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PREFACE 

Man has the faculty of becoming completely absorbed in one subject, 
no matter how trivial and no subject is so trivial that it will not assume 
infinite proportions if one's entire attention is devoted to it. 

—Tolstoy, War and Peace 

The Twin Shining Stars 

The Fibonacci sequence and the Lucas sequence are the two shining stars in the 
vast array of integer sequences. They have fascinated both amateurs and professional 
mathematicians for centuries, and they continue to charm us with their beauty, their 
abundant applications, and their ubiquitous habit of occurring in totally surprising 
and unrelated places. They continue to be a fertile ground for creative amateurs and 
mathematicians alike. 

This book grew out of my fascination with the intriguing beauty and rich appli-
cations of the twin sequences. It has been my long-cherished dream to study and to 
assemble the myriad properties of both Fibonacci and Lucas numbers, developed over 
the centuries, and to catalog their applications to various disciplines in an orderly and 
enjoyable fashion. 

An enormous amount of information is available in the mathematical literature 
on Fibonacci and Lucas numbers; but, unfortunately, most of it is widely scattered 
in numerous journals, so it is not easily accessible to many, especially to non-
professionals. In this book, I have collected and presented materials from a wide 
range of sources, so that the finished volume represents, to the best of my knowledge, 
the largest comprehensive study of this area to date. 

Although many Fibonacci enthusiasts know the basics of Fibonacci and Lucas 
numbers, there are a multitude of discoveries about properties and applications that 

xi 
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may be less familiar. Fibonacci and Lucas numbers are also a source of great fun; 
teachers and professors often use them to generate excitement among students, who 
find that the sequences stimulate their intellectual curiosity and sharpen their mathe-
matical skills, such as pattern recognition, conjecturing, proof techniques, and problem-
solving. 

Audience 

This book is intended for a wide audience. College undergraduate and graduate 
students often opt to study Fibonacci and Lucas numbers because they find them 
challenging and exciting. Often many students propose new and interesting problems 
in periodicals. It is certainly delightful that students often pursue Fibonacci and Lucas 
numbers for their senior and master's theses. 

High school students have enjoyed exploring this material for a number of years. 
Using Fibonacci and Lucas topics, students at Framingham High School in 
Massachusetts, for instance, have published many of their Fibonacci and Lucas 
discoveries in Mathematics Teacher. 

I have also included a large amount of advanced material to challenge mathemati-
cally sophisticated enthusiasts and professionals in such diverse fields as art, biology, 
chemistry, electrical engineering, neurophysiology, physics, and music. It is my hope 
that this book will serve them as a valuable resource in exploring new applications 
and discoveries, and advance the frontiers of mathematical knowledge. 

Organization 

In the interest of manageability, the book is divided into forty-seven short chapters. 
Most conclude with numeric and theoretical exercises for Fibonacci enthusiasts to 
explore, conjecture, and confirm. I hope that the exercises are as exciting for readers 
as they are for me. Where the omission can be made without sacrificing the essence 
of development or focus, I have omitted some of the long, tedious proofs of theorems. 
The solutions to all odd-numbered exercises are given in the back of the book. 

Salient Features 

Salient features of this book include: a user-friendly, historical approach; a nonintim-
idating style; a wealth of identities, applications, and exercises of varying degrees of 
difficulty and sophistication; links to graph theory, matrices, geometry, and trigonom-
etry; the stock market; and relationships to geometry and information from everyday 
life. For example, works of art are discussed vis-à-vis the Golden Ratio, one of the 
most intriguing irrational numbers. 
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Interdisciplinary Appeal 

The book contains numerous and fascinating applications to a wide spectrum of 
disciplines and endeavors; These include art, architecture, biology, chemistry, chess, 
electrical engineering, geometry, graph theory, music, origami, poetry, physics, phys-
iology, psychology, neurophysiology, sewage/water treatment, snow plowing, stock 
market trading, and trigonometry. Most of the applications are well within the reach 
of mathematically sophisticated amateurs, although they vary in difficulty and sophis-
tication. 

Historical Perspective 

Throughout, I have tried to present historical background for the material, and to 
humanize the discourse by giving the name and affiliation of every contributor to 
the field, as well as the year of contribution. My apologies to any discoverers whose 
names or affiliations are missing; I would be pleased to hear of any such inadvertent 
omissions. 

Puzzles 

The book contains several numeric puzzles based on Fibonacci numbers. In addition, 
it contains several popular geometric paradoxes, again rooted in Fibonacci numbers, 
which are certainly a source of excitement and surprise. 

List of Symbols 

A glossary of symbols follows this preface. Readers can find a list of the fundamental 
properties from the theory of numbers and the theory of matrices in the Appendix. 
Those who are curious about their proofs will find them in my forthcoming book on 
number theory. 

I would be delighted to hear from Fibonacci enthusiasts about any possible inad-
vertent errors. If any reader should have questions, or should discover any additional 
properties and applications, I would be more than happy to hear about them. 

Acknowledgments 
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LEONARDO FIBONACCI 

Leonardo Fibonacci, also called Leonardo Pisano or Leonard of Pisa, was the most 
outstanding mathematician of the European Middle Ages. Little is known about his 
life except for the few facts he gives in his mathematical writings. Ironically, none of 
his contemporaries mention him in any document that survives. 

Fibonacci (Fig. 1.1) was born around 1170 into the Bonacci family of Pisa, a 
prosperous mercantile center. ("Fibonacci" is a contraction of "Filius Bonacci," son 
of Bonacci.) His father Guglielmo (William) was a successful merchant, who wanted 
his son to follow his trade. 

Around 1190, when Guglielmo was appointed collector of customs in the Algerian 
city of Bugia (now Bougie), he brought Leonardo there to learn the art of computation. 
In Bougie, Fibonacci received his early education from a Muslim schoolmaster, who 
introduced him to the Indo-Arabic numeration system and Indo-Arabic computational 
techniques. He also introduced Fibonacci to a book on algebra, Hisâb al-jabr w'al-
muqabâlah, written by the Persian mathematician, al-Khowarizmi (ca. 825). (The 
word algebra is derived from the title of this book.) 

As an adult, Fibonacci made frequent business trips to Egypt, Syria, Greece, 
France, and Constantinople, where he studied the various systems of arithmetic then 
in use, and exchanged views with native scholars. He also lived for a time at the court 
of the Roman Emperor, Frederick II (1194-1250), and engaged in scientific debates 
with the Emperor and his philosophers. 

Around 1200, at the age of about 30, Fibonacci returned home to Pisa. He was 
convinced of the elegance and practical superiority of the Indo-Arabic system over 
the Roman numeration system then in use in Italy. In 1202, Fibonacci published his 
pioneering work, Liber Abaci {The Book of the Abacus.) (The word abaci here does 
not refer to the hand calculator called an abacus, but to computation in general.) Liber 
Abaci was devoted to arithmetic and elementary algebra; it introduced the Indo-
Arabic numeration system and arithmetic algorithms to Europe. In fact, Fibonacci 

1 



2 LEONARDO FIBONACCI 

Figure 1.1. Fibonacci (Source: David Eugene Smith Collection, Rare Book and Manuscript Library, 
Columbia University.). 

demonstrated in this book the power of the Indo-Arabic system more vigorously 
than in any mathematical work up to that time. Liber Abaci's 15 chapters explain the 
major contributions to algebra by al-Khowarizmi and another Persian mathematician, 
Abu Kamil (ca. 900). Six years later, Fibonacci revised Liber Abaci and dedicated the 
second edition to Michael Scott, the most famous philosopher and astrologer at the 
court of Frederick II. 

After Liber Abaci, Fibonacci wrote three other influential books. Practica 
Geometriae {Practice of Geometry), written in 1220, is divided into eight chapters 
and is dedicated to Master Domonique, about whom little is known. This book 
skillfully presents geometry and trigonometry with Euclidean rigor and some origi-
nality. Fibonacci employs algebra to solve geometric problems and geometry to solve 
algebraic problems, a radical approach for the Europe of his day. 
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His next two books, the Flos (Blossom or Flower) and the Liber Quadratorum 
(The Book of Square Numbers) were published in 1225. Although both deal with 
number theory, Liber Quadratorum earned Fibonacci his reputation as a major number 
theorist, ranked between the Greek mathematician Diophantus (ca. 250 A.D.) and the 
French mathematician Pierre de Fermât (1601-1665). Flos and Liber Quadratorum 
exemplify Fibonacci's brilliance and originality of thought, which outshine the abil-
ities of most scholars of his time. 

In 1225 Frederick II wanted to test Fibonacci's talents, so he invited him to his 
court for a mathematical tournament. The contest consisted of three problems. The 
first was to find a rational number x such that both x1 — 5 and x2 + 5 are squares of 
rational numbers. Fibonacci gave the correct answer41/12: (41/12)2 — 5 = (31/12)2 

and(41/12)2 + 5 = (49/12)2. 
The second problem was to find a solution of the cubic equation x3 + 2x2 + 

IOJC — 20 = 0. Fibonacci showed geometrically that it has no solutions of the form 
Va + \fb, but gave an approximate solution, 1.3688081075, which is correct to nine 
decimal places. This answer appears in the Flos without any explanation. 

The third problem, also recorded in the Flos, was to solve the following: 

Three people share 1/2, 1/3, and 1/6 of a pile of money. Each takes some money from 
the pile until nothing is left. The first person then returns one- half of what he took, the 
second one-third, and the third one-sixth. When the total thus returned is divided among 
them equally, each possesses his correct share. How much money was in the original 
pile? How much did each person take from the pile? 

Fibonacci established that the problem was indeterminate and gave 47 as the smallest 
answer. In the contest, none of Fibonacci's competitors could solve any of these 
problems. 

The Emperor recognized Fibonacci's contributions to the city of Pisa, both as a 
teacher and as a citizen. Today, a statue of Fibonacci stands in a garden across the 
Arno River, near the Leaning Tower of Pisa. 

Not long after Fibonacci's death in about 1240, Italian merchants began to appre-
ciate the power of the Indo-Arabic system and gradually adopted it for business 
transactions. By the end of the sixteenth century, most of Europe had accepted it. 
Liber Abaci remained the European standard for more than two centuries and played 
a significant role in displacing the unwieldy Roman numeration system. 



THE RABBIT PROBLEM 

Fibonacci's classic book, Liber Abaci, contains many elementary problems, including 
the following famous problem on rabbits: 

Suppose there are two newborn rabbits, one male and the other female. Find the number 
of rabbits produced in a year if: 

1) each pair takes one month to become mature; 

2) each pair produces a mixed pair every month, from the second month on; and 

3) no rabbits die during the course of the year. 

Suppose, for convenience, that the original pair of rabbits was born on January 1. 
They take a month to become mature, so there is still only one pair on February 1. 
On March 1, they are two months old and produce a new mixed pair, a total of two 
pairs. Continuing like this, there will be three pairs on April 1, five pairs on May 1, 
and so on. See the last row of Table 2.1. 

TABLE 2.1. 
Number of Pairs 

Adults 
Babies 
Total 

Jan 

0 
1 
1 

Feb 

1 
0 
1 

Mar 

1 
1 
2 

Apr 

2 
1 
3 

May 

3 
2 
5 

Jun 

5 
3 
8 

Jul 

8 
5 

13 

Aug 

13 
8 

21 

4 
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Figure 2.1. Lucas (Source: H. C. Williams, Edouard Lucas and Primality Testing, New York: Wiley, 
1998. Copyright © 1998, reprinted with permission of John Wiley & Sons, Inc.). 

FIBONACCI NUMBERS 

The numbers in the bottom row are called Fibonacci numbers, and the number 
sequence 1, 1, 2, 3, 5, 8, . . . is the Fibonacci sequence. Table A.2 in the Appendix 
lists the first 100 Fibonacci numbers. 

The sequence was given its name in May of 1876 by the outstanding French mathe-
matician François-Edouard-Anatole-Lucas (Fig. 2.1),* who had originally called it 
"the series of Lamé," after the French mathematician Gabriel Lamé (1795-1870). It 
is a bit ironic that despite Fibonacci's numerous mathematical contributions, he is 
primarily remembered for this sequence that bears his name. 

'François-Edouard-Anatole-Lucas was born in Amiens, France, in 1842. After completing his studies at 
the École Normale in Amiens, he worked as an assistant at the Paris Observatory. He served as an artillery 
officer in the Franco-Prussian war and then became professor of mathematics at the Lycee Saint-Louis 
and Lycee Charlemagne, both in Paris, and he was a gifted and entertaining teacher. Lucas died of a freak 
accident at a banquet; his cheek was gashed by a shard that flew from a plate that was accidently dropped; 
he died from infection within a few days, on October 3, 1891. 

Lucas loved computing and developed plans for a computer, but it never materialized. Besides his 
contributions to number theory, he is known for his four-volume classic on recreational mathematics. Best 
known among the problems he developed is the Tower of Brahma. 
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The Fibonacci sequence is one of the most intriguing number sequences, and it 
continues to provide ample opportunities for professional and amateur mathemati-
cians to make conjectures and to expand the mathematical horizon. 

The sequence is so important that an organization of mathematicians, The Fibonacci 
Association, has been formed for the study of Fibonacci and related integer sequences. 
The association was founded in 1963 by Verner E. Hoggatt, Jr. (1921-1980) of 
San Jose State College (now San Jose State University), California, and Brother 
Alfred Brousseau (1907-1988) of St. Mary's College in California. The association 
publishes The Fibonacci Quarterly, devoted to articles related to integer sequences. 

A close look at the Fibonacci sequence reveals that it has a fascinating property: 
every Fibonacci number, except the first two, is the sum of the two immediately 
preceding Fibonacci numbers. (At the given rate, there will be 144 pairs of rabbits on 
December 1. This can be verified by extending Table 2.1 through December.) 

RECURSIVE DEFINITION 

This observation yields the following recursive definition of the nth Fibonacci number, 
F„: 

F\ = Fi = 1 ■*- Initial conditions -
F„ = F„_i + F„_2 n > 3 ■*- Recurrence relation 

We shall formally establish the validity of this recurrence relation shortly. 
It is not known whether Fibonacci knew of this relation. If he did, no record 

exists to that effect. In fact, the first written confirmation of the recurrence relation 
appeared four centuries later, when the great German astronomer and mathematician 
Johannes Kepler (1571-1630) wrote that Fibonacci must have surely noticed this 
recursive relationship. In any case, it was first noticed by the Dutch mathematician 
Albert Girard (1595-1632). 

However, according to P. Singh of Raj Narain College in Bihar, India, Fibonacci 
numbers and the recursive formulation were known in India several centuries before 
Fibonacci proposed the problem; they were given by Virahanka (between 600 and 
800 A.D.), Gopala (prior to 1135 A.D.), and Hemacandra (about 1150 A.D.). In fact, 
Fibonacci numbers also occur as a special case of a formula established by Narayana 
Pandita (1356 A.D.). 

The growth of the rabbit population can be displayed nicely in a tree diagram, as 
Figure 2.2 shows. Each new branch of the "dream-tree" becomes an adult branch in 
one month and each adult branch, including the trunk, produces a new branch every 
month. 

Table 2.1 shows several interesting relationships among the numbers of adult pairs, 
baby pairs, and total pairs. To see these relationships, let A„ denote the number of 
adult pairs and Bn the number of baby pairs in month«, where« > 1. Clearly, A\ = 0, 
and Ai = 1 = B\. 



RECURSIVE DEFINITION 

Month Total number of branches 

13 

Figure 2.2. A Fibonacci tree. 

Suppose n > 3. Since each adult pair produces a mixed baby pair in month n, the 
number of baby pairs in month n equals the number of adult pairs in the preceding 
month, that is, B„ = <4„_|. Then: 

/ Number of pairs \ _ / Number of adult pairs \ , f Number of baby pairs \ 
y in month n / ~~ \ in month n — 1 ) \ in month n — \ ) 

That is, 

A„ = A„_i + ß„_i 

= A„_| + An-i n > 3 

Thus A„ satisfies the same recurrence relation as the Fibonacci recurrence relation 
(FRR), where A2 = 1 = A3. Consequently, Fn = An+\, n > 1. 

Notice that: 

/ Total number of pairs \ _ f Number of adult pairs \ ,( Number of baby pairs \ 
y in month n ) \m month n ) \'m month n ) 

That is, Fn = A„ + B„ = An + A„-\, where n > 3. Thus Fn — F„_i + F„_2, n > 3. 
This establishes the Fibonacci recurrence relation observed earlier. 

Since Fn = An+\, where « > 1, every entry in row 1, beginning with the second 
element (February), is a Fibonacci number. In other words, the /th element in row 1 is 
F/_|, where i > 2. Likewise, since B„ = An-\ = F„_2, where n > 3, the /'th element 
in row 2 is F,_2, where ι > 3. 

The recursive definition of F„ yields a straightforward method for computing it, 
as Algorithm 2.1 shows. 
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F5 

/ \ 
FA F3 Λ / \ 

F3 F2 F2 F, 

F2 F, 

Figure 2.3. Tree diagram of recursive computing of F$. 

Algorithm Fibonacci(n) 
(* This algorithm computes 
using recursion. *) 
Begin (* algorithm *) 

if n = 1 or n = 2 then 
Fibonacci «- 1 

else (* gene 
Fibonacci «- Fibonacci 

End (* algorithm *) 

the 

* ba 

ral 
(n -

nth Fibonacci 

se cases *) 

^ase 
1) 

*) 

numbe 

+ Fibonacci(n — 

r 

2) 

Algorithm 2.1. 

The tree diagram in Figure 2.3 illustrates the recursive computing of F$, where 
each dot represents an addition. 

Using the recurrence relation (Eq. 2.1), we can assign a meaningful value to Fo. 
When n = 2, Eq. (2.1) yields F2 = Fi + F0, that is, 1 = 1 + F0, so F0 = 0. This fact 
will come in handy in our later discussions. 

In the case of a nontrivial triangle, it is well known that the sum of the lengths of 
any two sides is greater than the length of the third side. Accordingly, the FRR can be 
interpreted to mean that no three consecutive Fibonacci numbers can be the lengths 
of the sides of a nontrivial triangle. 

LUCAS NUMBERS 

Using the Fibonacci recurrence relation and different initial conditions, we can 
construct new number sequences. For instance, let Ln be the nth term of a sequence 
with L\ = 1, L2 = 3, and L„ = L„_i + L„_2, n > 3. The resulting sequence 1, 3, 
4, 7, 1 1 , . . . is called the Lucas sequence, after Edouard Lucas; L„ is the nth term of 
the sequence. Table A.2 also lists the first 100 Lucas numbers. 

We will see in later chapters that L„ and F„ are very closely related, and hence the 
title of this book. For instance, both L„ and F„ satisfy the same recurrence relation. 
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FIBONACCI AND LUCAS SQUARES AND CUBES 

Of the infinitely many Fibonacci numbers, some have special characteristics. For 
example, only two distinct Fibonacci numbers are perfect squares, namely, 1 and 
144. This was established in 1964 by J. H. E. Cohn of the University of London. In 
the same year, Cohn also established that 1 and 4 are the only Lucas squares (see 
Chapter 34). 

In 1969, H. London of McGill University and R. Finkelstein of Bowling Green 
State University proved that there are exactly two distinct Fibonacci cubes, namely, 
1 and 8, and that the only Lucas cube is 1. 

A UBIQUITOUS FIBONACCI NUMBER 
AND ITS CONSTANT LUCAS COMPANION 

Another Fibonacci number that appears to be ubiquitous is 89. 

• Since 1/89 is a rational number, its decimal expansion is periodic: 

^- = 0.011235955056179775280(89)887640449438202247191 
89 j-

The period is 44, and a surprising number occurs in the middle of a repeating 
block. 

• It is the eleventh Fibonacci number, and both 11 (the fifth Lucas number) and 89 
are prime numbers. While 89 can be viewed as the (8 + 3)rd Fibonacci number, 
it can also be looked at as the (8 · 3)rd prime. 

. Concatenating 11 and 89 gives the number 1189. Since 11892 = ( 1 + 2 + 
3 H h 1681)/2, it is also a triangular number. Interestingly enough, there are 
1189 chapters in the Bible, of which 89 are in the four gospels. 

. Eighty-nine is the smallest number to stubbornly resist being transformed into 
a palindrome by the familiar "reverse the digits and then add" method. In this 
case, it takes 24 steps to produce a palindrome, namely, 8813200023188. 

• 8 + 9 is the sum of the four primes preceding 11, and 8 · 9 is the sum of the four 
primes succeeding it: 17 = 2 + 3 + 5 + 7 and 72 = 13 + 17 + 19 + 23. 

. The most recent year divisible by 89 is 1958: 1958 = 2 1 1 - 89. Notice the 
prominent appearance of 11 again. 

• The next year divisible by 89 is 2047 = 2 " — 1. Again, 11 makes a con-
spicuous appearance. It is, in fact, the smallest number of the form 2P — 
1, which is not a prime, where p is of course a prime. Primes of the form 
2P — 1 are called Mersenne primes, after the French Franciscan priest Marin 
Mersenne (1588-1648), so 2047 is the smallest Mersenne number that is not 
a prime. 
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On the other hand, 289 — 1 is a Mersenne prime; in fact, it is the tenth Mersenne 
prime, discovered in 1911 by R. E. Powers. Its decimal value contains 27 digits 
and looks like this: 

->89 1 =6189700196··-11 

The first three digits are significant because that they are the first three 
decimal digits of an intriguing irrational number we shall encounter in 
Chapters 20-27. Once again, note the surprising appearance of 11 at 
the end. 

• Multiply the two digits of 89; add its digits again; and their sum is again 
89: (8 · 9) + (8 + 9) = 89. (It would be interesting to check if there are 
other numbers that exhibit this remarkable behavior.) Also, 8/9 % 0.89. 

• There are only two consecutive positive integers, one of which is a square and 
the other a cube: 8 = 23 and 9 = 32. 

. Square the digits of 89 and add them to obtain 145. Add the squares of its digits 
again. Continue like this. After eight iterations, we return to 89: 

89 -»· 145 -» 42 -> 20 -► 4 -* 16 -> 37 -> 58 -* 89 

In fact, if we apply this "sum the squares of the digits" method to any number, 
we will eventually attain 89 or 1. 

• On 8/9 in 1974, an unfortunate and unprecedented event occurred in the history 
of the United States—the resignation of President Richard M. Nixon. Strangely 
enough, if we swap the digits of 89, we get the date on which Nixon was pardoned 
by his successor, President Gerald R. Ford. 

All these fascinating observations about 11 and 89 were made in 1996 by M. J. Zerger 
of Adams State College, Colorado. 

Soon after these Fibonacci curiosities appeared in Mathematics Teacher, 
G. J. Greenbury of England (private communication, 2000) contacted Zerger with 
two curiosities involving the decimal expansions of two primes: 

— = 0.0344827586206(89)6551724137931 

1 
— = 0. 0169491525423728813559322022033(89)8305084745762711864406779661 

Curiously enough, 89 makes its remarkable appearance in the repeating block of each 
expansion. 

R. K. Guy of the University of Calgary, Canada, in his fascinating book, Unsolved 
Problems in Number Theory, presents an interesting number sequence [x„). It has a 
quite remarkable and not immediately obvious relationship with 89. The sequence is 
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defined recursively as follows: 

x0 = 1 

_ l + ^ + ^ + . - . - t - . ^ , 
xn — 

n 

For example, *0 = 1, ΛΓ, = (1 + 13)/1 = 2, and^2 = (1 + l3 + 23)/2 = 5. 
Surprisingly enough, x„ is integral for 0 < n < 89, but x& is not. 

FIBONACCI AND PRIMES 

Zerger also observed that the product F^^Fg Fg is the product of the first seven prime 
numbers: F6F1FiF9 = 13-21-34-55 = 510, 510 = 2-3-5-7-ll-1317.Interestingly 
enough, 510 is the Dewey Decimal Classification Number for Mathematics. 

FIBONACCI AND LUCAS PRIMES 

Many Fibonacci and Lucas numbers are indeed primes. For example, the Fibonacci 
numbers 2,3,5, 13, 89, 233, and 1597 are primes, and so are the Lucas numbers 3,7, 
11,29,47,199, and 521. Although it is widely believed that there are infinitely many 
Fibonacci and Lucas primes, their proofs still remain elusive. 

The largest known Fibonacci prime is F9311, and the largest known Lucas prime 
is Z-14449. Discovered in 1999 by H. Dubner and W. Keller, they are 1946 and 3020 
digits long, respectively. (Chapter 5 discusses a method for determining the number 
of digits in both F„ and Ln.) 

Table A.3 lists the canonical prime factorizations of the first 100 Fibonacci num-
bers. Lucas had found the prime factorizations of the first 60 Fibonacci numbers 
before March 1877 and most likely even earlier. Boldface type in the table indicates 
the corresponding prime factor's first appearance in the list. For instance, the largest 
prime among the first 100 Fibonacci numbers is F%?,. 

Table A.4 gives the complete prime factorizations of the first 100 Lucas numbers. 

CUNNINGHAM CHAINS 

A Cunningham chain, named after Lt. Col. Allan J. C. Cunningham (1842-1928), 
an officer in the British Army, is a sequence of primes in which each element is one 
more than twice its predecessor. Interestingly enough, the smallest six-element chain 
begins with 89: 89, 179, 359, 719, 1439, 2879. 

Are there Fibonacci and Lucas numbers that are one more than or one less than a 
square? A cube? We shall find the answers shortly. 
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FIBONACCI AND LUCAS NUMBERS w2 ± 1, w > 0 

In 1973, R. R Finkelstein of Bowling Green State University, Ohio, established yet 
another curiosity: The only Fibonacci numbers of the form w2 + 1, where w > 0, are 
1, 2, and 5: 1 = 02 + 1, 2 = l2 + 1, and 5 = 22 + 1. 

Two years later, Finkelstein proved that the only Lucas numbers of the same form 
are 2 and 1: 2 = l2 + 1 and 1 = 02 + 1. 

In 1981, N. R. Robbins of Bernard M. Baruch College, New York, proved that the 
only Fibonacci numbers of the form w2 — 1, where ιυ > 0, are 3 and 8: 3 = 22 — 1 
and 8 = 32 — 1. The only such Lucas number is 3. 

FIBONACCI AND LUCAS NUMBERS u>3 ± 1, w > 0 

In the same year, Robbins also determined all Fibonacci and Lucas numbers of the 
form u>3 ± 1, where w > 0. There are two Fibonacci numbers of the form ui3 + 1, 
namely, 1 and 2: 1 = 03 + 1 and 2 — l3 + 1. There are two Lucas numbers of the 
same form: 1 and 2. 

There are no Fibonacci numbers of the form u>3 — 1, where w > 0. But there is 
exactly one such Lucas number, namely, 7: 7 = 23 — 1. 

FIBONACCI NUMBERS (α3 ± *3)/2 

Certain Fibonacci numbers can be expressed as one-half of the sum or difference of 
two cubes. For example, 1 = ( l 3 + l 3) /2,8 = (23 + 23)/2, and 13 = (33 - l 3) /2. In 
fact, at the 1969 Summer Institute on Number Theory, held at Stony Brook, New York, 
H. M. Stark of the University of Michigan at Ann Arbor asked: Which Fibonacci 
numbers have this distinct property? This problem is linked to the finding of all 
complex quadratic fields with class 2. In 1983, J. A. Antoniadis tied such fields to 
solutions of certain diophantine equations. 

FIBONACCI AND LUCAS TRIANGULAR NUMBERS 

A triangular number is a positive integer of the form n(n + l ) /2. The first five 
triangular numbers are 1, 3, 6, 10, and 15; they can be represented geometrically, as 
Figure 2.4 shows. 

In 1963, M. H. Tallman of Brooklyn, New York, observed that the Fibonacci 
numbers 1, 3, 21, and 55 are triangular numbers: 

, 1 2 -X 2 ' 3 1 ! 6 ' 7 A « I » " 
1 = ——, 3 = ——, 21 = ——-, and 55 = 

2 2 2 2 
He asked if there were any other Fibonacci number that is also triangular. 
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• · · · · · 

· · · · · · · · · 

1 3 6 10 15 

Figure 2.4. The first five triangular numbers. 

Twenty-two years later, S. R. Wall of Trident Technical College, South Carolina, 
established that there are no other triangular numbers in the first one billion Fibonacci 
numbers. In fact, he conjectured that there are no other such Fibonacci numbers. 

In 1976, Finkelstein proved that 1, 3, 21, and 55 are the only triangular Fibonacci 
numbers of the form Fin. 

In fact, eleven years later, L. Ming of Chongqing Teachers' College, China, proved 
conclusively that 1, 3, 21, and 55 are the only Fibonacci triangular numbers. This 
result is a byproduct of the two following results by Ming: 

• 8F„ + 1 is a perfect square if and only if n — 0, ± 1 , 2, 4, 8, 10. 

• F„ is triangular if and only if n = ± 1, 2,4,8, 10. 

Are there Lucas numbers that are also triangular? Obviously, 1 and 3 are. In 
fact, in 1990, Ming also established that the only such Lucas numbers are 1, 3, and 
5778: 

1 2 „ 2 - 3 , ,„„„ 107 ■ 108 
1 = , 3 = , and 5778 = 

2 2 2 

FIBONACCI AND THE BEASTLY NUMBER 

In 1989, C. Singh of St. Laurent's University in Quebec, Canada, discovered some 
mystical relationships between the infamous beastly number, 666, and Fibonacci 
numbers F„: 

. 666 = F15 + Fn - Fg + Fu where 1 5 + 1 1 - 9 + 1 = 6 + 6 + 6. 

• 666 — F 3 + F2
3 + F4

3 + F5
3 + F6

3, where the sum of the subscripts equals 

1 + 2 + 4 + 5 + 6 = 6 + 6 + 6 

. 666 = [F3 + (F2 + F3 + F4 + F5)3]/2. 
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EXERCISES 2 

1. Compute the first 20 Fibonacci numbers. 
2. Compute the first 20 Lucas numbers. 

3. Determine the value of LQ. 

4. Using the FRR (Eq. 2.1), compute the value of F_„, where 1 < n < 10. 
5. Using Exercise 4, predict the value of F_„ in terms of F„. 

6. Compute the value of L_„, where 1 < n < 10. 
7. Using Exercise 6, predict the value of L_„ in terms of L„. 

To commemorate the publication of the maiden issue of the Journal of Recreational 
Mathematics, L. Bankoff of Los Angles published his discovery that F2Q — F\g— 
F\5 — F$ — F\ = Fn + F\3 + F\\ + Fg + FT + Fi and that each sum gives the year. 

8. Find the year in which the journal was first published. 
9. Verify that the sums of the subscripts of the Fibonacci numbers on either side 

are equal. 

Compute the sum Σ Fi for each value of n. 
1 

10. 3 
11. 5 
12. 7 
13. 8 

n 
14. Using Exercises 10-13, predict a formula for Σ F-

1 
n 

15-18. Compute the sum Σ Li for each value of M in Exercises 10-13. 
1 

n 
19. Using Exercises 15-18, predict a formula for Σ L,. 

i 
n 

20-23. Compute the sum Σ Ff for each value oin in Exercises 10-13. 
1 

n 

24. Using Exercises 20-23, predict a formula for the sum Σ Ff. 
1 

n 

25-28. Compute the sum Σ L? for each value of« in Exercises 10-13. 
1 

n 

29. Using Exercises 20-23, predict a formula for the sum Σ L]. 
1 

30. Verify that F2n = FnLn for n = 3 and n = 8. 
31. Verify that L„ = F„_, + Fn+i for n = 4 and n = 1. 

Let an denote the number of additions needed to compute F„ by recursion: 
32. Define an recursively. 
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33. Show that a„ = F„ — l,n > \. 
34. Prove that Fn < 1.75" for every positive integer M (LeVeque, 1962). 

35. Show that there are no four distinct Fibonacci numbers in arithmetic progres-
sion (Silverman, 1964). 

36. Let /„ = f0 x'^'dx, where n > 2 and I\ = f0 x dx. Evaluate /„ (Lind, 
1965). 

37. If Fn < x < Fn+\ < y < Fn+i, then x + y cannot be a Fibonacci number 
(Hoggatt, 1982). 

Suppose we introduce a mixed pair of 1-month-old rabbits into a large enclosure on 
the first day of a certain month. By the end of each month, the rabbits become mature 
and each pair produces k — 1 mixed pairs of offspring at the beginning of the following 
month. (Note: k > 2.) For instance, at the beginning of the second month, there is 
one pair of 2-month-old rabbits and k — 1 pairs of 0-month-olds; at the beginning 
of the third month, there is one pair of 3-month-olds, k — 1 pairs of 1-month-olds, 
and k(k — 1) pairs of 0-month-olds. Assume the rabbits are immortal. Let a„ denote 
the average age of the rabbit-pairs at the beginning of the nth month (Filipponi and 
Singmaster, 1990). 

**38. Define a„ recursively. 

**39. Predict an explicit formula for a„. 
**40. Prove the formula in Exercise 39. 

41. (For those familiar with the concept of limits) Find lim a„. 
n—*oo 



FIBONACCI NUMBERS 
IN NATURE 

Come forth into the light of things, 
let Nature be your teacher. 

—William Wordsworth 

Interestingly enough, the amazing Fibonacci numbers occur in quite unexpected 
places in nature. 

FIBONACCI AND THE EARTH 

Do Fibonacci numbers also appear elsewhere? Zerger observed that the equatorial 
diameter of the earth in miles is approximately the product of two alternate Fibonacci 
numbers, and that this in kilometers is approximately the product of three consecutive 
Fibonacci numbers: 

55 · 144 = 7920miles and 89 · 144 = 12,816kilometers 

For the curious-minded, the earth's diameter, according to The 2000 World Almanac 
and Book of Facts, is 7928 miles and 12,756 kilometers; the polar diameter is 7901 
miles. The diameter of Jupiter, the largest planet, is 11 times that of the earth. 

FIBONACCI AND ILLINOIS 

In 1992, Zerger discovered some astonishing occurrences of Fibonacci numbers in 
relation to the state of Illinois: 

16 
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• Illinois was admitted to the Union on the 3rd of December. 
• Illinois is the fifth largest state, according to the 1990 census. 
• Illinois' name consists of 8 letters. 

• Illinois is the thirteenth state, when the states are arranged alphabetically. 

• Illinois was the twenty-first state admitted to the Union. The postal abbreviation 
IL is formed with the ninth and twelfth letters: 9 + 12 = 21. 

• Interstate 55 begins in Chicago and roughly follows the 89th parallel to 
New Orleans. 

FIBONACCI AND FLOWERS 

The number of petals in many flowers is often a Fibonacci number. For instance, count 
the number of petals in the flowers pictured in Figure 3.1. Enchanter's nightshade 
has two petals, iris and trillium three, wild rose five, and delphinium and cosmos 
eight. Most daisies have 13, 21, or 34 petals; there are even daisies with 55 and 89 
petals. Table 3.1 lists the Fibonacci number of petals in an assortment of flowers. 
Although some plants, such as buttercup and iris, always display the same number of 
petals, some do not. For example, delphinium blossoms sometimes have 5 petals and 
sometimes 8 petals, and some Michaelmas daisies have 55 petals, while some have 
89 petals. 

The cross section of an apple reveals a pentagonal shape with five pods. The 
starfish, with five limbs, also exhibits a Fibonacci number (see Fig. 3.2). 

Nightshade Trillium Bluet Wild Rose 

Hepatica Bloodroot Cosmos 

Figure 3.1. Flowers. 
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TABLE 3.1. 

Plant 

Enchanter's nightshade 
Iris, lilly 
Buttercup, columbine, delphinium, larkspur, wall lettuce 
Celandine, delphinium, field senecio, squalid senecio 
Chamomile, cineraria, corn marigold, double delphinium, globeflower 
Aster, black-eyed Susan, chicory, doronicum, helenium, hawkbit 
Daisy, gailliardia, plantain, pyrethrum, hawkweed 

Number of Petals 

2 
3 
5 
8 

13 
21 
34 

(a) 

(b) 

Figure 3.2. (a) Cross section of an apple; (b) Starfish. 
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FIBONACCI AND TREES 

Fibonacci numbers are also found in some spiral arrangements of leaves on the twigs 
of plants and trees. From any leaf on a branch, count up the number of leaves until 
you reach the leaf directly above it; the number of leaves is often a Fibonacci number. 
On basswood and elm trees, this number is 2; on beech and hazel trees, it is 3; on 
apricot, cherry, and oak trees, it is 5; on pear and poplar trees, it is 8; and on almond 
and willow trees, it is 13 (see Fig. 3.3). 

Here is another intriguing fact: The number of turns, clockwise or counterclock-
wise, we can take from the starting leaf to the terminal leaf is also usually a Fibonacci 
number. For example, on basswood and elm trees, it takes one turn; for beech and 
hazel trees, it is also 1 ; for apricot, cherry, and oak trees, it is 2; for pear and poplar 
trees, it is 3; and on almond and willow trees, it is 5. 

The arrangement of leaves on the branches of phyllotaxis* Accordingly, the ratio 
of the number of turns to the number of leaves is called the phyllotactic ratio of the 
tree. Thus, the phyllotactic ratio of basswood and elm is 1/2; for beech and hazel, 
it is 1/3; for apricot, cherry, and oak, it is 2/5; for pear and poplar, it is 3/8; and 
for almond and willow, it is 5/13. These data are summarized in Table 3.2. As an 
example, it takes 3/8 of a full turn to reach from one leaf to the next leaf on a 
pear tree. 

FIBONACCI AND SUNFLOWERS 

Mature sunflowers display Fibonacci numbers in a unique and remarkable way. The 
seeds of the flower are tightly packed in two distinct spirals, emanating from the center 
of the head to the outer edge (Figs. 3.4 and 3.5). One goes clockwise and the other 
counterclockwise. Studies have shown that although there are exceptions, the number 
of spirals, by and large, is adjacent Fibonacci numbers; usually, they are 34 and 55. 
Hoggatt reports a large sunflower with 89 spirals in the clockwise direction and 55 
in the opposite direction, and a gigantic flower with 144 spirals clockwise and 89 
counterclockwise. 

It is interesting to note that Br. Alfred Brousseau once gave Hoggatt a sunflower 
with 123 clockwise spirals and 76 counterclockwise spirals, two adjacent Lucas 
spirals. 

In 1951, John C. Pierce of Goddard College in Massachusetts reported in The 
Scientific Monthly that the Russians had grown a sunflower head with 89 and 144 
spirals. After reading his article on Fibonacci numbers, Margaret K. O'Connell and 
Daniel T. O'Connell of South Londonderry, Vermont, examined their sunflowers, 
raised from seeds from Burpee's. They found heads with 55 and 89 spirals, some with 
89 and 144 spirals, and one giant head with 144 and 233 spirals. The latter seems to 
be a world record. 

*The word phyllotaxis is derived from the Greek words phyllon, meaning leaf, and taxis, meaning 
arrangement. 
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From Fibonacci Numbers in Nature (poster). Copyright © 1988 by Dale Seymour 
Publications. Used with permission of Pearson Education. 

FIBONACCI, PINECONES, ARTICHOKES, AND PINEAPPLES 

The scale patterns on pinecones, artichokes, and pineapples provide excellent 
examples of Fibonacci numbers. The scales are in fact modified leaves closely packed 
on short stems, and they form two sets of spirals, called parastichies* Some spirals 

'The word parastichies is derived from the Greek words para, meaning beside and stichos, meaning row. 
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Figure 33. Elm, Cherry, and Pear limbs (Source: V. E. Hoggatt, Jr., Fibonacci and Lucas Numbers, 
Boston: Houghton Mifflin, 1968.). 
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TABLE 3.2. 

Tree 

Basswood, elm 
Beech, hazel 
Apricot, cherry, oak 
Pear, poplar 
Almond, willow 

Number of Turns 

1 
1 
2 
3 
5 

Number of Leaves 

2 
3 
5 
8 

13 

Phyllotactic Ratio 

1/2 
1/3 
2/5 
3/8 
5/13 

Figure 3.4. Sunflower (Source: Runk/Schoenberger/Grant Heilman Photography, Inc.). 

are clockwise and the rest are counterclockwise, as on a sunflower. Spiral numbers 
are often adjacent Fibonacci numbers. Some cones have 3 clockwise spirals and 
5 counterclockwise spirals; some have 5 and 8; and some 8 and 13. Figure 3.6 and 
Figure 3.7 show the scale patterns on two pinecones. 

Interestingly enough, some pinecones display three different spiral patterns. Their 
numbers, as you would expect, are also adjacent Fibonacci numbers. 

Artichokes show a similar pattern, with the number of spirals in the two directions 
often adjacent Fibonacci numbers. Usually, there are 3 clockwise and 5 counter-
clockwise spirals, or 5 clockwise and 8 counterclockwise ones. Figure 3.8 shows two 
artichokes of the latter type. 
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Figure 3.5. The spiral pattern in a Sunflower {Source: H. E. Huntley, The Divine Proportion, Mineola, 
NY: Dover, 1970. Reproduced with permission of Dover Publications.). 

Figure 3.6. Pinecone (Source: Courtesy of American Museum of Natural History Library.). 
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Figure 3.7. Scale patterns (8 clockwise spirals, 13 counterclockwise spirals). 

Figure 3.8. Artichoke (Source: Trudi Hammel Garland, Fascinating Fibonaccis: Mystery and Magic in 
Numbers, Palo Alto, CA: Seymour, 1987. Copyright © 1987 by Dale Seymour Publications. Used by 
permission of Pearson Learning.). 

The scales on pineapples are nearly hexagonal in shape (See Fig. 3.9). 
Since hexagons tessellate a plane perfectly and beautifully (see Fig. 3.10), the scales 
form three different spiral patterns. Once again, the number of spirals is adjacent 
Fibonacci numbers 8, 13, and 21. According to the 1977 Yearbook of Science 
and the Future, a careful study of 2000 pineapples confirmed this most unusual 
Fibonacci pattern. 
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Figure 3.9. Pineapple. 
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Figure 3.10. Hexagons (Source: V. E. Hoggatt, Jr., Fibonacci and Lucas Numbers, Santa Clara, CA: 
The Fibonacci Association, 1969.). 

FIBONACCI AND MALE BEES 

Male bees come from unfertilized eggs, so a male bee (M) has a mother but no 
father. A female bee (F), on the other hand, is developed from a fertilized egg, so 
it has both parents. Figure 3.11 shows the genealogical tree of a drone for seven 
generations. Count the total number of bees at each level, that is, in each generation. 
It is a Fibonacci number, as Table 3.3 demonstrates. Notice that it looks very much 
like Table 2.1. 

Let a„ denote the number of female bees, bn the number of male bees, and /„ the 
total number of bees, all in generation n, where n > 1. Clearly, a\ = 0 and b\ = 1. 
Since drones have exactly one parent, it follows that b„ = α„_ι, a„ = an-\ + b„-\, 
andr„ = a„ +b„. 

Sincea„ = αη-γ+α„-2, whereai =0anda2 = 1, it follows that a„ = F„_i.Now 
/„ = an + bn = an + απ-ι = an+\, where r, = a2 = 1 and t2 = az = 1, so tn = F„. 

9 ö-rQ ÖVQ ç c*j9 

^ V 

9 

is-

<? 

<? 
- 0 

Q Female 

(J Male 

Figure 3.11. The family tree of a male bee. 
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TABLE 3.3. Number of Bees Per Generation is a Fibonacci Number 
Generation 

Number of female bees 
Number of male bees 
Total number of bees 

1 

0 
1 
1 

2 

1 
0 
1 

3 

1 
1 
2 

4 

2 
1 
3 

5 

3 
2 
5 

6 

5 
3 
8 

7 

8 
5 

13 

8 

13 
8 

21 

Thus the number of ancestors of the drone in generation n is the Fibonacci number 
Fn. This fascinating relationship was originally presented in 1921 by W. Hope-Jones. 
It is examined further in Chapter 25. 

FIBONACCI AND BEES 

Consider two adjacent rows of cells in an infinite beehive, as pictured in Figure 3.12. 
We would like to find the number of paths the bee can take to crawl from one cell to 
an adjacent one. It can move in only one general direction, namely, to the right. 

Let b„ denote the number of different paths to the nth cell. Since there is exactly 
one path to cell A (see Fig. 3.13), b\ = \. There are two distinct paths to cell B, as 
Figure 3.14 shows. So bi = 2. There are three different paths the bee can take to cell 
C (see Fig. 3.15), so bj, = 3. There are five distinct paths the bee can take to cell D, 
as Figure 3.16 shows. Consequently, bn, = 5, likewise, b% = 8. 

Clearly, a pattern emerges, as shown in Table 3.4. It follows inductively that there 
are b„ = Fn+\ distinct paths for the bee to crawl to cell n (see Exercise 1 at the end 
of the chapter). 

The next application was conceived in 1972 by L. Carlitz of Duke University. 

Figure 3.12. 
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\X><K 

Figure 3.14. 

TWVl 
Figure 3.15. 

TABLE 3.4. 

n 

b„ 

1 

1 

2 

2 

s A / ^Cy* 

Figure 3.16. 

3 4 

3 5 

\Λ^ 

5 

8 

^S^ 

n 
? 

FIBONACCI AND SUBSETS 

Example 3.1. Find the number of subsets, including the null set, of a set of n points 
such that consecutive points are not allowed if the points lie on: (1) a line; and (2) a 
circle. ■ 
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Solution. 

1. Suppose the n points are linear. Let An denote the number of subsets. It follows 
from the following diagrams that A \ = 2 and A^ = 3. 

< · » < — · > 
1 1 2 

Subsets : 0 , {1} Subsets : 0 , {1}, {2} 

Let n > 3. Let n denote an extreme point, so it has just one neighbor. By definition, 
there are A„_ ι subsets that do not contain n and A„_2 subsets that contain n as shown 
in the following diagram. Thus, by the addition principle, A„ = Λ„_ι + Αη-ι: 

< » » » » » » » 1 > 

1 2 3 n-1 n 

where A\ = 2 and A2 = 3. Therefore, A„ = Fn+2, n > 1. (Notice the similarity 
between this example and Example 4.1.) 

2. Suppose the n points lie on a circle. Let B„ denote the number of subsets that do 
not contain consecutive points. If follows from the following diagrams that B\ = 2, 
B2 = 3, and B3 = 4: 

Q O O 
Let n > 4. Consider the point n (see the following diagram). There are An—\ subsets 
that do not contain n and A„_3 subsets that do contain n. Therefore, Bn = A„-\ + 
A„_3 = F„+i + F„_i = L„, n> 2. 

n 1 
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FIBONACCI AND SEWAGE TREATMENT 

There are n towns on the bank of a river. They discharge their untreated sewage into 
the stream and pollute the water, so the towns would like to build treatment plants 
to control pollution. It is economically advantageous to build one or more central 
treatment plants along the main sewers and then send the wastewater from each city 
to another one. It is not economical to split the sewage of a town between two adjacent 
towns, since this would require the building of two sewers for the same town. 

This problem was studied in 1972 by R. A. Deninger of the University of Michigan 
at Ann Arbor. 

Let f(n) denote the number of economic solutions. Clearly, / ( l ) = 1. Suppose 
n = 2. Then there are three possible solutions: Each town has its own plant, one plant 
at town 1, or one plant at town 2 (see Fig. 3.17). Thus / (2) = 3. 

Figure 3.17. 

Suppose there are three towns (see Fig. 3.18). Since there is no transfer of sewage 
between adjacent towns, each town can build its own treatment plant, send the sewage 
upstream (->), or send it downstream («-). Let 0 denote no transport between 
neighboring towns, 1 upstream transport and 2 downstream transport. Figure 3.19 
shows the various economic solutions for three towns. They can be symbolically 
represented as follows: 

00 01 02 10 11 12 20 H. 22 

where 21 is not a solution, since a town cannot simultaneously transfer waste both 
upstream and downstream. Thus / (3) = 8 = 3/(2) — / ( l ) . With « = 4 towns, there 

© 

□ 

©: 
1 
□ 

1 
D 
I 

Figure 3.18. 
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• · · 0 0 

-> —> 

• · · 1 1 

• · · 0 1 

-» «-

• · · 1 2 

• · · 0 2 

<— 

• · · 2 0 

• · · 1 0 

«- <— 

• · · 2 2 

Figure 3.19. 

are / (4) = 21 solutions: 

000 001 
100 101 
200 201 

002 
102 
202 

010 Oil 
110 111 
210 211 

012 
112 
212 

02J 
r2J 
22J 

022 
122 
222 

Notice that / (4) = 3/(3) — /(2) , since there are three "words" that end in 21. 
More generally, consider n + 1 towns with / ( « + 1) solutions. Adding one town 

increases the number of solutions to 3/(«). From this we must subtract the number of 
words ending in 21, namely, /(«—1). Thus /(rc+1) = 3/(«)—/(«—l), where« > 2. 

Using this recurrence relation, the value of f(n) can be computed for various 
values of«. It appears from Table 3.5 that / (« ) — F2n. 

TABLE 3.5. 
n 

/(») 

1 

1 

2 

3 

3 

8 

4 

21 

5 

55 

6 

144 

To confirm this formula, notice that / ( l ) = 1 — F2 and / (2) = 4 = F4. So it 
remains to show that F2n satisfies the recurrence relation: 

3/(«) - / ( « - 1) = 3F2„ - F2„_2 = 2F2n + F2„_, 

= F2„ + F2n+[ = F2n+2 

= /(« + D 

Thus / («) = F2„, n > 1. 

FIBONACCI AND ATOMS 

The atomic number Z of an atom is the number of protons in it. The periodic 
table shows an interesting relationship between the atomic numbers of inert gas and 
Fibonacci numbers (see Table 3.6). 

There are six inert gases—helium, neon, argon, krypton, xenon, and radon—and 
they are exceptionally stable chemically. With the exception of helium, their atomic 
numbers are approximately the same as the Fibonacci numbers F7 through F\ \, as 
Table 3.6 shows. Suppose we compute \Zj 18 + 1 /2J for each gas; that is, divide each 



32 FIBONACCI NUMBERS IN NATURE 

TABLE 3.6. 

Inert Gas 

Helium 
Neon 
Argon 
Krypton 
Xenon 
Radon 

Atomic Number 
Z 

2 
10 
18 
36 
54 
86 

Corresponding 
Fibonacci Numbers 

8 
13 
21 
34 
55 
89 

LZ/18+1/2J 

0 
1 
1 
2 
3 
5 

TABLE 3.7. 
N 

LW/10+1/2J 

2 

0 

8 

1 

14 

1 

20 

2 

28 

3 

50 

5 

82 

8 

126 

13 

number by 18 and then find the nearest integer. It follows from column 4 that each is 
a Fibonacci number. 

The nucleus of an atom consists of two kinds of particles: protons and neutrons. 
A proton has a charge equal but opposite to that of an electron, while a neutron is 
neutral. Let N denote the number of neutrons in the nucleus. Nuclei having the values 
2, 8, 14, 20, 28, 50, 82, or 126 for N or Z are considered more stable than others. 
(The origin of these numbers is a mystery.) Let us compute [N/10 + 1/2J for each N, 
that is, compute N/10 rounded up to the nearest integer. Surprisingly enough, each 
is again a Fibonacci number! (see Table 3.7.) 

FIBONACCI AND THE BALMER SERIES 

In 1885, the Swiss schoolteacher Johann Jacob Balmer (1825-1898) discovered that 
the wavelengths (in angstroms) of four lines in the hydrogen spectrum (now known 
as the Balmer series) can be expressed as the product of the constant 364.5 (in 
nanometers) and a fraction: 

656 = ? x 364.5 

486 = - x 364.5 
3 

434 = — x 364.5 
21 

410 = | x 364.5 

Notice that the denominators of the fractions are Fibonacci numbers. This observation 
was made in 1973 by J. Wlodarski of Germany. 
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FIBONACCI AND REFLECTIONS 

Optics, the branch of physics that deals with light and vision, has found yet another 
appearance of Fibonacci numbers in the real world. Consider two glass plates placed 
face-to-face. Such a stack has four reflective faces, as Figure 3.20 shows. 

M 
(a) (b) 

Figure 3.20. (a) Two separate glass plates (b) The stack has four reflective faces, labeled 1-4. 

Suppose a ray of light falls on the stack. Let an denote the number of distinct 
reflective paths made with n reflections, where n > 0. We would like to determine 
the value of a„* To this end, let's first collect some data on a„. 

When n = 0, that is, when there are no reflections, the ray just passes through the 
glass plates, as Figure 3.21 shows, so a\ = 1. 

Figure 3.21. Stacked glass plates with no reflections. 

Suppose the ray causes one reflection. Then there are two distinct possible paths, 
so ai = 2 (see Fig. 3.22). 

Figure 3.22. Stacked glass plates with one reflection. 

If the ray is reflected twice, three possible paths can emerge, as Figure 3.23 
illustrates, so a2 — 3. If it is reflected thrice, there are five possible reflecting patterns, 
so 03 = 5 (see Fig. 3.24). Likewise, 04 = 8 (see Fig. 3.25). 

'This problem was proposed in 1963 by L. Moser and M. Wyman, and solved by J. L. Brown. 
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Figure 3.23. Stacked glass plates with two reflections. 

Figure 3.24. Stacked glass plates with three reflections. 

Figure 3.25. Stacked glass plates with four reflections. 

Figure 3.26. 

More generally, suppose the ray is reflected n times, so the last reflection occurs 
at face 1 or 3. Then the previous reflection must have occurred on face 2 or 4, as 
Figure 3.26 shows. The number of paths with the «th reflection on face 1 equals the 
number of paths reaching 1 after n - 1 reflections, and there are a„-\ such paths. 

Suppose the nth reflection takes place on face 3. The (n — l)st reflection must 
have occurred on face 4. Such a ray must have already had n — 2 reflections before 
reaching face 4. By definition, the number of such paths is a„_2. 

Thus, by the addition principle, a„ — α„_ι 4- a„_2, where a\ = 2 and ai = 3, so 
an = Fn+2-

FIBONACCI, PARAFFINS, AND CYCLOPARAFFINS 

Graph theory is a relatively new branch of mathematics. A graph is a finite, nonempty 
set of vertices and edges (arcs or line segments) joining them. Figures 3.27 and 3.28 
are both graphs. 
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Figure 3.27. 

Figure 3.28. Ethane molecule C2H6. 

Graphs are useful in the study of hydrocarbons. The English mathematician Arthur 
Cayley (1821-1895) was the first to employ graphs to examine hydrocarbon isomers. 

A hydrocarbon molecule consists of hydrogen and carbon atoms. Each hydrogen 
atom (H) is bonded to a single carbon atom (C), whereas a carbon atom bonds to two, 
three, or four atoms, which can be carbon or hydrogen. But carbon atoms in saturated 
hydrocarbon molecules, such as ethane, contain only single bonds, as Figure 3.28 
illustrates. 

Deleting hydrogen atoms from the structural formulas of saturated hydrocarbons 
yields graphs consisting of carbon atoms and edges between two adjacent vertices. 
The topological index of such a graph G with n vertices is the total number of different 
ways the graph can be partitioned into disjoint subgraphs containing exactly k edges, 
where k > 0. For example, Figure 3.29 shows the carbon atom skeleton for the 
paraffin pentane, C5H12, and Figure 3.30 shows its various possible partitionings. 
Consequently, the topological index of pentane is 1 + 4 + 3 = 8. 

Figure 3.29. 

k=0 / t=1 

Figure 3.30. 

k=2 
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TABLE 2 

Paraffin 

Methane 
Ethane 
Propane 
Butane 

Heptane 

Octane 

1.8. 

n 

1 
2 
3 
4 
5 
6 
7 

8 

9 
10 

Topological Indices of Paraffins CnH2n+2 

• 

Graph 0 1 

1 
2 
3 
4 
5 

7 

8 
9 

2 

1 
3 
6 

10 

15 

I 
21 
28 

k 

3 

1 
4 

10 

20 
35 

4 

1 

5 
15 

5 

1 

Total 

1 
2 
3 
5 
8 

13 
21 

34 

55 
89 

Fibonacci 
numbers 

Table 3.8 shows the carbon atom graphs G„ and their topological indices of ten 
paraffins C„H2n+2. n > I. For a graph consisting of a single vertex, the index is 
defined as one. It appears from the table that the index of G„ is Fn+i. 

To confirm this observation, let /„ denote the topological index of the carbon atom 
graph G„ of a paraffin with n vertices, as Figure 3.31 shows. 

Figure 3.31. 

Case 1. Suppose the edge u„_i — v„ is not included. Then the edge u„_2 — υ„_ι may 
or may not be included. Consequently, the topological index of the remaining graph 
G„_i is/„_i. 

Case 2. Suppose the edge υ„_ι — v„ is included. Then the edge u„_2 — t>B-i is not 
included. This yields the graph G„_2, and its index is f„_2. 

Thus, by the addition principle, t„ = f„_i + r„_2. But t\ = 1 and ?2 = 2, so, 
tn = Fn+l· 

Table 3.9 shows the carbon atom skeleton C„ often cycloparaffins C„H2n and the 
corresponding indices. A similar argument shows that the index of C„ = index of 
G„+ index of Gn-i = Fn+\ + F„_i, where n > 3. Notice that the index of C„ is in 
fact the Lucas number L„. We shall confirm in Chapter 5 that Fn+l + F„_i = L„. 

The triangular arrangements in Tables 3.8 and 3.9 are explored further in 
Chapter 13. 
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TABLE 3.9. Topological Indices of Cycloparaffins C„H2„ 

Cycloparaffin 

Cyclopropane 

Cyclobutane 

Cyclopentane 

Cyclohexane 

Cycloheptane 

Cyclooctane 

Cyclononane 

Cyclodecane 

n 

1 
2 

3 

4 

5 

6 

7 

8 

9 

10 

Graph 

• 

/ \ 

1 1 n 
o o 

/—v u 
O 

0 

1 
1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

2 

3 

4 

5 

6 N 

7 

8 

9 

10 

k 

2 

2 

5 

9 

14 

i 

20 

27 

35 

3 

2 

7 

16 

30 

50 

4 5 

2 

9 

25 2 

Total 

1 
3 

4 

7 

11 

18 

29 

47 

76 

123 

t 
Lucas numbers 

FIBONACCI AND MUSIC 

Fibonacci numbers occur in relation to music. They were also observed by Zerger: 

• The word MUSIC begins with the thirteenth and twenty-first letters of the 
alphabet. With the eighth, thirteenth, and twenty-first letters, we can form the 
word HUM. 

• The Library of Congress Classification Number for Music is M, the thirteenth 
letter. 

• The Dewey Decimal Classification Number for Music is 780, where 780 = 
2 ■ 2 · 3 · 5 ■ 13, a product of Fibonacci numbers. 

• Pianos are often tuned to a standard of 440 cycles per second, where 440 = 8-55. 
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The keyboard of a piano provides a fascinating visual illustration of the link 
between Fibonacci numbers and music. An octave on a keyboard represents a musical 
interval between two notes, one higher than the other. The frequency of the higher 
note is twice that of the lower. On the keyboard, the octave is divided into 5 black and 
8 white keys, a total of 13 keys (see Fig. 3.32). The five black keys form two groups, 
one of two keys and the other of three keys. 

5 Black 

8 White 
V v ' 

13 Total 

Figure 3.32. Fibonacci Numbers in the Octave of a Piano Keyboard (Source: Trudi Hammel Garland, 
Fascinating Fibonaccis: Mystery and Magic in Numbers, Palo Alto, CA: Seymour, 1987. Copyright © 
1987 by Dale Seymour Publications. Used by permission of Pearson Learning.). 

The 13 notes in an octave form the chromatic scale, the most popular scale in 
Western music. The chromatic scale was preceded by two other scales, the 5-note 
pentatonic scale and the 8-note diatonic scale. Popular tunes such as "Mary Had a 
Little Lamb," and "Amazing Grace" can be played using the pentatonic scale, while 
melodies such as "Row, Row, Row Your Boat" use the diatonic scale. 

The major sixth and the minor sixth (six tones apart and 5\ tones apart, respec-
tively) are the two musical intervals most pleasing to the ear. A major sixth, for 

330 vib/s 528 vib/s Minor Sixth 

Figure 3.33. Fibonacci Ratios in Musical Intervals (Source: Trudi Hammel Garland, Fascinating 
Fibonaccis: Mystery and Magic in Numbers, Palo Alto, CA: Seymour, 1987. Copyright © 1987 by Dale 
Seymour Publications. Used by permission of Pearson Learning.). 
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example, consists of the notes C and A; they make 264 and 440 vibrations per second, 
respectively (see Fig. 3.33). Notice that 264/440 = 3/5, a Fibonacci ratio. 

A minor sixth interval, for instance, consists of the notes E and C, making 330 and 
528 vibrations a second. Their ratio is also a Fibonacci ratio: 330/528 = 5/8. 

The ratios of consecutive Fibonacci numbers are discussed further in Chapter 20 
on the Golden ratio. 

FIBONACCI AND POETRY 

Fibonacci numbers have found their way into the art of poetry also. A limerick, 
according to Webster's dictionary, is a nonsensical poem of 5 lines, of which the 
first, second, and fifth have 3 beats, and the other two have 2 beats, and rhyme. The 
following limerick*, for example, is made up of 5 lines; they contain 2 groups of 2 
beats and 3 groups of 3 beats, for a total of 13 beats. Once again, all numbers involved 
are Fibonacci numbers: 

A fly and a flea in a flue 
Were imprisoned, so what could they do? 
Said the fly, "Let us flee!" 
"Let us fly!" said the flea, 
So they fled through a flaw in the flue 

do? 

Total 

3 beats 
3 beats 
2 beats 
2 beats 
3 beats 

= 13 Beats 

In the 1960s, G. E. Duckworth of Princeton University, New Jersey, analyzed the 
Aeneid, an epic poem written in Latin about 20 B.c. by Virgil (70-19 B.c.), the "greatest 
poet of ancient Rome and one of the outstanding poets of the world."t Duckworth 
discovered frequent occurrences of the Fibonacci numbers and several variations in 
this masterpiece: 

1 ,3 ,4 ,7 ,11, . . 

1,4,5,9, 14,.. 

1,5,6, 11,17,. 

1,6,7,13,20,. 

2 ,3,5,8, 13, . . 

3,7,10, 17,27, 

4,9,13,22,35, 

6,13,19,32,61, . . 

Lucas sequence 

'Based on T. H. Garland, Fascinating Fibonaccis, Dale Seymour Publications, Palo Alto, CA, 1987. 
''The World Book Encyclopedia, Vol. 20, 1982. 
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The mathematical symmetry Virgil consciously employed in composing the Aeneid 
brings the harmony and aesthetic balance of music to the ear, since ancient poetry 
was written to be read out loud. 

According to Duckworth's investigations into Virgil's structural patterns and 
proportions, there is evidence that even Virgil's contemporary poets, such as Catullus, 
Lucretius, Horace, and Lucan used the Fibonacci sequence in the structure of their 
poems. Duckworth's study lends credibility to the theory that the Fibonacci sequence 
and the Golden section (Chapter 20) were known to the ancient Greeks and Romans, 
although no such mention of it exists. 

FIBONACCI AND COMPOSITIONS WITH Is AND 2s 

In the summer of 1974, Krishnaswami Alladi of Vivekananda College, India, and 
Hoggatt studied the compositions of positive integers, n, that is, expressing n as sums 
of Is and 2s. For example, 3 has three such compositions and 4 has five, as Table 3.10 
shows. Notice that 1 + 2 and 2 + 1 are considered distinct compositions, so order 
matters. Again, it appears from the table that the number of distinct compositions is 
a Fibonacci number. The next theorem confirms this conjecture. 

TABLE 3.10. 

n 

1 
2 
3 
4 

5 

Compositions of n 

1 
1 + 1,2 
1 + 1 + 1, 1 + 2 , 2 + 1 
1 + 1 + 1 + 1,1 + 1 + 2 , 1 + 2 + 1 , 
2 + 1 + 1,2 + 2 
1 + 1 + 1 + 1 + 1,1 + 1 + 1 + 2 , 
1 + 1 + 2 + 1 , 1 + 2 + 1 + 1 ,2+1 + 1 + 1, 
1 + 2 + 2, 2 + 1 + 2 , 2 + 2 + 1 

Number of Compositions 

1 
2 
3 
5 

8 

t 
Fibonacci Numbers 

Theorem 3.1. (Alladi and Hoggatt, 1974). The number of distinct compositions C„ 
of a positive integer n in terms of 1 s and 2s is Fn+l, where n > 1. 

Proof. Let C„(l) and C„(2) denote the number of compositions of« that end in 1 
and 2, respectively. Clearly, C,(l) = 1 andCi(2) = 0 , so C, = d ( l ) + C,(2) = 1. 
Likewise, C2 = C2(l) + C2(2) = 1 + 1 = 2 . 

Now consider a composition of «, where « > 3. 

Case 1. Suppose the composition ends in 1. Deleting the 1 at the end yields a 
composition of n — 1. On the other hand, adding a 1 at the end of a composition 
of « — 1 yields a composition of« that ends in 1. Thus C„(l) = C„_i. 
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Case 2. Suppose the composition ends in 2. Deleting the 2 at the end, we get a 
composition of n — 2. On the other hand, by adding a 2 or two 1 s, we get a composition 
of n. But the latter has already been counted in case 1, so C„(2) = C„_2· 

Thus, by the addition principle, C„ = C„(l) + C„(2) = C„_i + C„_2, where 
C\ = 1 and C2 = 2. Therefore, C„ = Fn+i. ■ 

We shall re-prove this fact in Chapter 19 by an alternate method. 
The next two results were also discovered in 1974 by Alladi and Hoggatt, where 

f(n) denotes the total number of Is in the various compositions of« and g(n) denotes 
that of 2s. For example, / (3) = 5 and g(3) = 2. 

Theorem 3.2. 
1. / (« ) = / ( « - 1 ) + / ( « - 2 ) + FB 

2. g(n) = g(n - 1) + g(n - 2) + F„_, 

where n > 3. 

Proof. 1) As in the preceding proof, we have C(n) — C„(l) + C„(2). Since 
C„(2) = C„_2, there are C„_2 compositions of n that end in 2. But C„_2 denotes 
the number of compositions of n — 2. By definition, there is a total of fin — 2) 1 s in 
the various compositions of n — 2. 

Since C„(l) = Cn-\, there are C„-\ compositions of« that end in a 1. Excluding 
this 1, they contain / ( « — 1) Is. Since each of the C„_i compositions contains a 1 
as the final addend, they contain a total of f(n — 1) + C„_i = / ( n — 1) + Fn ones. 
Thus / («) = f(n - 1) + f(n - 2) + F„, where « > 3. 

Similarly, g(n) = g(n — 1) + g(n — 2) + Fn_i, where n > 3. ■ 

For example, 

/ (5) = 20 - 10 + 5 + 5 = / (4) + / (3) + F5 

g(5) = 1 0 = 5 + 2 + 3 = g(4) + g(3) + F3 

Theorem 3.3. f(n) - g(n + 1), n > 1. 

Froo/. [by the principle of mathematical induction (PMI)]. Since / ( l ) = 1 = g(2) 
and / (2) = 2 = g(3), the result is true when n = 1 and n = 2. 

Assume it is true for all positive integers < n. By Theorem 3.2, we have 

/ («) = / ( « - 1 ) + / ( « - 2 ) + F„ 

g(n) = g ( / i - l ) + g ( « - 2 ) + F„_, 

By the inductive hypothesis, f(n — 1) = g(n) and / ( « — 2) = g(« — 1), so f(n) = 
g(n) + g(n — 1) + F„ = g(n + 1). Thus the given result is true for every n > 1. ■ 

For example, / (3) = 5 = g(4) and / (4) = 10 = g(5). 
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FIBONACCI AND NEUROPHYSIOLOGY 

In 1976, Kurt Fischer of the University of Regensburg in Germany studied a model of 
the physiology of nerves and discovered yet another occurrence of Fibonacci numbers. 

The impulses traveling along nerve fibers originate from sodium or potassium 
ions, and flow through identical transmembrane pores consisting of n > 2 cells. Tiny 
quantities of calcium ions, Ca2+, can enter the pores and stop the flow of sodium ions, 
Na+, in these pores. They can occupy one cell or two cells, except at the entrance of 
the pore. These two states are denoted by 1 and 2, respectively. Figure 3.34 shows a 
typical pore, where 0 indicates an empty cell. 

1 
2 
1 

0 1 
I 

2 
I 

Figure 3.34. A sample pore. 

Suppose that sodium can enter or leave at either end of a pore, whereas calcium 
can do so only at the left side of the pore. Consequently, calcium ions within a pore 
impede the flow of sodium through this pore. 

This Markovian stochastic process can be depicted by a tree structure; the vertices 
of the tree represent the possible states of a pore and its edges represent the possible 
transitions between states. Figure 3.35, for example, shows the various possible states 
of a pore with five nonempty cells. 

l J _ J j I j I * I IΦ hi ΦI ? hhl * 

II· 
£_? 1 1 

2 1 1 1 

2 1 1 1 1 
1 

1 1 1 
1 

2 

Figure 3.35. Tree of states of a pore with 5 cells. 

Notice that the tree consists of two kinds of vertices, those with a 1 in the far 
right cell or a 2 in the middle of the two right cells. Every state in level five has the 
latter property, and shows that the translation of sodium ions to the right is no longer 
feasible because of the presence of calcium on the right side of each state. 

Figure 3.36 depicts a tree-skeleton of Figure 3.35, which very much resembles 
the Fibonacci tree in Figure 2.1. It follows from either figure that a pore with five 
nonempty cells has 5 = F5 states at level 5. 
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Figure 3.36. A tree diagram of Figure 3.35. 

More generally, a pore with n nonempty cells has F„ states at level n. This follows 
from the fact that the number of states at level n satisfies the Fibonacci recurrence 
relation. 

FIBONACCI AND ELECTRICAL NETWORKS 

In 1963, S. L. Basin of then San Jose State College, California, wrote that "even those 
people interested in electrical networks cannot escape from our friend Fibonacci." 
And, in fact, Fibonacci numbers appear even in the study of electrical networks. 

For example, consider a network of n resistors, arranged in the shape of a ladder, 
as Figure 3.37 illustrates. We shall show that the resistance Z„(n) (output impedance) 
across the output terminals C and D, the resistance Z,(n) (input impedance) between 
the input terminals A and B, and the attenuation A(n) = Z„/Zj are all very closely 
related to Fibonacci numbers in an unusually special case. 

f?, fl, fl, f?, 
A· Wv T "M T W\ T · · · Wv T «C 

/ ^ 2 5> **2 ^ 2 ^ 2 o 

B· 2 ^ ^ · · · ^ » D 
Figure 3.37. n ladder sections. 

First, let us consider two resistors, R\ and /?2, arranged in series. Let V denote 
the voltage drop across a resistor R due to current / (see Fig. 3.38). Then V = IR = 
I(R\ + /?2). So R = R\ + /?2. On the other hand, suppose the resistors are connected 
in parallel, as Figure 3.39 shows. Then V = /,/?, = /2/?2 = (Λ + h)R, so 

1 = /i + h = !± + !l = ± + ±_ 
R V V V R\ R2 

Thus, if R\ and R2 are connected in parallel, then the resultant resistance R is given by 

1 1 1 



44 FIBONACCI NUMBERS IN NATURE 

A + 
*/0> 

"1 
-Λ/W-

R2 

-ΛΛΛτ-

V 

Figure 3.38. 

Figure 3.39. 

Figure 3.40. 

Ύ v 
A. 

We are now ready to tackle the ladder network problem step-by-step. Suppose 
n = 1; that is, the network consists of one section, as Figure 3.40 shows. Then 
Z0(l) = R2 and Z,(l) = Ä, + R2, so 

Z,(D Ä. , 
Λ(1) = ζ7ϋ = ^ + 1 (3.1) 

Suppose n = 2. The resulting circuit is obtained by adding a section to the one 
in Figure 3.40 (see Fig. 3.41). Since the resistors R\ and R2 in the extension are 
connected in series, they can be replaced by a resistor R3 = R\ + R2; this yields the 
equivalent network in Figure 3.42. Now R2 and A3 are connected in parallel, so they 
can be replaced by a resistor R4 (see Fig. 3.43). Then 

— 
1 

* 2 + 
1 

_— 
A3 

1 
= —+ 

1 Ri + 2R2 

R2 R\ + R2 Ri(Ri + R2) 

« 4 = 
/?2(/?i + R2) 

R\ + 2R2 

Zd2) 

A + 
Z, (2) 

Figure 3.41. 

Figure 3.42. 
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* 1 

vw -, 
*/(2) | ^ 4 Z0(2) 

Figure 3.43. 

Since the resistors R\ and Ä4 are connected in series, 

R2(R\ + R2) Z,(2) = /?, +R4 = Ri + 
Rt + 2Ri 

/?,(/?, + 2R2) + R2(Rl + R2) 

R\ + 2R2 
(3.2) 

To compute the output impedance Z0 of the circuit in Figure 3.41, we traverse it 
in the opposite direction, that is, from left to right. The first resistor R\ plays no role 
in its computation, so we simply ignore it (see Fig. 3.44). The resistors R\ and R2 are 
in series, so they can be replaced by a resistor R^ = R\ + R2 (see Fig. 3.45). This 
yields a circuit with two parallel resistors R3 and R2, so 

1 1 1 1 1 Rl+2R2 

Z0(2) R3 R2 Ä, + R2 R2 R2(Ri + R2) 

h(R\ + R 
Ri + 2R2 

Zo(2) = *2„(*' +*2) (3-3) 

(see Fig. 3.46). 

«1 
A · T VW T · C 

SRz 5fl2
 zo(2) 

e ·—I Î · D 
Figure 3.44. 

* C 
■*2 Z0(2) 

B· ' ' * D 
Figure 3.45. 

A·-
%Z0(2) 

B· Î — # D 

Figure 3.46. 
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Then 

Z0(2) 
A(2) = 

R-,(Rx + R-,\ 
(3.4) /?,(/?,+2/?2) + /?2(Ä, +R2) 

Now consider a ladder of n = 3 sections (see Fig. 3.47). Using Figures 3.48-3.51, 
it follows that 

„ „ ^2(^1 + R2) 
Ri = R{+R2 Ä4 = 

Ä5 = R\ + /?4 = R\ + 

Äi + 2/?2 

Ri(Ri + Ri) 
R\ +2R2 

= /?!(/?!+ 2 j?2)+ (/?!+2/?2) 
Λι + 2/?2 

1 _ 1 1 _ 1 /? i+2Ä2 

tf6 R2 R5 R5 Rl(Rl+2R2) + R2(Ri + R2) 

Α2(/?? + 3Α,/?2 + / φ 
.·. Ri = 

R*+4RlR2 + 3Rl 

R2(R
2
l+3R{R2 + Rl) 

Z;(3) = / ? ,+ /? 6 = /?i + 
R2 + 4/?, R2 + 3R2

2 

R3
l+5R2R2+6RiRj + Rl 

R2+4RIR2 + 3R2 (3.5) 

/?, fl, /?, 
Λ · VA r VW r VW γ # C 

Z,(3) I «2 | f l 2 | f l 2 Z0(3) 
e# 1 1 1 * D 

Figure 3.47. 

fl, ft, 
-VW 1 V W -

*/P) 

Figure 3.48. 

- V W 1 V W -

Z,{3) 

Figure 3.49. 
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Z,{3) 

«1 
-ΛΛΛτ-

Figure 3.50. 

«1 

-vw-
2/(3) 

Figure 3.51. 

«1 «1 
-Wv - i W« 1 * C 

Î Î—*o 
Figure 3.52. 

— i — # c 

Z0{3) 

-WA, 1 » C 

Figure 3.53. 

«1 

-wv 1 »c 
{R2 Z0(S) 

-•D 

Figure 3.54. 

-•C 
:«4 | F>2 z 0 (3) 

1 *D 
Figure 3.55. 

Using the same method employed for the case n = 2 and Figures 3.52-3.55, we 
have the following results: 

1 1 1 1 1 
Ri = /?, + R2 — = — + — = + — 

/?4 /?3 /?2 R[ + /?2 Rl 

R2(Ri + R2) 
KA = 

/?,+2/?2 
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R2(Ri + R2) 

/?i(/?i+2/?2) + /?2(/?i+/?2) 

Ä,(Ä,+2Ä2) 

1 1 1 Ri(Ri+2R2) 1 

Z0(3) Ä5 Ä2 Rl(R\+2R2) + R2(Rx+R2) R2 

R2+4RXR2 + 3R2 

R2(R
2 + 3R}R2+3R2) 

R2(R
2+3RiR2 + R2) 

R2+4R{R2 + 3Rl 
Z0(3) = , ' —= ^ (3.6) 

So 

* } ~ Ä? + 5Ä?Ä2 + 6tf, R\ + R3
2
 { } 

In particular, let Ri = R2 = 1 ohm. Then Eqs. 3.1 through 3.7 yield the following 
result: 

Z0(l) = j 

Z.(2) = | 

Z0(3) = ^ 

2 
z;(i) = T 

Z,<2)-? 

Z < - ( 3 ) = Y 

2 
A(1) = T 

A(2) = | 

13 
A(3) = T 

More generally, we predict that 

_ , . Fln-\ „ , ,. Fln + \ , ., , F2n + i 
Z0(n) = - = — , Z,(n) = — — , and A(n) = . 

/*2n ^2n ^ 2 π - 1 

That these are true for a ladder network of n > 1 resistors can be established using 
PMI. 

To prove that Z0(n) = F2„_i/F2n, where n > 1: Since Z0(n) = 1/1 = F\/F\, 
the statement is clearly true when n = 1. Assume it is true for an arbitrary number 
k > 1 resistors: 

^2* 

To show that the formula works for n = k + 1, consider a ladder network with 
k + l resistors, as in Figure 3.56. By the inductive hypothesis, the first k sections can 
be replaced by a resistor of resistance Z0(k). This yields the circuit in Figure 3.57. 
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1 1 1 1 
A· V A r V A r—VA r · · · V A r—*C 

zi |i I1 I1 I1 z° 
B· J J J · · · J — » 0 

Figure 3.56. k + 1 ladder sections. 

1 
A ·—T W v T »C 

| z o ( / f ) | l Z0(Jr+1) 

B·—ί ί *D 

Figure 3.57. 

Λ · T T * C 

| H | I 
B · £ 2- » 0 

Figure 3.58. 

Using Figures 3.57 and 3.58, we have 

Λ = Z0(k) + 1 = — — + 1 = — — 

1 _ i . i I _ ^2k . _ Flk+2 
Z0(k + \) R 1 Fan-, F 2 t + 

^2t+l 
Z„(k + l) 

Plk+2 

So the formula works for n = k + 1. Thus, by PMI, Z0{n) = /^„-i//*^,, for every 
ladder network of n > 1 resistors. 

It can be similarly established that Ζ-,{ή) = F2n+\/F2„, and hence A(n) = 
F2n+i/F2„-\ for all« > 1. 

EXERCISES 3 

1. Let b„ denote the number of distinct paths the bee in Figure 3.12 can take to crawl 
to cell n. Show that b„ — Fn+l, n > 1. 

Exercises 2-10 require a knowledge of binary trees 
The Fibonacci tree B„, a binary tree, is defined recursively as follows: both B\ and 
Bi consist of a single vertex; when n > 3, B„ has a root, a left subtree β„_ι, and a 
right subtree 7„_2. 
2. Draw the first five Fibonacci trees. 
3. Is B„ a full binary tree? 
4. Is B6 a balanced binary tree? 
5. Is Bs a complete binary tree? 
6. For what values of« is B„ a complete binary tree? 
7. How many leaves /„ does B„ have? 
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Use Bn to find the following. 
8. The number of internal vertices /„. 
9. The number of vertices v„. 

10. The height h„. 

Let / ( n , k) denote the element in row n and column k of the triangular array in 
Table 3.8, where n > 1 and k > 0. 

11. Find / ( 7 , 2) and /(10,4) . 
12. Define f(n, k) recursively. 

Let g(n, k) denote the element in row n and column k of the triangular array in 
Table 3.9, where n > 1 and k > 0. 

13. Find g(7, 2) and g(10,4). 

14. Define g(n,k) recursively. 



FIBONACCI NUMBERS: 
ADDITIONAL 
OCCURRENCES 

Fibonacci numbers appear in still many other unexpected places. For example, index 
cards are usually made in size 2 x 3 or 3 x 5; most oriental rugs come in five different 
sizes: 2 x 3, 3 x 5, 4 x 6, 6 x 9, or 9 x 12. In the first two cases, the dimensions are 
adjacent Fibonacci numbers; in the third and fourth cases, the ratio 4 : 6 = 6 : 9 is 
the same as the ratio 2 : 3; and in the last case, the ratio 9 : 12 is the ratio 3 : 4 of two 
adjacent Lucas numbers. 

Before turning to our next example, we must make a formal definition of a word. 
A word is an ordered arrangement of symbols; it does not need to have a meaning. 
For example, abc is a word using the letters of the English alphabet, whereas 001101 
is a binary word. A bit is a 0 (zero) or a 1 (one). 

Example 4.1. Leta„ denote the number of «-bit words containing no two consecutive 
Is. Define an recursively. 

Solution. First, let us find the n-bit words containing no two consecutive Is cor-
responding ton = 1, 2, 3, and 4 (see Table 4.1). It follows from the table that 
a\ = 2,02 = 3, ατ, = 5, and a\ = 8. 

Now consider an arbitrary n-bit word. It may end in 0 or 1. 

51 
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TABLE 4.1. 

n = 1 

0 
1 

n = 2 

00 
01 
10 

« = 3 

000 
010 
100 
001 
101 

n =4 

0000 
0100 
1000 
0010 
1010 
0001 
0101 
1001 

Case 1. Suppose the n-bit word ends in 0. Then the (n — l)st bit can be a 0 or a 1, 
so there are no restrictions on the (n — l)st bit: 

n bits 

0 
1 0 

- V (n - l)st bit 
No Restrictions 

Therefore, α„_ι n-bit words end in 0 and contain no two consecutive Is. 

Case 2. Suppose the n-bit word ends in 1. Then the (n — l)st bit must be a zero. 
Further, there are no restrictions on the (n — 2)nd bit: 

n bits 

0 
1 0 

No Restrictions 
V (n - l)st bit 

Thus a„-2 n-bit words end in 1 and contain no two consecutive Is. 
Since the two cases are mutually exclusive, by the addition principle, we have: 

α ι = 2 , «2 = 3 

a„ = α„_ι +a„-2, n>3 

Initial conditions 

Recurrence relation 

Notice that this recurrence relation is exactly the same as the Fibonacci recurrence 
relation, but with different initial conditions. The resulting numbers are the Fibonacci 
numbers 2, 3, 5, 8, 13 Accordingly, a„ — Fn+2. ■ 

This example does not provide a constructive method for systematically listing all 
n-bit words with the desired property. That method is given in Exercise 4.1. 



FIBONACCI NUMBERS: ADDITIONAL OCCURRENCES 53 

Example 4.1 can be interpreted as follows. Suppose n coins are flipped sequentially. 
The total number of outcomes so that no two consecutive coins fall heads is Fn+2. 
Consequently, the probability that no two adjacent coins fall heads is F„+2/2". 

Example 4.2. An «-storied apartment building needs to be painted green or yellow 
in such a way that no two adjacent floors can be painted yellow, where n > 1. Let b„ 
denote the number of ways of painting the building. 

Figure 4.1 shows the various possible ways of painting the building when n = \, 
2, 3, and 4. It follows from the figure that b\ = 2, b2 = 3, b^ = 5, and bi, = 8. 

Figure 4.1. Possible ways of painting the building. 

This problem is essentially the same as Example 4.1. With green = 0 and yellow = 1, 
every n-bit word that contains no consecutive 1 s represents a possible way of painting, 
and vice versa. Thus b„ = Fn+2, where n > 1. ■ 

Example 4.3. Let a„ denote the number of 2 x n rectangular grids that can be formed 
using « 1 x 2 dominoes. Find a formula for a„. 

Solution. When n = 1, a\ = 1 (see Fig. 4.2). When n = 2, two 2 x 2 rectangular 
grids can be formed, so a2 = 2 (see Fig. 4.3). 

Figure 4.2. 

Figure 4.3. 

More generally, let n > 3. Since the pattern can begin with one horizontal domino 
or two vertical dominoes, it follows that a„ = a„-\ + an-2. This recurrence relation 
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is exactly the same as the Fibonacci one with the initial conditions ao = Ι,αχ = 2 . 
Thus it follows that a„ = Fn+\. m 

Example 4.4. Let a„ denote the number of subsets of the set S„ = { 1, 2 , . . . , n} that 
do not contain consecutive integers, where n > 0. We define So = 0 · Find an explicit 
formula for a„* 

Solution. To get an idea about a„, let us find its value for n = 0, 1, 2, 3, and 4 by 
constructing a table, as in Table 4.2. It appears from the table that a„ is a Fibonacci 
number and a„ = Fn+2. We shall in fact prove that a„ = Fn+2 in two steps: first we 
shall define an recursively and then find an explicit formula. 

TABLE 4.2. 
n 

0 
1 
2 
3 
4 

Subsets of S That Do Not 
Contain Consecutive Integers 

0 
0 . { i } 
0 , { 1 } , { 2 } 
0 , {1} , {2} , {3} , {1 ,3 ] 
0 , {!}, {2}, {3}, {4}, {1, 3},(1, 4),(2, 4} 

an 

1 
2 
3 
5 
8 

t 
Fn+2 

To Define a„ Recursively. From Table 4.2, a0 = 1 and a\ = 2. So let n > 2. Let 
A be a subset of S„ that does not contain two consecutive integers. Then either n € A 
or n £ A. 

Case 1. Suppose n e A. Then n — 1 £ A. By definition, S„_2 = {1, 2 , . . . , « — 2} has 
a„_2 subsets not containing two consecutive integers. Add n to each of the subsets. 
The resulting sets are subsets of S„ satisfying the desired property, so S„ has an-i 
such subsets. 

Case 2. Suppose n £ A. By definition, there are α„_ι such subsets of Sn having the 
required property. 

Since these two cases are mutually exclusive, by the addition principle, a„ — 
an-i + a„-2, where ao = 1, ai = 2. It follows that a„ = F„+2, n > 0. ■ 

Although Examples 4.1 and 4.4 look different, they are basically the same. For 
instance, the subsets of S3 = {1, 2, 3} that do not contain consecutive integers are 
0 , {1}, {2}, {3}, and {1,3}. Using the correspondence 0 -w· 000, {1} <-» 100, 
{2} <-> 010, {3} -o· 001, and {1,3} -o· 101, we can recover all 3-bit words that do not 
contain consecutive Is. 

'Proposed by Irving Kaplansky of The University of Chicago, Illinois. 
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More generally, let A be a subset of Sn that does not contain consecutive integers. 
The corresponding n-bit word has a 1 in position i if and only if i e A, where 
1 < i < n. 

Example 4.5. A subset of the set 5 = (1, 2 , . . . , n) is said to be alternating if its 
elements, when arranged in increasing order, follow the pattern odd, even, odd, 
even, and so on. For example, {3}, {1,2,5}, and {3,4} are alternating subsets of 
{1, 2, 3,4, 5}, whereas {1,3,4} and {2, 3,4,5} are not; 0 is considered alternating.* 
Let a„ denote the number of alternating subsets of 5. Prove that a„ = F„+2, where 
n > 0 . 

Solution. As in Example 4.4, let us collect some data on a„ to get a feel for it. 
It follows from Table 4.3 that a„ — Fn+i, where n > 0. To prove this, let A be an 
alternating subset of 5. 

TABLE 4.3. 

n 

0 
1 
2 
3 
4 

Alternating Subsets of S 

0 

0 .0} 
0,{1},{1,2} 
0,{1},{3},{1,2},{1,2,3) 
0 , {1}, {3}, {1,2}, {1,4}, |3, 4}, {1,2, 3), {1,2, 3, 4} 

a„ 

1 
2 
3 
5 
8 

Î 
F„+2 

Case 1. Suppose 1 ̂  A, so 2 φ A. This leaves n —2 elements in S. So, by definition, 
they can be used to form a„_2 alternating subsets of S. 

Case 2. Suppose 1 e A. This leaves n — 1 elements in 5. They can be used to form 
α„_ι alternating subsets of the set S — {1}. Now adding 1 to each of them yields α„_ι 
alternating subsets of 5, each containing 1. 

Thus, by the addition principle, a„ = α„_ι + a„_2, where ao = 1 and ai = 2. So 
a„ = Fn+2, where n > 0. ■ 

Example 4.6. Let a„ denote the number of ways n can be written as an ordered sum 
of odd positive integers, where n > 1. Table 4.4 shows the various possibilities for 
integers 1-5. It appears from the table thata„ = Fn. In fact, a„ = α„_ι +α„_2, so the 
conjecture is in fact true. 

'Proposed by Olry Terquem (1782-1862). 
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TABLE 4.4. 

n 

1 
2 
3 
4 
5 

Desired Ordered Sums 

1 
1 + 1 
3, 1 + 1 + 1 
1+3 ,1 + 1 + 1 + 1 , 3 + 1 
5,1 + 1 + 3 , 1 + 3 + 1 , 
3 + 1 + 1,1 + 1 + 1 + 1 + 1 

an 

1 
1 
2 
3 

5 

t 
Fn 

COMPOSITIONS WITH ODD SUMMANDS 

Example 4.6 dealt with compositions, which are ordered sums of a positive integer n. 
Next, we explore compositions with summands greater than one. This problem was 
studied in 1901 by E. Netto of Germany. 

Example 4.7. Let b„ denote the number of compositions of a positive integer n using 
summands greater than 1. Table 4.5 shows the various possibilities for integers 1-7. 
Once again, it appears from the table that bn = F„_i. 

TABLE 4.5. 

n 

1 
2 
3 
4 
5 
6 
7 

Compositions 

— 
2 
3 
2 + 2,4 
2 + 3,3 + 2, 5 
2 + 2 +2, 2 +4, 3 + 3 , 4 +2, 6 
2 + 2 +3 ,2 + 3 + 2 , 2 +5, 3 + 2 + 2, 
3 + 4,4 + 3, 5 + 2,7 

bn 

0 
1 
1 
2 
3 
5 
8 

Î 
F„-> 

To confirm this, note that b\ = 0 and b2 = 1. So let n > 3. Notice, for example, 
that three compositions of 7 can be obtained by adding 2 as a summand to every 
composition of 5:2 + 3 + 2 , 3 + 2 + 2, and 5 + 2; the other five compositions can 
be obtained by adding 1 to the last summand of every composition of 6: 2 + 2 + 3, 
2 + 5, 3 + 4,4 + 3, and 7. 

More generally, every composition of n can be obtained from the compositions of 
n — 2 and those of n — 1 by inserting 2 as a summand to every composition of n — 2 
and by adding a 1 to the last summand of every composition of n — 1. Since there is 
no overlapping between the two procedures, it follows that bn = bn-\ + b„_2, where 
b\ = 0 and bj = 1. Thus b„ = F„_i, where n > 1, as conjectured. ■ 
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Example 4.8. Letb„ denote the number of n-bit words x\X2X3 ■ ■ -xn, where x\ < χ·χ, 
xi > Xi, X3 < x», X4 > X5 When n = 2, there are two such binary words: 01 
and 11. Table 4.6 shows such n-bit words for 1 < n < 4. Again, it appears from the 
table that bn = F„+2, where n > 1. This is also, in fact, true. 

TABLE 4.6. 
n 

1 
2 
3 
4 

Desired n-Bit Words 

0,1 
00,01,11 
000,010,011, 110, 111 
0000,0100,0001,0101,0111, 
1100, 1101, 1111 

K 
2 
3 
5 
8 

t 
F„+2 

The next example combines Fibonacci numbers with permutations. A permutation 
on a set S is a function / : S -» S that is both one-to-one and onto. In other words, a 
permutation is nothing but a rearrangement of the elements of S. 

Example 4.9. Let p„ denote the number of permutations/of the set Sn = {1, 2 , . . . , n} 
such that 11 — f(i)\ < 1 for all 1 < i < n, where n > 1. In other words, p„ counts 
the number of permutations that moves each element no more than one position from 
its natural position. 

Figure 4.4 shows the various permutations for n = 1,2, 3, and 4, and Table 4.7 
summarizes these data. Once again, it appears from the table that pn = Fn+\. We can, 
in fact, confirm this. 

Case 1. Let / (n ) — n. Then the remaining n — 1 elements can be used to form p„_i 
permutations such that |i — /(/) l < 1 for all /. 

Case 2. Let / (n ) φ n. Then f(n) = n — 1 and f(n — 1) = n. The remaining n — 2 
elements can be employed to form /?„_2 permutations with the desired property. 

Thus, by the addition principle, pn — p„„\ + p„-i, where p\ = 1 and pi = 2. It 
now follows that p„ = Fn+\, where n > 1, as conjectured. ■ 

Since the total number of permutations of 5„ is n!, it follows from this example 
that there are n! — Fn+i permutations / o f S„ suchthat |i'—/(i) I > 1 for some integer 
1, where 1 < ί < n. In other words, there are n ! — Fn+\ permutations of S„ that move 
at least one element of S„ by two spaces from its natural position. 

In particular, there are 3! — F4 = 3 such permutations of the set {1, 2, 3), as 
Figure 4.5 depicts. 
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(H) (M) (H) 
n = 1 n = 2 

n=4 

Figure 4.4. 

TABLE 4.7. 

n 

Pn 

1 

1 

2 

2 

3 

3 

4 

5 

/l 

? 
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Figure 4.5. 

GENERATING SETS AND FIBONACCI NUMBERS 

The following example shows that Fibonacci numbers occur in the study of generat-
ing sets. 

Example 4.10. Let [n] = {1, 2, 3 , . . . , n}, where« > 1. Let 5 be a nonempty subset 
of[w].LetS+l = [s+\\s e S}.Forinstance,letS = {1, 3, 6}, then 5+1 = {2,4,6}. 

A nonempty subset S of [n] is said to generate [n + 1 ] if S U (5 + 1 ) = [n + 1 ]. For 
example, let« = 7 and 5 = {1, 3, 5,7}. Then S+ 1 = {2,4, 6, 8} and S U ( S + 1 ) = 
{1, 2, 3,4, 5,6, 7, 8] = [8], so S generates the set [8], as does the set {1, 3,4, 5, 7}, 
but not {1,3,4, 7}. 

Let s„ denote the number of subsets of [n] that generate [n+1 ]. Clearly, s i = 1 = S2 ■ 
There are two subsets of [3] that generate [4] : {1, 3} and {1, 2, 3} : so i3 = 2. There 
are three subsets of [4] that generate [5]; they are [1, 2,4}, {1, 3,4), and {1, 2, 3,4). 
Thus j 4 = 3. 

There are 55 = 5 subsets of [5] that generate the set [6]. Three of these subsets 
can be obtained by inserting the element 5 in each of the subsets {1, 2,4}, {1, 3,4}, 
and {1, 2, 3,4}: {1, 2, 4, 5}, {1, 3,4, 5), and {1, 2, 3,4, 5}. The remaining two can 
be obtained by inserting 5 in each of the subsets {1,3} and {1, 2, 3} : {1, 3, 5} and 
{1, 2, 3, 5}. Thus S5 equals the number of subsets of [4] that generate [5], plus that of 
[3] that generate [4]. 

More generally, the subsets of [n] that generate [n +1 ] can be obtained by inserting 
« in each of the subsets of [n — 1 ] that generate [n], and by inserting n in each of the 
subsets of [n — 2] that generate [n — 1]: 

sn — Number of subsets of [n — 1] that generate^] 

+ number of subsets off« - 2]that generatef« — 1 ] 

= Sn-\ +Sn~2 

where ΛΊ = I = $2· Thus sn = Fn. m 

The next three examples link Fibonacci numbers with graphs, so it is helpful here 
to present additional basic terminology from graph theory. 
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BASIC GRAPH TERMINOLOGY 

Recall that a graph G = (V, E) consists of a set V of points, called vertices, and a set 
E of arcs or line segments, called edges, joining them. An edge connecting vertices 
v and w is denoted by v-w. A vertex v is adjacent to vertex w if there is an edge 
connecting them. 

