezSetDy(), and ezStream() methods in the same way as in the previous three sec-

tions.

Data comes from multiple rows in our database query results and is displayed using
the ezTable() method in this example. To create the table, we first initialize an empty

array using:

$table = array();

438 | Chapter13: Reporting

R xpdf: ftmp/file-5.pdf

Customar # | Nama Orders Placed | Total Botles | Total Amaunt

837 Dalion, Bronwyn 2 15 $189.00

638 Oaton, Lynatta 2 39 §646.32

B39 Lombardi, Darryn 4 118 $1740.41

840 Rittarman, Evonne 5 80 $1328.57

B41 Skearty, James 2 44 4904 47

642 Dalion, Richard 2 9 $187.15

643 Taggendhar, Martin 2 18 $338.26

44 Keiksling, Mark | 38 $729.92

B45 Holdensaon, Branwyn 5 32 §522 62

648 Strinling, Michelle 5 99 $1690.91

847 Skerty, Samantha 5 44 $590.63

648 Cassisi, Batly 4 63 $105012

849 Krennan, Jim 1 1 $25.51

650 Woodburne, Lynette 2 34 445912
Total customars: 650
Total ordars: 2218
Total bottles: 34545 {
Total amount: §577975.66

7

1=

2 ot

I~
N e o e T e

Figure 13-5. The final page of output from Example 13-4

Then, for each row in the table, we add an element to that array that is itself an array
that contains five elements:
// Add to the array of customer information
$table[] = array(
"Customer #"=>$row["cust id"],
"Name"=> "{$row["surname"]}, {$row["firstname"]}",
"Orders Placed"=>$row["MAX(order id)"],
"Total Bottles"=>$row["SUM(qty)"],
"Total Amount"=>"\${$row["SUM(price)"]}");

The associative-access labels (Customer #, Name, Orders Placed, Total Bottles, and

Total Amount) are used as the column headings for the table, and the customer data
from the query is used to populate the rows.

The table itself is then output with the following fragment:

// Output the table

$doc->ezTable($table, "", "Customer Order Report for {$date}", $options);
We use the optional third parameter that adds a title to the table. This is output on
the first page of output. The fourth optional parameter is also used in this example to
right-justify the numeric columns (so that the differences in magnitude are obvious
and so the decimal points line up). To do this, we create a nested array:

// Right-justify the numeric columns
$options = array("cols" =>

Producing PDF | 439

array("Total Amount" =>
array("justification" => "right"),
"Total Bottles" =>
array("justification" => "right"),
"Orders Placed" =>
array("justification" => "right")));
The outer array contains one element, with the associative key 'cols', and this indi-
cates the option we’re setting (you can set more than 15 different options for a table).
It contains as a value another array that contains as keys the names of the three col-
umns we want to configure (' Total Amount', 'Total Bottles', and 'Orders Placed').
Each of these three elements has as its value yet another array, this time with the col-
umn setting we want to change as the key ('justification') and what we want to set
it to ("right'). This complex options parameter is discussed in more detail in the sec-
tion “PDF-PHP Reference.”

Finally, with the pages of tables complete, overall totals of customers, orders, bot-
tles, and sales are added using ezText() and the whole document is output using
ezStream().

PDF-PHP Reference

This section describes the methods that are available in the two classes that com-
prise the pdf-php library (version 009). The first section describes the EZPDF class
extension that provides easy-to-use methods to create a PDF document, control basic
formatting, and add text, tables, columns, and images. The second section lists the
methods in the base class that can be used for more complex tasks, including draw-
ing shapes and controlling fonts.

We recommend always using the EZPDF class in preference to the base class because
it allows you to access all of the base class methods as well as all of the advanced fea-
tures that simplify producing documents. For this reason, we’ve omitted PDF base
class methods from our discussion that are a subset of the corresponding EZPDF
methods. For example, we don’t discuss the PDF base class constructor, because the
EZPDF constructor has the same functionality and additional features. In addition,
we’ve omitted discussion of using callback functions to add additional functionality;
more details on this topic is in the final section of the pdf-php class manual.