For example, the graph in Figure 4.6 has four vertices—A, B, C, and D—and seven 
edges. Vertex A is adjacent to B, but not to C. 

A 

c 

Figure 4.6. Î 
D 

Figure 4.7. 

An edge emanating from and terminating at the same vertex is a loop. Parallel 
edges have the same vertices. A loop-free graph that contains no parallel edges is a 
simple graph. 

For example, the graph in Figure 4.7 has a loop at B, and the one in Figure 4.6 
has parallel edges, while the graph in Figure 4.8 contains no loops or parallel edges, 
making it a simple graph. 

Figure 4.8. 

A subgraph H = (V, Ε') is a graph such that V Q V and £" ç E. A path 
between two vertices VQ and v„ is a sequence VQ — t>i — V2 — ■ ■ ■ — v„ of vertices and 
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edges connecting them; its length isn.A graph is connected if there is a path between 
every two distinct vertices. For instance, consider the graph in Figure 4.6. The length 
of the path A-B is one and that of A-B-A-B-C is four. 

Independent Subset of the Vertex Set 

Let V denote the set of vertices of a graph. A subset / of V is independent if no two 
vertices in / are adjacent. In other words, if / is independent and v, w e / , then the 
edge v-w does not exist. For example, consider the graph in Figure 4.9. Then {a,c,e} 
and [b, d) are independent, whereas [a, c, d, f) is not. 

Figure 4.9. 

We are now ready to examine the next graph-theoretic example. 

Example 4.11. Let Pn denote the path VQ — v\ —1>2 v„ of length n connecting 
the vertices vo, V\, υ 2 , . . . , and vn in a simple graph, where n > 0. Let C„ denote the 
number of independent subsets of vertices of the path. 

When n = 0, the path PQ consists of a single point υο, so there are two possible 
independent subsets: 0 , {i>0}. 

When n = 1, the path is VQ-V \. Then there are three independent subsets of {υο, v i}, 
namely, 0 , {υο}, and {υι}. 

When n = 2, the path P2 contains three vertices: ι>ο, υι, and υ2- Accordingly, there 
are five independent subsets: 0 , {vo}, [v\], {i>2}, and {i>o, V2). 

These data are summarized in Table 4.8. Clearly, a pattern emerges. It seems safe 
to conjecture that C„ — F„+3, where n > 0. 

TABLE 4.8. 
n 

0 

1 

2 

3 

vo 

vo 

vo 

Vo 

Path P„ 

V\ 

V, V2 

V, V2 Vl 

Independent Subsets 

0 , [v0] 

0 , {υ0|, Ιυ,) 

0 . K ) , {Κ]}, M , {VO,V2} 

0 , (υοΜυι) , {v2],{V}}, 

[v0, v2], {vo, v3), (υ ι ,υ3 ) 

c„ 

2 

3 

5 

8 

Î 
Fn+3 
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In fact, this example is basically the same as Example 4.4. It involves counting the 
number of subsets of the set {0, 1, 2, 3 , . . . , «}, where no subsets contain consecutive 
integers. Thus C„ = Fn+3, where n > 0. ■ 

We need a few more definitions before moving on to the next example. 

A Few More Definitions 

A cycle is a path with the same endpoints; it contains no repeated vertices. A graph 
is acyclic if it contains no cycles. A connected, acyclic graph is a tree. A tree with n 
vertices has exactly n — 1 edges. 

For example, the graph in Figure 4.10 shows the family tree of the Bernoullis of 
Switzerland, the most distinguished family of mathematicians. The graph in 
Figure 4.11 is not a tree because it is cyclic. The tree in Figure 4.10 contains a specially 
designated vertex, called the root. Its root is it Nicolaus. The basic terminology of 
(rooted) trees reflects that of a family tree. 

Nicolaus 

Jakob I Nicolaus 

Nicolaus 

Johann 

Nicolaus 

Johann Jakob II 

Christoph 

Figure 4.10. The Bernoulli family tree. 

Figure 4.11. 

Parent, Child, Sibling, Ancestor, Descendant, and Subtree. Let T be a tree with root 
VQ. Let v0 — v\ — ■ ■ ■ — u„_i — v„ be the path from t>o to v„. Then: 

• Vi -1 is the parent of υ,. 
• υ, is a child of Vi-\. 
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• The vertices vo,v\,.. .,v„-\ are ancestors of v„. 

• The descendants of a vertex v are those vertices for which v is an ancestor. 

• A vertex with no children is a leaf or a terminal vertex. 
• A vertex that is not a leaf is an internal vertex. 

• The subtree rooted at v consists of v, its descendants, and all its edges. 

For example, consider the tree in Figure 4.12. It is rooted at a. Vertex b is the parent 
of both e and / , so e and / are the children of b. Vertices a, b, and e are ancestors 
of i. Vertices b and e are descendants of a. Vertex / has no children, so it is a leaf. 
Vertices b and d have at least one child, so both are internal vertices. Figure 4.13 
displays the subtree rooted at b. 

Figure 4.12. 

Figure 4.13. 

Binary Tree. An ordered rooted tree is a rooted tree in which the vertices at each level 
are ordered as the first, second, third, and so on. Such a tree is a binary tree if every 
vertex has at most two children. For example, the tree in Figure 4.13 is a binary tree. 
Its left subtree is the binary tree rooted at e, and its right subtree is the binary tree 
rooted at / . 

We are now ready to explore Fibonacci trees and their relationships with Fibonacci 
numbers. 
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Fibonacci Tree. The nth Fibonacci tree T„ is a binary tree, defined recursively as 
follows, where n > 1 : 

• Both T\ and T2 are binary trees with exactly one vertex each. 
« Let n > 3. Then T„ is a binary tree whose left subtree is Tn~\ and whose right 

subtree is Ί„-ι. 

Figure 4.14 shows the Fibonacci trees T\ through T^. 

..ΛΔ 
Figure 4.14. Fibonacci trees. 

Next, we explore the number of vertices v„, the number of leaves i„, the number 
of internal vertices i„, and the number of edges e„ of a Fibonacci tree T„. To facilitate 
our study, let us collect the needed data from Figure 4.14 and summarize them in 
tabular form, as in Table 4.9. 

Using the table, we conjecture that vn = 2F„ - 1, ln = F„, in = i„ — 1 = F„ — 1, 
and e„ = v„ — 1 = 2F„ — 2. Using the recursive definition of Tn, it is fairly easy to 
establish these results, as the next theorem shows. 

TABLE 4.9. 

n 

Vn 

L 
in 
e„ 

1 

1 
1 
0 
0 

2 

1 
1 
0 
0 

3 

3 
2 
1 
2 

4 

5 
3 
2 
4 

5 

9 
5 
4 
8 

6 

15 
8 
7 

14 

n 

? 
? 
? 
? 

Theorem 4.1. Let v„, t„, /'„, and e„ denote the numbers of vertices, leaves, internal 
vertices, and edges of a Fibonacci tree T„, where n > 1. Then v„ = 2F„ — l,t„ = F„, 
in = F„ - 1, and e„ = 2Fn - 2. 

Proof. 

1. Clearly, the formula works when n = 1 and 2. Suppose n > 3. Since 7"„ 
has Γπ_( as its left subtree and Γ„_2 as its right subtree, it follows that υ„ = 
υ„_ι + υ„_2 + 1, where fi = 1 = υ2· Let b„ = v„ + 1. Then b„ = bn-\ + i>„_2, 
where b\ =2 = bz- So b„ = 2F„, and hence vn = 2F„ — 1, where n > 3. Thus 
the formula works for n > 1. 

2. By the recursive definition of T„, it follows that l„ = l„-\ + ln-i-, where 
£, = 1 = i2. Thus l„ = F„, where n>\. 
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3. Clearly, in = vn - tH = (2Fn - 1) - Fn = Fn - 1. 

4. Again, by the recursive definition of T„, e„ = e„_i + e„_2 + 2, where e\ = 
0 = e2. Let c„ = e„ + 2. Then c„ = c„-\ + c„_2, where c\ = 2 = C2- Thus 
cn = 2F„, so e„ = 2F„ — 2, where n > 1. ■ 

FIBONACCI NUMBERS AND THE STOCK MARKET 

In the 1930s, Ralph Nelson Elliot, an engineer by training, made an extensive study 
of the fluctuations in the U.S. stock market. The Dow Jones Industrials Average 
(DJIA), an indicator based on stocks of 30 top companies, is often used as a measure 
of stock market activity and hence of the health of the economy. The DJIA varies 
according to human optimism and pessimism, as reflected by market conditions. 
Nevertheless, according to Prechter and Frost, Elliott discovered, based on his study 
and observations, "that the ever-changing stock market tended to reflect a basic 
harmony found in nature and from this discovery developed a rational system of 
stock market analysis." 

In 1939, Elliott expressed his analysis as a theoretical principle, which has since 
been called the Elliott Wave Principle. In practice, the wave principle, corresponds 
to the performance of the DJIA. 

Elliott observed that the stock market unfolds according to a fundamental pattern 
comprising a complete cycle of eight waves. Each cycle consists of two phases, the 
numbered phase and the lettered phase, as seen in Figure 4.15. The numbered phase 
consists of eight waves: five upward waves and three downward waves. The upward 
waves 1, 3, and 5 are impulse waves, and they reflect optimism in the stock market; 
the downward waves 2 and 4 are corrective waves, and they are corrections to those 
impulses, indicating pessimism. Wave 2 corrects wave 1 and wave 4 corrects wave 3. 

The upward trend, depicted by the sequence 1-2-3-4-5, is then corrected by the 
downward trend, namely, the lettered phase a-b-c; the downward trend is, in fact, 
made up of two downward waves, a and c, and one upward wave b. The five-wave 
sequence 1-2-3-4-5 indicates a bull market, whereas the corrective sequence a-b-c 
indicates a bear market. Thus, one complete cycle consists of the sequence 1—2—3—4— 
5-a-b-c. According to the wave principle, this cycle of upward and downward turns 
continues. 

Now the numbered phase can be considered a wave, say, wave φ , and the lettered 
phase wave Q). Thus there are waves within waves, as Figure 4.16 shows. Counting 
(Dand Q) separately, we get two waves. The pattern (l)-(2)-(3)-(4)-(5) consists of 
21 smaller waves, and the downward trend (a)-(b)-(c) consists of 13 smaller waves; 
so the pattern ( 1 )-(2)-(3)-(4)-(5)-(a)-(b)-(c) consists of 34 smaller waves. Thus we 
have the following pattern: 

φ - (2>= 2 waves 

(1) - (2) - (3) - (4) - (5) - (a) - (b) - (c) = 8 waves 

1 - 2 - 3 - 4 - 5 1 - 2 - 3 - 4 - 5 = 34 waves 
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Numbered 
Phase 

(1) 
5 

Lettered 
Phase 

< O j 

<V 

■ > 

c 
(2) 

& 

Figure 4.15. The Fundamental Behavior of the Elliott Wave Principle (Source: R. R. Prechter, Jr., and A. 
J. Frost, Elliott Wave Principle—Key to Modern Behavior, New Classics Library, Gainesville, GA, 1985. 
Copyright © 1978-2000, reproduced with permission from New Classics Library.). 

© and © = 2 waves 
(1), (2), (3), (4), (5),(a),(b),(c) = 8 waves 

1, 2, 3, 4, 5, a, b,c, etc.= 34 waves 

Figure 4.16. Waves Within Waves (Source: R. R. Prechter, Jr., and A. J. Frost, Elliott Wave Principle—Key 
to Modern Behavior, New Classics Library, Gainesville, GA, 1985. Copyright © 1978-2000, reproduced 
with permission from New Classics Library.). 



FIBONACCI NUMBERS AND THE STOCK MARKET 67 

That is, a wave of a large degree can be split into two waves of lower degree. These 
two waves can be divided into eight waves of next lower degree, and they in turn 
can be subdivided into 34 waves of even lower degree. This subdividing pattern also 
implies that waves can be combined to form waves of higher degrees. Whether waves 
are divided or combined, the underlying behavior remains invariant (see Fig. 4.17). 

The complete cycle in Figure 4.17 comprises a bull market and a bear market. The 
bull market cycle consists of five primary waves, which can be subdivided into 21 
intermediate waves, and they in turn can be resubdivided into 89 minor waves. The 
corresponding figures for the bear market are 1,3,13, and 55, respectively. This obser-
vation yields interesting dividends, as Table 4.10 shows. Odd as it may seem, according 
to the Elliott Wave Principle, this Fibonacci rhythmic pattern continues indefinitely. 

I 

© 
(5) 

Complete Market Cycle 

Figure 4.17. Forming Larger Waves (Source: R. R. Prechter, Jr., and A. J. Frost, Elliott Wave Principle— 
Key to Modern Behavior, New Classics Library, Gainesville, GA, 1985. Copyright © 1978-2000, 
reproduced with permission from New Classics Library.). 

TABLE 4.10. 

Waves 

Cycle waves 
Primary waves 
Intermediate waves 
Minor waves 

Bull Market Bear Market Total 
Cycle Cycle Waves 

1 1 2 
5 3 8 

21 13 34 
89 55 144 
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EXERCISES 4 

1. An n -bit word containing no two consecutive 1 s can be constructed recursively 
as follows: Append a 0 to such (n — l)-bit words or append a 01 to such 
(n — 2)-bit words. Using this procedure construct all 5-bit words containing no 
two consecutive Is. There are 13 such words. 

2. Let a„ denote the number of n-bit words that do not contain the pattern 111. 
Define a„ recursively. 

Let a„ denote the number of ways a person can climb up a ladder with n rungs. At 
each step he can climb one or two rungs.* 

3. Define a„ recursively. 
4. Find an explicit formula for a„. 

Let b„ denote the number of ways of forming a sum of n (integral) dollars using only 
one- and two-dollar bills, taking order into consideration (Moser, 1963). 

5. Define b„ recursively. 
6. Find an explicit formula for b„. 

Let b„ denote the number of compositions of a positive integer n using 1, 2, and 3 as 
summands (Netto, 1901). 

7. Find fa and b4. 
8. Define b„ recursively. 

A set of integers A is fat if each of its elements is > \A\, where \A\ denotes the number 
of elements in A. For example, {5,7,91} is afat set, whereas {3,7,36,41} is not. 0 is 
considered a fat set. Let an denote the number of fat subsets of the set {1, 2, 3 , . . . , n} 
(Andrews). 

9. Define a„ recursively. 
10. Find an explicit formula for a„. 

An ordered pair of subsets [A, B) of the set 5„ = {1 ,2 , . . . , n] is admissible if 
a > \B\ for every a e A and b > \A\ for every b e B, where \X\ denotes the number 
of elements of the set X. For example, ({2, 3}, {4}) is an admissible pair of subsets 
ofS4. 

11. Find the various admissible ordered pairs of subsets of the sets So, Si, and S2. 
* 12. Predict the number of admissible ordered pairs of subsets of S„. 

** 13. Let S„ denote the sum of the elements in the nth term of the sequence of sets of 
Fibonacci numbers {1}, {1, 2}, (3, 5, 8}, {13, 21, 34, 55} Find a formula 
forS„. 

'Based on D. I. A. Cohen, Basic Techniques of Combinatorial Theory, Wiley, New York, 1978. 



FIBONACCI AND LUCAS 
IDENTITIES 

Both Fibonacci and Lucas numbers satisfy numerous identities that have been 
discovered over the centuries. In this chapter we explore several of these fundamental 
identities. 

For example, Exercise 14 of Chapter 2 required that we conjecture a formula for 
n 

the sum ]T F,. In doing so, we notice the following interesting pattern: 
1 

F, = 1 = 2 - 1 = F3 - 1 

F, + F2 = 2 = 3 - 1 = F4 - 1 

F, + F2 + F3 = 4 = 5 - 1 = F5 - 1 

F, + F2 + F3 + F4 = 8 = 8 - 1 = F6 - 1 

Fl+F2 + F3 + F4 + F5 = 12 = 13 - 1 = F7 - 1 

n 

Following this pattern, we conjecture that £ F, = F„+2 — 1. We shall establish the 

validity of this formula in two ways, but we first state it as a theorem. See Exercise 23 
for an alternate method. 

Theorem 5.1. (Lucas, 1876) 

n 

£ f i = FB+2-l (5.1) 
I 

69 
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Proof. Using the Fibonacci recurrence relation, we have: 

F\ = F3 — F2 

Fi = F4 - F3 

F3 = F5 — F4 

Fn-i = Fn+\ — F„ 

F„ = Fn+2 — F n + | 

Adding these equations, we get: 

/ , Ή = ^n+2 — Fj = Fn+2 — 1 

AN ALTERNATE METHOD 

An alternate method of proving Identity (5.1) is to apply the principle of mathematical 
induction (PMI). Since F\ = F3 — 1, the formula works forn = 1. 

Now assume it is true for an arbitrary positive integer k > 1 : 

k 

1 

Then 

1 1 

= (Fk+2 — 1) + Ft + i , by the inductive hypothesis 

= (F*+1 + Fk+2) - 1 

= F i + 3 - 1 

Thus, by PMI, the formula is true for every positive integer n. ■ 

20 
For example, £ F, = F22 - 1 = 17, 711 - 1 = 17,710. You can verify this by 

1 
direct computation. 

This theorem is the basis of an interesting puzzle, conceived by W. H. Huff: 

Add up any finite number of consecutive Fibonacci numbers. Now add the second term 
to this sum. The resulting sum is a Fibonacci number. 

The next example justifies the validity of this puzzle. 
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k 

Example 5.1. Prove that £ Fi+j + Fi+\ = Fi+k+2- ■ 
j=o 

Solution. 

k i+k i-i 

Σ Fi+j + F/+, = Σ Fr - Σ Fr + F,+i 
y=0 I I 

= ( f i + t + 2 - l ) - ( f / + | - l ) + f/+| 

= Fi+k+2 

This example, in fact, identifies the Fibonacci number that is the final sum in 
the puzzle. Obviously, this example and hence the puzzle can be extended to the 
generalized Fibonacci sequence (see Exercise 16 in Chapter 7). 

Using the technique employed in Theorem 5.1, we can derive a formula for the 
sum of the first n Fibonacci numbers with odd subscripts. 

Theorem 5.2. (Lucas, 1876) 

n 

^ F 2 , - , = F 2 n (5.2) 
1 

Proof. Using the Fibonacci recurrence relation, we have 

F\ = Fj — FQ 

F-J = Fi — F2 

F$ = Ff, — F4 

F~2n-3 — Fln-2 ~ F2„-4 

F~2n-\ = Fin — F2n-2 

Adding these equations, we get 

n 

/ J F2i-\ = F2„ — FQ = Fj,, ■ 

10 ' 
For example, £ F 2 , _ i = F20 = 6765. Again, you can verify this by direct 

1 
computation. 

Corollary 5.1. (Lucas, 1876) 

n 
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Proof. 

2n 

1 1 1 

= (Fin+2 - 1) - F2n by Theorems 5.1 and 5.2. 

= (^2/1+2 — Fin) — 1 

= 2̂n+i — 1 by the Fibonacci recurrence relation (FRR). ■ 

This identity has a wonderful application to graph theory. But before we examine 
it, we need two definitions. 

Spanning Tree of a Connected Graph 

A spanning tree of a connected graph G is a subgraph of G that is a tree containing 
every vertex of G. The complexity k(G) of a graph is the number of distinct spanning 
trees of the graph. 

For example, the graph in Figure 5.1 has three distinct spanning trees (see Fig. 5.2), 
so its complexity is three. 

Figure 5.1. 

Figure 5.2. 

Fan Graph 

A fan graph or simply a fan, G\, of order 1 consists of two vertices, 0 and 1, and 
exactly one edge between them. A fan G„ of order n is obtained by adding a vertex 
n to a fan G„_i and then connecting vertex n to vertices 0 and n — 1, where n > 2. 
Figure 5.3 shows fans of orders 1 through 4. 

Next, we look for the number of spanning trees sn of a fan G„. The fan G\ has 
clearly one spanning tree, so s\ = 1 (see Fig. 5.4). Fan Gi has three spanning trees, 
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0 · · 1 

G: 

^t 
Figure 5.3. 

• · 
Figure 5.4. Spanning tree of G\. 

so Ï2 — 3 (see Fig. 5.5). G3 has eight spanning trees, so 53 = 8 (see Fig. 5.6). Thus 
s\ = \ = F2, S2 = 3 = F», and 53 = 8 = Ff,. So we predict that Î4 = Fg. 

To confirm this, consider the possible ways of having vertex 4 in a spanning tree 
of G4. It follows from Figure 5.7 that 

s4 = 3 3 + y \ i + 1 

= F6 + (F6 + F4 + F2) + 1 = F6 + (F7 - 1) 

= Ff, + F7 = Fg 

Figure 5.5. Spanning trees of G2. 

« · -
Figure 5.6. Spanning trees of G3. 

S3 S 2 S) 

Figure 5.7. Possible ways of having vertex 4 in a spanning tree of G 4. 
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More generally, 

n-\ 

sn = s„_i + ^ s , · + 1 
1 

n-\ 

= F2n-2 + Σ F2, + 1 = F2n_2 + (F2n_! - 1) + 1 
] 

= Fln-2 + F~2n-l = F2n 

For example, a fan of order 5 has F\Q = 55 spanning trees. 
Before we state the next stack exponents property, we need to study the following 

pattern: 

F , F 3 - F 2
2 = 1 - 2 - 12 = (-1)2 

F2F4-F32 = 1 ■ 3 — 22 = (—l)3 

FiFs-FJ = 2 - 5 - 3 2 = ( - l ) 4 

F4F6-F* = 3 · 8 - 5 2 = (-1)5 

Clearly, a pattern emerges. We conjecture that F„_iFn+i —F2 = (—1)", where« > 1. 
This leads to the next formula, which was discovered in 1680 by the Italian-born 
French astronomer and mathematician Giovanni Domenico Cassini ( 1625-1712), and 
discovered independently in 1753 by Robert Simson (1687-1768) of the University 
of Glasgow. 

Theorem 5.3. (Cassini 's Formula) 

F n _ ,F n + 1 -F„ 2 = ( - l ) " (5.4) 

where n > 1. 

Proof, (by PMI) Since F0F2 - F,2 = 0· 1 - 1 = - 1 = (-1)1, the given statement 
is clearly true when n = 1. 

Now we assume it is true for an arbitrary positive integer k:Fk-\Fk+\ — F% — 
(-l)*.Then 

FkFk+2 — Fk+l = (F*+] — Fk-i)(Fk + F^+i) — Fk+l 

— FkFk+\ + Fk+l — FkFk-i — F/t_iFfc+i — Fk+l 

= FkFk+l - FkFk-X - Fl - (-1)* by the IH 

= FkFk+l - Fk(Fk^ + Fk) + (-1)*+1 

= FkFk+i — FkFk+\ -I- (—1) 

= (-D*+1 
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Thus the formula works for n = k + 1. So, by PMI, the statement is true for every 
integern > 1. ■ 

Cassini 's formula yields the following fascinating by-product. 

Corollary 5.2. Any two consecutive Fibonacci numbers are relatively prime; that is, 
(Fn+UF„) = 1 for every«. 

Proof. Let p be a prime factor of both F„ and Fn+\. Then, by Cassini's formula, 
p\ ± 1, which is a contradiction. Thus (F„+i, Fn) = 1. ■ 

Substituting for Fn+i in Cassini's formula yields F2_, + F„F„^ - F2 = (-1)". 
This implies that the Diophantine equation x2 + xy — y2 = ±1 has infinitely many 
solutions, x = F„_| and y = F„. 

In 1972, Ira Gessel of Harvard University employed Cassini's formula to establish 
the following interesting result. 

Theorem 5.4. A positive integer n is a Fibonacci number if and only if 5n2 ± 4 is a 
perfect square. 

Proof. We have 

(—l)r + F 2 = F r + |F r _ | Cassini's formula 

Lr = Fr+\ + Fr_i by Exercise 32 

Λ L2
r - 4 K - D ' + F2] = (Fr+1 + Fr_,)2 - 4 F r + 1 F r _ , 

- ( F r + I - F r _ , ) 2 

= F? 

L2 = 5F r
2 +4 ( - l ) ' ' 

Thus if n is a Fibonacci number, then 5n2 ± 4 is a perfect square. 
Conversely, let 5n2 ± 4 be a perfect square m2. Then 

m2 - 5n2 = ±4 

m + nv5 m — n 

2 ' 2 

Since m and n have the same parity (both odd or both even), both (m + n\/5)/2 
and (m — n-j5)/2 are integers in the extension field Q(\/5) = {JC 4- y\/S\x, y e 
Q}, where Q denotes the set of rational numbers. Since their product is ± 1 , they 
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must be units in the field. But the only integral units in Q(\/5) are of the 
form ± a ± ( . Then 

= Lj + Fjy/5 

2 

Thus n = F,, a Fibonacci number. ■ 

The identity 5F„2 + 4 ( - l ) n = L2 (see Exercise 39) was discovered in 1950 by 
P. Schub of the University of Pennsylvania. This result has an interesting application. 

Let n = 2m + 1. The resulting square, L\m+X = 5F2
2

m+1 — 4, is the discriminant of 
the quadratic equation (F2m+i ± l)x2 — F2m+\x — (F2m+i =p 1) = 0. Consequently, 
its solutions are rational. For example, 

1 Χ 2 - 2 Λ : - 3 = ( U + 1 ) ( 1 J C - 3 ) 

6x2 - 5x - 4 = (2x + 1)(3JC - 4) 

12x2 - \3x - 14 = (3x + 2)(4x - 7) 

35x2 - 34x - 33 = (5x + 3)(lx - 11) 

More generally, 

[F2m+, + ( - 1 ) " V - F2m+ix - [F2m+I - ( - l ) m ] = (Fm+lx + Fm)(Lmx - Lm+l) 

The truth of this rests on the following facts: 

FmFm_1 = F ^ - F 2 _ 1 + ( - l ) m , F m _ , F m + 1 = F 2 + ( - i r , and 

Fm + Fm+\ - F2m+l 

These observations were made in 1950 by A. Struyk. 
What can we say about the sum of the squares of the first n Fibonacci numbers? 

Once again, let us look for a pattern: 

F2 + F2
2 = 2 = F 2 F 3 

This result has a nice geometric interpretation: The sum of the areas of the squares 
of sizes F) x F\ and F2 x F2 equals the area of the rectangle of size F2 x F3, as 
Figure 5.8 demonstrates. Likewise, F 2 + F2 + F2 = 1 + 1 + 4 = 6 = 2 · 3 = F3F4 
and F,2 + F | + F3

2 + F4
2 = 1 + 1 + 4 + 9 = 15 = 3 · 5 = F4F5. These results also 

can be interpreted geometrically in a similar manner, as Figure 5.9 shows. 

2 
11 | 

Figure 5.8. 
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More generally, we have the next result. 

3 

2 
3 

Theorem 5.5. (Lucas, 1876) 

Figure 5.9. 

Σι2 = ^ n+1 (5.5) 

Proof, (by PMI) When n = 1, the left-hand side (LHS) = £ F 2 = F,2 = 1 = 
1 

1 · 1 = F\ ■ Fi = the right-hand side (RHS). So the result is true when n = 1. 

k 

Assume it is true for an arbitrary positive integer k : Σ F? = FkFk+i ■ Then 

k+\ 

■7L· 
1 1 

= FkFk+l + Ft+l bythelH 

= Fk+\(Fk 4- Fk+\) 

— Fk+\Fk+2 by the Fibonacci recurrence relation (FRR) 

So the statement is true when n — k + 1. Thus it is true for every positive integer n. 

For example, 

25 

J2 Ff = F25F26 = 75,025 · 121, 393 = 9, 107, 509, 825 
1 

Interestingly enough, Identities 5.1 through 5.5 have analogous results for Lucas 
number also: 

/ , Lj = L„+2 — 3 
I 

n 

1 

n 

/ , -̂2i = L2n+\ — 1 

(5.6) 

(5.7) 

(5.8) 
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Ln^Ln+l-L
2
n = 5 ( - 1 ) η - 1 (5.9) 

n 

£ L ? = L „ L n + 1 - 2 (5.10) 
1 

These identities can be established using PMI (see Exercises 3-7). In addition, it is 
possible to establish Identity 5.10 using the Euclidean algorithm. 

To derive new identities, we now present an explicit formula for Fn. To this end, 
let a and β be the roots of the quadratic equation x2 - x - 1 = 0, so a = (l + V5)/2 
and β = (1 — >/5)/2. (The choice of the equation will become clear in Chapter 18.) 
Then a + β = 1 and aß = - 1 . Besides, a2 = a ( l - ß) = a - aß = a + 1, a3 = 
a(a + l) = a 2 + a = 2a+ l , anda 4 = α(2α+1) = 2a2+a = 2(α+1)+α = 3α+2. 
Thus we have: 

a = la + 0 

a2 = la + l 

a3 = 2a + 1 

a4 = 3a + 2 

Notice an interesting pattern emerging: The constant term and the coefficient of a 
on the RHS appear to be adjacent Fibonacci numbers. Accordingly, we have the 
following result. 

Lemma 5.1. a" = aF„ + F„_i, where n > 0. ■ 

This can be established easily using PMI (see Exercise 48). 

Corollary S3, ß" = ßFn + Fn-U where n > 0. ■ 

Let un = (an - ß")/V5, where n > 1. Then 

a-ß V5 a2-ß2 (a + ß)(a-ß) 
MI = —η=- = -— = 1 and «2 = -^— = -ρ = 1 

Suppose n > 3. Then 

an-\ _ ßn-\ an-2 _ ßn-2 

«π-1 + «π-2 = 7= l· 
y/5 7 5 

α"-2(α + 1) - β"~2(β + 1) a"'2 ■ a2 - βη~2 ■ β2 

V5 V5 
a" -β" 

V5 = u„ 

Thus, u„ satisfies the FRR (1) and the two initial conditions. This gives us an explicit 
formula for F„ : Fn = u„. 
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Theorem 5.6. Let a be the positive root of the quadratic equation x1 — x — 1 = 0 
and ß its negative root. Then 

a - ß 
where n > 1. ■ 

This explicit formula for F„ is called Binet's formula, after the French mathe-
matician Jacques-Phillipe-Marie Binet (1786-1856), who discovered it in 1843. In 
fact, it was first discovered in 1718 by the French mathematician Abraham De Moivre 
( 1667-1754) using generating functions (see Chapter 18), and also arrived at indepen-
dently in 1844 by the French engineer and mathematician Gabriel Lamé ( 1795-1870). 

In any case, this formula, which we shall derive in two other ways in later chapters, 
can be employed to derive a myriad of Fibonacci identities. 

Corollary 5.4. (Lucas, 1876) 

F2
n+x + F2

n=F2n+x (5.11) 

F„2
+1 - F„2_, = F2n (5.12) 

■ 

For example, F8
2 + F7

2 =441 + 169 = 610= F,5 and F 2 - F 9
2 = 7921 - 1156 = 

6765 = F20. 
In Chapter 34, we shall prove that there are only two distinct Fibonacci numbers 

that are perfect squares, namely, 1 and 144. Consequently, Identity (5.11) has a nice 
geometric interpretation: No two consecutive Fibonacci numbers can be the lengths 
of the legs of a right triangle. 

The next theorem, however, provides a link between four consecutive Fibonacci 
numbers and the lengths of a Pythagorean triangle, as established in 1948 by 
C. W. Raine. 

Theorem 5.7. Let ABC be a triangle with AC = F^Fk+3, BC = 2Ft+\ Fk+2, and 
AB = F2JH-3. Then ABC is a Pythagorean triangle, right-angled at C. ■ 

It suffices to verify that AB2 = AC2 + BC2, so we leave its proof as an exercise. 
For example, let AC = F7Fm = 13-55 = 715, BC = 2 F 8 F 9 = 2-21-34 = 1428, 

and Aß = F,7 = 1597.Then AC2 + BC2 = 7152 + 14282 = 2, 550,409 = 15972 = 
AB2, so ABC is a right triangle, right-angled at C. 

Corresponding to Binet's formula for F„, there is one for L„ also, as the next 
theorem shows. We invite you to confirm it (see Exercise 18). 

Theorem 5.8. Let n > 1. Then 

Ln=an+ß" 

The two Binet formulas can be used in tandem to derive an array of identities. 
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Corollary 5.5. 

F2n = FnLn (5.13) 

F„_i + Fn+i = Ln (5.14) 

Fn+2 - F„_2 = Ln (5.15) 

L„_j + Ln+l = 5F„ (5.16) 

For example, F20 = 6765 = 55 · 123 = Fi0Lio, Fu + F B = 89 + 233 = 322 = 
£.12, Fu - F7 = 89 - 13 = 76 = L9, and Ll0 + Ln = 123 + 322 = 445 = 5 · 89 = 
5F„. 

Identity 5.13 implies that when n > 3, every Fibonacci number F2„ with an 
even subscript has nontrivial factors. According to Identity 5.14, the sum of any 
two Fibonacci numbers that are two units away is a Lucas number. Likewise, by 
Identity 5.15, the difference of any two Fibonacci numbers that lie four units away is 
also a Lucas number. 

Identity 5.13 has an interesting by-product. Let 2n = 2m, where m > 1. Then 

r2
m — Z^"·-' F2m-\ 

= Z.2m_| (Z.2m - 2 F2m-2) = Ζ/2«-ι Z.2m~2 F2"t-2 

= ί.2 f f'- , i . 2 m - 2 ( i * 2 m - 3 F2"i-3) = 1*ι1<η-\ Llm-lLlm-"* r^m-} 

Continuing like this we get: 

F2»i ^ Ζ.2Λ*-1 l^2m~2 ' ' ' ^ 8 ^ 4 ^ * 2 ^ Ί 

This can be established using PMI. 
For example, 

F32 = LKUULZU = 2207 · 47 · 7 · 3 · 1 = 2, 178, 309 

Identity 5.14 has interesting applications, as the next two examples demonstrate. 

Example 5.2. Let us reconsider the same permutation problem as in Example 4.9, 
with the difference that the numbers are arranged around a circle (see Fig. 5.10). Let 
qn denote the number of cyclic permutations g that move no element more than one 
position from its natural position on the circle, where n > 3. 

Figure 5.11 shows the various such cyclic permutations for n = 3, so #3 = 4. 
Notice that with 1 and 3 swapped, there is just one permutation; otherwise, there are 
three, for a total of four cyclic permutations. 

More generally, let g(n) = 1. The remaining n — 2 elements can be rearranged in 
p„_2 ways such that no element is moved by more than one space from its natural 
position. On the other hand, let g(n) φ 1. This case is precisely the same as the 
preceding problem, so there are p„ desired permutations. Thus, again by the addition 
principle, q„ = p„-2 + Pn = F/i-i + Fn+\ = L„. 
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o 
Figure 5.10. 

3<Γ>3< 2 

1 and 3 Swapped 

The next example is also a fine application of the identity L„ = F„_i + Fn+\. 

Example 5.3. In Example 4.1, we found that there are a„ — Fn+2 n-bit words that 
do not contain two consecutive Is. Instead of arranging the bits linearly, suppose we 
arrange them around a circle in such a way that no two adjacent bits are Is. Let b„ 
denote the number of such arrangements, where n > 2. Thus, b„ denotes the number 
of n-bit words such that: 

1. No two adjacent bits are Is; 

2. If the word begins with a 1, then it cannot end in a 1. 

Table 5.1 shows the possible such binary words for n = 2, 3, 4, and 5. It appears 
from the table that b„ — L„. 

TABLE 5.1. 

n 

2 
3 
4 
5 

n-Bit Words of the Desired Type 

00,01,10 
000,001,010,100, 
0000,0001,0010,0100, 1000, 0101, 1010 
00000,00001,00010,00100,01000, 10000, 
01010,01001, 10100, 10010,00101 

*. 

3 
4 
7 
11 

t 
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To establish this, suppose the word ends in a 0. There are an-\ = Fn + 1 binary 
words that meet the criteria. On the other hand, suppose the nth bit is 1. Then the 
(n - l)st bit, and the 1st bit cannot be 1: 

0 0 1 

1 n — \ n 
n—3 bits 

The remaining n — 3 bits can be used to form a„_3 = F„_i words of the desired type. 
Thus b„ = α„_ι + a„_3 = Fn+] + F„_, = L„, where n > 2. ■ 

NUMBER OF DIGITS IN F„ AND Ln 

Binet's formula can be successfully employed to predetermine the number of digits 
in Fn and L„. We can show this by writing Fn as 

Since \ß\ < \a\, (ß/ot)" —*■ 0 as n —>■ oo. Therefore, when n is sufficiently large, 

«" /? % 

logF„ «a n l o g a - ( l o g 5 ) / 2 

Number of digits in F„ = 1 + characteristic of logF„ = riogF„l 

= r « l o g a - 0 o g 5 ) / 2 1 

= r»[log(l + V5) - log2] - (log5)/21 

For example, the number of digits in F30 is given by 

r30[log(l + >/5) - log2] - (log5)/21 = Γ5.920144205331 = 6 

Notice that F30 = 832,040 does indeed contain six digits. Likewise, F45 consists 
of 10 digits. 

Since L„ = a" + ß", it follows that, when n is sufficiently large, L„ « a", so that 
log L„ «« n log a. Thus the number of digits in L„ is given by 

Hog L„l = Γ« logol = r«Dog(l +VS)- log2]l 

For example, L39 contains [39[log(l + -/5) - log2]l = 9 digits, whereas L50 
contains r50[log(l + VS) - log2]l = 11 digits. 

Using Binet's formula, we can generalize Cassini's formula, as the next theorem 
shows. It was established in 1879 by the Belgian mathematician Eugene Charles 
Catalan (1814-1894). 
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Theorem 5.9. (Catalan, 1879) Let k be a positive integer. Then 

Fn+kFn.k - F 2 = (-l)"+*+'F2 (5.17) 

where n > k. 

Proof. 

a"+k _ ß"+k ctn~k — β"~Ιί 

LHS = /a"- j8"Y 
>/5 Λ/5 

a2n _ (an+kß„-k + ^-kßn+k) + ßln ß2« + 2̂« _ 2(-l)" 

5 5 

-[(aß)na-kßk + (aß)"akß-k] + 2 ( - l ) " 

5 

2 ( - l ) " - (-1)"(-1)*/?2* - (-1)"(-1)*α2* 

5 

2( -1) π - ( -1)" + *(α 2 *+/3 2 *) 

5 

2 ( - l ) B + (-\)n+k+l[5F2 + 2(-l)*] by Exercise 42 

= ( 1)η+*-ΗΓ2 , 2(- l)"+2(-l)"+2*+' 

= ( _ i r + t + l F 2 + 2(-ir + 2(-,r-

= (-\)"+k+,Fk
2 

= RHS ■ 

For example, let n = 10 and k = 3. Then F13F7 - F,20 = 233 · 13 - 552 = 4 = 
( - l ) ' V 2 . 

We can generalize Identity 5.17 even further (see Identity 19) on p. 88. 
As with Theorem 5.4, we have the following result for Lucas numbers, developed 

by G. Wulczyn of Bucknell University in Pennsylvania in 1974. 

Theorem 5.10. A positive integer « is a Lucas number if and only if 5n2 ± 20 is a 
perfect square. 

Proof. Let n = L2m+\. Then 

5/12 + 20 = 5(a2m+1 + ß2m+,f + 20 = 5[a4m+2 + ß4m+2 + 2(aß)2m+]] + 20 

= 5[a4m+2 + ß4m+2 - 2(aß)2m+l] = 5(a2m+l - ß2m+1)2 

= 5(v/5F2m+1)2 = 25F2
m+1 



84 FIBONACCI AND LUCAS IDENTITIES 

On the other hand, let n = L2m· Then 

5n2 - 20 = 5(a2m + ß2m)2 - 20 = 5[a4m + ß4m + 2(aß)2m] - 20 

= 5[a4m + ß4m - 2(,aß)2m] = 25F2
2
m 

Thus, if n is a Lucas number, then 5n2 ± 20 is a perfect square. 
Because the proof of the converse is a bit complicated, we omit it. ■ 

For example, let n = 199 = L n . Then 5n2 + 20 = 5 · 1992 + 20 = 198,025 = 
4452, a perfect square. On the other hand, let n = 843 = L14. Then 5n2 — 20 = 
5 ■ 8432 - 20 = 3,553,225 = 1, 8852, again a perfect square. 

With Binet's formulas at hand, we can extend the definitions of Fn and Ln to 
negative subscripts also. If we apply the FRR to the negative side, we get 

F_4 F_3 F_2 F-\ FQ F\ F2 F3 F4 
. . . - 3 2 - 1 1 0 1 1 2 3 · · · 

So, it appears that F_„ = (-1)"+ 1 F„,n> 1. 
To prove this, assume Binet's formula holds for negative exponents 

«-" - β~" {-βγ - (-a)" . , . 
F-n = -=. = y= since aß = — 1 

_ (-1)"(βη-αη) (-1)η+1(α"-βη) 

V5 " V5 
= ( -D n + 1 F n (5.18) 

Likewise, 
L_„ = (-1)"L„. (5.19) 

Thus, F-n = Fn if and only if n is odd, and L_„ = Ln if and only if n is even. 
Since F_i = 1, it is easy to verify that the identity F 2 + F2

+l = F2„+i (5.11) 
follows from Catalan's formula 5.17. 

A formula for a ~n can now be derived easily. Since a" = aFn + F„-\ (Lemma 5.1), 
it follows that 

a'" = ctF-n + F_„_i 

= a ( - l ) n + 1 F„ + ( - l ) ' ' + 2 F n + 1 

= ( - l ) n + 1 ( a F n - F n + 1 ) 

<*F„ - Fn+i ifnisodd 
Fn+\ — aF„ otherwise 

For example, a - 1 2 = Fn - aFn = 89 - 144a. 
Formula 5.20 can also be established by PMI or by showing that a" (a F„ — Fn+\ ) = 

(—l)n+1, using Binet's formula. 
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Likewise, 
„ _ . ßFn - Fn+] if« is odd 

P ~*F„+i-ßFH otherwise ( ' 

Notice two intriguing patterns that emerge from a " : 

a~' = 1 -a- 1 

Y 
a'1 = 2 - 1 -a 

Y 
a~' = 2 a-3 

Y 
a"4 = 5 - 3 - a 

a"5 = 5 - a - 8 ;X 
They are indicated by the two crisscrossing arrows: The absolute values of the 
coefficients of a are consecutive Fibonacci numbers, and so are the absolute values 
of the various constants. 

The summation Formulas (5.1) through (5.3) are a special case of the generalized 
summation formula, given in the next theorem. In addition, the theorem yields an 
array of fascinating formulas as by-products. Its proof is a consequence of Binet's 
formulas and the geometric summation formula 

where r φ 1. 

Theorem 5.11. (Koshy, 1998) Let k > 1 and j any integer. Then 

I
F„k+k+j - (-1) Fnk+j — Fj - (—lyFk-j . 

L * - ( - l ) * - l ' ^ < , , , , „ 
F ( n*#r F +< n*F ( 5 · 2 Ζ ) 

—.— — otherwise 
L t - ( - l ) * - l 
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Proof. 

EF*<+; = L -
i=0 1=0 

1 

V5 

1 Γ ; ank+k- 1 , ««*+* — I l 

_ («"*+*+> - g>)(/j* - 1) - (ß"M+j _ ßj^ak _ t ) 

V5[(aß)k - (α* + 0*) + 1] 

= ~F"*+*+> + ( - ϊ ) * ^ + ; + F> + (akßJ - <*Jßk)/^5 
(-1)* - Lk + 1 

But 

M ^ \(aß)k(ßJ-k-aJ-k) otherwi otherwise 

·'· X) Ή/+; = 
1 = 0 

= ί (-iyV5Fk-j if j<k 
\ (-1)*+1 \/5Fy_* otherwise 

firt-rt+j - (-l)kFnk+j - Fj - ( - l )>F t _ , . 

L* - ( - ! ) * - ! l î J < k 

FM+J-<-lYF^-Fj + j-lÏF„ o t h e r w i s e 

Letting y = 0 in this formula yields the following result. 

Corollary 5.6. (Koshy, 1998) 

Σ Ρ Fnk+k - (-1) F„ic — Fk 
Fki = r . - r _ n * - i ( 5 · 2 3 ) 

Corollary 5.7. 

M Lk-(-l)
k-l 

Y^Fi = Fn+2-l (5.1) 
1 

n 

Σ F2 '- ' = F2« (5-2> 
1 

n 

Y^F2i = F2n+i-l (5.3) 
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Proof. When k — 1, Formula 5.23 yields 

, / ' = Σ > = ζ., + ι-1 = - τ - = *·■*'- 1 

Formula 5.3 follows from formula 5.23 by letting k = 2, and Formula 5.2 from 
Formula 5.22 by letting k - 2 and j = - 1 . ■ 

It follows from Formula 5.23 that 

F3n+3 + F3„ — FT, F 3 n + 3 + F^„ — 2 

Σ > = 1.3-1 + 1 

In particular, 

Λ „ flg + F]5-2 2584 + 6 1 0 - 2 _QC 

L·^' = z = 1 =798 
1 

This may be verified by direct computation. 

Corollary 5.8. (Koshy, 1998) 

n+j+2 — Fj+] otherwise 
V F- - I Fn+'+1 -FJ-(-VJFi -j if j < 1 

i=0 

Proof Since L\ — (— l)1 — 1 = 1, the corollary follows from Formula 5.22 when 
k = 1. ■ 

For example, 
5 

Σ F-+3 = F10 - F4 = 55 - 3 = 52 
o 

and 
8 

Σ Fi-5 = F5- F_5 - (-1)"5F6 = 5 - 5 + 8 = 8 
o 

Over the years, a vast array of Fibonacci and Lucas identities have been developed. 
The following list cites a substantial number of them. It would be a good exercise to 
establish the validity of each. 

1. F„3
+4 - 3F„3

+3 - 6F„3
+2 + 3F„3

+1 + F 3 = 0 (Zeitlin and Parker, 1963) 

2. FmF„ — Fm+kFn-k = (—1)"_ Fm+i_„Ft 

3. 5 Y F,-2F, = L2n-i + 1 + 3v, where v = { ? l f " 1S e v e n (Koshy, 1998) 
■ l 1 otherwise 
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4. o"F„_m+,+a—IF(,_IB=o" 

5. ßmF„-m+,+ßm-xF^m=ßn 

0. tn = rmrn—m+\ ~r rm—\rn—m 

1. Ln ~ Lmtn—mjr\ "Γ Lm~[ rn—m 

8. (L*+fF-y = L™+fF™ (Fisk, 1963) 

9. a-n = (-l)n+l(aFn-Fn+l) 

10. L2mL2n = L*+B + 5F^_„ (Wall, February 1964) 

11. L2mL2n = 5F2
+n + L2 _„ (Wall, February 1964) 

12. L2mL2„ = L2
m+n + L2

m_„ - 4 ( - l ) m + n (Lind and Hoggatt, Jr., 1964) 

13. L2m+2n + L2m-2„ = L2mL2„ (Koshy, 1998) 

14. L2m+2n - L2m_2„ = 5F2mF2n (Koshy, 1998) 

15. Un = 5F|„ + 2 (Lucas, 1876) 

16. L4n+2 = 5F2
2

n+1 - 2 (Lucas, 1876) 

17. 2(F4 + F4
+ 1 + F4

+2) = (F„2 + F„2
+1 + F2

+2)2 (Candido, 1905) 

18. (F„Fn+3)2 + (2Fn+1F„+2)2 = F2
2„+3 (Raine, 1948) 

19. Fn+hFn+k - FnFn+h+k = (-l)"FhFk (Everman et al., 1960) 

20. Σ(-1)'~ιFi+l = (-iy~lF„ 
1 

21. £ F 2 = (3F2„+1 + 2F2
n+2 - 6F2nF2„+2 - In - 5)/5 (Rao, 1953) 

1 

22. Σ Fl_x = (3F2„ + 2F2„_1 - 4F2„_2F2„ + 2n- 2)/5 (Rao, 1953) 
1 

23. t F2i-xF2M = (2F2
n+2 - 3F2

2„+1 + 3« + l)/5 (Rao, 1953) 
i 

24. Σ F2iF2i+2 = (3F2
n+2 - 2F2„+1 - 3n - l)/5 (Rao, 1953) 

1 

25. Σ FFi+2 = F2„+1F2n+2 - 1 (Rao, 1953) 
1 

26. Σ FnFii+i = (F2
n+2 + F2

n+1 - n - 2)/5 (Rao, 1953) 
1 

27. Σ F2i-xF2i = (4F2„+1 - F2
n+2 +n- 3)/5 (Rao, 1953) 

1 
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28. Σ FiFi+i = Fl+\ - 1 (Rao, 1953) 
1 

29. Σ F2,_, F2i+3 = (3F2
2

n+2 - 2F2
2

n+l + In - l)/5 (Rao, 1953) 

30. t F2iFli+i = (2F2
2

n+4 - 3F2
n+3 -In- 6)/5 (Rao, 1953) 

1 

31. Σ F,F,+4 = (F4n+6 - F2
n + 3 - 4)/2 (Rao, 1953) 

1 

32. F„Fn+iFn+2 = F„3
+1 + (-1)"F„+I 

33. Fn+1 = Fn + Fn_, + 3F„_iF„F„+i 

34. Σ FnF2i+xF2i+2 = (F2
3„+2 - F2n+2)/4 (Rao, 1953) 

35. Σ F2i-\F2iF2i+l = (F2
3

n+1 + F2n - 2)/4 (Rao, 1953) 

36- Σ *2i-i = Ca, + 3F2n)/4 (Rao, 1953) 
1 

37- Σ H = (Fl+l - 3F2n_, + 2)/4 (Rao, 1953) 
1 

38. Σ F? = (F„3
+2 - 3F3

+1 + 3(-l)"F„ + 2)/4 (Rao, 1953) 
1 

39. Σ F2i-XF2i+,F2/+3 = (F3„+2 + 7F2„+2 - 8)/4 (Rao, 1953) 
1 

40. Σ F2iF2i+2Fli+4 = (F2
3„+3 - 7F2n+3 + 6)/4 (Rao, 1953) 

1 

41. Σ FiFi+2Fi+, = [F3n+8 - 16(-1)"F„ - 5]/10 (Rao, 1953) 
I 

42. F3„ = 4F3n_3 + F3 n-6 

43. Fm+kFm.k - Fm+sFm.s = (-\r-sFsFk+s (Halton, 1965) 

44. Fm+n = Fm+\Fn+\ - Fm_iF„_i (Mana, 1969) 

45. Fr+S+, — Fr+\Fs+iF,+\ + FrFsF, — Fr-\Fs-\F,-\ 

46. F3„ = 5F„3 + 3(-l)"F„ (Halton, 1965) 

47. FrFm+n = Fm+rFn - ( - i r F m F „ _ r (Halton, 1965) 

48. [5F^ + 2 ( - i r ] F 2 r = F 2
+ r + 1 - F2

m+r_, - F2
m_r+, - F^_r_, (Halton, 1965) 
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49. [5F2 + 2(- l )"]F r
2 + 2{-\YFl = F^+r + F2 _ r (Halton, 1965) 

50. FmF2mF3r = Fl+r - {-\)rFl_r - {-\)mLmF? (Halton, 1965) 

51. F2m+lF2n+l = F 2
+ n + 1 + Fl_n (Tadlock, 1965) 

52. L2m+iL2„+i = L2
m+n+x - Fl_n + 4 ( - l ) " - " (Tadlock, 1965) 

53. F„2 + F2
+2Jt = Fn+lk-2Fn+2k+\ + F2t_iF2B+2i_i (Sharpe, 1965) 

54. F„2 + F 2
+ 2 t + 1 = F2k+lF2n+2k+l (Sharpe, 1965) 

55. F„2
+2, - F„2 = F2kF2n+2k (Sharpe, 1965) 

5 6 · Fn+2k+\ - Fn = Fn-\F„+2 - F2kF2n+2k+2 (Shaφe, 1965) 

57. £ / F 2 = nFnFn+l - F 2 + [1 + ( - l ) - ' ] / 2 (Koshy, 1998) 
1 

58. £ > - i + 1)F2 = F„Fn+2 - [1 + ( - l ) n - ' ] / 2 (Koshy, 1998) 
1 

59. Σ (2« - i)Ff = Fl (Hoggatt, 1964) 

60. Σ FiFl+l = F2
+1 - [1 + ( - l )"] /2 (Koshy, 1998) 

1 

61. Σ Σ Σ Σ *? = Fn+2 - V"2 + 8/1 + 1 1 - 3( - l )" ] /8 (Graham, 1965) 
,=o;=ot=o/=o 

62. 5F„ = Ln-XLn+x + (-1)" (Koshy, 1998) 

63. LnLn+l = L2n+1 + (-1)" (Hoggatt, 1965) 

64. F 2 + F„2
+4 = F2

+1 + F2
+ 3 + 4F2

+ 2 (Swamy, February 1966) 

65. F„5
+1 - Fn

5 - F„5_, = 5Fn+1F„F„_1[2F2 + (-1)"] (Carlitz, February 1967) 

66. L5
n+l - L l - Ll_x = 5L„+1LnLn_,[2L2 - 5 ( - l ) n ] (Carlitz, February 1967) 

67. F„7
+1 - F„7 - F„7_, = 7Fn+1FnF„_,[2F2 + (-1)"]2 (Carlitz, February 1967) 

68. Ll+{-Ll-Ll_{ = 7 L n + 1 L n L n _ 1 [ 2 L 2 - 5 ( - l ) " ] 2 (Carlitz, February 1967) 

69. L2n = 1 + L\/5F2„J (Seamons, 1967) 

70. F4n+1 - 1 = L2n+lF2n (Hoggatt, 1967) 

71. F4„+3 - 1 = L2n+lF2n+2 (Hoggatt, 1967) 

72. Fn+xLn+2 - Fn+2Ln = F2n+1 (Carlitz, 1967) 

73. F„L„+r — Fn+rL„_r = (F2r — Fr)F2„_r+1 + (F2r_i — Fr_i)F2n_r -
(-1)"[F, + ( - l ) r F 2 r ] (Koshy, 1998) 

74. F„Ln+r - L„L„_r = F2 n + r - L2„_r - ( - l )" [F r + ( - l ) ' L r ] (Koshy, 1998) 



NUMBER OF DIGITS IN F„ AND L„ 91 

75. L2
l+r + L\_r = L2„L2r+4(-ir+r (Koshy, 1998) 

76. LWn = [(L4„ - 3)2 + (5F2n)
2]L2„ (Jarden, 1967) 

77. 5(F2
+r + F„2_r) = L2nL2r - 4 ( - l )"+ ' (Koshy, 1998) 

78. 5(Fm + rFm + r + , + Fm_rFm_r+1) = L2m+lL2r - 2( - l ) m+ r (Koshy, 1999) 

79. Fm + rFm + r_2 + Fm_rFm_r_2 = i.2m-2Î.2r - 6 ( - l ) m + r (Koshy, 1999) 

80. L„+rLm+r+l + Lm-rLm-r+l — L2m+2r+\ + L2m~2r+\ + 2 ( - l ) m + r (Koshy, 
1999) 

81. Lm+rLm+r+i + Lm_rLm_r+, = L2m+iL2r+2(-\r+r (Koshy, 1999) 

82 ^ i ^ = J 5 F / L m ifnisodd 
Fm+„+F„,_„ j Lm/Fm otherwise 

83. 2Fm+„ = FmL„ + FnLm (Ferns, 1967) 

84. 2Lm+n = + 5F„Fm (Ferns, 1967) 

«ς / -L / |5FmF„ ifnisodd , „ . ,QOQ. 
85. Lm+„ + Lm_„ - j L m L n o t h e r w . s e (Koshy, 1998) 

SA Î f i^m^« ifnisodd , 
86. L m + n - L m _ „ = j 5 F m F n o t h e r w . s e (Koshy, 1998) 

87. L2
m+n - L2 _„ = 5L2mF2„ (Koshy, 1998) 

88. (F„F„+| -F„ + 2 F„ + 3 ) 2 = (FnF„+3)2 + (2Fn+iFn+2)2 (Umansky and Tallman, 
1968) 

89. (L„Ln+i - Ln+2L„+3)
2 = (LnLn+})

2 + (2L„+1Ln+3)2 (Umansky and 
Tallman, 1968) 

90. F„3
+l - F„3 - F„3_, = 3F„+1FnF„_, (Carlitz, 1967) 

91. On+x -On- L3_, = 3L„+1L„Ln_, (Carlitz, 1967) 

92. L2 - F2 = 4F„_,F„+, (Hoggatt, 1969) 

93. LnLn+2 + 4 ( - l ) " = 5F„_,Fn+3 (Hoggatt, 1969) 

94. £ f i F 3 / = FnFn+lF2n+] (Recke, 1969) 
I 

95. F4_, + F4 + F„4
+1 = 2[2F„2 + (-1)"]2 (Hunter, 1966) 

96. L4_, + L4 + L4
+ l = 2[2L2 - 5 ( - l ) " ] 2 (Carlitz and Hunter, 1969) 

97- Fn
6_, + F„6 + F„6

+1 = 2[2F2 + (-1)"]3 + 3F„2_, F2F„2
+1 (Koshy, 1999) 

98. F„8_, +Fn
8 + F„8

+1 -2[2Fn
2 + ( - l ) " ] 4 + 8F„2_,Fn

2(F4_, +F4+4F„2_1F„2 + 
3F„_,F„F2„_1) (Koshy, 1999) 

99. F*+nL
2
a+n -F2L2

m = F2nF4m+2n (Hunter, 1969) 



92 FIBONACCI AND LUCAS IDENTITIES 

100. 25 "Σ Σ Σ Ί - Ι = F*n + "(5η2 - 14)/3 (Swamy, 1970) 
i = l ; = 1 fc=0 

101. 25 £ £ F22,-i = U.+2 + 5η(η + 1) - 3 (Peck, 1970) 

i= l ; = 1 

102. F3
+ 2 - F„3_, - 3FnFn+1F„+2 = F3„ (Padilla, 1970) 

103. L3
+1 +LÎ- L3_, = 5L3n (Koshy, 1999) 

104. (F„Fn+3)2 + (2Fn+1Fn+2)2 = F2
n+3 (Anglin, 1970) 

105. Fm+„ = FmL„ - (-l)"Fm_„ (Ruggles, 1963) 

106. L5n = Ln[L\n - ( - l )"L2 n - 1] (Carlitz, 1970) 

107. L5n = Ln{[L2n - 3 ( - l ) " ] 2 + 25(-l)"F„2} (Carlitz, 1970) 

108. F2
+ 3 = 2F„2

+2 + 2F n
2

+ I -Fn
2 

109. F3n = LnF2n - ( - l )"F n (Cheves, 1970) 

110. F3n = Fn[L2n + (-1)"] (Koshy, 1999) 

111. F3n = [F2„ - (-l)n]Fn (Koshy, 1999) 

112. F 2 + F„2
+3 = 2(F„2

+I + F2
+2) (Thompson, 1929) 

113. (F„ + Fn+6)Fk + (Fn + 2 + Fn + 4)F t + 1 = Ln+3L*+I (Blank, 1956) 

114. (F„2 + F„2
+1 + F„2

+2)
2 = 2(F„4 + F4

+1 + F4
+2) (Candido, 1905) 

13 

115. Σ Fi+j = 29F,+8 (Heath, 1950) 

116. L\ = 2F„3_, + F 3 +6F„_,Fn
2

+1 (Barley, 1973) 

117. 5F2n+3F2n_3 = Un + 18 (Blazej, 1975) 

118. 1 + 4F2 n + ,F2
n + 2F2 n + 3 = (2F2

n+2 + l)2 (Hoggatt and Bergum, 1977) 

119. 1 4-4F2n+iF2„+2F2n+3F2n+4 = (2F2n+2F2n+3 + l)2 (Hoggatt and Bergum, 
1977) 

120. Fg„ = L2„ Σ L2n+4k-2 (Higgins, 1976) 
1 

121. F„F2
+3 - F„3

+2 = (-1)"+1F„+1 (Hoggatt and Bergum, 1977) 

122. Fn+iFt - F„3
+1 = ( - l ) n + 1 F n + 2 (Hoggatt and Bergum, 1977) 

123. F„F*+3 - Fn+4F„2
+! = ( - i r + 1 L n + 2 (Hoggatt and Bergum, 1977) 

124. F„L2
+3 - Fn+4Ll+l = ( - l ) n + 1 L n + 2 (Hoggatt and Bergum, 1977) 

125. 7F„3
+2 - F„3

+1 - F 3 = 3Ln+lFn+2Fn+3 (Barley, 1973) 
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π-Ι 
126. F3„ = 11(^2 3* - 1) (Usiskin, 1974) 

o 

127. Ly = Π (̂ 2-3* + 1) (Usiskin, 1974) 
0 

128. Fmn = LMFm(n_,) + (-l)m+lFm(„_2) (Cheves, 1975) 

129. L(2m+i)(4n+i) — L2m+\ = 5F2„(2m+i)F(2m+i)(2„+i) (Koshy, 1999) 

130. L\ + L2
+1 = L2n + L2n+2 (Koshy, 1999) 

131. = 2Fm+n (Blazej, 1975) 

132. F„3
+t + (-l)*FB_t(FB

2_t + 3Fn+kF„Lk) = L3
kF^ (Mana, 1978) 

133. Fl+k - LxFf + (-l)kFf_k = 3(-l)nFnFkF2k) (Wulczyn, 1978) 

134. F„4
+10 = 55(F„4

+8 - Fn
4
+2) - 385(F„4

+6 - F4
+4) + F 4 (Wulczyn, 1979) 

135. FkFn+j - FjFn+k = (~l)JFk^jFn (Taylor, 1982a) 

136. F
k

L
n+j

 - FjL
n+k

 = (-iyF
k

-jL„ (Taylor, 1982b) 

Additional identities are presented in the exercises and in the following 
chapters. 

FERMAT AND FIBONACCI 

A judge by profession, the great French mathematician Pierre de Fermât (1601-1665) 
observed that the numbers 1,3,8, and 120 have a fascinating property. One more than 
the product of any two of them is a perfect square: 

1 + 1 ■ 3 = 22 1 + 1 -8= 32 1 + 1 120= l l 2 

1 + 3 · 8 = 52 1 + 3 · 120= 192 1 + 8 · 1 2 0 = 312 

In 1969, Alan Baker and Harold Davenport of Trinity College, Cambridge proved that 
if 1, 3, 8, and x have this property, then x must be 120. 

Intriguingly enough, notice that 1 = F2, 3 = F4, 8 = F6, and 120 = 4 · 2 · 3 · 5 = 
4F3F4F5. Accordingly, eight years later, V. Hoggatt, Jr., and G. E. Bergum of South 
Dakota State University picked up on this observation and established the following 
generalization. 

Theorem 5.12. The numbers F2,,, F2n+2, F2„+4,and4F2n+|F2„+2F2„+3havetheprop-
erty that one more than the product of any two of them is a perfect square. 
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Proof. It follows by Cassini's formula that 1 + F2„F2„+2 = F2n+\· Similarly, 
1 + ^2n+iF2n+3 = F2

2
n+2 and 1 + F2„+2F2n+4 = F2

2
n+3. Next we have 

1 + Î2n(4F2„ + iF2„+2F2„+3) 

= 1 +4(F2nF2n+2)(F2n+iF2n+3) 

= 1 + 4(F2
2

n+1 - l)(F2
2

n+2 + 1) by Cassini's formula 

= ^^2n + l F2n+2 ~ 4(F2n+2 ~ F2n+]) — 3 

= 4F2n+1 F2n+2 - 4F2„+3F2n - 3 

= 4F2n+l F2n+2 ~ 4F2n+nF2n+2 - F2n + \) — 3 

= 4F2n+\ F2n+2 ~ 4F2n+iF2n+2 + 4F2n+i F2„+3 - 3 

= 4F2
n + l F

2
n+2 - 4F2n+3F2n+2 + 4(F2

n+2 + 1) - 3 

= 4F2n+l F2n+2 ~ 4F2n+2(F2n+3 - F2n+2) + 1 

= ^Ι+ι Fl+2 - 4F2n+1 F2n+2) + 1 

= (2F 2 n + 1 F 2 n + 2 - l ) 2 

Similarly, it can be shown that 1 + F2n+2(4F2„+|F2n+2F2n+3) = (2F2
2

n+2 + l)2 

and 1 + F2n+4(4F2n+iF2n+2F2n+3) = (2F2„+2F2n+3 + l)2. Thus, one more than the 
product of any two of the numbers is a square. ■ 

For example, n = 1 yields the Fermat's quadruple (F2, F4, Ff,, 4F3F4F5) = 
(1, 3, 8, 120); n = 2 yields the quadruple (F4, F6, F8,4F5F6F7) = (3, 8,21, 2080); 
and n = 3 yields the quadruple (F6, Fg, Fw, 4F7F8F9) = (8, 21, 55, 37128). 

Hoggatt and Bergum also proved the following theorem for Fibonacci numbers 
with consecutive subscripts. 

Theorem 5.13. Let x = 4F2n+2F2n+iF2n+4- Then, 

1) 1 + J C F 2 „ + 1 = (2F2n+2F2n+3 + l)2 

2 ) l + * F 2 „ + 3 = (2F2
n+3 - l)2 

3) 1 +xF2n+5 = (2F2n+3F2ll+4 - l)2 
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For example, let n = 3. Then x = 4F&F9FI0 = 4 · 21 · 34 · 55 = 157,080. 
We have: 

1 + JCF7 = 1 + 157,080· 13= 14292 = (2-21 ■ 34 + l)2 = (2F8F9 + l)2 

1 + xF9 = 1 + 157, 080 · 34 = 23112 = (2 · 342 - l)2 = (2F9
2 - l)2 

1 + xFu = 1 + 157,080 · 89 = 37392 = (2 · 34 · 55 - l)2 = (2F9Fi0 - l)2 

An unusual relationship exists between the geometric constant π and Fibonacci 
numbers. 

FIBONACCI AND π 

In 1985, Yuri V. Matiyasevich of St. Petersburg, Russia, developed a wonderful 
formula for π in terms of Fibonacci numbers: 

/ 6 log FlF2-F„ 
π = lim »ooy log[F, ,F2 , . . . ,F„] 

where [x, v] denotes the least common multiple (LCM) of the integers x and y. 
A proof of this formula, using some sophisticated number theory, appeared in the 
following year in The American Mathematical Monthly. 

It is easy to verify that 

l i m , 61ogF,F2.--F,o 7 7 3 2 2 4 9 0 3 8 7 

*<χ>γ log[F,, F 2 , . . . , Fio] 

and 

lim . / . 6 l 0 g F ' F 2 • F ' 2 . - 2.8454900617 
«^οογ log[Fi, F 2 , . . . , F,2] 

So it is a valuable exercise to determine the value of n for which the formula yields 
a desired approximation of π. Additionally, does a corresponding formula exist for 
Lucas numbers? 

We now turn to two simple but interesting Fibonacci puzzles. 

1. Think of two positive integers. Add them to get a third number. Add the second 
number and the third number to get a fourth number. Continue like this until 
there are ten numbers. Add all ten numbers. The resulting sum is 11 times the 
seventh number. See Exercise 15 in Chapter 7. (This puzzle was discovered in 
1950 by R. V. Heath.) 
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2. Write down four consecutive Fibonacci numbers. The (positive) difference of 
the squares of the two middle numbers equals the product of the other two. (See 
Exercise 35.) 

EXERCISES 5 

1. Prove Theorem 5.2 using PMI. 
2. Prove Corollary 5.1 using PMI. 

3-7. Prove Identities 5.6 through 5.10. 

8. Prove Theorem 5.4 using PMI. 

Verify each. 
9. F,„ = F5L5 

10. L,o = F9 + F11 

11. Fl-F} = Fn 

12. Fi + F* = FU 

Disprove each, where n > 1. 

13. Ln+iLn.i-L
2
n = (-\r 

14. Ln+\(Ln + Ln+2) = Ljn+2 
Let v„ = a" + ß", n > 1. Verify each. 

15. v\ = 1 and V2 = 3. 
16. υ„ = υπ_ι + υ„_2, where n > 3. (Exercises 15 and 16 prove that v„ = L„.) 

Prove each using PMI. 
17. Binet's formula for F„. 
18. Ln=an+ß". 
19. Prove that Fn = Ln if and only if n = 1. 

Find a quadratic equation with the given roots, where k is a real number. 
20. an,ß" 

21. a" + k, ß" + k 

22. a",a~", where n is odd. 
Using Lemma 5.1, prove each. 

23. Identity 5.1 
24. Identity 5.6 
25. Prove that F„+5 = 5F„+, + 3F„, where n > 0. 
26. Using Exercise 25, prove that 5|F5n for every n > 0. 
27. Establish Cassini's formula (5.4) using Binet's formula. 
28. Solve the recurrence relation D„+\ = Dn + Lj„ - 1, where D0 = 0 (Hoggatt, 

1972). 
Prove each, where m, n > 1. 

29. F2n = FnLn 
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30- F„2
+1 + Fl = F2n+1 

31- ^n+l — Fn_x — F2n 
32. F„_| + F„+i = Ln 

33. Fn + 2 — F„_2 = L„ 

34. L„_, + Ln+1 = 5F„ 
35. Fn+1 - Fn = F„_iFn+2 

36. 5(F2 + F„2_2) = 3L2n_2 - 4 ( - l ) " 
37. L2 + L2

+I = 5F2n+1 

38. L n _ l L n + 1 - L 2 = 5 ( - l ) " - 1 

39. 5Fn
2 = L 2 - 4 ( - l ) " 

40. L 2
+ l - L 2 =!„_, / ,„+, 

41. L2 = L 2 n + 2 ( - l ) " 
42. L2„-5F n

2 + 2 ( - l ) " 

43. Ln+2 - L„-2 = 5F„ 
44. L2

+1 - L2 = 5F2„ 
45. F2„_2 < F„2 < Fa,_,. n > 2 (Hoggatt, 1963) 
46. F2„_, < L2_, < F2n, n > 2 (Hoggatt, 1963) 
47. L_n = (-1)"L„ 
48. a" = uFn + F„_i 

49. 1 + a2" = { ^F"a" if " is odd 

I L„of" otherwise 

50 1 + ß2n = \ —f5F>tß" i f " i s o d d 

| L„ß" otherwise 
51. L2m+n — (— l)mi-n = 5FmFm+n 

52. F2m+„ — (—l)mF„ = FmLm+n 

53. F2m+„ + (—l)mF„ = Fm+„Lm 

54. F2„ = F„F„+I +F„_,F„ 

55. L3n = i . n [ i - 2 n - ( - l ) n ] 
Lm F„ if « is odd 

56. Fm+n + Fm_„ - Λ LnFm o t h e r w i s e 

J ' · ^m+n rm—n 

Fm L„ if n is odd 
Lm F„ otherwise 

58. F 2
+ n - F^_n = F2mL2n 

59. F„F„+I - F„_,F„_2 = F2„_, (Lucas, 1876) 

60. ]T F*+l· = F„+ i + 2 — Ft+2 

( = 1 

61· F*+3 = 2F„2
+2 + 2F„2

+1 - F} (Gould, 1963) 
62. F„3

+| + F„3 - F„3_, = F3n (Lucas, 1876) 
63. F„3

+2 - 3F„3 + F„3_2 = 3F3n (Ginsburg, 1953) 
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64. («F„ + F„_,)'/" + ( - l )" + 1 (Fn + 1 - «F„)'/" = 1 (A. Sofo, 1999) 

Find a solution of each equation. 

65. x2 -5y2=4 

66. x2 - 5y2 = - 4 

67. Prove that x2 - x - 1 is a factor of x2n - Lnx" + (-1)", where n > 1 (P. Mana, 
1972). 

68. Show that [L2n + 3(—1)"]/5 is the product of two Fibonacci numbers (Freitag, 
1974). 

69. Show that L2n — 3(— 1)" is the product of two Lucas numbers (Freitag, 1974). 
m 

70. Let Rm = Σ Fl+iLm_,. Prove that Sm = lORm/(m + 2) is a sum of two Lucas 
o 

numbers (H. T. Freitag, 1982). 
71. Prove that 2Ûn_x + L3

n + 6L2
+,L„_i is a perfect cube (Wulczyn, 1977). 

72. Show that the sum of any In consecutive Fibonacci numbers is divisible by F„, 
where n is even (Lind, 1964). 

73. Let n > 1 and (1 + \/5)" = a„ + bnV5, where a„ and b„ are positive integers. 
Prove that 2 n _ l \a„ and 2"- 1 \b„ (Mana, 1970). 

74. LetL(n) = L„andi„ = n(n +1)/2. Prove that L(n) = (-iy"[L(tn-i)L(t„)-
L(n2) (Freitag, 1982). 

75. Prove that if 2F2„_iF2„+i — 1 is a prime, then so are 2Fn
2 + 1 and F|n + 

F2n-iF2„+x (Guillotte, 1973). 
76. Find a formula for tf„ = (ATi + Ä"2 + · · ■ + £„_,) + F2n-i, where K\ = 1 

(V. Hoggatt, Jr., 1972). 
Π 

77. Let {g„} be any number sequence. Show that J2(Sk+2 + gk+i — gk)Fk = 

gn+iFn + gn+\Fn+\ - gi (Recke, 1969). 

Let / be a function defined by 

f t \ _ ί / ( M / 2 ) if n is even 
J(n)~ \ f((n + l)/2) + f((n ~ l)/2) otherwise 

where / ( l ) = 1. Prove each (D. Lind, 1970). 

78. / ( [ 2 n + 1 + ( - l ) " ] / 3 ) = Fn + 1 

79. / ( [ 7 - 2 " - ' + ( - l ) " ] / 3 ) = Ln 
n 

80. Evaluate the sum £ F,G,, where Gn+2 = 2Gn+l + G„, Gx = 1 and G2 = 2 
1 

(Mead, 1965). 
81. Let S„ denote the sum of the numbers in row n of the triangular array of 

Fibonacci numbers in Figure 5.12. Derive a formula for Sn. 



FIBONACCI AND π 99 

1 

2 5 

13 34 89 

233 610 1597 4181 

Figure 5.12. 

82. Redo Exercise 81 using Figure 5.13. 

1 

3 8 

21 55 144 

377 987 2584 6765 

Figure 5.13. 

83. Prove that the area of the trapeziod with bases Fn+i and Fn_,, and sides Fn is 
\/3/r2„/4 {Mathematics Teacher, 1993). 



GEOMETRIC PARADOXES 

The preceding chapter established that Fn+\ Fn-\ — Fn
2 = (—1)". This identity is the 

cornerstone of two classes of fascinating geometric paradoxes. When n is even, say, 
n = 2k, the identity yields F\k — F2k+\Fik-\ = 1; the first paradox is based on this 
result. When n is odd, say, n = 2k — 1, the identity yields F\k_x — Fik+iFjk = — 1; 
the second paradox is based on this result. 

The first paradox was a favorite of the famous English puzzlist, Charles Lutwidge 
Dodgson (1832-1898), better known by his pseudonym, Lewis Carroll. This puzzle, 
first proposed in 1774 by William Hooper in his Rational Recreations, reappeared 
in a mathematics periodical in Leipzig, Germany, in 1868, 666 years (watch for the 
beastly number) after Fibonacci published his rabbit-breeding problem. 

W. W. Rouse Ball claims in his Mathematical Recreations and Essays, which is a 
jewel in recreational mathematics, that 1868 was the earliest date he could find for 
the first appearance of this puzzle. Although the origin of the puzzle is still a mystery, 
the elder Sam Loyd claimed that he had presented the puzzle to the American Chess 
Congress in 1858. 

Consider an 8 x 8 square; cut it up into four pieces, A,B,C, and D, as in Figure 6.1. 
Now rearrange the pieces to form a 5 x 13 rectangle, as Figure 6.2 shows. While the 
area of the square is 64 units, that of the rectangle is 65 units. In other words, by 
reassembling the pieces of the original square, we have gained one unit. This is 
paradoxical. 

How is that possible? In Figure 6.2, it appears that the "diagonal" PQRS of the 
rectangle is a line (segment). In fact, this appearance is deceptive. The points P, Q, R, 
and S are in fact the vertices of a very narrow parallelogram, as Figure 6.3 illustrates. 

Area of the parallelogram = area of the rectangle — area of the square 

= 65 - 64 = 1 

Thus, the area of the parallelogram equals F7F5 — F% = 1 unit. 
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c 

v 
\ 

> v 
\ 
\ 

0 

.. 

B 

Figure 6.1. 

13 

n 

R 

Figure 6.2. 

Figure 6.3. 

Its sides are \/29 and -v/73 units long, and the diagonal is V194 units long. Let 0 
be the acute angle between the adjacent sides of the parallelogram. Then, by the law 
of cosines in trigonometry, 

cos Θ/2 = 
194 + 2 9 - 7 3 

2V29 · 194 

0.763898460833 

Γ3Γ40" 

This explains why it is a very narrow parallelogram. 
In fact, there is nothing sacred about the choice of the size of the square, except 

that 8 = 7*6 is a Fibonacci number with an even subscript and F7 = 13 and F5 = 5 
are its adjacent neighbors. 

Since Fn+{F„-\ — Fn
2 = 1, when n is even, the puzzle can be extended to any 

F„ x F„ square. Cut this square up into four squares, as in Figure 6.4, and these 
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A 

Fn-2\ 

D 

B 

> > - i 

\ ° 
n-1 rn-2 

Figure 6.4. 

squares can be rearranged to form the deceptive rectangle of size F„-\ x Fn+\, as 
Figure 6.5 shows. 

'V i+ l 

Fn-Λ 

rn-\ 

Figure 6.5. 

The parallelogram, magnified in the figure, has an area of one unit. So we can now 
determine its height h: 

Area of the parallelogram = base x height 

That is, 

1 = hJF% + F„2_2 by the Pythagorean theorem 

1 
h = 

v^2+e 
Thus, as the size of the original square increases, the parallelogram becomes narrower 
and the gap becomes less and less noticeable. 

Sam Loyd's son was the first person to discover that the four pieces in Figure 6.1 
can be arranged to form an area of 63 square units, as Figure 6.6 shows. The son 
adopted his father's name and inherited his father's puzzle column in the Brooklyn 
Daily Eagle. 

To illustrate a paradox of the second kind, consider a 5 x 5 square and cut it 
into four pieces, as Figure 6.7 shows. Now reassemble the pieces to form the 3 x 8 
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Area = 30 + 3 + 30 = 63 

Figure 6.6. 

5 

Area = 25 

Figure 6.7. 

Area = 24 

Figure 6.8. 

"rectangle" (see Fig. 6.8). The area of the square is 25 units, whereas that of the 
rectangle is only 24 units, so we have lost one unit. The overlap along the diagonal 
accounts for the missing area. Notice that the area of the square = F\ = F4F6 + 1 = 
area of the rectangle + 1 · 

More generally, let n be odd; suppose an Fn x F„ square is cut into four 
pieces (see Fig. 6.9) and they are assembled into an F„_i x Fn+\ rectangle (see 
Fig. 6.10). Then we would be missing an area of one unit, because Fn+\F„-\ — 
F2 = -\ 

In 1962, A. F. Horadam of the University of New England, Australia, derived a 
formula for tan θ„, where θη denotes the acute angle between the adjacent sides of 
the parallelogram. To derive the formula, we first consider the case n even, where 
n > 4. 
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Using Figure 6.11, we have: 

Figure 6.9. 

Fn+1 

D 
A 

B C 

Figure 6.10. 

π θ„ = - - (α„ + β„) 

π· ^ _. F„_i 
= — — tan ' —'-̂ - — tan" 

2 F„_3 

. - i F„_3 _i F„_2 
= tan tan 

F„-2 

F„ 

tan<9„ 

F„~\ F„ 
( F - 3 / F - 1 ) - (Fn_2/F„) 

Fn-jF„ — F„-\Fn-2 

Fn-\Fn + F„_3F„_2 

Fn_3(Fn_] + F„_2) - Fn_2(F„_2 + F n - 3 ) 

^"n-lCVi-l + Fn-2) + F„--jF„-2 

Fn-\F„-i - Fn_2 

fn
2_, + FH-2(F„-2 + F„_3) + F„_3F n_2 

since tan x + tan 1 jx = π/2 

(-1)' n-2 

F„2_, + F„2_2 + 2Fn_3Fn_2 

(-Dn 

Fln-3 +2F„_3F„_2 

1 

^2n-3 + 2F„_3F„_2 

by Identity 5.11 

(6.1) 
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Fn + 1 

Fn-, Fn-2 J>^7^ 

Fn-Z F n - 1 

n-1 

Figure 6.11. 

Now, let n be odd. Then there is an overlap, as Figure 6.12 shows. It follows from 
the figure that: 

θ„ = (αη+βη)--

_1 Fn-\ -I Fn-2 K 
= tan ' -?-1 + tan ' -ϋ-=· 

F„-3 Fn 2 
. -1 Fn-2 4 _i ^1-3 

= tan tan Fn-X 

As before, this leads to the equation 

( - 1 ) " - ' 
tanö„ = 

F2n-3 + 2F„-3 F„_2 

Fzn-3 + 2F„_3F„_2 

Thus, in both cases, 

tanft, = 
1 

Fln-J, + 2F„-lF„-2 

since n is odd 

n > 4 

Figure 6.12. 
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TABLE 6.1. 

n 

4 
5 
6 
7 
8 
9 

10 
11 
12 

Fibonacci Triplets 

F«_, 

2 
3 
5 
8 

13 
21 
34 
55 
89 

F„ 

3 
5 
8 

13 
21 
34 
55 
89 

144 

Fn+I 

5 
8 

13 
21 
34 
55 
89 

144 
233 

θη 

tan"1 i *8°7 '48" 
tan"1 îL%3°21'59" 
tan"1 ^S5l°14'43" 

tan"1 ± % 28'53" 
tan-' j j j % 10'59" 
tan"1 ^ = » 4 Ί 2 " 

tan"1 27« « 1'36" 
t a n " ' 5 ^ 0 9 ^ 3 7 " 

tan"1 TÎM * 1 4" 

Table 6.1 shows the values of #„ for the first few Fibonacci triplets F„_i, F„, and 
Fn + i . It follows from the table that as n increases slowly, θη -*■ 0 rapidly, thus, θ„ -*■ 0 
as n -> oo. 

ADDITIONAL FIBONACCI-BASED PUZZLES 

In fact, there are many delightful puzzles in which Fibonacci-based rectangles can 
be cut into several pieces, and the pieces arranged to form a rectangle of larger or 
smaller area. One such paradox is Langman's paradox, developed by H. Langman of 
New York City. 

Langman's Paradox 

Cut an 8 x 13 rectangle into four pieces, as Figure 6.13 shows. Now arrange the pieces 
to form a 5 x 21 rectangle, as in Figure 6.14. Thus we gain one unit square. 

Area = 8x 13 = 104 

Figure 6.13. 



AN INTRIGUING SEQUENCE 107 

Area = 5x21 =105 

Figure 6.14. 

Another Version of Langman's Paradox 

Another version of Langman's paradox involves gaining two square units when the 
pieces of the 8 x 21 rectangle in Figure 6.15 are assembled. Cut out the shaded area 
and place it on top of the unshaded area in such a way that the diagonal cuts form one 
long diagonal; now switch pieces A and B. The resulting area is 170 square units. 

Area = 8x21 =168 

Figure 6.15. 

The next paradox was developed in 1953 by Paul Curry, an amateur magician of 
New York City. It involves two alternate Fibonacci numbers. 

Curry's Paradox 

Swap the positions of the triangles B and C in Figure 6.16 to form the 5 x 13 rectangle 
in Figure 6.17. This results in an apparent loss of one square unit. In fact, the loss 
occurs in the shaded area. Figure 6.16 contains 15 shaded cells, whereas Figure 6.17 
requires 16 cells to complete the 5 x 13 rectangle. In other words, we seem to lose 
one square area in the process. 

AN INTRIGUING SEQUENCE 

Finally, suppose we construct a number sequence beginning with two arbitrary real 
numbers a and b, and then use the Fibonacci recurrence relation to construct the 
remaining elements. All such sequences, except one, can be used to develop the 
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Figure 6.16. 

Figure 6.17. 

preceding puzzles. So, the question is, which sequence will not produce the puzzle? 
In other words, under what conditions will the square and rectangle have exactly the 
same area? 

To answer this, we must consider the following additive number sequence with 
ö = l and b = a: 

1,α,α + 1,2α + 1,3α + 2 sn,... 

Suppose we pick any three consecutive terms: s„_2, *n-i. and s„. Then s„-\ s„+i = 
s2, so the area of the square indeed equals that of the rectangle. This is so, because, 
by Lemma 5.1, sn = a" and a"- 1 · a"+l = a2". 

Interestingly enough, {s„} is the only additive number sequence that has this striking 
behavior. The ratio of any two consecutive terms of the sequence is a constant: 
Sn+i/sn = «· Martin Gardner, who wrote a popular column called Mathematical 
Games in Scientific American, referred to this sequence as the "golden series," which 
all additive number sequences struggle to become. 



GENERALIZED FIBONACCI 
NUMBERS 

We can study properties common to Fibonacci and Lucas numbers by investigating 
a number sequence that satisfies the Fibonacci recurrence relation, but with arbitrary 
initial conditions. 

GENERALIZED FIBONACCI NUMBERS 

To this end, consider the sequence {G„(, where G\ = a, G2 = b, and Gn — G„-\ + 
Gn-2,n > 3. The ensuing sequence 

a, b, a + b, a + 2b, 2a + 3b, 3a + 5b,... (7.1) 

is called the generalized Fibonacci sequence (GFS). 
Take a close look at the coefficients of a and b in the various terms of this sequence. 

They follow an interesting pattern: The coefficients of a and b are Fibonacci numbers. 
In fact, we can pinpoint these two Fibonacci coefficients, as the following theorem 
shows. 

Theorem 7.1. Let G„ denote the nth term of the GFS. Then G„ — aF„-i + bF„-\, 
n > 3 . 

Proof, (by PMI). Since G3 — a + b — aF\ -f bFj, the statement is true when 
n = 3. 
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Let k be an arbitrary integer > 3. Assume the given statement is true for all 
integers /, where 3 < /' < k: Gj = «F/_2 + fcF,-_i. Then: 

Gk+\ = Gk + Gk-i 

= (aFk-2 + bFk-i) + (aFt_3 + bFk-2) 

= a(Fk-2 + Ft-3) + &(F*_i + bFk_2) 

= aFk-χ + bFk 

Thus, by the principle of mathematical induction (PMI) the formula holds for every 
integer n > 3. ■ 

Notice that this theorem is in fact true for all n > 1. 

GENERALIZED FIBONACCI NUMBERS AND BEES 

The generalized Fibonacci numbers occur in the study of a bee colony. Suppose we 
start the colony with a male and b female bees. Table 7.1 shows their genealogical 
growth for five generations. It follows from the table that the drone has a total of 
G„+2 =aF„+ bF„+\ descendants in generation n. 

TABLE 7.1. 
Generation 

Number of female bees 
Number of male bees 
Total number of bees 

1 2 3 4 5 

ft a + b a + 2b 2a + 3ft 3a + 5ft 
a b a + b a + 2b 2a + 3b 

a + b a + 2b 2a + 3b 3a + 5ft 5a + 8ft 

The Fibonacci identities of Chapter 5 can be extended to the GFS. We study a few 
in the following theorems. 

Theorem 7.2. 
n 

/ , Gk+i = G„+k+2 — Gk+2 
i = l 

Proof. By Theorem 7.1, 
n n n 

Y^Gk+i = a ]T Fk+i-2 + b^2 Fi+i_i 
i= l 1 = 1 /=1 

= a(Fn+k - Fk) + b(F„+k+i - Fk+l) 

= (aFn+k + bFn+k+i) - (aFk + bFM) 

= Gn+k+2 — Gk+2 
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Notice that Formulas (5.1) and (5.6) follow from this theorem. 
Theorem 7.1 also yields the next summation formula. Its proof is straightforward, 

so we leave it as an exercise (see Exercise 32). 

Theorem 7.3. (Koshy, 1998) 

n 

Σ G/G/+1 = <>2(Fl2 -v)+ b\Fl, - v + I) 
i=\ 

+ab(L2n-i + 5F„_, Fn + v + l ) /5, 

W h e r e - 1 t ■ AA 

1 if n is odd - I otherwise 

Theorem 7.1 can also be employed to find Binet's formula for G„, as the next 
theorem shows. 

Theorem 7.4. (Binet's formula). Let c = a + (a — b)ß and d = a + (a — b)a. Then 

ca" - dß" 
Gn = 7T~ a-ß 

Proof. By Theorem 7.1, 

G„ = aF„-2 + bFn-\ 

V5Gn = a(a"-2 - ß"'2) + Ha"'1 - ß-1) 

"■(έ+;ΜΗ) 
= a"(aß2 - bß) - ß"(aa2 - bot) 
= a"[a + (e - b)ß] - ßn\a + (a - b)a] 

ca" - dß" 

a-ß 
Gn 

as desired. ■ 

Notice that 

cd = [a + (α - b)ß][a + (a - b)a] 

= a2 + (a- bfaß + a (a - b)(a + ß) 

= a2-(a-b)2+a(a-b) 

= a2+ab-b2 

This constant occurs in many of the formulas for generalized Fibonacci numbers. It 
is called the characteristic of the GFS. We denote it by the Greek letter μ (mu): 

μ = a2 + ab - b2 
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The characteristic of the Fibonacci sequence is 1, and that of the Lucas sequence 
is —5. 

Binet's formula for G„ opens the door for a myriad of formulas for the generalized 
Fibonacci numbers. The next theorem, for instance, is one such generalization of 
Cassini's formula. Additional formulas can be found in the exercises. 

Theorem 7.5. 

Gn+xGn-x-G2
n = ß{-\)n 

Proof. 

5(Gn+IGn_, - G\) = (ran + 1 - < # " + , ) ( c a - 1 - dß"~x) - (cet" - dß")2 

= -cd(an+xß"~l +a"-]ßn+l) + 2cd{aß)n 

= -μ(αβ)η-\α2 + ß2) + 2μ(αβ)η 

= 5μ(-1) π 

Therefore, Gn+lGn-i - G\ = μ ( -1 ) η . ■ 

In particular, L„+|L„_i - L2
n = 5 ( - l ) " - 1 . 

In 1956, H. L. Umansky of Emerson High School in Union City, New Jersey, 
extended Raine's result in Theorem 5.7, as the following theorem shows. 

Theorem 7.6. Let ABC be a triangle with AC = GkGM, BC - 2Gk+iGk+2, and 
AB = Gik+ï- Then AABC is a right triangle with hypotenuse AB. ■ 

EXERCISES 7 

Find each generalized Fibonacci number. 

1. Gs 

2. G„ 

3. Go 

4. G-3 

5. Let {A„} be a sequence such that A\ = 2, Ai = 3, and A„ = A„_i + A„_2, 
where n > 3. Find an explicit formula for A„. (Jackson, 1969) 
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Let c = a + (a — b)ß and d = a + (a — b)a. Evaluate each. 

6. c + d 

1. c-d 

8. lim ψ-

9. lim ψ-
π-»οο L" 

10. Solve the quadratic equation G„_IJC2 - G„x - Gn+] = 0. (Umansky, 1973) 

Prove each, where n > k > 0. 

11. £Gi = Gn+2-b 
i 
n 

12. £ G 2 , _ i = G2n + a - 6 
1 

13. £ G 2 i = G2n+i - a 

14. J:GJ = GnGn+>+a(a-b) 
1 

10 

15. £G*+, - HG*+7 (Hoggatt, 1963) 
1 

n 

16. X] G*+; = Gn+k+2 - Gk+\ (Huff) 

i=0 

17. £ iG,- = «Gn + 7 - Gn+3 + a + b (Wall, 1964) 
i 

18. £ > - / + 1)G, = G„+4 - a - (n + 2)fc (Wall, 1965) 
1 

19. £;F,G3, = F„F„+,G2n+, (Krishna, 1972) 
I 

20. E ( - 2 ) ' ( ? ) G , = 5("-1 ) / 2 [c(-l)n - d] (Koshy, 1998) 
i 

21. Σ ("K%+" =0 (Brady, 1974) 

22. G_„ = a ( - l ) n + 1 F , , + 2 + M - l ) n / W i (Koshy, 1998) 

23. 5G„+tG„_t = 5L2n - (-\)"-kßL2k (Koshy, 1999) 

24. G„.kGn+k ~G2„= (-\)n+k-]ßFk
2 (Tagiuri, 1901) 

25. G2 + G2_, = (3a - fc)G2n_, - μ^2„_, (Koshy, 1998) 
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26. G„ = GmF„_m+, + Gm-XFn_m (Ruggles, 1963) 

27. Gm+„ = GmFn+\ + Gm_|F„ 

28. Gm_„ = (-l)"(GmF„_, - Gm_,F„) 

oo r j-r \GmLn if n is even 
29. Gm+n + Gm_„ = { n A m i ^ „ (Koshy, 1998) (Gm+i + Gm_i)F„ otherwise 

in /- <~ _ | (G m + ,+G m _i)F„ ifniseven 
30. Gm+n - Gm_„ - j G m L n o t h e m i s e (Koshy, 1998) 

31. Gm+kGn-k - GmGn = (,-l)n-k+]ßFkFm+k-n (Tagiuri, 1901) 

32. Theorem 7.3. 

33. G2
n = G ; _ 3 + 4Gn_,G„_2 (Umansky, 1956) 

34. G4
n + G4

n_x = 2G2
nG

2„_x + G2
n+xG

2
n_2 (Umansky, 1956) 

35. G2
n + G2

+3 = 2(G2
+1 + G2

n+2) (Horadam, 1971) 

36. G2
n+2 - 3G2

n+l +G2„ = 2μ( -1) π + 1 (D. Zeitlin, 1965) 

37. (2GmG„)2 + (G2 - Gl)2 = (G2 + G2
n)

2 

38. (Gl + G2
n+X + G2

n+2)
2 = 2(G4

n + G4
+x + G4

n+2) 

39. [G2
m + G2„ + (Gm + G„)2]2 = 2[G* + G4 + (Gm + G„)4] 

40. 5(G2
+r + G2„_r) = (a2L2n-A + 2abL2n^ + b2L2n_2)L2r - 4μ(-1)"+' 

(Koshy, 1998) 

41. 5(G„+rGn+r+\ + G„_rG„_r+i) = (a2L2n-3 + 2abL2n_2 + b2L2n-i)L2r -
2μ(-1) η + Γ (Koshy, 1998) 

42. G„+rG„+r+i + Gn_rG„_r+i = (a2F2„-3 + 2abF2n_2 + b2F2n-X)F2r 

(Koshy, 1998) 

43. G2„G2
n+3 + 4G2

+ 1G2
+ 2 = (G2

n+1 + G2
2n+2)

2 (Koshy, 1999) 

44. Gl+l -Gl- G2_, = 3Gft+1G„G„_, (Koshy, 1999) 

45. G5
n+l -G

5
n- G5

n_x = 5Gn+1GnGn_,[2G2 + μ( -1) π ] (Koshy, 1999) 

46. Gn
n+X -Gl- Gl_, = 7G„+,G„G„_,[2G2 + μ( -1)" ] 2 (Koshy, 1999) 

47. Gj_, + G4 + G4
n+i = 2[2G2 + μ( -1)" ] 2 (Koshy, 1999) 

48. Gl_x + G6„ + G6
n+X = 2[2G2

n + μ( -1)" ] 3 + 3Gl_xG
2
nG

2
n+x (Koshy, 1999) 

49. G*_, + G» + Gj|+I = 2[2G2 + μ(-1)"]4 + G4
n_x +G4

n + SG2
n_xG

2
n[G4

n_x + 
G4 +4G 2 _ ,G 2 +3G„_1G„[(3a -è )G 2 „_ , - μF2n_1} (Koshy, 1999) 

50. Gm-iGn-GmGn-X = μ(-ΐγ~*Fm-n 
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Let An = (jZkFiA / (Σ Fk\ Verify each. (Ledin, 1966) 

51. lim (Λ„+ι - A„) = 1 
n—>oc 

52. lim An+i/A„ = 1 
n-»oo 

53. Let {//„} and {K„} be two GFSs with characteristics μ and v respectively. Let 
n 

C„ = Σ HiK„-i. Show that C„+2 = C„+, + C„ + An, where [A„] is a GFS 

with characteristic μν. (Hoggatt, 1972) 
54. Let p,q,r, and s be any four consecutive generalized Fibonacci numbers. Prove 

that {pq - rs)2 = (ps)2 + (Iqr)2. (Umansky and Tallman, 1968). 