EZPDF Class

void Cezpdf::Cezpdf([mixed paper[, string orientation]])
This is the class constructor. Without parameters, it creates a new PDF docu-
ment using A4 paper size with portrait orientation. It sets all margins on the
page to 30 points (around 0.4 inches or just over 1 centimeter) and then defines
the point at which the text starts to be the top-left corner of the margined page.

440 | Chapter13: Reporting

The first parameter defines an optional paper size and it can be either a string
that represents a standard size (a full list is provided next), an array of two ele-
ments that contains the page width and depth in centimeters expressed as floats
(for example, array(21.0,29.7) for an A4 page), or an array of four elements that
defines the top-left and bottom-right positions on the page as two sets of (X,Y)
coordinates, measured in points (for example, array(0,0,595.28,841.89) for an
A4 page).

The second parameter defines the orientation. It can be set to 'landscape’, oth-
erwise portrait is assumed.

The complete list of possible paper sizes is '4A0', '2A40', 'A0', 'A1', 'A2',
'A3', 'A4', 'A5', 'A6', 'A7', 'A8', 'A9', 'A10', 'Bo', 'B1', 'B2', 'B3',
'B4', 'B5', 'B6', 'B7', 'B8', 'B9', 'B10', 'CO', 'C1', 'C2', 'C3', 'C4',
‘cs', 'Cé', 'C7', 'C8', 'C9', 'C10', 'RAD', 'RA1', 'RA2', 'RA3', 'RA4’,
'SRAO', 'SRA1', 'SRA2', 'SRA3', 'SRA4', 'LETTER', 'LEGAL', 'EXECUTIVE', or
"FOLIO".

void Cezpdf::ezColumnsStart([array options])

Switches output into multi-column mode. By default, the text that follows the
method call is output in two columns per page, with a gap of 10 points between
the columns. An array of options can be provided as a parameter containing
either or both of the associative keys num and gap that define the number of col-
umns and gap between the columns respectively. For example,
ezColumnsStart(“num”=>3,“gap”=>5) switches output to 3 columns per page
with a gap of 5 points between each column.

void Cezpdf::ezColumnsStop()
Switches output back to one column per page mode and restores margins prior
to the call to ezColumnsStart(). It is recommended that you start a new page by
calling ezNewPage() immediately after a call to ezColumnsStop().

void Cezpdf::ezlmage(string image_file[, int padding [, int width [, string

resize [, string justification [, array border]]]]])
Inserts an image file of type JPEG or PNG into the document at the current
position. The image file parameter can include a path, and must include the full
filename of the image. By default, the image is centered, and resized to the width
of the current column (if in multi-column mode) or page (if not in multi-column
mode) less a spacing of five points on each side of the image.

The optional padding parameter is used to alter the spacing on each side of the
image from the default of 5 pixels.

The width and resize parameters are related as follows:

If resize is set to 'none' and width is provided

The image is resized to a width of width pixels unless it is too wide for the
current page or column.

PDF-PHP Reference | 441

If resize is set to 'none' and width is omitted
The image is not resized at all.

If resize is set to 'width'
The width parameter is ignored and the image is resized to fit the width of
the current column or page (minus the padding).

If resizeis set to ' full'
The width parameter is ignored and the image is resized to fit the width of
the current column or page (minus the padding). Then, if the image doesn’t
fit vertically within the column or page, it is resized down proportionally
until it does.

The width parameter defaults to the width of the image in pixels. The resize
parameter defaults to 'full'. As discussed, this causes the 'width' parameter to
be overridden.

The justification parameter defines where the image sits in the current column
or page, and it can be set to 'center', 'left', or 'right'. It has meaning only if
the image is smaller in width than the column or page (that is, it has not been
resized using the width or resize parameters so that it spans the whole column
or page). The default is 'center'.

The border array defines a border for the image. The array can have up to four
associatively-indexed elements: 'width' that defines the width of the border in
pixels (the default is 1); 'cap' that specifies the line cap type (the default is
'round', and the entry for Cpdf::setLineStyle() defines this in more detail); 'join'
that specifies the join type (the default is 'round’, and the entry for Cpdf:
setLineStyle() defines this in more detail); and, 'color' which defines the line
color and itself has three elements that can be set to intensities of red, blue, and
green respectively (the default is half intensity for all, and the options are dis-
cussed further in Cpdf::setStrokeColor()). The following array defines a border of
two pixels in width with a bright red color:
$border = array("width" => 2, "color" => array(1.0, 0.0, 0.0));

void Cezpdf::ezInsertMode([int status [, int page [, string where]]])

Controls whether new pages are inserted into a document rather than appended
to the end. The default is a status value of 1, which turns on the insert mode
that inserts pages into the document. A status value of 0 turns off insert mode
and from then pages are added to the end.

When status is set to 1, the optional page parameter defines the page number
where new pages should be inserted (the default is 1) and the where parameter
defines if the pages should be inserted 'before' or 'after' that page number
(the default is 'before').

442

| Chapter13: Reporting

void Cezpdf::ezNewPage()
Ends the current page and begins a new page. If you are using the EZPDF class,
use this method in preference to the base class’s Cpdf::newpage() (which is not
discussed in this chapter).

string Cezpdf::ezOutput([int option])
Returns the PDF document as a string. This allows you to save it to a file or store
it in a database (if, for example, you're delivering the same file multiple times
and want to save processing costs). The option parameter is set to 0 by default
(no option), but it can also be set to 1 which prevents compression and thus
allows the content to be viewed in a text editor for debugging purposes.

void Cezpdf::ezSetCmMargins(float top, float bottom, float left, float right)
Sets the top, bottom, left, and right margins in centimeters.

void Cezpdf::ezSetDy(int points [, string force])
Moves the drawing point by a relative vertical space points measured in points.
A negative value is down the page, and a positive value is towards the top. If the
drawing point moves below the bottom margin, a new page is started and the
drawing point is set to the top margin.

If the optional force parameter is set to 'makespace', the space created will
always be points in size even if it spans multiple pages. This is designed to allow
you to create a space that you later use for drawing.

void Cezpdf::ezSetMargins(float top, float bottom, float left, float right)
Sets the top, bottom, left, and right margins in points.

void Cezpdf::ezSetY(int position)
Moves the drawing point to the vertical point position, where the point 0 is the
bottom of the page. If the new position is below the bottom margin, a new page
is begun.

int Cezpdf::ezStartPageNumbers(float x, float y, int size [, string position [,
string pattern [, int set number]]])
Starts page numbering on the current page and displays the page number at
coordinates x and y with the requested font size. The bottom-left corner of the
page is coordinate X=0, Y=0, and font used is the current font as set by Cpdf::
selectFont().

The optional position can be set to 'left' or 'right' (the default is 'left’) to
indicate whether the text should be displayed to the left or right of coordinate x.

The string pattern defines how the page numbering is displayed. Two placehold-
ers can be used in specifying the numbering: {PAGENUM} and {TOTALPAGENUM}. and
these represent the current page and total pages respectively. For examples, the
pattern 'Total pages: {TOTALPAGENUM}. This page: {PAGENUM}' displays strings
such as ‘Total pages: 10. This page: 4’. The default display string is ‘{PAGENUM} of
{TOTALPAGENUM}” .

PDF-PHP Reference | 443

The return value can be used to implement several concurrent numbering
schemes in the same document and is used with the optional set_number parame-
ter. It’s unlikely you’ll need this in practice, and we don’t discuss it in detail
here; more details and an example can be found in the pdf-php class manual.

void Cezpdf::ezStopPageNumbers([int stop_total [, int stop when [, int set_
number]]])

Stops numbering of pages. If stop_total is set to O (the default), the total num-
ber of pages that is reported stops as well; if it’s set to 1, the reported total is the
actual total number of pages. If the stop_when parameter is set to O (the default)
numbering stops on the current page; if it’s set to 1, numbering stops on the
next page.