Deduce each from Exercise 54. 

55. (L„Ln+l - Ln+1Ln+i)
2 = (L„Ln+3)2 + (2Ln+lL„+2)

2. (Umansky and 
Tallman, 1968) 

56. (FnF„+) - Fn+2F„+3) = (F„F„+3) + (2F„+iF„+2) 



ADDITIONAL FIBONACCI 
AND LUCAS FORMULAS 

Recall that Binet's formulas give explicit formulas for both Fn and Ln: 

a" - ß" 
F„= μ and Ln=a"+ßn 

where 

1 + V5 1 -V5 
a = , p = , and n > 1. 

2 2 

In this chapter, we derive additional explicit formulas for both. 
To begin with, we can conjecture an explicit formula for F„. To this end, recall 

that |jo| < 1, so when n is large, ß" -*■ 0 and hence F„ « απ/\/5. So we compute 
the value of a"/V5 for the first ten values of n and look for a pattern: 

2 3 4 

a a a a 
- = * 0.72 - = % 1.17 — % 1.89 -7= « 3.07 
V5 V5 V5 V5 
a5 a6 a7 a8 

- = « 4.96 -T= % 8.02 —= % 12.98 — % 21.00 
Λ/5 \/5 V5 >/5 
a9 a10 

_ - 33.99 —= % 55.00 
Λ/5 VS 
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Since the pattern is not yet quite obvious, we go one step further. Add i to each and 
see if a pattern emerges: 

a I a2 1 a3 1 a4 1 
+ - » 1 . 2 2 - = + - « * 1.67 — + - « 2 . 3 9 — + - » 3 . 5 7 

y/5 2 v / 5 2 V 5 2 χ / 5 2 

a5 1 a6 1 a1 I a8 1 
- - + - » 5 . 4 6 -7= + - «8 .52 — + - % 13.48 -— + - « 2 1 . 5 1 
x / 5 2 N / 5 2 V5 2 V5 2 

a9 1 a10 1 
_ _ + % 34.49 + » 55.50 
V5 2 V5 2 

A pattern, surprisingly enough, does emerge: 

a 1 

.x/5 + 2_ 

a5 1 

.71 + 2. 

= 1 

= 5 

a2 1 

_V5 + 2_ 
a6 1 

_7I + 2_ 

= 1 

= 8 

a3 1 

.71+ 2 . 
a7 1 

VÏ + 2_ 

= 2 

= 13 

a4 1 

.7! + i. 
a8 1 

_v/5 + 2 . 

«9 ! 
- F + x = 3 4 V5 2J 

Thus we conjecture that 

.v/5 + 2 j 
= 55 

= 3 

= 21 

^1 I 
L7I + 2. 

= F„. 

Fortunately, the next theorem confirms this result. To establish it, we need the follow-
ing lemma. 

Lemma 8.1. 

B" 1 
0< ^= + - < 1 

VS 2 

Proof. Since β < 0, \β\ = -β. Also, since 0 < \β\ < 1,0 < |/3|π < LSo 

0 < \β\" < ^ -

that is, 

V5 2 

Case 1. Let n be even. Then \ß\" = ß", so 0 < (ß"/yß) < {, and hence { < 

(ß"/V5) < 1. 
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Case 2. Let n be odd. Then \ß\" = -ß", so 0 < -{ß"/sß) < \, and hence 

- | < (ß"/V5) < 0. 

Therefore, 

0 < -^-F + Λ < ^ 

Thus, in both cases, 0 < (ß"/V5) + \ < 1. This establishes the lemma. ■ 

We are now ready to state and prove the conjecture. 

Theorem 8.1. 

a" 1 

71+ 2. 
Proof. By Binet's formula, 

F„ = 
a" -ß" 

Λ/5 

-(5*9-(5Η) 

< F„ + l, by Lemma 8.1 

Since (ß"/V5) + \ > 0, it follows from Eq. (8.1) that F„ < (a"/V5) + \. 

a" 1 

v! + 2. 

so 

Thus F„ < (a"/V5) + 5 < F„+). Consequently, 

F„ = 

For example, (a20/\/5) + ± % 6765.5, 

20 ! 
a 

,7! + 2 
= 6765 = F20 

as expected. 
Since L*J = \x~\ - \ for nonintegral real numbers x, it follows that 

F„ = 
a" 1 

7I + 2 1. 

(8.1) 
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But [x + n] — pel + n for integer n: 

. · . Fn = 

Accordingly, we have the following result. 

a" 1 
V5 + 2 - ' 

a" 1 

Vl~2 

Corollary 8.1. 

F„ = 
a" I 

Vl~2 

For example, 

a15 1 
— - - « 609.4997 
V5 2 

V5 2 
= 610=F,5 

Likewise, 

V ° _ l 
VB" 2 

= 6765 = F20 

Here is yet another interesting observation: 

a 

Vs 
a2 

.Vs. 

= F, 

= F2 

Vs 
a4 

LVsJ 

- * 

= ^ 4 

Γ α 5 Ί 

Vs 
a6 

LvsJ 

= ^5 

= F6 

Vs 
a8 

.Vs. 

= F7 

= F8 

Γ α ' 1 
Vs 
a1 0 

LvsJ 
Thus, we make another conjecture: 

Jin 

Vs. 
= F In and 

Γα2η + Ι 

Vs 
= ^2n + l 

The following corollary confirms these two observations. 

Corollary 8.2. 

Jin 

.Vs. 
= Fi„ and 

Jln + \ 

Vs 
= F2n + 1 
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Proof. Let n be even. Then, from the proof of Lemma 8.1, we have 

- < -7= < 1, so — r > T= > - 1 
2 V5 2 V5 

Then 

That is, 

a" 1 „ a" 

V5 2 V5 

a n a" 1 
~7= — I < Fn < ~P — « 

But {.JCJ < x and |* + «J = UJ + n: 

a" 

71. 
a" 1 

1 < F n < ^ ~ 2 

That is, 

_ 

17s] 
l<Fn<7l 

Thus 

F„ = 
V5. 

We can establish the case when n is odd in a similar fashion. ■ 

Theorem 8.1 has an analogous result for Lucas numbers also. We leave its proof 
as an exercise. 

Theorem 8.2. (Hoggatt) 

For example, 

Ln = «" + 

a13 + - ^ 521.5019 

a , 3 + z 521 = L 13 

Corollaries 8.1 and 8.2 also have their counterparts in Lucas numbers, as the next 
corollary reveals. 
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Corollary 8.3. 

(1) 

(2) 

For example, 

U ~2 
„2n L2n = la'"] and L2n+i = [aln+i J 

a* _ _ % 28.5344 
2 

= 29 = L7 

Γα81 = Γ46.9787 · · ·1 = 4 7 = L8 

| a " j = L199.0050-J = 199 = L,i 

In every explicit formula we have developed thus far, we needed to know the value 
of n in order to compute Fn. Surprisingly enough that is no longer the case: knowing 
a Fibonacci number, we can easily compute its successor. The next theorem provides 
such a formula, but first we need to lay some groundwork in the form of a lemma, 
similar to Lemma 8.1. 

Lemma 8.2. If n > 2, then 0 < i - β" < 1. 

Proof. We have \β\ < 0.62, \β\2 < 1/2, so \β\" < 1/2, when n > 2. Since 
|/3|" = 1/3"|, this yields - | < β" < 1/2. Then - 1 < β" - 1/2 < 0; that is, 
0 < 1/2-/3" < 1. ■ 

We are now ready to state and prove the recursive formula. 

Theorem 8.3. 

Fn + I = L«F„ + 1/2J 

Proof. By Binet's formula, we have 

a" -β" 

n>2 

F„ = 

aFn = 

V5 

ϊη+[-αβη αη+ι aß(ß"-l) + ß> n + \ ß" 
V5 V5 

(<*"+' -/8"+') + fl"-' +/?"+' 

V! 
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= Fn+]+ 7Γ~ 
ß"~l(-y/5ß) 

= Fn+i H γ= = Fn+l — β" 

.·. aFn + 1/2 = Fn+1 + ( 1 / 2 - β") (8.2) 

Since 1/2-/3" > 0, this implies F„+1 < aFn +1/2. Besides, since 1 /2- β" < 1, 
Eq. (8.2) yields aF„ + 1/2 < F„+, + 1. Thus Fn+l < «F„ + 1/2 < F n + , + 1, so 
F„+i = \_aF„ + | j , as desired. ■ 

For instance, let F„ = 4181. Its successor is given by [4181a + 1/2J = 
L6765.500 · · -J = 6765, as expected. 

Substituting for a in the formula for F„ yields the following result due to Hoggatt. 

Corollary 8.4. 

F„ + V5Fn + 1 
Fn+l = n>2 

We can use the recursive formula in Theorem 8.3 (or Corollary 8.4) to compute the 
ratio Fn+i/Fn as n -*■ oc, as the following corollary demonstrates. Its proof employs 
the following fact: If [x] = k, then x = k + Θ, where 0 < Θ < 1. 

Corollary 8.5. 

lim ——— = a 
Π-.0Ο F „ 

Pwof. By Theorem 8.3, 

Fn+i = aF„ + -+Θ where 0 < Θ < 1 

Fn+l , 1 Θ 

F„ ^ 2F„ ^ F„ 

lim — = α + 0 + 0 = α 
n-*oo Fn 

Since L*J = Γ Ι̂ — 1. for any nonintegral real number x, we can express these two 
formulas in terms of the ceiling function, as the next corollary shows. 
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Corollary 8.6. 

(1) F„+i = \aFn - 1/21 « > 2 

Fn + V5F„ - 1 
(2) Fn+\ = n > 2 

For instance, the successor of the Fibonacci number 1597 is given by 
Γ1597« - 1/21 = [2583.5002- · -1 = 2584. 

Using Corollary 8.5, we can evaluate the limit of tan ö„/tanÖn+i a s« -> oo, 
where θ„ denotes the acute angle between the adjacent sides of the parallelogram in 
Figure 6.11. To this end, let s„ = F2n_3 + 2F„_3F„_2 = ^«-l F„ + F„_3F„_2. Then 

fri+1 

lim 
n-»oo s, 

Sn+l 

FnFn+\ + Fn_2Fn_i 

F„-\F„ + F„_3F„_2 

(Fn +| /Fn_,) + (Fn_2/Fn) 

H-(F„_3F„_2)/(F„_,F„) 

(Fn + [ /Fn) · (F„/Fn-,) + (Fn-2/Fn_{) ■ (Fn_!/F„) 

1 + (F„_3/F„_2) ■ (F„_2/F„_,) · (F„_2/F„_,) · (F„_,/F„) 

a - « + ( l / g ) - ( l / a ) a2 + (\/a2) _ 2 

1 + ( ! / « ) ■ (I/o) · ( ! /« ) · ( ! /« ) ~ 1 + (1/«4) 

That is, 

tané>„ 2 lim = a 
n-nx> tan(9„+i 

Let u„ and v„ denote the lengths of the sides of the parallelogram in Figure 6.11, 

or 6.12, where un > vn. Then un = JF„2 + F„2_2 and v„ = yjF2_x + Fn
2_3, so 

lim — = a 
n->oo v„ 

Returning to Theorem 8.3 and its corollaries, we find that they have analogous 
recursive results for Lucas numbers as well. We leave their proofs as routine exercises. 

Theorem 8.4. (Hoggatt) 

L„+, = [aLn + 1/2J n > 2 
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For example, the successor of the Lucas number 1364 is given by |_ 1364a +1 /2J = 
L2207.4983 · · -J = 2207. Notice that 1364 = L,5 and 2207 = Li6. 

We can use this theorem to compute the value of Ln+\/Ln as n —> oo, as the next 
corollary shows. Again we leave its proof as a routine exercise, (see Exercise 33). 

Corollary 8.7. 

hm = a 

Corollary 8.6 also has corresponding results to Lucas numbers. 

Corollary 8.8. 

(1) Ln + l = 
Ln + V5Ln + 1 

n >2 (Hoggatt) 

(2) Ln+X = \aLn - 1/21 n > 2 

Ln + V5Ln - 1 
(3) L„+i = n>2 

For example, the successor of the Lucas number 521 is given by [521a — i"| = 
Γ842.4957 · · -1 = 843. For the curious-minded, 521 = Ll3 and 843 = LM. 

There is yet another recursive formula that expresses each Fibonacci number in 
terms of its predecessor and one that expresses each Lucas number in terms of its 
predecessor. We find both in the following theorem. 

Theorem 8.5. 

(1) Fn+] = 

(2) Ln+I 

^ + ^ 5 f 2 + 4 ( - l ) » 

Ln + v /5 tL2 + 4( - l )« ] 

These formulas, discovered by Basin of Sylvania Electronics Systems, Mountain 
View, California, can be derived using the following identities: 

2Fn+i = F„ + L„ (8.3) 

2Z-„+i = 5F„ + L„ 

L „ 2 - 5 F „ 2 = 4 ( - i r 

(8.4) 

(8.5) 
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Formulas 8.3 and 8.4 are consequences of Identities 5.14 and 5.16, and 
Formula (8.5) follows by Exercise 39 in Chapter 5. 

There is still another formula that expresses a Fibonacci number in terms of its 
predecessor, discovered by Hoggatt and Lind in 1967. 

Theorem 8.6. 

Fn+\ = 
F„ + 1 + 75F„2 _ 2Fn + 1 

n > 2 

Proof. Notice that L„ - Fn = (F„_, + Fn+I) - F„ = 2Fn_,. By Exercise 39 
in Chapter 5, L\ - 5F2 = 4 ( - l ) B , where n > 1. When n > 2, 4 ( - l ) " < 4F„_,. 
Therefore, when n > 2, we have 

That is, 

But 

L\ - 5F„2 < 4F„_, 

L2 - 5F„2 < 2(L„ - F„) 

( L „ - l ) 2 < 5 F 2 - 2 F „ + 1 

L„ = F„_i + F„+i = (Fn+i — F„) + F„+i = 2Fn+i — F„ 

.·. (2Fn+1 - F„ - l)2 < 5F„2 - 2Fn + 1 

Thus 

2F„+1 - F„ - 1 < y5Fn
2 - 2F„ + 1 

F„+i < 
F„ + 1 + 75F„2 - 2F„ + 1 

(8.6) 

Notice also that L„ + F„ = (Fn_, + F„+1) + F„ = 2F„+1. So, when n > 2, 

That is, 

4 ( - l ) " > -4F„+ 1 

Z.2 - 5F2 > -2(Ln + F„) 

L2
n+2Ln > 5 F 2 - 2 F „ 

(L„ + l)2 > 5F„2 - 2F„ + 1 

(2Fn+1 - F„ + l)2 > 5F„2 - 2F„ + 1 
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Thus 

2Fn+1 - F„ + 1 > y5F„2 - 2F„ + 1 

F„+l > 
F„ - 1 + J5FÎ - 2F„ + 1 

(8.7) 

Fn+1 > 
F„-l+ y5F„2 - 2Fn + 1 

(8.8) 

From Eqs. (8.6) and (8.7), we have 

F„ - 1 + 75F2 - 2F„ + 1 
< Fn+1 < 

Fn + 1 + y5Fn
2 - 2F„ + 1 

Since F„+i is an integer, it follows that 

Fn + 1 
F„ + 1 + V5FB

2 _ 2F„ + 1 
n > 2 

For example, the successor of the Fibonacci number 987 is given by 

987 + 1 + V5 · 9872 -2-987 + 1 
= L1597.2760-J = 1597 

Analogously, we have the following result for Lucas numbers. It was also developed 
by Hoggatt and Lind in 1967. Its proof is quite similar, so we leave it as an exercise. 

Theorem 8.7. 

Ln+1 = 
Ln + 1 + J5LI -2Ln + l 

n > 4 

For instance, the successor of the Lucas number 1364 is given by 

1364 + 1 + V5· 13642-2-1364 + 1 
= 12207.2748 · · -J = 2207 

Interestingly enough, we can use Theorem 8.3 in the reverse direction also. It can 
be employed to compute the predecessor of a given Fibonacci number, as the next 
theorem shows. 
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Theorem 8.8. 

F„ = ~(—0 n > 2 

Proof. Since x — 1 < \_x\ 5 x, Theorem 8.3 yields the double inequality 

1 1 
aFn - - < Fn+l < aFn + -

Fn - ;r- < < Fn + — 
2a a 2a 

Then 

Fn < I (F„+1 + I ) and F„ > I (F„+1 - I ) 

ï ( f - + , " 0 < F " - ï ( F - + , + D 
Since (l/er)(F„+, + ±) - (l/or)(FB+i - ±) = ± * 0.618 and F„ is an integer, it 
follows that 

Fn ï(F"+, + 0. n > 2 

For example, the predecessor of the Fibonacci number 4181 is given by 
L4181.5/oJ = [2584.3091---J = 2584. For the curious-minded, 4181 = F,9 and 
2584 = F|8. 

Analogously, we have the following result for Lucas numbers. We shall leave its 
proof as an exercise. 

Theorem 8.9. 

L„ = Ï ( L " + , + 0 . n > 2 

For example, the predecessor of the Lucas number L20 = 15,127 is given by 
[15,127.5/aj = L9349.3091 ·· -J = 9349 = L,9. 

In 1972, Anaya and Crump of then San Jose State College, California, established 
the following generalization of Theorem 8.3. 

Theorem 8.10. 

lakFn + \/2\ = Fn+k n>k>\ 
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Pmof. Since the theorem is true for k = 1, assume that n > k > 2. By Binet's 
formula, 

„n+k _ akßn a>i+k _ ßn+k ßn+k _ α * β η 

aKF„ = 
V5 

= Fn+k — ß" Fk 

yß + yß 

^ + 1 = ^ + (Ι-/τ) (8.9) 

Next we shall prove that 0 < 1 /2 - β"Fk < 1. When n = k,\ß"Fk\ has its largest 
value. Notice that \ß" | -► 0 as n -* oo. Also, 

ßk(ak-ßk) {-\f-ß2k 

\ßkFk\ = 

Case 1. Let k be even. Then 

V5 V5 

\ßkFk\ = 

lim ||9*F4| = 
k-nx 

l-ß 2k 

1 - 0 

V5 
1 1 

~ v5 * 2 

Since \ß"\ < \ßk\, it follows that 0 < |/3nF*| < \. 

Case 2. Let Λ be odd. Then 

\ßk Fk\ = 

When k = 3, 02* *< 0.055726, so 

- 1 - 0 2* 

χ/S 

i+ß 2k 

V5 

, ^ , ^ Ι ^ Ζ ^ « 0.472135 < i 
v 5 *· 

As ifc increases, 02* gets smaller and smaller. So \ßkFk\ < \ for k > 3 also. Thus 
0 <\ßnFk\<\, since |0"| < |/3*|. 

Consequently, 0 < \ß"Fk\ < \ for all n > k > 2; that is, 

0 < X--ßnFk<\ 

Therefore, by Eq. (8.9), Fn+k <akF„ + \< Fn+k + 1. Thus 

«*ft + 5 = F, n+i 
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For example, [a7Fs + 1/2J = |21a7 + 1/2J = |610.223 · · J = 610 = F15 = 
Fg+7. Notice that | a 8 F 7 + 1/2J = 611 φ Fi5. 

Corollary 8.9. \akF„ - 1/21 = F„+k, where n > Jfc > 1. ■ 

For example, \a9Fu - 1/21 = Γ89α9 - 1/21 = [6764.6708 · · ·1 = 6765 = 
FlO = F\\+g. 

In 1972, Anaya and Crump conjectured a similar formula for L„+k- It was proved 
in the same year by Carlitz of Duke University. 

Theorem 8.11. [ctkLn + 5J = £«+*> where n > 4 and k > 1. 

Proof. 

uLn - Ln+\ = α(α" + β") - (α"+1 + βπ+ι) 

= ßn(a-ß) = V5ßn 

When « > 4, 

|V5>| < <JlßA 

= V^(7 - 3N/5 ) /2 

< 1/2 

.·. \aL„ - L„+i\ < 1/2 

that is, 0 < aLn - Ln+\ + 1/2 < 1, so [aL„ + 1/2J = L„+\. Thus, the theorem is 
true for k = 1. 

Now, assume n > k + 2, where ^ > 2. Notice that 

a"2 + a - 6 = £2 + ^ 6 = 3 - > / 5 + 9 - 4V5 

= (21 - 9>/5) 
2 

Since /t > 2, this implies a - 2 + a~2*~2 < 1/2; that is, a~k~2(ak + a~k) < 1/2. 
Since n > k + 2, this means a~"(ak + a'k) < 1/2: 

.·. \ß"(ak-ßk)\ < 1/2 

That is, 

|α*(α" + /3") - (an+k + ßn+k)\ < 1/2 

\akLn-Ln+k\< 1/2 

As before, this implies that [_akL„ + 1/2J = L„+/t. ■ 
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For example, let n = 11 and k = 3. Then la3Lu + 1/2J = |α3Ζ-ιι + 1/2J = 
L199a3 + 1/2J = L843.4775 · ■ -J = 843 = L,4 = Ln+3. 

Corollary 8.10. [<xkL„ - 1/2J = L„+k, where n > 4 and k > 1. ■ 

For example, \a*Lw- 1/21 = | Ί23α 4 - 1/21 = Γ842.5545 · · -1 = 843 = LH = 
i-10+4· 

EXERCISES 8 

Using Theorem 8.1, compute F„ for the given value of«. 

1. 15 
2. 19 

3. 23 

4. 25 
5-8. Compute F„ for each value in Exercises 1-4 using Corollary 8.1. 

Verify that [a"/\/5J = Fn for each value of«. 
9. 12 

10. 20 
Verify that Γα"/\/51 = Fn for each value of n. 

11. 15 
12. 23 

Using Theorem 8.2, compute L„ for each given value of n. 
13. 8 
14. 10 
15. 15 
16. 20 

17-20. Compute L„ for each value in Exercises 13-16 using the formula L„ = 
W - \λ-

Verify that L„ = \an] for each value of n. 

21. 10 
22. 16 

Verify that Ln = [a"} for each value of n. 

23. 13 
24. 19 

Compute the successor of each Fibonacci number using Theorem 8.3. 
25. 2584 

26. 6765 
27-28. Redo Exercises 25 and 26 using Corollary 8.5. 
Compute the successor of each Lucas number using Theorem 8.4. 
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29. 843 
30. 9349 

31-32. Redo Exercises 29 and 30 using Corollary 8.6. 
33. Using Theorem 8.4, evaluate lim L„+\/L„. 

n—»oo 

34. Using Theorem 8.5, evaluate lim Fn+l/F„. 
n—»oo 

35. Using Theorem 8.7, evaluate lim Ln+\/L„. 
w—»oo 

Compute the predecessor of each Fibonacci number. 
36. 610 
37. 17,711 

Compute the predecessor of each Lucas number. 
38. 1364 
39. 39,603 

Let u„ and υ„ denote the lengths of the sides of the parallelogram in Figure 6.11, 
where u„ > v„. Verify each (Horadam, 1962). 

40. lim u„/vn = a 
n—»oo 

41. lim un/Fn+\ = -\ßß 
n—»oo 

42. lim vn/F„ = -V3ß 
n—»oo 

Suppose every Fibonacci number F„ in Figure 6.11 is replaced by the corresponding 
generalized Fibonacci number G„. Let θ„ denote the acute angle between the adjacent 
sides of the parallelogram and let t„ = (3a — b)G2n-\ ~M^2n-i +2G„_2G„_|. Prove 
each (Horadam, 1962). 

43. The lengths of the sides of the parallelogram are x„ = JG2
n + G2

n_2 and 

y„ = ^G2„_x +G2
n_3, where xn > y„. 

44. lim t„+\/tn =a2 

n—»oo 

45. lim x„/y„ = a 
n—*oo 

46. tan#„ — μ/ί„ 



THE EUCLIDEAN 
ALGORITHM 

This chapter continues our investigation of the properties of Fibonacci numbers. We 
reconfirm, using the Euclidean algorithm, that any two consecutive Fibonacci numbers 
are relatively prime. To this end, we first lay the necessary foundation for justifying 
the algorithm. 

Among the several procedures for finding the greatest common divisor (gcd) of 
two positive integers, one efficient algorithm is the Euclidean algorithm. Although it 
seems to have been known before him, it is named after the great Greek mathematician 
Euclid*, who published it in Book VII of his extraordinary work, The Elements. 

This next theorem paves the way for the Euclidean algorithm. 

Theorem 9.1. Let a and b be any positive integers, and r the remainder, when a is 
divided by b. Then (a, b) = (b, r). 

Proof. Let d = (a,b) and d' = (b, r). To prove that d = d', it suffices to show 
that d\d' and d'\d. By the division algorithm, a unique quotient q exists such that 

a=bq+r (9.1) 

To show that d/d': 
Since d = (a, b), d\a and d\b, so d\bq, by Theorem A.IO. Then d\(a — bq), again 
by Theorem A.IO. In other words, d\r, by Eq. 9.1. Thus, d\b and d\r, so d\(b, r); that 
is, d\d'. 

'Little is known about Euclid's life. He was on the faculty at the University of Alexandria and founded the 
Alexandrian School of Mathematics. When the Egyptian ruler, King Ptolemy I, asked Euclid if there were 
an easier way to learn geometry than by studying The Elements, Euclid replied, "There is no royal road to 
geometry." Euclid is called the father of geometry. 

132 
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Similarly, it can be shown that d'\d (see Exercise 17). Thus, by Theorem A.9, 
d = d\ that is, (a, b) = (b, r). ■ 

The following example elucidates this theorem. 

Example 9.1. llustrate Theorem 9.1 with a - 120 and b = 28. 

Solution. First, you can verify that (120, 28) = 4. Now, by the division algorithm, 
120 = 4 · 28 + 8, so, by Theorem 9.1, (120,28) = (28,8). But (28,8) = 4; 
.-.(120, 28) = 4. ■ 

Before formally presenting the Euclidean algorithm, we illustrate it in the next 
example. 

Example 9.2. Illustrate the Euclidean algorithm by evaluating (2076, 1776). 

Solution. Apply the division algorithm with 2076 (the larger of the two numbers) 
as the dividend and 1776 as the divisor: 

2076= 1 · 1776+ 300 

Apply the division algorithm with 1776 as the dividend and 300 as the divisor: 

1776 = 5-300 + 276 

Continue this procedure until a zero remainder is reached: 

2076 = 1 · 1776 + 300 

1776 = 5-300 + 276 

300 = 1 · 276 + 24 

276 = 11 · 24 + <— last nonzero remainder 

24 = 2 · 12 + 0 

The last nonzero remainder in this procedure is the gcd, so (2076, 1776) = 1 2 . ■ 

Take a close look at the preceding steps to see why the gcd is 12. By the repeated 
application of Theorem 9.1, we have 

(2076, 1776) = (1776, 300) = (300, 276) 

= (276, 24) = (24, 12) 

= 12 

We now turn our attention to a justification of this algorithm, although it is some-
what obvious. 
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THE EUCLIDEAN ALGORITHM 

Let a and b be any two positive integers, with a > b. If a = b, then (a, b) = a, so 
assume a > b. (If this is not true, simply switch them.) Let ro = b. Then by successive 
application of the division algorithm, we get a sequence of equations: 

a = qoro + rt 0 < rt < r0 

ro = q\r\ +r2 0 < r2 < r\ 

n = qiri + Γ3 0 < r3 < r2 

Continuing like this, we get the following sequence of remainders: 

b = ro > r\ > Γ2 > Γ3 > · · · > 0 

Since the remainders are nonnegative, and getting smaller and smaller, this sequence 
should eventually terminate with remainder r„ = 0. Thus, the last two equations in 
the preceding procedure are 

r„-2 = qn-\rn-\ +r„ 0 < r„ < r„_, 

and 

rn-\ = qnrn 

It follows by the principle of induction (PMI) that (a, b) = (a, ro) = (ro, r\) — 
(r\, r2) = ■ · ■ = (r„-i, r„) = r„, the last nonzero remainder (see Exercise 18). 

The following example also demonstrates the Euclidean algorithm. 

Example 9.3. Apply the Euclidean algorithm to find (4076,1024). 

Solution. By the successive application of the division algorithm, we get: 

4076 = 3 · 1024 + 1004 

1024 = 1 · 1004 + 20 

1004 = 50 · 20 + ■*- last nonzero remainder 

20 = 5 ■ 4 + 0 

Since the last nonzero remainder is 4, (4076, 1024) = 4 . ■ 

The Euclidean algorithm is purely mechanical. All we need is to make our divisor 
the new dividend and the remainder the new divisor. That is, we just follow the 
southwest arrows in the solution. 
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The Euclidean algorithm is formally presented in Algorithm 9.1. 

Algorithm Euclid (x,y, divisor) 
(* This algorithm returns the gcd (x,y) in divisor, 

where x > y > 0. *) 
Begin (* algorithm *) 

dividend «— x 
divisor <— y 
remainder <- dividend mod divisor 
while remainder > 0 do (* update dividend, 

divisor, and remainder *) 
begin (* while *) 

dividend <— divisor 
divisor <— remainder 
remainder <— dividend mod divisor 

endwhile 
End (* algorithm *) 

Algorithm 9.1. 

The Euclidean algorithm provides a procedure for expressing the gcd (a, b) as a 
linear combination of a and b, as the next example shows. 

Example 9.4. Use the Euclidean algorithm to express (4076, 1024) as a linear 
combination of 4076 and 1024. ■ 

Solution. All we need is to use the equations in Example 9.3 in the reverse order, 
each time substituting for the remainder from the previous equation: 

(4076, 1024) = 4 = last nonzero remainder 

= 1004-50-20 

= 1004 - 50(1024 - 1 · 1004) (substitute for 20) 

= 51 · 1004 -50 · 1024 

= 51(3076 - 3 · 1024) - 50 · 1024 (substitute for 1004) 

= 51 · 4076 + (-203) · 1024 

(We can confirm this by direct computation.) 
In Chapter 5, we proved that any two consecutive Fibonacci numbers are relatively 

prime. We now establish it using the Euclidean algorithm. 
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Example 9.5. Prove that any two consecutive Fibonacci numbers are relatively prime. 

Proof. Using the Euclidean algorithm with F„ as the original dividend 
and F„_i as the original divisor. This yields the following system of linear 
equations: 

F„ = 1 · F„_, + F„_2 

F„-\ = 1 ■ F„-2 + F„_3 

F„-2 = 1 ' "̂n-3 + Fn-4 

F4 = 1 · F3 + F2 

F3 = 2 · F2 + 0 

Thus, it follows by the Euclidean algorithm that (F„, F„_i) = F2 = 1. 

THE EUCLIDEAN ALGORITHM AND THE LUCAS FORMULA (5.5) 

In 1990, Ian Cook of the University of Essex, United Kingdom, developed 
Identity (5.5) as an application of the Euclidean algorithm. 

By the Euclidean algorithm, we have: 

1976 = 1 

1776 = 8 

200 = 1 

176 = 7 

24 = 3 

t 
quotients 

1776 + 200 

200+176 

176 + 24 

24 + 

8 + 0 

gcd 

It follows from these equations by successive substitutions that 

1976 · 1776 = 1 · 17762 + 8 · 2002 + 1.1762 + 7 · 242 + 3 · 82 

Notice that the coefficients on the right-hand side (RHS) are the various quotients 
in the algorithm and the corresponding factors are the squares of the corresponding 
divisors. 
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More generally, the equations 

a = qoro + Π 

ro = q\r\ +r2 

n-\ = qin +n+\ 

rn-i = q„-\rn-\ + <- gcd of a and b 

r„_i = qnr„ + 0 

imply that 

n 

ab^^qrf (9.2) 
i=0 

We can confirm this using PMI. 
In particular, let a = Fn+i and b = F„. By the Euclidean algorithm, we have 

F„+\ = 1 · F„ + F„-\ 

Fn = \- F„_, + F„_2 

3 = 1 - 2 + 1 + <-gcd(FH+l,F„) 

2 = 2 - 1 + 0 

With q„ =2 and q, = 1 for 0 < i < n, Formula (9.1) yields 

Fn+iFn = J^\-F? + 2-l2 

3 

Since 2 · l2 = l2 + l2, this sum can be rewritten as 

Y^Ff = FnF„+l (5.5) 

which is Identity (5.5). 
Next we estimate the number of divisions in the Euclidean algorithm, for which 

we need the following result. 
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Lemma 9.1. Let F„ denote the nth Fibonacci number and a = (1 + Λ /5 ) /2 . Prove 
that«" - 2 < F„ <a"~\n > 3. 

Proof by Strong Induction. (We shall prove that a"~2 < F„ and leave the other 
half as an exercise.) Let P(n): a"~2 < F„, where n > 3. 

Basis Step. Since the induction step below uses the recurrence relation Ft+i = 

Fk + Ft_i, the basis step involves verifying that both P(3) and F (4) are true. 

1. To show that P(3) is true: When n = 3, 

„_2 1+V5 1+3 „ „ 
a" 2 = a = — - — < ——- = 2 = F3 2 2 

.·. P(3) is true. 

2. To show that P(4) is true: 

a2 

. · . P(4) is also true. 

Induction Step. Assume P(3), P ( 4 ) , . . . , P(k) are true; that is, assume a'~2 < F, 
for 5 < / < k. We must show that P{k + 1) is true; that is, a*-1 < F*+i. We have 

a2 = a + 1 

Multiplying both sides by a*-3, 

a*-' = a*-2 + a*"3 (Note :k-3>2) 

< Fk + F/i_i by the IH 

= Fjt+i by the Fibonacci recurrence relation 

Thus P(k + 1) is true. 

Therefore, by the strong version of induction, P(n) is true for every n > 3; that 
is, a"~2 < F„ for every n > 3. ■ 

The following theorem estimates the number of divisions required by the Euclidean 
algorithm to compute the gcd (a, b). It was established in 1844 by the French 
mathematician Gabriel Lamé (1795-1870). 

Theorem 9.2. (Lamé's Theorem) The number of divisions needed to compute (a, b) 
by the Euclidean algorithm is no more than five times the number of decimal digits 
in b, where a > b > 2. 

( 

1 + V5\ 3 + V5 

3 + 3 
= 3 
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Proof. Let F„ denote the nth Fibonacci number, a = η> and b = rt. By the repeated 
application of the division algorithm, we have: 

ro = r\q\ + r2 0 < r2 < r\ 

r\ = r2q2 + r3 0 < r3 < r2 

0,-2 = r„-\qn-] +r„ 0 < r„ < r„_, 

>"n-l — rn<]n 

Clearly, it takes n divisions to evaluate (a, b) = r„. Since r, < r,_j, #, > 1 for 
1 < / < / ! . In particular, since r„ < r„_,, #„ > 2, so r„ > 1 and r„_i > 2 = F3. 
Consequently, we have 

r„~2 — rn-\q„_\ + rn 

> r„_, +rn 

> Fi + \ 

= F) + F2 = F4 

''«-a = r„-2q„-2 + r„-\ 

> F4+ F) = F5 

Continuing like this, 

r\ = r2q2 + r3 

> r2 + r3 

> F„ + F„_i = Fn+\ 

That is, 

* > F„+i 

By Lemma 9.1, Fn + i > a"-1, where a = (1 + \ /5)/2andn > 3. 

.·. b > a""1 

log b > (n - 1 ) log a 



140 THE EUCLIDEAN ALGORITHM 

Since a = (1 + V5)/2 « 1.618033989, log« « 0.2089876403 > 1/5. 

.·. logfc > — — 

Suppose b contains k decimal digits. Then b < 10*. Therefore, log b < k, and 
hence k > (n — l) /5. Thus n < 5k + 1 or n < 5k. That is, the number of divisions 
needed by the algorithm is no more than five times the number of decimal digits 
inn. ■ 

Let us pursue this example a bit further. Since log b > (n — l) /5 , n < 1 + 5 log b. 
Also, since b > 2, 

5 log b > 5 log 2 

> 1 

.·. n < I + 5 \ogb 

< 5 log b + 5 log b 

= 10 logé 

= O(logè) 

Thus it takes 0(log b) divisions to compute (a, b) by the Euclidean algorithm,* 

EXERCISES 9 

Use the Euclidean algorithm to find the gcd of the given integers. 

1. 1024,1000 

2. 2024, 1024 

3. 2076, 1076 

4. 2076, 1776 

5. 1976,1776 

6. 3076, 1776 

7. 3076, 1976 

8. 4076, 2076 

9-16. Use the Euclidean algorithm to express the gcd of each pair in Exercises 1-8 
as a linear combination of the given numbers. 

17. Let a and b any two positive integers and r the remainder when a is divided 
by b. Let d = (a, b) and d' = (b, r). Prove that d'\d. 

*Let / , g: N -»· R. Then f(n) is said to be of order at most g(n) if there exist a positive constant C and 
a positive integer n such that \f(n)\ < C\g(n)\ for every n > n. In symbols, we write /(n) = 0(g(n)). 
(Read this as f(n) is big-oh ofg(n).) 
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18. Let a and b be any two positive integers with a > b. Using the sequence of 
equations in the Euclidean algorithm, prove that (a, b) = (r„_i, rn), where 
n > 1. 

19. Prove Identity (5.10) using the Euclidean algorithm. 



SOLVING RECURRENCE 
RELATIONS 

We shall now develop a method for solving a large and important class of recurrence 
relations, which are defined below. We will use this method to confirm Binet's explicit 
formula for Fn and L„. 

LINEAR HOMOGENEOUS RECURRENCE RELATIONS 
WITH CONSTANT COEFFICIENTS 

A kth-order linear homogeneous recurrence relation with constant coefficients 
(LHRRWCCs) is a recurrence relation of the form 

a„ = C\an-\ + c2a„_2 H H cka„-k (10.1) 

(where c\, C2,. . . , c* e U and c* φ 0.) 
We need a few words of explanation about the definitional terms. The term linear 

means every term on the right-hand side (RHS) of Eq. (10.1) contains at most the 
first power of any predecessor a,. A recurrence relation is homogeneous if every term 
on the RHS is a multiple of some a, ; in other words, the relation is satisfied by the 
sequence {0}, that is, a„ = 0 for every n. All coefficients c, are constants. Since a„ 
depends on its k immediate predecessors, the order of the recurrence relation is k. 
Accordingly, to solve a fcth order LHRRWCC, we will need k initial conditions, say, 
ao — Co, a\ = Ci,... ,αΐι-ι = Q . 

The following example illustrates in detail the various terms in this definition. 

142 
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Example 10.1. 

1. The recurrence relation s„ — 2s„_i is a LHRRWCC. Its order is one. 

2. The recurrence relation a„ = na„-\ is linear and homogeneous. But the coef-
ficient on the RHS is not a constant. Therefore, it is not a LHRRWCC. 

3. h„ = h„-i + (n — 1) is a linear recurrence relation. But, because of the term 
n — 1, it is not homogeneous. 

4. The recurrence relation a„ = a2_, + 3a„_2 is homogeneous. But it is not linear, 
since the power of a„_ i is 2. 

5. a„ = a„_i + 2a„_2 + 3a„_6 is a LHRRWCC of order six. ■ 

Before we discuss solving second-order LHRRWCCs, notice that the solution of 
the recurrence relation s„ = 2sn-\, where SQ = 1, is sn = 2", n > 0. More generally, 
the solution of the recurrence relation a„ = ya„_i where ÜQ = c, is an = cy", 
n>0. 

Let us now turn our attention to the second-order LHRRWCC 

an = aa„-\ + ba„-2 (10.2) 

where a and b are nonzero constants. If it has a nonzero solution of the form cy", 
then cy" = acy"~' + bcy"~2. Since cy Φ 0, this yields y2 = ay + b, that is, 
y2 — ay — b = 0, so y must be a solution of the characteristic equation 

x2-ax-b = 0 (10.3) 

of the recurrence relation Eq. (10.2). The roots of Eq. (10.3) are called the character-
istic roots of Recurrence Relation (10.2). 

Theorem 10.1 shows how characteristic roots help solve LHRRWCCs. 

Theorem 10.1. Let y and δ be the distinct solutions of the equation x2 — ax — b = 0, 
where a, b e R and b Φ 0. Then every solution of the LHRRWCC a„ = αα„_ι + 
fca„_2, where αο = Coandai = C|, is of the forma,, = Ay" + Bh" for some constants 
A and B. 

Proof. The proof consists of two parts: (1) We will show that an — Ay" + Bh" is 
a solution of the recurrence relation for any constants A and B, (2) we will find the 
values of A and B satisfying the given initial conditions. 

First, notice that since y and δ are solutions of Eq. (10.3), y2 = ay + b and 
82 = ah + b. 

1. To show that a„ = Ay" + Βδ" is a solution of the recurrence relation: 

aan^ + ban-2 = «(Ay""1 + βδ""1) + b{Ay"-2 + βδ""2) 

= Αγ"-2(αγ + b) + βδ"-2(αδ + b) 



144 SOLVING RECURRENCE RELATIONS 

= Αγη~2 ■ y2 + Bh"~2 ■ h2 

= Ay" + Bhn 

= an 

Thus a„ — Ay" + Bh" is a solution of Recurrence Relation (10.2). 

2. Secondly, leta„ = Ay" + Bh" be a solution of Eq. (10.2). To find the values of 
A and B, notice that the conditions ao = Co and a\ = C\ yield the following 
linear system: 

C0 = A + B 

C, = Ay + Bh 

Solving this system we get 

C\ -CQh _, n C0y - Ci 
A = — and B = — (remember, y Φ h) 

γ - δ y - δ 

With these values for A and B, an satisfies the initial conditions and the recurrence 
relation. Since the recurrence relation and the initial conditions determine a unique 
sequence [a„], a„ = Ay" + Bh" is indeed the unique solution of the recurrence 
relation. ■ 

Note 

(1) The solutions y and δ are nonzero, since y = 0, for instance, would imply that 
b = 0. 

(2) Theorem 10.1 cannot be applied if y = δ. However, it works even if y and δ 
are complex numbers. 

(3) The solutions y" and δ" are the basic solutions of the recurrence relation. 
In general, the number of basic solutions equals the order of the recurrence 
relation. The general solution a„ = Ay" + Bh" is a linear combination of the 
basic solutions. The particular solution is obtained by selecting A and B in such 
a way that the initial conditions are satisfied, as in Theorem 10.1. 

The next two examples illustrate how to solve second-order LHRRWCCs using 
their characteristic equations. 

Example 10.2. Solve the recurrence relation a„ = 5α„_ι — 6a„_2, where ao = 4 and 
a, = 7 . 

Solution. 

1. To find the general solution of the recurrence relation: 

The characteristic equation of the recurrence relation is x2 — 5x + 6 = 0; 
the characteristic roots are 2 and 3. Therefore, by Theorem 10.1, the general 
solution of the recurrence relation is a„ = A2" + B3". 
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2. To find the values of A and B: 

Using the initial conditions we find: 

a0 = A + B = 4 

ax = 2A + 3Ö = 7 

Solving this linear system yields A = 5 and B = — 1. 
Thus the solution of the recurrence relation satisfying the given conditions is a„ = 

5 · 2" - 3 \ n > 0 . ■ 

The next example finds an explicit formula for the nth Fibonacci number, which 
we have been waiting for. 

Example 10.3. Solve the Fibonacci recurrence relation F„ = Fn-\ + F„_2, where 
F, = 1 = F2. 

Solution. The characteristic equation of the recurrence relation is* 2 — x — 1 = 0 
and its solutions are a = (1 + \/5)/2 and ß = (1 - y/S)/2. Recall that a + ß = 1 
and aß = — 1. 

The general solution is F„ = Act" + Bß". To find A and B, we have 

F, = Aa + Bß = 1 

F2 = 4a 2 + Bß2 = 1 

Solving these two equations, we get 

a _ ( l + V 5 ) / 2 l + > / 5 

1 + a2 _ (5 + V5)/2 _ 5 + x/5 

V5(l + > / 5 ) - V 5 

and similarly ß = 0/(1 + 02) = - 1 / V 5 . 
Thus the solution of the recurrence relation satisfying the given conditions is 

_ a" - ß" _ a" - ß" 
F" ~ ~7T - ~a~ß~ 

which is the Binet form for the Fibonacci number F„. ■ 

The same method can be employed to derive Binet's formula for L„ (see 
Exercise 15). 
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EXERCISES 10 

Determine if each recurrence relation is an LHRRWCC. 

1. L„ = L„_i + L„_2 

2. D„ = nDH-t + (-IY 

3. a„ = 1.08α„_ι 

4. b„ = 2è„_! + 1 

5. a„ =a„_i +n 

6. an = 2a„_, + (2" - 1) 

7. an = a„_i + 2a„_2 + 3a„_5 

8. a„ =a n _ i +2an_3 + H2 

Solve the following LHRRWCCs. 

9. a„ = a„_i + 2a„_2, a0 = 3, ai = 0 

10. a„ = 5a„_i - 6a„_2, ao = 4, a( = 7 

11. a„ = a„_i +6a„_2,ao = 5,ai = 0 

12. a„ = 4a„_2, ao = 2, aj = - 8 

13. a„ = a„_i + a„_2,ao = l,«i = 2 

14. a„ = a„_i + a„_2, ao = 2, a\ = 3 

15. L„ = L„_i + L„_2, L, = 1, L2 = 3 

16. L„ = L„_i + L„_2, Li = 2, L2 = 3 



COMPLETENESS 
THEOREMS 

This chapter, like the preceding ones, provides numerous opportunities for studying 
patterns and making conjectures. 

We begin with yet another interesting pattern: 

1 = 1 2 = 2 
3 = 2 + 1 4 = 3 + 1 
5 = 3 + 2 6 = 5 + 1 
7 = 5 + 2 8 = 5 + 3 
9 = 8 + 1 10 = 8 + 2 

Every integer on the left-hand side (LHS) of each equation is a positive integer; and 
each number on the right-hand side (RHS) is a Fibonacci number, and each occurs 
exactly once. 

More generally, we have the following result. 

Theorem 11.1. (Completeness Theorem) Every positive integer n can be expressed 
as a finite sum of distinct Fibonacci numbers. 

Proof. Let Fm be the largest Fibonacci number < n. Then n = Fm + n\, where 
«i < Fm. Let Fmt be the largest Fibonacci number < n\. Then n — Fm + Fmi + ni, 
n > Fm > Fmr Continuing like this, we get n = Fm + Fm, + F„2 + · · ·, where 
n > Fm > Fm, > Fmi ■ ■·. Since this sequence of decreasing positive integers must 
terminate, the result follows. ■ 

We must emphasize that the representation of an integer n in terms of Fibonacci 
numbers is not unique. For example, 25 = 2 1 + 3 + 1 = 13 + 8 + 3 + 1 . 
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THE EGYPTIAN ALGORITHM FOR MULTIPLICATION 

Every positive integer can be expressed as a sum of distinct powers of 2. This fact 
is the basis of the well-known Egyptian algorithm for multiplication. For example, 

n n 

let b = Σ ft,2', where b, — 0 or 1. Then ab = £(afc,)2'. Thus, to compute ab, 
i=0 i=0 

we need only keep doubling a until the product gets larger than 2" and then add the 
products corresponding to the ones in the binary representation of b. This algorithm 
is illustrated in the following example. 

Example 11.1. Use the Egyptian method of multiplication to compute 47 · 73. 

Solution. First, express 47 as a sum of powers of 2: 

4 7 = 1 + 2 + 4 + 8 + 32 

.·. 47 · 73 = 1 · 73 + 2 · 73 + 4 · 73 + 8 · 73 + 32 · 73 

Next, construct a table (see Table 11.1) consisting of two rows, one headed by 1 
and the other by 73; each successive column is obtained by doubling the preceding 
column. Identify the numbers in the second row that correspond to the powers of 
2 used in the representation of 47 by asterisks; they correspond to the terms in the 
binary expansion of 47. 

TABLE 11.1. 

1 

73* 

2 

146* 

4 

292* 

8 

584* 

16 

1168 

32 

2336* 

To find the desired product, we add the starred numbers: 

47 · 73 = 73 + 146 + 292 + 584 + 2336 

= 3431 

■ 

By virtue of Theorem 11.1, we can also use Fibonacci numbers to effect multipli-
cation of positive integers, as the next example demonstrates. 

Example 11.2. Use Fibonacci numbers to compute 47 · 73. 

Solution. First, we express 47 as a sum of distinct Fibonacci numbers: 

47 = 2 + 3 + 8 + 1 3 + 21 

.·. 47 · 73 = 2 · 73 + 3 · 73 + 8 · 73 + 13 · 73 + 21 · 73 

Now construct a table as before (see Table 11.2). It follows from the table that 
47 · 73 = 146 + 219 + 584 + 949 + 1533 = 3, 431, as expected. 
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TABLE 11.2. 
1 

73 

2 

146· 

3 

219' 

5 

365 

8 

584* 

13 

949* 

21 

1533* 

Although the Fibonacci numbers Fn, where n > 1, are complete, Lucas numbers 
L„ are not. For example, with the numbers 1,3,4, . . . , we cannot represent 2. But 
all is not lost. If we add 2 to the list, the resulting set is complete. 

But, as before, the representation need not be unique. For instance, 43 = 29 + 
1 1 + 3 = 29 + 7 + 4 + 3 = 2 9 + 1 1 + 2 + 1 . 

Accordingly, we have the following result. 

Theorem 11.2. (Completeness Theorem) The set of Lucas numbers L„ is complete, 
where n > 0. ■ 

Consequently, we can also employ Lucas numbers to perform integer multiplica-
tion, as the next example illustrates. 

Example 11.3. Use Theorem 11.2 to compute 47-73. 

Solution. We have 47 = 3 + 4 + 11 + 29. So it follows from Table 11.3 that 
47 · 73 = 219 + 292 + 803 + 2117 = 3431. 

TABLE 11.3. 

2 

146 

1 

73 

3 

219* 

4 

292* 

7 

511 

11 

803· 

18 

1314 

29 

2117· 

EXERCISES 11 

Express each number as a sum of distinct Fibonacci numbers. 

1. 43 
2. 99 
3. 137 

4. 343 
5-8. Express each number in Exercises 1-4 as a sum of distinct Lucas numbers. 

Use Fibonacci numbers to compute each. 
9. 43 · 49 

10. 99 · 101 
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11. I l l 121 
12. 243-342 

13-16. Use Lucas numbers to compute each product in Exercises 9-12. 
17. Prove Theorem 11.2. 



PASCAL'S TRIANGLE 

We shall see how Fibonacci numbers can be computed in a systematic way from the 
well-known Pascal's triangle. In addition, we will be able to derive a host of new 
Fibonacci and Lucas identities. 

We begin with a discussion of binomial coefficients, which are coefficients occur-
ring in the binomial expansion of an expression of the form (JC + y)n. 

BINOMIAL COEFFICIENTS 

Let n and k be nonnegative integers. The binomial coefficient (") is defined by 

\kj k\(n-k)l 

if k < n, and is 0 otherwise. It is also denoted by C(n, r) and nCr. 
For example, 

\3J 3 ! (5 -3 ) ! 

5 - 4 - 3 - 2 - 1 

3 - 2 - 1 - 2 - 1 
10 

Using aTI-86, however, a large number such as (22) can be found in seconds. Press 

nCr ; enter 22; then press the keys 2nd , MATH , and PROB ; enter 45; press 

the | ENTER | key. The answer is 4,116,715,363,800. 
Suppose we let k = 0 in the definition. Then 

\0J 0!(#i-0)! 1 n\ 
= 1 
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Besides, if k = n, then 

fn\ n\ n\ 0-{nj n\(n-n)\ n!0! 

Thus we have two useful results: 

= 1 

G)-'-ö 
There are many instances when we need to compute the binomial coefficients (£) and 
(„%). The next theorem shows there is no need to evaluate both, since they are equal; 
this will certainly reduce our workload. 

Theorem 12.1. Let « and k be nonnegative integers such that k < n. Then (£) = 

Proof. 

( n \ n\ n 

\n-k) = (n - k)\[n - (n - k)]\ ~ (n - , ft)!*! ft!(n-ft)! 

-0 
For example, Qfy — (2s-zo) = (?) = 53,130 by our earlier discussion. (See how 

useful the theorem is.) 
The following theorem shows an important recurrence relation satisfied by bino-

mial coefficients. It is called Pascal's identity, after the outstanding French mathema-
tician and physicist, Blaise Pascal (1623-1662). 

Theorem 12.2. (Pascal's identity) Let n and k be positive integers, where k < n. 
Then © = («I!) + (V)· 

Proof. We shall simplify the right-hand side (RHS) and show that it is equal to the 
left-hand side (LHS). 

In - 1\ in ~ 1\ = ( n - P ! 
\k-\) V k ) (*- l )!(n-

(n - D! 
ft)! ft!(n-ft-l)! 

ft(n-l)! ( n - f t ) ( n - l ) ! 

ft(ft-l)!(n-ft)! ft!(n-ft)(n-ft-l)! 

ft(n-l)! (» - ft)(w - 1)! _ (n - l)![ft + (w - ft)] 

ft!(n-ft)! + ft!(n-ft)! ~~ ft!(n-ft)! 

( n - l)!n _ «! 

ft!(«-ft)! ~ ft!(n-ft)! 

■Ö 



PASCAL'S TRIANGLE 153 

PASCAL'S TRIANGLE 

The various binomial coefficients ("k), where 0 < k < n, can be arranged in the form 
of a triangle, called Pascal's triangle* as shown in Figures 12.1 and 12.2. 

Co) 
*) ,0/ 

M w 

M w 

(A 
w 

(3) 
IW 

0 

W 

(2) 
U 

M w 

i1V u 

(3) w 
(2) 
\2) 

(4) 
\z) 

(3) 

y M 
w 

-

-

-

^ 

-

rowO 

row1 

row 2 

row 3 

row 4 

Figure 12.1. 

1 ♦- row 0 

1 - row 1 

2 1 - row 2 

3 1 - row 3 

6 4 1 - row 4 

Figure 12.2. 

Pascal's triangle has many intriguing properties: 

• Every row begins with and ends in 1. 
• Pascal's triangle is symmetric about a vertical line through the middle. This is 

so by Theorem 12.1. 
• Any interior number in each row is the sum of the numbers immediately to its 

left and to its right in the preceding row. This is so by virtue of Pascal's identity. 

• The sum of the numbers in any row is a power of 2. 

"Although Pascal's triangle is named after Pascal in the West, the array appeared in a 1303 work by the 
Chinese mathematician, Chu Shi-Kie. 
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The next theorem shows how the binomial coefficients can be used to find the 
binomial expansion of (x + y)n. 

Theorem 12.3. (The Binomial Theorem)* Let x and y be any real numbers, and n 
n 

any nonnegative integer. Then (x + y)n = Σ (")■*""'/· 
r=0 

Proof, (by Weak Induction) When n = 0, LHS = (JC + y)° = 1 and RHS = 
o 
Σ 0x°'ryr = x°y° = 1. so LHS = RHS. 

Assume P(k) is true for some k > 0: 

(Jc + >-)' 

Then 

(x + y)K+l = (x + y)K(x + y) 

(x + y) by the IH -[?cH 

-[Q^-ÊÇ)·4-"/] 

♦ [ÊO^ ' + O" 

=c;V'+t[C)+C!,)]''+,->'+c::> 
*The binomial theorem for n — 2 can be found in Euclid's work (ca. 300 B.c.). 
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+ L + ! )yk+ ' by Theorem 12.2 

Thus, by the principle of mathematical induction (PMI), the formula is true for every 
integer n > 0. ■ 

It follows from the binomial theorem that the binomial coefficients in the expansion 
of {x + y)" are the various numbers in row n of Pascal's triangle. 

Corollary 12.1. 

(\+x)n = Y^(n\x" and (1 -x)" = J2(n\(-l)nxn m 

Corollary 12.2. 

Σ(;)=Σ (,-_,) 
That is, the sum of the 'even' binomial coefficients equals that of the 'odd' binomial 
coefficients. ■ 

The proof of this corollary follows by letting x = —1 in the first result in 
Corollary 12.1. 

FIBONACCI NUMBERS 

But how are Fibonacci numbers related to Pascal's triangle? To see this, we return to 
the triangular arrangement (see Fig. 12.3, for example). Now add the numbers along 
the northeast diagonals. The sums are 1, 1, 2, 3, 5, 8 and they seem to be the 
Fibonacci numbers. Indeed, they are, as the next theorem, discovered by E. Lucas in 
1876, confirms. 

Theorem 12.4. (Lucas Formula, 1876) 

L«/2J 

;—n v * 

(12.1) 
\ / / 

i=0 
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Figure 12.3. 

Proof, (by the strong version of PMI) When « = 0, RHS = Σ, ( V ) = (o) = l = 
<=o 

F] = L H S . So the statement is true when n = 0. 
Now assume it is true for all nonnegative integers < k, where k is an arbitrary 

integer > 0: 

Fk + 1 

l*/2J ,, Λ 

i=0 v ' 

By Pascal's identity, 

L(*+2)/2J L(*+2)/2J L(*+2)/2j 

Σ (*+ - ) - Σ 'Ϊ-Γ) + Σ C+ - ) 
1=0 V ' / ,=o v / 1=0 v 7 

Suppose k is even. Then 

L(*+2)/2J ., , „ A */2 

;=0 \ J / 1=0 ^ ' 

= Ft + F t+i 

= Fi+2 

It can be shown similarly that, when k is odd, 

L(*+2)/2J 

Σ C ~ H « 
Thus, by the strong verision of PMI, the formula holds for all integers n > 0. ■ 
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For example, 

1 + 5 + 6 + 1 = 13 

We can use Binet's and Lucas' formulas, and the binomial theorem in tandem to 
derive an array of Fibonacci and Lucas identities. For example, notice that 

?©-©*♦©'■♦©*♦©*♦©«♦©* 
= 0 + 5 + 10 + 20 + 15 + 5 = 55 = Fio 

More generally, we have the following identity. 

Theorem 12.5. (Lucas) 

Proof. By Binet's formula, 

έ©«-±©£*) 

_ ( l + a ) " - ( l + j 6 ) " 

α-β 

_ a2" - β2η 

- α-β 

= Fin 

(12.2) 

by Corollary 12.1 

since a = a + 1 and β = β + 1 
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A similar argument yields yet another identity by Lucas: 

to- L2„ n > 0 (12.3) 
\ I / 

i=0 

For example, 

Ç C ) = ( > + ( > + G M ; > > + ( > 
= 2 + 4 + 18 + 16 + 7 = 47 = L8 

Theorem 12.6. 

i=0 

Proof. By Binet's formula, 

^ ( " V - l ) ' f / = (-l)"-IF1I, n>0 (12.4) 

-^[iCH-tC)<V 
(1 _ a y _ ( i _ «)« 

— by Corollary 12.1 
a-ß 

For example, 

a -0 

= (-D-'F, 

, a" - /3" 
a - 0 

?©<-*-©*-(>♦©*-©*♦©*-©* 
= 0 - 5 + 1 0 - 2 0 + 1 5 - 5 = - 5 = (-1)5F5 

It similarly can be shown that 

£ ( " ) ( - i y t i = ( - D " i , « > 0 (12.5) 
1=0 ^ ' 
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For example, 

EOc-'^-flu-iiWiin 0/ " WJ ' ' \2, 

= 2 - 4 + 1 8 - 16 + 7 = 7 = (-l)4L4 

ï)L a +C)L* 

FIBONACCI PATHS OF A ROOK ON A CHESSBOARD 

In 1970, Edward T. Frankel of New York showed that Fibonacci numbers can be 
derived by enumerating the number of different paths open to a rook on an empty 
chessboard from one corner to the opposite corner where its moves are restricted by 
a pattern of horizontal and vertical fences. 

To see this, consider Pascal's triangle with the top nine rows, rows 0 through 8. 
This time, left-justify the elements in every row and then move up each column j -
by-j elements, where j > 0. In other words, rotate Pascal's triangle to its left by 
45°. Figure 12.4 shows the resulting 8 x 8 square array. Every rising diagonal of this 
array is a row of the Pascal's triangle in Figure 12.1. Every element A(i, j) of this 
array can be realized by adding the element immediately to its left and the element 
immediately above it: 

A(i,j) = A(iJ-\) + A(i-\,j) 

where i, j > 1. Clearly, A(0, j) = 1 = A(i, 0). 

• Row 3 in Pascal's triangle 

0 

1 

2 

3 

4 

5 

6 

7 

0 

1 ^ 
s 
1 -' 

if 

1 

1 

2 

-9-

4 

5 

6 

7 

8 

2 

1 

s*— 

— - y 

S 6 

10 

15 
21 

28 

36 

3 

10 

20 

35 

56 

84 

120 

4 

-^1 

5 

5 

1 

6 

15 21 

35 56 

70 126 

126 

210 

330 

252 

462 

792 

6 

1 

7 

28 

84 

210 

462 

924 

1716 

7 

1 

8 

36 

120 

330 

792 

1716 

3432 

Figure 12.4. 
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1 

(ί) 

I!) 

(?) 

6) 

(?) 

(?) 

(?) 

(?) 

2 

(?) 

(?) 

(1) 

(?) 

(!) 

(Ϊ) 

(?) 

(?) 

3 

(?) 

(?) 

(i) 

(?) 

(?) 

(?) 

(?) 

(V0) 
Figure 12.5 
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(5) 

(?) 

(?) 

ß) 

(?) 

(?) 

(Ϊ) 

(V) 

5 

(?) 

(?) 

ß) 

(?) 

(?) 

(S) 

fi?) 

(V2) 

6 

(?) 

(?) 

(?) 

(?) 

m 
(V) 

(il 

(?) 

7 

ß) 

(?) 

(?) 

('s0) 

(V) 

(ï) 

(If) 

(V4) 

A rook on a chessboard moves any number of cells either horizontally or vertically, 
but not in both directions in the same move. Suppose it moves horizontally to the 
right(R) or vertically down(D). It is well known that each entry in Figure 12.4 indicates 
the number of moves of a rook from the upper left-hand comer to that cell. For 
example, A(2, 1) = 3 implies that there are three different ways the rook can move 
from position (0,0) to position (2,1); they are 1R, 2D; ID, 1R, ID; and 2D, 1R. The 
rook has 3432 possible moves from the upper left comer to the lower right-hand comer 
(7,7). Using the combinatorial notation, we can rewrite the array in Figure 12.4, as 
Figure 12.5 shows. 

Figure 12.6 shows the number of moves of the rook from the upper left-hand 
comer, where its moves are restricted by staggered horizontal and vertical fences. 
Oddly enough, all entries in this band array are Fibonacci numbers. The band is 
made up of four strands of Fibonacci numbers. The array begins with a 1 in the top 
left comer. Every other entry is the sum of the entries immediately to its left and 
immediately above it, assuming the entries outside the square are zeros. 

Figure 12.7 displays the same chessboard array using the Fibonacci notation. 
Notice that the subscripts of any two adjacent Fibonacci numbers on each strand differ 

(?) 

0 

(?) 

(?) 

(4) 

(?) 

(?) 

(?) 
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1 

1 

1 

2 
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1 

3 

5 

5 

3 

8 

13 

13 

8 

21 

34 

34 

21 

55 

89 

89 

55 

144 

233 

233 

144 

377 

610 

Figure 12.6. 
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F2 

F3 

F3 

F2 

FA 

F* 

F5 

F* 

Fe 

F-, 

F7 

F6 

Fe 

F9 

F9 

F6 

Fv> 

Fu 

Fu 

*Ί0 

F,2 

^13 

F,3 

F» 

Fu 

FK 

Figure 12.7. 

by two. Also, the Fibonacci numbers on the two upper strands have odd subscripts, 
whereas those on the two lower ones have even subscripts. 

It follows from Figures 12.5-12.7 that the rook has Fis = 610 possible moves 
from position (0,0) to position (7,7). More generally, on an n x n chessboard, the 
rook has F2„_i restricted moves from the top left corner to the bottom right corner 
(see Exercise 32). 
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EXERCISES 12 

Using Lucas' formula, compute each. 
1. F5 

2. F9 

3. Fn 

4. Fn 

Prove each. 

5. £ ( : )L , = L2n 
1=0 

6- t{1)(-OiLi = (-l)nL„ 
i'=0 

7- ±Ç;)Fi+j = F2n+j 
i=0 

n 
8 · Σ (")^i'+> = £-2n+y 

(=0 

1=0 

10- tC)(-D%+y = (-iyin-y 
i=0 

11. Verify that 5 £ (")/? = £ (^Ζ^; for « = 4 and n = 5. 
1=0 1=0 

Establish the formula in Exercise 11 using: 
12. The binomial theorem. 
13. Exercise 42 in Chapter 5. 

14. Verify that £ (!)L2 = £ (")L2. forn = 4 and n = 5. 
i=0 ' i=0 

15. Establish the formula in Exercise 14. 
Prove each. 

L0I-D/2J 

16. 2n~lFn = Σ (2,"+1)5'(Catalan, 1846) 
o 

L»/2J 

17. 2"-'L„= Σ (2
n,)5' (Catalan) 

o 

18. Σ(- ·2) ' ( -)* = ( -îFi „ e0l n / 2
 i f " iS CVen (Ferns, 1964) ^ v Vi/ |2 'F i -2-5 ( "" 1 ) / 2 otherwise 

19. Σ (-2)'(")G, = 5("-1)/2[c(-l)" - d] (Koshy, 1998) 
o 

20. E(-)'(?)*<a = (-)"£» (Gould> 1963) 
o 
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21· E(-) '0) F 2, = (-)"Fn (Gould, 1963) 
o 

22. tC)G,=G2 n(Ruggles, 1963) 
o 

23. Ê(-)''(")Gi = (-)"G-„ (Koshy, 1998) 
o 

24. £ C;)G,+; = G2n+; (Koshy, 1998) 
o 

25. Ë(-)'C)Gi+y ^ (-)"<?;-„ (Koshy, 1998) 
o 

26- Ë C) i J ,C i f r+ i = f«n+r (Vinson, 1963) 
o 

OT ττ/"\ΐ7 \ 5{"~n/2L„+k if «is odd, „ ... ,„,.,.. 
27. Ç (,)Fk+v = j 5 „ / 2 F n + i o t h e r w . s e (Carhtz, 1967) 
->o r>/»\, f 5<n+1)/2/r„+it if«isodd/y~, ... ,«,--,. 
28. Ç {,)Lk+v = ) 5 n / 2 L n + ; + i

 o t h e r w i s e (Carhtz, 1967) 
2n 

29. E(-)i(^ ,)2 ,'- |Ll· = 5" (Brown, 1967) 
n 

2« 

30. Σ(-) ' (Γ) 2 ' _ Ι / Γ ' = 0 (Brown, 1967) 
o 

31- Σ G)/W = ^ Λ * (Hoggatt, 1968) 
o 

32. A rook on an n x n chessboard has p2n-\ restricted moves from the top left 
corner to the bottom right corner. 



PASCAL-LIKE TRIANGLES 

We have seen how Fibonacci numbers can be generated from Pascal's triangle. We now 
turn to how Fibonacci and Lucas numbers can be constructed from similar triangular 
arrays that have Pascal-like properties. 

In 1966, N. A. Draim of Ventura, California, and M. Bicknell of A. C. Wilcox 
High School, Santa Clara, California, studied the sums and differences of like powers 
of the solutions of an arbitrary quadratic equation x2 — px — q = 0. These sums 
and differences were also studied in 1997 by J. E. Woko of Abia State Polytechnic, 
Aba, Nigeria. As we will see shortly, an intriguing relationship exists between these 
expressions, and Fibonacci and Lucas numbers. 

SUMS OF THE ji,h POWERS 

Let r and s be the solutions of the quadratic equation x2 - px — q = 0. Then 

P + yjp2 + 4? . P~y/P2+ 4g 
r = and s = 

2 2 
so r + s = p and rs = —q. Consequently, 

r2 +s2 = (r + s)2 - 1rs = p2 + Iq 

and 

r3 + s
3 = (r + s)3 - 3rs(r + s) = p3 + Ipq 

164 
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Continuing like this, we can compute the values of the various sums r" + s" : 

r + s = p 

r2 +s2 = p2 + 2q 

r3+s3 = p3 + 3pq 

r4 + s4 = p4 + 4p2q + 2q2 

r5 +s5 = p5 + 5p3q + 5pq2 

r6 + s6 = p6 + 6p4q + 9p2q2 + 2q3 

r1 +S1 = p7 + lpsq + \\p3q2 +1 pq3 

More generally, using the principle of mathematical induction (PMI), Draim and 
Bicknell showed that 

L"/2J 

r" + s" = Σ A(n, ï)pn-2iql (13.1) 
o 

where A(«,i) = 2 ( V ) - ( " - ! " ' ) . 
Using Pascal's identity, we can simplify the formula for A(n, i): 

«-«-(T'HCrO-C-:-)] 
= ("7'>C-') 
-('7'hM''") 
■C7')(' + ̂ ) 
= ^ ( " : ' ) (13.2) 

Thus we can rewrite Formula (13.1) as 

l»AI 
r" + s" = Σ A(n, i)p"-2iq' (13.3) 

o 

where 

A(n,i) = -^-(n~i\, 0< i<L" /2J 

We can arrange the various values of A (n, i) in a Pascal-like triangle, as Table 13.1 
shows. 
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TABLE 13.1. 

> s ( 

1 
2 
3 
4 
5 
6 

7 

8 
9 
10 

0 

1 
1 
1 
1 
1 
1 

1 

1 
1 
1 

1 

2 
3 
4 
5 
6 

\ 
7 

8 
9 
10 

2 

2 
5 
9 

14 

1 
20 
27 
35 

3 

2 

7 

16 
30 
50 

4 

2 
9 
25 

5 

2 

Row sum 

1 
3 
4 
7 
11 
18 

29 

47 
76 
123 
T 

Lucas numbers 

In particular, let r and s be the solutions of the equation x2 = x + 1. Then r = a, 
s = ß, so Eq. (13.3) yields the formula 

L«/2J 

Ln=J^A(n,i) (13.4) 
r=0 

This should not come as a surprise, since Table 13.1 is the same triangular arrange-
ment we obtained by computing the topological indices of cycloparaffins C„H2„ in 
Chapter 3; see Table 3.9 on p. 37. 

Using Eq. (13.2), we can rewrite this formula as 

L"/2J „ / · \ 

For example, 

ÇÏMV)-§GH(ÎHG)-"+'-»-'· 
See row 5 in the table. 

The triangular array in Table 13.1 satisfies the following interesting properties: 

• Since A(n, 0) = 1, every row begins with a 1. 

• A(n, i) satisfies the recurrence relation 

A(n, i) = A{n - 1 , 0 + A(n - 2, / - 1) (13.6) 

If n > 3, every entry A(n, i) can be obtained by adding the entry just above it in 
the previous row and the entry to its left in the row above it. See, for example, 
the arrows in the table. 
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. If/' > |rt/2J,then4(rt,i) = 0. 

• If« is even: 

1. Row n ends in 2; 

2. Row n and row n + 1 contain the same number of entries. 

. If n is odd, then: 

1. Row« ends inn; 
2. Row n + 1 contains one more entry than row n. 

These results can be proved fairly easily. For example, suppose n is odd. Then 

A(».L»/2j) = A ( » . ( » - l ) / 2 ) = ^ î ( g + ; > g ) 

In ((n + l)/2)! In n+\ 
= n n+\ ( ( n - l ) / 2 ) ! n+l 2 

When n is odd, 

L(« + 1)/2J = (« + l)/2 = (B - l)/2 + 1 = |n/2J + 1 

so row n + 1 contains one entry more than row n. 

AN ALTERNATE FORMULA FOR Ln 

The preceding discussion yields a wonderful dividend in the form of an alternate 
formula for L„. 

Let Δ = y/p2 + Aq. Then 2r = p.+ Δ and 2s = p - Δ, so 

(2τ)" = 0> + Δ)" = έ ( " ) ^ _ , ' Δ / 

o ^ ' 

ΐ)" = (ρ-Δ)" = Ε ( " ) Ρ " " ' ( - Δ ) ' ' 
o ^ ' 

(2r)" + (2i)" = 2 ^ (Λρ—'Α* 

(2s) 
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L"/2J 

2"(r + s)n = 2 ^ ί 2 " | / - 2 ί Δ 2 ί 

L"/2J 
2/ 21—: / \ 

o 

In particular, let p = 1 = q. Then Δ = -s/5, so this yields the formula 
L«/2J 

^ = ^ Σ ( 2 " ) 5 , (,37) 

For example, 
2 

= ? [ ( o ) + œ 5 + ( 4 ) 5 5 ] = > + » + ' 2 5 > = " 

DIFFERENCE OF THE IIth POWERS 

Let us now turn our attention to the difference of the nth powers of r and s: 

r-s = {p+ Δ)/2 - (p - Δ)/2 = Δ 

r2 - s2 = [(/> + Δ)/2]2 - [(/> - Δ)/2]2 = ρΔ 

Continuing on like this, we get 

r — s = A 

r2-s2 = p& 

r3-s3 = (p2+q)A 

r4-s4 = (pi + 2pq)A 

r5-s5 = (p* + 3p2q + q2)A 

r6-s6 = {p5+4p3q + 3pq2)A 

r1 - s1 = (p6 + 5p4q + 6p2q2 + q3)A 

More generally, 

L«/2J / _ . _ , \ 
r" - s" = Δ Σ I " ' ) p"-2iq' (13.8) 

We can establish this also by PMI (see Exercise 13). 
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As before, the various coefficients 

co-(-;-') » r<[(n- 1)/2J 

can be arranged in a triangular array, as Table 13.2 shows. We saw this triangular 
arrangement in Table 3.8 on page 36 when we computed the topological indices of 
paraffins C„H2n+2. 

Table 13.2 satisfies several important properties: 

• B(n, i) satisfies the recurrence relation 

B(n, i) = B(n - 1, /) + B(n - 2, / - 1) 

This is so since 

β<»-ι.«·)+βί»-2./-ΐ) = ( η ~ ; " ~ 2 ) + ( " ~ ί ~ 2 ) 

. Since B(n, 0) = 1, every row begins with a 1. 

TABLE 13.2. 

9 
10 

0 

6 

7 
8 

10 
i 
15 
21 

4 

10 
20 

1 
5 

Row Sum 

I 
1 
2 

3 
4 

i 
1 
3 

I 

2 
3 

5 
8 

13 

21 

34 
55 

positive integers 

triangular numbers 

tetrahedral numbers 
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. If n is odd, row n ends in a 1. This is so since 

B(n, L(#i - 1)/2J) = B(n, (n - l)/2) = (tZ {yl) = l 

• Suppose n is odd. Since L(« - 1)/2J = (n — l)/2 = ln/2j, row n and row 
n + 1 contain the same number of entries. 

• Suppose n is even. Then row n ends in n/2 and row n + 1 contains one entry 
more than row n. 

« Since B(n, 3) = I "~3 j , column 2 yields the various triangular numbers, where 
n >5 . 

> B(n, 4) = ("74)' s o c ° l u m n 3 yields the tetrahedral numbers. Similarly, the 
remaining columns give higher dimensional figurate numbers. 

Suppose we let p = 1 = q. Then r = a, s = β, and Δ = V5, so Eq. (13.8) yields 
the combinatorial formula for F„ : 

L«/2J , χ 

(13.9) 
o 

= sum of the elements in row n in Table 13.2 

We saw this formula Eq. (12.1) in the preceding chapter. 
We are now ready to present an alternate formula for F„. 

AN ALTERNATE FORMULA FOR F„ 

From Eqs. (13.1) and (13.8), it follows that 

(2r)"-(2s)" = 2 W " ) />"-'*' 
i odd ^ ' 

L(/i-!)/2J , Ν 

2"(r-,)»=2 Σ (2l + l ) ^ 2 ' " U 2 

L(«-1)/2J . χ 

fr->--^ Σ (2,"+l)"""' 

In particular, let p = 1 = q. Since Δ = V5, this yields yet another combinatorial 
formula for F„: 

L(n-I)/2J , . 
F - = 2 ^ ç ( 2 l ; i ) 5 ' (i3i°> 
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For example, 

[(îMîhO 1 1 
32 

(6+100+150) = 8 

A LUCAS TRIANGLE 

In 1967, M. Feinberg, then a student at the University of Pennsylvania, studied the 
coefficients in the expansion of the polynomial /„ (x, y) — (x + y)"~l(x + 2y), where 
n > 1, and discovered an invaluable treasure. 

The first six expansions are 

/i (*, y) = x + 2y 

/2(Jf. y) = Jc2 + 3*y + 2y2 

f3(x, y) = x3 + 4x2y + 5xy2 + 2>>3 

/4(Λ;, y) = xA + 5Λ:3 v + 9x2y2 + 7Λ:>>3 + 2 / 

fs(x, y) = x5 + 6ΛΓ4^ + 14Λ:3>-2 + Ι ό χ 2 / + 9ry4 + 2>>5 

/ 6 (Λ , y) = x6 + 7JC5>> + 20xV + 30Λ:3>-3 + 2 5 * 2 / + 1 Ixy5 + 2y5 

We can verify these. Arranging the various coefficients in these polynomials in a 
triangular array, we get the truncated arrangement in Figure 13.1. Feinberg called it 
a Lucas triangle. Every row begins with a 1 and ends in a 2; this is so because the 

1 

2 

3 

4 

5 

6 

0 1 

2 

3 

4—*■ 

5 

6 

7 

2 

2 

5 

9 

14 

20 

3 

2 

7 

16 

30 

4 

2 

9 

25 

5 

2 

11 

6 

2 

Figure 13.1. A Lucas triangle 
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coefficient of x" in fn(x, y) is 1 and that of y" is 2. Since /„( l , 1) = 3-2"_l ,the sum 
of the numbers in row n is 3 · 2"~ ', where n > 1. 

Let C(n, j) denote the entry in row n and column j , where n > 1 and j > 0. We 
can find an explicit formula for C(n, j) as follows: 

(x + »'-1=Σ(';Ι)*'"'"ν 

/·(*, y) = U + y ) ' - U + 2y) = 

C(n,j) = Coefficient of x"~'y> 

-0)+(;--!) 

ç('->-y-y (x + 2y) 

(13.11) 

by Pascal's identity. 
For example, 

C(6,3)= ( 3 ) + ( 2 ) = 2 0 + 1 0 = 30 

The triangular array in Figure 13.1 satisfies three additional properties: 

n 

Y^dkJ) = C(n + \J+\) 
k=\ 

n 

J2C(-k> !) = C(« + l,2) 
k=\ 

C(n,n-2) = (n-lf n>2 

See Exercises 17-19. 

A RECURSIVE DEFINITION FOR C(n,j) 

Using Formula 13.11, we can easily verify that C(n, j) satisfies the following recursive 
definition: 

C(n,0) = 1 C(1,1) = 2 

C{n, j) = C(n - 1, j - 1) + C(n - 1, j) n, j > 1 
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This recurrence relation is the same as Pascal's identity. Thus we obtain C(n, j) by 
adding the element C(n — 1, /) just above it and the element C{n — I, j — 1 ) to its 
left. Notice that C(n, n) = 1. For example, 

C(4, 2) = 14 = 5 + 9 = C(3, 1) + C(3, 2) 

Formula (13.11) contains a hidden secret: We can obtain every term C(n, j) from 
rows n and n — 1 of Pascal's triangle. Shift row n — 1 by one place to the right and 
place the resulting row just above row n ; then add the corresponding elements to yield 
the various elements C(n, j) in row n. This algorithm forn = 4 is illustrated below: 

1 3 3 1 <- Row 3 in Pascal's triangle 
+ 1 4 6 4 1 «- Row 4 in Pascal's triangle 

1 5 9 7 2 4-Row 4 in Table 13.3 

Suppose we add the elements on the rising diagonals in Figure 13.1. It appears 
from Figure 13.2 that the sums are Lucas numbers. This result is not a fluke. To see 
why this is true, the sum of the elements on the nth rising diagonal is given by 

L«/2J L«/2J / . x L"/2J , . . \ 

Σ α „ - , Λ = Σ (-> ) + Σ (->_-1) 
0 0 V / 0 V 7 

l«/2J / . x L(n-2)/2J , . χ 

-Ç(V)+ Σ (-Γ2) 
= ^η + Ι + ^ Λ - Ι = Ln 

For example, the sum of the elements on the sixth rising diagonal is 18 = Lf,. 
Suppose we flip the Lucas triangle in Figure 13.1 about a vertical line on the left 

and left-justify the elements. Figure 13.3 shows the resulting triangular arrangement. 

y ^ j r s* 7 2 

2 

11 2 

14 16 9 

20 30 25 

Figure 13.2. 
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"X 
1 

2 

3 

4 

5 

6 

0 

2 

2 

2 

2 

2 

2 

1 

1 

3 

5 

7 - * · 

9 

11 

2 

1 

4 

9 

1 
16 

25 

3 

1 

5 

14 

30 

4 

1 

6 

20 

5 

1 

7 

6 

1 

Figure 13.3. A reflection of the Lucas triangle 

Let D(n, j) denote the element of this array that lies in row n and column j . Then 

£>(1,0) = 2 D ( l , l ) = l 

and 
D(n,j) = D(n-l,j-l) + D(n-l,J) n>2 

This is the same as the Fibonacci recurrence relation satisfied by C(n, j). 
Since Figure 13.3 is a reflection of the Lucas triangle, it follows that: 

D(n, j) = C(n, n-j) 

-OR:') 
Consequently, we can obtain every row of the array in Figure 13.3 by adding rows n - 1 
and n (both left-justified) of Pascal's triangle, as the following algorithm demonstrates: 

1 3 3 1 
+ 1 4 6 4 1 

2 7 9 5 1 

Row 3 of Pascal's triangle 
Row 4 of Pascal's triangle 
Row 4 in Table 13.6 

The array in Figure 13.3 also provides a fascinating bonus. Add the elements on 
each rising diagonal; every sum is a Fibonacci number (see Fig. 13.4). 

This is so because 

L"/2J ln/2J , v L«/2J / . 

Σ°<»-;.Λ = Σ ( " 7 ' ) + Σ ( " Τ ) 
0 0 V / 0 V J / 

= ^Ίι+ι + F„ — Fn+2 
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^ 

Figure 13.4. 

The array in Figure 13.3 satisfies three additional properties: 

n 

J^D(k,j) = D(n + \J+\) 
* = ] 

D(n,2) = (n- l)2 « > 2 
n 

]Γθ(£, 1) = n2 

See Exercises 22-24. 
In 1970, V. E. Hoggatt described an interesting relationship between the Lucas 

triangle in Figure 13.1 and the triangular array of coefficients in the expansion of L™, 
as we will see a bit later. 

To establish such a link, shift down column j(> 0) of the Lucas triangle by j 
elements. Figure 13.5 shows the resulting array. Let E(n, j) denote the element in 
row n and column j of this array. Then E(n, j) = A(n — j , j), where 0 < j < ln/2\. 
E(n, j) satisfies the recurrence relation E{n, j) = E(n — 1, j) + £(n — 2, j — 1), 
where E(n, 0) = 1, E(2j, j) = 2, E(2j + 1, j) ~ 2j: + 1, E{2j + 1, j + 1 ) = 0, and 
i < y < L « / 2 J . 

POWERS OF LUCAS NUMBERS 

In 1970, Harlan L. Umansky of Emerson High School in Union City, New Jersey, 
developed the following formulas for powers of Lucas numbers: 

L\ = L 2 n + 2 ( - l ) n 

L\ = L 3 n + 3 ( - l ) n i , n 

nil Ll = L 4 „ + 4 ( - i r ^ - 2 

L5
n - L5n+5(-\)"L3

n-5Ln 
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L\ = L6n + 6(-l)"L< - 9L2 + 2(-l)" 

h\ = Lln + l(-l)"L5
n - ULl + 7(-l)"Ln 

L\ = Lin + 8(-l)nL* - 20L4
n + 16(-1)"L„2 - 2 

A few months later, Hoggatt observed that the absolute values of the coefficients 
of the various Lucas numbers and their powers on the right-hand side are the same 
as the entries in the triangular array in Figure 13.5. Accordingly, he established the 
following result. 

Theorem 13.1. (Hoggatt, 1970). 

|m/2j 

K = ίη,η+Σ E{m,j){-\)ni+i-lL^2i 

Proof, (by PMI). The formula is clearly true when m = 1, since the sum is zero. 
Assume it is true for all positive integers k, where k <m: 

l*/2J 

Then 
lm/2J 

Lm
n

+X = L„Lmn+ Σ £(«,/)(-1)"^-1ί.Γ2>+1 

»X 
1 

2 

3 

4 

5 

6 

7 

8 

0 1 

1 2 

1 3 

1 4 

2 

2 

1 5 5 

1 6 9 

4 
1 7 14 

1 8 20 

3 

2 

7 

16 

4 

2 

5 6 

Figure 13.5. 
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But L„Lmn - L(m+l)n + (- l)nL( m_i) n , so 

- m + \ 
L(m+\)n + ( — l ) " i - ( m - l ) n 

Lm/2J 

+ Σ E(mJ){-\)ni+i-xL^-2'+x (13.12) 

By the inductive hypothesis, 

l(m-l) /2J 

L(m_1)n = i r 1 - £ £(« -1,y-)(-i)-w-"L:-2>-

n r m —I (-l)"L( m_l ) n = ( - 1 ) " L : 

L(m-1)/2J 

- £ £(m-l,y)(-l)n0'+l)+0+1)-1L™-2y'-1 

Let y + 1 = r. Then this becomes 

l(m + l)/2J 

{-\)nL(m„X)n = (-\YLm
n-x- Σ E{m-\,r-\){-\r+r-xLm

n-2r+x 

r=2 

Then Eq. (13.12) becomes 

j m + \ r , / Λ\Π j m-\ 

Ln — L(m+i)„ + t— l; Ln 

L(m+1)/2J 

+ £ £(m-l,r-l)(-lΓ+' '-1L™-2' '+ , 

r=2 

Lm/2J 

+ £ £(w,r)(-l)"r+r-1L^-2'-+l (13.13) 
r=2 

Suppose m = It. Then Lw/2J = L(w + 1)/2J, £(2/, f) = 2, £(2f - 1, 
/ - 1) = 2i - 1; so E(2t + 1, /) = It + 1. On the other hand, let m = It + 1. 
Then |m/2J + l = L(w+1)/2J = f + 1, £ ( 2 r + l , f + 1) = 0 and £(2r, t) = 2 ; thus 
E(2t + 2,t+ 1) = 2. 
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Thus, Eq. (13.13) becomes 
L(m+I)/2J 

Lm
n

+X = L(m+l)n + Σ £(/n + l , r ) ( - i r + r - ' L r 2 r + 1 

Consequently, by the strong version of PMI, the formula works for every n > 1. ■ 

EXERCISES 13 

1. Find a quadratic equation whose roots are a" and ß". 
2. Find a quadratic equation whose roots are a" and —ß". 

Compute L8 using each formula. 

3. Formula 13.5. 

4. Formula 13.7. 
Verify each, where r and s are the roots of equation x2 — px — q = 0. 

5. r5 + s5 = p5 + 5p3q + 5pq2 

6. r6 + s6 = p6 + 6p*q + 9p2q2 + 2q* 
7. Establish Formula 13.3 using PMI. 

8. Prove that £ ( - 1 ) ' A ( / J , /) = F„_,. 
o 

Compute F\o using each formula. 
9. Formula 13.9. 

10. Formula 13.10. 
Verify each, where r and s are the roots of equation x2 — px — q — 0. 
11. r5 - s5 = ( / + 3p2q + q2)A 
12. r6 - s6 = (p5 +4p3q + 3pq2)A 
13. Establish Formula 13.8 using PMI. 
14. Verify that C(n, j) satisfies the recursive definition: 

C(n,0) = 1 C(1,1) = 2, 

C(n, j) = C(n-l,j-l) + C(n - 1, j) n, j > 1 

Compute the sum of the elements on the given rising diagonal in Figure 13.2. 
15. Diagonal 6. 
16. Diagonal 7. 
Prove each. 

17. £c(k,j) = C(n + l,j+l) 

18. £ C ( * , 1) = C(n+ 1,2) 
k=\ 

19. C(n,n-2) = (n- l)2 
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Compute the sum of the elements on the given rising diagonal in Figure 13.4. 

20. Diagonal 5. 

21. Diagonal 6. 

Prove each. 

22. '£D(k,j) = D(n + l,j+l) 

23. D(n,2) = ( n - 1 ) 2 

24. J2D(k, l)=n2 

k=\ 



ADDITIONAL PASCAL-LIKE 
TRIANGLES 

We now turn to some more Pascal-like triangles that contain Fibonacci and Lucas 
numbers as hidden treasures. 

The following three variants of Pascal's triangle were studied extensively by 
H. W. Gould of West Virginia University. 

At the 1963 Joint Automatic Control Conference held at the University of 
Minnesota, P. C. Parks presented the variant of Pascal's triangle in Figure 14.1. The 
first few row sums are Fibonacci numbers, so we conjecture that the row sum in row 
n is Fn+i, where n > 0. 

To establish this, let /(/, j) denote the entry in row i and column j , where i > 
j > 0; f(i, J) = 0 if j > i; /(i, 0) = 1 ; and /(/, i) = 1 for every i. The inner 
elements are defined by the recurrence relations 

/(/' + 1, 2y + 1 ) = /(/, 2J) and / ( / + 1,2./) = /(/ , 2y - 1 ) + /(i, 2j) 

See the arrows in Figure 14.1. These two conditions can in fact be combined into a 
single recurrence relation: 

fd +Uj) = M j - 1) + 1 + (
2~1 V/0· . j) 

Using the principle of mathematical induction (PMI), it can be shown that 

f(n,2k) = (n ~k
k\ and f(n,2k + l) = 

Consequently, they can be employed to produce a single formula for /(n, r): 

180 

- Î -
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Row sum 

1 1 

1 1 2 

1 1 1 3 

1 1 2 1 triangular numbers 5 

1 1 3 2 \ * 8 

1 1 4V 3 3 1 tetrahedral numbers 13 

\ s 
1 I w S 4 6 3 1 21 

1 1 6 5 10 6 4 1 34 

1 1 7 6 15 10 10 4 1 55 

I 
Fibonacci numbers 

Figure 14.1. 

We can verify this. 
We are now ready to prove that every row sum in Figure 14.1 is a Fibonacci number. 

The proof is essentially the same as the one given by Gould in 1965. 

Theorem 14.1. 

n 

J2f(n,r)^Fn+2 n>0 

r=0 

0 

Proof, (by PMI) Since J2 f(n, r) = /(0, 0) = 1 = F2, the statement is true when 
0 

n = 0 . 
Assume it is true for all integers i < k, where / > 0 and k is arbitrary. Then: 

k + \ 

£ f(k + 1, r) = Σ f{k + 1, r) + Σ f(k + 1, r) 
r=0 r even r odd 

L<* + D/2J L*/2J 

= J3 /K* + l,r)+52/(*+l.r) 
r=0 r=0 

= Fk+1 + Fk+I by the IH 

Thus, by the strong version of PMI, the formula is true for every n > 0. ■ 

The next theorem provides another fascinating property of the triangular array. 

Theorem 14.2. 

£(-nr/(«,'·) = /=;-i «>o 



182 ADDITIONAL PASCAL-LIKE TRIANGLES 

For example, 

g 

£(-1)7(8,r) = 1 - 1 + 7 - 6 + 15 -10 + 1 0 - 4 + 1 
r=0 

= 13 = F7 

Using the same rules of definition as in the previous triangular array, we can 
construct a new variant of Pascal's triangle by simply changing / ( l , 1) to 2, as 
Figure 14.2 demonstrates. This time, the row sums yield Lucas numbers. Let g(i, j) 
denote the element in row / and column j , where i > j > 0; g(i, j) = 0 if j > 
i; g(i,0) = 1; g(l, 1) = 2; g(i + l,2j + 1) = g(i,2j); and g(i + 1,2/) = 
g(i, 2j—l)+g(i, 2j). We can combine the last two conditions into a single recurrence 
relation: 

g(i +1.7) = gd, j - 1) + 1 + (
2~

1VgO·, j) 

Using PMI, we can show that 

where g(l, 1) = 2. Consequently, 

Row sums 

1 1 

1 2 3 

1 1 2 4 

1 1 3 2 7 

1 1 4 3 2 11 

1 1 5 4 5 2 18 

1 1 6 5 9 5 2 29 

1 1 7 6 14 9 7 2 47 

1 1 8 7 20 14 14 9 2 76 

t 

Lucas numbers 

Figure 14.2. 
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Since 
L"/2J 

r=0 v ' 

this triangular array satisfies two properties corresponding to Theorems 14.1 
and 14.2. 

Theorem 14.3. 

n 

(1) £ g ( n , r ) = Ln+, n > 0 
r=0 

n 

(2) Yji-\Ygin,r) = Ln-2 « > 0 ■ 
r=0 

For example, 

£ g ( 5 , r ) = 1 + 1+5 + 4 + 5 + 2 = 18 = L6 

^(- l ) r g(n , / - ) = 1 - 1 + 7 - 6 + 1 4 - 9 + 7 - 2 = 1 1 = L5 

r=0 

7 

r=0 

Interestingly enough, the triangular arrays in Figures 14.1 and 14.2 can be gener-
alized, as Figure 14.3 shows. Let A(i, j) denote the element in row i and column j , 
where i> j > 0; A(i, y) = 0 if j > i\ A(j, 0) = a; A(l, 1) = A; and 

A(i + 1, j) = h(i, j - 1) + 1 + ( ~ 1 ) J A ( / , j) i > 1 

a 

a b 

a a b 

a a a+6 b 

a a 2a+b a+/> b 

a a 3a+/> 2a+b a+2b b 

a a 4a+b 3a+b 3a+3b a+2b b 

a a 5a+b 4a+b 6a+4b 3a+3b a+2b a+3b b 

Figure 14.3. 
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In this recurrence relation, we have imposed i > 1 to avoid an awkward situation. 
To see this, if we let i = 0 and j = 1, then we get Λ(1, 1) = Λ(0, 0) + 0 = Ü, but 
A ( l , l ) = * . 

What can we say about the row sums Sn(a, b) in row n? First, notice that: 

So(a, b) 

Si(a,b) 

S2(a,b) 

S3(a,b) 

SA(a, b) 

= a 

= a + b 

= 2a + b 

= 3a + 2b 

= 5a + 3b 

Clearly, a pattern emerges: S„(a, b) = aFn+\ + bF„, n > 0. 

Likewise, let us check if the alternating row sums Tn(a, b) follow any pattern: 

T0(a, b) -a 

T](a,b)=a-b 

T2(a,b) = b 

Ti,(a, b) = a 

T4(a, b)=a + b 

T5(a,b) = 2a + b 

T6(a, b) = 3a + 2b 

More generally, T„{a, b) — aF„-i + bFn^, n > \. 

These discussions lead to the following theorem. 

Theorem 14.4. Let 5„ {a, b) denote the row sum of the entries in row n in Figure 14.3 
and T„(a, b) their alternating row sum. Then 

S„(a,b)=aFn+\ +bFn n>0 

and 

Tn(a, b) = aF„_2 + bF„_i n > 1 ■ 

In particular, S„(l, 1) = Fn+i + F„ = F n + 2and7;( l , 1) = F„_2 + ^«-3 = Fn-\\ 
this is consistent with Theorems 14.1 and 14.2. Likewise, S„(l, 2) = Fn+\ +2Fn = 
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F9-

1 

1 

2 

5 

13 

' 89 

1 

2 

4 

9 

22 

56 

1 

3 

- 7 
1 

16 

38 

1 

4 

11 

27 

Figure 

1 

5 

16 

14.4. 

1 

6 

— Row sum = 89 =F11 

1 

Ln+\ and Γ„(1,2) = F„_2 + 2F„_3 = £„-2; this is consistent with 
Theorem 14.3. 

Figure 14.4 shows yet another triangular array developed in 1971 by Hoggatt. This 
array possesses several interesting properties, in addition to the obvious ones: 

• The first entry in row n is Fjn-i-
• Every internal entry is obtained by adding the number immediately above and 

the number to its left in the same row. For instance, 16 = 7 + 9. 

• The sum of the elements in row n is Fi„+\ (see Exercise 2). 

EXERCISES 14 

1. Let A(n, j) denote the element in row «and column j'ofthe array in Figure 14.4, 
where n, j > 0. Define A(n, j) recursively. 

2. Prove that the sum of the elements in row n of the triangular array in Figure 14.4 
is Fi„+\, where n > 0. 

Use the array in Figure 14.5, developed in 1972 by Hoggatt, to prove the statements 
in Exercises 3-5, where n > 0. 

1 

3 

8 

21 

55 

1 

1 

3 

8 

21 

1 

1 

3 

8 

Figure 14.5. 

1 

1 

3 

1 

1 
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3. The nth row sum is F2„+1. 

4. If the columns are multiplied by 1, 2, 3 , . . . to the right, then the nth row sum 
is F2„+i. 

5. The sum of the elements in the nth rising diagonal is F%+i. 

Use the array in Figure 14.6, developed in 1977 by Hoggatt, to prove Exercises 6-8, 
where the Fibonacci numbers Fjn+\ are written in staggered columns, where n > 0. 

1 

2 1 

5 2 1 

13 5 2 1 

34 13 5 2 

89 34 13 5 

Figure 14.6. 

6. Every row sum is F2„+2-

7. The sum of every rising diagonal sum is Fn+l Fn+2. 

8. Multiply the columns by 1, 2, 3, . . . to the right. Then the nth row sum is 

Let Sn(a, b) denote the sum of the elements in row n in Figure 14.3. 

9. Define Sn (a, b) recursively. 

10. Show that S„(a, b) = S„_i(a, b) + 5„_2(a, b), where n > 2. 

11. Prove that Sn(a, b) = aFn+i + bFn, where n > 0. 

Let T„(a, b) denote the alternating sum of the elements in row n in Figure 14.3. 

12. Define T„(a, b) recursively. 

13. Prove that Tn(a, b) = aFn^2 + bFn^, where n > 0. 

1 
2 1 



HOSOYA'S TRIANGLE 

In 1976, H. Hosoya of Ochanomizu University in Tokyo introduced the triangular 
array in Figure 15.1, which is closely linked to Fibonacci numbers. We call it Hosoya's 
triangle. Besides the array being symmetric about the vertical line through the middle, 
the top two northeast and southeast diagonals consist of Fibonacci numbers. Every 
interior number can be obtained by adding the two previous numbers, on its diagonal; 
for example, 16 = 8 + 8 = 10 + 6. 

1 

1 1 

2 1 2 

3 2 2 3 

5 3 4 3 5 

8 5 6 . 6 5 8 

13 8 10 S 10 8 13 

21 13 16 15 15 16 13 21 

34 21 26 24 25 24 26 21 34 

55 34 42 39 40 40 39 42 34 55 

Figure 15.1. Hosoya's triangle 

A RECURSIVE DEFINITION 

In fact, we can define recursively every entry H(n, j) of the array: 

tf(0,0) = / / (1 ,0 )= //(l , 1) = //(2, 1 ) = 1 

187 
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H(n, j) = H(n- 1, j) + H(n - 2, j) (15.1) 

= H(n- 1 , 7 - 1 ) + H(n- 2, j - 2 ) (15.2) 

where n > j > 0 and n > 2. 
Since //(n,0) = H(n - 1,0) + //(n - 2,0), where //(0,0) = 1 = F, and 

//(1,0) = 1 = Fj, it follows that //(n,0) = F„+i; likewise, since H(n,n) = 
//(n — 1, n) + H{n — 2, n), it follows that H(n, n) = Fn+\. Similarly, we can show 
that //(«, 1) = //(n, n — 1) = F„ (see Exercises 1-3). 

Successive application of the recurrence relation (Eq. 15.1) yields: 

H(n,j) = / / ( « - 1 , j ) + / / ( « - 2 , j) 

= [H(n -2,j) + H(n - 3, j)] + H(n - 2, j) 

= 2H(n -2,j) + H{n - 3, j) 

= 2[H(n - 3, j) + H(n - 4, J)] + H{n - 3, j) 

= 3//(« - 3, j) + 2H(n - 4, j) 

Continuing like this, we get a close link between H(n, j) and Fibonacci numbers: 

//(«, j) = Fk+lH(n -k,j) + FkH(n -k-\,J) (15.3) 

where 1 <k<n—j—1 (see Exercise 4). In particular, let k = n — j — 1. Then 

H(n, j) = F„-jHU + 1, ;) + F„_,-_, H(j, J) 

= F„-jFj+l + F„-j-i Fj+i by Exercise 3 

= Fj+i(F„-j + Fn-j-\) 

= Fj+iFn-J+i (15.4) 

Thus every entry in the array is the product of two Fibonacci numbers. 
For example, //(7, 3) = 15 = 3 · 5 = F4F5 and //(9, 6) = 39 = 3 · 13 = F^. 
Since H(n, j) = H(n,n - » , it follows from Eq. (15.4) that H(ny j) = 

H(n,n - j) = Fj+iF„-j+[. 
Let n = 2m and j = m. Then Eq. 15.4 yields //(2m, m) = Fm+\ Fm+\ = F^+ 1 . 

Thus //(2m, m) is the square of a Fibonacci number. In other words, the numbers 
along the vertical line through the middle are Fibonacci squares. 

For example, //(8, 4) = 25 = Fj and //(10, 5) = 64 = F6
2. 

A LINK BETWEEN H(n, j) AND Lm 

Using Eq. 15.4, we can compute H(n, j) using Lucas numbers: 

5H{n,j) = (aj+l - ßJ+l)(a"-J+l - ß"-j+l) 

= an+1 + ßn+2 - aj+lß"-J+l - a"-J+lßJ+l 
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= (a"+2 + βη+2) + (αβΥ(α"-2ί + ß"-2j) 

H(n,j) = '- (15.5) 

For example, let n = 10 and j = 3. Then 

Ll2 + (-l)3L4 3 2 2 - 7 
— — = — = 63 = #(10, 3) 

As a bonus, it follows from Eq. (15.5) that Ln+2 = (— iy~* L„-2j (mod 5). In 
particular, L2m = 2 ( - l ) m (mod 5) and L2m+l s ( - l ) m (mod 5). 

For example, L,2 = 322 = 2 = 2 ( - l ) 6 (mod 5) and L,5 = 1364 = - 1 = (-1)7 

(mod 5). 

A MAGIC RHOMBUS 

Notice that Hosoya's triangle was constructed using four initial conditions, that is, 
four 1 s, and they form a rhombus. In fact, we can employ any rhombus with vertices 
H(i, j), H(i — 1, j — 1), H(i — 2, j — 1), and H(i — 1, j) to generate their nearest 
neighbors. 

For example, consider the rhombus in Figure 15.2, where the letters A through H 
represent the numbers 4, 6, 9, 6, 5, 25, 5, and 1, respectively. Then F — A + B + 
C+D,H = A + D-B-C,E = C+D-A-B,mdG = B + D-A-C (see 
Exercise 7). We can represent these facts pictorially, as Figure 15.3 shows. 

F 

Figure 1S.2. 
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■-0 <> 0-= <> 
F 

Figure 15.3. 

ADDITIONAL FORMULAS 

More generally, we have the following additional formulas: 

H(n - 1, j - 2) = H{n, j) + H(n - 1, y) - H(n - 1, j - 1) - H(n -2,j- 1) 

Hin + 2, j + 1) = Hin, j) + Hin - 1, j) + Hin - 1, j - 1) + Hin -2,j- 1) 

#(n - 1, y + 1) = Hin - 1, y - 1) + H(n - 1, j) - Hin - 2, j - 1) - W(n, j) 

and 

#(n - 4, j - 2) = //(« - 2, y - 1) + //(« - 1, y) - Hin - 1, y - 1) - W(n, y) 

See Figure 15.4. 
Since (F /+iFn_ ;+i)(F /-Fn_y) = iFjFn-J+l)iFj+iFn-.j), it follows by Eq. (15.4) 

that 
«(«, y) ■ Hin - 2, j - 1) = H(n - 1, y - 1) ■ //(« - 1, y) (15.6) 

that is, the product of the opposite vertices A and D in the rhombus A BCD equals 
that of the remaining two opposite vertices B and C. 

For example, consider the rhombus formed by 15,24,40, and 25. Clearly, 15-40 = 
24 · 25. Likewise, 8 · 26 = 13 ■ 16. 

We can write Eq. (15.6) as 

{[Hin, y) -=- Hin - 1, y)] * H(n - 2, y - 1)} -r H(n - 1, y - 1) = 1 (15.7) 

See Figure 15.5. 
Interestingly enough, we can extend Eq. (15.6) and hence Eq. (15.7) to the corners 

of any parallelogram: 

Hin, j) ■ Hin - k - I, j - k) = Hin - k, j - k) ■ Hin - I, j) 

See Figure 15.6. 
For example, consider the array of parallelograms in Figure 15.7. Notice that 

40 · 4 — 16 · 10 and 15 · 10 = 25 · 6. The other products can be verified similarly. 
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H(n-4 ,y-2) 

H(n + 2,y+1) 

Figure 15.4. 

= 1 

Figure 15.5. 

Consider the downward pointing triangles with vertices belonging to two adjacent 
rows. For example, consider the adjacent rows in Figure 15.8. The sum of their vertices 
is a constant, namely, 34. 
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40 

Figure 15.7. 

"WWW 
21 13 16 15 15 16 13 21 

Figure 15.8. 

More generally, H(n, j) + H(n - 1, j) + H(n - 1, j - 1) is a constant for every 
n (see Figs. 15.9 and 15.10, and see Exercise 8). 

H(/i-1,y-1) Η(η-Λ,1) 

V 
H(n.j) 

Figure 15.9. 

v-v-v-
Figure 15.10. 

In particular, 

//(«, 0) + H(n - 1,0) + H(n - 1, -1 ) = Fn+l +Fn+0 
= Fn+2 
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Thus 
//(«, j) + H(n- 1, j) + H(n~\J-\) = Fn+2 (15.8) 

In words, the magic constant for the downward-pointing triangle with lowest vertex 
on row n is Fn+2. 

For instance, the constant for the triangles in Figure 15.8 is 34 = F9, as observed 
earlier. 

Using the recurrence relation (Eq. 15.1), we can write Eq. (15.8) as 

H(n,j) + H(n-2J-\) = Fn+l (15.9) 

Thus the sum of any two vertical neighbors is a constant for a horizontal slide. That 
is, the sum of the north and south vertices in a magic rhombus is a Fibonacci number, 
as Figure 15.11 shows. 

H ( n - 2 , / - 1 ) 

\ + / = F"+1 

H(n,j) 

Figure 15.11. 

For instance, the sum of the north and south vertices in the rhombus in Figure 15.12 
is25 + 64 = 89 = Fn. 

64 

Figure 15.12. 

It follows from Eqs. (15.8) and (15.9) that 

H(n, j) + H(n, j - 1) - / / ( « - 1, j - 1) = Fn+] (15.10) 

(see Exercise 9). That is, the sum of the two lower vertices of an upward-pointing 
triangle minus the vertex in row n — 1 is Fn+\ (See Figs. 15.13-15.15). 

Using Eq. (15.9), we can show that 

H(n, j) + H(n - 6, j - 3) = 2F„_, (15.11) 

See Exercise 10 and Figure 15.16. For example, //(10,4) + H(4, 1) = 65 + 3 = 
68 = 2F9. 
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H ( n - 1 , 7 - 1 ) 

H ( n . / - 1 ) H(n,j) 

Figure 15.13. 

65 64 

Figure 15.14. 

H(n,j) 

Figure 15.16. 
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H ( n - 4 , / - 2 ) 

H{n.J) 

Figure 15.17. 

Equation (15.10) yields yet another one: 

H(n,j)-H(n-4J-2) = Fn (15.12) 

See Exercise 11 and Figure 15.17. 
For instance, //(10, 4) - W(6, 2) = 65 - 10 = 55 = Fl0. 

EXERCISES 15 

Use Hosoya's triangle to answer each exercise. 
Prove each, where n > 1. 

1. H(n,l) = F„ 
2. H(nJ) = H(n,n-j) 
3. H(n,n - 1) = F„ 
4. H(n, j) = Fk+xH{n - k, j) + FkH(n - k - 1, j), 1 < k < n - j - 1 

5. L 2 » = 2 ( - l ) " ( m o d 5 ) 
6. L2m+1 = ( - i r ( m o d 5 ) 
7. Using Figure 15.2 show that F = A + B + C + D, H = A + D-B-C, 

E = C+D-A-B, and G = B + D-A-C. 
Prove each. 

8. H(n, j) + H(n — 1, j) + H(n — 1, j — 1) is a constant for every row n. 

9. H(n, j) + H(n, j - 1) - H(n - 1, j - 1) = Fn+l 

10. W(n, j) + H(n - 6, j - 3) = 2F„_, 
11. H(nJ)-H(n-4J-2) = F„ 



DIVISIBILITY 
PROPERTIES 

In Chapter 5 we found that F2„ — F„L„, so Fn\F2n. Can we generalize this? In other 
words, under what conditions does F, |Fy? The next theorem shows that if i\j, then 
F,\Fj. 

Theorem 16.1. Fm \ Fmn. 

Proof, (by PMI) The given statement is clearly true when n = 1. Now assume it is 
true for all integers 1 through k, where k > \: Fm\Fmi for every i, where 1 < ί < k. 

To show that Fm\Fm(k+l), we invoke Identity (32.3): 

Fr+s = Fr~\Fs + FrFs+i 

Fm(k + \) = Fmk+m = Fmk_\Fm + FmkFm + \ 

Since Fm|FmJt, by the induction hypothesis, it follows that Fm\Fm(k + 1). 
Thus, by the strong version of the PMI, the result is true for all integers n > 1. 

■ 

For example, F6 = 8, and F24 = 46, 368. Since 6|24, it follows by the theorem that 
8|46368, which can be verified. 

Corollary 16.1. Every mth Fibonacci number is divisible by Fm. ■ 

For example, every third Fibonacci number is even and every fifth is divisible by 
F5 = 5, that is, F5, Fi0, F15, F 2 0 , . . . are all divisible by 5. Likewise, F6, Fl2, F18, 
F24,. . . are all divisible by F6 = 8. 

196 
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In 1964, L. Carlitz of Duke University established the converse of this theorem 
using the identity 

Fn = Fn-m+\Fm + Fn_mFm-\ (16.1) 

where r > s > 1. 

Theorem 16.2. If Fm|F„, then m\n. 

Proof. By the division algorithm, n — qm + r, where 0 < r < m. Suppose Fm\F„. 
Then, by Theorem A.10 and Identity (16.1), Fm\Fn-mFm-\. But (Fm, Fm_i) = l,so 
**m I * n—m · 

Similarly, Fm|F„_2m. Continuing like this, Fm|F„_,,„,, that is, Fm\Fr. This is impos-
sible unless r = 0. .·. n = qm. Thus Fm\Fn implies m\n. ■ 

Corollary 16.2. Fm \ F„ if and only if m \n. ■ 

This follows from Theorems 16.1 and 16.2. 

Corollary 16.3. If (w, n) — 1, then FmF„\Fmn. 

Proof. By Theorem 16.1, Fm\Fmn and Fn\Fmn. Therefore, [Fm, F„]\Fmn. But 
(Fm, Fn) = F(m,n) = F, = 1, so [Fm, F„] = FmF„. Thus FmF„\Fmn. ■ 

For example, (4, 7) = 1, F4 = 3, F7 = 13, and F2% = 317, 811. We can verify 
that 3 · 131317811; that is, F4F-!\F2». 

What are the chances that F„ is divisible by F*, where it > 3? This problem, 
studied in 1964 by F. D. Parker of the University of Alaska, is pursued in the following 
example. 

Example 16.1. Find the probability that a Fibonacci number F„ is divisible by another 
Fibonacci number Ft, where k > 3. 

Solution. By Corollary 16.3, F3|F3m, that is, every third Fibonacci number is 
divisible by 3. So the probability that F„ is divisible by 2 is 1/3. The probability 
that F„ is divisible by F» is 1/4; so the probability that F„ is divisible by 3, but not by 
2, is 1/4 · 2/3 — 2/(3 · 4). Likewise, the probability that F„ is divisible by 5, but not 
by 2 or 3, is 2/(4 · 5). In general, the probability that F„ is divisible by Ft and not by 
Fj, is 2/(k - \)k, where 3 < j < k. 

Thus, by the addition principle, the probability that F„ is divisible by F*, where 
k > 3, is 

Y«(i + D Y V i i + lj 

\ 2 * ; k 

As k —► oo, this probability approaches unity. ■ 
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In Corollary 5.2 and Example 9.5, we found that (F„_i, F„) = 1 for every n > 1. 
The next lemma generalizes this result in the light of Theorem 16.1. 

Lemma 16.1. (F?n_i, Fn) = 1. 

Proof. Let d = (F,„_i, F„). Then d|F,„_i and <i|F„. Since Fn\Fqn by 
Theorem 16.1, d\Fqn. Thus d\Fqn_\ and d|F,„. But (Fi n_i,F9„) = 1, by 
Corollary 5.2. Therefore d\ 1, so d = 1. Thus (Fi n_i, F„) = 1. ■ 

We are now ready for the next lemma. Its proof employs Identity (34.9). 

Lemma 16.2. Let m = qn + r. Then (Fm, F„) = (F„, Fr). 

Proof. 

(Fm, F„) = (Fqn+r, F„) 

= (F,n_, Fr + FqnFr+1 F„, F„) by Identity (34.9) 

= (Fq„-]Fr, F„) 

= (Fr, F„) by Lemma 16.1 

= (F,,,Fr) 

The next theorem shows that the greatest common divisor (gcd) of two Fibonacci 
numbers is always a Fibonacci number. Its proof uses the Euclidean algorithm, 
Theorem 16.1, and this lemma. 

Theorem 16.3. (Fm, F„) = F(m n). 

Proof. Suppose m >n. Applying the Euclidean algorithm with m as the dividend 
and n as the divisor, we get the following sequence of equations: 

m — qon + r\ 0 < r\ < n 

n = q\r\ -f ri 0 < r^ < r\ 

r\ = qiri + r3 0 < r3 < r2 

rn-2 = qn-\rn-\ + rn 0 < r„ < r„_, 

r„-\ = qnr„ + 0 

By Lemma 16.2, (Fm, F„) = (F„, Fn) = (Fr,, Fn) = · · · = (Fr„_,, FrJ.Butr„|r„_i, 
so FrJFri?_,, by Theorem 16.1. Therefore, (Frii_,, FrJ = Frn.Thus (Fm, F„) = Frn. 
But, by Euclidean algorithm, r„ = (w, n); therefore, (Fm, F„) = F ( m n ) . ■ 
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For example, (F,2, F,8) = F<i2,i8) = F6 = 8. That is, (144, 2584) = 8. We can 
verify this using any of the traditional methods or by using the gcd function in the 
MATH menu in a TI-86 calculator. 

Now we turn to an alternate proof of this theorem, given by G. Michael of 
Washington State University in 1964. 

AN ALTERNATE PROOF 

Let d = (w, n) and d' = (Fm, F„). By Theorem 16.1, Fd\Fm and Fd\Fn, so Fd\d'. 
Since d = (m,n), there exist integers a and b such that d = am + bn. Since 
d,m,n > 0, either a < 0 or b < 0. Suppose a < 0. Let a = —k, where it > 0. Then 
bn = d + km. 

By Identity (34.9), 

Fbn = Fd+km = Fd-\Fkm + FdFkm + \ (16.2) 

Since d'\Fm,d'\Fkm by Theorem 16.1. Now d'\Fn and F„ \Fb„, so d'\Fb„. Thus d'\Fkm 

and d'\Fbn. Therefore, by Eq. (16.2), d'\FdFkm+l. But (<f, Fkm+l) = 1, since d'\Fkm 

and (/>„,, Fkm+\)) = 1; therefore, d'\Fd. 
Thus, Fd\d' and c/'|/v, so d' — Fd. In other words, (Fm, F„) = F(m,„). 

Corollary 16.4. If w and « are relatively prime, then so are Fm and F„. ■ 

For instance, (12,25) = 1, so (F12, F25) = (144, 75025) = 1. 
Theorem 16.2 follows easily from Theorem 16.3. 

Corollary 16.5. If Fm \ Fn, then m \n. 

Proof. Suppose Fm|F„. Then (Fm, F„) = Fm = F(m„), by Theorem 16.3; 
.·. m = (m, n). Thus m\n. ■ 

Corollary 16.5 coupled with Theorem 16.1 provides an alternate proof of 
Corollary 16.2. 

Theorem 16.5 has an intriguing by-product. In 1965, M. Wunderlich of the Uni-
versity of Colorado employed the theorem to provide a beautiful proof that there are 
infinitely primes, a fact that is universally known. The next corollary leads us to that 
proof. 

Corollary 16.6. There are infinitely many primes. 

Proof. Suppose there is only a finite number of primes, p\, p 2 , . . . , and pk. Then 
consider the Fibonacci numbers FPl, Fn,..., and FPi. Clearly, they are pairwise 
relatively prime. Since there are only k primes, each of these Fibonacci numbers 
has exactly one prime factor, that is, each is a prime. This is a contradiction, since 
Fi9 = 4181 = 37· 113. Thus our assumption that there are only finitely many primes 
is false. In other words, thus there are infinitely many primes. ■ 
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In 1966, L. Weinstein of the Massachusetts Institute of Technology established the 
following divisibility property, which is a direct consequence of Erdös's theorem in 
the Appendix and Theorem 16.3. 

Theorem 16.4. (Weinstein, 1966). Every set S of n + 1 Fibonacci numbers, selected 
from F\, F2, ..., F2n, contains two elements such that one divides the other. 

Proof. Let S = {Fa,, F f l 2 , . . . , Fa„, Ffl|1+1}, where 1 < a,-, < In and 1 < i < n 4-1. 
Since A = {αι, α 2 , . . . , an,a„+\] ç {1 ,2 , . . . , 2n], by Erdös' theorem, A contains 
two elements a, and Oj such that a, \ÜJ. Then (a,, a,· ) = a,, so (Ffli., Fa.) = F(a.,aj) = 
Faj, by Theorem 16.3. Thus Fa. | Faj, as desired. ■ 

A quick look at Lucas numbers shows that every third Lucas number is even, that 
is, 2|Z-3„. This is, in fact, always true (see Exercise 40). 

The next two divisibility properties were discovered by L. Carlitz in 1964. 

Theorem 16.5. Lm\Fn if and only if 2m\n, where m > 2. m 

For example, 10120, so L51 F2o; that is, 1116765. 

Theorem 16.6. Lm\L„ if and only if n = (2k — l)m, where m > 2 and k > I. ■ 

For example, let m = 4, and n = 3 · 4 = 12. We have L4 = 7 and Lu = 322. 
Clearly, L^\Ln. 

In 1965, George C. Cross and Helen G. Renzi of Williamtown Public Schools in 
Massachusetts proved that if the ratio a:b = 2:3, then [a, b] — (a,b) = a + b. For 
example, let a = 12 and b = 18. Then [a, b] - (a, b) = 36 - 6 = 30 = 12 + 18. 
Cross and Renzi also proved that if a:b = 3:5, then [a, b] + (a, b) = 2{a + b). 
For instance, let a = 45 and b = 75. Then [a, b] + (a, b) = 225 + 15 = 240 = 
2(45 + 75). 

More generally, suppose a:b = Fn:Fn+\ or a.b = Ln:Ln+\. How are [a, b], (a, b), 
and a + b related? These two questions were investigated two years later by G. F. 
Freeman of Williams College. The next two theorems were discovered by him. 

Theorem 16.7. (Freeman, 1967) 

1. Leta:i> = F„:F„+i.Then (a +£>)F„_i = [a, b] + (- l )"(a , b), where« > 2. 

2. Let (c, d) = 1 such that a:b = c:d. Let (a + b)Fn-i = [a, b] + ( - l )"(a , *), 
where n > 3. Then the number of solutions of the ratio c:d equals one-half the 
number of positive factors of F„ F„_2, one of them being F„ Fn+l. 
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Proof. 

1. Let a.b = Fn:Fn+\. Then, since (F„, F„+i) — I, a = F„k,b = 
Fn+\k, (a, b) = k, [a, b] = F„Fn+\k for some positive integer k. 

:. (a + b)F„-\ = F„-i(F„ + Fn+i)k = Fn-\Fn+2k 

= (Fn+i - F„)Fn+2k = Fn+[(F„ + Fn+l)k - F„Fn+2k 

= F„Fn+lk + (F„2
+l - F„F„+2)k 

= [a, b] + ( - l )"(a, b) by Cassini's rule 

2. Let a.b — c:d, where (c,d) = 1. Then a = ck; B = dk,(a,b) = k; 
and [a, b] — cdk for some positive integer k. Since (a + b)F„-\ = [a, b] + 
(-l)"(a,b), we have 

This yields 

(c + d) = cd + (-1)" 

dFn-X - (-1)" 
c = : 

= F„_i + 
d - F„_, 

= F„_, + - ^ F 2 - (16.3) 
d - F„-i 

lf0<d< Fn-\, then c < 0; sod > F„_|. Sincec is an integer, d — Fn-\\FnF„-2. 
Thus Eq. (16.3) yields a value of c for every positive factor of F„F„-2. But, if 
c = i4,c? = ß i s a solution of the ratio c:d, then so is c = B, d = A. Thus the 
number of distinct values of the ratio c:d equals the number of positive factors of 
F„Fn-2-

In particular, let d — Fn+\. Then 

_ , FnFn-2 
c - F„_i + F„+i — F„_ 

= F„_, + : - ^ = Fn 
F„ 

Thus c:d = F„:F
n+

\ is also a value of the ratio. 

The following example demonstrates this theorem. 
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Example 16.2. 

1. Let a:b = F9:Fl0 = 34:55, s o n = 9 . Let a = 238, b = 385, so 
a:b = 34:55: 

[a,b] + (-l)n(a,b) = 1 3 , 0 9 0 - 7 = 13,083 

= (238 + 385) -21 = (a + b)F& 

2. Since (a + b)F% = [a, b] + ( - l ) 9 (a , b), it follows that 

F9F7 c = F8 + 
Fs 

34-13 „, 442 
= 21 + -—— = 21 + d-2] d-2\ 

Since 442 = 2 · 13 · 17, 442 has eight positive factors: 1,2, 13, 17, 26, 34, 221, 
and 442. So d has eight possible values: 22, 23, 34, 38, 47, 55, 242, and 463. 
Consequently, the various values of c : d are 463 : 22, 242 : 23, 55 : 34,47 : 
38, 38 : 47, 34 : 55, 23 : 242, and 463 : 22. Since one-half of them are duplicates, 
the four distinct values of c : d are 38 : 47, 34 : 55, 23 : 242, and 22 : 463, keeping 
the numerator to be smaller. Notice that one of the ratios is 34 : 55 = Fg : F\o, as 
expected. ■ 

Theorem 16.6 has a counterpart for Lucas numbers. Its proof requires the following 
lemma. We leave its proof as an exercise. 

Lemma 16.3. F2n-i = Fn+lL„+2 - L„Ln+l,n > 2. ■ 

Theorem 16.8. (Freeman, 1967) 

1. Leta:fc = Ln:Ln+,.Then (a + b)Fn+l =[a,b] + (a,b)F2n-\,n > 2. 

2. Leta:b = F„_2:Fn_|.Then (a +b)Fn+\ - [a,b] + (a,b)F2n-\,n > 3. 

3. Let (c, d) = 1 such that a:b = c:d. If (a + b)Fn+l = [a, b] + (a, 6)F2n_i, 
where n > 2, then the ratios c:d are determined by the positive factors of 
Fn

2
+1 — F2„-i, one of them being L„:Ln+\. For n > 3, F„_2:F„_i is also a 

solution. 
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Proof. 

1. Let a:b = L„:Ln+\. Since (L„, Ln+\) = I, a = &L„, fc = kLn+l, (a,b) = it, 
and [a, b] = L„Ln+\k for some positive integer k. Then 

(a + b)F„+i = (L„ + Ln+\)kFn+\ = Fn+\Ln+2k 

— (F2n~\ + L„Ln+\)k 

= [a,b] + (a,b)F2n-\ 

as desired. 

2. Suppose a:b = Fn^2'-Fn-\- Then a = kFn-2,b = kFn-\, (a,b) — k, and 
[a, b] = F„_| :F„_2k for some positive integer k. Then 

(a + b)F„+, = (F„_2 + F„_|)À:F„+| = F„F„+ifc 

= (Î2n-1 + fii-lfii-^)* 

since F2„_, = FnF„+1 - F„_2F„_i 

= [a,fc] + (a,fc)F2„_, 

again as desired. 

3. Let a:b = c:d, where (c, d) = 1. As before, a = ck,b = rffc, (a, /?) = &, 
and [a, b] — cdk for some positive integer k. Since (a + b)Fn+\ = [a, b] + 
(a,è)F2„_i, 

(c + d)F„+l = cd+ F2n_i 

dFn+\ — F2n-\ 

= F„+1 + 

d - F„+i 

F„+1 - F2„_ 

(16.4) 

d-F, n-\ 

Since c and d are positive integers, it follows that the ratio c:d is determined by the 
positive factors of F„2

+1 — F2„_i. 
In particular, let d — F„+\. Then, by Lemma 16.3, 

„ , F„+\ — Fn+\Ln+2 + LnLn+] 
c = rn+l H 

_ Fn+l(Ln+\ — Ln+2) + L„L„+\ 

Ln+\ — ^n+l 

_ LnLn+\ — L„Fn+i _ 

£«+1 — ^n + l 
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Thus L„:Ln+i is a solution of the ratio c:d. (By symmetry, Ln+1:Ln is also a 
solution.) 

Unlike Theorem 16.7, not all solutions are obtained by considering the case d > 
Fn+\. For instance, let d = F„_i. Then, by Eq. (16.4), 

_ Fn-\Fn+\ — Fjn-X 

Fn-\ — F„+\ 

_ Fn-\Fn+\ — (F„F„+\ — F„-2F„-]) 

-F„ 

_ F„+\(F„-i — F„) + Fn_2F„_i 

F„ 

— ^n-2^n+l + F„^2Fn-\ 

Fn 

F„-2(Fn-i — Fn+\) 
= = ^n-2 

F„ 

Thus F„-2'-F
n

-\ is also a solution of the ratio. ■ 

The next example illustrates this theorem. 

Example 16.3. Let n = 8. We have F„+\ = Fg = 34 and Fm-\ = F15 = 610. 

1. Let a.b = L„:Ln+i = LS:L9 = 47:76. Let a = 235 and b = 380. Then 

[a, b] + (a, b)F2n-\ = [235, 380] + (235, 380) · 610 

= 17,860 + 5-610 = 20,910 

= (235 + 380) · 34 

= (a + b)Fn+] 

2. Let a:b = Fn-2-Fn-\ = F6:F7 = 8:13. Let a = 9 6 and 6 = 156. Then 

[a, b] + (a, b)F2„-i = [96, 156] + 12 · 610 

= 8568 = (96+156)-34 

= (a+b)Fn+i 

3. Let a:b = 180:204 = 15:17, where c:d = 15:17 and (15,17) = 1. 
Then, by part 3 of Theorem 16.8, 

F , n+1 
B+l + 

Fn+\ Fln-
d - Fn+\ 

_ 3 4 2 - 6 1 0 _ 546 
= 34 + —-——- = 34 + d - 34 d - 34 
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Since 546 = 2 · 3 · 7 · 13, 546 has 16 positive factors: 1, 2, 3, 6, 7, 13, 14, 21, 26, 39, 
42, 78, 91, 182, 273, and 546. The corresponding ratios are 35:580, 36:307, 37:216, 
40:125, 41:112, 47:76, 48:73, 55:60, 60:55, 73:48, 76:47, 112:41, 125:40, 216:37, 
307:36, and 580:35. These yield the eight distinct ratios c:d with (c, d) = 1, namely, 
7:116, 8:25, 11:12, 36:307, 37:216, 41:112, 47:76, and 48:73. Notice that 8:13 is 
also a solution. Among these ratios we find L8:Z.o = 47:76 and F6:F7 = 8:13, as 
expected. ■ 

AN ALTERED FIBONACCI SEQUENCE 

In 1971, Underwood Dudley and Bessie Tucker of DePauw University in Indiana 
investigated a slightly altered Fibonacci sequence, defined by G„ = Fn + (-1)", 
where n > 1. They made an interesting observation, as Table 16.1 shows: The 1st, 
3rd, 5th, . . . entries (see the circled numbers) in the (G„, Gn+i)-row are the 2nd, 4th, 
6th, . . . Fibonacci numbers; and the 2nd, 4th, 6th, . . . entries are the 3rd, 5th, 7th, . . . 
Lucas numbers. 

TABLE 16.1. 

n 

G„ 

(G„, G„+i) 

1 

0 

2 3 

2 1 

S 

4 5 

4 4 

4 

6 7 

9 12 

¥ 
8 9 

22 33 

11 

10 11 

56 88 

¥ 
12 13 14 15 

145 232 378 609 

29 (g) 

To establish these two results, we need the following theorem. 

Theorem 16.9. (Dudley and Tucker, 1971) 

(1) F4„ + 1 = F2n-\L2„+\ (2) F4n — 1 = F2n + \L2n-\ 

(3) F4n+\ + 1 = F2„ + \L2n (4) F4„ + i — 1 = F2nLln + \ 

(5) F4n+2 + 1 = ^2/1+2^2« (6) F 4 n +2 - 1 = /72n^-2n+2 

(7) /·4π+3 + 1 = F2„+]L2„+2 (8) /Mn+3 ~ · = /Γ2π+2ί-2η + 1 

Proof. The proof requires the following identities from Chapter 5: 

~r Γm—n — 

*m-\-n 'm—n — 

F I 
1 n L-'m F f 
1 m '-'n 

'm'-'n 

F I 
1 n '-'m 

if n is odd 
otherwise 

if n is odd 
otherwise 
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Then 

F4„ + 1 = F4n + F2 = F(2n + l)+(2n-l) + F(2„+l)-(2n-l) 

= F2n_iL2n+l 

and 

Ffo+l + 1 = F4n+i + F\ = F(2n+l)+2n + F(2„+l)_2n 

= F2n+\L2n 

The other formulas can be established similarly (see Exercises 59-64). ■ 

The following corollary, observed in 1971 by Hoggatt, follows easily from this 
theorem. 

Corollary 16.7. (Hoggatt, 1971) 

(1) (F4fI+, + 1, F4n+2 + 1) = L2n (2) (F4n+, + 1, F4 n + 3 + 1) = F^+i 

(3) (F4n+i - 1, F4n+2 — 1) = F2„ (4) (F4n+i - 1, F4n+3 - 1) = Z-2„+i 

(5) (F4n_, - 1, F4„+l - 1) = F2n (6) (F4n_, + 1, F4 n + 1 + 1) = L^ 

(7) (F4 n + 3 + 1, F4n - 1) = F2 n +, (8) (F4 n + 3 + 1, F4 n + 2 - 1) = F2n 

(9) (F4n+4 - 1, F4n+3 - 1) = I-2/i-fi 

Although it is not yet known whether or not the Fibonacci sequence contains 
infinitely many primes, this theorem establishes their finiteness in the sequences 
[F„ + 1} and {F„ — 1}, as the next corollary shows. 

Corollary 16.8. F„ + 1 is composite if n > 4, and F„ — 1 is composite if n > 7. 

Proof. When n = 1, F4„ + 1 = 4 is composite. When « > 2, it follows 
from Theorem 16.9 that F4n+i + 1, F4n+2 + 1, and F4 n + 3 + 1 have nontrivial factors. 
Thus F„ + 1 is composite if n > 4. Likewise, F„ — 1 is composite if 
n > 1. m 

Notice that F„ + 1 is a prime if n < 4 and F„ — 1 is a prime if n < 7. The next 
corollary confirms the observation we made earlier. 

Corollary 16.9. (G4„, G4n+i) = L2„+], (G4n+i, G4n+3) = L2n+\, and (G4„+2. 
G4n+3) = F2n+2, where n > 1. 

Proof. By Theorem 16.9, 

(G4„, G4n+i) = (F4n+1 + 1, F4n+i — 1) 

= (F2n-iL2n+\, F2„L2n+l) 
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= L2n+\(F2n-i, F2n) 

— i-2/1+1 

We can establish the other two parts similarly (see Exercises 65 and 66). ■ 

The next result also follows from Theorem 16.9 (see Exercises 67-69). 

Corollary 16.10. Let Hn = F„ - (-1)". Then (HAn, W4n+,) = F2n+1, (W4n+i, 
//4n+3) = F2n+u and (H4n+2, H4n+3) = L2n+2, where n > 1. ■ 

The following divisibility properties were discovered in 1974 by V. E. Hoggatt, 
Jr., and G. E. Bergum, except those noted otherwise, where p and q are odd primes, 
and k,m,n,r,t > 1. We omit their proofs in the interest of brevity. 

• If p\Ln, then pk\Lk
np~

i (Carlitz and Bergum, independently). 

. Let p\L2.3k and n = 2 · 3kp'. Then n\Ln. 

• Let p Φ q, p\L„, and q\Lm, where m andn are odd. Then (pq)k\Lmn(pq)k-\. 

• Letp, q > 3, p Φ q, P\L2.Y, #|L2.3*,andn = 2-3kp'qr, wherer, f > 0.Then 
n\Ln. 

• If p|L„, then p*|F2n/,i-i (Carlitz and Bergum, independently). 

• Let p φ q, p\L„, and q\Lm, where m and n are odd. Then (pq)k\F2mn(pqY-t 
(Carlitz and Bergum, independently). 

• If p\Fn, then pk\Fnpk-i (Carlitz and Bergum, independently). 
. Let p φ q, p\F„, and q\Fm. Then (pq)k\Fmn(pqf-<. 

. Ifn = 3m2r+l,thenn|/; 'n. 

. Let« = 2 r + l3m5*.Thenn|/v 

. Let p > 3 such that p\Fr+i y L e * n = 2r+i3mpk. Then n|F„. 

. Leti = 2r+13"\ p φ q,p\Fs,anaq\Fs,anan = spkq', where k,t > 0. Then 
n\Fn. 

. 2k+2\F3.2*. 
• If « is odd, then Ln = 4'M, where M is odd and t = 0 or 1. 
• Let M be odd. Then Ln = 4'M, where t = 0 or 1, and the prime factors of M 

are of the form 10m ± 1 (Hoggatt). 

EXERCISES 16 

Verify each. 
1. F7\F2l 

2. F6\F24 
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3. (F]2, F|g) = F(i2,|8) 
4. (F10, F2\) = F(io,2i) 
5. (Fi44, F1925) = 1 

6. L5\FW 

7. L6\F2A 

8. Z.4IL12 
Find each. 

9. (F144, F440) 

10. (Fg0, F100) 
11. Prove Theorem 16.1 using Binet's formula. 

Prove that (F„, F„+\) — 1 using each method. 
12. PMI 
13. The well-ordering principle (WOP). 

14. Prove that (L„, L„_i) = 1. 
Disprove each. 

15. m\n implies Lm\L„. 

16. (Lm, L„) = Zv(m„) 
17. Let m,n > 3.Then FmFn\Fmn. 

18. Letm, n > 2. Then LmL„\Lmn. 

19. [Fm, Fn] = F[mM 

20. [Lm, L„] = L[m,„] 
21. Compute (F„, L„) for 1 < n < 10 and make a conjecture about (Fn, Ln). 
22. Identify the integers n for which (F„, L„) = 2. 

Compute each. 
23. F(Fs<Fm) 

24. F(/r6/rl8) 

25. LfFs.Fu) 
26. L(/r6iZ.6) 

27. F(f5,Fl0 fl5) 

28. F(f6,f|8,/r2l) 

29. i(F5,F,0,f,5) 

30. i-(/.-6,/.„,/.,) 
31. Disprove: If n is a prime, then F„ is a prime. 

Prove each. 
32. If F„ is a prime, then n is a prime, where n > 5. 

33. 2|F3n 

34. 3|nifandonlyif2|F„. 
35. 4|/iifandonlyif3|F„. 
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36. 6|n if and only if 4|F„. 

37. 5\n if and only if 5\Fn. 

38. (Fa, Fb, Fc) = F(a,b,c) 

39. 2\L3n. 
40. 2\F3n 

41. (F„,L„) = 2ifandonlyif3|n. 

42. Ln\L3n 

43. Ln|L(2*-i)n, where* > 1. 

44. (F„, L„) = 1 or 2, where n > 1. 

45. Using Identity (32.3), prove that Fm|Fmn. 

46. There are n consecutive composite Fibonacci numbers, n > 1 (Litvack, 1964). 
Verify that (a + b)Fn-\ = [a, b] + ( - l )"(a, b) for each ratio a.b. 

47. 21:34 

48. 89:144 

Prove Lemma 16.3 using: 

49. PMI. 
50. Binet's formula. 

Verify that (a 4- b)Fn+\ — [a, b] + (a, b)F2n-.\ for each ratio a.b. 
51. 11:18 
52. 21:34 

53. 72:116 
54. 65:105 

Prove each. 
55. (Fm, Fn) = (Fm, Fm+n) = (Fn, Fm+n) (Brown, 1967). 
56. [a„) is an increasing sequence, where a„ = £ Fj, n > 1 (Lind, 1967). 

rf|n 

57. If/t > 4, then FkJ(L„ (Brousseau, 1968). 
58. Let Fm\Ln, where 0 < m < n. Then m = 1, 2, 3, or 4 (Lang, 1973). 

59-64. Establish the identities 2, and 4-8 in Theorem 16.8 (Dudley and Tucker, 1971 ). 
Prove each, where G„ = F„ + (-1)", H„ = F„ - (-1)", and n > 1 (Dudley and 
Tucker, 1971). 

6 5 . (Ö4M+1, Gnn+J,) — Li„+\ 

66. (G4„ + 2 , G4„ +3) = Fi„+2 

67 . (//4n. ^4n+ l ) = Fln + \ 

6 8 . (A/4„+i, Ηϊη+ι) = Fm+\ 

69. (//4n+2. ^4n+3) = i-2n+2 

Use the function gn = F4n_2 + F4„ + F4n+2 for Exercises 70-72 (Grassl, 1971a). 
70. Define g„ recursively. 
71. Prove that 12|g„ for every n > 0. 
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72. 168|(F8n_4 + F8„ + F8„+4) 
73. (L2r + l)Fk\(Fkn_2r + Fkn + Fkn+2r) (Hillman, 1971). 
74. There are no even perfect Fibonacci numbers (Whitney, 1972). 

75. Let h = 5*, where k > 1. Prove that h\Fh (Hoggatt, 1973). 
76. Let g = 2 · 3*, where k>\. Prove that g\Lg (Hoggatt, 1973c). 



GENERALIZED FIBONACCI 
NUMBERS REVISITED 

In Chapter 5, we found that the sum of any 10 consecutive Fibonacci numbers is 
11 times the seventh number in the sequence. Is this true for generalized Fibonacci 
numbers? To find out, notice that the first 10 terms of the generalized Fibonacci 
sequence are a, b, a + b, a + 2b, 2a + 3b, 3a + 5b, 5a + %b, %a + \3b, 13a 4- 21b, 
and 21a + 34fr. Their sum is 55a + 88b, which is clearly 11 times the seventh term 
5a + 8fo. Interestingly enough, 11 = i-5. Thus 

10 

Σ d = L5 · G7 
1 

where L5 = (55, 88) = (55, 89 - 1) = (Fw, Fn - 1) 
n 

More generally, is £ G/ a multiple of some Lucas number Lm? To answer this 
1 

question, recall that (7, = aF,-2 + bFj-\. So 

n n n 

1 I 1 

= aF„+b(F„+i - 1) 

When n = 10, this sum is divisible by L5, as we just observed. Consequently, let us 
look for a way to factor this sum. Since a and b are arbitrary, we look for the common 
factors of F„ and F„+\ — 1. [Although (F„, Fn+\) = 1, F„ and Fn+\ — 1 need not be 
relatively prime.] 

Table 17.1 shows a few specific values of F„, Fn+\ — 1, and their factorizations; 
we have omitted the cases where (F„, F„+\ — 1) = 1. 

211 
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TABLE 17.1. 

n 

6 

8 

10 

12 

14 

16 

18 

20 

F„ 

8 

21 

55 

144 

377 

987 

2,584 

6,765 

Fn+l - 1 

12 

33 

88 

232 

609 

1,596 

4,180 

10,945 

Factorization 

·*- Fibonacci numbers 

■*- Lucas numbers 

<— Fibonacci numbers 

*— Lucas numbers 

<— Fibonacci numbers 

«- Lucas numbers 

*— Fibonacci numbers 

<— Lucas numbers 

It is apparent from the table that when n is of the form 4k + 2, (F„, Fn+\ — 1) is 
a Lucas number and the various quotients are consecutive Fibonacci numbers; and 
when n is of the form 4k, (F„, F„+i — 1) is a Fibonacci number and the various 
quotients are consecutive Lucas numbers. 

Next we proceed to confirm these two observations, for which we need the fol-
lowing facts from Theorem 16.9: 

ΡΆη + 1 — 1 = £-2«+1^2„ and ^4n+3 — 1 = i-2n+1^2n+2 
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Case 1. Let n be of the form 4k + 2. Then 

4k+2 

Σ G> = aF4k+2 + b(FAk+3 - 1) 
1 

= oL2k+\F2k+\ + bLjk+iFjk+i 

= L2k+\(aF2k+2 + bF2k+2) 

= L2k+\Gzk+3 

4k+2 

Thus Σ Gi can be obtained by multiplying G2k+3 with L2k+\ ■ 
1 

In particular, 
10 

£ G , = L 5 G 7 = H G 7 

as observed earlier. This is an interesting case, since multiplication by 11 is remarkably 
30 

easy. Likewise, we can compute £ G, by multiplying Gp with L15 = 1364. 
1 

Case 2. Let n be of the form 4k. Then 

4k 

Y^Gi = aF4k+b(F4k+i - 1) 
1 

= aL2kF2k + bL2k+\ F2k 

= F2k(aL2k + bL2k+\) 

= F2k[a(F2k-\ + F2k+\) + b(F2k + F2t+2)] 

= F2k[(aF2k-\ + bF2k) + (aF2k+\ + bF2k+2)] 

= F2k(G2k+\ + G2k+i) 

4k 

Thus we can realize Σ Gi by multiplying the sum G2*+i 4- G2*+3with F2k. 
1 

4k 

For instance, we can obtain Σ Gi by multiplying the sum G\\ + G13 with 55. 
1 

EXERCISES 17 

Prove each, where G* denotes the fcth generalized Fibonacci number. 
GmL„ if n is even 

1. Gm+n + Gm_„ , ( G ^ + i + Gmi)Fn otherwise (Koshy, 1998) 

*" *-*ηι+η {Jm—n — 
(Gm+i + Gm-\)Fn if n is even 

otherwise (Koshy, 1998) 
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3. G2
m+n - G2

m_n = (Gm+I + Gm.l)GmF2n (Koshy, 1998) 

Consider the sequence {an} defined by α2π+ι = ain + am-\ and am = ctn, where 
a\ = a,a2 = b, and n > 1. Verify each (Lind, 1968). 

n 
4. £ > * =a2n+i -a 

1 
Π 

1 

Prove each (Koshy, 1999). 

6. G4m + b — {Glm + Glm-\)F2m-\ 
7. G4 m +i + a = Gim+\L2m 

8. G4m+2 + b — Gim+iLjm 

9. G4 m +3 + Û = (G2m+3 + G2m + \)F2m + \ 

10. G4m — b = G2m + \L2m-\ 

11. G4 m +i — a = (G2m+2 + G2m)F2m 

12. G4m+2 — è = (G2 m +3 + G2m + l)fr2m 

13. G4 m +3 — a = G2m+2Î-2m + ! 

14. (G4 m +i + a, G4m+2 + b) = L2m 

15. (G4 m +i - a, G4m+2 — è) = F2m 



GENERATING FUNCTIONS 

Generating functions provide a powerful tool for solving linear homogeneous 
recurrence relations with constant coefficients (LHRRWCCs), as will be seen 
shortly. In 1718, the French mathematician Abraham De Moivre (1667-1754) 
invented generating functions in order to solve the Fibonacci recurrence 
relation. 

First, notice that the polynomial 1 + x + x2 + x3 + x4 + x5 can be written 
(JC6 — 1)/(JC — 1). We can verify this by either cross-multiplication or the familiar 
long-division method. Accordingly, f(x) = (Λ:6 — 1 )/(x — 1 ) is called the generating 
function of the sequence of coefficients 1, 1, 1, 1, 1, 1 in the polynomial. 

More generally, we make the following definition. 

GENERATING FUNCTION 

Let ao, û], Û2. · ·· be a sequence of real numbers. Then the function 

g(x) =a0+alx + a2x
2 + ---+a„x" + · · · (18.1) 

is called the generating function for the sequence [a„}. We can also define generating 
functions for the finite sequence ao,a\,...,an by letting a, = 0 for i > n; thus 
g(x) = ao + ö|jc + Ü2X2 H \-a„x" is the generating function for the finite sequence 
a0 ,a\, ...,a„. 

For example, g(x) = 1 + 2x + 3x2 + ■ ■■ + (n + l)x" + ■ ■ ■ is the generating 
function for the sequence of positive integers and 

fix)=l+3x + 6x2 + ... + ^±^x" + ··. 

215 
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is the generating function for the sequence of triangular numbers 1, 3, 6, 10 , . . . . 
Since 

x" -I , „ , x" - 1 
= l+x+x2 + --- + xn~l g(x)= -

x — 1 x — 1 

is the generating function for the sequence of n ones. 

A word of caution. The right-hand side (RHS) of Eq. (18.1) is a formal power series 
in x. The letter x does not represent anything. We use the various powers x" of x 
simply to keep track of the corresponding terms an of the sequence. In other words, 
we think of the powers x" as place-holders. Consequently, we are not interested in 
the convergence of the series. 

Equality of Generating Functions 
OO 00 

Two generating functions f(x) = Σ "nx" and g(x) = Σ b„x" are equal if an = bn 
o o 

for every n > 0. 

For example, let 

f(x) = 1 + 3x + 6x2 + l (k3 + · · · 

and 

, * . 2 > 3 3 ' 4 2 4 · 5 3 

*(*) = i + —x + —x2 + -γχ* + · ■ · 

Then fix) = gix). 
A generating function we will use frequently is 

1 

1 — ax 

Then 

1 

I - * 

= l+ax + a2x2+ ---+anx"+ ■■■ (18.2) 

= 1 + * + * 2 + · · · + *" + · · · (18.3) 

Can we add and multiply generating functions? Yes. Such operations are performed 
exactly the same way as polynomials are combined. 

Addition and Multiplication of Generating Functions 
0 0 OO 

Let fix) = Σ anXn and gix) = Σ °nXn be two generating functions. Then 
0 0 

oo oo / n \ 

fix) + gix) = J^ian + b„)x" and f(x)g(x) = £ ( £ < * * » - ' ) x" 
0 n=0 \;=0 / 
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For example, 

1 1 
( l - * ) 2 1 - j c 1 

Σ*' Σ*' =Σ Σ1 !K 
^ 0 / \ 0 / n=0 \ 0 / 

= Yjtn + \)x" 

= 1 + 2x + 3x2 + ■ ■ ■ + (n + l)x" + (18.4) 

and 

1 1 1 

( l - * ) 3 \-x (l-x)2 

f oo \ Γ co 

Σ*Ί Σ<» 
Ko / L o 

+ \)xn 

= Σ 
n=0 

Σ i · (« + i - o 
i = 0 

oo 

= Σ[(η+\)+η + --- + 1]χη 

n=0 

oo 

= Σ 
(Λ + 1)(η + 2) „ 

x 
n=0 

1 +3Λ: + 6Λ:2 + 10JC3 + · · (18.5) 

Before exploring how valuable generating functions are in solving LHRRWCCs, 
we examine how the technique of partial fraction decomposition, used in integral 
calculus, enables us to express the quotient p{x)/q(x) of two polynomials p{x) and 
<7(JC) as a sum of proper fractions, where deg p(x) < deg q(x).* For example, 

6.X + 1 1 2 

+ (2JC-1)(2JC + 3) 2JC — 1 2x + 3 

(Verify this.) 

deg f(x) denotes the degree of the polynomial f(x). 
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PARTIAL FRACTION DECOMPOSITION RULE 
FOR p(x)/q(x) WHERE deg p(x) < deg q(x) 

If q(x) has a factor of the form (ax + b)m, then the decomposition contains a sum of 
the form 

+ -, -τ^ + ··· + ax+b (ax + b)2 (ax + b)m 

where A, e U. 
Examples 18.1-18.3 illustrate the partial fraction decomposition technique. We 

will use their results to solve three recurrence relations in Examples 18.4-18.6. 

Example 18.1. Express x/((\ — x)(\ - 2x)) as a sum of partial fractions. 

Solution. Since the denominator contains two linear factors, we let 

x A B 
+ (1 - ; t ) ( l -2x) 1 -x 1 -2x 

To find the constants A and B, multiply both sides by (\ — x)(\ — 2x): 

x = A(\ -2x) + B(\ -x) 

Now give convenient values to x. Setting x = 1 yields A = — 1 and setting x = 1/2 
yields B = 1. (We can also find the values of A and B by equating coefficients of 
like terms from either side of the equation, and solving the resulting linear system.) 

x - 1 1 
+ ( l - x ) ( l - 2 * ) 1 -x \-2x 

(We can verify this by combining the sum on the RHS into a single fraction.) We use 
this result in Example 18.4. ■ 

Example 18.2. Express x/(l — x — x2) as a sum of partial fractions. 

Solution. First, factor 1 - x — x2: 

1 - x - x 2 = (1 - Ö J C ) ( 1 - ß ; t ) 

Let 

B 
+ 1 — x — x2 l — ax l — ßx 

.·. x = A(l -ßjc) + J5(l -ax) 

Equating coefficients of like terms, we get 

A + B = 0 

- β Λ - α Β = 1 
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Solving this linear system yields A = l/>/5 = -B. (Verify this.) Thus 

x =±\-J L_l 
l-x-x2 ^/5l]-ax l-ßx] 

We use this result in Example 18.3. ■ 

Example 18.3. Express (2 - 9x)/(l - 6x + 9x2) as a sum of partial fractions. 

Solution. Again, factor the denominator: 

1 - 6 * + 9 Λ : 2 = (1 -3Χ)2 

By the decomposition rule, let 

2 - 9 * _ A B 

1 - 6x + 9x2 ~ 1 - 3* + (1 - 3x)2 

Then 

2 - 9 * = A(l -3Χ) + Β 

This yields A = 3 and B = - 1 . (Verify this.) Thus 

2 - 9 Λ _ 3 1 
1 - 6x + 9x2 ~ 1 -3x ~ (T^3Jc)2 

We use this result in Example 18.6. ■ 

Now we are ready to use partial fraction decomposition and generating functions 
to solve recurrence relations in the next three examples. 

Example 18.4. Use generating functions to solve the recurrence relation 
b„ = 2b„_i + 1, where b\ = 1. 

Solution. First, notice that the condition b\ = 1 yields bo = 0. To find the sequence 
[bn} that satisfies the recurrence relation, we consider the corresponding generating 
function 

g(x) = b0 + b\x + b2x
2 + b3x

3 + ■■■ + b„x" + ■■■ 

Then 

2xg(x) = 2b\x2 + 2b2x
3 + l· 2bn-Xx" + ■■■ 
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Also, 

1 -x 
1 +x+x2 +x3 + ---+x" H 

.·. g(x) - 2xg(x) - —— = -i+(bl-l)x + (b2- 2ft, - l)x2 + ■■■ 
1 — x 

+(bn - 2fc„_, - l)x" + ■ ■ 

= - 1 

since b\ — 1 and b„ = 2b„-\ + 1 for n > 2. That is, 

(1 - 2x)*(jr) = —! 1 

i(Jt) 

1 — x 1 — JC 

( 1 - J C ) ( 1 - 2 X ) 

1 1 
H —- by Example 18.1 1 — JC 1 - 2 * 

-{PHP*) 
OQ 

= Y^{2n - \)xn 

o 

oo 

Butg(jt) = Y,bnx\sobn = 2" - l ,n > 1. ■ 
o 

Example 18.5. Use generating functions to solve the Fibonacci recurrence relation 
Fn = Fn-\ + F„_2, where Fs = 1 = F2. 

Solution. Notice that the two initial conditions yield Fo = 0. Let 

g(x) = F0 + F\x + F2x
2 + · · · + F„xn + ■■■ 

be the generating function of the Fibonacci sequence. Since the orders of F„_i and 
F„_2 are 1 and 2 less than the order of F„, respectively, find xg(x) and x2g(x): 

xg(x) = FlX
2 + F2x

3 + F3JC4 + ■ · · + F„_,jcn + ■.. 

x2g(x) = F,*3 + F2x
A + F3x

5 + --- + Fn-2x" + ■■· 

.-. g(x) - xg(x) - x2g(x) = Fix + (F2 - F,)x2 + (F3 - F2 - F,)*3 + · · · 

+ (F„ - F„_, - F„_2)x" + · · · 

= x 
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since F2 = F\ and Fn = Fn-\ + F„^2. Thus 

(1 -x -* 2 )g (* ) = x 

8(x) = X 

\-x-x2 

1 Γ 1 1 1 
— by Example 18.2 

Λ yfigix) = 
1 

1 — ax 1 — ßx 
00 00 00 

0 

οο 
(α"-/9") „ 

χ 

0 

Thus, by the equality of generating functions, we get the Binet formula for F„: 

a" -β" an _ βη 
Fn = 

yß a-ß 

Example 18.6. Use generating functions to solve the recurrence relation 
a„ = 6α„_ι — 9a„_2, where ao = 2 and a\ = 3. 

Solution. Let g(*) = ao + a\x + a2x
2 + l· anx" + · · ·. Then 

6xg(x) = 6aox + 6a\x2 + 6a2x
3 + H 6α„-ιχ" + ■·■ 

9*2g(*) = 9a0x
2 + 9a,*3 + 9a2*4 + ■■■+ 9an-2x" + ■■■ 

.·. g(x) - 6xg(x) + 9x2g(x) = ao + (ax - 6a0)x + (a2 - 6ax + 9a0)x
2 -\ 

+(a„-6a„-.l+9an-2)xn+·· 

= 2 - 9 * 

using the given conditions. Thus 

2 - 9 * 

l - o - t t -tx-

3 1 
by Example 18.3 1 - 3 * (1 - 3*)2 

y O O v O O 

^ n / n 
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= Σ [ 3"+ ' - (" + 1)3"]*" 
o 

00 

= ^ 3 " ( 2 - η ) * η 

o 

Thus 

a„ = (2 - n)3" n > 0 
■ 

The following example presents an identity linking binomial coefficients and 
Fibonacci numbers. The identity, developed in 1968 by Hoggatt, is an application 
of Example 18.5. The proof given here is due to L. Carlitz. 

Example 18.7. Prove that 

2j<n X ' 0 

Solution. Let 

C = E ; (V) 
2j<n V 7 

OO 0 0 / · \ 

0 n=0 2j<n v ' 

oo °° / \ °° 

; = 0 n=0 ^ ' ;'=0 

2 oo 

(ΓΓ3οϊΣθ· + υ*υ(ΐ-*)^ 

v2 / v2 \ ~ 2 

( l - x ) 2 

( 1 - j c - x 2 ) 2 

(-Ä)' 

-(i>-)(i> 
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n 

,.C„ = J2FJF»-J 
7=0 

Suppose we left-justify Pascal's triangle, multiply each column by j , and then add 
the rising diagonals, where j > 0. The resulting sum on the nth diagonal is C„ (see 
Fig. 18.1). ■ 

Ss ^ 

Figure 18.1. 

A lattice point on the Cartesian plane is a point (JC, y) such that both coordinates x 
and y are integers. The next example, proposed as a problem in 1970 by R. C. Drake 
of North Carolina A & T University at Greensboro, deals with paths connecting lattice 
points. The solution given here is based on one given by L. Carlitz of Duke University. 

Example 18.8. Let / (n ) denote the number of paths on the Cartesian plane from 
(0,0) to (M, 0). Each path is made up of directed line segments of one or more of the 
following types: 

Type 1 

Initial point 
Endpoint 

(*.0) 
<M) 

(*,0) 
(A:+1,0) 

(*.D 
( t+1 ,1) 

(*. 1) 
(*+l ,0) 

Thus, the next point on the path from the point (k, 0) can be (k, 1) or (k + 1, 0); and 
that, from the point (k, 1), can be (k + 1, 1) or (k + 1, 0). Find a formula for f(n). 

Solution. There are / ( l ) = 2 = 
paths from (0,0) to (2,0); and / (3) 
depicts all of them. 

F3 paths from (0, 0) to (1, 0); / (2) = 5 = F5 

= 13 = F7 paths from (0,0) to (3,0). Figure 18.2 
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K UM UN ΓΧ UK KJ 

L M J N _ N Γ Γ Κ ΠΝΚ K_U: 

•_KJ uru: uru: UUN LKJ 
UNJ UUK UUN 

/7=3 
Figure 18.2. 

Let /2 (n) denote the number of paths ending with a line segment of type 2 and 
/4 (n) the number of paths ending with a line segment of type 4. Then 

M» + 1) = hin) + hin) = fin) 
n 

/2(n + 1) = /(0) + / ( l ) + · · · + fin) = Σ /(*) 
o 

n 

.·. /(B + 1) = hin + 1) + /4(n + 1) = /(«) = £ /(*) 
o 

Then / ( l ) = /(0) + /(0) = 2/(0). But / ( l ) = 2, so /(0) = 1. 
Consider the power series 

oo oo oo 

Fix) = Σ f(n)x" = ^ ( 0 ) + Σ f(n)x" = i + Σ /(« + ι)χ"+ι 

But 

'+Σ 
n=0 

/(«) + £/(*) 
t=o 

„n+l 

= l+xFix) + - Fix) 
1 — x 

Fix) = 
l-x 

1 - 3JC + x2 

1 — 
Ô ; 2 = Σ ^Ζη+Ι̂ " 

- 3* + *2 ή^ 

(See the list of generating functions on p. 230.) Thus fin) — F2„+\, where n > 0. 
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EXERCISES 18 

Express each quotient as a sum of partial fractions. 

x + 1 
1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

*10. 

( J C - ! ) ( * + 3 ) 
Ax2 - 3x - 25 

(x + l ) ( x - 2 ) ( * + 3) 
5 

1 - x - 6x2 

2 + Ax 
1 + 8 X + 15JC2 

x(x + 2) 

(2 + 3JC)(JC2 + 1) 

-2x2 - 2;c + 2 
( J C - 1 ) ( J C 2 + 2 X ) 

χ 3 + χ 2 + x + 3 

x4 + 5x2 + 6 
- x 3 + 2x2 + x 

x4+x3 +x + 1 
3JC3 Ϊ 2 + 4Λ: 

x4 - je3 + 2x2 - x + 1 
x3 + x2 + 5x - 2 
x4 - je2 + x - 1 

Use generating functions to solve each LHRRWCC. 

11. an =2α„_ι,α0 = 1 
12. a„ =α„_ι + l .a , = 1 

13. a„ = a„-i +2, a\ — 1 

14. a„ = a„_i + 2a„_2, a0 = 3, a\ = 0 

15. a„ = 4a„_2, ao = 2, a\ = —8 

16. a„ = a„_i + 6a„_2, ao = 5, a\ = 0 

17. a„ = 5a„_i - 6a„_2, a0 = 4, a, = 7 

18. a„ = a„_i +an-2, a0 = l,a\ =2 

19. a„ = a„_i + a„_2, ao = 2, ai = 3 

20. L„ = L„_ 

21. a„ =4a„_ 

22. a„ = 6a„_ 

23. a„ = 3a„_ 

24. a„ = 8a„_ 

25. a„ = 7a„_ 

+ L„_2,^i = 1,L2 = 3 
— 4a„_2. ao = 3, ai = 10 

— 9a„_2, ao = 2, ai = 3 

+ 4a„_2 - 12a„_3, a0 = 3, ai = - 7 , a2 = 7 

— 21a„_2 4- 18a„_3, ao = 0, a\ — 2, ai = 13 

+ 16a„_2 — 12a„_3, ao = 0, a\ = 5, a2 = 19 
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26. a„ = 3α„_ι +4α„_2 - 12αη_3,α0 = 3, a, = -7, a2 = 7 

27. a„ = 6a„_| — 12a„_2 — 8a„_3, ao = 0, ai = 2, a2 = —2 

28. a„ = 13a„_2 — 36a„_4, ao = l,a\ = —6, Ö2 = 38, a3 = —84 

29. an = -a„-\ + 3a„_2 + 5a„_3 + 2a„_4, a0 = 0,a\ = -8, a2 = 4, a3 = -42 



GENERATING FUNCTIONS 
REVISITED 

Generating functions, as we saw in the preceding chapter, can be employed to derive 
additional Fibonacci and Lucas identities, using the identities developed earlier. 

A GENERATING FUNCTION FOR F3„ 

First, we develop a generating function g(x) for F3„. To this end, we let 

g(jc) = F0 + F3x + F6 x
2 + F9x

3 + ■■■ + F3„JC" + · · · 

4xg(x) = 4F0x + 4F3x
2a + 4F6x

3 + ■■■+ 4F3„-3x
n + 

x2g(x) = F0 x2 + F3x
3 + ■■■ + F3n_6jc" + · · ■ 

.·. (\ -4x - x2)g(x) = 2x since F3„ = 4F3n_3 4- F3n_6 

Thus 
2x 

A GENERATING FUNCTION FOR F3 

Next we derive a generating function for F3. Let 

g(x) = F0
3 + F3x + F3 x2+ F3x3 +■■■ 

3xg(x) = 3F0
3x + 3 F , V + 3F2

3^3 + 3F 3 V + · · · 

227 
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6;c2g(jc) = 6F 0 V + OF,3*3 + 6F2
3 x4 + ■ ■ ■ 

3x3g(x) = 3F3x3 + 3F 3 x* + ■ ■ ■ 

x4g(x) = F3x4 +■■■ 

(1 - 3x - 6x2 + 3x3 + x*)g(x) = x + x2 - 3x2 + 2x3 - 3x3 - 6x3 

by identity 1 on p. 87 

= x - 2x2 - 7x3 

Thus 
x - 2x2 - lx3 

8(X)~ \-3χ-6χ2 + 3χΐ+χ* 
In 1948, J. Ginzburg employed generating functions to prove Formula (5.1) that n 

Σ,Ρ' — Fn+2 - 1. To see how this was done, first we derive a generating function for 
1 

n oo 

the sum s„ = Σ Ή> where so = 0: Let g(x) = J2 snXn- Then 
1 0 

oo oo 

2xg(x) = Y^2sn-ix" and x3g(x) = ][%„-3Xn 

l 3 

Since 
S„ -2s„-i +5„_3 = 0 

it follows that 
(l-2x+x3)g(x)=x 

Thus 
g(x) = 1 - 2x + x3 

is the desired generating function; sn is the coefficient of x" in the power series 
expansion of this function. 

Since 1 —2x+x3 = (1 — x — x2){\ — *), we can convert this into partial fractions: 

l+x 1 
gW 1 — x — x2 1 — x 

Since 

this yields 

1 - x - x2 EF·*" 

£>„*" = (1+JC)JTF..JC,,-1-1>" 
0 1 0 

oo oo 

= J2(FnXn-l + Fnx")-J2x" 
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= ] T ( F n + 1 + F„ - l ) j c n 

o 

oo 

= £(F„+2 - 1)*" 

Thus, 

as desired. 

π = Σ?· = Fn+2 - 1, 
1 

A LIST OF GENERATING FUNCTIONS 

In 1967, V. E. Hoggatt, Jr., and D. A. Lind compiled the following list of 18 generating 
functions that generate the various powers and products of Fibonacci and Lucas 
numbers. Some are their own creations. 

oo 

ι x x 0 

1 
2· 737371 = EF^X" 

0 

3. X
 2=ZL»X" 

1 — x — xi L—' 

A 1 + 2 Λ ^ „ 
4· . . , . , 2 = 2 > " + ' Χ 

I - x - * » 0 

2 
JC — X 

\-2x-2x2 + *3 = Σ^Π 

o 

1 °° 
* ~ * - V^ F2 r" 

\-2χ-2χ2 + χΐ ~ V 

7 1 + 2 Λ - Χ 2 _ f > 2 „ 

= 2_, FnFn + \x" \-2x-2x2+x3 



230 GENERATING FUNCTIONS REVISITED 

4 - Ίχ - x2 ^ 
9 I _ - - V L2x" 

l-2x-2xi+xi
=LL"+2X 

19 \ pj γη 

" 1 - 3 Λ : - 6 ^ + 3Λ:3+Λ:4 γ " 

1 - 2 * - χ 2 y > 3 r „ 
1 -3ΛΓ-6χ2 + 3 χ 3 + ^ 4 ^ Γ " + ι Α : 

14 1 + 5 * - 3 * 2 - * 3 _ Α 3 χ„ 
1 - 3* - 6χ2 + 3χ3 + *4 ~ V "+2 

8 + 3 ^ - 4 Λ 2 - Χ 3 ^ 3 

1 - 3* - 6χ2 + 3*3 + *4 ~ V "+3 

2χ °° 
16· ! _ 3χ - 6^2 + 3χ3 + Λ:̂  = Ç F n / 7"+ 1 F"+2J :" 

17· ι-^Γ(-υ^ = ? ^ " (Hoggatt'1971) 

18. 

ο 

Fr + (-l) rF*_rx 
( _ 1 ) ^ 2 - Ζ . ^ « + ^ 1 -Lkx + \ ., .. ο 

The following four generating functions were derived by V. E. Hoggatt, Jr., in 
1971, and the fifth was discovered in the following year. 

= Σ F*s 1 - 3x + x2
 0 

1 — °° 
2· —;—2 = / .Fin+\x" 

1 — ix + xl i—J 

3 — 2JC ^ - Λ η 

2 = L·,L2n+2X 1 - 3x + x 
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A 
A X +X — V / »·"+' 
4· , . ^ + ^ - Ζ - ^ + ' * 0 

5· 1 - 2 * - 2 ^ + * 3 = Σ > + ' ^ " 

GENERATING FUNCTIONS FOR Fm+„ AND Lm+n 

In 1972, R. T. Hansen of Montana State University also employed generating functions 
in his investigation of Fibonacci and Lucas numbers. For example, the generating 
function of Fm+n is given by: 

0 0 °° am+n _ am+n 

Σ Fm+"x" = Σ ^ r g x" 
n=0 n=0 y 

. T e » oo 

= — amyVjtn-em y y * " a~n v v . 
- 1 Γ α"* _ ßm 1 
~~ α - β Ll -ax 1 — ßjcJ 

_ (am - ß m ) + (a m- ' -ß m- ' ) jc 

~ ( α - β ) ( 1 - α * ) ( 1 - & χ ) 

^m + Î m - 1 * 

1 - x - *2 

Likewise, it can be shown that 
00 

(19.1) 

YjLm+nx" = L-+Lm-^ (19.2) 
l-x-x2 

n=0 

See Exercise 15. 

IDENTITIES USING GENERATING FUNCTIONS 

These two generating functions can be applied to derive a host of identities. For 
example, notice that 

OO j 0 0 . _ OO _ 

Σ^'*π=4 EF-"" = V and Σ^χ" = -^ 
0 0 0 

where D — 1 — x — x2. Since 

2-x _ _1_ 1 -x 
D ~ ~D + D 
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it follows that 

00 OO OO 

0 0 0 

oo 

= £(F n + 1 + Fn-^X" 
0 

Fn + \ + Fn-\ = i-n 

a fact already known from Chapter 5. 
Next, we shall prove that FmLn + Fm_iL„-i = Lm+n_|. We have 

00 00 OO 

J2(FmL„ + Fm_1L„_1)*
m = Ln Σ Fmxm + L„_, £ Fm_,x" 

= 

= 

m 

Ln-

Ln-

Ln-

0 0 

Σ 

=0 

X 

i + (Ln -
D 

l + L„-2x 
D 

1 
1 

Ln 

m~ 

— X 

D 

-\)x 

=0 

m=0 

• - * m*-rt "T" **m—l^n—1 — *-τη+π —1 

Similarly, it can be shown that FmF„ + Fm_,F„_i = Fm+n_i and£„,£„+/,„,_!/,„_! = 
5Lm+„_i (see Exercises 6 and 7). 

Next, we develop a generating function for Fn/n\ and then for L„/n\. 

EXPONENTIAL GENERATING FUNCTIONS 

OO 

Since e' = Σ(ί"/ / ι!) , it follows that 
o 

eax - Σ ^ «* *β* = Σ ! 
»! — n! 

Σ^Ητ^Σ^" <19 ·3> 
< « " » „ = o - r , ... π = 0 

Thus, the exponential function (eax — et")/(a — β) generates the numbers F„/n\. 
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More generally, we can show that 

e<*k* _ etf* 

Likewise, 

Y"1 Üj± n 

π=0 
It'. 

We can employ the generating functions for F„/n\ and L„/n\ to derive three 
combinatorial identities. It follows from Eq. (19.3) that 

00 r 

η = 0 
η\ 

Fn 2exl2 sinh(>/5x/2) = V s V — x" 
„ n! n=0 

Thus 
00 2" F 

2e* sinh(>/5jt) = VsY" -x" 
„ n! 

(19.4) 
n=0 

Likewise, the generating function eax + e^x = J^(L„/n\)x" can be employed to 
n=0 

derive the formula 
2"i 

2ex cosh(>/5j) = V5 V -x" (19.5) 
n=0 

We can employ the exponential generating functions for F„ and L„ to develop a 
host of identities, as C. A. Church and M. Bicknell showed in 1973. To see this, let 

A(t) = J2an-, and B(/) = y % -
o o 

Then 

and 

A(t)B(t) = Σ 
n=0 'to αφη-k 

t" 

n\ 

A(t)B(-t) = Σ 
n=0 

±(-iy-*(n
k)akbn-

k=0 x ' 

t" 

In particular, let A{t) = (e°" - ep')/(a - β) and B{t) = e'. Then 

e'(e°" - e p ' ) 

α - β n=0 't(ï) 
t" 

n\ 
by Eq. (19.3) 

(19.6) 

(19.7) 
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That is, 

c(«+n» _ e(ß+i)< 

ϊ~^β 

eah - e?< 

α - β 

That is, 

-Σ 
00 

-Σ 
n=0 

oo Γ n 

'έ(ί) 
'έ(ϊ) 

n\ 

t" 

n\ 

^ ,n "" " / \ 

Σ ^ - Σ Σ(ϊ)" 
n=0 n=0 L*=0 v 7 

f" 

n! 
(19.8) 

Equating the coefficients of t"/n ! yields the combinatorial identity ( 12.2) we derived 
in Chapter 12: 

Σ(Ι)'.-* (12.2) 

Using B(t) = e ', Property (19.7), and the preceding steps, it follows that 

tn e(ß-\)t _ e (P- l ) ' 

n=0 .k=0 X ' 
Fk α - β 

ο - β 

r" Σ(-υ"-'^Λ 
n=0 

This yields yet another combinatorial identity: 

Σ(-ΐ)"-*(^)^ = (-ΐ)"-̂ „ (12.4) 

Obviously, by selecting A(t) and Z?(f) as suitable exponential functions, we can 
apply this method to derive an array of Fibonacci and Lucas identities. For example, 
choosing 

e«h _ „ß2( 
and B(t) = e~' 

we can show that 

See Exercise 21. 

A(i) 
e"1' - e*h 

α - β 

Σί-1)""" 
k=0 
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HYBRID IDENTITIES 

Again, we choose A(t) and B(t) strategically to develop a family of hybrid identities 
that contain both Fibonacci and Lucas numbers. Let 

e°" - e^' 
Λ(ί) = — and B(t) = ea' + e?" 

α - β 

Then, by Eq. (19.6), 

έ[(ϊ) FkL„-
\ n\ α - β 

00 

This yields the combinatorial identity 

n=0 

t(ï) ^ / F * L I I _ t = 2 " F 2 # I (19.9) 

Likewise, we can show that 

t(ï) 2"L„ - 2 
FkF„^k = "- (19.10) 

and 
n / \ 

" " LkLH-k =2"Ln+2 (19.11) έ(ϊ) 
See Exercises 9 and 10. 

In fact, Identities (19.9) through (19.11) can be generalized as follows: 

i— n \ / 

FmkLmn-mk = 2" Fm„ (19.12) 
k=o 

Σ ( Î ) F»>kFmn-mk = ^ - =■ (19.13) 

t(i) LmkL„n-mk = 2"Lmn + 2L£ (19.14) 
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IDENTITIES USING THE DIFFERENTIAL OPERATOR d/dt 

We can realize more generalized families of identities by using the differential operator 
00 

d/dt. Since A(t) = Σαη(ί"/η\), it follows that 
o 

It 7A(0 = X > n + r ^ 
n=0 

Let A{t) = (eat - e?")/(ct - β) and B(t) = e°". Then, by Eq. (19.6), 

n=0 

ττ(η\ν 1'" <dT (e<"-^\ 

_ ofe
(a+l)' - ßre<P+1" 

" ί^β 
_ area2' - ßrgP2' 

α - β 

= V , ^2/i+r -τ 
π=0 

This yields the identity 

Similarly, we can show that 

'-'2m *2mn+4mr 

and 

Σ ! ( k ) F4m*+r 

/ , I £ ) Fm-\Fm''k+rm = Fmn+rm 

^m *** = ^2/i+r 

(19.15) 

(19.16) 

(19.17) 

(19.18) 

COMPOSITIONS WITH Is AND 2s REVISITED 

In Chapter 4, we proved that the number of compositions C„ of a positive integer 
n, using Is and 2s only, is given by C„ = Fn+i. We now reestablish this fact using 
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generating functions. Let 

C(x) - C,JC + C2x
2 + C3x

3 + ■■■ + C„x" + ■■■ 

xC(x) = Cix2 + C2x
3 + ■■■ + C„_i x" + ■■■ 

x2C(x) = C]x
i + --- + Cn-2x

n + ---

(1 - x - x2)C(x) = x+x2 

Λ C(x) = 
x+x2 

l-x-x2 

00 

= χ>*,, + Σ ί '«χ , , + ι 
0 0 

oo oo 

1 1 

Thus C„ = Fn+\, as expected. 

EXERCISES 19 
00 

1. Let f(x) = Σ %*"■ Show that f(x) = -exf(-x). (Lehmer, 1938) 
o 

oo 

2. Show that eax + e&x = £ ^x". 
o 

oo 

3. Let g(,x) = Σ £f ·*"· S n o w t h a t S(x) = <?*£(-*)· 
o 

Verify each. 
oo 

4. — r = Y)(-iy+lFnx" (Hoggatt, Jr., 1964) 
1 +x-x 

0 

5 · 77^ ^ΤΛ = Y^nFn+\xn (Grassl, 1974) 

Prove each, using generating functions. 
O. fffl Vn + (Hansen, 1972) 

7. LmL„ + Lm_,L„_i = 5Fm+„_, (Hansen, 1972) 

s. in-\y-k (ηΛ F2k = F„ 

2"L„ - 2 
F* / r»-* = — 5 — 

n 

Use the function A„(;c) = Σ ^ίχ' l0 answer Exercises 11-14 (Lind, 1967). 
1 



238 GENERATING FUNCTIONS REVISITED 

F„x"*2 + F„+lx"+'-x 
11. Show that A„(x) = " , ; i ' x i 

n 

12. Deduce the value of Σ ^ · 
1 

An M 13. Derive a formula for B(x) = £ ^ · 
1 

14. Deduce the value of B{ 1 ). 
00 

15. Show that £ Lm+„jcm = ^fzjrjr1 (Hansen, 1972) 
m=0 

Let Cn+2 = Cn+\ + C„ + Fn+1, where C\ = 1 and C2 = 2. Verify each. (Hoggatt, 
1964) 

16. C^FiF^i 
i' = l 

L"/2J /π-ίΛ 

18. Cn =
 nL"«+2F·, w > 0. 

Prove each using exponential generating functions. (Church and Bicknell, 1973) 

20. Ê( -I )"-*(J)L* = (-I)"-'*... 

21. E(-U"-*(j)/ !2t = /rn 

22. to(-ir-*f^Z.2 t = L„ 

^-5· Zw l » I 'mk^mn—mk = ^ * mn 
*=0 V K / 

24 f (")F tF y- rL~-2L"« 
*■*· 2-1 I h I rmkrmn-mk — 5 

2 6 - Σ I . I F^mk+r — L2mF2mn+4mr 

27. Σ K W = f--\rmrk — rmn 

28- Σ ( £ ] Fm~-\FiFk+rm = Fm 



THE GOLDEN RATIO 

He that holds fast the golden mean, 
And lives contentedly between 
The little and the great, 
Feels not the wants that pinch the poor 
Nor plagues that haunt the rich man's door, 
Embittering all his state. 

—William Cowper, English poet (1731-1800) 

What can we say about the sequence of ratios (Fn+\/F„) of consecutive Fibonacci 
numbers? Does it converge? If it does, what is its limit? If the limit exists, does it 
have any geometric significance? These are a few interesting questions which, along 
with their counterparts, we shall pursue in this chapter. 

First, let us compute the ratios Fn+i/F„ and Ln+\/Ln of the first 20 Fibonacci and 
Lucas numbers, and then examine them for a possible pattern: 

TABLE 20.1. 

F„+\l F„ 

\ = 1.0000000000 

f =2.0000000000 

\ = 1.5000000000 

f * 1.6666666667 

| = 1.6000000000 

^ = 1.6250000000 

f± * 1.6153846154 

% % 1.6190476191 

Ln+\/Ln 

} =3.0000000000 

\ * 1.3333333333 

I = 1.7500000000 

^ 1.5714285714 

{f * 1.6363636364 

ff « 1.6111111111 

g * 1.6206896551 

g «s 1.6170212766 

239 
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TABLE 20.1. (Continued) 

Fn+l/F„ 

|| « 1.6176470588 
34 

ff «1.6181818182 

ψ « 1.6179775281 

|H « 1.6180555556 

|g «1.6180257511 

f|2 « 1.6180371353 

|fg « 1.6180327869 

^ « 1.6180344478 

ff|i « 1.6180338134 

£|§± « 1.6180340557 

H I T « 1.6180339632 
4,181 

f ^ « 1.6180339985 

£„+■/£.„ 

ψ « 1.6184210526 

JH « 1.6178861788 

f| « 1.6180904523 

§§ « 1.6180124224 

fif « 1.6180422265 

^ « 1.6180308422 

f|g « 1.6180351906 
1,364 

f§f « 1.6180335297 

|̂ |f «1.6180341641 

f^l «1.6180339218 

^ « 1.6180340143 

|i||f «1.6180339789 

As n gets larger and larger, it appears that Fn+i/F„ approaches a limit, namely, 
1.618033.... 

This phenomenon was observed by the German astronomer and mathematician, 
Johannes Kepler (1571-1630). It appears that Ln+\/Ln also approaches the same 
magic number, as n -*■ oo. 

Interestingly enough, a = ( l+V5)/2 = 1.61803398875 . . . . So it is reasonable to 
predict that both ratios converge to the same limit a, the positive root of the quadratic 
equation x2 — x — 1 = 0. 

To confirm this, let x = Fn+1 /F„. From the Fibonacci recurrence relation, we have 

Fn + 1 1 + 
F„-

= 1 + 
1 

(F„/FB_,) 

As n -> oo, this yields the equation x — 1 + (1/JC); that is, x2 — x — 1 = 0. Thus 

l±yß 

Since the limit is positive, it follows that 

,. Fn+X 1 + V5 
hm = — - — = a 

n->oo F„ 2 

as was predicted. 
Let or and ß be the solutions of the quadratic equation x2 — x — 1 = 0 . The 

numbers a and ß are the only numbers such that the reciprocal of each is obtained 
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by subtracting 1 from it, that is, JC — 1 = \/x, where x = a or ß. Thus a is the only 
positive number that has this property. 

Since a — 1 = 1/a, it follows that a and I/o; have the same infinite decimal 
portion: 

a = 1.61803398875... 

- = 0.61803398875... 
a 

An interesting observation from Table 20.1: When n is even, F„+\/F„ > a and 
when it is odd, Fn+\/F„ < a; the same behavior holds for Ln+\/Ln. 

It follows from the preceding discussion that 

Ln+l 1 + V5 
lim = = or 

Π-+0Ο Ln 1 

This number a is so intriguing a number that it was known to the ancient Greeks 
at least sixteen centuries before Fibonacci. They called it the Golden Section, for 
reasons that will be clear shortly. 

Before the Greeks, the ancient Egyptians used it in the construction of their great 
pyramids. The Papyrus of Ahme s, written hundreds of years before ancient Greek 
civilization existed and now kept in the British Museum, contains a detailed account 
of how the number was used in the building of the Great Pyramid of Giza around 
3070 B.c. Ahmes refers to this number as a "sacred ratio." 

The height of the Great Pyramid (Fig. 20.1a) is 484.4 feet, which is about 5813 
inches; notice the three consecutive Fibonacci numbers in the height: 5, 8, and 13. 

2b 

(a) (b) 

Figure 20.1. (a) The pyramids at Giza; (fc) Diagram of pyramid showing the Golden Section. 
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Herodotus, a Greek historian of the fifth century B.C., wrote that he was told by the 
Egyptian priests that the proportions of the Great Pyramid were chosen in such a way 
that "the area of a square with a side of length equaling the height of the Pyramid is 
the same as the area of a slanted [triangular] face." 

To confirm this, let 2b (Figure 20. lb) denote the base of the Pyramid, a the altitude 
of a slanted (triangular) face, and h the height of the Pyramid. According to Herodotus 
formula, h2 = (2b ■ a)/2 = ab. But, by the Pythagorean theorem, h2 = a2 - b2, 
so a2 — b2 = ab, and hence (a/b)2 = 1 + (a/b). Thus a/b satisfies the quadratic 
equation x2 = x + 1, so x = a/b = a. 

The actual measurements are a = 188.4 meters, b = 116.4 meters, and h = 148.2 
meters. So a/b= 188.4/116.4% 1.618. 

In 1938, L. Hogben observed that the ratio of the base perimeter 8£> of the Pyramid 
to its vertical height equals that of the circumference of a circle to its radius, that is, 
8Z? = 27rA.Thus 

_ 4b _ Ab _.fb_ 4 

h y/äb V a y/cê 

% 3.1446 

This estimate is accurate for two decimal places. 
From Herodotus' statement, it follows that the ratio of the sum of the areas of the 

lateral faces of the Great Pyramid to the base area is also a (see Exercise 18). 
The golden ratio is often denoted by φ, the Greek letter phi. It was given this 

name about a century ago by the American mathematician Mark Barr, who chose 
phi because it is the first Greek letter in the name of Phidias (4907-420? B.c.), the 
greatest of Greek sculptors, who employed the Golden Section constantly in his work. 
However, here we shall continue to denote the Golden Section by a for consistency. 

The Golden Ratio is also often denoted by another popular name, r, the Greek 
letter tau. According to H. S. M. Coxeter of the University of Toronto, this usage 
comes from the fact that τ is the first letter of the Greek word "τομ,η," which means 
"the section." 

The great German astronomer and mathematician Johannes Kepler referred to or as 
"sectio divina" (divine section) and Leonardo da Vinci (1452-1519), the great Italian 
artist, who employed the number in many of his great works, called it "sectio aurea" 
(the golden chapter), a term still in popular use. 

Kepler singles out a in his Mysterium Cosmographicum de Admirabile Proportine 
Orbium Celestium as one of the two "great treasures" of geometry, the other being 
the Pythagorean theorem: 

Geometry has two great treasures: one is the Theorem of Pythagoras; the other, the 
division of a line into extreme and mean ratio. The first we may compare to a measure 
of gold, the second we may name a precious jewel. 

The mysterious number a was the principal character of a book, De Divina 
Proportione, by Fra Luca Pacioli de Borgo, published in Venice in 1509. Pacioli 
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describes the properties of a, stopping at thirteen "for the sake of our salvation." 
Another edition of the book appeared in Milan in 1956. 

Today, the magical number a is variously called the golden mean, the golden ratio, 
the golden proportion, the divine section, or the divine proportion. 

The concept of a golden mean has its origin in plane geometry. It stems from 
locating a point on a line segment such that it divides the line segment into two 
in a certain ratio. To explain this more clearly, we define the concept of mean 
proportional. 

MEAN PROPORTIONAL 

Let a, b, and c be any three positive integers such that a2 = be. Then a is called the 
mean proportional of b and c. Notice that a2 = be if and only if a/b = c/a; that 
is, a2 = be if and only if a.b = c:a. For example, since 62 = 4 · 9, 6 is the mean 
proportional of 4 and 9. Likewise, y/6 is the mean proportional of 2 and 3. 

A GEOMETRIC INTERPRETATION 

Geometrically, we would like to find a point C on a line segment AB such that the 
length of the greater part AC is the mean proportional of the whole length AB and 
the length BC of the smaller part (see Fig. 20.2). Thus, we would like to find C such 
that AC/BC = AB I AC; then C divides A~B in the Golden Ratio. 

X Y 
m ■ · 
A C B 

Figure 20.2. 

To locate C, let AC = x and BC = y. Then the equation AC/BC - AB/AC 
yields 

x _ x + y 
y x 

y i 
χ (x/y) 

That is, (x/y)2 — (x/y) - 1 = 0 . So x/y satisfies our well-known quadratic equation 
t2 —t — 1 = 0 . Since the ratio x/y > 0, this implies x/y = (1 + V5)/2 — a, that is, 
x:y = or:l. Thus we must choose the point C in such a way that AC/BC = a, that 
is, C divides A B in the Golden Ratio. 
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RULER AND COMPASS CONSTRUCTION 

Although this process defines the point C algebraically, how do we locate it 
geometrically? In other words, how do we locate it using a ruler and compass? 

Figure 20.3. 

To this end, draw ΈΧ1ΛΒ (see Fig. 20.3). Select a point D on fiX such that AB 
= 2BD. With D as center, draw an arc of radius DB to intersect AD at E. Now, with 
A as center, draw an arc of radius AE to meet AB at C. We now claim that C divides 
Aß in the desired ratio. 

To verify this, we have AC = AE, BD = ED, and AB = AC + BC = 2BD = 
2ED. Since Δ ABD is a right triangle, by the Pythagorean theorem, AD — *J5BD = 
■JlED. Therefore AC = AE = AD - ED = (JE - \)ED. Thus 

AB _ 2ED _ 2 _ 1 + V5 _ 

AC ~ ( V 5 - \)ED ~ ( V 5 - 1) ~~ 2 

Then Aß/(Aß - AC) = a. This yields 1 - (BC/AB) = 1/or, that is, 

ßC or a 2 

A~B ~ a- 1 ~~]i ~a 

AC _ AC AB _ 1 2 _ 

Thus AC/BC — AB I AC -a,soC is the desired point. 

EULER'S CONSTRUCTION 

Next, we present Euler's method for locating the point C. This construction has in fact 
been attributed to the Pythagoreans, since Euler included it along with the theorems 
and constructions the Pythagoreans developed. 

To locate the point C that divides A B in the Golden Ratio, first complete the square 
—> 

ABDE. Let F bisect AE. With F as center, draw an arc of radius FB to cut ray FA at 
G. Now, with A as center and AC as radius, draw an arc to intersect AB at C. Then 
C is the desired point (see Fig. 20.4). 
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Figure 20.4. 

To confirm this, we have AB = AE = 2AF. So, by the Pythagorean theorem, 
FB = FG = JÎAF. Then FA + AG = FG = -JÏAF, so AG = AC = 
( V 5 - 1 ) A F . 

AB _ 2AF 2 
AC ~ (v ' l - \)AF ~ V3 - 1 ~ " 

Moreover, since BC = AB — AC, 

AC 1 BC AB _ _ _ 
~ÄC~~ÄC~ ~a~ ~~ß S0 ~BC~~~ß~a 

Thus 
AB _ AC 

A~C~~BC — a 

so C is indeed the desired point. 

GENERATING THE GOLDEN RATIO BY NEWTON'S METHOD 

In 1999, J. W. Roche of LaSalle High School at Wyndmoor, Pennsylvania, tried to 
estimate the Golden Ratio using Newton's method of approximation and the function 
f(x) = x2 — x — 1. In the process, he found a spectacular relationship between the 
various approximations and Fibonacci numbers. 

Using X] = 2 as the seed and the recursive formula x„+l = x„ — / U n ) / / ' U n ) . he 
found the next three approximations to be xz = 5/3, *3 = 34/21, andxj = 1597/987. 
Noticing that they are all ratios of consecutive Fibonacci numbers, he conjectured that 
x„ — / > + ] / / > , where« > 1. 

The validity of Roche's conjecture can be established using the principle of math-
ematical induction (PMI). Since F3/F2 = 2 = x\, the formula works when n = 1. 
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Assume it is true for an arbitrary positive integer n:xn = Fm+\/Fm, where m = 2". 
Since f'(x) = 2x- 1, 

_ r xl-Xn-\ _ x2
n + l _ Fl+\/Fl + 1 Fl+X + Fl 

xn+\ — xn — 

2 X . - 1 2JC„ - I 2Fm+l/Fm-l Fm(2Fm+l - Fm) 

Flm+\ F2m+\ Î2m+1 

Fm(Fm+\ + Fm-\) FmLn F-im 

Thus, by PMI, the formula holds for all n > 1. 
As a by-product, since lim Fm+\/Fm = a, it follows that the sequence of approx-

m-KX> 

imations {xn} approaches a as n -*■ oo, as expected. 

EXERCISES 20 

1. Isa : l = 1:£? 

2. I sa : l = l : - / 3 ? 
3. I sa : l = l : a - 1? 
4. Let C divide ΛΖ? in the Golden Ratio, AC being the larger segment. Let AC = 1. 

Show that BC = 1/a and AB = a. 
5. Let C divide AB of unit length in the Golden Ratio, AC being the larger segment. 

Show that BC = 1/a2 and AC = 1/a. 
6. Suppose BD = 1 in Figure 20.3. Find BC. 

Let C divide the line segment AB in the Golden Ratio, where AB = 1 and AC = t. 
7. Find the quadratic equation satisfied by t. 
8. Solve the equation. 
9. Find the value of t. 