The set_number parameter is used to start and stop multiple numbering schemes
within one document. It’s unlikely you’ll need this in practice, and we don’t dis-
cuss it in detail here; more details and an example can be found in the pdf-php
class manual.

void Cezpdf::ezStream([array options])

Outputs the PDF document to the web browser after finalizing EZPDF class pro-
cessing.

The options array can be used to control three HTTP headers: first, you can set
options['Content-Disposition'] to a filename that the user’s browser should
respect in saving the file (the default is file.pdf); second, you can set
options['Accept-Ranges'] to O (off) or 1 (on) to indicate whether your server can
handle retrieval of a range of bytes from the file (the default is 0); and, you can
set options['compress'] to O (off) or 1 (on) to compress the document content
(the default is 1).

float Cezpdf::ezTable(array data [, array columns [, string title [, array
options]]])

Creates a table that displays an array of data. The return value is the Y coordi-
nate in points of the writing point on the page after the table has been output
(where the bottom of the page is the point Y=0).

The data array should contain one or more elements that are arrays, where each
such element is a row of data in the table. These row arrays should all have the
same number of elements, and the elements should be in the same order in each
row array (unless the optional columns parameter is supplied) and have the same
associative labels. The following is an example of a data array with two rows and
two columns:

$table = array(
array("Col A" => "Row 1, Col A data", "Col B" => "Row 1, Col B data"),
array("Col A" => "Row 2, Col A data", "Col B" => "Row 2, Col B data")
)s
By default, columns have headings set to the associative labels used in the row
arrays; in the above example, the columns are headed 'Col A' and 'Col B'. In

444

| Chapter13: Reporting

addition, by default, the table has a line border, alternate lines are shaded gray,
and the table can wrap over multiple pages (with the column headings redisplay-
ing on each page). Example 13-5 uses the $table array and default parameters to
create a table and its output is shown in Figure 13-6.

Example 13-5. Producing a simple table with ezTable()

<?php
require "class.ezpdf.php";
$doc =& new Cezpdf();

$table = array(
array("Col A" => "Row 1, Col A data", "Col B" => "Row 1, Col B data"),
array("Col A" => "Row 2, Col A data", "Col B" => "Row 2, Col B data")
)s

$doc->ezTable($table);
$doc->ezStream();
>

' xpdf: timp/file-6.pdf -

=0,

ColA Col B
Row 1, Col A data | Row 1, Col B data
Row 2, Col A data | Row 2, Col B data

=
| A W] page i of 1 =

Figure 13-6. The output of Example 13-5

The columns parameter is an optional associative array that redefines headings
for the columns and the display order of the columns. It can also be used to
select only some columns from the data array. The associative keys of columns
should be associative keys from the data array, and the associative values are the
new names of the columns. The order in which elements are listed in columns
defines the display order. For example, to replace the 'Col A' and 'Col B' head-
ings in our previous example with 'Column A' and 'Column B' and reverse their
display order, we could provide the following columns array:
$columns = array("Col B" => "Column B", "Col A" => "Column A")

The optional title parameter is a title to display at the beginning of the table.
The script in Example 13-6 shows an extended version of Example 13-5 that
renames the columns using the $columns array and includes a title. Its output is
shown in Figure 13-7.

PDF-PHP Reference | 445

Example 13-6. Renaming columns and including a title with ezTable()

<?php
require "class.ezpdf.php";
$doc =& new Cezpdf();
$table = array(

array("Col A" => "Row 1, Col A data", "Col B" => "Row 1, Col B data"),
¢

array("Col A" => "Row 2, Col A data", "Col B" => "Row 2, Col B data")

)s

$columns = array("Col B" => "Column B", "Col A" => "Column A");

$doc->ezTable($table, $columns, "The Table with Columns!");

$doc->ezStream();
>

' xpdf: ftmp/file-7.pdf

The Table with Golumns!