10. Show that t = - 0 . 

11. Evaluate the sum J1 — y 1 — \Λ — v T 

12. Let x2 = 1 - x. Show that * = J1 - - / l - ^ 1 - VI - —. 

Let 

13. 

14 

IS 

In 

a/b = c/d. Prove each. 
b d 
a c 
a + b 

— 
b 

a-b 

b 
a+b 

c + d 

d 
c-d 

d 
c + d 

a — b c — d 
17. Suppose a side of the Great Pyramid is 2b. Show that the altitude of a lateral face 

isfca. 
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18. The base of the Great Pyramid is square. Show that the ratio of the sum of the 
areas of its lateral faces to the base area is a. 

Prove each. 

19. a = 1 + z 

20. 

21. 
22. 

23. 

24. 

25. 

26. 

Veri 

27. 

« = ώ 
a" =an~] +a"~2,n > 2 
-!- - -L- + - U 
00 

*—' or" 
n - l 

00 

ΣΛ = «2 

i—i a" 
n=0 oo 
Σ ^ = 3α+2 

«—1 
00 

Σ ïk = <*F2k + F2k-\ 
n=0 

fy each. 

a*j3 — a = V« + 2 

28. V3^=^ïp^ 

29. vST2 = ^ p ^ 
Using the fact that cos π/5 = a/2, express each in terms of a. 

30. sin 7Γ/5 

31. COSTT/10 

32. sin^/10 
33. Let v (lowercase Greek letter nu) be a solution of the equation x2 — x + 1. Show 

thatv + (l/y2) = 2. 
Evaluate each limit, where G„ denotes the nth generalized Fibonacci number. 

34. lim —— 
n-oo Fn+\ 

35. Hm -iî_ 
n->oo Ln + \ 

36. lim — 
n^oo F„ 

-_ .. G„+i 
37. hm 

n-»°° G„ 
In 

38. Hm = (Hoggatt and Lind, 1967) 
" - 0 0 n + 1 + V5n2 - 2n + 1 



THE GOLDEN RATIO 
REVISITED 

On January 21, 1911, W. Schooling wrote in the Daily Telegraph that there is a 
"very wonderful number which may be called by the Greek letter phi, of which 
nobody has heard much as yet, but of which, perhaps, a great deal is likely to be 
heard in the course of time." It is intriguing to note that his prediction has come 
true. 

According to R. Fisher, Saint Thomas Aquinas (1225-1274), the greatest of the 
medieval philosophers and theologians, "described one of the basic rules of 
aesthetics—man's senses enjoy objects that are properly proportioned. He referred to 
the direct relationship between beauty and mathematics, which is often measurable 
and can be found in nature." St. Thomas Aquinas was of course referring to the Golden 
Ratio. 

The Golden Ratio a can occur in extremely unlikely places, as we will see through-
out this chapter. 

URANIUM AND THE GOLDEN RATIO 

Uranium, an important source of nuclear energy, enjoys a unique place among the 
chemical elements. The ratio of the number of neutrons to that of protons is maximum 
for uranium; curiously enough, this ratio is approximately a: 

Number of neutrons 146 . „ „ 
1.5869565%« Number of protons 92 

248 
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π AND THE GOLDEN RATIO 

M. J. Zerger observed two fascinating relationships between π and a: 

• The first 10 digits of a can be permuted to obtain the first 10 digits of Ι/π: 

a = 1.618033988... and 1/π =0.3183098861.... 
« The first nine digits of 1/ce can be permuted to form the first nine digits of Ι/π: 

\/a = 0.618033988... and Ι/π = 0.318309886.... 

ILLINOIS AND THE GOLDEN RATIO 

Zerger made yet another striking observation about the state of Illinois. Both the 
telephone area code 618 and the Zip Code prefix 618 are assigned to Illinois. (Recall 
that 618 are the first three digits in a after the decimal point.) 

THE GOLDEN RATIO AND THE HUMAN BODY 

Studies have shown that several proportions of the human body exemplify the Golden 
Ratio. For instance, consider the drawing of a typical athlete in Figure 21.1. 

Figure 21.1. Proportions of the human body. 
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Then 
AE _ Height ^ 

CE ~ Navel height ~ " 

and 
CE _ Navel height 

AC Distance from the navel to the top of the head 

Thus height = a (navel height) 
Moreover, 

bc_ 

a~b 

In fact, using the figure, we can find several other remarkable ratios that approximate 
the Golden Ratio. 

Certain bones in our body also show a relationship to the magical ratio. Figure 21.2, 
for instance, illustrates such a relationship between the hand and forearm. Because of 
the Golden Ratio's close association with the human body, the Golden Ratio is often 
referred to as "the number of our physical body." 

r* ba »I« . t>-—H 

I 
Figure 21.2. Reprinted with permission from M. H. Holt, 1964, The Pentagon. 

According to S. Vajda of the University of Sussex in England, J. Gordon has 
detected (1938) the Golden Ratio in the English landscape The Cornfield by 
John Constable (1776-1837), in Portrait of a Lady by the Dutch painter and graphic 
artist Rembrandt Harmenszoon van Rijn (1606-1669), and in Venus and Adonnis 
by the Venetian painter Titian (Tiziano Vecellio, 14877-1576). The Cornfield and 
Portrait of a Lady are displayed in the National Gallery in London. 

MEXICAN PYRAMIDS 

Just as the Egyptian pyramids exemplify the basic principles of aesthetics and perfect 
proportion, so do the Mexican pyramids. Both appear to have been built by people 
of common ancestry and both seem to have incorporated the magic ratio in their 
construction. 

For instance, the cross section of a Mexican pyramid shown in Figure 21.3 clearly 
reveals the incorporation of the Golden Ratio into its architecture. The cross section 
depicts a staircase-like structure. There are 16 steps in the first set, 42 in the second, 

Arm length 
Shoulder width 
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Figure 21.3. A cross-section of a Mexican pyramid. 

and 68 in the third. These innocent-looking numbers, amazingly enough, are linked 
by the sacred ratio a: 

16a % 26 

16 + 26 = 42 

26a «s 42 

42a % 68 

These numbers—16, 26, 42, and 68—have interesting relationships to the body 
of a well-proportioned man 68 inches tall. First, taking 10 inches as one unit of 
height, his height is about a4; his navel height is 42 inches, which is about a3; the 
height of the top of the head from the navel is 26 inches, that is, about a2; the height 
of the vortex from his breast line is 16 inches, which is about a; and, finally, his 
breast line is 10 inches above the navel, that is, one unit of measurement, which 
is a0. 

In fact, 68 = L10a4J = Γ42α1,42 = U0a3J = [26aJ, and 26 = |"16a"|. 

VIOLIN AND THE GOLDEN TRIANGLE 

The Golden Ratio plays an important role in the making of the violin, one of the most 
beautiful of orchestral instruments. The point B, where the two lines through the 
centers of the /-holes intersect, divides the body in the Golden Ratio: AB/BC = a 
(see Fig. 21.4). Besides, AC/CD — a, so the body and the neck are in the golden 
proportion. It now follows that 

AD _A£ CD _ 

AC ~ ÄB ~ ~BC ~ " 
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Figure 21.4. The point, B, on the violin where two lines drawn through the centers of the / holes intersect 
divide the instrument in the Golden Ratio; the body and neck are likewise in the Golden Ratio (Source: 
Trudi Hammel Garland, Fascinating Fibonaccis: Mystery and Magic in Numbers, Palo Alto, CA: Seymour, 
1987. Copyright © 1987 by Seymour Publications. Used by permission of Pearson Learning.) 

ANCIENT FLOOR MOSAICS AND THE GOLDEN RATIO 

In 1970, R. E. M. Moore of Guy's Hospital Medical School, London, after study-
ing numerous two-thousand-year-old floor mosaics from Syria, Greece, and Rome, 
observed an interesting phenomenon: all the mosaic patterns in these cultures showed 
the exact same dimensions. Therefore, the mosaicists in all these cultures must have 

Figure 21.5. Calibrations on a ruler used in ancient mosaics. (Source: The Fibonacci Association) 
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used the same measuring technique and device. In fact, the calibrations on rulers 
employed by the mosaicists clearly and convincingly underscore the application of 
the golden proportions in the mosaic patterns (see Fig. 21.5). 

THE GOLDEN RATIO IN AN ELECTRICAL NETWORK 

Figure 21.6 represents an infinite network consisting of resistors, each with resistence r 
We would like to compute the resistence between the points A and B. (This problem 
was posed at the 1967 International Physics Olympiad, Poland.) 

r C E 
A· V A · 1 · V A 1 · · · 

S 

β · - D F 

Figure 21.6. An infinite network consisting of resistors. 

Let s denote the resistence between the points E and F of the infinite network to 
their right side. Then the resistence TQD between the points C and D is given by 

1 _ 1 1 

rcD r s 

Now add the resistence r to this. The resistence r^ between A and B of the given 
network is given by 

rAB = r + rCD 
rs 

r + r + s 

Since the resulting network is again infinite, r/^ = s. Thus 

rs 
s = r + 

r+s 

Solving, s = ra. 

Suppose the network in Figure 21.6 consists of n resistors (see Fig. 21.7). It follows 
from Chapter 3 that the resistence between A and B is given by 

Z/(n) = r + 
( l / r ) + ( l / Z , ( « - l ) ) 

Figure 21.7. 
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where Z,(l) = 2r. As n -+ oo, this recurrence relation yields 

1 
s =r+ 

( 1 / r ) + (!/*) 

that is, s = r + (rs/(r + s)) as we just found. 
Thus lim Z,(n) = ra; so when r = 1, lim Z,(n) = a. This we already knew, 

n—»oo n-»oo 

since, from Chapter 3, Z,(«) = (F2n+\/F2n),so lim Z,(n) = lim {F^+i/Fm) = a. 
n—»oo n-»oo 

THE GOLDEN RATIO IN ELECTROSTATICS 

The following problem in electrostatics, the branch of physics that deals with the 
properties and effects of static electricity, was studied in 1972 by B. Davis, then a 
student at the Indian Statistical Institute: 

A positive charge +e and two negative charges — e are to be placed on a line in such a 
way that the potential energy of the whole system is zero. 

Suppose the charges are at points A, Ä, and C; and let AB = x and BC = y 
(see Fig. 21.8). The potential energy of a system of static charges is the work done in 
bringing the charges from infinity to these points. The potential energy between two 
charges is the product of the charges divided by the distance between them. 

A x e y e 

• · · 
+e -e -e 

Figure 21.8. 

The potential energy due to the charges at A and B is 

(+e)(-e) = e2 

x x 

The potential energy due to the charges at A and C is 

(+e)(-e) ^ e>_ 
x + v x + y 

and the potential energy due to the charges at A and B is 

(-e)(-e) = e2 

y y 
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For the potential energy of the system to be zero, we must have 

255 

2 2 2 

e e e + - = 0 
x x + y y 

-y{x + y) -xy + x(x + y) = 0 

x1 — xy — y2 = 0 

(x/y)2 - (x/y) - 1 = 0 

So x/y = a. Thus x/y must be the Golden Ratio for the potential energy to 
be zero. 

THE GOLDEN RATIO BY ORIGAMI 

In 1999, P. Glaister of Reading University in England employed the Japanese art 
of origami (folding paper into make decorative shapes) to illustrate yet another 
mysterious occurrence of our ubiquitous friend a. 

Take a 2 x 1 rectangular piece of paper and fold it in half both ways, as Figure 21.9 
shows. Make a crease along AD (see Fig. 21.10). Place AD along AB and form a 
crease along the fold AQ so that AQ bisects LDAB. 

j . 

Figure 21.9. 

O 

0 

/ / / / / _/ _ 

A 

Figure 21.10. 
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Let IDAB - 2Θ. From AAOD, tan 20 = 2. Using the double-angle formula, 

2 tanö 
tan 2Θ = 

this yields 

That is, 

1 - tan2 0 

2tan0 

1 - tan2 Θ 
= 2 

tan2 Θ + tan Θ - 1 = 0 

tanö = -ß 

Therefore, PQ = PB + BQ = 1 +ABtan9 = 1 - 0 = a, and hence QÄ = 2 - a = 0. 
The following example is based on a calendar problem that appeared in the October 

1999 issue of Mathematics Teacher. 

Example 21.1. The points A and C on the axes are each one unit away from the 
origin. The point B lies one unit away from both axes in the first quadrant. Find the 
value of x such that the y-axis bisects the area ABCD, where D is the point (—x,—x) 
and* > 0 (see Fig. 21.11). 

*-x 

D (-x, -x) 
Figure 21.11. 

Solution. Since OABC is a square of unit area, the problem is to find x such that 

a r e a C D E = 1+ area OAE (see Fig. 21.12). The slope of the line AD \sx/{x + 1), 
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y 

(0,1)C 

/ 1 

G / 

f ° 

Dira, -a) 

/ 
I 

S(1.1) 

1 y/" A(1,0) 

Figure 21.12. 

so its equation is y — [x/(x + \)](x — 1). Therefore, the point £ is (0, —x/(x + 1)). 
Thus OE = x/(x 4- 1) and hence 

CE = 1 + 
x + \ 

Area CD£ = - CE x 
2 

2x + l 
jc + l 

A:(2JC + 1) 

2(JC + 1) 

and area 

Thus 

OAE =-OAOE = - l - -?— 
2 2 j c + l 2{x + 1) 

x(2x + 1) 

2(JT + 1) 

This yields x2 = x + 1, so x = a. Then 

= 1 + 2(x + l) 

CE = 
2 α + 1 a + (a + \) a+a2 

a + 1 a+ 1 a + 1 = a 

That is, the point O divides C £ in the Golden Ratio. Besides, BD.OD = y/2a2:-j2a = 
a: 1, so O also divides BD in the Golden Ratio. 

In addition, since E is the point (0, β), DA2 = a2( l + a2) and DE2 = a2 + 
(a + /0)2 = 1 + a2; therefore, DA2:D£2 = a2: l , so DA.DE = a: 1. Thus £ divides 
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DA in the same magic ratio. By symmetry, it follows that the point G divides DC in 
the same ratio. ■ 

Example 21.2. Consider an equilateral triangle ABC inscribed in a circle. Let Q and 

R be the midpoints of the sides AB and BC. Let QR meet the circle at P and S, as 
Figure 21.13 shows. 

Figure 21.13. 

Let PQ = RS = 1 and QR = x (see Fig. 21.14). By the intersecting chord 
theorem, PR RS = BR- RC\ that is, 1 + x = x2. Therefore, x = a. ■ 

Figure 21.14. 

This example was originally proposed as a problem in 1983 by G. Odom of 
Poughkeepsie, New York, in The American Mathematical Monthly. It resurfaced 
five years later in an article by J. F. Rigby of University College at Cardiff, with 
an intriguing by-product: The ratio of the length of a side of one of the four large 
triangles in Figure 21.15 to that of a side of one of the three small triangles is indeed 
the Golden Ratio. 

Figure 21.15. 
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Now we turn to an interesting problem on the congruence and similarity of 
triangles. 

In 1965, M. H. Holt of Minnesota studied an interesting problem proposed by 
V. E. Hoggatt, Jr: Do there exist triangles AABC and APQR that have five of 
their six parts (three sides and three angles) congruent, but still not congruent! This 
problem also appears in a high school geometry book by E. Moise and F. Downs, who 
gave two such triangles as a solution, both of which are shown in Figure 21.16. 

27 18 

Figure 21.16. 

Are there other solutions? If there are, how are they related? 
To answer these questions, first notice that the five equal parts cannot include the 

three sides, since the triangles would then be congruent. Consequently, the five parts 
must consist of three angles and two sides, so the triangles are indeed similar. But the 
equal sides cannot be in the same order; otherwise, the triangles would be congruent 
by the side-angle-side (SAS) theorem or the angle-side-angle (ASA) theorem. 

This yields two possibilities for APQR, as Figure 21.17 shows. Since AABC = 
AP'Q'R', a/b = b/d = l/k (say), where k > 0 and k φ 1. Then b = ak and 
d = bk = ak2. Since AABC = AP"Q"R", a/b = b/d = l/k, so b = ak 
and d = bk = ak2. In both cases, the lengths of the sides are in the same ratio 
a.b.d = a.ak.ak2 = \:k:k2. So, if there are triangles whose sides are in the ratio 
1 :k:k2, their parts would be congruent, but the triangles still would not be congruent. 

B Q' Q" 

A b C P' a R' P" d R" 

Figure 21.17. 

To determine the values of k that yield such triangles, suppose such a triangle 
exists. Then, by the triangle inequality, 1 + k > k2, 1 + k2 > k, and k + k2 > 1. 

Case 1. Suppose k > 1. Then k2 > k, so 1 + k2 > 1 +k > k. Also, k+k2 > k > 1. 
Thus, if k > 1, then 1 + k2 > k and k + k2 > 1. So it suffices to identify the values 
oik for which 1 + k > k2, that is, k2 - k - 1 < 0. 

Since k2 - k - 1 = (k -a)(k - ß), k2 -k - 1 < 0 if and only if ß < k < a. But 
k > 1, so 1 < k < a. 

Graphically, k is the value of x for which the line l+x = y lies above the parabola 
y = χ1, where x > 1, as Figure 21.18 shows. 



260 THE GOLDEN RATIO REVISITED 

y=x+1 

Figure 21.18. 

Thus, if k is a number such that 1 < k < a, then every APQR with sides a, ak, 
and ak2 will meet the desired conditions. 

Case 2. Suppose k < 1. Then k > k2; so 1 + k > k2. Also, since 1 > k, 1 + k2 > k. 
Thus, 1 + k > k2 and 1 + k2 > k. So it suffices to look for values of k for which 
k2 + k > 1, that is, k2 + k - 1 > 0, where k < 1. 

Since k2 + k - 1 = (k + a)(k +ß),k2+ k - 1 > 0 if and only if either k < -a 
otk>ß. Since k < 1, this yields /} < k < 1. 

Graphically, k is the value of x for which the parabola y = x +x2 lies above the 
line y = 1, where x < 1, as Figure 21.19 shows. 

y=x+x 

Figure 21.19. 

Thus, if k is such that ß < k < 1, then every APQR with sides a, a/fc, and αΛ2 

will satisfy the given conditions. 

To sum up, there are infinitely many triangles PQR whose five parts are congruent 
to those of AABC, but still not congruent to A.ABC. 

DIFFERENTIAL EQUATIONS 

Strange as it may seem, the Golden Ratio occurs in the solution of differential 
equations. 
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For instance, consider the second-degree differential equation y" — v' — y = 0, 
where y' = dy/dx. Its characteristic equation is t2 — t — 1 = 0, so the characteristic 
roots are a and ß. Thus the basic solutions of the differential equation are eax and eßx, 
so the general solution is y = Aeax 4- Be^x, where A and B are arbitrary constants. 

GATTEI'S DISCOVERY OF THE GOLDEN RATIO 

When P. Gattei was just a sixth former at Queen Elizabeth's Grammar School, 
Blackburn, England, he stumbled across a problem involving the inverse f~i of a 
real-valued function / . Accidently, he dropped the minus sign and ended up taking 
the derivative / ' of / . This led him to investigate if there were real functions / such 
that 

/ ' (*) = / - ■ ( * ) x>0. (21.1) 

Gattei discovered an interesting solution: fix) = Ax", where A is a constant. 
Then fix) = Anxn~l and f~l(x) = (x/A)l/n. Condition (21.1) yields Anx"'1 = 
(x/AY/n; that is, An+Xnnxn(n'l)-1 = 1; n2 - n - 1 = 0 and An+]n" = 1. Then 
n = a, β and A = «-"/<"+». 

Suppose n = β. Then n < 0, but n + 1 > 0. Thus A = 
(a negative number)(a P°sitive irra,ional number,

) so A is not a real number. Consequently, 
/ is not a real function. But when n — a, f is a real function. Thus, the only solution 
toEq. (21.1) is /U) = (a;0 a . 

More generally, consider the equation 

/ " ' ( * ) = / ( B ) W (21.2) 

Let f(x) = Ax", so /(m)(jc) = An(n - 1) · · · (« - m + l)x"-m. Then Eq. (21.2) 
yields (x/A)x>n = An(n - 1) · · · (η - m + \)x"-m. Thus An+X[n(n - 1) · · · 
(n - m + l ) ]"^"-" · ) - ! = l, so An+l[n(n - 1) · · · (n - m + 1)]" = 1 and 
n2 — mn — 1 = 0 . Thus 

m + y] m1 + 4 
n = 2 

and A = [n(n — 1) ·■·(«— m + i)]-"/(«+i) (We shall revisit these two values of m 
in Chapter 38.) 

Let m be odd. If 
m - yjm2 + 4 

then as before, it can be shown that A is not a real number; but 

m 4- yjm2 + 4 
n = 2 

leads to a valid solution: 

f(x) = [nin - 1) · · · in - m + ΐ )]-"/(«+ιν 
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On the other hand, let m be even. Then n (n — 1 ) · · · (n — m +1 ) is positive, whether 
n is positive or negative. Thus, we have two solutions: 

f{x) = [nin - 1) · · · in - m + l)]-"/<"+1V1 

where 
m ± y/m2 + 4 

" = 2 

THE GOLDEN RATIO AND SNOW PLOWING 

The following snowplowing problem was discussed by T. Ratliff of Wheaton College 
in Massachusetts at the 1996 Fall Meeting of the Northeast Section the Mathematical 
Association of America, held at the University of Massachusetts in Boston. A quite 
similar problem appeared in 1984 in Mathematical Spectrum (Problem 16.6). The 
solutions of both versions involve the Golden Ratio: 

On one wintry morning, it started snowing at a constant and heavy rate. A snowplow 
started plowing at 8 A.M.; by 9 A.M., it plowed two miles; and by 10 A.M., it plowed 
another mile. Assuming that the snowplow removes a constant volume of snow per hour, 
what time did it start snowing? 

Suppose, it started snowing at time / (in hours) and the plow began T hours before 
8 o'clock. Let x = x (/) denote the distance traveled by the snowplow in time /. Since 
the speed of the plow is inversely proportional to the depth of the snow, it follows that 

dx k 

dt depth at time / 

k 

~ ct 

K 

~~ t 

where k, c, and K are constants. 
Solving this differential equation, we get x = K In/ + C, where x(T) = 0, 

x(T + 1) = 2, x(T + 2) = 3, and C is a constant. The condition x(T) = 0 yields 
C = -it In Γ, so x = K ln(t/T). The other two conditions yield: 

Then 
2 _ 1η(Γ + 1)/7~ 

3 ~ 1η(Γ + 2) /Γ 

21η(Γ + 2 ) - 2 1 η Γ = 31η(Γ + 1) - 31ηΓ 

Γ(Γ + 2)2 = (7 + 1)3 
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This yields T2 + T - 1 = 0, so T = -ß % 0.61803398875. Thus T % 37 minutes, 
5 seconds. Consequently, it started snowing at 7:22:55 A.M. 

THE GOLDEN RATIO IN ALGEBRA 

In 1936, Eric T. Bell (1883-1960), a well-known Scottish-American mathematician, 
proved that the only polynomial, symmetric function <p(s, t) that satisfies the associa-
tivity condition φ(χ, φ(χ, y)) = φ(φ(χ, y), z) is^(i , t) = s*t = a + b(s + t)+cst, 
where a, b, and c are arbitrary constants such that b2 — b — ac = 0, and s and t are 
complex numbers. In particular, let ac = 1. Then b2 — b — 1 = 0, so b = a or β. 

Thus the binary operation *, defined by s * t = a + b(s + t) + est, where ac = 1, 
is associative only if b — a or β. We can confirm this (see Exercise 5). 

BILINEAR TRANSFORMATION 

In 1964, V. E. Hoggatt, Jr., discovered a close relationship between the bilinear 
transformation w = (az + b)/(cz + d) and Fibonacci numbers. This is the essence 
of the following theorem. 

Theorem 21.1. The bilinear transformation w = (az + b)/(.cz + d) has two distinct 
fixed points a and β if and only if a— d = b — c Φ 0, where a, b, c, and d are 
integers; a, d > 0; and ad — be = 1. 

Proof. Suppose the bilinear transformation has a fixed point. It is the solution of 
the equation z = (az + b)/(cz + d); that is, cz2 — (a — d)z — b = 0. Since there are 
two fixed points a and ß, c ψ 0 and 

-, a — d b 
z2 z - - = (z - a){z - fi) 

c c 
= z2 - z - l 

Equating coefficients of like terms, we get a — d = b = c. Thus a—d = b = c^0. 
Conversely, let a — d — b = c Φ 0. Then 

az + b 
w = 

bz + (a - b) 

Its fixed points are given by 
_ az + b 

Z~ bz + {a- b) 

that is, z2 - z - 1 = 0 . So the fixed points are a and β. ■ 

We now turn to yet another occurrence of the Golden Ratio in geometry, discovered 
in 1966 by J. A. H. Hunter. A triangle in which the square of one side equals the product 
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Figure 21.20. 

of the other two sides. Suppose the sides are x, y, and */xy units long, where x > y 
(see Fig. 21.20). Let x = a2 and y = b2, so the three sides a2, £2, mdab. Then, by the 
triangle inequality, ab + b2 > a2; that is, (a/b)2 - (a/b) — 1 < 0, so ß < a/b < a. 

THE GOLDEN RATIO AND CENTROIDS OF CIRCLES 

Consider two circles, A and B, one inside the other, but tangential to each other at a 
point O (see Fig. 21.21). Let their radii be a and b (< a), respectively, so their areas 
are πα2 and nb2. Let C\ and CB be the centroids of the circles, so die points 0,CA, 
and Ce are collinear. Then the centroid C of the remnant A — B is the endpoint of 
the diameter of CB through O. 

Figure 21.21. 

Taking moments about O, 

nb2 ■ OCB + π(α2 - b2) = πα2 ■ OCA 

That is, 

«♦(£-) (?)-(£)© 
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since a Φ b, this yields 

2(a/b+l)=a2/b2+a/b+\ 

That is, 
(a/b)2 - (a/b) - 1 = 0 

Since a > b, it follows that a/b = a, the Golden Ratio. 
We can extend this discussion to any planar figure, as was done by H. E. Huntley 

in 1974. 

Figure 21.22. 

As an additional exercise, let a chord OP of circle C^ intersect circle CB at Q (see 
Fig. 21.22). Since the angle in a semicircle is a right angle, it follows that Δ OPD 
% Δ OQC. Therefore, 

OP _ OD _ 2a _ 

ÔQ ~ ~OC ~ 2b ~a 

Thus Q divides the chord OP in the Golden Ratio. 

EXERCISES 21 

The semivertical angle of a right-circular cone is 54°, and its lateral side is one unit 
long. Compute each. 

1. Base circumference. 
2. Base area. 
3. Volume of the cone. 
4. Lateral surface area. 
5. Show that the binary operation *, defined by ί * t — a + b(s + t) + est, where 

ac = 1 is associative only if b = a or β. 
6. Show that the equation x" — xF„ — F„_i = 0 has no solution > a, where n > 2 

(Wall, 1964). 

7. Let Xk+\ = </F„_i + XkFn, where XQ > 0 and n > 2. Find lim **, if it exists 
/t->oo 

(Wall, 1964). 
8. Find the value of x such that n" + (n + x)" = (n + 2x)n, where n > 1 (Alfred, 

1964). 
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oo 

9. Evaluate Σ \βΓ· 
o 

10. Let /„ = L x"~xdx, where n > 2. Evaluate lim /„. 
n->oo 

11. Let t be a number such that t = f0 x'dx. Find the value of t. 
n 

12. Derive a formula for £ [a' J. 
1 

13. Let k be a positive integer. Evaluate lim (Fn+k/Ln) (Dence, 1968). 
n-»oo 

14. Let k be a positive integer. Evaluate lim (Ln+k/F„) (Koshy, 1998). 
n-*oo 

15. Let a„ = an-\ + a„_2 + k, where ao = 0, a\ = 1, and fc is a constant. Find 
lim (an/F„) (Shallit, 1976). 

n-voo 

Let bn = Z»„_i + £„_2 + k, where fco = 2, fej = 1, and A: is a constant. Find each 
(Koshy, 1999). 

16. lim (bn/Fn) 
n-»oo 

17. lim (bn/L„) 
n—*oo 

18. Let c„ = c„-\ + c„-2 + k, where c\ — a, cj = b, and A: is a constant. Find 
lim (cn/G„) (Koshy, 1999). 

n-»oo 

19. Evaluate f; (?)a3 /-2n (Freitag, 1975) 
o 

20. Evaluate the infinite product 

H)K)('+à)(-i^)· 
(Shallit, 1981). 

21. Consider the real sequence {x„}g°, defined by xn+i = l/{xn + 1)· Find xo such 
that lim x„ exists and find the value of the limit (Neumer, 1993). 

n—>oo 

Consider the vector space V = {v = (υ\, V2, ■ ■ ■, v„,.. .)\v„ = vn-\ + υ„_2, η > 
3, and υ, e R} with the usual operations. Do the vectors u = (1 ,0 ,1 ,1 , 2, 3, 
5,. . .) and v = (0, 1, 1, 2, 3, 5, 8,...) belong to V? (Barbeau, 1993). 
22. Show that V is 2-dimensional. 
23. Show that (r, r2, r3,...) e V if and only if r2 = r + 1. 

24. Find r if ( r , r 2 , r 3 , . . . ) e V. 
25. Let F = (1 ,1 ,2 ,3 ,5 ,8 , . . . ) e V. Let M = (α ,α 2 , α 3 , . . . ) and 

v = (β, β2, β3,...). Find the constants a and b such that F = au + bv. 
26. With F, u, and v as in Exercise 25, deduce Binet's formula. 

27. Let f{x) = Ax" and f~l{x) = [f(m)(x)]p. Show that n = m^>±VV'"2+4', 

(Gattei, 1999). 



GOLDEN TRIANGLES 

According to Scientific American columnist Martin Gardner, "Pi (ττ) is the best known 
of all irrational numbers. The irrational number a is not so well-known, but it expresses 
a fundamental ratio that is almost as ubiquitous as pi, and it has the same amusing 
habit of popping up where least expected." Gardner made this trenchant observation 
in 1959. The magical number a makes some interesting appearances in plane and 
solid geometry. 

Some triangles are linked to this ubiquitous number in a mysterious way. This is 
true of the golden triangle, so we begin with the following definition. 

GOLDEN TRIANGLE 

An isosceles triangle is a golden triangle if the ratio of one its lateral sides to the base 
is a. 

Next we pursue a few properties of a golden triangle. 

Theorem 22.1. Let Δ ABC be a golden triangle with base AC. Let D divide BC in 
the Golden Ratio, BD being the larger segment. Then AD bisects LA. 

Proof. Let D divide B~C in the Golden Ratio such that BD - ctCD, BD + CD = 
aCD+CD = ( B + D C D = a2CD; that is, BC = a2CD. Thus BC = a2CD = aAC, 
soaCD = AC (see Fig. 22.1). 

Thus LBCA = LACD and (AB/AQ = (AC/CD) :. ABAC ~ ÙACD. Conse-
quently, LACD = LADC and LABC = LCAD. So LACD is an isosceles 
triangle with AD — AC — aCD. Thus BD = AD, so AABD is also an isosce-
les triangle. Hence LBAD = LABD. Thus /.BAD = LCAD; that is, A~D bisects 
LBAC. 

267 
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Figure 22.1. 

Corollary 22.1. Let AABC be a golden triangle with base AC. Let D divide BC in 
the Golden Ratio, fi D being the larger segment. Then ACAD is also a golden triangle. 

Proof. Using Figure 22.1 and the preceding proof, AD = AC — aCD, so ACAD 
is a golden triangle. ■ 

Thus AD cuts the golden triangle ABC into two isosceles triangles, AABD and 
ACAD, the latter being similar to AABC. 

Theorem 22.2. The included angle between the equal sides of a golden triangle 
is 36°. 

Proof. Let AABC be a golden triangle with AB = BC = a AC. Let D divide BC 
in the Golden Ratio, as in Figure 22.1. By Corollary 22.1, ACAD is a golden triangle 
similar to AABC. 

Let L ACD = 2x. Then, from AACD, 2x+2x + x = 180°, so JC = 36°. Thus 
IA = LC = 72° and LB = 36°. ■ 

Is the converse true? Yes. If the nonrepeating angle in an isosceles triangle is 36°, 
then the triangle is a golden triangle, as the next theorem demonstrates. 

Theorem 22.3. If the nonrepeating angle in an isosceles triangle is 36°, then the 
triangle is a golden triangle. 

Proof. Let Δ ABC be an isosceles triangle with AB = AC and LA = 36°. Then 
LB = LC = 72° (see Fig. 22.2). 

Let AD bisect LA. Then LADC = 72°, so AC = AD = BD = y and AABC ~ 
AACD. Then (AB/AQ = (BC/CD); that is, x/y = y(x - y). Thus, (x/y)2 = 
(x/y) + 1. Consequently, x/y = a 

Thus, AB: AC = or:l, so AABC is a golden triangle. 
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Corollary 22.2. An isosceles triangle is a golden triangle if and only if its angles are 
36°, 72°, and 72°. ■ 

A golden triangle can also be characterized by areas, as the next theorem shows. 
We shall leave its proof as an exercise. 

Theorem 22.4. Let D be a point on side BC of an isosceles triangle ABC such that 
ÙABC ~ ACAD, where AB = BC. Then AABC is a golden triangle if and only if 
area of AABC:area of ABDA = a: 1. ■ 

Theorem 22.5. Let the ratio a/b of two sides a and b of AABC be greater than one. 
Remove a triangle with side b from AABC. The remaining triangle is similar to the 
original triangle if and only if a/b — a. 

Proof. Remove AABD from AABC (see Fig. 22.3). Since AADC ~ ABAC, 

A£ _DC 

~BC ~ A~C' 

b 

Figure 22.3. 
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that is, 

a b 

a b 

Since a > b, it follows that a/b = a. 
Conversely, let a/b = a. Then 

DC _ a-b _ £ _ . _ _]__e_}__b_AC 

AC ~ b ~ b~ ~"~ ~~P~ü~a~~B~C 

Since LC is common to triangles ADC and BAC, it follows that AADC ~ ABAC. 

The next theorem is closely related to this. 

Theorem 22.6. Let the ratio of two sides of a triangle be Jt > 1. A triangle similar 
to the triangle can be removed from it in such a way that the ratio of the area of the 
original triangle and that of the remaining triangle is also k if and only if k = a. 

Proof, (see Figure 22.4) Let AADC ~ ABAC such that (AC/BQ = 
(DC/AC) = k. Let 

Area ABAC _ 
Area AABD ~ 

Figure 22.4. 

Since AABC and AADC have the same altitude h from A, 

Area ABAC \/2BCh BC BC BC/AC 

Area AABD \/2BDh BD BC - CD BC/AC -CD/AC 

That is, Jk = k/(k - l/k), sok = ct. 
Conversely, let 

BC _ _ Area ABAC 
AC ~ ~ " ~ Area AADC 
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Then 

BC/AC _ a 

BC/AC - DC/AC ~ a-DC 

1 
a - l = - ß = -

a 

that is, AC/DC = a. Thus ABAC ~ AADC. ■ 

Since the central angle of a regular decagon (10-gon) is 360°, each side subtends 
an angle of 36° at the center (see Fig. 22.5). It now follows from Corollary 22.2 that 
each of the triangles AOB is a golden triangle. 

A B 

Figure 22.S. 

Consider the regular pentagram in Figure 22.6. Since the angle at a vertex is 108°, 
it follows that LBAC = 36°, so AABC is a golden triangle. The pentagon contains 
five golden triangles. 

Figure 22.6. 

EXERCISES 22 

1. LetAßC be an isosceles triangle, where the nonrepeating angle IB — 36°. Let the 
bisector of IA intersect BC at D. Prove that ACAD is a golden triangle. 

Let D be a point on side BC of an isosceles triangle ABC such that AABC ~ Δ B DC, 
where AB = BC. Prove each. 

a 

DC_ 

AC 
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2. If AABC is a golden triangle, then area AABC : area ABDA = a : 1. 
3. If area AABC : area ABDA = a : 1, then AABC is a golden triangle. 

4. Let AABC be a golden triangle, and D a point on BC such that AABC : ABDA = 
a : 1. Prove that AAßC : AC4D = α2 : 1. 

5. The lengths of the sides of a right triangle form a geometric sequence with common 
ratio r. Prove that r = y/a. 



GOLDEN RECTANGLES 

In Der goldene Schnitt ( 1884), Adolf Zeising's 457-page classic work on the Golden 
Section, Zeising argued that "the golden ratio is the most artistically pleasing of all 
proportions and the key to the understanding of all morphology (including human 
anatomy), art, architecture, and even music." 

Take a good look at the four picture frames of various proportions, represented in 
Figure 23.1. Which is aesthetically most appealing? Most pleasing to the eyes? Frame 
(a) is too square; frame (b) looks too narrow; and frame (c) appears too wide! So if 
we picked frame (d) as our top choice, we are right; it has aesthetically more pleasing 
proportions. 

In fact, this choice puts us in good company. German psychologists Gustav Theodor 
Fechner ( 1801-1887) and Wilhelm Max Wundt ( 1832-1920) provide ample empirical 
support to Zeising's claims. They measured thousands of windows, picture frames, 
playing cards, books, mirrors, and other rectangular objects, and even checked the 
points where graveyard crosses were divided. They concluded that most people 
unconsciously select rectangular shapes in the Golden Ratio when selecting such 

^ Y. 
(a) 

Figure 23.1. 
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objects. And, of course, such pleasing proportions were the basis of most ancient 
Greek art and architecture. 

The American artist Jay Hambidge ( 1867-1924) of Yale University, in his extensive 
writings on dynamic symmetry, highlighted the prominent role the Golden Ratio has 
played in numerous Greek artworks, as well as modern art, architecture, and furniture 
design. 

More recently, Frank A. Lone of New York confirmed one of Zeising's favorite 
theories. He measured the heights of 65 women and compared them to the heights of 
their navels. The ratio was found to be about 1.618, which he called the lone relativity 
constant. He also found a fascinating relationship between a and π : 

6α* 
5 

7Γ 

GOLDEN RECTANGLE 

Figure 23.Id, represented in Figure 23.2, has the fascinating property that the ratio 
of the length x of the longer side to the length y of the shorter side equals the ratio of 
their sum to the length of the longer side, that is, 

x + y 

This yields the equation x/y = 1 + y/x, so x/y satisfies the familiar equation 
t = 1 + \jt. Thus x/y = a, as we could have conjectured. Such a rectangle is called 
a golden rectangle. 

M. J. Zerger devised a clever method for constructing a large rectangle that 
approximates a golden rectangle. Place 20 ordinary 8 ^ x 1 1 sheets of paper, in four 
rows of five each, as in Figure 23.3. The resulting shape is a 34 x 55 rectangle, which 
is a pretty good approximation to a golden rectangle. 

As another example, consider the picture* in Figure 23.4. The lighthouse in the 
picture is drawn at a pivotal position. It divides the picture into two rectangular parts 
in such a way that if a denotes its distance from the left side and b that from the right 
side, then a/b = (a + b)/a. This is the Golden Ratio, so the rectangle in Figure 23.5 
is indeed a golden rectangle. 

B 

Figure 23.2. 

'Based on F. Land, The Language of Mathematics, Murray, London, 1960. 
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55 

34 

8.5x11 

Figure 23.3. 

Figure 23.4. The Lighthouse divides the picture in a way that creates a golden rectangle (Source: Trudi 
Hammel Garland, Fascinating Fibonaccis.: Mystery and Magic in Numbers, Palo Alto, CA: Seymour, 1987. 
Copyright © 1987 by Dale Seymour Publications. Used by permission of Pearson Learning.). 

Since the golden rectangle is the most pleasing rectangle, countless artists have 
used golden rectangles and their magnificent properties in their work. 

The Holy Family by Michelangelo Buonarroti (1475-1564), and Madonna of the 
Magnificat by Sandro Botticelli ( 1444-1510), and more recently, Corpus Hipercubus 
and The Sacrament of the Last Supper by Spanish surrealist Salvador Dali ( 1904-1989) 
are fine illustrations of the visual power and beauty of the golden rectangle. 

Dali originally entitled his masterpiece Corpus hipercubus (Hypercubic Body), 
according to Time magazine of January 24, 1955. His painting is based on "the 
harmonious division of a specific golden rectangle." 

1.618 

2.618 

Figure 23.5. 
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(a) (*>) 

Figure 23.6. (a) St. Jerome by da Vinci fits into a golden rectangle; (b) Michelangelo's David also 
illustrates a golden rectangle {Source: Both images from Scala/Art Resouce, New York.). 

Leonardo da Vinci (1452-1519) painted St. Jerome to fit very nicely into a golden 
rectangle; art historians believe that da Vinci deliberately painted the figure according 
to the classical proportions he inherited from the Greeks. Michelangelo's David also 
illustrates a golden rectangle (see Fig. 23.6). 

According to Sr. M. Stephen of Rosary College in Illinois, "da Vinci used [the 
Golden ratio] in laying out canvases in such a manner that the points of interest would 
be at the intersections of the diagonals and perpendicular from the vertices." (See 
Fig. 23.7.) 

The Golden rectangles are also evident in the work of Albrecht Dürer ( 1471 -1528), 
the foremost German painter, engraver, and designer of the Renaissance. Golden 

Figure 23.7. 
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Figure 23.8. (a) Georges Seurat's La Parade (b) Contains a golden rectangle [Source: The Metropolitan 
Museum of Art, Bequest of Stephen C. Clark, 1960 (61.101.17).]. 

rectangles appear in modern abstract art such as La Parade by the French impressionist 
Georges Seurat (1859-1891) (see Fig. 23.8). Seurat is said to have approached every 
canvas with the magical ratio in mind. The same can be said about much of the 
work by the Dutch abstractionist Pieter Cornells Mondriaan (1872-1944). Juan Gris 
(1887-1927), the Spanish-born cubist who was greatly influenced by Pablo Picasso 
and Georges Braque, lavishly applied the golden ratio in his work and promoted 
its beauty. 

THE PARTHENON 

The Parthenon, the magnificent building erected by the ancient Athenians in honor 
of Athena Parthenos, the patron goddess of Athens, stands on the Acropolis. It is 
a monument to the ancients' worship of the golden rectangle (see Fig. 23.9). The 
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Figure 23.9. (a) View of the Parthenon at Athens; (b) This magnificent building fits into a golden rectangle 
(Source: Photo Researchers. © Marcello Bertinetti, Photo Researchers, Inc., New York.). 

Figure 23.10. The Parthenon in Nashville (Photo: Gary Layda. © Metro Government of Nashville, 2000.). 

whole shape fits nicely into a golden rectangle. Even the reconstruction of the original 
Parthenon in Nashville, Tennessee, vividly illustrates the aesthetic power of the golden 
rectangle (see Fig. 23.10). 

According to R. F. Graesser of the University of Arizona, the Golden Ratio was 
used in the facade and floor plan of the Parthenon, as it was used in facades and floor 
plans of other Greek temples. The various occurrences of the golden rectangle in the 
architecture are depicted beautifully by Walt Disney's animation film Donald Duck 
in Mathemagicland. 

Architect Le Corbusier (1887-1965) (Charles Edouard Jeanneret-Gris) one of the 
most influential designers of the twentieth century, developed a scale of proportions 
called the modulator. This unit was based on a human body, whose height is divided 
by the navel into the Golden Ratio, as Figure 23.11 shows. 
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Figure 23.11. The modulator, a scale of proportions developed by Le Corbusier. 

The golden rectangle is also used extensively in Cathedral of Chartres and the 
Tower of Saint Jacques in Paris. The royal doorway of the cathedral vividly illustrates 
a golden rectangle (see Fig. 23.12). 

Figure 23.12. The Doorway of the Cathedral of Chartes (Reprinted with permission from 
MATHEMATICS TEACHER, copyright 1956, by the National Council of Teachers of Mathematics. All 
rights reserved.). 
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According to Sr. Marie Stephen of Rosary College, River Forest, Illinois, the tower 
of Saint Jacques in Paris illustrates 

the architectural leitmotif [or] in inverse progressions. At the corners, the buttresses rise in 
four superimposed layers, which diminish in size as they rise. The ratio thus established 
is exactly 1.618. The buttresses, like a human hand, whose proportions we shall see are 
the same, point toward the sky, while the three stories of windows which illumine the 
interior of the tower appear as a hand pointing down from the sky to the ground. 

See Figure 23.13. 

Figure 23.13. The Tower of Saint Jacques. (Reprinted with permission from MATHEMATICS 
TEACHER, copyright 1956, by the National Council of Teachers of Mathematics. All rights reserved.). 

According to Stephen, "Dr. Christian Jacob of Buenos Aires has discovered the 
interesting proportion in the human brain." 

THE HUMAN BODY AND THE GOLDEN RECTANGLE 

As the ancient Greeks knew, the human body exemplifies the golden proportion. The 
head fits nicely into a golden rectangle, as Figure 23.14 demonstrates. In addition, 
the face provides visual examples of the Golden Ratio: 

AC CD _ AD _ 
C~D ~ ~BC ~ ~BD ~ " 

So do the fingers, as Figures 23.15 and 23.16 illustrate: 

b _c _d _ 

a d c 

According to T. H. Garland, most of the ancient graveyard crosses in Europe 
exemplify the golden proportion: the point where the two arms meet, divides the cross 



THE HUMAN BODY AND THE GOLDEN RECTANGLE 281 

Figure 23.14. The golden proportions in a human head and face (Source: Trudi Hammel Garland, 
Fascinating Fibonaccis: Mystery and Magic in Numbers, Palo Alto, CA: Seymour, 1987. Copyright © 
1987 by Dale Seymour Publications. Used by permission of Pearson Learning.). 

Figure 23.15. The golden proportions in a human hand. 

Figure 23.16. A personal golden rectangle formed by a pointer finger. 



\ 

Im Χ ^ «ßfe m 
Figure 23.17. An Ancient Graveyard Cross (Source: Trudi Hammel Garland, Fascinating Fibonaccis: 
Mystery and Magic in Numbers, Palo Alto, CA: Seymour, 1987. Copyright © 1987 by Dale Seymour 
Publications. Used by permission of Pearson Learning.). 

Figure 23.18. A Modern Cross (Source: Trudi Hammel Garland, Fascinating Fibonaccis: Mystery and 
Magic in Numbers, Palo Alto, CA: Seymour, 1987. Copyright © 1987 by Dale Seymour Publications. 
Used by permission of Pearson Learning.). 

Figure 23.19. A Prostate Cancer Awareness stamp. 
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in the Golden Ratio (see Fig. 23.17). Although many modern crosses do not 
display this magnificent characteristic, some still fit into a golden rectangle (see 
Fig. 23.18). 

Postage stamps, interestingly enough, often remind us of the golden rectangle. For 
example, the 1999 Prostate Cancer Awareness stamp in Figure 23.19. Its outer size is 
4 cm x 2.5 cm and 4/2.5 % a; the size of the inner rectangle is 3.5 cm x 2.1 cm, and 
3.5/2.1 % a . 

The statue of a seated Buddha (5637^83? B.c.) in Figure 23.20, also displays the 
golden proportions; it fits magnificently into a golden rectangle. So do the Chinese 
bowl in Figure 23.21 that belongs to the Ching dynasty, and the Greek urn in 
Figure 23.22. 

Figure 23.20. Statue of Buddha (Source: Trudi Hammel Garland, Fascinating Fibonaccis: Mystery and 
Magic in Numbers, Palo Alto, CA: Seymour, 1987. Copyright © 1987 by Dale Seymour Publications. Used 
by permission of Pearson Learning.). 

Figure 23.21. Chinese bowl (Source: Trudi Hammel Garland, Facinating Fibonaccis: Mystery and Magic 
in Numbers, Palo Alto, CA: Seymour, 1987. Copyright © 1987 by Dale Seymour Publications. Used by 
permission of Pearson Learning.). 



Figure 23.22. Greek urn (Source: Trudi Hammel Garland, Fascinating Fibonaccis: Mystery and Magic 
in Numbers, Palo Alto, CA: Seymour, 1987. Copyright © 1987 by Dale Seymour Publications. Used by 
permission of Pearson Learning.). 

From The Golden Proportion (poster). Copyright © 1990 by Dale Seymour 
284 Publications. Used with permission of Pearson Education. 
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THE GOLDEN RECTANGLE AND THE CLOCK 

It is common knowledge that the positions of the hour and minute hands on an analog 
wnstwatch or clock in store displays, or in newspaper and magazine advertisements 
tend to be approximately 10:09 or 8:18 (see Fig. 23.23). 

One myth concerning the time 8:18 is that it was precisely the time Abraham 
Lincoln died by an assassin's bullet on April 15, 1865. Another misconception is that 
such a setting of the hands gives more space on the face of the clock to show the name 
of the manufacturer clearly. 

In any case, in 1983, M. G. Monzingo of Southern Methodist University in Dallas 
argued convincingly that such a setting is related to the golden rectangle, and hence 
appealing aesthetically. He showed that the angle 9 in Figure 23.24 is about 58.3°. 
Suppose OE = 1. Then EB « tan58.3° « a. So AB : AD « 2a:2 = a:l. In other 
words, such a setting pleases the eye, since it creates an imaginary golden rectangle 
OEBF on the face of the clock. 

Suppose the points A, B, C, and D in Figure 23.25 divide the respective sides of the 
square PQRS in the Golden Ratio. Then PA = PB, QB = QC, and PB/BQ = a. 

Figure 23.23. Wnstwatch with hands set at 10:09. 
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Figure 23.24. The 10:09 setting on a watch is related to the golden rectangle. 

R 

Figure 23.25. 

Then 
AB2 _ PA2 + PB2 _ 2PB2 _ 2 

BC2 ~ QB2 + QC2 ~ 2QB2 ~ " 

Thus, AB/BC — a, so ABCD is indeed a golden rectangle. 

STRAIGHTEDGE AND COMPASS CONSTRUCTION 

How do we construct a golden rectangle with a straightedge and a compass? To this 
end, consider a line segment AB with C dividing it in the golden ratio: AC/CB = 
ABJ A C_= a. Now with C as the center, draw an arc of radius C B ; let the perpendicular 
CH to CB meet the arc at D. Complete the rectangle AC DE, as Figure 23.26 shows. 
It is a golden rectangle since AC I CD = AC/CB — a. 

Using the golden rectangle ACDE, we can draw another rectangle. With A as 
the center, draw an arc of radius AC so as to intersect the perpendicular A~B at D. 
Complete the rectangle ABGF, as Figure 23.26 shows. It is also a golden rectangle, 
because 

AB AB 
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In fact, we have gained a third golden rectangle, namely, BCHG. It is so since 

BG 

BC 

AC 

B~C = a 

As a by-product, we can show that the ratio of the area of rectangle AB G F to that 
of rectangle BCHG is a + 1 (see Exercise 2). 

In Figure 23.26, Suppose we remove the square ACHF from the golden rectangle 
ABGF; then the resulting rectangle BCHG is also a golden rectangle. That is, if the 
ratio of the length to width of a rectangle A B G F is the Golden Ratio, then that of the 
rectangle BCHG obtained by removing a square with one side equal to the width of 
the original rectangle is also the golden rectangle. 

Conversely, suppose the ratio of length to width of a rectangle ABCD is k; that 
is, AB/BC = l/w = k (see Fig. 23.27). Let BEFC be the rectangle obtained by 
deleting the square AEFD from the rectangle ABCD. The ratio of length to width 
of the rectangle BEFC is BC/BE = w/(l - w). Suppose AB/BC = BC/EC. 
Then l/w = w/{l - w), that is, k = \/(k - 1); so k = a. Thus, if removing the 
square yields a rectangle similar to the original square, then k = a; that is, the original 
rectangle must be a golden rectangle. 

On the other hand, suppose the ratio of length to width in a rectangle ABCD is 
k > 1. Remove from rectangle ABCD a rectangle BEFC similar to it. Then the 

Figure 23.27. 
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ratio of the area of the original rectangle to that of the remaining rectangle A £ FC is 
k if and only if k = a. In fact, AEFC is a square (see Exercise 3). 

RECIPROCAL OF A RECTANGLE 

Let us now look at the golden rectangle ABGF from a slightly different angle. Sup-
pose we remove square AC H F from the golden rectangle ABGF. The resulting rect-
angle BCHG is also a golden rectangle; it is called the reciprocaloi rectangle ABGF.* 

Thus, the reciprocal of a rectangle is a smaller, similar rectangle such that one side 
of the original rectangle becomes a side of the new rectangle. 

It now follows that the area of the reciprocal rectangle BCHG in Figure 23.26 is 
(areaAÄGF)/(a + l). 

In Figure 23.26, square ACH F is the smallest figure that when added to the golden 
rectangle CBGH to yield a similar shape, another rectangle. Accordingly, square 
AC H F is called the gnomon of the reciprocal rectangle CBGH, a term introduced 
by Sir D'Arcy W. Thompson. 

Suppose the diagonals BF and CG of the reciprocal rectangles meet at F, as 
Figure 23.28 illustrates. We can show that they are perpendicular (see Exercise 4). Let 
B~F intersect C~H at Q. Let ~QR±BG. Then BRQC is the reciprocal of BGHC and 
is also a golden rectangle. This gives a systematic way of constructing the reciprocal 
of a (golden) rectangle. 

"s. 
•X 

& 

/ 
/ 

/ 
/ 

s' 
<--f 

' ! ^ 
f 1 \ C T 

Figure 23.28. 

Suppose we continue this procedure to draw the golden reciprocal of BRQC. Let 
C~G meet ~QR at S and draw ~ST±BC. Then CTSQ is the (golden) reciprocal of 
BRQC. 

LOGARITHMIC SPIRAL 

Obviously, we can continue this algorithm indefinitely, producing a sequence of 
smaller and smaller golden rectangles, as Figure 23.29 shows. The points that divide 

*The term reciprocal rectangle was introduced by J. Hambidge. 
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F 
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the sides of the various golden rectangles spiral inward to the point P, the intersection 
of the two original diagonals. They lie on the logarithmic spiral, as Figure 23.29 
demonstrates. The spiral, with its pole at P, touches the various golden rectangles at 
the golden sections. 

The nautilus in Figure 23.30 is one of the most gorgeous examples of the log-
arithmic spiral in nature. Figure 23.31 also shows shells that display this beautiful 
logarithmic spiral. 

Figure 23.30. A Nautilus photograph courtesy of Chip Clark 

"The Chambered Nautilis," a poem written in 1858 by the American writer and 
physician Oliver Wendell Holmes ( 1809-1894) describes the creation of the spiral: 

Year after year beheld the silent toll 
That spread his lustrous coil; 
Still, as the spiral grew, 
He left the past year's dwelling for the new. 

Consider the diagonals of the various squares that are snipped off, namely, AH, 
HR, RT,TV, Their lengths form a decreasing geometric sequence and their 
sum is s/laa2, where AC = a (see Exercise 8). 
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Figure 23.31. 

Interestingly enough, we can employ golden triangles to generate the logarithmic 
spiral. Bisect a 72°-angle in the golden triangle ABC in Figure 23.32. The point 
where the bisector meets the opposite side divides it in the Golden Ratio. The bisector 
produces a new similar golden rectangle, as we saw in Chapter 22. Now divide this 
triangle by a 72°-angle bisector to yield another golden triangle. Continuing this 
algorithm indefinitely generates a sequence of whirling golden triangles and hence 
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Figure 23.32. 

the logarithmic spiral shown in the figure. Its pole P is the intersection of the two 
medians, indicated by broken segments. 

GOLDEN RECTANGLE REVISITED 

Suppose we remove at x t square from one of the corners of a unit square lamina, as 
Figure 23.33 shows. We would like to find the value of t such that the center of gravity 
of the remaining gnomon is the corner G of the square removed. Taking moments 
about the side AD, we have 

/ Moment of the \ 
\ removed square / 

/ Moment of the> 

\ gnomon 
( Moment of the 
I original square 

F C 

1 - f 

■jj 
G 

t P 1 - f 

Figure 23.33. 

That is, 

- , ·,< + ,(! , * > = ■ > 
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This yields the equation f3 - It + 1 = 0; that is, (/ - \){t2 +1 - 1) = 0. But t φ 1, 
so t2 + t - 1 = 0. Since / > 0, it follows that 

- 1 + V 5 1 

' = — F " = â 
Then 

a a 
.'. r : 1 — r = 1 : or — \ = a : a1 — a = a : I 

Thus f divides A B in the Golden Ratio, and hence both legs of the gnomon 
are golden rectangles, as proved in 1995 by Nick Lord of Tonbridge School, Kent, 
England. 

EXERCISES 23 

1. Find the ratio of the length of a shorter side of golden rectangle to that of its 
longer side. 

2. Using Figure 23.26, prove that the ratio of the area of rectangle ABGF to that 
of rectangle BCH G is a + 1. 

3. Let the ratio of length to width in a rectangle ABCD be k > 1. From rectangle 
ABCD, remove a rectangle BE FC similar to it. Prove that the ratio of rectangle 
A BCD to the remaining area A EFD is k if and only if k = a. Besides, the 
remaining rectangle is a square. 

4. Prove that the diagonals of two reciprocal rectangles are perpendicular. 
5. Let ABGF and BGHCbe two reciprocal golden rectangles. Let P be the point of 

intersection of the diagonals ~BF and ~CG. Prove that FP/ G P = BP/CP = a. 
6. Let ABGF be a golden rectangle and BGHC its reciprocal, as in Figure 23.26. 

Prove that ACH F is a square. 

7. Let BGHC be a golden rectangle. Complete the square ACH F on its left. Prove 
that ABGF is a golden rectangle. 

8. Show that the sum of the lengths of the diagonals of the various "whirling squares" 
in Figure 23.28 is \flaa2, where AC = a. 

9. Let P, Q, R, and 5 be points on the sides of a square ABCD, dividing each in 
the Golden Ratio. Prove that PQRS is a golden rectangle. 

Consider the sequence of decreasing smaller reciprocal golden rectangles in 
Figure 23.34,beginning with the golden rectangle A ßCD. Let DE = a a n d £ C = b, 
where a = ab.* 

10. Complete the following table. 

'Based on G. E. Runion, The Golden Section and Related Curiosa, Scott, Foresman, Glenview, IL., 1972. 
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A F J B 

Figure 23.34. 

Rectangle 

Shorter side 

Longer side 

ABCD BCEF BGHF FJIH HKLI PQU QLRS 

a 

a+b 

11. Predict the size of the nth reciprocal rectangle in the sequence, n > 0. 



FIBONACCI GEOMETRY 

This chapter features some additional delightful properties of the Golden 
Ratio in Euclidean geometry. We begin with a problem proposed and solved by 
J. A. H. Hunter in 1963. 

Example 24.1. Locate points P and Q on two adjacent sides of a rectangle ABCD, 
as in Figure 24.1, such that the areas of triangles APQ, BQC, and CDP are equal. 

Figure 24.1. 

Solution. Let AQ = x, QB — y, AP = w, and PD = z. Since the areas of 
Δ APQ, Δ QBC, and Δ CDP are equal, we have xw/2 = y(w + z)/2 = z(x + y)/2; 
thatis.jciu = y(w+z) = z(x+y). Equation y(w+z) = z(x+y) yields yw = z*;that 
is, x/y = w/z- From the equation xw = z(x + y), we have w/z = (x + y)/x; 
that is, 

^ = 1 + ^ 
y x 

Thus x/y satisfies the quadratic equation t2 = t + 1. Since x/y > 0, we choose the 
positive root a for x/y: 

x l + \/5 
-=a= — - — 
y 2 
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Thus 
W X 

i y 
(24.1) 

Consequently, we must choose the points P and Q in such a way that P divides 
AD in the ratio AP.PB = w.z — or:l. Likewise, we must locate Q on AB such that 
AQ-.QD — x:y — a:\. Thus PQ divides the two sides in the golden section. ■ 

In 1964, H. E. Huntley of Somerset, England, pursued this problem further. He 
proved that if ABCD is a golden rectangle, then APQC is an isosceles right triangle 
with right angle at Q, as the following example shows. 

Example 24.2. Suppose the rectangle ABCD in Figure 24.1 is a golden rectangle. 
Prove that APQC is an isosceles right triangle and L Q = 90°. 

Solution. Since BCAD is a golden rectangle, 

AB 

B~C 

From Eq. (24.1 ), x — ya and w 

x + y 

w + z 

- zu; 

>'(!+«) 
z(l +o) 

Thus, y = za. But ζα = ιυ, so y = w. Thus AP = BQ. 
Then JC = ya = (za)ot = za2 = z(ct + 1 ) = za + z — w + z\ that is, A Q = ß C . 

Therefore, by the side-angle-side (SAS) theorem, LAPQ = ABQC. Consequently, 
PQ — QC, so APQC is an isosceles triangle. 

Since AAPQ = ABQC, LAQP = LBCQ. But LBCQ + LBQC = 90°; that 
is, LAQP + LBQC = 90°, so LPQC = 90°; . · . LPQC = 90°. Thus APQC is 
an isosceles right triangle (see Fig. 24.2). 

Figure 24.2. 
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As a byproduct, it follows that ICPQ = 45°, so IAPQ = 45°; .·. PQ\\BD. 
Besides, we can derive a formula for the area of APQC: 

APQC=-PQQC 

= -y/AP2 + AQ2-^BQ2 + BC2 

= - v V + x2 ■ yjy2 + (w + z)2 

= 2^x2 + y2-Jy2+x2 

= ^(x2 + y2) 

1 v2 

= ^(yV + y ^ ^ d + a 2 ) 

- \(<* + 2)y2 

Notice that the area of the golden rectangle is given by 

x(x + y) = ya(ya + 1) = (a2 + a) v2 = (2a + l)y2 

.·. AAPQ + AQBC + ACDP = (2a + l)v2 - - ( a + 2)y2 

(4a + 2 - a - 2)y2 3 , 
= 2 = -2«y 

In 1964, Hunter also proved that the ratios of the dimensions of a special rectangular 
prism are closely linked to the Golden Section, as the next example demonstrates. 

Example 24.3. (Golden Cuboid) Consider a rectangular prism with unit volume and 
a diagonal of 2 units long (see Fig. 24.3). Suppose the edges aiea,b, and c units long. 
Then abc = 1 and a2 + b2 + c2 = 4. 

°/ ' 

' 

/ 

/ 

Figure 24.3. 
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Since we are interested in the ratios of the dimensions of this cuboid, assume, for 
convenience, that a = \. Then be = 1 and b2 + c2 = 3. Substituting for c, this 
equation yields b2 + \/b2 = 3; that is, bA - 3b2 + 1 = 0. Then 

«2 3 + V5 2 

^ = — - — = 1 + a = a2 

Therefore, b = a and hence c = 1/a. Thus a:b:c = \:a:l/a. ■ 

Notice that a2 + b2 + c2 = 1 + a2 + a~2 = 1 + (a2 + ß2) = 1 + L2 = 4, as 
expected. 

Example 24.3 leads to several interesting properties of the cuboid: 

. Ratios of the areas of the three different faces = ab:bc:ca — a: 1:1 /a. 

• Total surface area of the cuboid = 2(ab + be + ca) = 2(a + 1 + \/a) = 
2(2«) = 4a 

• Since a:b:c — a:l:l/a, it follows that the faces of the cuboid are indeed 
golden rectangles. For example, consider the face ABCD in Figure 24.4. We 
haveAÄ:ÖC = b:a =a:\. 

Surface area of the golden cuboid 4a a 

Surface area of the circumscribing sphere 4π ττ 

Figure 24.4. 

The following example,* although elementary in nature, is certainly interesting 
in its own right. It also manifests the omnipresence of our marvelous number a. 

Example 24.4. Let P be a point on a chord AB of a circle and PT be a tangent to it 
at T such that PT = AB (see Fig. 24.5). Compute the ratio ΡΒΛΒ. 

'Based on H. E. Huntley, The Divine Proportion, Dover, New York, 1970. 
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Figure 24.5. 

Solution. It follows by elementary geometry that PT2 = PA ■ PB, that is, 

AB2 = PA PB 

AB2 = PB(PB - AB) 

(PB /AB)2 = 1 + PB I AB 

So it follows that PBAB = a : l ; that is, A divides PB in the golden ratio. 
As a bonus, it follows that PA.AB — \/a:\. 

To continue this example a bit further, let C be a point on A ß such that PT = 
AB = PC (seeFig. 24.6). Since PC = AB, PA + AC = AC+CB;lhus PA =CB. 
Since PB/AB = a, (PC + CB)/AB = a. That is, 

AB + CB 

AB 

1 + 
CB 

~A~B 

AB 

C~B 

Figure 24.6. 
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Thus C divides Aß in the Golden Ratio. Moreover, 

PB PC+CB CB 1 
— = = H = l + - = l-ß=a 
PC PC AB a H 

CB CB 1 1 

CA AB - CB AB/CB - 1 a - 1 

PC PA+AC AC 1 
— = = H = 1 + - =a 
PA PA CB a 

— a 

AB PC PC PA 2 
ÄC ~ A~C~~FÄ'~ÄC~aCt~a 

PB PA+AB PA/AB + 1 l/a+l 
AC AB-CB X-CB/AB \-\/a 

a+ 1 
a- 1 

« 2 3 

CANDIDO'S IDENTITY 

Candido's identity,* namely, 

[x2 +y2 + (x+ y)2]2 = 2[JC4 + / + (* + y)4] 

provides an interesting application to Fibonacci numbers, where x and y are arbitrary 
real numbers. In particular, let x = F„ and y — F„+\. Then (F2 + F2

+l + F2
+2)

2 = 
2(F„4 + F4

+ ] + F*+2). This result has an interesting geometric interpretation. 
To see this, consider a line segment AD such that AB = F2, BC = F2

+i, and 
CD = Fn

2
+2. Complete the square ADEF, as Figure 24.7 shows. Then 

AreaADEF = (Fn
2 + Fn

2
+l + F„2

+2)
2 

= 2(F„4 + F4
+, + F4

+2) 

= 2(sum of the areas of the three squares) 

For example, let m = 4. Then AB = 9, BC = 25, and CD = 64 (see Fig. 24.8). 
Then 

Area ADEF = (9 + 25 + 64)2 = 9604 

= 2(81+625 + 4096) 

= 2(sum of the areas of the three smaller squares) 

'Named after Italian mathematician, Giacomo Candido (1871-1941). 
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n+1 O J + 2 

A B C D 

PI 

Figure 24.7. 

9 25 64 
A B C D 

m ̂
6 2 5 N $ S $ 

^ 4 0 9 6 ^ 

Figure 24.8. 

Candido's identity for Fibonacci numbers can be extended to generalized 
Fibonacci numbers: 

(οί+σί+ 1+Gi+ 2y=2(G:+G:+ 1+G:+ 2) 

See Figure 24.9. 

Gn Gn Gl2 

^1 
PI 

H 
Figure 24.9. 
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FIBONACCI MEETS APPOLLONIUS 

A mathematical giant of the third century B.c., Appollonius (262?-190? B.c.) proposed 
the following problem: Given three fixed circles, find a circle that touches each of 
them. In total, there are eight solutions. But, if the given circles are mutually tangential, 
then there are exactly two solutions. 

Assume, for convenience, that the given circles are not only tangential to each 
other; but their centers form the vertices of a Pythagorean triangle (as studied in 1973 
by W. H. Horner of Pittsburgh) (see Fig. 24.10). Let r\, r2, and r3 denote the radii of 
the given circles, and R and r those of the solutions. Assume that r\ < r2 < r3 and 
r < R. 

Let a = F„,b = Fn+i, c = Fn+2, and d = F„+3. Since (c2 — b2)2 + (2bc)2 = 
(c2 + b2)2, we can assume that the lengths of the sides of the Pythagorean triangle 
are c2 — b2, 2bc, and c2 + b2. So, since the original circles are mutually tangential, it 
follows that: 

r\ + r2 = c2 - b2 

r2+r} = c2 + b2 

r3 + r\ = 2bc 

Solving this linear system, we get r\ — b(c — b) — ab, r2 — c(c — b) = ac, 
and r->, = b(c + b) = bd. Then r\r2r->, — a2b2cd, r\r2 = a2be, r2r$ = abed, and 
r^r] — ab2d. 

Figure 24.10. 
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In 1955, Col. R. S. Beard showed that 

r\r2r3 
Rorr = 

rxr2 + r2r3 + r3n ψ 2y/rlr2r3(rl + r2+r3) 

where the negative root gives R and the positive root gives r. 
Substituting for r\, r2, and r3, we get 

a2b2cd 
Rorr = 

So 

a2bc + ab2d + abed =F 2-Ja2b2c2d2 

abed abed 

ac + bd — cd ac — d(c — b) 

abed abed 

Similarly, 

ac — ad ab 

abed 
r = 

cd 

4cd — ab 

Substituting for a, b, c, and d, we have 

r\ = F„Fn+] r2 = FnF„+2 r3 = Fn + iFn + 3 , 

R = Fn+2Fn+3, 

FnF„+\Fn+2F„+3 r = 
4Fn+2F„+3 — FnF„+\ 

Clearly, similar formulas hold for Lucas numbers also. 

A FIBONACCI SPIRAL 

We can arrange a series of F„ x F„ Fibonacci squares to form a Fibonacci spiral, as 
Figure 24.11 shows, where n > 1. Moreover, their centers appear to lie on two lines, 
and the two lines appear perpendicular. This is in fact the case. 

To confirm this, suppose we choose the center of the first square as the origin, and 
the horizontal and vertical lines through it as the axes. Let n be odd. Then the change 
in the y-values in going from the (n - 4)th square to the nth square is ±(F„ + F„_4)/2, 
and that in the corresponding x-values is ±(F„_2 - 2F„_3 - F„_4)/2. Therefore, the 
slope of the line passing through their centers is 

F„ + F„_4 3F„_2 _ 

- 2F„_3 - F„_4 F„. 
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■*■ 

i ' 1 
/ 

/ 
/ 

/ \ 
/ \ 

/ \ 
/ 1 

Y -̂ . 

/ — 
/ 

/ 

Figure 24.11. 

But this line passes through the origin. Thus the center of all odd-numbered 
Fibonacci squares lies on the line y = 3x, as proved in 1983 by T. Gardiner of 
the University of Birmingham, England. [In particular, the line containing the centers 
(0,0) and (1/2, 3/2) is y = 3x.] Similarly, the centers of all even-numbered Fibonacci 
squares lie on the line x + 3y — 1 = 0. Notice, in particular, that the centers (1,0) and 
(—2, 1) lie on it. 

Example 24.5. Suppose we inscribe a square BDEF in a semicircle such that one 
side of the square lies along its diameter (see Fig. 24.12). Since the right triangles 
AFE and CFE are similar, 

AE _ FE _ AF 
TË ~~CË ~~CF 

Figure 24.12. 
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But 
AE _ AD + DE _ AD + FE _ AD 
ΤΈ ~ ~FE ~~ TË ~ ~FË+i 

Since CE = AD, this implies AD/FE + 1 = FE/AD. Let x = FE/AD. Then 
this yields the equation \/x + x = 1, so x = a. Thus AE/DE = a, so D divides 
A E in the Golden Ratio. Moreover, 

AE _ FE _ AF _ 

TË ~ ~C~E ~ C~F ~ a 

that is, the ratio of the corresponding sides of the similar triangles is the Golden 
Ratio. ■ 

Example 24.6. In Figure 24.13, A is the midpoint of the side PQ of the square 
PQRS. Let A~R be the tangent to the circle with center O. Since AD2 — 
AB AC, it follows that AD/AB = AC/AD.Intact, we can be show that Λ D/Aß = 
AC/AD = a. 

RIGHT TRIANGLES AND THE GOLDEN RATIO 

Suppose the lengths of the sides of a right triangle form a geometric sequence. What 
can we say about its common ratio r? 

To answer this, suppose the three lengths are a, ar, and ar2. Clearly, r φ 1. 

Case 1. Let r < 1. Then ar2 < ar < a (see Fig. 24.14). Then 

a2 — a2r2 + a2r4 

r4 + r2 = 1 

.·. r = l/y/â 
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ar 
r <1 

Figure 24.14. 

ar 
r >1 

Figure 24.15. 

Case 2. On the other hand, let r > 1. Then a < ar < ar2 (see Fig. 24.15). Then 

a
2r4 = a2r2+a2 

r4 = r2 + 1 

. · . r = y/ct 

Thus, the common ratio is either \/*Ja or sföt. 

THE CROSS OF LORRAINE 

An interesting problem, related to the Cross of Lorraine* or the Patriarchal Cross, 
brought to light by Martin Gardner. This ancient emblem reintroduced in modern 
times by General Charles de Gaulle ( 1890-1970) of France, consists of three beams— 
two horizontal and one vertical—and covers an area of 13 = F7 square units (see 
Fig. 24.16). We would like to cut the cross through C into two pieces of equal area, 
namely, 6.5 each. 

Suppose the line segment PQ has the desired property. Then the area of APQR 
is 2.5 units. Let BP = x and DQ = y. Since AB PC ~ ADQC, x/\ = 1/y; that 
is, xy = 1. 

Area APQR 

.·. (x+l)(y+\) 

x2 - 3x + 1 

x 

= 2PRQR = 2ix + m y + ]) 

= 5 

= 0 

_ 3±v5 
2 

'Lothringen or Lorraine is a province on the border between France and Germany. 
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Figure 24.16. 

Since 0 < x < 1, it follows that x = (3 - V5)/2 =l+ß,soy = \/x = l+a. 
Thus AP = 1 - x = -ß and EQ = y - 1 = a. So 

ΛΡ -0 and 
DE I 
E~Q~ä PB l+ß 

Thus P and £ divide A~B and DQ in the Golden Ratio, respectively. 

LOCATING P AND Q GEOMETRICALLY 

To locate the points P and Q geometrically, let AD meet BC at F, so AF = F£>. 
With F as center and FB as radius, draw an arc to intersect A F at G. With G as center 
and A G as radius, draw an arc to intersect AB at P. Let PC meet DEatQ. Then P 
divides Ä~ß in the Golden Ratio and E divides DQ in the Golden Ratio; moreover, 
P ß divides the cross into two equal areas. 

To confirm this, APBC = AC HI and APBC ~ &DQC, so xy = 1; ..shaded 
area = 2 + area AEQI. Since APBC ~ Δ £ β / , x/l = EI/(y - 1), so 

El — x(y - \) = xy — x = I — x 

.·. AreaAEQl = -El ■ EQ =-(\ - x)(y - I) 
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But 

\-x -ß 
= = a 

x 1 + ß 
a(-ß) l 

.·. Area AEQI = = -
* 2 2 

Thus the shaded area = 2.5 units, so P Q partitions the cross equally as desired. 
In 1959, M. Gardner, in his famous column in the Scientific American, invited his 

readers to compute the length BC. The same puzzle appeared five years later in an 
article by M. H. Holt in The Pentagon. 

EXERCISES 24 

Verify each. 

i· c? + ̂ +, + O 2 = 2(/? + C + O 
2. (Ll + L2

H+i + Ll+2Y = 2(L4
n + C + L*a+2) 

3. (Gl + G2
n+I + G2

n+2)
2 = 2(Gt + G'n+] + G*n+2) 

4. Compute the area of an equilateral trapezoid with bases F„_i and F„+|, and with 
lateral side F„ (Woodlum, 1968). 

5. Show that the lengths L„-\Ln+2,2L„Ln+\, and L^Lin+i form the sides of a 
Pythagorean triangle (Freitag, I975). 

6. In AABCAB = AC. Let D be a point on side A~B such that AD = CD = BC. 
Prove that 2 cos A = AB/BC = a (Source unknown). 



REGULAR PENTAGONS 

Regular pentagons provide us with many examples of the Golden Ratio in everyday 
life. Some flowers have pentagonal shape; so do the starfish and the former Chrysler 
logo (see Fig. 25.1). 

In 1948, H. V. Baravalle of Adelphi University observed, "Outstanding among the 
mathematical facts connected with the (regular) pentagon are the manifold implica-
tions of the irrational ratio of the Golden Section." This chapter investigates some of 
these implications. 

Example 25.1. The diagonals AC and BE of the regular pentagon ABC DE 
in Figure 25.2 meet at F. Prove that F divides both diagonals in the Golden 
Ratio. 

Proof* Let AB = a, BF = b, and FE = c (see Fig. 25.3). By the side-angle-side 
(SAS) theorem, AABC = AABE. Since LABC = 108°, IB AC = LABE = 36°. 
Therefore, LCAE = 72° = LAFE. Then AF = BF = b and AE = AF, so 
a = c. 

By drawing the perpendicular AR to BE, we can be show that 

ER = a cos 36° = BR 

.·. BE = BR + RE = b + c = 2acos36° 

Likewise, 

2 cos 36° 

*Based on J. A. H. Hunter and J. S. Madachy, Mathematical Diversions, Dover, New York, 1975. 

308 
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Figure 25.1. (a) A starfish. 

Figure 25.1. (b) The former Chrysler logo are pentagonal shapes (Source: The photo image of the Dodge 
Intrepid® is used with permission from the DaimlerChrysler Corporation.). 

c -2a cos 36° -
2 cos 36° 

a (4 cos2 36°- 1) 

2 cos 36° 
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Figure 25.2 Figure 25.3 

Since c = a, this yields the quadratic equation 4 cos2 36° — 2 cos 36° — 1 = 0 . Solving 
this, we get 

cos 36 = = — 
4 2 

(Since cos 36° > 0, we take the positive root.) 

.·. BE = b + c = aa = AC 

BE-.FE = aa.a =a:\ = AC.FC 

Thus F divides both diagonals in the golden ratio. ■ 

This is the ninth property of the divine proportion delineated by Pacioli in his book. 
Since cos π/5 = all, it follows that sin π/5 = (>/3 — a) /2 , cos JT/10 = 

(Va + 2)/2, and sin π/10 = 1/2α. 

AN ALTERNATE PROOF THAT cos π /5 = a/2 

We can derive the fact that cos π /5 = or/2 in a shorter, more elegant way. Let 
Θ = TT/10. Then 2Θ + 30 = jr/2, so 20 and π /2 - 30 are complimentary angles. 
Since the values of cofunctions of complementary angles are equal, it follows that 

sin 20 = cos 30 
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That is, 

2 sin Θ cos 0 = 4 cos3 Θ — 3 cos Θ 

4 sin3 6» + 2 sin 6» - 1 = 0 

. -1±V5 
sinö = 

Since sin Θ > 0, it follows that 

£ 1 
- * = - - = -

COS7Z-/5 = 1 -2 s in 2 7 r /10= 1 - 2 · 
4a2 = 1 -

2a2 

2-/?2 2 - 0 + 0 ) 1-0 a 

Knowing the values of sin π/10 and cos π/\0, we can compute the exact values of 
sines and cosines of several acute angles that are multiples of 7Γ/20 = 9°, as Table 25.1 
shows. 

TABLE 25.1. 
Angle Θ 

π 

20 

π 
Ίο 
3ττ 
20 

π 
5 
π 

4" 
3π 
To 
7ττ 

20 

2π 

Ύ 
9π 
20 

Sin θ 

2 - α 
4 

1 
2α 

11 - 4 α 
16 

V3-« 
2 

1 - 2 α 

α 

2 
7 α - 11 

16 

ν / 2 + α 

2 
2 + α 

4 

Cosél 

2 + α 

4 

V2 + a 
2 

7 α - 11 
16 

α 
2 

1 - 2 α 

7 3 - α 
2 

11 - 7 α 

16 

1 

2α" 
2 - α 

4 
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We pursue Example 25.1 a bit further in the following example. 

Example 25.2. Suppose the perpendicular AN at A meets ED at N (see Fig. 25.4). 
Show that N divides ED in the Golden Ratio. 

Proof. Draw BMLAB. We have CE = aa, PQ = AB = a, EP = QC, and 
ZD£C = ;r/5.Then 

EP = QC = 

EP 
EN = 

aa — a a[a — 1) 
2 = 2 

2EP a(a-\) 

cos π/5 

ND = DE - EN =a 
a(ct — 1) a 

a 

Thus DE-.DN = a:a/a = 1:1 fa = a:l ; that is, JV divides DE in the Golden 
Ratio. ■ 

Example 25.3. Compute the area of the regular pentagon in Figure 25.5 with a side 
a units long. 

Solution. Notice that ACEE is an isosceles triangle. (In fact, CE \\ AB.) Let 
~DNLC~É. Then CN = EN =acos,n/5 = aa/2, so CE = aa. Likewise, PQ = 
aa/2, where P and Q are the midpoints of CD and DE, respectively. 

Let R be the circumradius and r the inradius of the regular pentagon. Then R — 
(a/2)csc JT/5 and r = (a/2)cot π /5 : 

AreaofAAOß = (1/2)α · (a/2)cot ar/5 

= (a2/4)cot TT/5 
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Area of the pentagon = 

a ' a 
4 73~= 

2 

V 3 - o 

5a2a 

a 

4 v
/ 3 ^ i 

since cos7r/5 = a/2 

THE BEE AND THE REGULAR PENTAGON 

Using the fact that cos π/5 = α/2, we can derive a trigonometric formula for F„: 

cos37r/5 = 4cos37r/5 — 3cos?r/5 

= 4(a/5)3 - 3(a/2) = a(a2 - 3)/2 

= α(-β2)/2 = β/2 

_ a" - β" _ 2" (cos" JT/5 - cos" 3π/5) 

·'■Fn ~ ~a^y - 7f 
This formula was discovered in 1921 by W. Hope-Jones. 

THE PENTAGRAM 

Let us return to the regular pentagon ABC DE in Figure 25.2. Drawing all its diagonals 
yields the star polygon APBQCRDSET, called a pentagram, as Figure 25.6 shows. It 
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Figure 25.6. 

follows from Example 25.1 that the points P,Q, R,S, and T divide the diagonals in 
the Golden Ratio. 

The pentagram was the logo of the Pythagorean School of the sixth century B.c. 
The flags of many countries in the world contain one or more five-pointed stars. 
For example, the Australian flag contains 6 stars, the Chinese flag contains 5, and 
the United States flag contains 50. The diameter of every star on the U.S. flag is 
0.616=» I/a. Even the flags of several cities contain five-pointed stars; Chicago's flag 
contains four stars, and the flags of Dallas, Houston, and San Antonio each contain one. 

Returning to Figure 25.6, the polygon PQRST is also a regular polygon (see 
Exercise 1). Draw its diagonals to produce a new pentagram and a smaller regular 
pentagon; the points V, W, X, Y, and Z divide them in the Golden Ratio. Obviously, 
this process can be continued indefinitely. See Figure 25.7. 

Figure 25.7 contain many angles of various sizes, namely, π/5,2η/5,3π/5,4π/5, 
π, 6π/5, 7π/5, 8π-/5, 9π/5, and 2π; they form a finite arithmetic sequence with a 
common difference of π /5 . 

A B 

Figure 25.7. 
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We can partition the various line segments in Figure 25.7 into six different classes 
with representatives WO, ~AB, WQ, ~PQ, QW, and VW; the lengths of these line 
segments are different. Clearly, the longest of them is BD. 

There are 5 line segments of the same size as BD, 15 line segments of the 
same size as AB, 15 line segments of the same size as BQ, 15 line segments of 
the same size as PQ, 10 line segments of the same size as QW, and 5 line segments 
of the same size as V W, a total of 65 line segments. 

Let BD = a. Since R divides ~BD in the Golden Ratio, it follows that AB = 
BR = BD/a =a/a. 

Notice that ABER ~ ABCQ, so BR/BQ = BE/BC; that is, BR/BQ = 
a/(a/a) = a. Therefore, BQ = BR/a = a/a2. Thus Q divides BR in the Golden 
Section. Similarly, R divides DQ in the Golden Ratio. Obviously, we can extend this 
property to other diagonals as well. 

Consider the triangles SPQ and BPQ. Clearly, they are congruent, so S Q = BQ; 

SQ BQ 
PQ = — = — - = 

a a 

PQ a 
a a4 

QW a 
VW = =— = — 

BR a 
= a^ 

Thus, BD = a, AB = a/a,BQ = a/a2,PQ = a/a3, QW = a/a4, and 
VW = a/a5. They form a decreasing geometric sequence with first term a and 
common ratio 1/ar; so 

1 1 1 1 1 
BD:AB:BQ:PQ:QW:VW = 1 : - : ^ : - ^ - - - ^ . 

a or a5 a4 aD 

Thus every number in the sequence is a times the following element. 
Suppose this procedure is continued indefinitely. Then the sum of the resulting 

geometric sequence of the different lengths of the various line segments is 
given by 

a aa 2 
= aa 1 - \/a a - \ 

% 2.61803398875a 

Here is an interesting observation: A APT ha. golden triangle. In fact, Figure 25.7 
contains several golden rectangles, which become apparent if we search for them (see 
Exercise 14). 



316 REGULAR PENTAGONS 

REGULAR DECAGON 

Consider a regular decagon of side / and circumradius R (see Fig. 25.8). The central 
angle subtended by a side is 2ΤΓ/10 = π/5. Then 

= 

— 

(l\ U) 
' / 
2γ l 

v 7 ^ 

la 

A 1 

Figure 

π 

2 

-a/2 

I 

"1 

B 

25.8. 

' / 
' 2γ 1 -

/ 
siT^ 

2 
COS 71 

a 

since β < 

r/5 

0 

In particular, let / = 1. Then R = a; that is, the circumradius of a decagon of unit 
side is a. This is the seventh property of a described by Pacioli in his classic book. 

Returning to Figure 25.8, we have: 

Area of AAOB = 2lRcos— = 21 /cos — 
10 10 

, y/a + 2 , -, 
= 2l2a- = aVöT+212 

2 

2 .·. Area of the decagon — 10ay/a + 21 

Consequently, the area enclosed by the decagon of unit side is 10α·«/α +2. 
Next we employ the fifth roots of unity to explore the various properties of the 

divine proportion related to the regular pentagon. 
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THE REGULAR PENTAGON AND THE FIFTH ROOTS OF UNITY 

By DeMoivre's theorem, the complex nth roots of unity are given by z = eis 2kn/n, 
where 0 < k < n and eis Θ = cosö + /' sinö. They are equally spaced on the unit 
circle \z\ = 1 on the complex plane. 

In particular, the fifth roots of unity are given by z = eis 2&7Γ/5, where 0 < k < 5. 
They are zo = eis 0 = 1, zi = eis 2π/5, ζι = eis 4π/5, ζι = cis 6π/5 = 
cis (—4π/5), and ZA = cis 8π/5 = cis (—2π/5). 

Since cos π/5 = α/2, it follows that 

2π , π a2 

cos — = 2 cos2 1 = 2 1 
5 5 4 

a2 - 2 a - 1 

and 

Now 

2π 7Γ π \/3 — a a α>/3 —a 
sin — = 2 sin — cos — = 2 · — - — · — = 

5 5 5 2 2 2 

a — 1 α-ι/3 — a . a — 1 a^/3 —a 
.·. z, = — + — 5 — · and u = — — ι 

An „ 2 27Γ , _ / a - 1 \ 2 a 
C O S T = 2 C O S T - 1 = 2 ( - I -J - 1 = - 2 

and 

4π 2π 2π aV3 - a or - 1 α(α — 1)V3 — a 
sin — = 2 sin — cos — = 2 · · —-— = — 

5 5 5 2 2 2 

•JT^ot 

a V3 - a a—\ y/3 — a. 
■■■Z2 = - 2 + _ 2 ~ ' a n d Z3 = — 2 2 ~ ' 

Thus the five roots of unity are 1, ^f1 ± ^ ± ^ i and - 1 ± ^ψ*- i. We can verify this 
without resorting to DeMoivre's theorem (see Exercise 19). The roots are represented 
by the points C, D, B, £, and A, respectively, in Figure 25.9. 

We can extract many properties of the regular pentagon using the coordinates of 
its vertices. For example, we can be show that BD = y/cT+T. and AB = V« + 2/a, 
so BD = aAB, as expected! (See Exercises 20 and 21.) 
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Figure 25.9. 

Interestingly enough, our mysterious number a appears even in geometric figures 
not connected to pentagons or decagons. For example, consider the square ABFE 
inscribed in a semicircle, as Figure 25.10 shows. It can be shown that 

AE 

AC 

AD 
= a 

See Exercise 29. 
The Golden Ratio a also appears in a circle inscribed in an isosceles triangle which 

is in turn inscribed in a square (see Fig. 25.11). Since the angle in a semicircle is a 
right angle, it follows that LAEB = ICED. But ICED = ICDE, since ACDE is 
isosceles. Therefore, LAEB = LCDE. 

It now follows that ΔΑΒΕ ~ AAED, so AE/AB = AD/AE. Let AE/AB = 
AD/AE =x. 

Figure 25.10. 
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D F 

Figure 25.11. 

Now consider AADF and AACE. They are similar, so AD/DF = AE/CE. 
But AD = 2DF, so AE = 2CE = BD; 

AD _ AB + BD _ AB + AE Aß 

' Ä £ _ Ä£ ~ Â~£ ~ + Â~Ë 

That is, 

x = l H — so x = a 
x 

Thus 
A D _ / 1 £ _ 
Ä~£ ~ A~B ~U 

Suppose the lengths of the sides of a right triangle form a geometric sequence with 
common ratio r. Then we can show that r = y/a (see Exercise 15). 

REGULARICOSAHEDRON 

Golden rectangles occur in solid geometry also. A regular icosahedron is one of the 
five Platonic solids. It has 12 vertices, 20 equilateral triangular faces, and 30 edges. 
Five faces meet at each vertex and they form a pyramid with a regular pentagonal 
base (see Fig. 25.12). We can place three mutually perpendicular and symmetrically 
placed golden rectangles (see Fig. 25.13) inside the icosahedron in such a way that 
their 12 corners will coincide with those of the icosahedron (see Fig. 25.14). 

The length of a longer side of the golden rectangle equals the length of a diagonal 
of the pentagon. As we saw in Chapter 24, the length of a diagonal is a times that 
of a side of the pentagon. Thus, the length of the golden rectangle is a times the 
length of an edge between any two adjacent vertices of the icosahedron. In particular, 
if the adjacent vertices are one unit away, then the length of a longer side of the 
golden rectangle is a. This is the essence of the "twelfth incomprehensible" property 
described by Pacioli in his book. 



Figure 25.12. A regular icosahedron (Source: H. S. M. Coxeter, Introduction to Geometry, 2nd ed., Wiley, 
New York, 1969. Copyright © 1969, reproduced by permission of John Wiley & Sons, Inc.). 

Figure 25.13. Three golden rectangles (Source: H. S. M. Coxeter, Introduction to Geometry, 2nd ed., 
Wiley, New York, 1969. Copyright © 1969, reproduced by permission of John Wiley & Sons, Inc.). 

Figure 25.14. The comers of three golden rectangles meet at the comers of a regular icosahedron (Source: 
H. S. M. Coxeter, Introduction to Geometry, 2nd ed., Wiley, New York, 1969. Copyright © 1969, reproduced 
by permission of John Wiley & Sons, Inc.). 

320 
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REGULAR DODECAHEDRON 

We can also place three mutually perpendicular and symmetrically placed golden 
rectangles in another Platonic solid, the regular dodecahedron, which has 12 pentag-
onal faces, 20 vertices, and 30 edges. The various corners of the rectangles meet the 
faces at their centers, as Figure 25.15 shows. 

Figure 25.15. The corners of the same rectangles coincide with the centers of the sides of a r 
dodecahedron (Source: H. S. M. Coxeter, Introduction to Geometry, 2nd ed., Wiley, New York, 
Copyright © 1969, reproduced by permission of John Wiley & Sons, Inc.). 

A PENTAGONAL ARCH 

In 1974, D. W. DeTemple of Washington State University studied the pentagonal arch 
formed by rolling a regular pentagon along a line (see Fig. 25.16). As the leftmost 
pentagon is rolled to the right, the vertex A moves toward B, then to C, D, and finally 
to E as the successive sides touch the base line. Connecting these five points, we 
generate the pentagonal arch ABC DE. Surprisingly enough, this arch is also related 

to the magic ratio. 
To see this, let s denote the length of a side of the regular pentagon. Since a vertex 

angle of the pentagon is 108°, it follows that LAPB = 72°. Since AP = BP = s, 
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Figure 25.16. Pentagonal Arch. Source: D. W. Temple, "A Pentagonal Arch," The Fibonacci Quaterly, 
1974. 

by the law of cosines, 

AB2 = AP2 + BP2 -2AP ■ BP cos 72° 

= 2ί2(1 - cos 72°) = 4ί2 sin2 36° 

= 4,2 (L·^) = (3 - a)s2 

.·. Λ # = j \ / 3 - a 

sV2 + or. Moreover, 

V 3 - « 

3 (α+ 1 ) - ( 2 α + 1 ) = 2 + α 

A TRIGONOMETRIC FORMULA FOR F„ 

In Example 25.1 we found that cos jr/5 = a/2. So 2 sin2 it/10 = 1 - cos7r/5 = 
1 - a /2 = (2 - a) /2 = ^ 2 /4 , and hence sin π/10 = |/3|/2 = -β/2; that is, 
^ = - 2 sin 7τ/10. Thus a = 2 cos JT/5 and /5 = - 2 sin π/10. 

We can employ these trigonometric values of a and β to develop a trigonometric 
summation formula for F„, derived in 1964 by J. L. Brown, Jr., of Pennsylvania State 
University. 

Likewise, we can be show that BC = 

BC _ 
~ÄB ~ 

But 

α 2 ( 3 - α ) = 3α2 - α3 = 

ThusßC/Λβ = 

/2 + α 
■ ■ ■ e - V 3 - « 

= a, the Golden Ratio. 
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By Binet's formula, we have 

nn _ an " ' 

E(2c°sj)"" '(-2si"T5)' 
Jt=0 

2 « - ' V ( - i ) * c o s " - * - , - s i n * -
f-i 5 10 

For example 

2 

fj = 4Ç,-„>c„s"ïsi„>^=4Ç,-,)'(i)2-'(f) 

4 4 
= a2 + aß + ß2 

= (a+ß)2-aß=\-(-l) = 2 

as expected. 
Next we derive two additional trigonometric formulas for Fn. 

TWO ADDITIONAL TRIGONOMETRIC FORMULA FOR Fn 

Since cos π/5 — a 12, it follows that sin π/5 = (V3 — or)/2. 

.·. sin37r/5 = sin(27r/5 + π/5) 

= sin 2π/5 cos π/5 + cos 2π/5 sin π/5 

= 2 sin π/5 cos2 π/5 + (2 cos2 π /5 — 1 ) sin π /5 

= 4 sin JT/5 cos2 π/5 - sin JT/5 

y/T^ä a2 \/3 — a a^/3 — a 

2 T 2 = ~~"2 

and hence 

V3 —a aV3 —a a(3 — a) V5 
1 2 = 4 = T ' 

sin 7Γ/5 sin 3π/5 = 
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Since sin 9π/5 = - sin π/5, it also follows that sin 3JT/5 sin 9π/5 = - \ / 5 / 4 ; 

a" -β" 
F„ = 

gcosTr/Sr-^cosSTr/Sy1 

V5 

>n+2 

2"+2 

-(cos" π /5 sin jr/5 sin 3π/5 + cos" 3π/5 sin 3π/5 sin 97Γ/5) 
j 

(25.2) 

It follows from this formula that 

(~2)"+2 

Fn = -—^ (ΰθ8Π2π/5 5Ϊη2π/5 8ίη67Γ/5 + ϋθ5η47Γ/5 5ίη47Γ/5 5Ϊη12π/5) 

(25.3) 

See Exercise 32. 
These two formulas were discovered in 1979 by F. Stern of San Jose State Univer-

sity, California. 
Since V5 = 4 sin π/5 sin 3π/5, we can also write Binet's formula as 

(2 cos 7r/5)n - (2 cos 37Γ/5)" 
F„ = 

4 sin π/5 sin 3π/5 

2"~2(cosn 7Γ/4 - cos" 3π/5) 

8ίη7τ/5 8Ϊη3π/5 
(25.4) 

EXERCISES 25 

1. Show that the polygon PQRST in Figure 25.7 is a regular pentagon. 

Using Figure 25.7, compute the area of each polygon, where BD = a. 

2. AAPB 

3. AAPT 

4. &CDR 
5. ACDS 
6. Rhombus CDEP 
1. Rhombus SPRD 

Use Figure 25.7 to compute each ratio. 
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8. ACDS: AC DR 
9. Rhombus CDEP : Rhombus SPRD 

Compute the shaded area in each figure. 
10. Figure 25.17 
11. Figure 25.18 

Figure 25.18. 

Using Figure 25.7, compute the area of each polygon, where BD — a. 
12. Pentagon PQRST 

13. Pentagram APBQCRDSET 
14. Find the number of golden rectangles in Figure 25.7. 

15. The lengths of the sides of a Pythagorean triangle form a geometric sequence 
with common ratio r. Show that r — y/a. 

16. Prove that the length of a side of a regular decagon with circumradius r is r/a. 
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β 

Figure 25.19. 

Figure 25.20. 

17. The circumradius of the 10-pointed star in Figure 25.19 is R. Prove that AD = 
ra. 

18. Show that the shaded areas in Figure 25.20 form a geometric sequence with 
common ratio I/a (Baravalle, 1948). 

19. Solve the equation x5 — 1 = 0 algebraically. 
Use Figure 25.9 to answer Exercises 20-30. 

20. FindÄD. 

21. FindAÄ. 
22. Find BDAB. 

23. Compute area AB DE. 
24. Using the fact that P and Q divide AC in the Golden Ratio, determine their 

coordinates. 
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25. Using Exercise 24, compute PQ, AP, and QC. 
26. Find the ratio LABQ:£\ABP. 
27. Find the ratio BD:AB:BQ:PQ. 
28. Find the inradius of the circle inscribed in the pentagon. 
29. Using Figure 25.10, show that AE/AC = AD/AE - a. 

30. A regular pentagon of side p, a regular hexagon of side h, and a regular decagon 
of side d are inscribed in the same circle. Prove that these lengths can be used 
to form the sides of a Pythagorean triangle (Bicknell, 1974). 

31. Using Eq. (25.1), compute Fi and F4. 

32. Prove Eq. (25.3) (Stern, 1979). 
33. Prove that 

2n + l ν-Λ ί F 
V",c o s" kn/5 sin kn/5 sin 3Jk^/5 = | " 

2n + v~* n , ,,τ . · . . ,<r · ..,, _ ,r ί Fn if n is even 
otherwise 

(Hoggatt, 1979). 



THE GOLDEN ELLIPSE 
AND HYPERBOLA 

The concept of a golden ellipse was introduced in 1974 by H. E. Huntley of England. 
Huntley investigated the properties of the golden ellipse in detail. We shall pursue 
some of them in this chapter. 

THE GOLDEN ELLIPSE 

The ratio of the major axis to the minor axis of a golden ellipse is the magic ratio a. 

Let 2a denote the length of the major axis and 2b that of its minor axis. Then it is 
well-known that b1 = a2(l — e2). So for a golden ellipse, 

b2 , 1 , 
- = 1 - e2 = -j = ß2 

a1 a2-
Therefore, 

e2 = 1 - ß2 = -ß 

Thus we define the eccentricity of the golden ellipse by e = ,/—ß ( s e e Fig· 26.1). 
Consequently, one-half of the minor axis is given by b2 = a2ß2, so b = a\ß\. 

If we inscribe the golden ellipse in a rectangle with its sides parallel to the axes, 
the rectangle would be a golden rectangle. 

Let F and F' denote the foci of the golden ellipse. Then OF = ae = a/^/ä = 
a^ß and BF = sib2 -I- a2e2 = a. 

Let 10 B F = 6». Then sec Ö = BF/OB -a/b = a. Let CWbe perpendicular to 

the directrix ND. Then ON — a/e = a^fa. 

FN = ON-OF = aVä- 4= 
y/a 

328 
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*- x 

Figure 26.1. 

«(or-1) aß _ 3/2 

>/ä V« 

For any ellipse, the minor axis is the geometric mean of the major axis and the 
lactus rectum /; that is, b2 — al. So, for the golden ellipse, 

b2 /b\ b 
PQ=l = -=b(-) = -

a \a / a 
Thus a : b : I = ba : b : b/a = a : 1 : 1 /a = a2 : a : 1. 

Notice that 

ON _ ay/ä 

JN ~ a/Jä and 
a/y/ü OF 

FN a(a — \)^fa a — 1 

so the focus F divides ON in the Golden Ratio. 
Let P Q denote the latus rectum. Then 

-i ■> 7 a b 
OP2 = OF2 + FP2 = — + — 

a az 

, , b2 b2(a3 + \) 
= b'-a + -T = : 

a1 a2-
b2(2a + 2) 

= 2b2 

.·. OP = V2b 
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An ellipse has the property that the tangent at P passes through N and cot IFPN = 
e. Since cot Θ = OB/OF'= b/ae, it follows in the case of the golden ellipse that 

cot IFPN =—= = y/^ß and cot Θ = — = — = J^ß 

so IFPN = Θ. Thus MPFB is a parallelogram and hence MP = BF = a. 
In addition, since ΔΟΜΝ ~ AFPN, 

MN _ ON 

~PN ~~FN 

That is, 

MP OF 
+ 1 = — + 1 

PN FN 
MP _ OF 
~PN ~ ~FN = a 

Thus P divides MN in the Golden Ratio. 
Finally, let O P intersect the directrix N D at D. Since AOND ~ AOFP, OD/OP = 

ON/OF = a, so P divides ÔD in the Golden Ratio. 

THE GOLDEN HYPERBOLA 

The golden hyperbola (Fig. 26.2) was also studied by Huntley, who gives a fairly 
extensive account of its properties in his fascinating book, The Divine Proportion. 

Figure 26.2. 
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The eccentricity of the golden hyperbola is defined by e2 = a. Then 

b2 = a2(e2 - 1) = α2(α - 1) = -α2β 

.·. - = y/ä and b = aJ~^ß 
b 

The asymptotes of the golden hyperbola are given by v = ±(b/a)x; that is, 
y = ±^ßx. 

Huntley also studied the parabola y2 — Aax using (aa2, 2aa) as a point on it. 
If we draw the parabola and the golden hyperbola to the same scale with the same 
origin, then we can easily verify that the asymptotes of the hyperbola would intersect 
the parabola at the origin and at the points (4aot, ±Aa-^/a) (see Exercise 1). 

EXERCISES 26 

1. Show that the asymptotes of the golden hyperbola intersect the parabola y2 = 
Aax at the origin and at the points (Aaa, ±Αα^/α). 

2. One endpoint P of the focal chord of the parabola v2 = Aax is (aa2, 2aa). Find 
the other endpoint Q. 

3. Compute the length of the focal chord PQ in Exercise 2. 

4. Find the equations of the tangent and the normal to the parabola y2 = Aax at the 
point P(aa2, 2aa). 

5. Find the equations of the tangent and the normal to the parabola v2 = Aax at the 
endpoint Q of the focal chord PQ in Exercise 2. 

6. Find the point of intersection of the tangents at the ends of the focal chord P Q 
in Exercise 2. 

7. Find the angle between the tangents in Exercises 4 and 5. 
8. Find the point of intersection of the normals to the parabola y2 = Aax at the 

ends of the focal chord P Q in Exercise 2. 
9. Find the angle between the normals at P and Q. 

10. Suppose the focal chord PQ in Exercise 2 intersects the ^-axis at R. Show that 
the focus S divides PR in the Golden Ratio. 

11. With S, Q, and R as in Exercise 10, show that Q divides SR in the Golden Ratio. 



CONTINUED FRACTIONS 

In Chapter 20, we found that the sequence of ratios Fn+\/Fn of consecutive Fibonacci 
numbers approaches the Golden Ratio a as n -*■ oo. Interestingly, we can employ 
these ratios to generate rational numbers of a very special nature, called continued 
fractions.* So we begin with a few characterizations of continued fractions. 

FINITE CONTINUED FRACTIONS 

A finite continued fraction is an expression of the form 

1 
x=ax + j (27.1) 

a2-\ i 
Û3 + 

am-2 H 1 
am-\ H 

am 

where ai > 0, and a, is a positive integer and i > 2. Since this notation is a bit 
cumbersome, this fraction is often written as 

1 1 1 

a2+ a3+ \- am 

"The Italian mathematician Pietro Antonio Cataldi (1548-1626) has been credited with laying the 
foundation for the theory of continued fractions. 
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Since the numerator of each fraction is 1, we refine this notation further as 

[αι;α2,α3,.. .,am] 

where a\ = \_x\ and the semicolon separates the fractional part from the integral part. 
For example, 

_1 \_ \_ \_ 
2 + 3 + 4 + 5 + 6 

1 

[1; 2,3,4,5,6] = 1 + 

= 1 + 
2 + 

1 

3 + 
1 

4 + 
5 + 6 

1393 

~972~ 

On the other hand, finding the continued fraction of this rational number involves 
the repeated application of the Euclidean algorithm: 

1393 = 1 

972 = 2 

421 = 3 

130 = 4 

31 = 5 

972 + 421 

421 + 130 

130 + 31 

31 +6 

6 +1 

Now divide each dividend by the corresponding divisor, save the fractional remainder, 
and then apply substitution for the fractional remainder: 

1 1393 421 _ 
972 ~ + 972~ + 972/421 

= 1 + 
1 

2+ 130/421 
= 1 + 

1 

2 + 
1 

= 1 + = 1 + 

421/130 

1 

2 + 
3 + 

31 

Ï3Ô 

2 + 
3 + 

1 
130/31 

1 + = 1 + 
1 

2 + 2 + 
3 + 3 + 

4 + 
31 

4 + 
31/6 
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= 1 + 
2 + 

3 + 
4 + 

5 + 6 

= [1; 2, 3,4, 5, 6] 

CONVERGENTS OF A CONTINUED FRACTION 

By chopping off the continued fraction for x in Eq. (27.1) at the various plus signs, 
we get a sequence {C*} of approximations of x, where 1 < k < m: 

αι,αι + 
1 

a\ + 
1 

α2 + έ ' 
EachC* = [a\\a2,a-i,..., a*] is a convergent of x, where k > 1 andCi = [a\] = a\. 

For example, consider the Fibonacci ratio 21/13. As a finite continued fraction, 

21 
^ = [1; 1,1,1,1,1, 1] 

We can verify this. The various convergents 

C, - [1] 

c2 = [i 

c 3 = [i 

C4 = [l 

C5 = [1 

C6 = [1 

C7 = [1 

1] 

1,1] 

1,1,1] 

1,1,1,1] 

1,1,1,1,1] 

1,1, 1,1,1,1] = 

are: 

21 

"Ï3 

= 1 

= 2 

= 1.5 

% 1.6666666667 

= 1.6 

= 1.625 

% 1.6153846154 

Obviously, these convergents, C* approach the actual value 21/13, as Jk increases, 
where 1 < k < 7. In fact, the convergents with odd subscripts approach it from 
below, whereas those with even subscripts approach it from above. The convergents 
are alternately less than and greater than 21/13, except the last one (see Fig. 27.1). 

These convergents display a remarkable pattern: 

C , = 
1 2 3 

c4 = c5 I - c7 = 
21 

1 " ' 1 " 2 - 3 _ J 5 "" ¥ " ' 13 
These ratios look familiar. They are, in fact, the ratios of consecutive Fibonacci 
numbers. (We shall return to them a bit later.) It is possible to conjecture and prove 
the value of C„ (see Exercise 9). 



RECURSIVE DEFINITION OF C„ 

2. 
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21/13 

Figure 27.1. 

Evaluating each convergent may seem to be a tedious job . This is where recursion 
becomes useful. 

R E C U R S I V E D E F I N I T I O N O F C„ 

Let C„ = p„ /q„ denote nth convergent of the continued fraction (Eq. 27.1 ). Then we 
can show that 

Pn = anPn-\ + Pn-2 

and 
qn =a„q„-{ +q„-2 

where 
P\ 
— =a\, 
q\ 

Pi j _ 1 
— =α\Λ 
qi at 

and n > 3 . Thus , using the convergents C„_2 and C„_ i , we can easily compute C„. 
For example , consider the continued fraction 2 1 / 1 3 = [1 ; 1, 1, 1, 1, 1, 1], where 

a, = 1 for every i. We have 

c3 = 

c5 = 

El 
<73 

El 
«75 

= - and 
3 

asP4 + Pi 
asq* + 93 

r PA 8 
q4 5 

1-8 + 5 13 
1-5 + 3 8 

as expected. 
In fact, we can use a table such as Table 27.1 to compute C„. The table shows 

the numerators and denominators of all convergents pn/qn of the continued fraction 
[2; 1,3,4, 2, 3, 5]. By direct computation, we can verify that 1915/693 = [2; 1,3,4, 
2,3,5]. 

TABLE 27.1. 
n 

a„ 
Pn 
qn 

1 

2 
1 
1 

2 

1 
3 
1 

3 

3 
11 
4 

4 

4 
47 
17 

5 

2 
105 
38 

6 

3 
362 
131 

7 

5 
1915 
693 
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INFINITE CONTINUED FRACTION 

Suppose we have infinitely many terms in the expression [a\\ 02,03, a4,...], where 
ai > 0 and a, > 1 for 1 > 2. The resulting fraction is an infinite continued fraction. 
In particular, [1; 1, 1, 1, 1,...] is an infinite continued fraction, the simplest of them 
all. 

It appears from our early analysis of corresponding finite continued fractions 
that the nth convergent C„ of the infinite continued fraction [1; 1, 1, 1, 1,...] is the 
Fibonacci ratio Fn+\/Fn. This is indeed the case and can be established using the 
principle of mathematical induction (PMI) (see Exercise 9). Thus 

„ Pn Fn+\ 
C„ = — = —— n > 1 

qn F„ 

This relationship was first observed in 1753 by R. Simson. 
Since 

lim C„ = lim -^— = a 
n—>oo n->oo Fn 

it follows that the infinite continued fraction [1 ;1 ,1 ,1 , . . . ] converges to the Golden 
Ratio. This yields a remarkably beautiful formula for a: 

a = [1; 1,1,1,1,. . .] 

- - -
+ 1 + 1 + 1 + · · · 

1 
= 1 + i 

1 + 
l + — ' -

1+ ' 
1 + · · · 

This is consistent with the fact that the value of every infinite continued fraction is an 
irrational number. 

We can be establish the fact that [ 1 ; 1,1, 1 , . . . ] = a by using an alternate route, 
without employing convergents. To confirm this, let x = [1; 1, 1, 1,...]. It is fairly 
obvious that the infinite continued fraction converges to a limit, so 

[1;1 ,1 ,1 , . . . ] = [1;[1; 1,1,1,. . .]]. 

That is, 

x = [l;x] 

x . l + i 
x 

Therefore, x = a, since x > 0. Thus 

lim C = lim - ^ - = o = [1; 1, 1, 1,...] 
n-»oo n-»oo pn 
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, 
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1 -

0 
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• 

I 

• 

2 

• 
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• 

1 
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• 

1 

• 

1 

6 

• 

1 

• 

1 
8 

• 

1 

my = cn = at 

1 ] * " 

10 

Figure 27.2. 

It follows from the preceding discussion and Chapter 20 that when n is even, 
C = Fn+\/Fn approaches a from above; and when n is odd, it approaches a from 
below. Figure 27.2 exhibits this marvelous behaviour for 1 < n < 10. 

AN INFINITE CONTINUED FRACTION FOR -ß 

In 1951, as a response to J. C. Pierce's article on the Fibonacci series in The Scientific 
Monthly, F. C. Ogg of Bowling Green State University, in a letter to the editor, provided 
a fancy way of converting \Î5 — 1 into an infinite continued fraction, which has an 
interesting by-product: 

sß- 1 = 1 + \ / 5 - 2 = 1 + 
1 

V5 + 2 - 1 + 4 + 75 -2 

= 1 + 
1 

4 + 1 

= 1 + 

V5 + 2 
1 

4 + 1 

= 1 + 

4 + V 5 - 2 
1 

4 + 1 

4 + 
T 

4 + 
= [1;4 ,4 ,4 , . . . ] 

The first few convergents are 1, | , j ^ , ^ Now, divide each by 2. The resulting 
numbers are i , | , i | , y j j , · · · ; so the «th convergent of the infinite continued fraction 
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is Fn/Fn+i, where n φ 3k + 1. Since 

it follows that 

.. F„ 1 V 5 - 1 
hm = — = -β = 

«-00 Fn+\ a 2 

V5- 1 

PELL'S EQUATION 

C. T. Long and J. H. Jordan of Washington State University, in their 1967 study of 
continued fractions, discovered a close relationship among the Golden Ratio, Fn, 
L„, and a special class of Pell's equation. Pell's equation, named after the English 
mathematician John Pell (1611-1685), is an equation of the form x2 — dy2 = N, 
where x, v, d, and N are integers. (Although the equation bears his name, Pell added 
little to the study of such equations. It is so-called due to a mistake by Euler.) 

The following theorems, discovered by Long and Jordan, "provide unusual charac-
terizations of both Fibonacci and Lucas numbers." We omit their proofs in the interest 
of brevity. 

Theorem 27.1. The Pell's equation x2 — 5 v2 = —4 is solvable in positive integers if 
and only if x = L2/1-1 and y = F2„_i, where n>\. ■ 

Theorem 27.2. The Pell's equation x2 - 5 v2 = 4 is solvable in positive integers if 
and only if x = L2„ and y = F2n, where n > 1. ■ 

EXERCISES 27 

Represent each number as a continued fraction. 

1. 51/35 

2. 68/89 

Represent each continued fraction as a rational number. 

3. [2; 3, 1,5]' 
4. [3; 1,3, 2,4, 7] 

Find the convergents of each continued fraction. 
5. [1; 2, 3,4,5] 
6. [1; 1,1, 1,1, 1,1,1] 
7. The second and third convergents of the continued fraction [1; 2, 3, 4, 5, 6] are 

3/2 and 10/7. Find its fourth and fifth convergents. 
8. The eighth and the ninth convergents of the continued fraction [1; 1, 1, 1, 1, 1, 

1, 1, 1] are 34/21 and 55/34. Compute the tenth convergent. 
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9. Let C„ denote thenthconvergentof the finite continued fraction [ 1 ; 1, 1 ,1 , . . . , 1]. 
Prove that C„ = F„+i/F„, n > 1. 

10. Let p„/q„ denote the nth convergent of the continued fraction [1; 1, 1, 1 , . . . , 1]. 
Prove that p„qn-\ - q„pn-\ - (-1)", n > 1. 

11. Using Cassini's formula, prove that lim (C„ — C„-i) = 0. where C„ denotes 
n-»oo 

the nth convergent of the infinite continued fraction [1 ; 1, 1, 1,...]. 



WEIGHTED FIBONACCI 
AND LUCAS SUMS 

In Chapter 5, we found the following summation formulas: 

£ F , = F „ + 2 - 1 (5.1) 
i 

n 

5 3 Li = Ln+2 - 3 (5.6) 

More generally, we would like to find formulas for ]Γ ιυ, F, and ^ "Ί' ̂ Ί'« where the 
1 1 

weights u>i are positive integers. 
To begin with, we would like to find a formula for each, when u;, = i, that is, a 

n n 

formula for Σ 'ft ar>d o n e f°r Σ '^ ' - To derive the formula for the Fibonacci sum, 
1 1 

n n 

let An = Σ ft a n d Bn = Σ 'ft- T n e n 

1 I 

Bn = Fl+2F2+3F3 + --+nF„ 

= ί> + £> + ί> + ·· + ί> 
1 2 3 n 

= An + (A„ - A,) + {An - A2) + · ■ ■ + (A„ - A„-i) 

340 
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Thus 

n-\ n-\ 

= nAn -J2Ai= "(F"+2 - D - £(fi+2 - 1) by (5.1) 

= nFn+2 - n - (Fn + 3 - 3) + (n - 1) = wFn+2 - F„+3 + 2 

£ < F i = « F „ + 2 - F „ + 3 + 2 (28.1) 

Similarly, 

£]JL, · =nLn + 2-L„+ 3+4 (28.2) 

7 
For example, £ / F , = 7F9 - Fw + 2 = 7 - 3 4 - 5 5 + 2 = 185; by direct 

1 
computation, the sum equals 1 · 1 + 2 · 1 + 3 · 2 + 4 · 3 + 5 · 5 + 6 · 8 + 7 · 13 = 185. 

6 

Also, Σ iLj = 6Z/8 - L9 + 4 = 6 · 47 — 76 + 4 = 210, and by direct computation, 
1 

6 

£ i L(-= 1 · 1 + 2 · 3 + 3 · 4 + 4 · 7 + 5 · 1 1 + 6 · 18 = 210. 
1 

n n 

Now that we have formulas for B„ = £ / F, and C„ = £ /L,, we can ask if there 

are formulas for: 
n 

B'n = £ ( n - / + 1)F, = nF, + (fi - 1)F2 + · · · + 2F„_, + F, 
I 

« 
C; = ]T(rc - (' + 1)L, = «Li + (n - 1)L2 + · · · + 2L„_, + L, 

I 

Notice that ß* is the sum in Formula (28.1 ) with the coefficients in reverse order and 
similarly for C*. 

For example, ß* = F, = 1, and ß2* = 2F, + F, = 2 + 1 = 3. Similarly, ß3* = 7, 
Bl = 14, ßj = 26, and B£ = 46. Although these values do not seem to follow an 
obvious pattern, we can easily derive a formula for B* as follows: 

Bn + Β*η=Σ iF, + Σ(η - i + 1)F, 
I I 

n 

= Σν + (n - i + \M 
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I 1 

= (n + l)(Fn+2 - 1) by Formula (5.1) 

B*n = (» + l)(Fn+2 -l)-B„ 

= (n + l)(Fn+2 - 1) - (nF„+2 - F„+3 + 2) by Formula (28.1) 

= Fn+4 — n — 3 

Thus 

Y_(n - i + 1)F, = Fn+4 - n - 3 (28.3) 
! 

Using this formula, B£ = F10 - 6 - 3 = 55 - 9 = 46, as expected. Using the 
same technique, we can be show that 

n 

C; = £ ( n - i + 1)L, = L„+4 - 3n - 7 (28.4) 

For example, by direct computation, J](n -1 +1 )L, = 5L i + 4L2 + 3Z,3 + 2L4 + 

L5 = 5 · 1 + 4 · 3 + 3 · 4 + 2 · 7 + 1 · 11 = 54, and using Formula (28.4), the sum 
equals L9 - 15 - 7 = 76 - 22 = 54. 

Formula (28.1) tempts us to investigate Fibonacci sums with odd integer coeffi-
cients and subscripts, and even integer coefficients and subscripts, that is, the sums 

n n 

53(2i — l)/*2»-i and £(2i)F2l, and the same sums with coefficients reversed. 
1 1 

n 

To derive a formula for C„ = £(2/ — l)F2,_i, we employ Identity (5.2). Let 
1 

Ε„ = Σ F2i-i- Then 
1 

C = F, + 3F3 + 5F5 + · · · + (2w - DF^-y 
n n n n 

= Σ F2'->+2 Σ F2/-'+ 2 Σ F2'-' + · · · + 2 Σ F2'-' 
1 2 3 n 

= En + 2(En - £,) + 2(£„ - £2) + . . . + 2(F„ - £„_,) 
n-t n-1 

= E„ + 2(« - 1)F„ - 2 £ F, = (2n - l)Fn - 2 £ F2; 
1 1 

= (2n - 1)F„ - 2(F2n_, - 1) = (2n - 1)F2„ - 2(F2„_, - 1) 
= ( 2 n - l ) F 2 n - 2 F 2 n _ , + 2 (28.5) 
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4 

For example, C4 = £ ( 2 / - 1)F2,-, = 7F8 - 2F7 + 2 = 7 -21 - 2 · 13 + 2 = 123, 
1 

which can be verified by direct computation. 
Using Formulas 5.2 and 28.5, 

C" + Cn = Σ ( 2 / ~ 1)F2'-' + Σ ( 2 η - 2i + ,)/Γ2'--' 
I I 

= 52[(2i-l) + (2n-2i + l)]F2i-, 
1 

n n 

= £(2n)F2,_, - In £ F2,_, = 2«F2„ 
! 1 

.·. c ; = 2«F2„ - C„ = 2nF2n - [{In - 1)F2„ - 2F2„_, + 2] 

= F2„ + 2F2„_, - 2 = (F2„ + F2„_,) + F2„_, - 2 

= Fln + \ + F2„_| - 2 

That is, 

£ ( 2 « - 2/ + 1)F2,_, = F2n+I + F2„_, - 2. (28.6) 
1 

For example, Ct, = F\ i + F9 — 2 = 89 + 34 — 2 = 121 and by direct computation, 
C* = 9F, + 7F3 + 5F5 + 3F7 + F9 = 9 · 1 + 7 · 2 + 5 · 5 + 3 · 13 + 1 · 34 = 121. 

Using Identity 5.3 and the same technique as in the proof of Formula (28.5), we 
can show that 

n 

£ ( 2 i ) F 2 / = 2(nF2n+, - F2„) (28.7) 
I 

and as in the proof of Formula (28.6), 

n 

Y^{2n - 2/ + 2)F2; = 2F2„+2 - In - 2 (28.8) 

5 

For example, £(2/)F2l· = 2(5Fu - Fi()) = 2(5 · 89 - 55) = 780 and 
I 

4 

£ ( 1 0 - 2/)F2, = 2F,o - 8 - 2 = 2 · 5 5 - 1 0 = 100. We can verify both by 
1 

direct calculation. 
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Interestingly enough, Formulas (28.5M28.8), have analogous results for Lucas 
numbers; we can derive and verify them as illustrated before: 

Π 

£ ( 2 i - 1)L2,_, = (In - \)L2„ - 2L2„-x (28.9) 
1 

Σ(2η - 2/ + l)L2,_i = i.2»+i + i-2„-i - 4n (28.10) 

Y^(2i)L2i = 2(nL2n+l - L2n + 2) (28.11) 

£(2 / i - 2i + 2)L2l = 2L2„+2 -2n-6 (28.12) 
1 

Their proofs employ Identities 5.7, 5.8, and 28.1, and we can establish them using 
induction. 

Interestingly enough, we can extend Identity (28.1) to any Fibonacci sum where 
the coefficients form an arbitrary arithmetic sequence with first term a and common 
difference d. Let 

n 

S„ = £ > + (i - \)d]Fi 
1 

= a(Fn+2 - 1) + d(nFn+2 - F„+3 + 2) - d(Fn+2 - 1) 

= (a + nd - d)Fn+2 - d(Fn+3 -3)-a 

Thus 

J2[a + (i - l)d]F, = (a + nd- d)Fn+2 - d(Fn+3 -3)-a (28.13) 
1 

Formula (28.13) has an analogous result for Lucas numbers also: 

n 

Y^[a + (/ - \)d]Li =(a + nd- d)Ln+2 - d(Ln+3 - 7) - 3a (28.14) 

In particular, Σ Li = L„+2 — 3 and £ iLj = nL„+2 — Ln+3 + 4. 
1 1 
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Let S* denote the Fibonacci sum in Formula (28.13) with the coefficients reversed: 

n 

sn = Σ > + (» - i)d]F, 
1 

Then 
n 

s» + s*n = Σ < [ α + ( ' -!)«*] + [* + ( « - i)d]}Fi 
I 

n 

= [(2a + (n - l)d] £ F, = [(2a + (n - l)rf](Fn+2 - 1) 
i 

.·. 5; = [(2« + (n - l)d](F„+2 - 1) 

-[(a + nrf - rf)F„+2 - a-(Fn+3 - 3) - a] 

= [2a + (n - l)d - (a + nd - d)]Fn+2 

-[2a + (n - l)d] + d(Fn+3 - 3) + a 

= aF„+2 + d(F„+3 - 3) - a - (n - l)d 

Thus 

£ [ a + (n - i)d]F; = aF„+2 + d(F„+3 - 3) - a - (n - \)d (28.15) 
1 

When a = 1 = d, this reduces to the identity 

Y^(n - i + 1)F,· = F„+4 - n - 3 
1 

Using the same technique, we can show that 

J2la + (n- i)d]Li = aLn+2 + d(Ln+3 - 7) - 3[a + (n - l)d] (28.16) 
1 

n 

Using the facts J2 F? = «̂/*"«+! and 
1 

Σ ρ F —\^n if« is even 

Λ/· /+!- j F 2 _ j o t h e r w i s e 

we can show that 
n 

Yya + (i - \)d]Ff = (a+nd- d)F„Fn+l - d(F2
n - / ) (28.17) 
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where 
_ J 1 if n is odd 

10 otherwise 
In particular, this yields the identities 

n 

Y^Ff = FnFn+x 

I 

n 

Σ i Ff = nFnFn+l- F2
n + γ (28.18) 

1 

For example, 

5 

Σ'F,2 = 5F5F6 - Fj + 1 = 5 · 5 · 8 - 25 + 1 = 176 
1 

and 
6 

J2iF? = 6F6^7 - Fl + 0 = 6 · 8 · 13 - 64 + 0 = 560 
1 

n 

Let D* = Σ\α + {η — i)d]Ff, the same sum (28.17) with the coefficients in the 
1 

reverse order. Then 
n 

Dn + D*H = [2a + (n - \)d] ] T Ff = l2a + (» " l)d]F„Fn+i 
1 

D* = [2a + (n - \)d]F„Fn+i - (a + nd - d)FnFn+l + d{F^ - γ) 

= aFnFn+x+d(FÏ-Y) 

Thus 

n 

J2[a + (n- i)d]Ff = aFnFn+l+d(Ft - γ) (28.19) 
1 

In particular, 

n 

£ > - i + \)}Ff = FnFn+i + FÏ-Y (28.20) 
1 

5 

For example, £ (6 - /)]/? = F5F6 + F5
2 - 1 = 5 · 8 + 25 - 1 = 64 

1 
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Fortunately, Formulas 28.17 and 28.19 have analogous counterparts to Lucas 
numbers: 

n 

Σΐα + α- l)d]L2 = (a + nd-d)(LnLn+l - 2) - d(L2
n - 2n - v) (28.21) 

I 

n 

£ [ e + (« - i)d]L] = a(LnLn+l - 2) + d{h\ - v) (28.22) 
I 

where 

— 1 if n is odd 
4 otherwise 

Identity Formula 28.21 yields Σ L1 — LnLn+\ — 2 and 

I 

n 

J^i^=n(LnLn+]-2)-L2
n + v (28.23) 

I 

Identity 28.22 yields 

£ ( n - / + 1 ) ] L 2 = £ , „ £ „ + , - v - 2 (28.24) 

For example, £ iLf = 6(L6L-, - 2) - h\ + 6 = 6(18 · 29 - 2) - 182 + 6 = 2802. 
i 

5 

Likewise, £ ( 7 - i)Lf = 2(L5L6 -2) + L\-\ = 512. We can verify both by direct 

computation. 

EXERCISES 28 

1. Verify Identity 28.1 for« = 7. 
2. Verify Identity 28.2 for n = 7. 

Prove each. 

3. £ ( 2 i ) F a = 2(nF2n+l - F2n) 
1 

4. £ (2n - 2/ + 2)Fa = 2F2„+2 - 2n - 2 

5. Σ ( 2 / - DLa-i = (2n - \)L2n - 2L2„_, 

6. £ (2n - 2( + l)L2i-i = L2n+\ + L2n_x - An 
i 
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7. £(2/')L2l = 2(«L2n+, - L2n + 2) 
1 

8. έ(2η - 2/ + 2)L2l· = 2L2n+2 -2n-6 
1 

9. £ > + (i - \)d]Li =(a+nd- d)Ln+2 - d(Ln+3 -7)-3a 
1 

10. £ > + (n - i)d]Li = aL„+2 + d(Ln+i - 7) - 3[a + (n - \)d] 
1 

11. Σία + (i - \)d]Ff = (a + nd- d)FnFn+l - d(Ff - y), where γ is defined 

as in Formula 28.17. 
In Exercises 12-15, the number v is defined as in Formula 28.22. 

12. ZiLl = nLnLn+i-L
2

n + v 
1 

13. Σ(η - i + \)}L] = LnLn+2 _ 2(n + 1) - v 
1 

14. Σ[α + (ι - l)d]Lj = (a+nd- d)(LnLn+l - 2) - d{L\ - In - v) 
1 

15. f > + (n- i)d]L] = a(LnLn+l - 2) + d(L* - 2n - v) 
1 

Let G, denote the ith term of the generalized Fibonacci sequence. Derive a formula 
for each sum. 

16. £ G , 
1 

17. JZiGi 
1 

18. £ ( „ - , · + i)Gi 
1 

19. £G2 I_, 
1 

20. £ G 2 I 
1 

21. έ(2ΐ - 1)G2,_, 
1 

22. £(2n - 2ί + l)G2i_i 
1 
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SUMS REVISITED 

n 

This chapter continues to explore explicit formulas for S(m) = J^imFi and T(m) = 
i 

n 
Y,imLi, where m > 0. 

i 

We developed the formulas corresponding to m = 0 in Chapter 5 and those 
corresponding to m = 1 in Chapter 28. In fact, from Chapter 7, we have 

n 

I 

The formulas corresponding to m = 2 and m — 3 were developed algebraically 
by P. Glaister of the University of Reading, England, and N. Gauthier of The Royal 
Military College of Canada: 

n 

J2>2Fi = (n+ \)2Fn+2 - (In + 3)F„+4 + 2F„+6 - 8 (29.1) 
i 

£ V L , = (AI + l ) 2 L n + 2 - (2H + 3)L„+4 + 2 L „ + 6 - 1 8 (29.2) 
I 

Formulas for 5(1) and 5(2) were rediscovered by Gauthier using a fascinating 
method involving the differential operator x(d/dx), which, for the sake of brevity, 
we shall denote by V. In addition to giving a general method for computing S(m), 
Gauthier gives an explicit formula for S3 : 

n 

Σ'*η = (« + D3 Fn+2-(3n2+9n+7)Fn+4+{6n+\2)F„+6-6Fn+z+50 (29.3) 
1 

349 
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Interestingly enough, we can employ Gauthier's differential approach to derive a 
formula for T(m). To see this, we need to use Binet's formulas. Also, we will need 
the facts that 1/(1 - a)' = (-a) ' and 1/(1 - βγ = (-/?)''. Suppose we have a 
formula for T(m). Since we can obtain F; from L, by changing β' to —β' and then 
dividing the difference by V5, we can find a formula for S(m) from T(m). To arrive 
at a formula for T(m), notice that L, = a' + β' = (*')*=« + {x')x=ß, which we shall 
abbreviate as L, = (x')a + (x')ß. Let 

" 1 _ x«+i 
/(*) = V x' = x + x2 + --- + x" = — 1 

*— 1 — x 

n 

wherex φ l.Then ψχ = £ i V - 1 , so 
1 

df ^ . , 
J C - — = > IX 

dx ^ 1 

that is, V / = £ '·*'· Similarly, V 2 / = V(V/ ) = £ i2*'. More generally, we have: 
1 1 

n 

Vmf = Y^imxi (29.4) 
1 

where m > 0 and V0/ = / . 
By Formula (29.4), 

-( Î^)-(£*S)-> 
= -(α + 0) + ( α " + , + 0 " + 1 ) - 2 (29.5) 

= — L\ + Ln+2 — 2 

= Ln+2 - 3 = Ln+2 - L2 (29.6) 

which is Formula (5.6). 

We can rewrite this formula as £ L , = (a"+2+/3n+2)-(a2+)ß2).Now change 0'' 
1 

n 

to -ß' and then divide both sides by V3. This yields £ F,- = F„+2 — F2 = Fn+2 - 1. 
I 

In other words, it suffices to change L, to F,· in Formula (29.6). 
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Let m > 1 and g(x) = (1 - x"+ l) / ( l - x). Then Vg = V / , and hence Vmg = 
n n 

Σ imx'. Thus (Vmg)a = Σ ima,, so by Binet's formula, 

£/mL,=(Vmg)ff + (Vmg)/) (29.7) 

This gives us the general formula for computing T(m). Notice that 

«w 
1 „n + l 

1 -x l-x 
go(x) - gn + l(x) 

where g, = x'/(l - x). Then Vg = V(g0 - gn+i) = Vg0 - Vgtt+i, and more 
generally Vmg = Vmg0 - Vmg„+i, which we can find from Vmg,. Thus, we can 
modify Formula (29.7) as 

n 

Σ imLi = [(Vmg0)tt + (Vmg0)ß] - [(Vmgn+1)„ + (Vmg„+l)ß] (29.8) 

Since 

Vg 0 =jc / ( l - j c ) 2 and 

„ X X 

Vg, = t- + 
(+1 

\-x (l-x)2 

X X 

Vgn+, = ( « + !)■: + 
n+2 

l - j c ( l - * ) 2 

So, when w = 1, by Formula (29.6), 

n r 
£ 

[; a 

ι-β)2 

n+2 βη+2 

( π + 1 ) 
|_1 - α + 

an+l 

\-β\ 

+ . ( l - α ) 2 ( l - £ ) 2 . 

= (a3 + 03) + (n + l)(a"+2 + βη+2) - (a"+4 + βη+4) (29.9) 

= L3 + (n + l)L„+2 - L„+4 (29.10) 

= (n + l)Ln + 2 - L n + 4 + 4 

which is Identity (28.2). Changing L, to F, in Eq. (29.10), we get 

n 

Σ'Κ = (" + 1)^+2 - ^«+4 + F3 
I 

= (n + l ) F n + 2 - F n + 4 + 2 

which is Identity (28.1). 
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For the case m = 2, notice that 

V2g, = V(Vg,)=t2^— - ( 2 f + l ) X 
l+\ ,r+2 

+ 

1 -x 

ß 

+ 2-(\-x)2 (l-x) 

( 1 - a ) 2 ' ( l - / ? ) 2 

- ( n + 1)2 

Ι+2Γ—^—+—^—1 
_Γ La-«)3 O-0)3J 

' a " + l ffn+l I 

. 1 - a + 1 -β\ 

(2/i + 3) 
vn+2 

+ 
P n+2 I Γ an + 3 /3"+3 1 

J [ ( l _ a ) 3 + ä ^ T F J L ( l - a ) 2 ( 1 - / J ) 2 

= (a3 + 03) - 2(a5 + /?5) + (n + l)2(an + 2 + βη+1) 

- (In + 3)(an+4 + /S"+4) + 2(a"+6 + /T+6) 

= (Λ + l)2Ln+2 - (2n + 3)Ln+4 + 2L„+6 + L3 - 2L5 

which is Identity (29.2). 
Replacing Lj with Fj, this yields 

J2 i2Fi = (n + l ) 2Fn + 2 - (2« + 3)F„+4 + 2 F n + 6 + F3 - 2F5 

which is Identity (29.1). 
For the case m = 3, it may be verified that 

Then 

(V3g0)a + (V3g0)^ = I —^— 
1_(1 - a 

+ 6 

+ 
ß 

)2 (l-ß)2 

3 «3 

+ 6 
Γ a2 

L(l-a + 
£2 

)3 (1 - ^)3 

+ - y S ) 4 J . ( 1 - a ) 4 ' (1 

= (a3 + /Ö3) - 6(a5 + /35) + 6(a7 + /37) 

= L3 - 6 L 5 + 6 L 7 

Likewise, 

(V3g„+,)a + (V3gn+i)ß = - ( « + l)3L„+2 

+ (3M2 + 9n + 7)Ln+4 - (fin + 12)Ln+6 + 6Ln + 8 
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(29.11) 

Thus, 
n 

£ V L , = (« + l)3L„+ 2-(3«2 + 9« + 7)L„+4 

+ (6« + 12)Ln+6 - 6Ln+8 + L3 - 6L5 + 6L7 

= (« + l)3L„+2 - (3n2 + 9« + 7)L„+4 

+ (6« + 12)Ln+5-6Ln+8 + 112 (29.12) 

Changing Lj to F7 yields the identity 
n 

£ V F , = (« + l)3Fn+2 - On1 + 9« + 7)F„+4 

1 

+ {fin + 12)Fn+6 - 6Fn+8 + F3 - 6F5 + 6F7 (29.13) 

= (n + l)3F„+2 - On2 +9n+ 7)F„+4 

+ (6« + 12)F„+6 - 6Fn+8 + 50 (29.14) 

Clearly, we can continue this procedure for an arbitrary positive integer m. For the 
curious-minded, we give the formulas for T(A) and S(4): 

n 

Y^i4Li = (n + l)4L„+2 - (4«3 + 18n2 + 28« + 15)L„+4 

I 

+ (12«2 + 48«+50)L„+6 

- (24« + 60)L„+8 + 24Ln+10 + L3 - 14L5 

+ 36L7-24L9 (29.15) 

= (n + l)4L„+2 - (4n3 + 18«2 + 28« + 15)Ln+4 

+ (12«2 + 48«+50)L„+6 

- (24« + 60)Lrt+8 + 24Ln+w - 930 (29.16) 

Consequently, 
n 

Σi4Fi = (n + \)4Fn+2 - (4«3 + 18«2 + 28« + 15) F, f«+4 

+ (12«2+48«+50)F„+6 

-(24«+60)Fn + 8 + 24Fn+10 

+ F3 - 14F5 + 36F7 - 24F9 (29.17) 

= (« + l)4F„+2 - (4«3 + 18n2 + 28« + 15)Fn+4 

+ (12«2 + 48«+50)Fn+6 

- (24« + 60)Frt+8 + 24Fn+10 - 416 (29.18) 
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For example, by Formula (29.16), 

5 

£ V L , = 1296L7- 1105L9 + 590L,, - 180L,3+24L,5 - 930 = 9040 
1 

which we can verify by direct computation. 
A few interesting observations about the formulas for S(m) and T(m): 

. Both S(m) and T{m) contain m + 2 terms. 
• The coefficients in S(m) and T(m) alternate in signs and the corresponding 

coefficients in them are identical. 

. The leading term in S(m) is (n +1 )m F„+2, and that in T(m) is (n +1 )mLn + 2. The 
subscripts in the Fibonacci and Lucas sums increase by 2, while the exponent 
of n in each coefficient decreases by one. 

. We can obtain the formula for S(m) from that of T(m) and vice versa by 
switching Fj and Lj. 

• Except for the trailing constant term, we can obtain the formula for S(m — 1) 
from that of S(m). The same is true for T(m) also. 

For example, consider Formula (29.7) for 5(4). The nonconstant coefficients on 
the right-hand side are (w + l ) 4 , - (4n 3 + 18n2+28n +15), 12n2+48w+50,-(24n + 
60), and 24. Their derivatives with respect to n are Ain + l)3, -4(3n2 + 9n + 7), 
4(6n -(-12), 4(—6), and 0. The derivative of/'4 with respect to / is 4/3. Dividing them 
by 4, we get the nonconstant coefficients in 5(3): 

Π 

J2i*F, = (n + l)3Fn+2 - (3n2 +9n + 7)Fn+4 
1 

-(6H + 12)F„+6 + 6 F n + g + * 

where k is a constant, which is consistent with Formula (29.13). 
In fact, k = (V"go)a - (Vmgo)/) in the case of S(m) and k = (Vmgo)a + (Vmgo)ß 

in the case of T(m). For example, when m = 3, k = (V3go)a - (V3g0)/? = F3 -
6F5 + 6F7 = 50, as obtained earlier. 

On the other hand, if we could use the coefficients in S (m — 1 ) to determine those 
in S{m), it would be a tremendous advantage in the study of weighted Fibonacci and 
Lucas sums. The same would hold for T(m) as well. 

EXERCISES 29 

Compute each sum. 
10 

1. Ei2Fi 
1 
10 

2. Σ ' - 2 ^ 
I 
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3. £'3fi 
I 

4. fr3L, 
1 

5. Ei*Fi 
I 

6. £ / 4 L , 
i 

Verify each identity for n = 6. 
7. Identity (29.1) 
8. Identity (29.2) 
9. Identity (29.3) 

10. Identity (29.12) 
11. Identity (29.14) 
12. Identity (29.16) 
13. Establish Identity (29.1) algebraically. 
14. Establish Identity (29.2) algebraically. 



THE KNAPSACK 
PROBLEM 

In this chapter, we investigate the well-known knapsack problem, with Fibonacci and 
Lucas numbers as weights. 

Let G, denote the i'th generalized Fibonacci number. Then, recall that 

n 

/ , G, = Gn+2 — b 

that is, Fn+2 - 1 if G, = F, 
Gi=Li 

f \ΡΛ+ι-\ if« 
4 - ' 1 ^ + 2 - 3 if< 

Consequently, 

G, + G,+i +■■■ + G,+n-i = Σ GJ - Σ G J = Gi+"+' " G i + 1 ( 3 a i ) 
i + n - l i - 1 

THE KNAPSACK PROBLEM 

Given a knapsack of volume S and n items of various volumes, a\,a2,...,an, 
which of the items can fill the knapsack? In other words, given the positive integers 
a\, Ü2, ■ ■ ■, a„, called weights, and a positive integer 5, solve the linear diophantine 
equation (LDE) a\X\ + 02X2 + ■ · · + a„x„ = S, where *, = 0 or 1. This is the 
celebrated knapsack problem. 

356 
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In particular, consider the knapsack problem 

dx\ + Gi+\x2 H l· Gi+n_\xn = G,+„ (30.2) 

where / > 2. By virtue of the Fibonacci recurrence relation, this LDE is solvable 
with (0, 0 , . . . , 0, 1, 1) as a solution. In fact, since G, + Gi+\ + ■ ■ · + G,+n_2 = 
G,+n — G,_i < G,+„, no sum of G,, G,+i , . . . , G,+„_2 can add up to G,+„. Thus 
( 0 , 0 , . . . , 0, 1, 1) is the unique solution, with JC„_J = 1. 

For example, the only solution of x2 + 2*3 + 3x4 + 5x5 + &x6 + \3χη = 21, with 
x6 = 1, is (0,0,0,0,1,1). 

So, is Eq. (30.2) solvable with xn-\ = 0? If yes, how many such solutions does 
the problem have? First, notice that: 

G,+„ = G,'+„_i + G,-+„_2 

= G ,·+„_! + G;+„_3 + G,+„_4 

= G,+„_| + G,+„_3 + G,+„_5 + G,+n_6 

= G/+„_i + G,+„_3 + G,+n_5 + Gj+n-η + G/+„_8 

= G,+„_i + Gi+n_3 + G,+„_5 + Gi+„-j + · · · + G; (30.3) 

Since ι = (/' + n) — n, the right-hand side (RHS) of Eq. (30.3) contains [n/2\ 
additions. Thus, there are [n/2] number of ways of expressing G,+„ as a sum of its 
predecessors through G,. In other words, the knapsack problem (Eq. 30.2) has [n/2} 
solutions, one of which corresponds to x„~\ — 1. 

Theorem 30.1. The knapsack problem G,jt| + Gi+\Xi + · · · + G,+„_ix„ = Gi+n 

has [n/2] solutions, where i > 1. ■ 

For example, F5x\+F6X2-\ h/Mo*6 = ^ι ι has L6/2J = 3 solutions (* | , . . . , X(,)· 
They correspond to the internal nodes in the binary tree in Figure 30.1 and to the three 

A 
A 

A 
F6 F5 

Figure 30.1. 
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different ways of expressing FH in terms of its predecessors through Fy. 

F\l = ^10 + Fg 

= ^Ίο + Fg + F7 

= Fio 4- F% + F(, + F5 

Correspondingly, the three solutions are (0,0,0,0,1,1), (0,0,1,1,0,1 ), and ( 1,1,0,1,0,1 ). 
Theorem 30.1 yields the next result. 

Corollary 30.1. The knapsack problem G\X\ + G2X2 + ■ · · + G„x„ = G„+l has 
l/i/2J solutions. 

For example, F\X\ + F2xi + ■·· + FioJtio = F\\ has [n/2\ = 5 solutions 
( j t i , . . . , x]0). They correspond to the five different ways of expressing F\ \ in terms 
of its predecessors: 

^11 = ^10 + Ft) 

= F10 + F% + Ρη 

= F|o 4- Fg + Ft, + F5 

= F|o + Fg + F(, + F4 + FT, 

= F\o + Fs + F6 + F4 + F2 + Ft 

They are represented by the internal nodes in the binary tree in Figure 30.2. Cor-
respondingly, the five solutions are (0, 0, 0 ,0 ,0 ,0 ,0 , 0, 1, 1), (0,0, 0,0, 0,0, 1, 1, 
0,1), (0,0,0,0, 1,1,0, 1,0, 1), (0,0, 1, 1,0, 1,0, 1,0, 1), and (1,1,0,1,0,1,0,1,0,1). 

FB F7 

F / % 

F2 F, 

Figure 30.2. 

Suppose the RHS of Eq. 30.2 is Gj, where j φ i + n: 

GiXi+Gi+ix2 + --- + Gi+„-ixn = Gj j ^ i + n (30.4) 

If ; < j < i + n — 1, the knapsack problem (Eq. 30.4) is solvable with a solution 
( 0 , . . . , 0, 1, 0 , . . . , 0), where the 1 occurs in position j ; it need not be unique. If; < i, 
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then no solution is possible. Suppose j > i + n. Since G, + Gi+i H (- G,+„_j = 
Gi+n+\ — Gi+\ < Gi+n+\ < Gj, the knapsack problem has no solutions. 

Next we establish that the knapsack problem 

Gixi+G2X2+-+Gnx„ = S (30.5) 

is solvable, where S is any positive integer < Gn+\. This, in fact, follows by 
Theorems 11.1 and 11.2. 

Theorem 30.2. The knapsack problem G\x\ + G2X2 H l· Gnxn = S is solvable, 
where 5 is a positive integer < G„+i. ■ 

For example, x\ + xi + 2*3 + 3x4 + 5*5 + 8*6 + 13*7 = 7 with Fibonacci weights 
is solvable, and since 7 = 2 + 5, (0,0,1,0,1,0,0) is a solution. Likewise, the knapsack 
problem x\ + xi + 2*3 + 3*4 + 5x5 + 8*6 + 13JC7 + 21xg + 34*9 = 48 is solvable; 
since 48 = 1 + 5 + 8 + 34, (1, 0, 0,0, 1, 1, 0,, 0, 1) is a solution. Both problems 
have more than one solution. 

The knapsack problem 2JCI + X 2 + 3 X 3 + 4 X 4 + 7 X 5 +11x6 = 15 with Lucas weights 
is solvable; since 15 = 4 + 11, (0,0,0, 1,0, 1) is a solution; so is (0,1,1,0,0,1). The 
problem 2x 1 + x2 + 3x3 + 4x4 + 7x5 + 11X6 = 10 is also solvable, (0,0,1,0,1,0) being 
a solution. 



FIBONACCI MAGIC 
SQUARES 

For centuries, magic squares were a source of entertainment in royal courts around 
the world. Today, they are still popular with both amateurs and professionals. 

A magic square is a square array of distinct positive integers such that the sum 
of the numbers along each row, column, and diagonal is a constant k; k is the magic 
constant of the magic square. The oldest known magic square is the Chinese magic 
square, lo-shu, shown in Figure 31.1. According to legend, the array was discovered 
around 2200 B.C. on the back of a divine tortoise along the banks of the Yellow River. 
The array was displayed using knots and strings. Lo-shu's magic constant is 15. 

4 

3 

8 

9 

5 

1 

2 

7 

6 

Figure 31.1. 

In 1964, Br. U. Alfred of St. Mary's College, California, initiated an investigation 
of magic squares using Fibonacci numbers, to discover if such magic squares exist. 
Unfortunately, in the following year, J. L. Brown, Jr., of Pennsylvania State University 
proved that there are no magic squares with only Fibonacci entries. 

We shall now confirm this by contradiction. Suppose there are 2 x 2 Fibonacci 
magic squares (FMSs), as Figure 31.2 shows, where the entries are all distinct. Then 
a + b = a + c, so b = c, which is a contradiction. Thus there are no 2 x 2 FMSs. 
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a 

c 

b 

d 

Figure 31.2. 

Let us now assume that there are n x n FMSs, where n > 3. Let F( |, F , 2 , . . . , and 
F,n; F7l, Fy2,..., and Fy„; and F*,, Fkl and F*n denote the elements of the first 
three columns. Then 

F„ + Fh + ■ ■ ■ + F,„ = Fj, + Fh + ---+ Fjn 

= Fkx + Fkl+--- + Fk.=S (say) 

Since they are all distinct, without loss of generality, we can assume that 

F,, > Fh > ■■■ > Fin, F,, > Fh> ■■■ > Fjit, and 

Ft, > Fkl > ■ ■ ■ > Fkn. 

Again, without loss of generality, we can assume that F,, > F,·, > Fkl, so F,, > 
Ft,+2.Then F,,+F,2H \-Fin > F,,.Thus5 > Fkl+2.Since Fkn < ■ ■ ■ < Fkl < Fkl, 

k, 

Fk, + Fk2 + ■ ■ ■ + FK < J2Fi- That is, S = Fkl+2 - 1, by Identity (5.1). Thus 
1 

Fjt>+2 < S < F*,+2 — 1, which is a contradiction. Consequently, there are no n x n 
FMSs, where n > 2. 



FIBONACCI MATRICES 

The application of matrices to the theory of Fibonacci and Lucas numbers yields 
excellent dividends. 

THE g-MATRIX 

Using the properties of matrices presented in the Appendix, we can demonstrate a 
close link between matrices and Fibonacci numbers. To this end, consider the matrix 

Q 
1 1 
1 0 

This matrix, called the Q-matrix, was studied by Charles H. King in 1960 for his 
Master's thesis at what was then San Jose State College, California. Notice that 
IQI = — 1. In addition, we have: 

*-[1ί][ϊ!Η 

1] 

ϊ] 
Likewise, 

Q4 = ] 
We can see a pattern emerging. More generally, we have the following intriguing 
result. 
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Theorem 32.1. Let n > 1. Then 

Q" 
F„ + | Fn 

F„ F„_i 

Proof, [by the principle of mathematical induction (PMI)]. When n = 1, 

F2 F, 
F\ FQ 

■[! = Q 

so the result is true. Now, assume it is true for an arbitrary positive integer k: 

Qk Fk+\ Fk 

Fk Ft_i 

Then 

o*+l = 0 * 0 ' = \ Fk+] Fk 

V V V Fk F*_, 

" [ 
■[ 

Fk+\ + Fk Fk 

Fk + Fk-\ Fk 

Fk+i Fk+[ 

Fk+\ Fk 

][!i] 
] 

Thus the result follows by PMI. 

CASSINI'S FORMULA REVISITED 

Theorem 32.1 provides an alternate proof of Cassini's formula (Identity 5.4), as the 
next corollary shows. 

Corollary32.1. Let« > l.Then F„_|F„+| - F„2 = (-1)". 

Proof. Since |Q| = - 1 , it follows, by Theorem A.25, that |Q"| = ( -1 )". But, by 
Theorem 32.1, |Q"| = Fn+lFn^ - F„2. Thus Fn_^Fn+\ - F2 = (-1)". ■ 

We can apply Theorem 32.1 to derive four new Fibonacci identities, as the next 
corollary shows. They are basically the same. 

Corollary 32.2. 
Fm+n + l = Fm + ]F„ + | + FmFn 

Fm+n = *m + \'n ' 'm'n — \ 

'm+n~\ = 'm'n i *"m — \'n — 1 

(32.1) 

(32.2) 

(32.3) 

(32.4) 
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Proof. Since QmQ" = Qm+n , we have 

Fm + \ Fm 

'm *m — \ 

Fn+\ F„ 
F„ F„_| 

'm+n + l ''m+n 

"m+n * m+n — 1 

That is, 

+ Fr, 
"m*n+\ i 'm — \'n *m'n ι im — 

nF„-\ _ Fm+n + ] Fm+n 

| F „ _ | J L Fm+n Fm + n_i j 

Equating the corresponding entries, the identities follow. ■ 

In particular, let m — n. Then Identity 32.1 yields the well-known formula Fn
2 + 

F„2
+1 = F2n+ , (Identity 5.11), and Identity 32.2 yields F2n = Fn+lFn + FnFn^ = 

F„(Fn+l + F„_,) = FnLn (Identity 5.13). 

Corollary 32.3. 

'm + \'-'n r rmLn—\ — Lm+n (32.5) 

Proof. Replace n with n + 1 in Identity (32.1); and add the resulting formula and 
Identity (32.2): 

Fm+\F„+2 + FmF„+\ = Fm+n+2 

'm+\*n i 'm^n—\ = 'm+n 

We then get Fm + 1(Fn + 2 + F„) + Fm(Fn+i + F„_,) = Fm+n+2 + Fm+n. Using 
Identity (5.14), we get Fm+\Ln+\ + FmLn = Lm+n+\. Changing n to n — 1 yields the 
desired result. ■ 

We can use Identities (32.2) and (32.3) to derive an identity that links both Fibonacci 
and Lucas numbers. To derive it, add the two identities: 

Fm(F„_i + F„+i) + Fn(Fm-\ + Fm+\) = 2Fm+n 

Using Identity 5.14, this yields FmLn + FnLm = 2Fm+n. This has an analogous 
formula for Lm+n also: 2Lm+n — LmL„+ 5FmFn. We invite you to confirm this (see 
Exercise 8). Accordingly, we have the following results. 

Corollary 32.4. 

^•^m+n — 'm^n ι Γη Lm 

^^m+n = L,mLn ·+■ Jrmrn 

(32.6) 

(32.7) 
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THE M-MATRIX 

In lieu of the Q-matrix, consider the closely related M-matrix Λί, studied in 1983 by 
Sam Moore of the Community College of Allegheny County, Pennsylvania: 

M = 
1 1 
1 2 

We can show by PMI that 

ΛΓ 
Fin F2n+ 2/1+1 J 

where n > 1 (see Exercise 19). Then 

M" 

F2n-l 

1 Fln/Fin-X 
FïnlFï„-\ Fi„ 

P2n/F2n-1 1 
2n + \/F2n-\ J 

Since lim (Fi /F^_i) = a, it follows that 
i:-»oo 

M" 
lim 

"-+00 F2n-\ 

1 a l = [ l a 1 
a a2 J [a 1 +(* J 

That is, the sequence [Mn /Fm-x] of Fibonacci matrices with leading entries 1 con-
verges to the matrix 

N a 1 
[ a 1 + a J 

Likewise, the sequence {Q"/F2n-\} converges to the matrix 

Γΐ 4-α α ] 
[ a l j 

CHARACTERISTIC EQUATION 

Let A = (flij)„x„ and I then x n identity matrix. Then the equation \A — xl\ = 0 is 
the characteristic equation of matrix A. Its roots are the characteristic roots of A. 

To determine the characteristic roots of Q", let us first find its characteristic 
equation: 

F„+\ — x Fn 

|Q" - j c / l 
F„ F„-\ — x 

= (F„+l - x)(Fn-X - x) - F„2 

= x — (F„+i + F„-.\)x + F„_ |F n + i 

= x2-L„x + (-1)" 



366 FIBONACCI MATRICES 

by Identities 5.4 and 5.14. Thus the characteristic equation is 

x2-Lnx + (-l)n =0. (32.8) 

Using the quadratic formula, we arrive at the characteristic roots 

_ L . ± > / L ; - 4 ( - I ) " 
* ~ 2 

B u t Z , 2 - 4 ( - l ) n = 5F2, by Exercise 39 in Chapter 5. Sox = (Ln±*/5F„)/2. Since 
a" - ß" = V5F„ and a" + ß" = Ln. Consequently, 

hl±^Il=an and
 L»-^=ß* 

2 2 μ 

Thus we have the following result. 

Theorem 32.2. The characteristic roots of Q" are a" and β". ■ 

Corollary 32.5. The characteristic roots of Q are a and β. ■ 

When n = 1, Eq. (32.8) becomes x2 — x — 1 = 0 , which is the characteristic 
equation of Q. But notice that Q2 - Q - / = O (see Exercise 2). Thus Q satisfies 
its characteristic equation, illustrating the well-known Cayley-Hamilton Theorem, 
which states that every square matrix satisfies its characteristic equation. 

In 1963,1. D. Ruggles and V. E. Hoggatt, Jr., established Identity (5.1) using the 
Q-matrix. To see this, we can use PMI to establish that 

(/ + Q + Q2 + · · · + Q")(Q - / ) = QN+i - I (32.9) 

(see Exercise 3). Since |Q — /1 = — 1 φ 0, Q — / is invertible. Since Q2 = Q + 
Λ Q2 - Q = / ; that is, Q(Q - / ) = / . Thus (Q - / ) " ' = Q. Now multiply both 
sides of Eq. (32.9) by (Q - / ) " ' : 

/ + Q + Q2 + + Q" = (Q"+ 1 - / )Q 

= Qn + 2 - Q 

Equating the upper right-hand elements in this matrix equation yields the desired 
formula, F\ + F2 + F? H l· Fn = F„+2 - 1. 

Ä-MATRIX 

Consider the R-matrix, which corresponds to the Q-matrix: 

- [ i -Î] 
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The R-matrix was introduced by Hoggatt and Ruggles in 1963. Recall that Ln+l — 
F„+i+2Fn<L„ = 2 F n + i - F „ , 5 F „ + i = Ln+, +2L„,and5F„ = 2Ln+\ - L„. Using 
these formulas, we have 

ur%" — Γ1 2 | [ F „ + i F„ \ _\ Ln+\ Ln 1 
Q L2 - I J L ^ Fn.x\-[Ln L„_,J 

Using Theorem A.25, this implies 

M 2 F„+| F„ _ Ln+i L„ 
| 2 —1 | ] F„ F„_| I | Z-„ L„_i I 

That is, Ln+IL„_, - L2
n = (-5)(F„+ lFn_, - F„2) = 5 ( - l ) n + 1 , by Identity (5.4). 

Thus 
L „ + 1 L n _ , - L ^ 5 ( - l ) " + 1 (32.10) 

See Exercise 38 in Chapter 5. 

CASSINI'S FORMULA AND CRAMER'S RULE 

Next we show how we can employ Cramer's* rule for 2 x 2 linear systems to derive 
Cassini's formula. We first review the rule. 

The 2 x 2 linear system 

ax + by = e 

ex + dy = f 

has a unique solution if and only if ad — be φ 0. It is given by 

e 

f 
a 
c 

b 
e 

b 
d 

a 
c 

a 
c 

e 

f 
b 
d 

In particular, consider the system: 

Fnx + F„-{y = F„+1 

F„+\x + F„y = Fn+2 

Since (Fk, F*+)) = 1, by virtue of the Fibonacci recurrence relation (FRR), x = 1 = 
y is the unique solution of this system. Therefore, by Cramer's rule, 

F„ 
Fn + \ 

F„ 
Fn+\ 

Fn+\ 

F„+2 

F„_, 
Fn 

Thus, FnF„+2-F„2
+l = Fn

2-F„_,F„+l .Thatis,FnFn+2-F„2
+1 = -(F„_, Fn + I -F„2). 

'Named after the Swiss mathematician Gabriel Cramer (1704-1752). 
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Let pn = F„_i Fn+i - Fn
2. Then this equation yields the recurrence relation p„ = 

-/>„_!, where p\ = F0F2 - Ff = - 1 . Solving this recurrence relation, we get 
p„ = (-1)" (see Exercise 22). Thus, F„_, Fn+l - F„2 = (-1)", where n > 1. 

Now we turn to vectors formed by adjacent Fibonacci and Lucas numbers. 

FIBONACCI AND LUCAS VECTORS* 

Consider the vectors U„ = (F„+i, F„) and V„ = (Z.„+i, L„). Their magnitudes are 
given by 

|Un|2 = Fn
2

+I + F 2 = F2n+1 

and 

|2 _ r 2 , r 2 _ r < r 2 , Λ,_ i y i + ΐ ι , r« Ε·2 |V„|Z = L i + I + L i = ^ + 1 + 4 ( - 1 ) " + ι ] + [ 5 ^ + 4(-1)"] 

= 5(F2 + F, 

Their directions are given by 

5(F2 + Fn
2
+1) = 5F2n+1 

tanö = 

We shall show later that 

Fn+i 2 

You may notice that 

Fn 

Fn+\ 

I 1 

a 

and tanö = 

and 

Ln+\ 

Ln y/5 - 1 1 

i-n + l 

U0Qn + 1 = (1,0) Γ ίη+2 ίη+ι 1 = (Fn + 2 , Fn+1) = Un + I = U„Q 

Likewise, V0Q"+I = V„+, = V„Q. Besides, 

UmQ" = (Fm+1,Fm)[j£2 F ^ j 
rB+1"j 

rm+\rn+\ + rmfn J 
^71+1^+2 + FmF„ 

— Um + n+i 

by Identity (32.1). Likewise, VmQ" = Vm + n + 1 (see Exercise 29). 

•Throughout this chapter, the ordered pair (x,y) denotes a vector and not the greatest common divisor (gcd) 
of x andy. 
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Let us now return to the R-matrix: 

R = 

Notice that |R| = - 5 φ 0, so R is invertible and 

We have 

V„R = (L„+, 

R- = I 

,,„)[> _]} 

1 2 
2 - 1 

= ( L n + l + 2 L n , 2 L n + i - L „ ) = (5Fn + , ,5Fn) 

= 5U„ 

.·. Vn = (5U n )R- '=5(U n R- ' ) 

= 5 · l-(F„+u Fn)\l
2 J 1 = (F„+1 + 2F„, 2Fn+l - Fn) 

= (ί-η + 1. ^π) 

as expected. Likewise, U„R = V„ and U„ = R_1 V„. 
What is the effect of R on any nonzero vector U = (x, y)l To see this, observe 

that: 

UR = (x, y) ] - (x + 2y, 2x - y) 

.·. |UR|2 = (x + 2y)2 + (2x-y)2 

= 5(x2 + y2) = 5\V\2 

Thus, the Fibonacci matrix R magnifies every nonzero vector by a factor of -s/5. 
To find the effect of R on the slope of U, suppose that the acute angles made with 

the x-axis by the directions of the vectors U and UR are Θ and θ', respectively. Then 
tan Θ = y/x and tan Θ' = (2x - y)/(x + 2y). 

tan(0 + Θ') 
tan Θ + tan Θ' 

1 - tan 0 tan 6»' 

(y)/(jt) 4- (2JC - y)/(x + 2y) = y{x + 2y) + x(2x - y) 

1 - (y/x) ■ (2x - y)/(x + 2y) x(x + 2y) - y(2x - y) 

2(x2 + y2) = 

x2 + y2 

(Note that U φ 0.) 
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Let 2γ be the angle between the vectors U and UR. Then Θ + y = Θ' — y, so 
2γ =θ + θ'. Since 

it follows that 

tan2y = 

that is, tan2 y + tan y — 1 = 0. 

2 tan y 

1 - tan2 y 

2 tan y 

1 — tan2 y 
= 2 

tan y = 
■\±y/5 

Since 2y = tan"1 2 » 63.43°, y % 31.7175°; so, we choose tan y = (>/5 - l)/2 = 
—0, which is the negative of an eigenvalue for Q. Thus the vector that bisects the angle 
between the vectors U and UR has slope — β; it is a vector of the form W = (a*, x). 

Consequently, we have the following result. 

Theorem 32.3. (Hoggatt and Ruggles) The R-matrix transforms the nonzero vector 
U = U, y) into a vector UR such that |UR| = >/5|U| and the bisector of the angle 
between them is the vector of the form (ax, x) with slope —β. ■ 

Corollary 32.6. The R-matrix maps the vector U„ into V„ and V„ into \/5U„. ■ 

AN INTRIGUING FIBONACCI MATRIX 

In 1996, David M. Bloom of Brooklyn College, New York, proposed the following 
problem in Math Horizons: 
Determine the sum 

i.j.k>0 
i+j+k=n 

The solution provided by C. Libis of the University of West Alabama in the February 
1997 issue involved an intriguing, infinite-dimensional Fibonacci matrix: 

Ηθ,η 

H\,n 

H = 
**mtn 
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where each element htj is defined recursively as follows: 

h0j = 0 

hjj = 1 

hu = 0 
h>.j = hij-2 + hi,j-[ +hj-]j-] 

ifj>0 

if 7 > 1 

if i > j 

if / > 1 and j > 2 (32.11) 

As an example: 

Λ2,5 = Λ2,3 + h2,4 + h\A 

= (Λ2.ι + hi,2 + Ai,2) + (Λ2.2 + Ί2,3 + A u ) + F4 

= (0+ 1 + F2) + [1 + (/i2,i + Λ2.2 +Λ1.2) + ^3] + /M 

By the recurrence relation (Eq. 32.11 ), it follows that 

h\j =h]j-2 + hUj-i +h0j-i = Ai,;_2 + Ai.;_i 

where A10 = 0 and A 1,1 = 1. Consequently, Ai „ = F„. Thus 

A2,5 = 2 + [1+ (0 + 1 + F2) + 2] + 3 

= 10 

The condition, h0j — 0 for every j > 0 implies that the top row of matrix 
H consists of zeros; A,·,,· = 1 means, every element on the main diagonal is 1 ; and 
A, ; =0for i > j means the matrix H is upper triangular; that is, every element below 
the main diagonal is zero. The recurrence relation (32.11 ) implies that we can obtain 
every element A,,y by adding the two previous elements A1;_2 and A,,;_| in the same 
row, and the element Α,·_ι,;_ι, which lies just above A,,;_i, where ί > 1 and j > 2. 

Using these straightforward observations, we can determine the various elements 
of H. Thus: 

Fn 

0 
1 

= 2 

3 
4 
5 

0 

0 
0 
0 

0 
0 
0 

1 

0 
1 
0 

0 
0 
0 

2 

0 
1 
1 

0 
0 
0 

3 

0 
2 
2 

1 
0 
0 

4 

0 
3 
5 

3 
1 
0 

5 6 

0 0 
5 8 
10 20 
t\ 

-►9 22 
4 14 
1 15 

7 

0 
13 
38 

51 
40 
56 

8 

0 
21 
71 

111 
105 
176 

0 
34 
130 

233 
255 
487 

0 
55 
235 

474 
593 
918 
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Notice that A3,6 = 22 = 3 + 9 + 1 0 = /i3j4 + A35 + h2,4- See the arrows in the array. 
Notice also that: 

A2.7 = 38 

= 1·8+1·5 + 2·3 + 3·2 + 5·1+8·1 

= F\h\,6 + F2/ll,5 + F3/li>4 + F4/li,3 + F5h\>2 + F6hUi 

7 7 

= X)F,-A,.7_; = ^ F / F 7 _ y 

7=1 7= i 

= Σ ^ 
7,*>1 

y+*=7 

More generally, we have the following result. 

Theorem 32.4. 

h2,n= Σ F'Fk 

7.*>1 
j+k=n 

Proof, (by PMI) When n = 1, the left-hand side (LHS)= A2,i = 0 = 
52 FyF* = RHS. Thus the result is true when n = 1. 

7.*>i 
7+*=i 

Now assume it is true for all positive integers < m, where m > 2: 

A2,m = 5 Z ^ * 
7,*>1 

j+k=m 

Then 

2J '̂F* = L·, FJ Fm+l -J 
j.k>\ j=\ 

j+k=m+l 

= £ F , ( F m _ ; + Fm_;_i) 
7=1 

m m 

= Z2 FjFm-j + Σ FiFm-\-j 
7=1 7=1 

m m — \ 

= £ F, Fm_, + ^ F, Fm_,_y + Fm F_ 
7=1 7=1 
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= h2.m +h2.m-i + Fm bythelH 

= him +/l2.m-l + h\,m 

= ^2,m + l 

by the recurrence relation (32.11 ). Thus, by the strong version of PMI, the formula is 
true for n > 1. ■ 

Since Λjjt = Fk* th's theorem yields the following result. 

Corollary 32.7. 

hl,n = ^ F f A i , « - ; 
i = l 

That is, we can obtain every element fi2,n by multiplying the elements Ai,n_i, 
Ai „_2 Ai.i with weights F\, F2, ■ ■ -, F„-\, respectively, and then by adding up 
the products, as we observed earlier. (Recall that A 1,0 = 0.) 

Corresponding to this corollary, we have a similar result for row 3 of matrix H 
also. It can also be established by PMI, so we omit its proof. 

Theorem 32.5. 

n 

hl,n = 2 _ F-,h2,n-i ■ 
i = \ 

By this theorem, we can obtain every element A3n by multiplying the elements 
A2.n-1.A2.n-2, · · · - Λ2.1 with weights F\, F2,..., F„_i in that order, and then by 
summing them up. For example, 

A3.,, = Σ F' / ,2,7-, 

= F]A2,6 + F2A2,5 + F3A2,4 + F4A2,3 + F5h2,2 + F6h2j 

= 1 - 2 0 + 1 - 1 0 + 2-5 + 3-2 + 5 1 + 8 0 

= 51 

The next corollary provides the answer to the problem proposed earlier. 

Corollary 32.8. 

hXn = Σ F' Fj Fk 

i,j.k>\ 
i+j+k=n 
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Proof. By Theorem 32.5, 

n 

Λ3.Π = / , F,A2, ,_, 
1=1 

i = l j.k>\ 
j+k=n-i 

= Σ F'FJF>< 
i,j,k>i 

i+j+k=n 

For example: 

Λ3.5 = Σ FiFJFk 

i+j+k=S 

= FX Σ pjPk + p-L Σ FJF>< + F* Σ F;F* 
;,*>i Ms ' ;'.*>! 
;+t=4 y+t=3 y'+*=2 

= Fi(FiF3 + F2F2 + F3F,) + F1{F\F1 + F2F\) + F^Fi) 

= 1 ( 1 - 2 + 1 - 1 + 2 · 1) + 1 ( 1 - 1 + 1-1)+ 2(1-1) 

= 9 

as expected. In fact, we can generalize Corollaries 32.7 and 32.8 as follows. 

Theorem 32.6. (Libis, 1997) 

hm,n = 2_, Fihm-\,n-i OT > 2 
i = l 

EXPLICIT FORMULAS FOR h2,„ AND h3,„ 

In the same issue of Math Horizons (1997), the editor, M. Klamkin of the University 
of Alberta, Canada, presented explicit formulas for A2,,, and A3 „ by introducing an 
operator E: 

FAm>„ = Am-n+i 

Then 

E Am,„ = Ehm<n+\ = Am-n+2 

.·. (E — E — l)Am,„ = Am>n+2 — Am_n+i — hmn 

= Am_,,n+, by Eq. (32.11) 

Consequently, (£ 2 - £ - l)mhm,„ = 0. 
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It now follows that /i2,„ must be of the form 

h2,„ = (an+b)F„ + (cn+d)F„-i (32.12) 

and A3,„ must be of the form 

hXn = {an2 + bn + c)Fn + {dn2 + en + / )F„_, 

where a, b, c, d, e, and / are constants to be determined. 
Since h2,\ = 0, «2,2 = 1, «2,3 = 2, and «2,4 = 5, Eq. (32.12) yields the linear 

system: 

a + b = 0 2a+b + 2c + d = 1 

6a+2b + 3c + d = 2 12a + 3i> + 8c + 2d = 5 

Solving this system, we get a = 1/5 = —b, c = 2/5, and d — 0. Thus: 

(« - 1)F„ +2«F„_i 
A2,» = - ^ — (32.13) 

For example, 

6F7 + 14F6 6-13 + 14-8 
A2,7 = = = 38 

Likewise, it would be a good exercise to verify that 

(5n2 - 3« - 2)Fn - 6«Fn_, 
* 3 " = 50 ( 3 2 · 1 4 ) 

For example, 

( 5 - 5 2 - 3 - 5 - 2 ) F 5 - 6 - 5 F 4 1 0 8 - 5 - 3 0 - 3 
«3,5 = ^ = ^ 

= 9 

Since «2,« and «3,,, are integers, it follows that (n — \)F„ + 2nF„_i = 0 (mod 5) and 
(5/j2 - 3M - 2)F„ = 6nF„_i (mod 50). 

AN INFINITE-DIMENSIONAL LUCAS MATRIX 

A similar study of Lucas numbers L„ yields some interesting and rewarding dividends. 
To see this, consider the infinite-dimensional matrix K = (/:,,,), where we define 
recursively each element &, j as follows and i, j > 0: 

( 1 ) * < > . , · = 0 

(2) *,., = 1 

(3) *,·.,·_, = 2 , y > l 

(4) *,-,; = 0 i f y < / - l . 

(5) kij = kij-2 + Kj-\ + kj-\.j-i,i > 1 and j > 2. 
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Condition ( 1 ) implies that row 0 consists of zeros; conditions (2) and (3) imply 
the first two elements in row 1 are 2 and 1 ; by condition (3), the diagonal below the 
main diagonal consists of 2s; and by condition (4), every element below this diagonal 
is zero. We can now employ condition (5) to compute the remaining elements of K: 
add the two previous elements fc,,;-2 and fc,-,7-_i, and then add the element &,_itJ_i just 
above &,·,_,·_! : 

« i - l . y - l 

*iJ—2 * Kij — ] Kjj 

Thus 

v 
Λ 
0 

1 

2 

= 3 

4 

5 

6 

0 

0 

fc. 
1 

0 

0 

0 

0 

1 

0 

1 

t 
^ 

0 

0 

0 

2 

0 

3 

ki 
^ 

0 

0 

0 

3 

0 

4 

8 - » 

| L s 
Ο ^ 

0 

4 

0 

7 

15 

15 

^ S 
Ο ^ 

5 

0 

11 

30 

35 

24 

kf k 

6 

0 

18 

56 

80 

66 

35 

k l ' 

7 

0 

29 

104 

171 

170 

110 

48 

8 · · · 

0 

47 

189 

355 

407 

315 

169 

* - Lucas numbers 

All twos 

Using the recursive formula, 

kl,n = k\_„-2 + k\x„-\ + &0,n-2 

= *l,B-2 + fcl,n-l + 0 

= *l,n-2 + &l,n-l 

where /fci.o = 2 and &u = 1. Thus k\<n = Ln, so row 1 consists entirely of Lucas 
numbers. 
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Here is an interesting observation: 

k2J = 104 

= 1 · 1 8 + 1 · 1 1 + 2 · 7 + 3-4 + 5 · 3 + 8 · 1 + 13·2 
7 

= Σ/Γ;*ι.7-ν = Σ F'Lk 

I j,k>0 
j+k=l 

More generally, we have the following result, which we prove by strong induction. 

Theorem 32.7. (Koshy, 1999) 

*2,«= Σ FjU (32.15) 
j.kiO 

j+k=n 

Proof. When n = 0, each side equals 0, so the result is true. 
Now assume it is true for every nonnegative integer < m: 

kl.m = Σ FJLk 

j.k>0 
j+k=m 

Then 

m + \ 

Σ F'Lk = 2lFiLm+x-i 
j,k>0 j=0 

j+k=m + ] 

m 

= 2_, Fj(Lm-j + Lm-j-{) + Fm+\L0 

0 

m m 

= 2_, FjLm-j + 2^ FjLm-j-\ + Fm+\L0 

0 0 

m m—I 

= 2 ^ FjLm-j + 2_^ FjLm-j-\ + FmL_i + Fm+\L0 

o o 

= 2̂,m + &2,m-l + 2Fm + 1 — Fm 

= k2,m + k2,m-\ + k\,m since 2Fm+\ - Fm = Lm. 

= kim+\ 

by the recurrence relation. Thus, by strong induction, the formula holds for all n > 0. 
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Since k\,„ = L„, we can rewrite Formula (32.15) as 

k2,„ = Σ Fjkij (32.16) 

j+t=n 

In words, every element k2iK can be obtained by multiplying the elements Jfc|,n_i, 
fci,„_2,..., *i,i in the previous row with weights Fit F2, ..., F„_i, respectively, and 
then by adding up the products, as we observed earlier. 

As in Theorem 32.7, we can prove that 

n 

IC3,n = £ fl*2..-i:= Σ FiFJLk ( 3 2 · 1 7 ) 

0 i.j,k>0 
i+j+k=n 

For example, 

*3,5 = ^0*2,5 + Fik2,4 + F2k2,3 + F3k2<2 + F4k2j + F5k2i0 

= 0 - 3 0 + 1 · 15+ 1 ·8 + 2 · 3 + 3 · 2 + 5 · 0 = 35 

Formulas (32.15) and (32.17) are in fact special cases of the following result, which 
we can establish also using strong induction. 

Theorem 32.8. (Koshy, 1999) 

n 

km,„ = Σ Fikm-\.n-i m>2 (32.18) 
i=0 

Proof. Assuming that the result is true for all m, we shall first prove that it is true 
o 

for all n > 0. Since fcm,o = 0 = £ F,7:m_i,_,, the result is true when n — 0. 
o 

1 

When n = 1, LHS = kmA and RHS = Σ fi*«-i.i-/ = fi>*m-i,i + F,*m_i,0 = 
o 

0 + £m_i,o = km-\fi. Since k2i\ = 2 = &i,o and&,j = 0 = &,-i,o for/' > 2, it follows 
that *m,i = km-\fi for m > 2. 

Now assume the result is true for all integers t, where / > 2: 

km.t — / , ''ikm-l.t-

i=0 

Then: 

(+1 i+1 

2_^ Fikm-\,,+\-i = / . / ^ f c -L i - i - i +£„,_!,,-,■ +km-2j-j) 
0 0 

r+1 r+I (+1 

= Σ F/fcm_i,,_/_i + £ ] F,fem_i,,_, + ^ Fikm-2,,-i 
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Then 

( - 1 t t 

= Σ Fik>»-1 ·'-'-' + Σ F'km-\.i-i + Σ Fik'n-2.t-l 
0 0 0 

= *m,f —I + ^ffl.i + *m —I,/ 

= *m,r + l 

Thus the result is true for all n > 0. 
On the other hand, assume that Eq. (32.18) is true for all n > 0. We shall prove 

that it is true for all m > 2. It is true for m = 2 by Eq. (32.15), and for m = 3 by 
Eq. (32.17). Assume it is true for all integers < t, where / > 2: 

n 

0 

n n 

2_^F'k'.n-i — / ,Fi(kt,n-j-2 +kl.n-\-i + &f- l ,n- l - i ) 
0 0 

n n n 

= Σ Fiki»-'-2+ Σ Fik>·"-'-' + Σ /r'*'-'."-i-' 
0 0 0 

n—2 /( — I «—1 

= 5Z Fik',n-i-2 + ^ Fikl,n-\-i + Σ F<kt-l.n-l-i 
0 0 0 

= £/ + l.n-2 + fcf+l.n-l + ^ι.π-Ι 

Thus the result is true for all m > 2 also. ■ 

For example, 

5 4 

&4.5 = Σ Fik3^-i = Σ fi*3.5-i 
0 1 

= F|*3,4 + F2*3,3 + F3k3.2 + F4k3J = 15+ 5 + 4 + 0 = 24 

EXPLICIT FORMULAS FOR *2,„ AND k3,„ 

Row 2 of matrix K contains an intriguing pattern: 

jk2j0 = 0 = 1 - 0 

k2l = 2 = 2 - 1 

k22 = 3 = 3 - 1 
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jfc2l3 = 8 = 4 - 2 

k2A = 15 = 5 - 3 

t 
: Fibonacci numbers 

So we conjecture that k2,n = (n + l)Fn. The following theorem in fact confirms it 
using strong induction. 

Theorem 32.9. (Koshy, 1999) 

k2,„ = (n + l)Fn (32.19) 

Proof. Since A:2,o = 0 = (0 + l)Fo, the result is true for n = 0. Now assume it is 
true for all integers < f, where t > 0. Then 

(/ + 2)F,+I = (f + 2)(F, + F,_,) 

= f F,_, + (/ + 1)F, + F,+ 2F,_i 

But F, + 2Fr_i = F,+1 + F,_, = L,\ 

.·. (t + 2)F,+1 = iF,_, + (ί + 1)F, + L, 

= h,i-l +*2,i +*l,r 

= h.t+i 

Thus, by strong induction, Formula (32.19) is true for all n > 0. ■ 

We can also establish Formula (32.19) by assuming that k2,n is of the form 
(an + b)Fn + (en + d)Fn_x. Thus 

n 

*2,„ = (ii + 1 ) F„ = Σ Fj L„_j (32.20) 
o 

Again, k-j,„ must be of the form (an2+bn + c)Fn + (dn2 + en + f) F„_ i. Using the 
initial values of £3,0 through fc3i5, we see that a = 1/10 = b, c = —1/5 = — d, e = 
2/5, and / = 0. This yields 

(n2 + n-2)Fn+2n(n + 2)Fn-i 
* 3 · " - 1 0 

Since F„ + 2F„_i = Ln, we can rewrite this as 

(n + 2)(wL, - F„) 
*3,n = JO (32.21) 

For example, 

9(7L7 - F7) 9(7 · 29 - 13) 

* 3 · 7 = — i ö — = i ö — = m 

as expected. It follows from Eq. (32.21) that (n + 2)(nL„ - F„) = 0 (mod 10). 
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More generally, suppose we construct a new matrix G that also satisfies conditions 
(1), (4), and (5), and two new conditions: 

(2') Gu=a 

0 ' ) Gh2 = b 

where a and b are arbitrary integers, and G\,o — b — a. Then 

Row 1 of G consists of the generalized Fibonacci numbers (GFNs) G„; when a = 
1 = b, G„ = F„; and when a = 1 and b = 3, G„ = L„. 

We can extend Formula (32.18) to G, as the next theorem shows. Its proof follows 
the same lines as in Theorem 32.8, so we skip it. 

Theorem 32.10. (Koshy, 1999) 

n 

Gm,n = Σ FiGm-Un-i m>2 (32.22) 
1=0 

■ 

For example, 
5 4 

G3.5 = ^ ^ ^ 2 , 5 - 1 = / , FjGi^-j 
0 1 

= F\G2A + ^2^2,3 + F3G2.2 + ^4^2,1 

= 5b + (3b -a) + 2b + 3(b - a) = \3b - 4a 

In particular, when m = 2 and m = 3, Formula (32.22) yields 
n n 

Gl,n = 2_, FiGl.n-i = 2 ^ FiGn-i 
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and 

h,n - Y_/FiG2,n-,■■ = Σ FjFjGk 
i,j.k>0 

i+j+k=n 

THE LAMBDA FUNCTION 

The lambda function λ of a matrix was studied extensively by Fenton S. Stancliff, 
a professional musician. We can use the lambda function coupled with Fibonacci 
matrices to derive a host of new Fibonacci identities. 

Let A = (α,;)„χη· Let A* = (a,y + l ) n x n . Thus A* denotes the matrix obtained by 
adding 1 to every element of A. Then λ(Λ) = \A*\ — |Λ|, the change in the value of 
the determinant. For example, let 

Then 

' ·"[ ' "fl+1 
c + 1 

a+\ 
c + 1 

b+\~ 
d+l 

b+\ 
d+l \A*\ 

= (a + l)(d + I) - (b + l))(c + I) 

= (ad - be) + (a + d - b - c) 

.·. λ(Λ) = a+d-b-c 

Suppose we add a constant k to each element in A. Then 

\A*\ = 

\A* 

a+k b+k 
c+k d+k 

(ad -bc) + k(a+d-b-c) 

\A\+kk(A) 

In particular, let A = Q". Then |(Q")*I = ΙΟΊ + kHQ")- But λ(0") = Fn+l + 
F„_i - 2F„ = F„_i - F„_2 = F„_3. Therefore, by Cassini's formula, |(Q")*| = 
(-l)"+fcF„_3. 

Now let k = F„.Then 

That is, 

Fn+\ + F„ 
F„ + Fn 

F„+2 
2Fn 

F„ + Fn 

Fn-\ + F„ 
= (-1)" + Μ _ 3 

2Fn 

Fn+\ 
= ( - i r + FnF„_3 
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This yields the Identity 

4F„2 = Fn+2Fn+[ - F„Fn.3 + ( - ! ) " (32.23) 

THE P-MATRIX 

The Fibonacci matrix 

P = 
0 0 1 
0 1 2 

Ll 1 1 

was studied by Marjorie Bicknell and V. E. Hoggatt, Jr., of San Jose State College, 
and Terry Brennan of Lockheed Missiles and Space Company. As in the case of the 
Q-matrix, let us study its powers and look for any pattern: 

P2 = 
1 1 I 
2 3 4 

Ll 2 4. 
PJ = 

1 2 4 
4 7 12 
4 6 9 

P 4 = 
4 6 9 

12 19 30 
L 9 15 25. 

Is a pattern observable? Can we conjecture P"? The pattern is not that obvious, so 
keep trying before reading any further. 

Notice that: 

r- F2 

p = 
o 

2F0F, 
LF,2 

foF, 

FxF2 

F2
2 - FoF, 

P J = 

F? ■ 

2F,F2 

n . 
TFl 

2F2F3 

F 2 

P 2 = 

-Ff FiF2 F\ 

2F] F2 Fj — F] F2 2F2F3 

. F 2 F 2 F 3 F 2 

F2F3 F3 

Fl-F2F3 2F3F4 

F3F4 F 2 

and so on. 
Clearly, a pattern emerges. Can we now predict P" ? 

We can show by PMI that 

pn 

F2 

rn-\ 
2F„_ 

F 2 

\FH 

Fn-\Fn 

F 2 — F 

^π^ίΐ + Ι 

|F B 

F 2 

2F„F„+i 

F 2 

Let 

Then 

λ(Λ) 

A = 

a + e -
d + h 

a b 
d e 
g h 

b-d 
-g-e 

b+ f - c - e 
e+i-h-f 
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(see Exercise 31). In particular, let A = P". Then 

HP") 
F2n-x + FÎ+l-AFn-XFn 2F„_,Fn + 2FnFn+x - F„2 - F„2

+1 

3F„_,Fn + FnFn+i - F„2 - F2
+ 1 2F2

+1 - 3F„_,F„ - FnF„^ 

Notice, for example, that 

2Fn_,F„ + 2FnFn + 1 - F 2 - F2
+ 1 = 2F„(F„_1 + Fn+1) - (F2 + F2

+1) 

= 2F„LM — Fm+i 

— 2F2„ — F2„+i 

= Fin — (Fln+l — Fjn) 

= F2n — F2„-\ 

= F2n_2 

We can simplify the other expression entries in λ(Ρ") likewise (see Exercises 40-42). 
The resulting determinant is 

λ(Ρη) = 
Fln-i F2„_2 

- F 2 _ 2 ( - 1 ) " - ^ _ 2 ^ _ , 

= F 2 „_ 3 [ ( - i r - Fn_2Fn_,] + F2_2F2n_2 

= {-\)n(Fl_x - Fn_3F„_2) after simplification 

= ( -1 )" (center element in P"~2) 

EXERCISES 32 

1. Let Q denote the Q-matrix. Prove that Q" = F„ Q + F„ _ i / , where / denotes the 
2 x 2 identity matrix. (Notice the similarity between this result and the formula 
a" = Fna + F„_,.) 

2. Show that Q2 - Q - / = 0. 

3. Prove that (/ + Q + Q2 + · · · + Q")(Q - /) = Qn + 1 - / , where n > 1. 
4. Using Identity (32.6), prove Identity (32.7). 

Prove each. 
5. Fm+„ = Fm+iF„ + FmF„_i 
6. Lm+n = Fm+iLn + FmLn-\ 

8· 2Lm+„ = LmLn + 5FmFn 

9. 2 F m _ n = ( - l ) " ( F m L „ - F n L m ) 

10. 2Lm_„ = (-\)"(LmLn -5FmFn) 
11. 5{LmLn + FmFn) = 6Lm+n + 4(- l) nLm_„ 
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12. 5(L,„L„ -FmFn)= ALm+n +6(- l )"L m_„ 
13. Fm.n = (-l)"(FmFn.l - Fm_,F„) 
14. Lm-n — (—\)"(Fm+]Ln — FmL„+\) 

15. Fm+n + F m—n — 

16. Fm+n — Fm-n = 

' '* ^m+n " r Lm—n = 

18. Lm+n — £-„_„ = 

19. Let M = 

J*A„ = F„ 
[Ü] 

Fn 

LmFn 

FmLn 

LmFn 

\5FmFn 

[ *m *-ΊΙ 

\LmFn 

[FmLn 

if n is odd 
otherwise 

if n is odd 
otherwise 

if n is odd 
otherwise 

if n is odd 
otherwise 

. Prove that M" = 

(Rabinowitz, 199c 

Fi„-\ 

I). 

F2n 

F2n+\ 

20. Express A2n in terms of An and A„+|. 
*21. Express A2n in terms of An and <4„+i only. 
22. Let pn+\ — —pn, where pi = —1. Prove that p„ 
23. Consider the linear system 

(-1)". 

G„x + Gn-\y = Gn+\ 

G„+\x + G„y — G„+2 

where G\ = a and G2 = b. Use Cramer's rule to prove that G„-\G„+] — G2„ = 
M(-D". 

24. Use Exercise 23 to deduce a formula for L„-\Ln+l — L2
n. 

Let A be a 2 x 2 matrix and V„ a 2 x 1 matrix such that Vn+) = AV„ (Thoro, 1963). 
Find V„ in each case. 

25. A = 

26. A = 

27. A = 

"1 
1 

"2 
1 

"0 
1 

Γ 
0 

Γ 
1_ 

1 
- 1 

v, = 

v, = 

v, = 
Let Um = (Fm+i, Fm) and Vm = (Lm+U Lm). Verify each. (Ruggles and Hoggatt, 
1963) 
28. UoQ"+1 = U„+l = U„Q 
29. VmQ" = Vm+n+1 

30. FindÀ(Q"). 
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" a b c 
31. LetM = d e f 

-g h i J 

32. Compute |P\. 
33. FindX(P). 

Find λ(Μ) (Bicknell and Hoggatt, 1963). 

Use the matrix T, _ Γ Ln+l Ln 1 to answer Exercises 34 and 35. 

34. Compute |R|. 
35. FindX(R). 

Let A = \ G"+k J?" ] and B = \ G"+* + '" _G" +, ' ' . 1, where Gn denotes the 

nth generalized Fibonacci number. Compute each. 
36. |A| 
37. λ(Α) 
38. | 5 | 
39. Using PMI, establish the formula for P", where P denotes the P-matrix. 

Prove each. 
40. F„2_, + F2

+1 - 4F„_,Fn = F2n_3 

41. F„ + Fî+x - 3^,-1 F„ - F„Fn+l = F2_2 

42. 3F„_,F„ + F.F,,-, - 2F„2
+1 = F^F^ - (-1)" 



FIBONACCI 
DETERMINANTS 

In Chapter 3, we found that Fibonacci numbers and Lucas numbers occur in graph 
theory; specifically, they occur in the study of paraffins and cycloparaffins. We now 
turn our attention to an additional occurrence of Lucas numbers in graph theory, and 
then to some Fibonacci and Lucas determinants. 

AN APPLICATION TO GRAPH THEORY 

In 1975, K. R. Rebman of California State University at Hay ward showed the occur-
rence of Lucas numbers in the study of spanning trees of wheel graphs. Before we 
can present the main result, we need to lay groundwork with two lemmas and some 
basic vocabulary. 

Lemma 33.1. Let A„ denote the n x n matrix 

3 - 1 
1 3 
0 - 1 

0 
- 1 

3 

0 
0 

- 1 

0 0 0 0 - 1 

0 
0 
0 

- 1 
3 

Then | A„ | = F2n+2. 