Calumn B

Column A

Row 1, Col Bdata
Row 2, Col B data

Row 1, Col A data
Row 2, Col A data

o
],

£

ll_\;_"lﬁlilﬁLIil Page Il_ of 1 7o+ |_|

2 ol

Figure 13-7. The output of Example 13-6

The options array is an associative array that can be used to define a wide range

of table options. Valid options include:

options['colGap']

The gap in points to use between the data and the column lines in the table. The

default is 5.

options['cols"']

An array that contains the column_name associative keys from the data array (not
the columns array!) and is used to set properties for each column. Each column_
name element itself has two optional elements. First, justification defines the
justification of column_name and is set to 'left', 'right', or 'center'; the default
is 'left'. Second, width defines the column width in points and is set to a float

value; text wraps within the cell when it exceeds the column width.

For example, to set the width of 'Col A' to 100 points and its alignment to cen-
ter, and the width of 'Col B' to 50 points and to right alignment, use the options
parameter shown in Example 13-7. The output is shown in Figure 13-8.

446 | Chapter13: Reporting

Example 13-7. Defining column properties with an options array for ezTable()

<?php
require "class.ezpdf.php";
$doc =& new Cezpdf();
$table = array(
array("Col A" => "Row 1, Col A data", "Col B" => "Row 1, Col B data"),
array("Col A" => "Row 2, Col A data", "Col B" => "Row 2, Col B data")
)5
$columns = array("Col B" => "Column B", "Col A" => "Column A");
$options = array('cols' =>
array('Col A" => array('width'=>100, 'justification' => 'center'),
'Col B' => array('width'=>50, 'justification' => 'right')
)
)s
$doc->ezTable($table, $columns, "The Table with Columns!", $options);
$doc->ezStream();
>

xpdf: /tmp/file-8.pdf

B
The Table with Golumns! J
Calumn Column A |
B
Row 1, | Row 1, Col A data
Col B
data
Row 2, | Row2, Col A data
Col B
data

II:‘—lﬂﬂﬂil wp| page 1 of 1 s 41

Figure 13-8. The output of Example 13-7

options['fontSize']
The font size to use in the body of the table. The default is 10.
options['innerLineThickness']
The width of lines inside the table body measured in points. It defaults to 1.
options['lineCol’]
The color of the lines to use in the table specified as a three-element array of red,
green, and blue values expressed as floats in the range 0 to 1. The default is
black, that is, options['1lineCol'] = array(0,0,0).
options['maxWidth']
Defines the maximum width of the table in points; cell widths are adjusted if
necessary to stay within this width.

PDF-PHP Reference | 447

options['outerLineThickness']
The width of lines bordering the table body measured in points. It defaults to 1.

options['protectRows"]
The number of rows from the first page to reproduce at the beginning of each
subsequent page.

options['rowGap']
The gap in points to use between the data and the row lines in the table. The
default is 2.

options['shadeCol']
An array of three float elements that represent the intensity of red, blue, and
green to use when shading rows. The range is 0 to 1, and the default is
options['shadeCol'] = array(0.8, 0.8, 0.8).

options['shadeCol2']
The same as options['shadeCol'] except it is used for alternate rows when
options['shaded'] is set to 2. The default is options['shadeCol'] = array(0.7,
0.7, 0.7).

options['shaded"]
Can be set to 0 (no shading), 1 (shade alternate rows in the color defined by
shadeCol), or 2 (shade alternate rows in the colors defined by shadeCol and
shadeCol2). The defaultis 1.

options['showHeadings']
Can be set to 0 (do not show column headings) or 1 (show column headings, the
default).

options['showLines']
Can be set to 0 (no borders), 1 (show the borders, the default), or 2 (show bor-
ders and lines between rows).

options['textcol']
The color of the text to use in the table specified as a three-element array of red,
green, and blue values expressed as floats in the range 0 to 1. The default is
black, that is, options['textcol'] = array(0,0,0).

options['titlefontSize']
The font size to use for the optional title. The default is 12.

options['width"]
Defines the width of the table in points and, if used, the cell widths will be
adjusted to give this total width.

options['xOrientation’]
A string that defines the position of the table relative to options['xPos']. It can
be set to 'left', 'right', or 'center'.

options['xPos"]
Defines the horizontal alignment of the table on the page, and can be set to a
string of 'left', 'right', or 'center' (the default is 'center'). It can alterna-

448 | Chapter13: Reporting

tively be set to a float value that is an X coordinate. It is used in conjunction with
options['xOrientation'].