Proof, [by the principle of mathematical induction (PMI)] Since \A\\ = 3 = Ft 
3 - 1 

= 8 = F(„ the result is true when n = 1 and n = 2. and |A2| = 
-1 

387 
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Assume it is true for every positive integer k < n. Expanding \A„\ by the 
first row, 

\A„\ = 3|A„+I| + 

-1 - 1 0 · · · 
0 3 - 1 · · · 

0 0 0 · · · - 1 3 

= 3\A„.i\ - \A„.2\ 

= 3F2(„-\)+2 — /*2(n-2)+2 by the inductive hypothesis 

= 3F2„ — F2n-2 = Fzn+2 

Therefore, the result is true for every n > 1. 

Lemma 33.2. Let B„ denote the n x n matrix: 

3 - 1 0 0 ·· 
- 1 3 - 1 0 ·· 

0 - 1 3 - 1 ·· 

- 1 0 0 0 · · 

0 - 1 
0 0 
0 0 

3 - 1 
- 1 3 

where B\ = [1] and B2 = Then|Än| = L 2 „ - 2 . 

Proof. Since |Z?i| = 1 = L2 — 2 and \B2\ = 5 = L4 — 2, the result is true when 
n = 1 and n = 2. So assume that n > 3. 

Expanding \Bn\ by the first row, \Bn\ = 3|A„_i| + |ÄB_,| + (- l )n + 2 |5„_, | , 
where 

Rm = 

and 

- 1 
0 
0 

0 

- 1 
0 
0 

0 
- 1 

- 1 
3 

- 1 

0 

3 
- 1 

0 

0 
0 

0 
- 1 

3 

0 

- 1 
3 

- 1 

0 
0 

0 ■■ 

0 ■· 

- 1 ■· 

0 ·· 

0 ·· 
- 1 ·· 

3 ·· 

0 ·· 
0 ·· 

0 
0 

• 0 

3 
• - 1 

0 
0 
0 

3 
• - 1 

0 

0 
0 
0 

- 1 
3 

0 
0 
0 

- 1 
3 

- 1 



A FEW BASIC FACTS FROM GRAPH THEORY 389 

Expanding \Rm\ by the first column, 

\Rm\ = -\A„ + (-D" 

1 
3 
1 

0 
- 1 

3 

0 · 
0 · 

- 1 · 

• 0 
• 0 
• 0 

0 
0 
0 

0 0 0 ··· 0 - 1 

= -|Am_,| + ( - l n - l ) " 1 - ' = -|Am_,| - 1 

= ~F2m - 1 

Expanding \Sm\ by the first column, 

ISml = ( - Ι Γ + (-Ι)(-Ι)™-ΊΑΜ_,Ι 

= ( - ΐ Γ ( ^ 2 » + ΐ) 

.·. Iβ»I = 3F2„ + (-F2 m - 1) + ( - ! ) " ( - îy - ' iF i to - j + 1) 

= 3F2n - 2F2„_2 - 2 

= Lin - 2 

A FEW BASIC FACTS FROM GRAPH THEORY 

At this point, we need to introduce a few basic terms and some fundamental results 
from graph theory for clarity and consistency. 

We can represent algebraically a graph G with n vertices by the incidence matrix 
A(G) = (au)nx„, where 

j l if 
^ = ( o ot 

there is an edge from vertex / to vertex j 
otherwise 

For example, the incidence matrix of the graph in Figure 33.1 is 

1 
2 
3 
4 

1 
-o 

1 
0 

_0 

2 
1 
0 
1 
1 

3 
0 
1 
0 
1 

4 
o-
1 
1 
0_ 

The degree of a vertex v, denoted by deg(v), is the number of edges meeting at u. 
For instance, the degree of vertex 2 in Figure 33.1 is three. 

Let D(G) = (dij)nxn denote the matrix defined by 

d,j -
deg(i) if/ = y 
0 otherwise 
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Figure 33.1. 

For example, for the graph in Figure 33.1, 

1 
= 2 

3 
4 

1 
Γ1 

0 
0 

Lo 

2 
0 
3 
0 
0 

3 
0 
0 
2 
0 

4 

°1 0 
0 
2 j 

Recall from Chapter 5 that a spanning tree of a graph G is a subgraph of G that is 
a tree containing every vertex of G and its complexity k(G) is the number of distinct 
spanning trees of the graph. For any graph G, k(G) equals the determinant of any one 
of the n principal (n — l)-rowed minors of the matrix D(G) — A(G). This remarkable 
result was established by the outstanding German physicist Gustav Robert Kirchhoff 
(1824-1887). 

For example, using the graph in Figure 33.1, 

) = 

- i --1 
- 1 3 

0 - 1 
. 0 - 1 

3 - 1 - 1 
1 2 - 1 
1 --1 2 

= 

0 
- 1 

2 
- 1 

3 

0 
- 1 
- 1 

2 

Since 

it follows that the complexity of the graph is three, as we found in Chapter 5. 

THE WHEEL GRAPH 

Let n > 3. The wheel graph W„ is a graph with n + 1 vertices; n of them lie on a 
cycle(the rim) and the remaining vertex (the hub) is connected to every rim vertex. 
Figure 33.2 shows the wheel graphs W3, W4, and W5. 

We are now ready for the surprise. 

Theorem 33.1. k(G) = L2„ - 2. 
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W, 

Figure 33.2. 

Ws 

Proof. Let us denote the rim vertices by t>i through vn, and the hub vertex by υΒ+ι. 
Then 

deg(i;,) = 

Consequently, 

D(Wn)-A(W„) 

ifi φη + 
otherwise 

0 1 
1 0 
0 1 

0 
0 0 

0 
1 
0 

0 

0 
0 
1 

0 

·· 0 
·■ 0 

·· 0 

0 
■■ 1 

1 
0 
0 

1 
0 

An 

- 1 - 1 - 1 

To compute k(W„), any principal (« — l)-rowed minor will suffice. So deleting row 
(n + 1) and column (n + 1), we get k{W„) = \An\ = L2n - 2 . ■ 

For example, WT, has L(, — 2= 18 — 2 = 16 spanning trees. Figure 33.3 shows all 
of them. 

Theorem 33.1 was originally discovered in 1969 by J. Sedlacek of The University of 
Calgary, Canada, and then rediscovered two years later by B. R. Myers of the Univer-
sity of Notre Dame. At the 1969 Calgary International Conference of Combinatorial 
Structures and their Applications, Sedlacek stated the formula as 

k(Wn) = 
'3 + v/5N V5̂  

In contrast, Myers gave it as k(W„) = F2„+2 - /72n-2 - 2 in a problem he proposed 
in 1972 in The American Mathematical Monthly. Obviously, either formula can be 
rewritten in terms of the Lucas number Li„. 
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Figure 333. 

THE SINGULARITY OF FIBONACCI MATRICES 

Now we turn our attention to the singularity of a class of Fibonacci matrices, but first 
a definition. A square matrix A is singular if | A | = 0 . For example, the matrix [ g * ] 
is singular since |Λ| = 3 - 8 — 6-4 = 0. 

A matrix Mn = (ajj)nxa is called the Fibonacci matrix if it contains the first n2 

Fibonacci numbers such that a\\ = F\,a\z = Fi,..., a\„ = F„, ai\ = Fn+\,..., 
and ann = Fn2. Thus α,; = F(l_1)n+;·, where 1 < /, j < n. 

For example, M\ = [1], 

Mi ■[Ü] Af3 = 
1 1 2" 
3 5 8 

13 21 34. 
and M4 = 

Γ 1 1 2 3 
5 8 13 21 

34 55 89 144 
L233 377 610 987. 

Clearly, |Af,| φ 0 and |Af2| φ 0. But 

|Λ/3| = 
1 0 0 
3 2 2 

13 8 8 
= 0 

Using elementary column operations, it is easy to verify that \M^\ = 0. Thus both 
M3 and M» are singular matrices. 
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More generally, we have the following theorem, which was observed in 1995 
by Graham Fisher, then a student at Bournemouth School, England. Before we can 
present its proof, we need the next lemma, which was proposed as a problem in 1969 
by D. V. Jaiswal of Kolkar Science College, Indore, India. 

Lemma 33.3. Let m,n, p,q, and r be positive integers, and G„ the nth generalized 
Fibonacci number. Then 

Gq 

Gr 

^ p+m 

Gq+m 

Gr+m 

»J p+m+n 

Gq+m+n 

Gr+m+n 

= 0 

Proof. Since Gm+n — Gm Fn+\ + Gm—\ Fn (see Chapter 7, Exercise 27), it follows 
that 

Gk+m+n — Gk+mFn + \ + Gk+m-\F„ (33.1) 

Using Eq. (33.1), we can write the given determinant D as 

D = Fn + 1 
Gr 

= Fn+1 -0 + F„ 

'n G 

*~> p+m 

Gq+m 

Gr+m 

Gn 

Vp+m 

Gq+m 

Gr+m 

Gp+m 

Jq+m 
Gr Gr-\ 

= F„ 
p+m 

*q+m 
Gr ■+m 

Gq+m-\ 

Gr+m-l 

+ Fn 

G 

Gq 

Gr 

p + m - 1 
Jq+m-) 
Jr+m-\ 

<-'p+m 

Gq+m 

Gr+m 

" p + m - 1 

Gq+m-\ 

Gr+m-\ 

Subtract the third column from the second: 

= F„ 
Gr 

' p+m-2 

~>q+m-2 

Gp+m-l 

Gq+m-] 

Gr+m-7 Gr+m-\ 

Subtract the second column from the third: 

= F„ 
'p+m-2 O p+m-3 

'q+m-2 
Gr Gr +m-2 

'-'q+m-i 

Gr+m-3 

Continuing like this, we can reduce the subscripts of the elements in columns 2 and 3 
further. At a certain stage, when m is even, columns 1 and 2 would be identical; when 
m is odd, columns 1 and 3 would be identical. In both cases, D = 0. ■ 

This lemma has several by-products (see Exercises 2-5). 
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Theorem 33.2. \M„\ = 0, where n > 3. 

Proof, (by PMI) Since the result for n — 3, assume it is true for n = k: \Mk\ = 0, 
where k > 3. 

Consider M^+i. Expanding \Mk+\ | by the first row and the resulting cofactors, we 
can express \Μ^+\ \ as a linear combination of a host of 3 x 3 matrices. Let 

Fm i/, t/2; 

M = U3 ί/4 ί/5 

i /6 t/7 i/8 

where each t/, is a Fibonacci element belonging to M. Since we expanded |Μ*+|| 
and its successive cofactors by their first rows, M preserves the same row order as in 
Mk+\, so UT, — Fm+r and U(, = Fm+2r, where r > 1. Thus 

"m 'm+s * m 
M = Fm+r 

Fm+lr 

where s, t > 1. It follows by Lemma 33.3 that \M\ = 0 . Since every 3 x 3 matrix M 
is singular, it follows that M^+i is singular. Thus, by PMI, Mn is singular for every 
n > 3. ■ 

Fm+r+s 

Fm+2r+s 

Fm+r+l 

Fm+2r+t 

For example 

\M4\ = 
^6 F-i F% 
F\o Fn F\2 
Fit F\s F\(, 

- 3 

= ( ) -

-

Fs F(, Fj 
F9 Fio F\\ 
F\l F | 4 Fis 

0 + 2 0 - 3 ■ 0 

F5 

Fg 

Fn 

Fi Fg 
F\\ F\2 
F\s F\(, 

+ 2 
F5 

F9 

Fn 

by Lemma 3 3.3 

F6 

Fio 
F,4 

F8 

F,2 
F.6 

= 0 

Therefore, Mi, is singular. 

FIBONACCI AND ANALYTIC GEOMETRY 

Next we pursue a few results in analytic geometry that involve Fibonacci determinants. 
They were developed in 1974 by Jaiswal. 

Theorem 33.3. The area of the triangle with vertices (G„, G„+r), (G„+p, Gn+p+r), 
and (G„+q, Gn+q+r) is independent of«. 

Proof. Twice the area of the area of the triangle equals the absolute value of the 
determinant 

Gn Gn+r 1 
Δ = Gn+P Gn+p+r 1 

Gn+q Gn+q+r 1 
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Using the identity Gm+n = GmFn+l + Gm_i F„ for the second column, we can write 
this determinant as 

Δ = Fr + , 
G„ G„ 
G„+p Gn+p 1 
Gn+q G„ +1 

Δ = 0 + Fr 

G„ G„-
Gn+P G„ 
Gn+q G„ 

+p-\ 

+ Fr 

1 
1 
1 

G„ 
Gn+p 
Gn+q 

Ga-i 1 
G„+p-\ 1 
G„+q-\ 1 

Add the negative of column 2 to column 1 : 

A = Fr 

Now add the negative of column 1 to column 2: 

Δ = Fr 

Continuing in this way, we get 

A = ±F r 

G„-2 G„_| 1 
G„+p-2 G„+P_| 1 
G„+q-2 Gn+q-\ 1 

G„-2 G„_3 1 
Gn+p-2 Gn+p-3 1 
G„+q-2 Gn+?_3 1 

G\ G2 1 
GP+\ Gp+2 1 

'q+\ 'q+2 1 

according as n is odd or even. Expanding by column 3, 

Δ = ±Fr[(Gp+\Gq+2-Gp+2Gq+\) — (G]Gil+2 — G2Gq+\) + (G\Gp+2 — G2Gp+\)] 

But G„Gm+k - Gn+kGm = (-l)"+1F*Fm_„M; 

.·. Δ = ±Fr[(-l)pFq-p -Fq + Fp]ß 

= ±Fr[(-\)pFq-p + Fp-Fq]ß 

Since this is independent of n, it follows that the desired area is independent of n. 

Corollary 33.1. The area of the triangle with vertices (F„, /·"„+>,), (F„+2A, F„+3/,), 
and (F„+4h, Fn+5h) is FA(F4A - 2F2h)/2. 

Proof. The proof follows from the theorem, since r = h, p = 2h, q = 4h, and 
a — b = μ = 1. ■ 



396 FIBONACCI DETERMINANTS 

Theorem 33.4. The lines through the origin with direction ratios G„, Gn+P, G„+q, 
where p and q are constants, are coplanar for every n. 

Proof. The direction ratios of three such lines can be taken as G,, Gi+P, Gi+q; Gj, 
Gj+p, Gj+q; and G*, Gk+P, Gk+q. The lines are coplanar if and only if 

D = 
Gi G, i + p Gi +<? 
Gj Gj+p Gj+q 
Gk Gk+p Gk+q 

= 0 

Using the identity Gm+n = GmF„+\ + Gm-\ Fn, we can express D as the sum of four 
determinants, each of which is zero. Therefore, D = 0, and hence the three lines are 
coplanar, as desired. ■ 

Theorem 33.5. The plane containing the family of points (G„, Gn+P, G„+q), where 
p and q are arbitrary constants, contains the origin. 

Proof. By Theorem 33.4, the given points are coplanar. An equation of the plane 
containing any three points of the family of points is 

x y z \ 
Gi Gi+p Gi+q 1 
Gj Gj+p Gj+q 1 
Gk Gk+P Gk+q 1 

= 0 

Expanding this determinant with respect to row 1, we get the equation Ax + By + 
Cx + D = 0, where A, B, C, and D are constants. In fact, 

D = -

= 0 

Gj Gi+p Gi+q 
Gj Gj+p Gj+q 
Gk Gk+p Gk+q 

by Theorem 33.4. Thus the equation of the plane is Ax + By + Cz = 0, which clearly 
contains the origin. ■ 

In fact, we can show that the equation of the plane is ( - l ) p Fq^px — Fqy+Fpz = 0. 
In particular, the plane containing the points (Gk, Gk+i, Gk+s) is (-1)3F5* - F%y + 
F3z = 0; that is, 5x + 2y - 2z = 0. 

Theorem 33.6. The family of planes Gnx 4- G„+Py + G„+qz 4- Gn + r = 0, where p, 
q, and r are arbitrary constants, intersect along a line whose equation is independent 
of n. 

The proof is a bit complex, so we omit it. But we can show that the planes intersect 
along the line 

(-YFpX - Fr-p Fpy + Fr z 

' q-P 
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For example, the planes G„x + Gn+2y + Gn+3z + G„+4 = 0 intersect along the 
line 

that is, 

(-\)2F2x-F3 F2y + F5 

Ft -F3 

x -2 y+ 2 z 

1 - 2 1 

z 
= ~F~2 

In 1966, D. A. Klarner of the University of Alberta, Canada, developed a fascinat-
ing formula for computing the determinants whose elements satisfy the recurrence 
relation 

a„+2 = ρα,ι+ι qan 
(33.2) 

where p and q are fixed complex numbers. It is given by the following theorem. Since 
the proof is complicated, we omit it. 

Theorem 33.7. (Klarner, 1966) Let a„ be defined by the recurrence relation an+i = 
pan+\ — qa„, where p and q are fixed complex numbers and n > 0. Let 

Ak(an) - ■*«+! 

*n+k 

k 
n+2 a, 

*n+k + \ 

*n+k 

An+k + \ 

■Ή+2Α 

Then Ak(amn+r) = q"k^+^2Ak(ar). 

When p = 1 and q = - 1 , the recurrence relation (Eq. 33.2) yields the Fibonacci 
recurrence relation (FRR), so we can employ this theorem to evaluate determinants 
of the form Ak(F„), as the next example illustrates. 

(1) 

Example 33.1. Evaluate each determinant D: 

Fn F„+\ 

Fn+\ Fn+2 

Solution. Here k — 1 — m, r = 0, and a„ = F„. By Theorem 33.7, 

D = Λ | ( ^ ) = (-1)"·'·2/2Λ,(Γο) 

= (-1)" 
F0 F| 
Fi F2 

(-1)" 
0 1 
1 1 

= ( - ! ) ■ «+i 

That is, F„F„+2 - Fn
2

+, = ( - l ) " + l , which, we recall, is Cassini's rule. 

F} 

(2) 

F2 F 2 

rn+\ rn+2 
F2 F2 F2 

rn+\ rn+2 r n + 3 
Fn+2 Fn+i Fn+4 



398 FIBONACCI DETERMINANTS 

Solution. Here k = 2, m = 1, r = 0, and a„ = F„. 

D = ( - i r 2 -3 / 2A2(Fo) = ( - l ) 3 " 

= (-IX 3n 
0 
1 
1 

1 
1 
4 

1 
4 
9 

= ( - i ) 3n 

F 2 F 2 F2
2 

F 2 F 2 F3
2 

F\ F 2 F 2 

0 1 1 
1 1 4 
0 3 5 

= (-1)3 π(-1)(2) = 2( -1) η + 1 (33.3) 

(This example was proposed as a problem in 1963 by Br. Alfred.) 

(3) 

F 3 

rn+3 

' S * 
F 3 

r n+3 

*2« 

F 3 

F 3 

rn+5 

^«+3 

F 3 

F 3 

rn+5 

Fn+6 Solution. Here Λ = 3, m = 1, r — 0, and a„ = F„, so by Theorem 33.7, 

D = (_i)"-3"/2A3(Fo) = (-1)6" 

Ό3 

*? 
n 
n 

Ff 
n 
n 
Fl 

Fi 
Fl 
n 
Fl 

Fl 
Fl 
Fl 
Fi 

1 
8 

27 

8 
27 
125 

8 27 125 512 

1 1 8 
7 19 98 
19 61 296 

8 
27 

19 98 
0 19 61 296 

1 1 8 
0 12 42 
0 42 144 

= - (12 · 144 - 42 · 42) = 36 

(This was proposed as an advanced problem in 1963 by J. Erbacker et al.) ■ 

Since Theorem 33.7 holds for any sequence that satisfies the recurrence relation 
(Eq. 33.1), we can apply it when a„ = G„, the nth generalized Fibonacci number, as 
the next example demonstrates. 

Example 33.1. Evaluate the determinant 

D = 
G„ Gn+\ G„+2 
G„+i G„+2 G„+3 
G„+2 G„+3 G„+4 
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Solution. Here k = 1 = m, r = 0, and an = G„. So, by Theorem 33.7, 

D = (-\)n2^2A2(a0) = (- l)3M2(Go) 

= (-1)" 
Go 
G, 
Gi 

G, 
G2 

G3 

G2 

G3 

G4 

- ( - 1 ) " 
b-a 

a 
b 

a 
b 

a+b 

b 
a+b 
a + 2b 

= 0 

(This follows obviously, since column 3 of D is the sum of columns 1 and 2.) 

EXERCISES 33 

4. 

5. 

6. 

7. 

8. 

Evaluate each determinant. 

Ln+\ Ln+2 

* p * p+m *p+m+n 

*q rq+m rq+m+n 

*r Fr+m ^r+m+n 

Fa+ld 
Fa+5d 
Fa+Sd 

La+2d 
La+5d 
La+&d 

Ga+2d 
Ga+Sd 

Fa 

Fa+3d ra 

Fa+6d 

La 

La+3d 
La+6d 

G, 

>. + k 

Fa+d 
F„+4d 
Fa+ld 

La+d 

La+4d 
La+7d 

a Ga+d 
Ga+3d Ga+4d 
Ga+6d Ga+nd Ga+%d 

Fn+l+k Fn+2+k Fn+3 

Fn+2 + k F„+3 + k F„+4 + k 

Gp + k Gp+m + k Gp+m+„ + k 
Gq + k Gq+m + k Gq+m+n + k 
Gr +k Gr+m + k Gr+m+n + k 

Fn+3 Fn+2 Fn+\ F„ 
Fn+2 Fn+i F„ Fn+\ 
Fn+\ F„ Fn+3 Fn+2 
Fn Fn+\ Fn+2 Fn+2 

Gn+3 G„+2 G„+\ G„ 
G„+2 Gn +3 G„ Gn+\ 
G„+\ G„ Gn +3 Gn+2 
G„ G„+\ Gn+2 G„+3 

(Ivanoff, 1968) 

(Finkelstein, 1969) 

(Finkelstein, 1969) 

(Alfred, 1963) 

(Jaiswal, 1969) 

(Ledin, 1967) 

(Jaiswal, 1969) 



400 FIBONACCI DETERMINANTS 

10. Show that 

(Jaiswal 

Ln+3 Ln+2 

Ln+2 i-n+3 

i-n + 1 Ln 

Ln 

, 1969) 

Evaluate each. 

11. 

12. 

13. 

L\ 
^n + 1 
/ 2 
^n+2 

Gl+\ 
Gl+2 

L\ 

Ln+2 

^ + 3 

^n + l 
/ 2 

/ 2 

Gl+\ 
Gl+2 
G « + 3 
/ 3 
^n+1 
L n+2 

^ + 3 
/ 3 
^n+4 

14. Let A be the« 

^n+1 

/ 2 

/ 2 

/ 2 

G„2
+2 

Gl+-i 
Gl+A 
/ 3 

/ 3 

/ 3 

/ 3 

x n ma 

Z. 

L 

L 

L„ 
Ln 

L„ 
L„ 

3 
n+3 
3 
n+4 
3 
n+5 
3 
n+6 

trix 
■ 3 

1 

0 
0 

0 
. 0 

+ 1 

+3 

+2 

i 
1 
i 
0 

0 
i 

Lr 

Lr 

K 
U 

0 
i 
1 
/' 

0 
1 

+ 1 

+2 

+3 

0 
0 
0 
1 

0 
0 

= 25 

Fn+. 

Fn+: 

Fn+ 
Fn 

· · · 0 1 
· · · 0 0 
· · · 0 0 
· · · 0 0 

. . . 1 ,· 
i 1 

Fn+2 Fn+\ F„ 
Fn+3 Fn Fn+\ 

A F„ Fn+i Fn+2 

Fn+i Fn+2 Fn+3 

where 1 = V ^ T . Prove that \A\ = Ln+l. (Byrd, 1963) 

Consider the n x n determinant 

gn+l(x) = 

2x 
i 
0 
0 

0 
0 

i 
2x 
i 
0 

0 
ί 

0 
i 

2x 
i 

0 
1 

0 ■ 

0 · 
i 

2x ■ 

0 · 
0 · 

• 0 
• 0 
• 0 

0 

■ 2x 

i 

1 
0 
0 
0 

; 
2x 

where goU) = 0, g\ (x) = 1, (' = V—Î. and x is any real number (Byrd, 1963). 

15. Find the recurrence relation satisfied by g. 

16. Deduce the value of g „ + i ( l / 2 ) . 

17. Show that | e e " | = eL\ where e denotes the base of the natural logarithm and Q 
the g-matrix (Hoggatt and King, 1963). 
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18. Compute the following determinant (Lucas). 

1 1 0 0 0 ■·■ 0 0 0 0 
- 1 1 1 0 0 ■■· 0 0 0 0 

0 — 1 1 1 0 - 0 0 0 0 

0 0 0 0 0 · · · 0 - 1 1 1 
0 0 0 0 0 - 0 0 - 1 1 

19. Let g„ denote the number of nonzero terms in the expansion of the determinant 

-1 
0 

0 
0 

b{ 0 0 0 
a2 b2 0 0 

-1 a3 fc3 0 

0 0 0 
0 0 0 

0 
0 

0 
0 
0 

0 
0 

0 
0 
0 

0 
0 
0 

0 
0 
0 

-1 α„_ι bn-\ 
0 - 1 an 

where α,Λ φ 0. Show that g„ = Fn+l (Bridger, 1967). 

20. Show that 

2 
1 
0 
0 

0 
0 

2 
2 

- 1 
0 

0 
0 

- 1 
2 
2 

- 1 

0 
0 

0 
- 1 

2 
2 

0 
0 

0 · 
0 · 

- 1 · 
2 · 

0 · 
0 · 

• 0 
• 0 
• 0 
• 0 

• 0 
• 0 

0 
0 
0 
0 

- 1 
0 

0 
0 
0 
0 

1 
- 1 

0 
0 
0 
0 

1 
1 

= Fn + \Fn+2 

(Lind, 1971). 
21. Evaluate the determinant 

D„ = 

a+b 
1 
0 

ab 0 
a + b ab 

1 a+b 

0 
0 

ab 

0 
0 
0 

0 
0 
0 

1 a + b 

(Church, 1964). 

. Prove that 

(Hint: Fn
2

+3 

^η Λι + 1 *n+2 

'n + l *n+2 *n+3 

Fn+2 ^n+3 ^n+4 

= 2Fn+2 + 2F„+1 — 

= 2 ( - l ) 

Fl) 

n + ] (Alfred, 1963). 



FIBONACCI AND LUCAS 
CONGRUENCES 

We can employ congruence relation to extract many interesting properties of both 
Fibonacci and Lucas numbers. For instance, in Chapter 16, we found that Fm\F„ if 
and only if m\n\ that is, F„ = 0 (mod Fm) if and only if« = 0 (mod m). In particular, 
F „ H O (mod F5) if and only if n = 0 (mod 5); that is, F„ = 0 (mod 5) if and only if 
n = 0 (mod 5). Thus, beginning with FQ, every fifth Fibonacci number is divisible by 
5, a fact we already knew. 

Furthermore, Fi\Fn if and only if 3|n; that is, F„ = 0(mod2) if and only if « = 0 
(mod 3). Thus, beginning with FQ, every third Fibonacci number is divisible by 2, 
another fact we already knew. 

Consequently, F„ s 0 (mod 5) if and only if n = 0 (mod 5), and F„ = 0 (mod 2) 
if and only if n = 0 (mod 3). Also, Fn = 0 (mod 10) if and only if « = 0 (mod 15). 
In other words, beginning with Fo, every fifteenth Fibonacci number ends in a zero, 
and conversely, if a Fibonacci number ends in a zero, then n is divisible by 15. For 
example, F15 = 610, F30 = 832,040, and F45 = 1,134,903,170 end in a zero. 

Are there Lucas numbers ending in a zero? To answer this, let us see if there are 
Lucas numbers ending in a 5. Suppose L„ = 0 (mod 5) for some integer n. Then, by 
the binomial theorem, we have 

2"L„ = (1 +V5)" + ( l - > / 5 ) " 

=έ(")(ν5)"+έ(:)<-^>-
0 x ' 0 x 7 

Ln/2J , v 

= 2 Σ 2/ y = 2(1+5M) 

j=o v J ' 

402 



FIBONACCI AND LUCAS CONGRUENCES 403 

for some integer m. This yields 2""1 L„ = 1 + 5m. Since L„ = 0 (mod 5), this 
equation implies 1 = 0 (mod 5), which is a contradiction. Thus, no Lucas number is 
divisible by 5. // now follows that no Lucas numbers end in a zero. 

Next we turn to a few additional Fibonacci and Lucas congruences. We shall prove 
a few of them and keep the others as routine exercises. 

Theorem 34.1. 

(1) L„ = 0 (mod 2) if and only if n Ξ 0 (mod 3) (34.1) 

(2) Ln = 0 (mod 3) if and only if n = 2 (mod 4) (34.2) 

(3) If n = 0 (mod 2) and n # 0 (mod 3), then L„ = 3 (mod 4) (34.3) 

(4) L„+2k s -L„ (mod Lk), where k=0 (mod 2) and k ψ 0 (mod 3) (34.4) 

(5) F„+2k = -F„ (mod Lk), where k = 0 (mod 2) and k ψ 0 (mod 3) (34.5) 

(6) L „ + 1 2 s L n ( m o d 8 ) (34.6) 

Proof. 

(1) By Exercise 39 in Chapter 5, 5F„2 = L\ - 4 ( - l ) " . Suppose L „ s 0 (mod 2). 
Then 5F„2 s 0 (mod 2), so F„2 Ξ 0 (mod 2). Then F„ Ξ 0 (mod 2); that is, 
F„ = 0 (mod F3). Therefore, n = 0 (mod 3). 

Conversely, let n == 0 (mod 3). Then F„ = 0 (mod F3); that is, F„ = 0 
(mod 2). This implies L\ - 4 ( - l ) " = 0 (mod 2), so L„ = 0 (mod 2). Thus, 
/,„ = 0 (mod 2) if and only if n = 0 (mod 3). 

(5) By Identity 83 on p. 91, 2F,„+n = F,„L„ + 

·'· 2F„+2Ar = F„L2k + F2kL„ 

= Fn[L2
k+2(-\)k-i] + F2kLn 

= 2(-l)k~[Fn + F2kL„ (modLk) 

= -2F„ + FkLkL„ (mod Lk) since F2t = FkLk 

= -2F„ (modLk) 

Since k ψ 0 (mod 3), L* is odd, so (2, Lk) = 1. Thus Fn+2* = —F„ (mod L^). 
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(6) Since 2Lm+n = 5FmFn + LnLm, (see Identity 84 on p. 91) we have 

2£„+i2 = 5F„Fi2 + L„L\2 

= 5 · 144F„ + 322L„ 

Ln+n = 360F„ + 161L„ 

s 0 + L„ = L„ (mod 8) 

■ 
For example, let n = 15 and k = 8. Clearly, k is even, and k is not divisible by 3. 

Then Lk = L% = 47. We have 

(1) Ln+2k = FM = 3,010,349 = 46 (mod 47) and 

-L„ = - L u = -1364 = 46 (mod 47) 

.'. L31 = — L15 (mod 47) 

(2) Fn+2k = F31 = 1,346,269 = 1 (mod 47) and 

-Fi5 = - 6 1 0 = 1 (mod 47) 

.·. F31 = —F15 (mod 47) 

Property (3) can be stated in words: If n is an even integer, not divisible by 3, that 
is, if n is of the form 6k ± 2, then L„ = 3 (mod 4). For example, let n = 20 = 6 · 3+2 . 
Then L20 = 15,127 = 3 (mod 4). Likewise, L)6 = 2207 = 3 (mod 4). 

LUCAS SQUARES 

Are there Lucas numbers that are perfect squares? Clearly, L\ = 1 and L3 = 4 are 
squares. Are there any others? In fact, in April 1964, J. H. E. Cohn of the University 
of London, UK, established that there are no other such Lucas numbers. His proof 
hinges on the following formulas: 

L 2 n = 2 L 2 + 2 ( - l ) " - 1 (34.7) 

If k = 0 (mod 2) and k # 0 (mod 3), then Lk = 0 (mod 4) (34.8) 

If k = 0 (mod 2) and k ψ 0 (mod 3), then Ln+2k = ~Ln (mod Lk) (34.9) 

Theorem 34.2. The only Lucas numbers that are perfect squares are 1 and 4. 

Proof. Let Ln be a perfect square x2 for some positive integer n : L„= x2. 
Suppose n is even, say, n = 2r. Then L„ = L2r = L2 ± 2, by Identity 34.7. Since 

L2 is a square, L2 ±2 cannot be a perfect square. This is a contradiction. 
Suppose n is odd. Let n = 1 (mod 4). If « = 1, then L„ = 1 is a perfect square. So 

assume n > 1. Then we can write n a s n = l + 2-3'À:, where 1 > 0 and k is an even 
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integer not divisible by 3. Therefore, by Identity (34.9), Ln = —L\ = —1 (mod £.*). 
Since — 1 is a quadratic residue of Lk by identity (34.8), it follows that L„ cannot be 
a square. 

On the other hand, let n = 3 (mod 4). If n = 3, then Ln = L3 = 4 is a perfect 
square. Suppose n φ 3. Then n = 3 + 2 · 3'k, where / > 0 and k is an even integer not 
divisible by 3. Then, by Identity (34.9), Ln = - L 3 = - 4 (mod Lk). Consequently, 
L„ cannot be a perfect square. 

Thus, the only Lucas numbers that are perfect squares are 1 and 4. ■ 

The next theorem, also discovered by Cohn in 1964, identifies Lucas numbers of 
the form 2x2. Its proof uses the following formulas: 

L„ Ξ= 0 (mod 2) if and only if n = 0 (mod 3) (34.1 ) 

L „ = 0 (mod 3) if and only if n = 2 (mod 4) (34.2) 

F_„ = ( - ! ) " - ' F „ (5.17) 

L-n = (-l)"Ln (5.18) 

L„+12 = L„ (mod 8) (34.6) 

Theorem 34.3. Let x be an integer such that Ln = 2x2. Then n = 0 or ±6. 

Proof. Since x2 = 0, 1, or 4 (mod 8), Ln = 2x2 = 0 or 2 (mod 8). 
Since L„ is even, by Identity (34.1), n = 0 (mod 3). So 3|n. 
Suppose n is odd. Then n is of the form I2q + r, where 0 < r < 12. Since n is 

odd and is a multiple of 3, r = 3 or 9. Thus, n is of the form I2q + 3 οτ \2q +9. 
Un = \2q + 3, by Identity (34.6), L„ = Ll2q+3 = L3 s 4 (mod 8). This is a 
contradiction, since L„ = 0 or 2 (mod 8). 

If M = \2q +9, L„ = Li2q+9 = L9 = 4 (mod 8). This, again, is a contradiction. 
Thus n cannot be odd. 

Suppose n is even. Then n is of the form 8f, 8/ ± 2, or 8f + 4. If n = 8i or 
8( = 4 , n s 0 (mod4). If n = 0, then L„ = L0 = 2 = 2 · l2 has the desired form. If 
η^Ο,η has the form n =2-3' -k. Then, 2L„ = - 2 L 0 = - 4 (mod Lt). Therefore, 
2L„ cannot be a perfect square y2. Consequently, L„ cannot be of the form 2x2. 

Suppose n = —2 = 6 (mod 8). If n = 6, then L6 = 2 · 32 has the desired property. 
On the other hand, if n φ 6, then n is of the form n = 6 + 2 · 3' · &, where 4|& and 
3/it. Therefore, 2L„ = —2L6 = -36 (mod Lk). It follows, by Identities (34.2) and 
(34.3), that —36 is a quadratic nonresidue of Lk. Thus, as earlier, L„ cannot be of the 
form2x2. 

Finally, if n = 2 (mod 8), then, by Identity 5.18, L_„ = L„. Therefore, — n = 6 
(mod 8). This yields —n = 6, so n — - 6 . 

Thus, if L„ is of the form 2*2, then n = 0 or ±6. ■ 
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SQUARE FIBONACCI NUMBERS 

Historically, one of the oldest conjectures in the theory of Fibonacci numbers is that 
0, 1, and 144 are the only perfect squares. In 1963, M. Wunderlich conducted an 
extensive computer search among the first one million Fibonacci numbers, but did 
not unearth any new ones. Surprisingly, the conjecture was confirmed by Cohn the 
following year. 

Theorem 34.4. If F„ is a perfect square x2, then n = 0, ± 1 , 2, or 12. 

Proof. 

Case 1. Let n be odd. Then n = ±1 (mod 4). 
Suppose n = 1 (mod 4). If n = 1, then F| = 1 = l2 is a perfect square. If n φ 1, 

then n must be of the form n = 1+ 2 · 3' · it. So, by Identity (34.5), F„ = -F\ = - 1 
(mod Li). Consequently, F„ cannot be a perfect square. 

On the other hand, suppose n = — 1 (mod 4); that is, — n = 1 (mod 4). Then 
F_„ = F„, so, by the preceding subcase, —n = 1, that is, n = — 1. 

Case 2. Let n be even, say, n —2s. Then Fn = Fis = FSLS = x2. 
Suppose 31«. Then F3|Fn, that is, 2\Fn. So Fs = 2y2 and Ls = 2z2 for some 

integers y and z. Then, by Theorem 34.3, n/2 = s = 0 or ±6; that is, n = 0 or ±12. 
When n = 0, Fs = F0 = 0 = 2 · 02; when « = 12, Fs = F6 = 8 = 2 · 22, 

but, when n = -12 , Fs = F_6 = (-1)5F6 = - 8 , which is not of the form 2y2. 
Therefore, n = 0 or 12. 

Suppose 3/f n, so F„ is not even. Then Fs = y2 and Ls — z2 for some integers y 
and z. By Theorem 34.2, n/2 = s = 1 or 3, so n = 2 or 6. 

When n = 2, Fs = F\ — l2; but when n = 6, Fj = F3 = 2 is not a perfect square. 
Thus n = 0, ± 1, 2, or 12, as desired. ■ 

It follows from this theorem that the only distinct positive Fibonacci numbers that 
are perfect squares are 1 and 144. 

Cohn also proved that 0, 2, and 8 are the only Fibonacci numbers that are of the 
form 2JC2. This is the essence of the next theorem. 

Theorem 34.5. If F„ is of the form 2x2, then n = 0, ±3 , or 6. 

Proof. 

Case 1. Let n be odd. Then n = ±1 (mod 4). 
Suppose n = - 1 = 3 (mod 4). If M = 3 , then F„ = F3 = 2 = 2 · l2 has the 

desired form. If n φ 3, n is of the form n — 3 + 2 ■ 3' ■ k. Then, by formula (34.5), 
2F„ = —2F3 s —4 (mod L*), that is, x2 = — 1 (mod Lk), so F„ cannot be of the 
given form. 

Suppose n = 1 = - 3 (mod 4). Then —n = 3 (mod 4) and F_„ = F„, so — n = 3 
by the preceding paragraph. This yields n = —3. 
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Case 2. Let n be even, say, n = 2s. Then F„ = F2S = FSLS = 2x2. So either 
Fs = y2 and Ls = IT}, or F5 = 2y2 and Ls = z2 for some integers y and z. 

By Theorems 34.3 and 34.4, the only value of s that satisfies the equations Fs = y2 

and Ls = 2z2 is s = 0. Then n = 0. 
Suppose Fs = y2 and Ls = 2z2. By Theorem 34.2, s = 1 or 3. But F\ is not of 

the form 2y2, so ί φ 1. But F3 = 2 · l2, so Fs = 2y2 is solvable when J = 3. Then 
n = 6. 

Thus, collecting all the possible values of n, we have n = 0, ±3, or 6. ■ 

A GENERALIZED FIBONACCI CONGRUENCE 

In 1963, J. A. Maxwell proposed the following problem: 
Generalize the congruences 

Fn+]2" + Fn2
n+l = 1 (mod 5) Fn+13" + Fn3"+I s 1 (mod 11) 

Fn+i5" + F„5n+i s 1 (mod 29) 

where n > 0. Their generalization, although not quite obvious, is 

F„+ip" + F„pn+i = 1 (mod p2 + p - 1) (34.10) 

where p is an arbitrary prime (see Exercise 25). 
Interestingly enough, we can generalize Congruence 34.10 even further to include 

the generalized Fibonacci numbers G„, where n > 2. 
The following theorem gives the desired generalization. 

Theorem 34.6. (Koshy, 1999). Let m > 2 and n > 0. Then 

G„+Im
n +Gnm

n+* = a ( l - m) + bm (mod m2 + m - 1) (34.11) 

Proof. We shall prove this using the strong version of induction on n. 
SinceGi/n° + Gom = a + (b—a)m = a(\—m)+bm = a(l—m)+bm (modm2 + 

m — 1) and G2m + G\m2 = bm + am2 = a(l — m) + bm (mod m2 + m — 1), the 
result is true when n = 0 and 1. 

Now assume it is true for all integers /, where 0 < 1 < k and k > 1. Then 

Gkm
k~^ + Gk-Xmk = a(\ - m) + bm (mod m2 + m - 1) 

Gk+\mk + Gkm
k+X = a{\ - m) + bm (mod m2 + m - 1) 

.·. Gk+2m
k+l + Gk+]m

k+2 = (Gk + 0,+ ,)™*+' + (G*_, + Gk)m
k+2 

= m(Gk+]m
k + Gkm

k+I) + m2(G*/n*_1 + Gk-\m
k) 

= m[a(\ — m) + iwi] + m2[a(l — /n) + 6m] 
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(mod/n2 +m - 1) 

= (m +m2)[a(l -m) + bm] (modm2 +m - 1) 

= l[a(l — m) + bm] (modm2 + m — 1) 

= [a(l — /n) + fern] (mod m2 + m - 1) 

Thus Congruence 34.11 is true for all integers n > 0. ■ 

Corollary 34.1. 

Fn+lm" + F„mn+l = \(modm2+m- 1) (34.12) 

Ln+\mn + L„mn+X = 1 + 2m(mod m2 + m - 1) (34.13) 

■ 

Formula (34.12) follows from Eq. (34.11) when a = 1 = b, and Eq. (34.13) when 
a = 1 and b = 3. 

For example, let « = 12 and m — 15, so w2 + m — 1 = 239. Then 

F,31512 + F,21513 = 233 ■ 1512 + 144 · 1513 

= 233 · 80 4-144 · 5 (mod 239) 

= 1 (mod 55) 

3571 · 716 + 2207 · 717 

3571 -26 + 2207- 17 (mod 55) 

15= 1 + 2 · 7 (mod 55) 

Interestingly enough, Theorem 34.6 can be extended to negative subscripts. To 
establish the generalization, we need the following lemma, which we shall establish 
using strong induction. 

Lemma 34.1. (Koshy, 1999). Let m > 2 and n > 0. Then 

F„_, -mF„ ={-\)nmn ( m o d m 2 + m - 1) (34.14) 

Proof. Since F_i - mFQ = 1 - 0 = 1 = (-l)°m° (mod m2 + m - 1) and 
Fo — mF\ —0 — m = (—l)'m' (mod m2 +m — 1), the result is true forn = 0 and 
n = 1. 

Likewise, 

L17716 + L16717 
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Now, assume it is true for every nonnegative integer < k, where k > 2. Then 

Fk - mFk+i = (Fk-2 + Fk-\) - m(F*_| + Fk) 

= (Ft_2 -mFk_\) + (Fk-\ -mFk) 

= ( - l ^ - ' / n* - 1 +{-\)kmk ( m o d w 2 + / n - 1) 

= {-\)k-xmk~\\ -m) (modm2 + m - 1) 

= ( - l )* - lm*_ lm2 (modm2 + m- 1) 

= (-l)*+1m*+1 ( m o d m 2 + m - 1) 

Thus, by strong induction, Formula 34.14 is true for all n > 0. ■ 

For instance, F,2 - 5F,3 = 144 - 5 · 233 = 23 s (-1)13513 (mod 29). 
Curiously enough, Formula 34.14 does not hold for Lucas numbers, that is, L„ _ t — 

mLn # (-l)"/nn (mod m2 + m - 1). For instance, L9 - 6L,0 = 7 6 - 6 · 123 = 35 
(mod 41), whereas (-1)10610 = 32 (mod 41). 

The lemma yields a fascinating by-product, as the next corollary reveals. 

Corollary 34.2. Ln = ( - l ) n 2 n + 1 = 2 · 3" (mod 5). 

Proof. By Lemma 34.1, F„ - 2F„+I s (—l)"+,2"+l (mod 5). But 2Fn + I - F„ = 
Fn + I + (F n + 1 - F„) = F„+l +F n _ , = L„. Therefore, -L„ = (- l)"+'2"+ 1 (mod 5); 
that is, L„ = ( - l )"2" + l (mod 5). ■ 

For example, Lw = 123 = 3 = ( - 1 ) " 2 " (mod 5). 
The next corollary follows from Corollary 34.2 since 34 = 1 (mod 5). 

Corollary 34.3. L4„ = 2 (mod 5), L4n+| = 1 (mod 5), L4n+2 = 3 (mod 5), and 
L4n+2 = 4 (mod 5). ■ 

For example, Ln = 322 = 2 (mod 5), L,3 = 521 = 1 (mod 5), L,4 = 843 = 3 
(mod 5), and L\4 = 1364 = 4 (mod 5). 

With Lemma 34.1 and the fact that 

G_„ = ( - l )" + 1 (aF„+ 2 - feF n + 1 ) (34.15) 

we are now ready to generalize Theorem 34.6. 

Theorem 34.7. (Koshy, 1999). Let in > 2 and n be any integer. Then 

Gn+lm" + G„mn+[ = a{\ - m) + bm (mod m2 + m - 1) 
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Proof. By virtue of Theorem 34.6, it suffices to show that Formula (34.11) holds 
when n is negative. We have: 

G_„+1m-" + G-nm-"+1 = « - " G . H ) + m-"+ lG_n 

= m-"[(-ir(aFn+i-bF„)] 

+ m-n+il(-l)n+>(aFn+2 - bFn+i)] 

= a(-iym-n(Fn+l-mFn+2) 

-b(-\)nm-n(Fn-mFn+l) 

E= a(-l)nm-n[(-l)n+2m"+2) 

- b(-\)nm-"[(-l)n+lmn+l] (mod m2 + m - 1) 

s am2 + bm (mod m2 + m — 1) 

= α(1 — m) + bm (mod m2 + m — 1) 

as desired. ■ 

For example, let n = — 8 and m = 6. Then 

L_76~8 + L_86-7 = (-29) · 6~8 + 47 · (Γ1 

= 12 · 6~8 + 6 · 6~7 s 12 · 6~8 + 6~6 (mod 41) 

s (2 · 6~] + 1) · 6~6 = (2 · 7 + 1) · 76 (mod 41) 

= 15 · 20 = 13 = 1 + 2 · 6 (mod 41) 

Likewise, F_75-8 + F_85-7 = 13 · 5~8 + (-21) · 5"7 = 1 (mod 29). 
The next theorem shows that every prime p divides some Fibonacci number. Its 

proof employs the number-theoretic Legendre symbol, so we omit the proof. (See 
Hardy and Wright, p. 150, for a proof.) 

Theorem 34.8. Let p be a prime. Then Fp_i = 0 (mod p) if p s ±1 (mod 5) and 
Fp+l = 0 (mod p) if p = ±2 (mod 5). ■ 

For example, let p = 19 = - 1 (mod 5). Then Fp_i = Fig = 2584 = 0 (mod 19). 
Likewise, p = 23 = -2 (mod 5) and Fp+l = F24 = 46,368 s 0 (mod 23). 

The next result was discovered in 1967 by Martin Pettet of Toronto. We will need 
it in the proof of the following theorem, so we label it a lemma. The theorem was 
discovered in 1970 by J. E. Desmond of Florida State University. 

Lemma 34.2. (Pettet, 1967) Let p be a prime. Then Lp = 1 (mod p). 

Proof. By the binomial theorem, 

L«/2J 

1=0 v ' 
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Since p is a prime, U o (mod p) for 0 < j < p. Therefore, 

1 
LP = ^ r r ( m o d P) 

But, by Fermat's little theorem, 2P _ 1 = 1 (mod p). Thus Lp = 1 (mod p). ■ 

For instance, let L43 = 969,323,029 = 1 (mod 43), as expected. 

Theorem 34.9. (Desmond, 1970) Let p be a prime. Then F„p = F„FP (mod p) and 
Lnp = L„LP = L„ (mod p). 

Proof, [by the principle of mathematical induction (PMI)] We shall prove the first 
result and leave the second as an exercise. The statement is clearly true when n — 0 
and n = 1. So assume it is true for every integer n < k, where k > 1. 

Since Fr+S = FrLs + (-l)sFr_, (this identity was established in 1963 by I. D. 
Ruggles), F„p+P = FnpLp + (-iy+i Fnp-P. So F{n+i)p = Fnp + F(n_1)p (mod p), 
by Lemma 34.1. Then 

F(k+\)P = Fkp + F(k-i)p = FkFp + Fk-\FP (mod p) 

= (Fk + Fk^\)Fp = Fk+lFp (mod p) 

Thus Fnp = F„ Fp (mod p) for every prime p and for every integer n > 0. ■ 

For example, let n = 4 and p = 1. Then F„ — F4 = 3, Fp = F7 = 13, and 
Fnp = F2& = 317,811 Ξ 4 = 3 · 13 = F4F7 (mod 7). Likewise, L28 = 710,647 Ξ 
7 · 29 = UL-i (mod 7). 

The next result was developed in 1977 as an advanced problem by L. Carlitz of 
Duke University. 

Theorem 34.10. Then Lpi = 1 (mod p1) if and only if Lp = 1 (mod p2), where p 
is a prime. 

Proof. We have 

l=(a + 0)"=LB + fVj|\**0"-* 

·■■ ^ = ι - Σ ( Γ ) « * ^ and v = i-E({)^p2" 

Since [ Π = T (^Z\) md ( ϊ - \ ) s ( _ 1 ^ _ 1 ( m o d Z7)· k foIlows *at 

Lp = 1 (mod p2) if and only if 

E K—J--a
kßP-k = 0 (mod p) 
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Since p/k, ( P j = 0 (mod p2) and 

(ί)-ΐ(ί:'.)-<-^,ΐ<-Λ 
Thus Lpi = 1 (mod /? ) if and only if 

V -—-—a p k ß p 2 - p k = 0 (mod p) 

Since 

p - l 

it follows that LP2 = 1 (mod p2) if and only if ^ ( - l ) * - ' / * ) « * ^ - * sO(modp) . 
1 

Thus Lpi s 1 (mod p2) if and only if Lp = 1 (mod p2). ■ 

More generally, we have the following result. 

Theorem 34.11. (Carlitz, 1977) Lpm = 1 (mod/?2) if and only if Lp = 1 (mod/?2), 
where p is a prime and m > 2. ■ 

The next example was proposed as a problem in 1977 by G. Berzsenyi of Lamar 
University in Texas. 

Example 34.1. Prove that L\mn = 3 (mod 10), where m,n > 1. 

Solution. Since L(2k+l)m = (am)2k+i + (ßm)2k+l,it follows that Lm\Li2k+])m. 

Case 1. Let n = 2k + 1 be odd. Then, by Exercise 41 in Chapter 5, 

L2nm = Lnm — 2(—1) = i-(2jt+|)m
 - 2(—1) 

■2 _ ί 2̂nm + 2 if m is even 
L(2k+nm - I Linm _ 2 otherwise 

Consequently, (L2nm + 2){L2nm - 2) = L|nm - 4 is divisible by L2
2A+1)m, and hence 

by L2
m. Thus L2,^ Ξ 4 (mod L2,), where m is odd. 

Case 2. Let n = 2fc be even. We shall prove this half by PMI on £. When k = 1, 

= [L2, - 2 ( - 1 Π 2 -2 = L4
m- 4 ( - l ) m L 2 + 2 

Thus L2nm = 2 (mod L2J, so L2
nm = 4 (mod L2J. 
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Assume the result holds for all positive even integers less than n = 2k. Then 

•-■Inm = '-'Xkm = '-'2km ~ *· 

Llnm —2 — L2km — 4 

By Case 1 and the inductive hypothesis, L\km = 4 (mod L2
m). Thus L2„m = 2 

(mod L2J, so Lin =4 (mod L2
m). 

Thus the result holds in both cases. m 

An intriguing theorem that combines Fibonacci numbers with Euler's phi function 
φ. φ(η) denotes the number of positive integers < n and relatively prime to it. For 
example, φ(1) = 1, φ(5) = 4, and φ(6) = 2. 

The theorem was proposed originally in 1965 as an advanced problem in The 
Fibonacci Quarterly by D. Lind of Falls Church, Virginia. An incomplete proof by 
J. L. Brown, Jr., of Pennsylvania State University appeared in the Quarterly in the 
following year. It resurfaced as a problem in 1976 by C. Kimberling of the University 
of Evansville, Indiana, in The American Mathematical Monthly. In the following year, 
P. L. Montgomery of Huntsville, Alabama, provided an elegant solution using group 
theory. In 1980, V. E. Hoggatt, Jr., and H. Edgar of San Jose State University provided 
an alternate proof of the theorem. 

Theorem 34.12. <f>(F„) s= 0 (mod 4), where n > 5. m 

For example, φί/^,ο) = φ(55) = φ(5·11) = φ(5)·φ(11) = 410 = 0(mod4)and 
<p(Fi7) = φ(1597) = 1596 = 0 (mod 4). 

EXERCISES 34 

Verify Corollary 34.1 for the given values of m and n. 
1. m — 13, n = 5 
2. m = 20, n = 11 

Verify Corollary 34.2 for the given values of m and n. 
3. m = 11, n = 5 
4. m = 18, n = 7 

Prove each, where m,n,k > 1 and p is a prime. 
5. Fn = 0 (mod 3) if and only if n = 0 (mod 4). 
6. F„ = 0 (mod 4) if and only if n = 0 (mod 6). 
7. F„ = 0 (mod 5) if and only if n = 0 (mod 5). 
8. L2„ = L2n (mod 2) 
9. L2

n^F2 (mod 4) 
10. L\ = L„_, L„+, (mod 5), n > 2 

11. 2Lm+n s LmL„ (mod 5) 
12. F,5„ =0(mod 10) 
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13. L(2k-\)n = 0(modL„) 
14. F2n = (- l )"«(mod5) 

15. Fn + 2 4 = F„ (mod 9) (Householder, 1963) 
16. Fn + 3 = F„ (mod 2) 
17. F3„ s 0 (mod 2) 
18. Fn + 5 = 3Fn(mod5) 
19. F5n s 0 (mod 5) 

20. Identity (34.2) 

21. Identity (34.3) 
22. Identity (34.4) 

23. L3„ = 0 (mod 2) 

24. L3n = 0 (mod L„) 
25. (F„, L„) = 2 if and only if n = 0 (mod 3) 
26. Ln = 3L„_i (mod 5) 

27. 3L2n-2 = ( - l ) n _ 1 (mod5) 
28. nLn = Fn (mod 5) (Wall, 1964) 

29. Lp Ξ 1 (mod p) (Pettet, 1967) 

30. 2"L„ = 2 (mod 5) (Wall, 1968) 

31. 2"Fn = 2n (mod 5) (Wall, 1968) 
32. Lnp = Ln (mod p) (Desmond, 1970) 
33. Fy = 5" (mod 5"+3) (Bruckman, 1980) 
34. Ly = L5n+t (mod 5n+3) (Bruckman, 1980) 
35. (5F„2)2 + 42 s (L2)2 (mod 5F2) (Freitag, 1982) 
36. Let L(n) = Ln and tn = n{n + l)/2. Then L(n) = (-1) '"- ' (mod 5) (Freitag, 

1982). 
20 

37. £ Fn+i = 0 (mod F,o) (Ruggles, 1963) 
i=\ 

38. The Lucas numbers Lz- end in the digit 7; that is, L4, Lg, L16, Z-32,... end in 7. 
39. Compute FF5, FLi,LF},LLs. 
Prove each, where n > 1. 

40. F t n φ - 0 (mod 5) 
41. FFn = 0 (mod 5) if and only if n = 0 (mod 5) 

42. F„ s L„ (mod 2) 
43. FmF„ = LmL„ (mod 2) 



FIBONACCI AND LUCAS 
PERIODICITY 

A cursory examination of the units digits of the Fibonacci numbers Fo through F59 
reveals no obvious or interesting pattern. But then take a look at the ones digits in 
Ffto and F6i; they are the same as those in F\ and Fj. That is, F($ = Fo (mod 10) 
and /*6i = F\ (mod 10). So, by virtue of the Fibonacci recurrence relation (FRR), the 
pattern continues: /·«)+, = F, (mod 10). 

More generally, we have the following result. 

Theorem 35.1. Let /, n > 0. Then Fwn+i = F, (mod 10). 

Proof, [by the principle of mathematical induction (PMI)] The statement is clearly 
true when n = 0. So, assume it is true for an arbitrary integer k > 0: Feoic+i = F-, 
(mod 10). Notice from the Fibonacci table that FQQ = 0 (mod 10) and F59 = 1 (mod 
10). Then: 

Fe0(k+l)+i = F(60t+/)+60 

= Fm+i+[ F(5o + Fm+i F59, by Identity 5.22 

= Fm+i-· 0 4- F,,. 1 (mod 10) 

= Fi (mod 10) 

Thus, by PMI, the statement is true for every n > 0. ■ 

For example, F )4 = 377 = 7 (mod 10), so F74 = F14 = 7 (mod 10). To confirm 
this, notice that F74 = 1, 304,969, 544, 928, 657 ends in 7. 

Let p be the smallest positive integer such that Fp+i = F, (mod 10) for every 
/. Then p is called the period of the Fibonacci sequence modulo 10. By virtue of 

415 
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Theorem 35.1, p < 60. But when we examine the ones digits in FQ through F59, we 
see no repetitive pattern, so p > 60. Thus p = 60; that is, the period ofthe Fibonacci 
sequence modulo 10 is 60. 

In 1963, using an extensive computer search, S. P. Geller of the University of 
Alaska established that the last two digits of F„ repeat every 300 times, the last three 
every 1500, the last four every 15,000, the last five every 150,000, and the last six 
digits every 1,500,000 times. That is, 

Fn+3oo = F„(mod 300), Fn+l500 = F„(mod 1500), 

F.+15.000 = F„(mod 15,000), 

F„+i5o,ooo = F„(mod 100,000), and 

F,+i,50o,ooo s F„(mod 1,000,000) 

Thus F„+3oo = F„ (mod 300) and Fn+1.5xi0ik = F„ (mod 10*), where 3 < k < 6. 
It is reasonable to ask if the Lucas sequence is also periodic modulo 10. If it is, 

what is the period? To answer these questions, let us extract the ones digits in LQ 
through L\\. They are 2, 1, 3, 4, 7, 1, 8, 9, 7, 6, 3, and 9. There is no pattern so far, 
so the period is at least 12. But, by virtue of the Lucas recurrence relation (LRR), we 
obtain every residue modulo 10 by the sum of the two previous residues modulo 10. 
So the next two units digits are 2 and 1. Clearly, a pattern begins to emerge. Thus, 
the Lucas sequence modulo 10 is also periodic; its period is 12; that is, L12+; = Li 
(mod 10). 

More generally, we have the following theorem. We leave its proof as an exercise 
(see Exercise 10). 

Theorem 35.2. Let /', n > 0. Then Li2n+i = Li (mod 10). ■ 

For example, Ln = \99 = 9 (mod 10), so, by Theorem 35.2, L47 s 9 (mod 10). 
This is true since L47 = 6,643, 838, 879 ends in 9. 

SQUARE LUCAS NUMBERS REVISITED 

In February 1964, Br. Alfred published a neat and simple proof of the fact that 1 
and 4 are the only Lucas numbers that are perfect squares. His proof hinges on the 
periodicity of the Lucas sequence modulo 8. 

Since LQ = 2 (mod 8) and Lt s 1 (mod 8), it follows that L, = L,_i + L,_2 
(mod 8), where i > 2. For example, L% = 7 (mod 8) and L9 = 4 (mod 8), so 
Lio s 7 + 4 = 3 (mod 8). Table 35.1 shows the residues of the Lucas numbers 
modulo 8, where 0 < ί < 11. 

It follows from the table that L12 = 2 (mod 8) and Lo = 1 (mod 8). 
Consequently, Lo = L12 (mod 8) and L\ s L13 (mod 8). By virtue of the LRR, the 
Lucas residues continue repeating. Thus there are exactly 12 distinct Lucas residues 
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TABLE 35.1. 

ί' 

Li (mod 8) 

0 

2 

1 

1 

2 

3 

3 

4 

4 

7 

5 

3 

6 

2 

7 

5 

8 

7 

9 

4 

10 

3 

11 

7 

modulo 8, as the table shows. The period of the Lucas sequence modulo 8 is twelve, 
that is, L,+i2 s L, (mod 8). More generally, Ll2n+i s £,· (mod 8), where n > 0. 

Since the least residue of a perfect square modulo 8 is 0, 1, or 4, it follows from 
Table 35.1 that the only Lucas numbers that can be squares are those of the form 
£-12*+M where i = 1, 3, or 9. This observation narrows considerably our search for 
Lucas squares. 

In order to identify the Lucas squares, we need the results in the following 
lemma. 

Lemma 35.1. Let m, n > 0, r > 1, and t = Ύ. Then 

1. L2t = L]-2 

2. {L„2) = 1 

3. L2,+i s -Li (mod L,) 

4. L6n±2 = 3 (mod 4) 

Proof. 

1. Since L2n = L\ - 2 ( - l ) " , it follows that Llt = L]-2. 

2. By Identity (34.1), Ln = 0 (mod 2) if and only \în =0 (mod 3). Since 3/f, 
2/Lt. Therefore, (L„ 2) = 1. 

3. Since 2Lm+n = 5FmF„ + LmLn, we have 

2L2t+i = 5F2lFi + L2,Li 

= 5F,L,Fi + Li{L^-2) 

= -2L,(modL,) 

But (L,, 2) = 1, so L2l+i = -Li (mod L,). 
We shall leave the proof of part 4 as an exercise (see Exercises 12 and 15). ■ 

We are now in a position to establish the theorem. The following proof is essentially 
the one given by Br. Alfred. 

Theorem 35.3. The only Lucas numbers that are perfect squares are 1 and 4. 
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Proof. Clearly, Lx = 1 and L3 = 4 are perfect squares. Let i, k > 1. Then 
12k = 2mt for some odd integer m and / = 2 r, where r > 1. By the repeated 
application of Lemma 35.1, we have 

L\2k+i — Limt+i 

= -£-2(m-l) i+i(mod L,) 

= (-l)2L2(m_2),+,(modL,) 

= ( - l )mL,(modL,) 

s — L,, since m is odd 

Case 1. Let/ = LThenLi2*+i = — L\ = — 1 (mod L,). Since 2|i and 3 / r , it follows 
by Theorem 35.1 that L, = 3 (mod 4). Consequently, —1 is a quadratic nonresidue 
of L,; that is, x2 = — 1 (mod L,) has no solutions. Thus L\2k+i is not a perfect 
square. 

Case 2. Let i = 3. Then Li2*+3 = —L3 = —4 (mod L,). Again, —4 is a quadratic 
nonresidue of Lt, so Li2*+3 cannot be a perfect square. 

Case 3. Let i = 9. Then L\2k+9 can be factored as Li2k+9 — ̂ «+3(^-4^+3 + 3) (see 
Exercise 17). 

Suppose d\L4ic+3 and d\(Llk+3 + 3). Then d\3, so d = 1 or 3. But the only Lucas 
numbers divisible by 3 are of the form L^+i (see Exercises 19-21). So d J((4k + 3). 
Thus d = 1, so (Lu+3, ^«+3 + 3) = 1. Therefore, if L nk+9 is to be a perfect square, 
both factors must be squares. 

Clearly, L^+i is not a perfect square when k = 1 or 2. By the division algorithm, 
we have & = 3s, 3s + 1, or 3s + 2 with s > 1. By Table 35.1, the corresponding 
Lucas numbers L\2S+3, L\2S+T, and Z-I2J+II are not squares. 

Thus, the only Lucas numbers that are perfect squares are 1 and 4. ■ 

FIBONACCI AND LUCAS PERIODICITY 

In 1960, D. D. Wall of the IBM Corporation investigated the periodicity of the 
k 

Fibonacci sequence modulo a positive integer m > 2. He established that if m = Π Ρ ? 
1 

and hi denotes the period of the sequence modulo p\', then the period of the sequence 
modulo m is [Ai, Λ2,. . . , Λ*]. 

Twelve years later, J. Kramer and V. E. Hoggatt, Jr., both of San Jose State 
University, continued the investigation and established the periodicity of both 
Fibonacci and Lucas numbers modulo 10". To demonstrate this, we need the following 
theorems. 



FIBONACCI AND LUCAS PERIODICITY 419 

Lemma 35.2. L3„ = 0 (mod 2). ■ 

This follows by Exercise 39 in Chapter 16. 

Theorem 35.4. (Kramer and Hoggatt, 1972). The period of the Fibonacci sequence 
modulo 2" i s3 -2 n ~ ' . 

Proof, (by PMI) By virtue of the Fibonacci recurrence relation, it suffices to prove 
that F3.2-1 = F0 (mod 2") and F3.2»-i+i = F, (mod 2"). 

1. To prove that F3.2«-i = Fo (mod 2") for n > 1: 

When n = 1, F3.2—1 = F3 = 2 = O(mod 2), so the result is true when n = 1. 

Now assume it is true for an arbitrary integer k > 1 : 

F32*-i = Fo (mod 2k) 

Then F3.2* = F32*-iL3.2*-' = 0 (mod 2 t + l ) , by Lemma 35.1 and the inductive 
hypothesis. Thus F3.2—1 s 0 (mod 2") for every n > 1. 

2. To prove that F32"-i + i = F\ (mod 2"): 

Using the identity F2m+i = F^+, + F^, 

F3.2»-i+i = (F32"-2+i) + (F3.2»-2) 

Since F3.2-2 = 0 (mod 2"~') by Part 1, it follows that (F3.2.-2)2 = 0 (mod 2"). 
Therefore, by Cassini 's formula, 

(F3.2-» + l)2 = FyV-i+2FyV-2 - ( - l ) 3 ' 2 " ^ 1 

Ξ Ο + Ι Ξ (mod 2") 

Thus F3.2»-i+i = 0 + 1 = Fi (mod 2"). ■ 

The next theorem generalizes this result to the generalized Fibonacci sequence. 

Theorem 35.5. (Kramer and Hoggatt, 1972) The period of the generalized Fibonacci 
sequence modulo 2" is 3 · 2"~ '. ■ 

Its proof hinges on establishing that G3.2—1+1 = G\ (mod 2") and G3.2»-'+2 = G2 
(mod 2"), Cassini 's rule, and the following identities: 

Gm+n + l = Gm + |F„+i +GmF„ 

Gn+\ - aF„-\ +bFn 

See Exercise 26. 
Next we need two simple lemmas. We can establish Lemma 35.3 using 

Binet's formula and Lemma 35.4 from Lemma 35.2 using PMI (see Exercises 27 
and 28). 
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Lemma 35.3. F5«+i = (£4.5* - L2.5» + l ) / > , n > 1 ■ 

Lemma 35.4. F5» = 0 (mod 5"), n > 1 ■ 

Theorem 35.6. The period of the Fibonacci sequence modulo 5" is 4 · 5". 

Proof. Again, by virtue of the Fibonacci recurrence relation, it suffices to show 
that F4.5» s F0 (mod 5") and F45n+i = Fj (mod 5"). 

1. To prove that F4.5.. = Fo (mod 5"): 

Since Fy |F4.5., F5- = F4.5« s 0 (mot/ 5"), by Lemma 35.3. 

2. To prove that F4.5-.-n s P\ (mod 5"): 

Using the identity F2m+\ = F^ + l + F^, we have 

^4·5" + Ι = (F2.5» + l) + (F2.y) 

= (F25,+1)2(mod5") 

Using Cassini 's formula, 

(F25»+1)2 = F2.y+2F2.y - ( - l ) 2 - 5 " + 1 

s 0 + 1 s l(mod5") 

Thus F4.5»+1 = F, (mod 5"). ■ 

The following theorem provides the corresponding result for Lucas numbers. We 
omit its proof in the interest of brevity. 

Theorem 35.7. The period of the Lucas sequence modulo 5" is 4 · 5"_1. ■ 

Theorems 35.4 - 35.7 yield the periodicity of each sequence modulo 10". 

Theorem 35.8. 

1. The period of the Fibonacci sequence modulo 10" is 

60 if n = 1 
300 ifn = 2 

15 · 10"~' otherwise 

2. The period of the Lucas sequence modulo 10" is 

1 12 if « = 1 

60 if« = 2 
3 · 10"-' otherwise 
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Proof. 

1. The period of the Fibonacci sequence modulo 10" is given by 

60 if n = 1 
[ 3 · 2 " ~ ' , 4 · 5 " ] = { 300 ifn = 2 

15 · 10n_1 otherwise 

2. The period of the Lucas sequence modulo 10" is given by 

[3-2" _ 1 ,4 -5"- ' ] = 
60 if n = 1 
300 i f n = 2 

I 15 · 10""' otherwise 

The next corollary follows immediately from this theorem. 

Corollary 35.1. 

1. The ones digit of a Fibonacci number repeats in a cycle of period of 60; the last 
two digits in a cycle of period of 300; and the last «(> 3) digits in a period of 
15· 10"-'. 

2. The ones digit of a Lucas number repeats in a cycle of period of 12; the last 
two digits in a cycle of period of 60; and the last n(> 3) digits in a period of 
3 10"-'. ■ 

Kramer and Hoggatt (1972) also established the following results. 

Theorem 35.9. 

(1) L2.y = 0 (mod 2 -3") 

(2) F4.3- = 0 (mod 4 ·3") Η 

For example, L54 = 192,900,153,618 s 0 (mod 54) and F36 = 14,930,352 Ξ 0 
(mod 36). 

We can employ Theorem 35.8 to prove the following result, which was proposed as 
a problem in 1976 by H. T. Freitag of Virginia. The proof presented here is essentially 
the same as the one given by P. S. Bruckman of the University of Illinois. 

Example 35.1. Prove that L2/)* = 3 (mod 10) for primes p > 5. 

Proof. For primes p > 5, p = ±1 (mod 6), so ρ ' Ξ i l (mod 6), and hence 
2pk = ±2 (mod 12). By Theorem 35.8, the period of the Lucas sequence modulo 10 
is 12; that is, Ln+i2 = L„ (mod 10). But L„ = 3 (mod 10) if and only if n = ±2 
(mod 12). Therefore, Lipk = 3 (mod 10) for primes p > 5. ■ 
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The next theorem was discovered in 1974 by M. R. Turner of Regis University in 
Denver. It characterizes those Fibonacci numbers that terminate in the same last two 
digits as their subscripts. Its proof is fairly long, so we omit it. 

Theorem 35.10. F„ = n (mod 100) if and only if n = 1,5,25,29,41,or 49(mod 60) 
or n = 0 (mod 300). ■ 

For example, F4l = 165,580,141 Ξ 41 (mod 100)andn = 41 = 41 (mod 60). On 
the other hand, n = 85 = 25 (mod 60) and F85 = 259,695,496,911,122,585 = 85 
(mod 100). 

This theorem has an interesting by-product. 

Corollary 35.2. Let p be a prime > 5. Then Fpz = p2 (mod 100). 

Proof. By the theorem, F25 = 25 (mod 100). If p > 5, then p = 1,3,7,9,11, 13, 
17, or 19 (mod 20). Then p2 = 1 or 9 (mod 20), so p2 = 1 or 49 (mod 20). Since 
p2 = 1 (mod 3), it follows that p2 = 1 or 49 (mod 60). Therefore, by Theorem 35.10, 
FP2 s p2 (mod 100). ■ 

For example, let p = 7. Clearly, F49 = 7,778,742,049 = 49 (mod 100). 

EXERCISES 35 

1. The ones digits in F-n is 9 and that in F32 is also 9. Compute the ones digit in 
F33. 

2. F38 ends in 9 and F39 in 6. Find the ones digit in F42. 
3. F43 ends in 7. Determine the ones digit in F703. 

4. L20 e nds in 7 and F21 in 6. Find the ones digit in L22 and L25-
5. L45 ends in 6. Find the ones digit in L93. 
6. Complete the following table. 

Modulus m Period of the Fibonacci 
Sequence Modulo m 

Period of the Lucas 
Sequence Modulo m 

2 
3 
4 
5 
6 
7 
8 
9 

10 

7. Given that L23 = 7 (mod 8) and L24 = 2 (mod 8), compute Z-25 modulo 8. 
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8. Let Li = 5 (mod 8) and Li+\ = 7 (mod 8). Compute Li+2 modulo 8. 
9. Let Li = 3 (mod 8) and L,_i = 4 (mod 8). Compute L,_2 modulo 8. 

Prove each, where n, i > 0. 
10. Ll2n+i = Li (mod 10) 
11. F6n+1 s i (mod 4) 
12. F6n_2 = 3 (mod 4) 
13. Fôn-i s 1 (mod 4) 

14. L(,n-\ = 3 (mod 4) 
15. L6n+2 s 3 (mod 4) 
16. L6n+4 = 3 (mod 4) 
17. ^I2n+9 = ^4n+3(^4«+3 + 3 ) . 

18. F4„ 5=0(mod3) 
19. L4n+2 = 0 (mod 3) 
20. L4n s ±1 (mod 3) 
21. L4n+i = ±1 (mod 3) 

22. Li2„+; s £,, (mod 3) 
23. Let 2|i and 3 / / . Then L, = 3 (mod 4). 
24. Use the fact that 2Fm+n = FmL„ + F„Lm to prove that F « ^ , s F,· (mod 10). 

25. Use the fact that Lm+2k = —Lm (mod Lk) to prove that L4„+2 = 0 (mod 3). 
26. Theorem 35.5 
27. Lemma 35.3 
28. Lemma 35.4 
29. Fm = 20* (mod 100) (Turner, 1974) 
30. If « s 1 (mod 60), then F„ = n (mod 100) (Turner, 1974). 
31. Fmk+n = 20/tFn_! + (60fc + 1)F„ (mod 100) (Turner, 1974) 
32. The sum of n consecutive Lucas numbers is divisible by 5 if and only if 4|n 

(Freitag, 1974). 
33. F(n+2)k = Fnk (mod Lk), where k is odd (Freitag, 1974). 
34. F(n+2)* + F„k = 2F(n+])k (mod Lk — 2), where k is even (Freitag, 1974). 

35. L2m(2n+i) = Llm (mod F2
2
m) (Bruckman, 1975) 

36. i(2m+i)(4n+i) = i-2m+i (mod F2m+i) (Bruckman, 1975b) 
37. £(2m+i)(4n+i) = i-2m+i (mod F2nF2n+i) (Koshy, 1999) 
38. L2p* Ξ= 3 (mod 10), where p is a prime > 5 (Freitag, 1976). 
39. F3n+i + Fn + 3 = 0 (mod 3) (Berzsenyi, 1979) 
40. F2n = n ( - l ) n + 1 (mod 5) (Freitag, 1979) 
41. L2« = 7 (mod 10), where n > 2 (Shannon, 1979). 
42. F3.2» s 2"+2 (mod 2n+3), where n > 1 (Bruckman, 1979). 

43. Ly2- = 2 + 2"+2 (mod 2n+4), where n > 1 (Bruckman, 1979). 



FIBONACCI AND LUCAS 
SERIES 

If, beginning with FQ, we place successively every Fibonacci number Fn after a 
decimal point, so that its ones digit falls in the (n + l)st decimal place, then the 
resulting real number is the decimal expansion of the rational number 1 /89 = 1 / F\ \. 
Be sure to account for the carries: 

5 8 0. 0 1 1 2 3 
1 

5 
4 

= 0. 0 1 1 2 3 5 9 5 5 0 5 
_ j _ 
~ 89 

that is, JT(F//10,'+1) = \/Fu. This result was discovered in 1953 by F. Stancliff. 
i=0 

But, how do we establish this fact? For that, we need to study the convergence of the 
Fibonacci series 

T — 
£—j fri + 1 

(36.1) 
i=0 

where k is a positive integer. 
Suppose the series converges. Then, by Binet's formula, 

Σ l + v/5\ ' / 1 - V 5 Y 
2k 2k 

424 



FIBONACCI AND LUCAS SERIES 425 

</5k[ l - ( l + V 5 ) / 2 * \-(\+y/5)/2k\ 

VS\2k-l->/5 2 * - 1 + ^ 5 / 

Thus, 
S = wa^i (363) 

Notice that the denominator of the right-hand side (RHS) is the characteristic poly-
nomial of the Fibonacci recurrence relation (FRR). Also, S is an integer if and only if* = 2. 

00 

Since the power series 1/(1 —x) = J^x' converges if and only if |jt| < l.itfollows 
i=0 

from Eq. (36.2) that the Fibonacci power series (Eq. 36.1) converges if and only if 
|or| < * and \ß\ < k, that is, if and only if * > max(|a|, \ß\). Buta = \a\ > \ß\. 
Thus S converges if and only * > or, that is, if and only if* > 2, which was somewhat 
obvious. 

Equation (36.3) yields the following results: 

When * = 2 

When * = 3 

When * = 8 

When* = 10 

V 2' + ' F, 

L· 3<+i 5 F5 

y , F, 1 1 
V 8i+1 55 F,o 

L ιθ'+' 89 F,, 

These values of * yield the value of the infinite sum to be of the form l /F, for some 
Fibonacci number F, ; in other words, they are such that *2 — * — 1 = F, ; that is, 
* ( * - 1) = 1 + F,. 

Conversely, suppose 1 + F, is the product b(b — 1 ) of two consecutive positive 
integers b and b — 1. Solving the equation *2 — * — (1 + F,) = 0 for *, 

Since * > 0, this implies 

1 ± V 1 + 4 ( 1 + F,) 

2 

1 ± V4F, + 5 

2 

1 + V4F, + 5 
* = 
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But4F, + 5 = 4(1 + F,) + 1 = 4b(b - 1) + 1 = (2b - l)2 ; 

\+2b-l 
■ * = — a — = * 

so 5 = 1/F,. Thus 1/5 is a Fibonacci number F, if and only if 1 + F, is the product 
of two consecutive positive integers. 

It now follows that there are at least four such values of k: 

1 - 2 = 1 + F, 2 - 3 = l + F5 7-8 = l + F,o and 9 · 10 = 1 + Fn 

What, then, occurs when we turn to the convergence of the corresponding Lucas 
series, 

i=0 K 

As before, we can show that this series converges to a finite sum if and only if 
k > or, and the sum is 

2k- 1 

when k = 2, 5* = 3; and when k = 3, 5* = 1. In both cases, 5* is an integer. 
So we wish to investigate the integral values of k for which 5* is an integer t. 

Notice that t = 0 implies k = 1/2, which is a contradiction. So t > 1. Let 
(2k - \)/(k2 -k-\) = t. Then tk2 - (t + 2)k - (t - 1) = 0, so 

(t + 2) ± V(i + 2)2 + 4 i ( i - l ) 
AC = 

2/ 

(t + 2)±V5F+4 
= (36.6) 

Since it is an integer, V5/2 + 4 must be a perfect square. When / = 1, k = 3 or 0. 
Since k > 1,0 is not acceptable, so t = 1 yields the case k = 3. 

When t > 1, V5f2 + 4 > / + 2. Consequently, since k > 0, the negative root in 
Eq. (36.3) is not acceptable. Thus 

(, + 2) + V5PT4 
■* = 2l ( 3 6 · 7 ) 

Suppose it > 4. Then 

G + 2) + VSFTA 
> 4 

2f 
y/5t2 + 4 > 7i - 2 

5f
2 + 4 > 49/2 - 28i + 4 

Hi2 < 7f 

ί < 7/11 

which is a contradiction. 
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Thus, the only positive integral values of k that yield an integral value for S* are 
k = 2 and k = 3. The corresponding values of 5* are the Lucas numbers L2 = 3 and 
L\ = 1, respectively. 

A similar argument shows that the only positive integral value of k that produces 
an integral value for S = \/(k2 — k — 1) is k = 2, in which case S = 1 — F\ (or Fj). 

In 1981, Calvin T. Long of Washington State University at Pullman showed that 
the following summation results can be derived from a bizzare identity established in 
the following theorem: 

1 ^L F . 
(36.8) 

(36.9) 

1 

89 

19 

89 : 

1 

09 = 

21 
IÖ9 

_ y » i*n-l 

- L· 10« 
00 . 

~L· 10n 

00 F 

''ή- (-10)» 

00 . 

~ γ (-10)" 

(36.10) 

(36.11) 

Theorem 36.1. (Long, 1981). Let«, b, c, d, and B be integers. Let U„+2 — aUn+\ + 
£>t/„, where t/o = c, L7] = rf, and n > 2. Let the integers m and N be defined by 
B2 = m + aB + b and N = cm + dB + be. Then 

n + l 

B"N - m Σ B"- / + I i / ;_| + ßi/,,+ι + *ί/„ (36.12) 
i = l 

for all n > 0. 

/Voo/. (PMI) When n = 0, Eq. (36.12) yields N = cm+dB + be. So the result 
is true when n = 0. 

Assume it is true when n = k: 

k+\ 

ß*A'=/n^ß*-' + li/,_i + ß i / t + , +bUk 

1=1 

Then 

1=1 

Jt+I 

= m Σ Bk-i+2U,-\ +(m+aB + b)Uk+l + bBUk 
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k+2 

= mJ2 Bk'i+2Ui^ + B(aUk+i + bUk) + bUk+i 

1 = 1 

4+2 

= m Σ Β"-'+2υ^ + BUk+2 + bUk+l 
i = l 

Thus the formula is true for all n > 0. ■ 

Formula (36.12) yields the following theorem. 

Theorem 36.2. (Long, 1981) Let a, b, c,d,m, B, and N be integers as in Theorem 
36.1. Let 

a + Va2 + 4b , a - -Ja1 + Ab 
r = and s = 

2 2 
where \r\ < \B\ and \s\ < |S|. Then 

^ = Σ ^ 
Proof. Using the recurrence relation in Theorem 36.1, we can show (see 

Exercise 11) that 
Un = Pr" + Qs" (36.14) 

where 
c Id — ca 

P = - H 2 2Va2 + 4b 
Then, by Eq. (36.12), 

„ c Id — ca 
anH Q = 

2 2Va2 + 4b 

N ψυ,-ι ( BUn+1+bUn 

mB 2-~> B> mfl"+l 

i = l 

Z-J ßl 

oo . . 

~ 2-1 Bi 

as n -*■ oo, since \r\, \s\ < 1 

In particular, let a = I = b, c = 0, d = l,andfi = 10. Then m = B2 —aB—b = 
100 - 10 - 1 = 89 and N = cm + dB + be = 0 + 10 + 0 = 10. So Eq. (36.13) 
yields 

10 ^ ^ _ , 

10-89 *γ 10' 
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That is, 

89 Y 10' 

We can derive summation formulas (36.9) through (36.11 ) similarly (see 
Exercises 12-14). 

Corollary 36.1. Let a = b = d = 1 and c = 0: 

00 

1. If B = 10\ then 1/(102A - I 0 f c - 1 ) = £ ^ 
1 

oo 

2. If B = (-10)", then 1/(102A - (-10)" - 1) = Σ T=$r 

Proof. UB = 10\ then m = 102A - 10A - 1 and N = 10A. If B = ( - 1 0 ) \ then 
m = 102A - ( - 10)A - 1 and N = (-l0)h. Both formulas now follow by substitution. 

The following summation formulas follow from this corollary: 

1 °° F 
= V - ^ = 0-0112359350557... 89 *-f 10' 

0.0112358 

13 

21 

34 

55 

89 

144 

233 

1 F 
= V ~ = 0.000101020305081321 9899 ή - ' 102 

1 °° p 

Σ ~ = 0.000001001002003005008013. 
π3ι 998,999 *-f 103 

109 ^ (-ioy 
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oo „ 

= Σ '"' 10,099 *-f (-100)' 

1 ^ Fi-
r-innnv 1,000,999 ^ ( - 1 0 0 0 ) 

We now turn our attention to the convergence of the Fibonacci power series 

oo 

T = Y^Fix' (36.15) 
1=0 

We have 
oo 

T = F\x + F2x
2 + ^ ( F i _ i + Fi-2)x

2 

Converting into 

oo 

= X + X2 + X Y2 FrXr + 
2 

= x + x2 + x(T - x) + x 
X 

T \-x-x2 

x 
( l - a * ) ( l - j 8 x ) 

partial fractions, we find 

A A 
T _ 

oo 

x2 Σ Fsx 
1 

2T 

(36.16) 

1 - ax 1 - βχ 

where A = \/-j5. The series from the first term converges if and only if \ax\ < 1 
and that from the second term converges if and only if \βχ | < 1. 

So the Fibonacci power series (36.15) converges if and only if |JC| < min(l/|or|, 
1/1/31). Since aß = - 1 , 1/|α| = -β, so min(l/ |a| , l/\ß\) = min(-/?,a) = -β. 
Thus, the series converges if and only if |*| < - / 3 , that is, if andonly if β < x < —β. 

Next, we proceed to identify the rational values of x for which T is an integer 
k > 1, as P. Glaister did in 1995: 

r 
= * 1 - x - x2 

kx2 + (k+ \)x-k = 0 

- ( * + 1) ± y/(k + l)2 + (2k)2 

x — 
2k 

This implies that there are two possible values of x. 
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Since we require JC to be rational, (k + l)2 + (2k)2 must be a perfect square. This 
can be realized using Pythagorean triples, so we let 

lc+l=m
2-n2 and 2lc = 2mn (36.17) 

for some integers m and n, where m > n > 1. Then: 

(m2 - n2) + (2mn)2 

(m2+n2)2 

-(m2 - n2) ± (m2 - n2) 

2mn 
m n 

n ' m 

Suppose both of these values lie within the interval of convergence (ß, — ß), that 
is, ß < —m/n < —ß and ß < n/m < —ß. From the second double inequality, 
m/n > —l/ß, so —m/n < —a. This is a contradiction, since —m/n > ß > —a. 
Thus, both values of JC, —m/n and n/m, cannot lie within the interval at the same 
time. 

From Eq. (36.17), we have m2 — n2 = mn + 1; 

.·. (m - n/2)2 =m2-mn+ n2/4 = n2 + 1 + n2/A = 1 + 5n2/4 

that is, 
(2m - n)2 = 4 + 5n2 

Thus, 4 + 5/i2 must be a perfect square r2 for some positive integer r.So2m — n = r. 
Let us now look at the first three possible values of n and compute the corresponding 

values of r, m, and T = k: 

Case 1. Let n = 1. Then 4 + 5n2 = 32, so 2m — 1 = 3 and m = 2. Therefore, 
T = k = mn = 2, n/m = 1/2, and -m/n = -2. But - 2 <£ (β, -β). Thus 
OO 

£ F , ( l / 2 ) ' = 2 . 
I 

Case 2. Let n = 3. Then 4 + 5«2 = 72, so 2m - 3 = 7 and m = 5. Therefore, 
T = mn = 15, n/m = 3/5, and - m / n = - 5 / 3 . But - 5 / 3 f (β,-β). Thus 
OO 

EF, (3 /5 ) ' = 15. 
I 

Case 3. Let n = 8. Then 4 + 5n2 = 182, so 2m - 8 = 18 and m = 13. Therefore, 
T = mn = 104, n/m = 8/13, and -m/n = -13 /8 . Again, -m/n i (β, -β). Thus 
OO 

2 :^ , (8 /13 ) '= 104. 
1 

(*+1) 2 + (2*)2 

.'. JC 
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The next choice of n is 21. Surprisingly enough, a clear pattern begins to emerge: 
These four values of n are Fibonacci numbers with even subscripts: F2 = 1, F4 = 
3, F(, = 8, and F% = 21; the corresponding m-values are their immediate successors: 
Fi = 2, F5 = 5, F7 = 13, and F9 = 34; and 

00 00 

£ Fid/2)1 = 1-2, Σ F<<3/5>' = 3 · 5 

0 0 

00 00 

Σ 1(8/13)'' = 8 13, £ F* (21/34)'' = 2 1 - 3 4 
0 0 

In 1996, Glaister established that this fascinating pattern does indeed hold: 
To see this, let n = F2*, where k > 1. Then 

, (a2k-ß2k\2 

4 + 5n2 = 4 + 5 F £ = 4 + 5i -J—\ 

= 4 + (a4* + 04* - 2) = a4* + /34* + 2 

= a4* + ß4k + 2(a/3)2* = (a2k + ß2k)2 

Therefore, 4 + 5n2 is a perfect square, as desired. Then 

2m - n = a2k + ß2k 

m .ïlÇ+l.fr-^^)] 
a2k+\ _ o2k+\ 

= ^ *»+« 

Since ß < 0, it follows that 

n F2k a2k - ß2k 

m F2k+\ α2*+1 - ß2k+i 

„2* 
a 

a 
Thus 0 < n/m < —/? and hence n/m lies within the interval of convergence. 
Consequently, T = k = mn = F2kF2k+\-

Accordingly, we have the following theorem. 

Theorem 36.3. The Fibonacci power series (Eq. 36.15) converges if ß < x < —ß 
and 

00 

/ . Fj(F2k/Fu+i)' = F2kF2k+\ 
i= l 

where k > 1. ■ 
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For example, F\2 — 144 and F\j = 233. Then 

J2 7^(144/233)' = 144 · 233 = 33,552 
i' = l 

A similar study of the related Lucas power series 

oo 

T = J2LiX' (36.18) 
;=o 

yields fascinating dividends. Suppose this series (36.18) converges. Then 

oo 

T = L0 + Ltx + J](Li-i + Li-2)x
l 

2 

oc 

= 2+x +x^2 Lix' + x2 Σ Li*' 
1 0 

= 2 + x+x(T ~2)+x2T 

x2)T = 2-x 

2-x 
T = (36.19) 

Since 1 — x — x2 — (1 — ax)(\ — ßx), we can convert this into partial fractions: 

B 
T = + 

1 — ax 1 — ßx 

where A and B are constants. Expanding the right-hand side yields 

T = A Σ(αχ)' + B ΣίβχΫ 

These two series converge if and only if \ax\ < 1 and \βχ\ < 1, that is, if and 
only if |JC| < l / | a | and |JC| < \/\β\. But \a\ = a and \β\ = -β. Thus the series 
(36.18) converges if and only if \x | < min(l/a, \/ — β). Since aß = —1, this implies 
|*| < min(—ß, a) . But — ß < a,somin(—ß, a) = —ß. Thus, the Lucas power series 
(36.18) converges if and only if |JC| < — ß; that is, if and only ß < x < — ß. When 
the series converges, Formula (36.19) gives the value of the infinite sum. 

Formula (36.19) generates a delightful question for the curious-minded: Are there 
rational numbers x in the interval of convergence for which T is an integer! 
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Before answering this question, let us study a few examples and look for any 
possible pattern: 

W b e n x - 1 / 3 . T= , _ ^ ^ = 3 = 3 ■ 1 

Whenjc = 4/7· T-x-ln%in = u = 1·'1 

* > » * = " / « . ^ Ι - Ι Ι ^ - α 8 ! / ! » ) » - 9 0 - 1 8 · 5 

Clearly, a pattern emerges: In each case, x lies within the interval of convergence; x 
is of the form Lu-1 /Lu,k > 1 ; and Γ is an integer of the form L^F2*_i. 

Fortunately, this is always the case. Before we can prove it, we need to lay some 
groundwork in the form of two lemmas; we can establish both using Binet's formula. 

Lemma 36.1. L, + £,_2 = 5F;_i, ί > 2. ■ 

Corollary 36.2. L,+L,_2 s 0 (mod 5), i > 2; that is, the sum of two Lucas numbers 
with consecutive even (or odd) subscripts is divisible by 5. ■ 

For example, L19 + L n = 9349 + 3571 = 12,920 = 0 (mod 5). Likewise, 
Lie + L24 = 0 (mod 5). 

Lemma 36.2. Let k > 1. Then L\k — L2kL2k-i — L\k_x = 5 . ■ 

We are now ready to establish the conjecture. 

Theorem 36.4. (Koshy, 1999) Let k be any positive integer. Then 

00 

2_jLj(L2k-\/L2k)' — L2kF2k-\ 
i=0 

Proof. First, we show that β < L2k-i/L2k < -β- By Binet's formula, 

L a - , _ « t t - ' + f l " - ' 

L2k a2k + ß2k 

a2k-\+ß2k-X 

a2k-X 

a 

ThusO < L2k-\/L2k < -β,ζοβ < L2k-i/L2k < -β-
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Since x = L2k-\/L2k e OS, -ß), by Formula (36.19), 

2 — L2k-\/L2k 
/ ^Li(L2k-\/L2k)' 
._„ 1 — L2k-\/L2k — (L2k-\/L2k)2 

i-2/t(2i-2i - i-2t-l) 

^ 2 * — ^2k^2k-] — ^ 2 A - 1 

L2kQLlk — L2k-\) , . _ , „ 
by Lemma 36.2 

^2* + (^2t — ^2 t - l ) _ ^2* + ^2*-2 

5 5 
i-2*(5F2i_i) 

5 
= L2kF2k-\ 

by Lemma 36.1 

For example, let k — 5. Then x = L9/L\0 — 76/123, and F9 = 34; 

00 

. · . £ L; (76/123)' = 123 x 34 = 4182 
0 

Interestingly enough, although when x = Ζ.2*-ι/Ζ-2*ι the Fibonacci power series 
(36.15) converges to a finite sum, it is not an integer. We can show that 

i=0 

where L2*^2t-i Φ 0 (mod 5). For example, 

00 °° 123 76 
^F,(L9/L,0) ' · = 53^(76/123)' = — - — = 1869.6 

0 0 ·* 

As in the proof of Theorem 36.1, we can show that β < F2k/F2k+\ < —ß, so the 
Lucas series (36.18) converges to a finite sum when x = F2k/F2k+\, where k > 0. 
Then: 

2 - F2k/L2k+i 
i-i(r2k/r2k+\) = 1 — 

1=0 

Fu + xO-Flk+l — F2k) 

EMFWW = i-rJ^^F^r 

F2k+\ ~ F2kF2k+\ - F2, 2k+\ '-2k'-2k+\ - '2k 

F2k+l(F2k+\ + F2k-\) 
= F2k+]L2k 
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again an integer. Again, for the sake of brevity, we have omitted the cumbersome 
details. 

Accordingly, we have the following result. 

Theorem36.5. (Koshy, 1999) Let* >0.Then 

00 

2_^Lj(F2k/F2lc+\y = F2k + \L2k ■ 
1=0 

For example, let k = 3. Then x = F6/F7 = 8/13. Therefore, 

00 

^ L , ( 8 / 1 3 ) ' = FTU = 13 · 18 = 234 
1=0 

oo 

Likewise, £ L,(F|0/F,i) ' = FuLi0 = 89 · 123 = 10,947. 
i=0 

The next example, proposed in 1963 by L. Carlitz of Duke University, North 
Carolina, is an interesting telescoping sum involving a Fibonacci sum. The beautiful 
proof given here is by J. H. Avila of the University of Maryland. 

n 

A telescoping sum is a sum of the form J](a, — α,·_ι), where a, is any number. 
1 

When we expand such a sum, all terms get canceled, except the two ends. 
Thus 

n 

y~l(fli - f l / - i ) —a„~a0 

Example 36.1. Show that 

T—!— + V — 1 — = -
, FnF

2
+lFn+2 , F„F2

+2Fn+3 2 
Solution. For convenience, let a = Fn,b = Fn+i, c = Fn+2, and d = F„+3. Then 

a + b = c and b + c = d. 
oo . oc . 