Bool Cezpdf::ezText(string text [, int size [, array options [, int overflow]]])
Writes text into a document including any carriage returns present in the string.
By default, the font size is 12 or the last font size used if different; this can be
overridden by providing the size parameter.

The options parameter is an array that can have one or more of seven associa-
tively-accessed elements: 'left’ is a float that is a gap in points to leave from the
left margin; 'right' is a float that is a gap in points to leave from the right mar-
gin; 'aleft' is a float that is a gap in points to leave from the left of the page
(ignoring the left margin); 'aright’ is a float that is a gap in points to leave from
the right of the page (ignoring the right margin); 'leading' is a float that defines
the height of the line and is independent of the font size (it used to create spac-
ing); and, 'spacing' is a float that defines the line spacing in word-processor
style as 1.0 (single), 1.5, 2.0 (double), or any other desired value.

For example, to output a string in 14 point font size between the absolute X
coordinate points 100 and 150 and using 1.5 spacing, you can use:

$pdf->ezText("This is a text string that is output between 100 and 150",
14, array('aleft'=>100, 'aright'=>150, 'spacing'=>1.5));
Using both 'left' and ‘'aleft', or 'right' and 'aright', or 'leading' and
'spacing' does not make sense.
The overflow parameter is O by default. If it is set to 1, text is not actually output
to the document. Instead, the method returns true if adding the text would
cause a new page to be created and false if the text fits on the current page.

inline codes
There are three inline codes that can be used within the text passed as a parame-
ter to the ezText() method. These are:

<u> and </u>

Produce underlined text. For example, ezText(“<u>hello</u>”) produces
hello.

<c:alink> and </c:alink>
Create a link to a URL, marking text in the same way as the HTML <a> ele-
ment. For example, ezTest(“<c:alink:http://www.webdatabasebook.com/>
web database book website</c:alink>") produces an underlined link web
database book web site that when clicked will load the web site http:/
www.webdatabasebook.com/ in a browser.

<c:ilink> and </c:ilink>
Link internally to a destination within a document. For example,
ezText(“<c:ilink:pagel>Jump to Page 1</c:ilink>") produces an underlined
link Jump to Page 1 that links to the destination marker page1. Adding a des-
tination is described in Cpdf::addDestination() in the next section.

PDF-PHP Reference | 449

Base Class

void Cpdf::addDestination(string label, string style [, float a [, float b, float
cll)
Creates a destination label within a document (see also the inline codes defined
at the conclusion of the previous section). Labels must be unique within a docu-
ment.

The style parameter defines what happens when the user visits the destination
by clicking on an inline link. It can be set to several different values, and the
value defines whether no additional parameters are needed, whether parameter g
is supplied, or whether parameters g, b, and ¢ are supplied. The options for style
are as follows (for all options, the coordinate X=0, Y=0 is the bottom-left corner
of the page):
'Fit'
Opens the page containing the label resized to the PDF viewer. It has no
additional parameters.
'FitB'
Opens the page containing the label resized so that its bounding box fits the
PDF viewer. It has no additional parameters.
'FitBH'
Opens the page containing the label at the coordinate Y=a and horizontally
fitted so that its bounding box fits the PDF viewer.
'FitBV"
Opens the page containing the label at the coordinate X=a and vertically fit-
ted so that its bounding box fits the PDF viewer.
'FitH'
Opens the page containing the label at the coordinate Y=a and horizontally
fitted to the PDF viewer.
Fity!
Opens the page containing the label at the coordinate X=a and vertically fit-
ted to the PDF viewer.
'Xyz'
Opens the page containing the label at coordinates X=a, Y=b, and with a
zoom factor of c¢. For example, the following call sets a label myTable that
when visited opens the page containing myTable at coordinates X=100 and
Y=150 with a zoom factor of 2 (that is, the display is twice the normal size):
$doc->add