LHS = Y —r-j + V -ΤΓ7 
^ ac2rf L-' ab2d 

= ^\7cTd + albTd) ^^\a~M+~a~b2d) 

A / c - a </- fe\ _ v V ' 1_ J 1 _ \ 
~ 4 ^ \abc2d ab2cd) ~ ^\abcd bc2d ab2c abed) 



FIBONACCI AND LUCAS SERIES 437 

= ?(—-—) 
^\ab2c bc2d) 

= / L ( r c2 i7 Ί·—~PT~E·— ) *- Telescoping sum 
. \r„rn+xt„+2 t n+i t n+2f „+3 / 1 

1 

FiF*F3 2 

We can apply the same telescoping technique to derive the following formulas, 
developed in 1963 by R. L. Graham of Bell Telephone Laboratories, Murray Hill, 
New Jersey, now called Lucent Technologies: 

OO . 00 „ 

Y ! = 1 and T. =2 
2 Fn-\Fn + \ 2 ^"n-l^n+l 

See Exercises 24 and 44. 
Letting x = 1 /2 in the power series 

1 °° 
5 2 F<*'~' (36-2°) l-x-x* 0 

we get Σ Fi/2'-1 = 4; that is, £ F,/2' = 2. 
1 I 

Differentiating Eq. (36.20) with respect to x, we get 

1 + 2x ^ 

(\-x-x2) , 

Let * = 1 /2. Then 

That is, 

ou . „ 

σο . „ 

î Δ 

The following result was established in 1974 by I. J. Good of Virginia Polytechnic 
Institute and State University at Blacksburg, Virginia. 

Example 36.2. Prove that 

OO j 

£_=4-a = 3 + 0 
o F* 
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Proof. First, we shall prove by PMI that 

^ 1 , / > - i 

When n = 1, LHS = 2 and RHS = 3 - (F,/F2) = 3 - 1 = 2. So the result is true 
when« = 1. 

Assume Eq. (36.21) is true for all positive integers < n. Then 

/ > _ 1 + 1 n+l . 

0 ^2 ' J*2" ^2"+' 

— 7. _ ^ 2 " ^ 2 " - l 1 

Z/2" * 2" F2«+i 

= 3 _ ^ ^ _ , - l ( 3 6 2 2 ) 

Γ2»+Ι 

With m = 2" and k = 2" — 1 in Exercise 56 in Chapter 5, we have: 

F2n+i_i + F_i = i,2»F2n-i 

That is, 

Therefore, Eq. (36.22) becomes 

n+l 

Σττ- ' -
/*2Λ+| —1 

0 F2, " F2.+i 

Thus, by the strong version of PMI, Eq. (36.21) is true for every n > 1; 

o 

That is, 

lim 7 — = 3 — lim 
n-»oo ^ ^ F?i η-»οο Fii+i 

ΟΟ j 

Υ-Γ=3-(-β) = 3 + β = 4-α m 

Next we pursue an interesting problem proposed in 1963 by H. W. Gould of West 
Virginia University. 

x(l — x) °° 
Example 36.3. Show that - — —f - = T F?x". r 1 - 2x - 2x2 + x3 o 
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Solution. Let 

x(l-x) 
1 - 2x - 2x2 +. = Σα»χ"- (36.23) 

Then x — x2 = Σ α « 0 — 2x - 2x2 + x3)x". Equating coefficients of like terms, 
o 

ao = 0, 1 — -2a0 + a\, - 1 = -2α0-2α\ +α2, andO = a„_3 -2α„_2 -2α„_ι + a„, 
where n > 3. Thus 

iio = 0, a] = 1 = a2 and α„ = 2α„_ι + 2α„_2 — α„_3 η > 3 (36.24) 

Since a„ = F2 for 0 < n < 2, it remains to show that a„ — F2 for n > 3. To this 
end, notice that: 

F2
n = (F„_,+Fn _2 )2 

= 2F„ 2 _ ,+2F 2 _ 2 - (F„_ , -F , ,_ 2 ) 2 
! n - l 

r2 2/?_, + 2 F - Fi 

n-2 rn-3 

So F 2 satisfies the Recurrence Relation 36.24 and the three initial conditions. Thus 
a„ = F2 for all n > 0, so 

x(\-x) 
1 - 2x - 2x2 + x3 Σ Fl*n 

Let us take this example a bit further. The roots of the cubic equation 1 — 2x — 2x2 + 
jc3 = 0 are — 1, a2, and β2, of which β2 has the least absolute value. Therefore, the 
power series (36.23) converges if and only if \x\ < β2, where β2 » 0.38196601125. 

00 

In particular, the series converges when x = 1/4 and Σ F2/4" = ^|. 
o 

A LIST OF SUMMATION FORMULAS 

The following summation formulas were developed in 1969 by Br. Alfred Brousseau 
of St. Mary's College in California. 

oo ( -1)"- ' 
ΐ · Σ — — 

1 Fn Fn+1 

6 a - 9 2 g (-l)"-'L2n+2 _ 1 
i FnF„+\Ln+\L„+2 3 

3-Σ 
(-I)"- 1 F: 2n+2 

L2L2 45 4·Σ 
FnF, l rnrn+2rn+i 



440 FIBONACCI AND LUCAS SERIES 

5.Σ ^ = — 6.£ ^ = -
l F„Fn+2F„+4Fn+6 480 i F2„F2n+\F2„+2F2„+3 2 

' • ^ c v . = T 8 · 2 . T^Tö = 1 M + 4 6 ' t FlFl n ' n+l 

9 g ( - l ) - L n + l i 1 Q g ( - I ) - 3-a 
1 F n F„ + iF n + 2 1 L3nL3n+3 4 0 ( 1 + a ) 

~ ( - l ) n - ' F 6 n + 3 1 , ~ ( - 1 ) " - ' 1 5 0 - 8 3 « 

1 3 «u-iy-'F^ = i 
l Fto,F(,„+(, 16 

( - I ) " " 1 1 
15. Σ t F2n-\F2n+l 6 

i y^ v ' — 
"*Τ F„Fn+5 105a 

£ . F*+5 
i FnFn+iFn+2Fn+iFn+4Fn+s 

Ά F2n 85 

i ^ V ^ 108 

1 

15 

EXERCISES 36 

Evaluate each sum. 
oo pi 

2 . £ -o 3' 
Consider the recurrence relation u„ — (a + ß)u„-i + aßun-2 = 0, where UQ= a 
and u i = b. 

3. Solve the recurrence relation. 
oo u . 

4. Evaluate the sum Σ 7777» where k > a (Cross, 1996). 
1=0 * 
00 p. 

5. Evaluate the sum Y -rfr. where k > a. 
1=0 * 

OO £ . 
6. Suppose ifc > a. Show that the Lucas series Σ 7717 converges to the limit 

0 * 

r = 2k~l 
k2-k-Y 

7. Show that -m/n = F2k-i/F2k ί iß, -ß) (Glaister, 1996). 
8. Show that the value of m corresponding to n = —Fik is F2k-\, where k > 1 

(Glaister, 1996). 

9. Show that F2k/F2k-i t iß, -ß) (Glaister, 1996). 
10. Show that ß < Fk/Lk < -ß, where k > 0. 
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11. Does the Fibonacci power series (36.15) converge when x — F^/L^, where 
k > 0 ? 

12. Does the Lucas power series (36.18) converge when x = Fk/Lk, where k > 0 ? 
13. Showthati/„ = P r" + Qs", with P, Q, r, s, and «are defined as in Theorem 36.2. 
Derive each. 
14. Formula 36.9 
15. Formula 36.10 

16. Formula 36.11 

17. Show that Σ — converges (Lind, 1967a). 
1 Fn 

oo 1 
18. Show that Σ converges (Lind, 1967b). 

~ 1 803 
19. Show that Y — > —τ: (Guillottee, 1972). 

i F„ 240 00 L x" °° 
20. Let M(x) = Σ, ——· Show that the Maclaurin expansion of eMM is Σ Fnx"~l 

(Hoggatt, 1976). 

Evaluate each sum. 
oo 1 

2 1 . Σ (Guillotte, 1971a) 
i aFn+\ + F„ 

oo 1 
22. Σ (Guillotte, 1971b) 

1 F„ + v 5 F n + | + F„+2 
Prove each. 

oo 1 oo (_n«+i 
23. Σ ΈΓ = 3 + ΣΡ P p (Graham, 1963a) 

oo l 
24. Σ (Graham, 1963b) 

2 F„-\F„+2 
oo /Γ 

25 . £ - = 2 (Graham, 1963b) 
2 F„-\Fn+\ 
oo 1 1 

26. Σ 7; 7Γ- = - r (Koshy, 1998) 
oo (7 1 1 

27. Σ ^ " = - + 7 (Koshy, 1998) 
00 1 2 1 °° C — n n + 1 u 

28. Σ p r = - + 7 + Σ * / (Koshy> 1 9 9 8 ) 

29. ^ t i = 1 + t,TT- ( B a s i n ' 1 9 6 4 a ) 

oo ( _1 ) ί 

30. Σ "ΕΓΤΑ = W (Basin< 1964a) 
2 ΉΉ-Ι 
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31. Σ , Λ + ί = Î (perns' 1967) 

ex) 1 o o ( _ l ) i 
32. Σ = ^ Σ " — - (Carlitz, 1967a) 

0 F2„+l 0 Lin + \ 
oo (-1)" ^oo 1 

33. Σ - — - = V 5 £ (Carlitz, 1967a) 
0 F*n+2 0 i-4n+2 
oo C· 

34. J2 - ï ± i = 4 (Butchart, 1968) 
oo l 

35. Σ = ! (Brousseau, 1969b) 
1 FnFn+2 

00 i 7 
36. E = — (Brousseau, 1969b) 

1 F„ Fn+i 18 
oo 1 1 

37. Σ = - (Brousseau, 1969b) 
1 F„Fn+2Fn+i 4 oo p 

38. Σ = ! (Brousseau, 1969b) 
i Fn+]Fn+2 

oo p s 
39. Σ, = - (Brousseau, 1969b) 

l F„F„+3 4 
oo (_n»-l ^ 5 

40. Σ -—-— = -̂ ττ (Brousseau, 1969b) 
i L„-\L„ 10 

oo 1 — JC 
41. Σ Fin-\xn = - , ,

 2
, where |*| < β 2 (Hoggat t , 1971c) 

oo 
42. Show that Σ Fi(L2k^lL2k)

i = L2kL2k-\/5, where k > 1 (Koshy, 1998). 
o 

oo 
43. Show that ^ ^ ( F J L t ) ' = F2k/(L

2
k - Lk Fk - Fk

2), where*: > 0(Koshy, 1998). 
o 
oo ILi — Fii, 

44. Show that Y Li(Fk/LkY = —, - ~ , where k > 0 (Koshy, 1998). 
o L{- LkFk - Fk

l 



FIBONACCI 
POLYNOMIALS 

Large classes of polynomials can be defined by Fibonacci-like recurrence relations, 
and yield Fibonacci numbers. Such polynomials, called the Fibonacci polynomi-
als, were studied in 1883 by the Belgian mathematician Eugene Charles Catalan 
(1814-1894) and the German mathematician E. Jacobsthal. The polynomials fn(x) 
studied by Catalan are defined by the recurrence relation 

fnW = Xfn-l(x) + fn-lW (37.1) 

where /I(JC) = 1, fi(x) = x, and n > 3. They were further investigated in 1966 by 
M. N. S. Swamy of the University of Saskatchwan in Canada. 

The Fibonacci polynomials studied by Jacobsthal were defined by J„(x) — 
J„-i(x) +xJ„-i(x), where J\ (JC) = 1 = Ji(x). We shall pursue them in Chapter 39. 

We now turn to the class of Fibonacci polynomials introduced by Catalan. 

CATALAN'S FIBONACCI POLYNOMIALS 

The first ten members of this Fibonacci family are: 

/ i W = 1 

flix) = x 

Mx) =x2+l 

/4(JC) = JC3 + 2x 

f5(x) = x4 + 3x2+\ 

443 
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f6(x) = JC5 +4JC3 + 3JC 

Mx) = jc6 + 5JC4 4- 6JC2 + 1 

Mx) = x1 + 6x5 + IOJC3 + 4x 

f9(x) = xs + 7JC6 + \5x4 + IOJC2 + 1 

/10(JC) = x9 + 8JC7 + 21JC5 + 20JC3 + 5* 

Here we make an interesting observation: fi (I) = F, for 1 < i < 10. In fact, 
/„(l) = Fn for all n; this follows directly from the recurrence relation (37.1). Besides, 
the degree of /„(JC) is n — 1, where n > 1. 

We make yet another interesting observation. Notice that /i(2) = 1, /2(2) = 2, 
and /„(2) = 2/„_i(2) + /n_2(2), where n > 3. So P„ = /„(2) defines the well-
known Pell numbers 1, 2, 5, 12, 2 9 , . . . . 

We can extend the definition of the Fibonacci polynomials to negative subscripts 
also: 

/-«(JC) = (-)"+ ' /„(JC) 

Notice that f0(x) = 0. 

TABLE 37,1. 

n 

1 
2 
3 
4 

5 

6 

7 

8 

9 

10 

JC° JC1 

1 
0 1 
1 0 
0 2 

' V 
V 1 V 
V4 
1 0 
0 5 

X1 J t 3 JC4 

1 / 
n i 

3 0 1 

0 4 0 

6 0 5 

0 /10 0 

1θ( 0 15 

0 20 0 

X5 

A Pascal 

Γ-ν· 

uiago 

1 

0 

6 

0 

21 

X6 X1 

row 

nal sum = 24 

1 

0 1 

7 0 

0 8 

X* 

<— Row sum = Fn 

1 

0 1 

Table 37.1 shows the various coefficients of the first ten Fibonacci polynomials, 
when arranged in increasing exponents. Three noteworthy observations: 

• The elements on every rising diagonal beginning on row 2n are zero. 
• The alternate rising diagonals form the various Pascal rows. 
. The sum of the elements on the nth rising diagonal is 2 (" - 1 ) / 2 = 2 · 2("~3)/'2, 

where n is odd. For example, the sum ofthe numbers on row 7 is 1+3+3+1 = 8. 
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TABLE 37.2. 

445 

n 

0 

1 

2 

3 

4 

5 

6 

Expansion of (jt + 1 )" 

1 

JC + 1 

y h(x) 

/ / Mx> 
x3 + 3x2 + 3x + 1 

x4 + 4JC3 + 6x2 + 4x + 1 

/ 
x5 + 5x* + \0x} + \0x2 + 5* + 1 

X + 6x5 + 15x4 + 20JC3 + \5x2 + 6* + 1 

In 1970, Marjorie Bicknell of Wilcox High School in California showed that the 
Fibonacci polynomials can be constructed using the binomial expansions of (x + 1)", 
where n > 0. The sums of the elements along the rising diagonals in Table 37.2 yield 
the various Fibonacci polynomials. For instance, the sum of the elements along the 
diagonal beginning at row 4 is JC4 4- 3x2 + 1, which is /5OO; similarly, the diagonal 
beginning at row 6 yields fn(x). 

AN EXPLICIT FORMULA FOR /„(JC) 

More generally, the sum of the elements along the diagonal beginning at row n is 
/„+1(x);thatis, 

l("-l)/2J , . . \ 

n>0 

-2j~l n > 0 (37.2) 

For example, 

-i(V)'-" 

= x4 + 3x2 + 1 

as we obtained earlier. 
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Using Formula (37.2), it is easy to verify that f\{x) = 1 and fz(x) = x, so f„(x) 
satisfies both initial conditions. We can now confirm that /„ (x) is indeed the Fibonacci 
polynomial (see Exercise 11). 

ANOTHER EXPLICIT FORMULA FOR fn(x) 

There is yet another explicit formula for /„ (x): 

a(x) - ß(x) 

where 
x + Jx2+4 x - Vx2 + 4 

a(x) = and ß(x) = 

See Chapter 38. 
For example, let us compute fs(x). It is easy to verify that 

(x + y/x2 + 4)5 -(x- Λ/Χ2 + 4)5 = 32(JC4 + 3x2 + 1 ) ^ + 4 , 

so fs(x) = x4 + 3x2 + 1, as expected. 
We can confirm Formula (37.3) using the recurrence relation (see Exercise 19). 
Next we establish a few properties of Fibonacci polynomials, which are 

generalizations of some formulas we derived in Chapter 5. 

Theorem 37.1. 
n 

x Σ Mx) = fn+dx) + /„(*) - 1 (37.4) 

Proof. Using the recurrence relation (37.1), 

n n n 

1 1 1 

That is, 
n 

/.(*) + /«+iOO = * £ / * ( * ) + Mx) + fdx) 

1 

Since fo(x) = 0, it follows that 

n 

x Σ Μχ) = Λ+ι(x) + /»(*)- l ■ 
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For example, 

4 

x J2 fi(x) = x[l+x + (x2 + 1) + (JC3 + 2x)] 
1 

= x4 + x3 + 3x2 + x 

fs(x) + Mx) - 1 = (x* + 3x2 + 1) + (Λ:3 + 2x) - 1 

= x4 + x3 + 3JC2 + x 

4 

I 

Corollary 37.1. 

Π 

5 ^ F, = Fn+2 - 1 ■ 
1 

This corollary follows from the theorem, since y|-(l) = F,·. 

A GENERATING FUNCTION FOR /„(*) 

Next, we will find a generating function for f„(x). To this end, we let 

00 

0 

OÛ 

xtgd) = ^ 4 ( J t ) ( " + 1 

0 

oo 

f2*(o = 5>wfB+l 

Then 

Thus 

(1 - jcf - f')*(/) = / o W + f/i(*) - xtfo(x) = t 

t 
gif) 

\-xt-t2 

generates /„(*). 

Theorem 37.2. 

fm+n + \M = fm + \{x)fn + \(x) + fm(x)fn(x) 
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Proof. 

Therefore, 

Then 

\-*y~y2 f^ 

yfm(x±_ = J2fmWfnix)yn (375) 
i-xy-y n=o 

1 - xy - y 

In 1964, D. Zeitlin showed that 

fm + \W + fm(x)y 

fm+x(x) = J £ f m + l W f n + l ( x ) y » ( 3 7 . 6 ) 

= J2fm+n+dx)y" (37.7) 
i-xy-y2 

The desired result now follows from Eqs. (37.5), (37.6), and (37.7) by equating the 
coefficients of y" from both sides. ■ 

This theorem illustrates an alternate method for constructing new members of the 
family of Fibonacci polynomials. 

For example, let m — 3 and n = 4. Then 

/ . + I W A + I W + / . W / , W = Mx)fs(x) + f3(x)Mx) 
= (*3 + 2x)(x4 + 3x2 + 1) + (x2 + 1)(JC3 + 2x) 

= χΊ + 6x5 + 10χ 3 +4χ 

= MX) = fm+n + l(x) 

Theorem 37.2 yields the following Fibonacci identity without much effort. 

Corollary 37.2. Fm+n = Fm+]Fn + FmF„_i ■ 

Next we derive Formula (37.2) for f„(x) by an alternate method. 

Theorem 37.3. 

L(n-1)/2J / . , \ 

Mx)= £ ( n - · ; - 1 ) ^ - 2 ^ n>0 (37.2) 
;=0 \ J / 

Proof. We have 
oo 

i — - — 2 = Σ /» <*>*" <37·8) 
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But 

449 

1 
1 - 2/z + z2 

n=0 

L«/2J 

L"/2J / . χ 

Σ(-ΐ)Μ"7Μ(2ί)"-
;=o \ J / 

(37.9) 

t/«(o = ^(- lyrT-Ma/r 
;=0 \ J / 

is the Chebyshev polynomial of the second kind.* Let z = iy and t = x/2i, where 
i2 = - 1 . Then Eq. (37.9) yields 

1 
j = J > i / B ( j c / 2 i ) / 

= X;i-"i/nu/2i)/+i 

1 — xy — y2 
n=0 

From Eqs. (37.8) and (37.9), it follows that 

/„+,(*) = inU„(xßi) 

L«/2J 

j=0 \ J / 

L«/2J , . s, 

-Σ V )*-" 
;=0 V 7 

L"/2J / χ 

.·■ /-ω = Σ ( , , " Γ )*n~2y_l 

The next result, which we derived in Chapter 12, follows from this formula. 

Corollary 37.3. (Lucas, 1876) 

L(n-l)/2j , . 

'Named after the Russian mathematician Pafnuty Lvovich Chebyshev (1821-1894). 
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Theorem 37.4. 

FIBONACCI POLYNOMIALS 

n-\ 

/ » = E -̂w»-'W 
i=l 

where /„'(*) denotes the derivative of f„(x) with respect to x and n > 1. 

Proof. Differentiating Eq. (37.8) with respect to x, 

00 / \ 2 

-[£ 
L o 

> » ( * ) / 

2 

oo Γ « 

n=0 Li'=0 

Equating the coefficients of yn
9 we get 

n 

i=0 

n-1 

ι = 1 

since fo(x) = 0. 

For example, we have: 

f6(x) = x5+4x3 + 3x 

/6'(x) = 5JC4 + 12X2 + 3 

6 

X)//U)/6-i(*) = /l(*)/5U) + /2W/4(*) 

+ /3W/3W + Μχ)Μχ) + fsWMx) 

= 2/,(x)/j(i) + 2f2(x)Mx) + fi(x) 

= 2(1)(JC4 + 3x2 + 1) + 2X(JC3 + 2x) + (JC2 + l)2 

= 5JC4 + 12X2 + 3 

= /éw 
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Using the Pascal-like array in Table 13.3, H. W. Gould in 1965 studied the 
polynomial 

n 

GB(*) = £A(n,./V 
7=0 

where 

denotes the jth entry in row n. Since A(n, 2k) = ( . I ar>d A(n, 2k + \) — 

( n — k — 1 \ „ . . 

I, we can write G„ (x) as 
l«/2J / . l(n-l)/2j , χ 

Then 
L(n + D/2J / , , , \ L"/2J / . x 

0 ^ ' 0 ^ ' 

and 

L"/2J , , x l(«-l)/2J 

x2k+3 
Λ 7 . ( . ) - Ε ( " ; ' ) χ » " + Σ ( - - ' ) 

0 v ' 0 v ' 
L(n+2)/2j . , , . x LO + D/2J . , v 

- Σ ("~î+1)*a+ Σ ( : : î )^ + 

x2k+l 

I v / ! \ / 

By virtue of Pascal's identity, 

U«+2)/2j . . L(« + D/2J , , , , x 

CW+^(r)= £ ("~î + V + Σ ( M " ^ + 1 ) 
o ^ / o x / 

- G„+2(x) 

Thus G„(x) satisfies the recurrence relation 

Gn+2(x) = Gn+l(x)+x2Gn(x) (37.11) 

which yields the Fibonacci recurrence relation (FRR) when x = 1. Since G„(x) = 
n 

Σ A(nJ), it follows, by Theorem 13.1, that G„(l) = F„+2, n > 0. 
7=0 

Using the polynomial G„(x), Gould also studied extensively a closely related 
polynomial Hn(x): 

Hn(x) = xnGn(\/x) = Σ A(n, j)x n-j 

7=0 
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Interestingly enough, this polynomial yields intriguing results. Notice that: 

Hn+2(x) = xn+2Gn+2(l/x) 

= xn+2[Gn+l(l/x) +x-zGn(l/x)] 

= xn+2Gn+l(l/x)+x"Gn(l/x) 

= xHn+{(x) + Hn(x) 

where H0(x) = G0(l/x) = 1 and H\(x) = xGi(l/x) = x + 1. This is exactly the 
same Fibonacci polynomial, /„(*), studied by Catalan more than 80 years earlier. 

Notice that Hn+2(\) = //n+i(l) + H„(l), where //0(1) = 1 and tf,(l) = 2. So 
H„(l) = Fn+\, where n > 0. 

A MATRIX GENERATOR FOR FIBONACCI POLYNOMIALS 

Gould employed the ß-matrix technique that we studied in Chapter 32, to study the 
//-polynomials. To this end, he considered the generalized ß-matrix 

Q(x) 

Then 

~ [ ΐ ί ] 

«■»■[iiS1 Ά] <3712) 

where n > 1 (see Exercise 22). 
Since \Q\ = - 1 , |β" | = (-1)"· Accordingly, Eq. (37.12) yields a Cassini-like 

formula for fn(x): 
/„+,(*)/„_,(*) - f2(x) = (-1)" (37.13) 

When x = 1, this reduces to the Cassini's rule. 
It follows from Eq. (37.12) that 

nm+ifr) _ Jm+n+lW fm+n(X) 

L fm+nW fm+n-lW J 

But 

ßm+"(jt) = ßm (^)ßn (j t ) 

[ / m + l ( - t ) / n + l W + / m W / n W / » + l W / » W + / » W / » - l ( i ) | 

L / « . ( * ) / » + ! ( * ) + /m-1 ( * ) / « ( * ) fmWMx) + /m-1 ( * ) / « - ! (JC)J 

Consequently, 

/ « + * ( * ) = fm + \(x)fn(x) + fm(x)fn-dx) (37 .14) 
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In particular, let x = 1. This yields an identity from Chapter 32: 

*m+n — 'm+\*n τ *m*n- (32.2) 

Since / ( (x) + f0(x) = 1 + 0 = 1 = H0(x) and f2(x) + f\ (x) = x + 1, it follows 
that//„(*) = /„+. (*)+ /„(*); 

.·. (-l)i+lHi(x) = ( -1) '+ 1 fi+l(x) - (-1)' '/,(*) 
n n 

£ ( - l ) i + 1 H,(x) = S ( - 1 ) Î + 7 / + I W - ( - 1 ) 7 Î W ] 
i=0 1=0 

= (-l)n+l fi+dx) 

Thus, we can express the Fibonacci polynomials /„ (x) in terms of the //-polynomials 
(or the G-polynomials) as 

/„+,(*) = £ ( - 1 )"+'//,(*) 
i=0 

Next, it follows from Eqs. (37.12) and (37.13) that 

y w + u (x) y ΗΛχ) Ηηΐ(χ) 

Hn+X(x) Hn{x) 
H„(x) Hn-i(x) 

= \Q"(x)lQ(x) + n\ 

= iß"wi-ie + /i 

That is, 
Ηη+ι(χ)Η„-ι(χ) - Hl(x) = * ( - ! ) -

which is again a generalization of Cassini 's rule. 
In fact, we even have a further generalization of Eq. (37.15): 

Hn+a(x) Hn+a+b(x) 
Hn(x) Hn+b(x) = (-D" 

HaW Ha+b(x) 
Ho(x) Hb{x) 

(37.15) 

BYRD'S FIBONACCI POLYNOMIALS 

Next we examine the Fibonacci polynomials φ„(χ) studied extensively in 1963 by 
P. F. Byrd of San Jose State College. They are defined by the recurrence relation 

<Pn+2(*) = 2x <p„+i (x) + φ„(χ) 

where n > 0, x is an arbitrary real number, φο(*) = 0, and φι (x) = 1. 

(37.16) 
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Using the recurrence relation (37.16), we can extract various Fibonacci 
polynomials of this family: 

φ2(Λ:) = 2χ· 1 - 0 = 2* 

Ψ3(χ) = 2x(2x) + 1 = Ax2 + 1 

cp4(x) = 2x(Ax2 + 1) + 2x = 8JC3 + 4x 

<p5(x) = 2*(8JC3 + Ax) + (Ax2 + 1) = 16x4 + 12*2 + 1 

In particular, <po(l/2) = 0, φι(1/2) = 1, φ2(1/2) = 1, φ3(1/2) = 2, φ4(1/2) = 
3, and <ps(l/2) = 5; they are all Fibonacci numbers. But, is this true always? 

Notice that when x = 1/2, Eq. (37.16) yields the recurrence relation φπ+2(1/2) = 
φπ+ι(1/2)+φ„(1/2),where φ0(1/2) = 0and<pi(l/2) = 1. Consequently, φ„ (1/2) = 
F„, as expected. 

To derive a generating function for φη(χ), we let 

g(o = £>„(*)''' 
n=0 

Then 

and 

2xtg{t) = Y22xVn(x)tn + l 

n=0 

n = 0 

oo 

t2g(t) - 2xtg(t) - g(t) = - φ, ί + Σ[φη(χ) - 2x φπ+, (χ) - φη+2]ί" 
η=0 

( r 2 - 2 x i - l ) g ( i ) = - Î 

by the recurrence relation (37.16). That is, 

git) 
1 -Ixt 

So g(t) — t/(\ — 2xt — t2) is a generating function of the Fibonacci polynomials. 
Thus 

t °° 

«=0 

Notice that when x = 1/2, this yields the generating function for F„ we obtained 
in Chapter 18. 



BYRD'S FIBONACCI POLYNOMIALS 455 

The polynomials φη(χ) satisfy a fascinating property. To see this, change t to — t 
and* to — x in Eq. (37.17): 

Thus 
-t °° 

That is, 
00 OO 

-£<fo(jc)f" = ]£<P„(-x)(-0" 
n=0 n=0 

Equating coefficients of r" from either side yields the property 

Ψη(χ) = (-1)"+1 φπ (-*) 

Consequently, <p„(;c) is an even function if n is odd, and an odd function 
otherwise. 

For example, notice that ψι(χ) and <ps(x) are even functions, whereas <p2(x) and 
ψ4(χ) are odd. 

00 

Since 1/(1 - s) = £ > ' , we can expand the left-hand side (LHS) of Eq. (37.17): 
o 

OO 00 

J2f>n(x)tn = 1^(2x1+ t2)" 
n=0 

00 " / \ 

n=0 i=0 ^ ' 

°° " / \ 

n=0 i=0 ^ ' 

= ' + Σ ( ! ) ^ ) , - , ' ' + 2 + Σ ( ? ) 

n=0 

(2jtr-'i 2-i ,3+/ 

+ ?(» (2JC)J-'/4+' + · 

= ί + (2χ)ί2 + [(2χ)2 + l]f3 + [(2χγ + 292x)]t4 

+ [(2χ)4+3(2χ)2+ 1]ί5 + · · · 

That is, 

Σ<?»Μ{" = Σ 
■l(«-l)/2J 

η = 0 π=0 
Σ ("Τ V'" 
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This yields the explicit formula for φ„(*): 

l(n-I)/2j 

Ψη(χ) = £ ( " ~ \ ~~ I {2x)n-2i (37.18) 
;=o ^ ' 

where n > 1. 
When x = 1/2, this yields the Lucas formula for F„, developed in Chapter 12: 

L(«-1)/2J , . . \ L(«-1)/2J 

i=0 

EXERCISES 37 

1. Verify Theorem 37.1 for n = 5 and n = 6. 

Find each polynomial using Theorem 37.2. 

2. Mx) 

3. / i o W 

Find each polynomial using Theorem 37.3. 

4. Mx) 

5. /ioU) 
Using Theorem 37.4, find /„'(*) for the given value of n. 

6. n = 4 
7. n = 7 
8. Let Zi = fi(x) + fi(y). Show that zn+4 - (x + ;ykn+3 + (xy - 2)zn+2 + 

(x + y)z„+i + in = 0 (Swamy, 1966). 
9. Let z, = /,(*) ■ My). Show that zn+4 - (xy)z„+3 + (x2 + y2 + 2)Zn+2 -

xyz„+i + z„ = 0 (Swamy, 1968). 
10. Using the principle of mathematical induction, prove that 

Λ+i(*)/„_,(*) - f2(x) = (-1)",« > 1. 
L(«-D/2J / „ _ , - _ ! \ 

11. Let «„(*)= E l · M n " 2 j _ 1 · Show that gH(x) = fn(x). 
j=o \ J I 

\2. Let A(n, j) denote the element in row n and column j of the array in 
Table 13.1. Define A(n, j) recursively. 

13. Show that f„(x) and f„+\ (x) are relatively prime (Swamy, 1971). 
14. Prove that fn+x{x)fn-2{x) - /„(*)/„_,(*) + J C ( - I ) " = 0 (Swamy, 1971). 

Establish the following generating functions. 
<i no 

xr "■l-tf + ̂  + H-gA.W 

16. 
t - t 3 

1 - (x2 + 2)t2 + 
-μ = Σ/2η+Λχ)ι 2n + \ 
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(x2+\)-t 

18. Show that 1 + £ . . ' . , 

(Swamy, 1971a). 

1-χ2Σ 
1 Λ»(*)Λ»+2θΟ 1 

19. Verify that Formula (37.3) defines the Fibonacci polynomial f„(x). 
20. Chebyshev polynomials of the second kind U„-\ are defined by Un-\ = 

, where r = x + y/x2 — 1 and 5 = x — ~Jx2 — 1. Show that 
2V*r:rl 
l/„_i(3/2) = F2„ (Basin, 1963). 

21. Let g(x, n) denote the hypergeometric function 

2*(n + Jfc)! E L· v« T *■): 

LAn-k-mik + iy.(x-]y 

22. Prove that Q"(x) ,n > 1. 

Show that #(3/2, n) = F2n. [Note: g(x, n) = i/„_,(;c).] (Basin, 1963). 

/»+lW fn(x) 
fnW fn-\(x)_ 

23. Prove that H„(x) = /„+,(*) + /„(*), n > 0. 

24. Find the Fibonacci polynomials ψβ(χ) and φ?(χ). 
Consider the polynomials ψ„(χ) defined recursively by ψ„+2(χ) = 2χψη+ι(χ)+ 
ψ„(χ), where ψο(χ) = 2 and ψ\(χ) = 1. 

25. Find the polynomials ψ„(χ) for 2 < n < 5. 

26. Compute ^«(1/2) for 0 < n < 5. 
27. Conjecture the value of ψ„(\/2). 
28. Prove that ψ„{\/2) = L„. 
29. Find a generating function for the polynomial ψ„ (χ). 

Consider the polynomials y„(x) defined recursively by yn+2(x) = xyn+](x) + y„(x), 
where yo(x) = 0 and y\ (x) = 1. 

30. Find the polynomials y„{x) for 2 < n < 5. 
31. Conjecture the value of y„(l). 

32. Prove that >-„(l) = F„. 
33. Find a generating function for the polynomial y„(x). 

34-35. Redo Exercises 30 and 31 if y0(x) = 2. 

36. Prove that y„(\) - L„. 
37. Find a generating function for y„(x). 

Consider the polynomials z„(x) defined recursively by z„+2(x) — z„+\(x) +xz„(x), 
where zo(x) = Oand zt(x) — 1. 

38. Find the polynomials z„(x) for 2 < n < 5. 
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39. Conjecture the value of z„(l). 
40. Establish the formula in Exercise 39. 
41. Find a generating function for the polynomial zn(x)-

4 2 ^ 5 . Redo Exercises 38-41 if zo(x) = 2. 
46. Using Formula (37.16), compute the polynomials ψβ(χ) and <pj(x). 
47. Let D„(x) denote the nth-order determinant: 

2x 
i 
0 
0 

i 
2x 
i 
0 

0 
/ 

2x 
i 

0 
0 
i 

2x 

int: 

. . . 0 

. . . 0 

. . . 0 

. . . 0 

. . . 2x 
i 

0 
0 
0 
0 

i 
2x 0 0 0 0 

where n > 2,i — V—î, x is an arbitrary real number, Do(x) 
D\(x) = 1. Show that D„(x) = ψ„(χ) (Byrd, 1963). 

48. Evaluate the n x n determinant 

0, and 

1 
i 
0 
0 

0 

I 

1 
i 
0 

0 

0 
I 

1 
( 

0 

0 . 
0 . 
i 
1 . 

0 . 

. 0 

. 0 

. 0 

. 0 

. 1 
i 

0 
0 
0 
0 

i 
1 

where n > 2 and ί = V ^ î (Byrd, 1963). 



LUCAS POLYNOMIALS 

Lucas polynomials /„(*), originally studied in 1970 by Bicknell, are defined by 

/„(*) = xln-^x) + l„-2(x) 

where l0(x) = 2, l\ (JC) = x, and n > 2. 

The first ten Lucas polynomials are: 

h(x) 

l2(x) 

h(x) 

U(x) 

l5(x) 

k(x) 

h(x) 

hW 

h(x) 

/ioU) 

= X 

= x2 + 2 

= x3 + 3x 

= x4 + 4x2 + 2 

- jc5 + 5*3 + 5x 

= x6 + 6JC4 + 9x2 + 2 

= x1 + 7x5 + 9x3 + lx 

= X8 + 8JC6 + 20X4 + 16A:2 + 2 

= x9 + 9χΊ + 27*5 + 30x3 + 9x 

= xi0+ 10x8 + 35JC6 + 50Λ:4 + 25x2 + 2 

It follows from the recursive definition that /„(l) = Ln for n > 0; that is, the sum 
of the coefficients of l„(x) is Ln. We can verify this by computing /„(l) for these 
Lucas polynomials. 

459 
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TABLE 38.1. 

n 

1 
2 
3 
4 

5 

6 

7 

8 

9 

10 

x° 
0 
2 
0 
2 

0 

2 

0 

2 

0 

2 

x1 

1 
0 
3 
0 

5 

0 

7 

0 

^9 

0 

x2 

1 
0 
4 

0 

· < 
0 

16 

0 

25 

X 3 

1 
0 

/ 5 

0 

^ 1 4 ' 

0 

30 

0 

X 4 

1 

0 

6 

0 

20 

0 

50 

X5 

/ 

0 

7 

0 

27 

0 

X 6 X1 

1 

0 1 

8 0 

0 9 

35 0 

X 8 X9 X10 

= 3-2" 

«- Sum = L7 = 29 

1 

0 1 

10 0 1 

Lucas Polynomials satisfy three additional properties: 

. /„(*) - fn + l(x) + fn-l(x)=xfn(x)+2f„-l(x) 

. xl„(x) = f„+i(x) - f„-2(x) 

. /_„(*) = (-1 )"/„(*) 

See Exercises 3-6. 
In addition, /„(2) = /n +i(2) + Λ-ι(2) = Ρπ+ι + P„-\, where P„ denotes the «th 

Pell number. For example, /5(2) = 82 = 70 + 12 = P6 + P4. 
Arranging the coefficients of the various polynomials in ascending order of expo-

nents, we get the array in Table 38.1. The sum of the elements along the «th rising 
diagonal is 3 · 2( n _ 1 ) / 2 , where n is even and is > 2. 

BINET'S FORMULAS FOR f„(x) AND l„(x) 

Next we find Binet's formulas for both Fibonacci and Lucas polynomials. 
Let a(x) and β(χ) be the solutions of the quadratic equation t2 — xt — 1 = 0: 

x + s/x* + 4 x - Vx2 + 4 
a(jc) = and β(χ) = 

Notice that a ( l ) = a and β(\) = β; a(2) = 1 4- -JÎ and )8(2) = 1 - V2 are the 
characteristic roots of the Pell recurrence relation x2 — 2x — 1 = 0 . We can verify 
that 

α"(χ)-β"(χ) 

fn(x) = —r-,—τττ and ι»(χϊ = a M + ß (χ) a(x) - ß{x) 

See Exercises 8 and 9. 
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We can employ Formula (37.14) to derive identities linking Fibonacci and Lucas 
polynomials. Changing n to — n in the formula, we get: 

fm.„M = (- l)"[-/»+ i(Jc)/ .(Jt) + / » U ) / « + i W ] 

. · . fm+nW + ( - l ) " / m - „ U ) = / , ( l ) / , - l W + fmWfn + lW 

= / « W / . ( J : ) 

This yields the formula 

Fm+n + (-l)nFm_n = FmLn (38.1) 

Replacing n by k and m by m — k in Eq. (37.14), we get yet another identity: 

fm(x) = lk(x)fm-k(x) + (-D*+7m-2*W 

In particular, 
Fm = LkFm„k + ( - l ) t + , F m _ 2 * (38.2) 

Two new polynomials g„(x) and h„(x) correspond to the Fibonacci and Lucas 
polynomials: 

go(x)=0 gi(x)=l 

g nix) = Xgn-\W - gn-2(x) Π>2 

ho(x) = 2 h\(x) = x 

hn(x) - xhn^\{x) -Λ„_2(ΛΤ) η>2 

Notice that we can obtain g„(jt) and h„(x) from fn{x) and l„(x) by changing the 
plus sign to minus in the recurrence relations. These polynomials, studied extensively 
in 1971 by Hoggatt et al., and in 1972 by Hoggatt, are related to the Chebyshev 
polynomials of the first and second kind. 

Let γ(χ) and δ(χ) be the solutions of the quadratic equation t2 — xt + 1 = 0 : 

x + y/x2 - 4 x + VAC2 - 4 
y{x) = and S(x) = 

Notice that Υ(Λ/5) = a and S(y/5) — —β. It is easy to verify that 

γ"(χ)-δ"(χ) » , · » , * . . / * 
gnix) = —— ΓΓΤ- and h„(x) = y"{x) + S"(x) 

γ(χ) - S(x) 

where x φ 2 (see Exercises 19 and 20). 
Besides, h2

n(x)-(x2-4)g2(x) = 4 a n d M * ) = gn+i(x)-gn-i(x) (see Exercises 
21 and 22). We can see that the coefficients of g„(x) lie along the rising diagonals of 
Pascal's triangle. 
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DIVISIBILITY PROPERTIES 

The polynomials fn(x)Jn(x)<gn(x), and hn(x) yield interesting divisibility divi-
dends. To extract some of them, recall that 

x + V * 2 + 4 x - s/x2 + 4 
<*(■*) = 2 a n d ^ = 2 

Then 

a(£2m+ii 

by Exercise 15. Similarly, 

ß(L2m+i(x)) 

.·. fn(L2m + \(x)) 

= a2m+{(x) 

= ß2m+[(x) 

a"(L2m+i(x)) 

<x(L2m+i(x)) 

ai2m+l)n(x) -

- ß^L^+dx)) 
-ß(L2m+l(x)) 

ßi2m+,)n(x) /(2m+l), Λχ) 

a2m+Hx) - ß2m+l(x) f2m+i(x) 

Similarly, using the identity l2rn(x} - 4 = (x2 + 4)/2
2

m(jt), we can show that: 

Y"(f .2-(x))-yq2m(*)) 
Y(^2m(^))-5(L2m(-ï)) 

= Y2mn(x)-S2mn(x) ^ /2m„U) 

Thus, we have established the following theorem. 

Theorem 38.1. (Hoggatt, Jr., Bicknell, and King, 1972) 

fk(x) ■ MkW) if k is odd 
fnk(x) »/*(*)·*»(/*<*)) otherwise 

Corollary 38.1. /*(x)|/,,*(x) 



DIVISIBILITY PROPERTIES 463 

For example, fe(x) = x + Ax + 3x 

= (x2 + \Hx3 + 3x) 

= Mx) ■ l3(x) = f3(x) · / 2( / 3(JC)) 

Corollary38.2. Fk\Fnk 

This follows from Corollary 38.1, since /„(l) = Fk; note that we already knew 
this from Chapter 16. 

Corollary 38.3. 

L(n-1)/2J . · , \ 

/„*(*) = /*(*) Σ {~Jj~ )(-ΐ)(*+Ι)>Γ2;-'ω 

Proof. We have 

l(m-l)/2J 
rm-2j-l 

g mix) 

/ . « - Σ ( " ■ ; ) ■ 

L(m-l)/2j . . . \ 

= j2 (m-J.-l)(-i)h-v-1 

7=0 \ ■> / 

I L(«-1)/2J / „ _ . _ 1 \ 

7=0 \ J / 

ΛΟΟ Σ ( · ){-\)jLn
k-

2j-\x) otherwise 
7=0 \ J / 

·'. /«*(*) = 

if fc is odd 

7=0 \ ■> / 

For example, 

2 7 - 1 
(*) 

/6(JC) = /2(JC) ΐ); / 2
2~2 7ω 

(i)««-(!)H x[(xl + 2Y- 1] 

= *5 + 4r3 + 3x 

as we found in the preceding chapter. 
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We can also employ the polynomials ln(x) and h„(x) to derive similar divisibility 
properties. To this end, recall that 

ctdim+i (x)) = cx2m+[ (JC) and £(/2m+1 (jt)) = ß2m+x (x) 

.·. ln(hm+dx)) = a(2m+1,n(jc) + ßam+[)"(x) = k2m+l)n(x) 

Since y(/2m(*)) = a2m(x) and S(l2m(x)) = ß2m(x), it follows that 

hndimW) = a2mn(x) + ß2m"(x) = l2mn(x) 

Thus, we have the following theorem. 

Theorem38.2. l„(l2m-\(x)) = l(2m~i)n(x) and h„(l2m(x)) = l2mn(x). m 

Corollary 38.4. /„ (x ) | /(2m _ i )n (x ). 

Proof. Since l\ (x) = x and l2(x) = x2 + 2, it follows from the recurrence relation 
that* I/2*-iU) for every k > I. Likewise, x\h2k^i(x) for every k > 1. 

Since l2m-\(hk-i(.x)) = '(2m-i)(2t-i)U) and l2k-i(x)\hm-i(hk-i(x)), it follows 
that /2*-i(Jc)|/(2m-i)(2*-i)(*). Likewise, h2m^{l2k{x)) = /<2m_i)(2*)(x) and 
l2k(x)\h2m-i(hk(x)), so /2jtU)l'(2m-i)(2*)(·«)· Thus, whether n is odd or even, 
/n(-0|/(2m-l)n(*)· ■ 

For example, 

/3.4ΟΟ = l\2(x)=xn + 1 2 Λ : Ι 0 + 5 4 Χ 8 + 1 1 2 Λ : 6 + 105Λ:4 + 36Λ:2 + 2 

= (x4 + Ax2 + 2)(x8 + Sx6 + 2(k4 + 16*2 + 1) 

= U(x) ■ [ls(x) - l] 

SoU{x)\h.*{x). 
Since /„(l) = Ln, this corollary yields the following result. 

Corollary 38.5. L„ | L i2m _ l)n 

CONVERGENCE OF A ß-LIKE MATRIX 

In 1983, after studying various powers of the matrix 

M [l 1+*J 
for several values of x, S. Moore conjectured that the powers with their leading entries 
scaled to 1 converge to the matrix 

Γ 1 «W" 
I a(x) a2(x) 



CONVERGENCE OF A β-LIKE MATRIX 465 

In the same year, Hazel Perfect of Sheffield, England, furnished a neat proof of this 
using the well-known diagonahzation technique in linear algebra. 

The characteristic equation of M is 

\M-kI\ = 1 - λ 1 
1 1 + x - λ 

= λ2-(2 + χ)λ + χ=0 

Its (distinct) roots are r — 1 + β(χ) and 5 = 1 + a(x). 

The eigenvector ( 1 associated with r is given by M that is, I 1 associated with r is given by M I I = r f ) ; 

[! ι+,](:)='00 
Then (1 — r)u + v = 0 and u + (1 + x — r)v = 0. So we choose u = 1 and 
v = r — 1 = β(χ). The corresponding eigenvector is 

w \ßw) 
Likewise, the eigenvector corresponding to s is 

\v) = \a(x)) 

Then, by matrix diagonahzation, 

M = [ß(x) or(x)_ 

1 

a ( j t ) - / 8 ( j t ) . 

1 

a(jc) - j9(jc) . 

" r Ö l Γ 1 
.0 s\\_ß(x) 

\r °T\ 1 

.0 s] [ß(x) 

' rn Oil" 1 
. 0 JnJ[j9U) 

i i " |[V 

a(x)r" - ß(x)s" 
s" -r" 

1 Γ 
1 1"' 
1 1"' 

oir , _n 

5" - r" 
a(x)s" - ß(x)r" 

(38.3) 
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a(x) - ßW 
a{x)r" - ß(x)s" 

-M" = 
a{x)r" - ß(x)sn 

s" -r" a(x)s" - ß(x)r" 
a(x)r" - ß(x)s" a(x)r" - ß(x)s" -I 

j 1 - (r /5)" 

a(x)(r/i)" - ß 
1 - (r/s)" a(x) - ß(x)(r/s)" 

(38.4) 

(38.5) 

oU)(r/s)« - 0 o(jt)(r/i)" - ß 

Supposer > - 2 . Then (r/s)n -*■ Oasn -»■ oo, so the matrix approaches the limit 

1 
1 

ß(x) 
a(x) 

' ß(x) ß(x)J 

1 
Γ 1 «0 
[a(x) «2(. x) 

as desired. 
Suppose x < —2. Then (s/r)" -> 0 as n -> oo. Thus, as n -*■ oo, Matrix (38.5) 

approaches the limit 

1 -, 

1 
1 

1 
a(x) = Γ 1 β{χ) 1 

_£U) [/SU) /52(*)J 
L a(x) a(x) -

When Λ: = 1, a(x) = a, ß(x) = ß, r = 1 + β = /Ö2, and ί = 1 + α = a2. Then 
the Matrix Equation (38.3) yields 

M" 
aß2" - ßa2n 

a2" - ß2" 

„2n _ «2« 

a- " - ß 

a- - ß-
2n + l a2n+\ ) 

1 Γα2"-' - / 3 2 " - 1 a2n-ß2n l 

α - 0 L«2"-^2" α2"+ι - / 3 2 n + l J 

^2π-Ι ^2η 

^2« Fln+\ 

as we saw in Chapter 32. 

As n -» oo, (l/F2„_i)M" approaches the limit 

When x = -2, 

M 

1 a 

1 1 
1 - 1 

so the sequence of scaled matrices is 

1 1 
1 - 1 

1 0 
0 1 -!]-[i ?]·-
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EXERCISES 38 

Find each Lucas polynomial. 

1. /„(je) 

2. ln(x) 
Verify each. 

3. 1„(X) = fn+l(x) + fn-lM 
4. M*) = * / „ ( * ) + 2/„_,(JC) 

5. xl„{x) = fn+2(x) - fn-i(x) 

6. /_„(*) = (-1)"/„(JC) 

7. Let B(n, j) denote the element in row n and column j of the array in Table 38.1. 
Define B(n, j) recursively. 

Prove each 
a»(x)-ß"{x) 

8. MX) = —— -ΤΓ— 
a(x) - ß(x) 

9. Ιη(χ)=α"(χ) + β"(χ) 
10. / 2 ( * ) - (* 2 +4 ) / „ 2 (* ) = 4(-1)'1 

11. /„2U) + /„2
+1(;t) = Λ,+ι W (Koshy, 1999) 

12. /2(x) + /2(jt) = 0c2 + 4)/2 n + I(*) (Koshy, 1999) 
13. /„+,(*)/„_,(*) - / 2 (Λ) = ( -1)" - 'U 2 + 4 ) (Koshy, 1999) 
14. /„(*)/„(*) + Mx)lm(x) = 2fm+a(x) (Koshy, 1999) 

, . „, , /„W + v ^ + 4 A W 
15. a (x) = 

l„(x) - V ^ T 4 / „ ( J C ) 
16. βη(χ) = -^-^— J 

17. Find the polynomials gi(x), gi(x), g*(x), and gs(x). 

18. Find the polynomials /12C*), A3(JC), h^(x), and A5(JC). 

Verify each 
V(x) - S"(x) 

19. g„(jt) = ^ - ( — - V (Hoggatt, Bicknell, and King, 1972) 

20. hn(x) = yn{x) + δ"(χ) (Hoggatt, Bicknell, and King, 1972) 

21. h2
n(x)~(x2-4)g2

n(x)=4 

22. hn(x) = g„+,(x) - g„-,(x) 

23. g„(x)= Σ ( ■ ) ( - 1 ) ' ^ - 2 / - ' , « > 0 . 

Establish the following generating functions. 
2 _ xt 00 

24. r = £/„(*)*" (Koshy, 1999) 
1 — xt — tL 0 

2 — C *-2 -i- 2)t4 °° 2 5- l - (J+ ; , , ;V,'=P'-w' i , ( K°5 h y- i 9 9 9 ) 
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(I 4. v)[ _ »3 oo 
26· 1-(«' + 2 ) ^ = C ^ ' W ™ <Kosh* 1999> 
27. Show that the zeros of /„ (x) are 2i cos kn/n, where 1 < k < n — 1 and i = ·%/̂ Τ 

(Webb and Parberry, 1969). 

The generalized Fibonacci polynomials t„ (x), studied in 1970 by Bicknell, are defined 
by ii(*) = a, tj(x) = bx and t„(x) = xt„-\(x) + Î„_2(JC), n > 3. 

28. Find t6(x) and r7(jc). 

29. Express f„(jc) in terms of /n_i(x) and /π_2(*)· 

30. Use Exercise 29 to find t(,(x)-



JACOBSTHAL 
POLYNOMIALS 

Jacobsthal polynomials, Jn (x), named after the German mathematician E. Jacobsthal, 
are related to Fibonacci polynomials. They are defined by 

Jn(x) = J„.l(x)+xJn.2(x) (39.1) 

where J\(x) = 1 — Ji(x). Clearly, J„(\) = Fn. The first 10 Jacobsthal polynomials 
are: 

Mx) 

J2(X) 

Mx) 

J4(x) 

J5(x) 

Mx) 

Μχ) 

Mx) 

Μχ) 

J\o(x) 

= 1 

= 1 

= x+l 

= 2x + 1 

= x2 + 3x + 1 

= 3x2 + Ax + 1 

= x3 + 6JC2 + 5JC + 1 

= 4JC3 + IOJC2 + 6 x + 1 

= χΛ+ IOJC3 4- 15;C2 + 7JC+ 1 

= 5Λ:4 + 2 0 Χ 3 + 2 1 Λ : 2 + 8Λ: + 1 

469 
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We can make a few interesting observations: 

• The Jacobsthal polynomials J2„-i(x) and J^Cr) have the same degree. 

• The degree of Jn(x) is [(n — 1)/2J. 

. The leading coefficient of J2„-\ (JC) is one, whereas that of Jin(x) is n. 
• The coefficients of J„ (x) are the same of those of /„ (*), but in the reverse order. 

• The coefficients of the Jacobsthal polynomials lie on the rising diagonals of the 
left-justified Pascal's triangle, in the reverse order, as shown below: 

1 ' /— 
1 2 l / 
1 3 3 1 

/ 
1 4 6 4 

/ 
1 5 10 10 

1 6 15 -► 

1 7 21 35 

1 

5 

20 

4-
35 

J6(x)-3x2 + 4 x - l 

1 

15 6 1 

21 7 1 

AN EXPLICIT FORMULA FOR J„(x) 

Next, we can derive an explicit formula for J„(x). Since the coefficients of J„(x) are 
the same as those of /„ (*) in reverse order, it follows that 

l(n-l)/2j / . , . « , _ , . N 

See Exercise 3. 
For example, 

Similarly, 

-α)-(ί)-(ϊΜί)* 
= * 3 + 6x2 + 5x + 1 

Mx) = 4x3 + I0x2 + 6x + 1 



ANOTHER FAMILY OF POLYNOMIALS Kn(x) 471 

BINET'S FORMULA FOR /„ to 

Now, we find Binet's formula for J„(x). To this end, let r and s be the solutions of 
the characteristic equation t2 — t — x = 0 of the recurrence relation Eq. (39.1). Then 

1 + VI + 4* 1 - JTTÄx~ 
r = s = 

r + s = 1 rs = — x and r — s = Vl +4x 

It can be shown that J„(x) can also be defined by Binet's formula 

r" -s" 
/«(Jc) = -f=== (39.3) 

VI + 4 * 

where n > 1 

ANOTHER FAMILY OF POLYNOMIALS Kn(x) 

Next, we introduce yet another family of polynomials, Kn{x), which are closely 
related to Jacobsthal polynomials. 

We define the polynomials Kn{x) by 

Kn(x) = K„-i(x) +xKn-2(x) (39.4) 

where K\ (x) = 1 and Λ^ΟΟ = x· The first 10 members of this family are: 

Kdx) = 1 

K2(x) = x 

K3(x) = 2x 

KA(x) = x2 + 2x 

Ks(x) = 3x2 + 2x 

K6(x) = JC3 + 5x2 + 2x 

ΚΊ(χ) = 4χ3+Ίχ2 + 2χ 

Kg(x) = χΛ + 9x3 + 9x2 + 2x 

K9(x) = 5x4 + 16JC3 + 1 \x2 + 2x 

Kw(x) = x5+ 14r4 + 25Λ:3 + 132 + 2x 
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The polynomials Kn(x) have several interesting properties: 

. The degree of K„(x) is \n/2\, so K2n{x) and K2„+\ (χ) have the same degree. 
• The leading coefficient of Kn(x) is 

1 if n is even 
L(n + 1)/2J otherwise 

• x\K„(x) for every n > 2. (Assume that x φ 0.) 
• The coefficient of x is always 2, where n > 3. 

Since K„(\) = F„, it follows that the sum of the coefficients in every polynomial 
Kn (x) is a Fibonacci number. In other words, every row sum in the array of coefficients 
in Table 39.1 is a Fibonacci number. 

TABLE 39.1. 

"K( 
1 
2 
3 
4 
5 
6 
7 
8 

10 

0 

1 
1 
2 
1 
3 
1 
4 
1 
5 

1 

2 
2 
5 
7 
9 

14 

2 

2 
2 
9 

25 

3 

2 
13 

4 

2 

5 

-«— Row sum = 13 = F7 

Let K(n, 7) denote the element in row n and column j , where n > 1 and y > 0. 
It can be defined recursively as follows: 

[ 1 if n is even 
(n' ' l L ( n + l ) / 2 J otherwise 

-, _ I K(n-l,j -\) + K(n-2J) ifniseven 
( " ' }) ~ j K(n - 1, 7) + AT(/1 - 2, 7) otherwise 

where n > 3 and 7 < L(« - 2)/2J. If 7 > L(« - 2)/2J, ^ (n , 7) can be considered 0. 
Suφrisingly enough, there is a close relationship between the polynomials K„(x) 

and J„(x), as the following theorem shows. 

Theorem 39.1. (Koshy, 2000) Kn(x) = x[J„-i(x) + Jn-i(x)l where n > 2. 

Proof. Since K„(x) satisfies the same recurrence relation as J„(x), it follows that 
Kn(x) = Ar" + Bs", where the expressions A and B are to be determined subject 
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to the initial conditions K\(x) = 1 and Kj{x) — x. These two conditions yield the 
equations 

Ar + Bs = 1 

Ar2 + Bs2 = x 

Solving this system, we get 

x — s , „ r — x 
A = —, and B = rj\ +Ax i V l + 4 * 

x — s „ r — x 
.-. K„(x) = . ■ r" + ■ s" 

r-J\ + 4* J V I + 4x 
(x — s)r" ' + (r — *)i n - l 

VÎ+4JC 

*(/ ·"- ' - i"-1) - (rs)(r"-2 - i"-2) 

= *[/„_, (*) + Λ-2(*)] by Formula (39.3) ■ 

Thus, to find any polynomial K„(x), we need only multiply the sum of the con-
secutive numbers Jn-\(x) and Jn-2(x) of the Jacobsthal family by x, where« > 3. 

For example, 

K9(x) = x[Mx) + Mx)) 

= * [ ( 4 Ï 3 + IOJC2 + 6x + 1) + (JC3 + 6x2 + 5x + 1) 

= 5xA + 16X3 + 11JC2 + 2X 

Similarly, Κ$(χ) = χΛ + 9JC3 + 9x2 + 2x. 
Since Km(l) = Fm — 7m(l), Theorem 39.1 yields the familiar Fabonacci recur-

rence formula. 

Corollary 39.1. Fn = F„_, + F„_2, « > 3. ■ 

A POLYNOMIAL EXPANSION FOR K„(x) 

We can employ Formula (39.2) and Theorem 39.1 to derive a polynomial formula for 
Kn(x). 
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Case 1. Let n = 2k + 1 be odd. By Formula (39.2), 

-c(Ä)*(iii:!). 

,k-j-\ 

rk-j-l 

0 

k-\ 

Σ 
o 

* + 3j + 1 

2y + l C^::!)'" i-\ 
Case 2. Let n = 2k be even. Then 

t - i 

^,W+^W = Ç(^;:;).I-'-I+È(^J:^),'-'-J 

-Ç[(îtj:!Mîii:î)p-J-,+*'" 
-*-'+'tt-*%=1(ltJ

J-jy>-' 
Thus, we have the following result. 

Theorem 39.2. (Koshy, 2000) 

g * + 3 J - l /* + ; _ 2 \ ,_,_, = .seven 

"' if« = 2 * + 1 is odd 

K„{x)lx = 

v 27+1 u - y - i y 

For example, 

"(î)-5(î) 

. 2 - ; 

= JT + 

= x2 -¥5x-\-2 

.·. tf6(jr) = x3 + 5x2 + 2x 
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Likewise, 

^ / - Σ ^ Π ( 2 Ϊ ; : ) ^ = 4 Χ 2 + 7 Χ + 2 · 
so 

ΚΊ(χ)=4χ3 +7x2 + 2x 

Since Kn(\) = F„,tht next result follows from Theorem 39.2. 

Corollary 39.2. 

<■> * — z ^ ( ; t j : ? ) 

■ 

For example, 

-.(ÎHGKGKOKG) 
= 6 + 30 + 36+15 + 2 = 89 

and 

Since F2„ = F„ Ln, it follows that the sum in Eq. (39.5) has nontrivial factors when 
n > 3. Besides, since F2n+\ = F2 + F2

+i, it follows that the sum in Eq. (39.6) is the 
sum of two (Fibonacci) squares. 

We now turn our attention to constructing a generating function for K„(x). 

A GENERATING FUNCTION FOR Kn(x) 

Since 1 - t — xt2 = (1 - ri)(l - st), we can show that 

r = y > M f 
1 - t - Xt1 *—> 

0 
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Therefore, 

t2+t3 °° 
— -2 = Τυ„-Λχ) + Jn-2(x)]tn 

1 — t — xtL *—* 
2 

oo 

= J2[Kn(x)/x]t", by Theorem 39.1 

That is, 

In other words, 

2 

t + (X - \)t2 - ^ 

l-t-xt2 , 
= J2^n(x)tn 

Thus, the function on the left generates the polynomials K„(x) as coefficients of t", 
where« > 1. 

EXERCISES 39 

1. Using the recursive definition of J„(x), find Ju(x) and Jn(x). 
2. Using the explicit formula for J„(x), find Jg(x) and JioM-
3. Prove the explicit Formula (39.2) for J„(x). 

r" -s" 1 + y/T+Jx J 1 - VI +4x 
4. Show that/„(JC) = , whprp r = ands = . 

V1 + 4JC 2 2 
5. Find a generating function for J„(x). 

Consider the polynomial k„(x) defined by k„(x) = k„-\(x) + xk„_2(x), where 
k0(x) = 2 and k\ (x) = 1. 

6. Find ^(JC) and k6(x). 

7. Find^n(l). 

8-9. Redo problems 6 and 7 if k\ (x) = x. 
There is yet another family of polynomial functions, Q„(x), that are related to 
Jacobsthal polynomials. They are defined by Qn(x) = x[Qn-\(x) + Qn-i(x)], where 
Qx (χ) = 1 and Q2CO = JC· Find each. 

10. ßsOt) and ρ7(*) 
11. C d ) 
12. The degree of βπ(.κ) 
13. The lowest power of x in Ö„(;c) 
14. The number of terms of Q„ (x) 
15. Binet's formula for Q„(x) 
16. An explicit formula for Q„(x) 
17. A generating function for Q„(x) 



ZEROS OF FIBONACCI 
AND LUCAS POLYNOMIALS 

In 1973, V. E. Hoggatt, Jr., and M. Bicknell investigated the zeros of the Fibonacci 
and Lucas polynomials using the hyperbolic functions 

sinh z = and cosh z = 
2 2 

where z = x+iy is a complex variable. These functions satisfy the identities cosh2 z — 
sinh2 z = 1, cosh iy = cos y, and sinh iy = i sin y. 

Let x = 2/ cosh z. Then V*2 + 4 = 2/ sinh z, so a(x) = /(coshz + sinh z) = fez 

and ß(x) = »'(coshz - sinhz) = ie~z; 

(a(x))n - (0(jQ)" _ .„_, (e"i-e-ni\ _ .„_ 
MX)~ a-ß ~' \et-e-i)-1 

i sinh nz 
sinhz 

and /„(*) = (a(x))n + (ß(x))n = enz + e~ni = 2i" coshnz. 
Letz = M + /'u.Then | sinhzl2 = sinh2 u + sin2 v and | coshz|2 = sinh2a+cos2 v. 

Since u is real, sinh u = 0 if and only if M = 0 , so the zeros of sinh z are those of 
sinh iv = i sin v; and the zeros of cosh z are those of cosh iv = cos υ. 

Clearly, fn(x) = 0 if and only if sinhnz = 0 and sinh z φ 0. But sinh nz = 0 
if and only if sin ny = 0, or z = iy. Therefore, ny = ±kn, so z = ikn/n. Since 
/ cosh iy = i cos y, x =2i cosh z = 2/ cos kn/n, where 1 < k < n — 1. 

Notice that /„ (*) = 0 if and only if cosh nz = 0, that is, if and only if cos ny = 0. 
Thenny = (2k + l)7r/2andz = iy. So* = 2/coshz = 2/cos(2& + 1)π/2η, where 
0 <Jt < n - 1. 

Thus, the zeros of /„ (x) are 

x = 2i cos kn/n 1 < k < n — 1 

477 
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and those of/„(JC) are 

x - 2/ cos(2/t + 1)π/2η 0 < k < n - 1 

For example, the zeros of/6(JC) = JC5+4J<:3+3JC are given by x = 2icosjfc7r/6, 1 < 
k < 5. When k — \,x = 2/cos7r/6 = y/3i; when k = 2,x = 2i cos;r/3 = i; 
similarly, & = 3, 4, and 5 yield the values 0, —i, and —</3i, respectively. Thus, 
the zeros of fe(x) are 0, ±i , and ±>/3i. This should be obvious, since /Ô(JC) = 
x(x2+l)(x2 + 3). 

The zeros of/S(J:) = x5 + 5x3 + 5JC are given by x = 2i cos(2£ + 1)π/10, where 

0 < k < 4; so they are 0, ±Vio±2v/5/ s i n c e c o s j r / 1 0 = ( ^ ιο + 2>/5)/4. We can 

confirm this easily, since /six) = JC(JC4 + 5JC2 + 5), and x* + 5x2 + 5 is a quadratic 
2 

injc . 

FACTORING FIBONACCI AND LUCAS POLYNOMIALS 

It now follows that both f„(x) and l„(x) can be factored: 

n - l 

fn(x) = Y[{x - 2i coskn/n) 
i 

and 
n~l 

ln(x) = Y\[x - 2i cos(2& + 1)π/2η] 
o 

It also follows from these two factorizations that 

n - l 

Fn = Y[(l - 2/ cosA;7r/n) (40.1) 
1 

and 
n - l 

L„ = Y\[\ - IX cos(2* + l)/2n] (40.2) 
o 

Formula 40.1 was initially proposed as an advanced problem in 1965 by D. Lind of 
the University of Virginia at Charlottesville. Two years later, D. Zeitlin of Minnesota 
derived Formula 40.2 along with Formula 40.1 using trigonometric factorizations of 
Chebyshev polynomials of the first and the second kinds. We will elaborate Formula 
40.1 further in Chapter 42. 

For example, 

3 

F4 = J~[(l - 2/ cos kn/A) 

= (1 -2I 'COS7T/4) (1 -2icos2jr /4)( l -2 /cos3w/4) 

= (1 - V 2 i ) ( l - 0 ) ( l + v/2() = 3 
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and 

2 

L3 = p | [ l - 2/ cos(2fc + 1)TT/6] 
o 

= ( 1 - 2 / cos7r/6)(l - 2i cos37r/6)(l - 2/ COS5JT/6) 

= (1 - 2/ cos7r/6)(l - 0)(1 + 2/ cos7r/6) 

= 1 + 4 C O S 2 J T / 6 = 1 + 4 - 3 / 4 

= 4 



MORGAN-VOYCE 
POLYNOMIALS 

In 1959, A. M. Morgan-Voyce of Convair, a division of General Dynamics 
Corporation, in his study of electrical ladder networks of resistors, discovered two 
large families of polynomials, bn(x) and Bn(x). Closely related to Fibonacci polyno-
mials, they are defined recursively as follows: 

b„(x) = xB„-X(x) + bH-l(x) (41.1) 

Bn(x) = (x+ 1)Β„_,(*)+ *„_,(*) (41.2) 

where bo(x) — 1 = BQ{X) and n > 1. 
These polynomials were studied extensively in 1967 and 1968 by several inves-

tigators, including M. N. S. Swamy, S. L. Basin of Sylvania Electronic Systems, 
V. E. Hoggatt, Jr., and M. Bicknell. 

To appreciate the origin of these polynomials, we must return to the ladder networks 
of n resistors that we examined in Chapter 4. Consider the case with R\ = x and 
/?2 = 1 (see Fig. 41.1). As before, Z„ denotes the resistance between the terminals 
C and D. 

x 

• . —ΛΛΛτ—r «c 

• · J « D 

n sections 

Figure 41.1. 
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Using Figure 41.2, since x and Z„ are connected in series, they yield a combined 
resistance of R = x + Z„. Since R and 1 are connected in parallel, 

1 1 1 
+ Zn+\ x + Z„ 1 

_ x + Z„ + 1 

x + Zn 

x + Z„ 

x + Z„ + 1 Z„+, = * t Z : , (41-3) 

x 

-ΛΛΛ r -*c 

- • O ' 

Figure 41.2. 

Since Z„ is a polynomial in x, so are JC + Z„ and x + Zn + 1. Thus Z n + i , and 
hence Z„, are the ratios of two related polynomials. Let 

7 _ bn{x) 

By Eq. (41.3), 

Bn(x) 

bn+i(x) x + bn(x)/Bn(x) 

Bn+l(x) x+\+bn(x)/Bb„(x) 

_ xBn(x) +bn(x) 

~~ (x + \)Bn(x) + b„(.x) 

This equation yields the recurrence relations satisfied by b„(x) and B„(x): 

bn(x)=xBn.](x) + bn-l(x) (41.1) 

B„(x) = (x+ \)B„.i(x)+b„.i(x) (41.2) 

Since ZQ — 1, we define bo(x) — 1 = ßoU)· Thus b„(x) and Bn(x) are the Morgan-
Voyce polynomials defined earlier. 

Let us now study the resistance Z„ from the input end. It follows from Figure 41.3 
that the resistence R resulting from the parallel resistors Z„ and 1 is given by 

1 _ 1 1 

Zn 

R = zn + \ 
Zn (x+\)Zn+x 

+ z„ + i z„ + l 
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A · V W 

B' · 
Figure 41.3. 

As before, let Z„ = P„(x)/Q„(x). Then 

Pn+\(X) = (x+l)Pn(x)/QnW+X 

Q„+X(X) PnW/Qn(x) + l 

= (x + \)P„(x)+xQn(x) 
Pn(x) + Qn(x) 

Therefore, P„(x) = (x + l)P„.i(x) + Qn.l(x)aad Qn+iW = P„(x) + Qn(x).Then 

Qn(x) - Qn-l(x) = Pn-lW 

= (x + l)Pn.2(x)+xQn-2(x) 

= (x + l)[Qn-l(x)-Qn-l(x)]+xQn-l(.x) 

.·. Q„(x) = {x + 2)QH-i(x) - Qn-iW 

Since Qi(x) = 1 and Q2(x) = x + 2, it follows that Qn(x) = B„(x). More-
over, Pn(x) = Q„+i(x) - Qn(x) = B„+i(x) - Bn(x) = bn+l(x). Thus Z„ = 
bn+\ (x)/Bn(x) yields the resistance from the input end. 

B„ AND b„ FAMILIES 

The first five members of the Bn -family of polynomials are 

Bo(x) = 1 

Bi(x) = x+2 

B2(x) = x2+4x + 3 

B3(x) = * 3 + 6x2 + IOJC + 4 

B4(x) = x4 + 8x3 + 21*2 + 20* + 5 

More generally, 

For instance, 
i=0 V ' 

*w-t(î!!)"' 
1=0 X ' 
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= * 4 + 8Λ:3 + 21Λ:2 + 20;*: + 5 

Their cousins in the bn -family of polynomials are: 

bo(x) = 1 

bi (x) = x + 1 

b2{x) = x2 + 3x + 1 

b3(x) = Λ:3 + 5*2 + 6x + 1 

M*) = *4 + 7;c3 + 15*2 + 10t + 1 

More generally, 

For example, 

i— n v ' 
M*) = 2 J " ·■'*' (415) 

(=0 

x4 

χ4+7χ* + \5χ2 + \0χ+ 1 

PROPERTIES OF MORGAN-VOYCE POLYNOMIALS 

Both families enjoy a plethora of Fibonacci-like properties. We can examine a few of 
them here. First, notice an interesting pattern emerging: 

B0(l)=\=F2 Ä,(1) = 3 = F4 B2(D = 8 = F6 

and J ? 3 ( 1 ) = 2 1 = F 8 

More generally, ß„(l) = Fin+i, where n > 0 (see Exercise 8). Likewise, b„(l) = 
F2n+i, where n > 0 (see Exercise 9). 

In fact, there is a close relationship between the Fibonacci polynomials /„ (JC) and 
the Morgan-Voyce polynomials bn(x) and B„(x): 

/» (JC) = 
b(n-\)/2(x2) if« is odd 

xB(n-2)ß(x2) otherwise 
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See Exercise 33. 
Equations (41.1) and (41.2) yield two obvious properties: 

b„(x) = B„(x) - B„-X{x) 

xBn(x) = b„+i(x) - b„(x) 

These equations together yield the Fibonacci recurrence relation when x = 1. 

(41.6) 

(41.7) 

RECURSIVE DEFINITIONS 

Substituting for bn(x) from Eq. (41.6) in Eq. (41.1) yields the recurrence relation 
satisfied by Bn(x): 

B„{x) = (x+2)Bn.l(x)-Bn-2(x) « > 2 (41.8) 

where Bo(x) — 1 and ßi(jc) = x + 2. 
Using Eqs. (41.1), (41.2), and (41.7), we can show that b„{x) satisfies the very 

same recurrence relation (see Exercise 1 ): 

bn{x) = (x+2)bn-t(x)-bn-2(x) n>2 

where bo(x) = 1 and b\(x) = x + 1. 

(41.9) 

PROPERTIES OF B„(x) 

The recurrence relation (41.6) can be employed to express Bn(x) as the determinant 
of an n x n circulant matrix: 

x+2 1 0 0 . . . 0 
1 x + 2 1 0 . . . 0 
0 1 x + 2 1 . . . 0 

B„(x) = 

0 
1 

x + 2 

Consequently, we can extract many properties of Bn (x) by studying this determinant. 
For example, 

In particular, 

and 

Bm+n(x) = Bm(x)Bn(x) - Bm-i(x)Bn^(x) 

B2n(x) = B2
n{x) - B2

n_,(x) 

ß2„_i(x) - [Bn(x) - ß„_2U)]ß„_,(x) 

(41.10) 

(41.11) 

(41.12) 
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For example, 

B\ - B2 = (x2 + 4x + 3)2 - (JC + 2)2 

= Λ:4 + 8Λ3 + 21Λ:2 + 20Λ: + 5 

= ΒΛχ) 

It now follows from Eq. (41.8) that 

(x + 2)B2„-I(JC) = B2
n(x) - Ä2_2(*) (41.13) 

See Exercise 12. 
Since Bn(\) = F2n+2, Identities (41.10) through (41.13) yield the following 

Fibonacci identities: 

Fm+„ = Fm+2F„ - FmF„-2 (41.14) 

F2n+2 = F2
+2-F

2 (41.15) 

F2n = (Fn+2-F„-2)Fn (41.16) 

3F2fl = F2
+2 - F2_2 (41.17) 

See Exercises 13-16. 

The polynomial B„ (x) also satisfies a Cassini-like formula: 

Βη+Λχ)Βη-]{χ)-Β2(χ) = -\ (41.18) 

In particular, let JC = 1. Then Eq. (41.18) yields Cassini's formula. 

PROPERTIES OF b„(x) 

We now turn our attention to the properties of bn (JC). By Property (41.7), we have 

n 

x Σ Bj(x) = bn+l(x) - b0(x) 
o 

That is, 
n 

* £ * , ( * ) = &„+, (*) - ! (41.19) 
o 

For example, 

3 

x Σ Bi(x) = x(x3 + lx2 + \5x + 10) 
0 

= Λ:4 +7Λ:3 + Ϊ5χ2 + \0Χ 

= M * ) - 1 
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In particular, let* - 1. Then Eq. (41.19) yields Identity (5.3): 

Σ F2i = F2n+i - 1 (5.3) 
o 

It follows from Eq. (41.6) that 

£*,(*) = fi«W-Ä-!(*) 
o 

But B-\ (x) = 0 (see Exercise 20). 

Y^bi(x) = Bn(x) (41.20) 

For example, 

3 

Y^bi(x) = 1 + (x + 1) + (x2 + 3x + 1) + (x3 + 5x2 + 6x + 1) 

= x3 + 6x2 + 10* + 4 

= ftto 

Letting at = 1 in Eq. (41.20) yields Identity (5.2): 

n 

Σ F2---i = F2" (5.2) 
0 

Using Identity (41.6), we have 

bm+n(x) — Bm+n(x) — Bm+„-\(x) 

= [ßm(x)ß„(x)-ßm_i(x)ß„_,(x)] 

-[ßm(x)5„_,(x) - fim_,(x)fl„_2(x)] 

= Bm{x)[Bn{x) - Bn^(x)] - i . - i ( i ) [ i , . i ( i ) - fl„-2(Jc)] 

= Bffl(jc)fc„(x) - Bm_,(*)*„_, (x) (41.21) 

Switching m and «, this yields 

fcm+n(x) = bm(x)B„(x) - fcM_, (*)*„_, (x) (41.22) 

In particular, b2n(x) = ß„(x)e„(x) - £„_i(x)fc„_i(x). 
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BINET'S FORMULA FOR B„(x) 

Next we derive Binet's formula for Bn(x) by solving the recurrence relation (41.6). 
Its characteristic equation is t2 — (x + 2)t + 1 = 0 with roots 

/ 4 X + 2 + y/x2 + AX j _ X + 2 - y/x2 + 4x 
r(x) = and s(x) = 

where r + s — x + 2, r — s — \/x2 +4x, and rs = 1. So the general solution of the 
recurrence relation is B„(x) = Cr" + Ds", where the coefficients C and D are to be 
determined. 

The initial conditions BQ(X) = 1 and B\ (x) = x + 2 = r + s yield the following 
linear system: 

C + D = 1 

Cr + Ds = r + s 

Solving, 

and D -
s/x2 + 4x 

Thus, the desired Binet's formula is 

B„(x) = 
rn + \ _ c" + ' 

r — s 

•Jx2 + 4x 

(41.23) 
r — s 

where r = r(x), s = s(x), and n > 0. 

RELATIONSHIPS BETWEEN FIBONACCI AND MORGAN-VOYCE 
POLYNOMIALS 

Binet's formulas for Ö„(JC) and f„(x) can be employed to derive a close link between 
them. To this end, recall that 

a"(x)-ß"(x) 
Jn(x) — , . ai \ ' 

a(x) - ß(x) 

where x + y/x2 + 4 x - y/x2 + 4 
a(x) = and p(x) — 

Then 

2 / x2 + 2 + y/x2 + 4 2 x2+2-Vx2+4 
a (x) = and ß (x) — — . 
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We have 

a2n(x) - ß2n(x) (a2(x))n - (ß2(x))n 

f2n{x) 
a{x) - ß(x) a(x) - ß(x) 

<j(x2))n - s(x2))" 
[r(x2) - s(x2)]/x 

= χΒη-Χ{χλ) 

Since b„(x) = B„(x) - Bn_x{x),xbn(x
2) = xB„(x2) -xBn^{x2) = f2n+2(x)-

f2„(x) = xf2„+\(x). Thus 

bn{x2) = fin+\(x) and xBn^(x2) = f2n(x) (41.24) 

For example, 

b3(x
2) = x6 + 5x4 + 6x2 + 1 = f7(x) 

xB2(x
2) = x(x4 + Ax2 + 3) = x6 + 4*3 + 3x = f6(x) 

GENERATING FUNCTIONS AND MORGAN-VOYCE POLYNOMIALS 

Next, we show how generating functions can be employed to derive the properties in 
Eq. (41.24). To this end, first we derive the generating functions for both Bn(x) and 
b„{x). 

Since the roots of the characteristic equation t2 — (x + 2)t + 1 = 0 are r and 5, it 
follows that 

1 1 

l - ( j r + 2)f + f2 ( l - r r ) d - j f ) 

A B 
+ 1 - rt 1 - st 

where A = r/(r — s), B = —s/(r — s),r = r(x), and 5 = s(x). 

1 °° (rn+\ _ j + l u i . °° 

l-(x + 2)t+t n=0 . . 

OO OO 

,- ( ,+2) (+„-Σ*<')^'-Σ*-^ (41.26) 
=0 n=l 

Then 

1 -t 
= ΣΒη(Χ)ίη-ΣΒ»-^Χ){η 

1 - (x + 2)t + t2 

\j i 

OO 

= B0(x) + J2[Bn(x) - Bn^(x)]tn 
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= l+J^bn(x)t" 

= Σ Μ - Ο ' " (41.27) 
o 

Equations (41.25) and (41.27) provide us with the generating functions for Bn(x) and 
b„(x). 

It follows from Eq. (41.27) that 

and 
xt 2 

-^ =£>*„_, (XV 1 - (x2 + 2)i2 +1 

Adding these two equations, we get 

t(l+xt-t2) _ 
- /21 

0 

oo 
,2n+l — j - TxB^dx^+YbAx2)!2 

■xt-t2 *-' t-r1 1 - - o 
OO OO 00 

Σ/Αχϊ" = ̂ x ß ^ u V + ^M*2)'2"*1 

0 0 0 

Thus f2n(x) = xBn_x(x
2) and /2„+i(x) = b„(x2), as desired. 

It follows from Eq. (41.24) also that F2n — ßn_i(l) and F2n+l = bn{\). Conse-
quently, the coefficients of Bn(x) and bn{x) lie on the rising diagonals of Pascal's 
triangle, as shown below: 

Coefficients of B2 (x) =f(,(x) 

Coefficients of S3 (x) =fy{x) 

1 

1 1 

1 2 1 

1 3 ß 

1 A'' 6' 
/ ' 

1" 5 ' 10 

1 ' 6 15 

1 7 21 

4 

1 

4 

10 

20 

35 

/ 

1 

5 

15 

35 

1 

6 

21 

Moreover, b„ (x) is irreducible if and only if 2n + 1 is a prime. For example, èç(x) = 
x9 + 17x8 + 120x7 + 455x6 + lOOlx5 + 128x4 + 924x3 + 330x2 + 45x + 1 has 
nontrivial factors. 
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VOLTAGE AND CURRENT 

Next, we will see how the polynomials B„(x) and bn(x) are related to voltage and 
current in the ladder network. 

Since the system is linear, assume that the output voltage is 1 volt. Let V„ denote 
the voltage across the nth unit resistance and /„ the current. Initially, that is, when 
n = 0, we have a no-resistance network, so there is no current and the voltage between 
the terminals is 1 volt. That is, IQ =0 and Vo = 1 (see Fig. 41.4). 

• W V -r · 
> 1 

/, = 1 amp v, =x+ 1 volts 

Figure 41.4. 

Thus 

/ 0 = 0 = B - , ( J C ) V0 = \=b0(x) 

/, = 1 =B0(x) Vl=x+l = *,(*) 

Since b„+x{x) = xBn(x) + b„(x), 

Bn+[(x) = (x + \)B„(x)+bn(x) = B„(x) + [xB„(x) + bn(x)] 

= B„(x) + bn+i(x) 

Using this result and the principle of mathematical induction, we now show that 
/„ = Ä„_i(jt) and V„ — è„_i(jc). Consider the ladder network in Figure 41.5. We 
have Vn+\ = xln+i + V„ and / n + ] = V„ + /„. Assume that /„ = ß„_i(jt) and 
VB=*B(jï).Then 

V„+| = xB„(x) + bn(x) =bn+\(x) 

h+\ = b„(x) + B„-i(x) = Bn(x) 

Since the results are true when n = 0 and n = 1, it follows by PMI that l„ = ß„_i (x) 
and Vn = b„-\ (x) for every n > 0. 

ΛΑΛ^-£ · 
< v0 = i 

'n + 1 

AAV ΑλΛτ-
^ = 1 

·- -· 
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As a by-product, notice that: 

b„(x) = Vn=xB„-dx) + bH-i(x) 

= xBn^i(x)+xB„^2(x) + b„-2(x) 

= x[Bn-i(x) + Bn.2(x) + ■■■ + B0(x)] + 1 

Likewise, 

Bn{x) = /„+, = Vn + V„-i + ■ ■ ■ + V0 

= b„(x) + b„-i(x) + · ■ ■ + bo(x) 

Thus we can find the polynomial b„(x) by multiplying the sum of the polynomials 
ß„_i (x), B„-i(x),..., B0(x) by x and then adding a 1 to the product; and Bn(x) can 
be obtained by just adding the polynomials b„(x), bn-\(x),..., bo(x). 

For example, 

b4(x) = x[B3(x) + B2(x) + Bi(x) + Bo(x)] + 1 

= Λ·[(Λ3 + 6x2 + lOur + 4) + (x2 + 4x + 3) + (JC + 2) + 1] + 1 

and 

= x4 + 7x3 + 15Λ: 2+ IOJC + 1 

B4(x) = b3(x) + b2(x) + bx (x) + bo(x) 

= (JC3 + 5 ^ 2 + 6 J Ï + 1) + U 2 + 3 ^ + 1) + (JC + 1) + I 

= JC3 + 6x2 + IOJC + 4 

MORGAN-VOYCE POLYNOMIALS AND THE S-MATRIX 

Like the ß-matrix in Chapter 32, the matrix 

[x+2 - 1 " 
[ 1 0 

can be employed to investigate the properties of B„(x) and b„(x). Notice that 

Γβ,(Λ) -BoW] 
[Bo(x) fi_,(jc)J 

and 

- [ 
x + 2 

1 
x + 2 

1 
-1 ] _ \x2 + 4J 

o J " L * + 
4 * + 3 -(x + 2) 

2 - 1 

B2(x) - 5 , U ) 
Bi(x) -B0(x) 
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More generally, we can show that 

S" = Bn{x) - £ „ - . W 
B.- iU) B„„2(x) 

(41.28) 

See Exercise 34. Since \S\ = — 1, this yields the Cassini-like formula we found earlier: 
Bn+l(x)Bn„l(x)-Bt(x) = -\. 

Using Formula (41.3), Eq. (41.28) implies 

~bn{x) - V i W l = \Bn(x) - Bn_x(x) - [ ß „ _ 1 ( x ) - ß n _ 2 U ) ] 1 
> ,_ , (*) -bn-2(x)\ |_B„_i(jr)-Ä„_2(x) -[Bn.2(x) - B„-3(x)]] 

= Sn - 5"- ' 

= S"~l(S-I) 

= \S-I\ 
b„(x) -b„-i(x) 
bn-X(x) -b„-2(x) 

x+l 
1 

Thus 
b„+i(x)bn-i(x) - b2

n(x) =x (41.29) 

For example, 

b4(x)b2(x) - b\(x) = (x4 + 7x3 + \5x2 + 10* + l)(x2 + 3x + 1) 

- ( Λ 3 + 5Λ2 + 6Λ: + 1)2 

= x 

TRIGONOMETRIC FORMULAS FOR Bn(x) AND bn(x) 

Next, we show that Bn(x) and b„{x) can be expressed in terms of the sine and cosine 
functions. Since 

A+B A-B 
sin A + sin B = 2 sin cos 

2 2 

it follows that 
sin(n + 1)0 + sin(n - 1)0 = 2sinnÖcosÖ 

Let cos Θ = (x + 2)/2, so - 4 < x < 0. Then 

sin(n + 1)0 sin(n - l)ö sinnö 
+ — . Λ =(χ + 2) — 

Notice that 

sin Θ sin Θ 

sin(n + 1)0 r l 

sinö 

sine? 
_ j l ifn = 
~\x+2 ifn = 

if« = 0 
1 

(41.30) 
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Let S„(x) = [sin(n + 1)0]/sin 0. Then S0(x) = 1 and Si(jc) = x + 2. Besides, 
Eq. (41.29) shows that S,1+](JC) = (x 4- 2)Sn(x) - S„_I(JC). Thus, S„(x) satisfies the 
same initial conditions and the same recurrence relation as B„(x), so S„(x) — B„(x). 
That is, 

sin(/i + 1)0 
B„{x) = \ a - 4 < * < 0 (41.31) 

sin0 

Since b„ — B„ — B„-\, this yields a trigonometric formula for b„(x): 

cos(2n+ 1)0/2 
b„W = — - ^ - - 4 < χ < 0 (41.32) 

cos 0/2 
See Exercise 35. 

HYPERBOLIC FUNCTIONS FOR B„(x) AND bn(x) 

To derive a hyperbolic function for B„(x), we let cosh φ = (x + 2)/2. Using similar 
steps as before, we can show that 

sinh(« + 1)φ 
B„(x) = . . J C > 0 (41.33) 

Slnhφ 

See Exercise 36. 
Since b„ = Bn — B„-\, this implies 

sinh(w + 1)φ sinh(« — 1)φ 
t>„(x) = — ——-— 

sinh φ sinh φ 
sinh(n + 1) φ — sinh(n — 1)φ 

sinh(n + 1)φ 

cosh(2n + 1) φ /2 

cosh φ/2 
J C > 0 (41.34) 

ZEROS OF B„(x) AND b„(x) 

Formulas (41.31) and (41.32) provide us with interesting bonuses, namely, the zeros 
of both B„(x) and b„(x). 

Since sin m0 = 0 if and only if 0 = kn/m, it follows from Eq. (41.31) that 
B„(x) = 0 if and only if 0 = kn/(n + 1), where 0 < k < n. Then 

x + 2 = 2cos0 = 2 cos kn/(n + 1) 

x = 2[coskn/(n + 1) - 1] = -4sin2*jr/(2n + 2) 0 < k < n 

Similarly, the zeros of b„(x) are given by x — -4sin2(2fc — 1)π/(4η + 2), where 
0 < k < n (see Exercise 37). 

It now follows that the zeros of both B„ (x) and b„ (x) are real, negative, and distinct. 
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EXERCISES 41 

1. Show that b„(x) satisfies the recurrence relation (41.7). 

2. Find B$(x) using Formula (41.3). 

3. Find bs(x) using Formula (41.5). 

4. Verify Formula (41.3). 

5. Verify Formula (41.5). 

6. Verify that the explicit Formula (41.3) for B„ (x) satisfies the Property (41.2). 
7. Verify that the explicit Formula (41.4) for bn(x) satisfies the Property (41.1). 
8. Prove that ß„(l) = F2n+2, n>0. 

9. Prove that b„(\) - F2n+i, n > 0. 
10. Using Binet's formula for B„(x), show that Bn(\) = F2n+2, where n > 0. 

11. Using Exercise 4, show that b„(l) = F2n+i, where n > 0. 

12. Show that (x + 2)B2n-i = B2 - B2_2. 

13-16. Establish the Identities (41.14) through (41.17). 
Prove each. 

17. xBn(x) = (JC + \)b„{x) - b„-i(x) (Swamy, 1966) 
18. Bn+l(x) - Bn-dx) = bn+l(x) + bn(x) (Swamy, 1966) 
19. x[Bn(x) + B„-i(x)] = bn+i(x) - *>„_,(*) 
20. ß_ 1 (^)=0andb_ 1 (x) = 1. 

21. b2„(x) = B„(x)bn(x) - Bn-dx)b«-dx) (Swamy, 1966) 
22. b^+dx) = Bn(x)bn+dx) - Bn-dx)b„(x) (Swamy, 1966) 
23. (x + 2)b2n+l(x) = Bn+dx)bn+i(x) - β„_!(*)&„-!(.0 (Swamy, 1966) 
24. (JC + 2)B2n(x) = Bn+l(x)Bn(x) - fl„_i(x)ßn_2(x) (Swamy, 1966) 

25. b2n(x) - b2n-dx) = b2
n(x) - b2

n_x{x) (Swamy, 1966) 
26. (x + 2)b2n(x) = Bn+dx)b„(x) - Bn-dx)bn-2(x) (Swamy, 1966) 

27. Ê B2i(x) = B2(x) (Swamy, 1966) 
o 

28. EBu-dx) = Bn(x)B„_i(x) (Swamy, 1966) 
1 

29. £ > , ( * ) = B„(x)b„(x) (Swamy, 1966) 
o 

30. £ > , - ! ( * ) = Bn_dx)b„(x) (Swamy, 1966) 
1 

31. £ ( - l ) ' M · * ) = b2
n(x) (Swamy, 1966) 

o 

ïit* (x1-\ f,C-1>/2(jc2> if » is odd 
1 8 n K ' * \ jcß(n-2)/2U2) otherwise 
32. Find the polynomials gs(jc) and g(,(x). 
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33. Show that g„(x) = /„(*), the Fibonacci polynomial. 

34 LetS-\X + 2 _ 1 1 Prove that S" - \ B"M - * - ' < * > 1 η > \ 
34. L e t i - ^ j 0j .Provetnat^ - ^ ß n i W _ B | ( _ 2 ( j t ) J . " Ξ '■ 

cos(2n+ 1)0/2 
35. Show that b„(x) = — -1—, where - 4 < x < 0. 

cos 0/2 
jr + 2 sinh(2n + 1) φ/2 , 

36. Let cosh φ = . Show that B„(x) = : , where x > 0. 
2 sinh φ 

37. Show that the zeros of b„(x) are given by — 4sin2(2fc — l)7r/(4« + 2), 0 < 
k < n. 

The polynomial C„(x), defined by C
n
(x) = (jc + 2)C

n
-\(x) — C„_2(*)> where 

CQ(X) — 1, C\(x) = (x + 2)/2, and n > 2, occurs in network theory. (Swamy, 
1971) 

38. Find C2(x), C3(JC), and C4(x). 
39. Show that 2C„(x) = b„(x) + b„-X(x) = B„(x) - ß„_2(*)· 

40. L e t S = l · ! 2 " ! l . S h o w t h a t S " - 5 « - 2 = 2 r ^ ( j : ; . " ^ - ' ^ 1 
[ 1 0J lC„-i(x) -C„_2(x)J 

where n > 2. 
41. Show that C„+I(JC)CB_I(JC) - C2(x) = x(x + 4)/4. 

42. Show that C„(x) = Y —^— I n + r ~ ! ) xr. 
r=o" ~r \ n - r - \ ) 

43. Using Exercise 42, find the polynomials C2(;c), Ci(x), and C4(JC). 
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Several well-known trigonometric formulas relate Fibonacci and Lucas numbers with 
the trigonometric functions. 

For example, a number of interesting relationships exist connecting Fibonacci and 
Lucas numbers with the inverse tangent function tan -1, and the ubiquitous irrational 
number π: 

π _, 1 
4 = ta" T 

. , 1 _, 1 
= tan - + tan -

= 2 tan ' - + tan ' 
3 

= tan"1 - + tan"' - + tan"1 - (Dase, 1844) 
2 5 8 

= 2 tan"1 - -Man"1 - + 2 tan"1 -

- i ! - i 1 - i 1 - i ! 

= tan ' - + tan ' - + tan - + tan ' -
3 5 7 8 

THE GOLDEN RATIO AND THE INVERSE TRIGONOMETRIC 
FUNCTIONS 

Several interesting relationships link the golden ratio and the inverse trigonometric 
functions. 

Since cos"1 x — sin"1 Vl — x2 for 0 < x < 1, it follows that cos~'(l /a) = 
sin"1 y/\ - β2 = sin"' β. Likewise, s in" ' ( l /a) = cos"' ^/l - β2 = cos- ' ( l /V?) · 

496 
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Suppose that tanjc = cos*. Then sin* = cos2*, so sin2x + sin;t — 1 = 0. 
Since sin* > 0, it follows that sinjc = \ß\ = l/α and x = sin~'(l/a)· Then 
tan(sin"'(l/a)) = cos(sinl/a) = cosCcos-'il/^/c«) = \/^/a. In addition, 
cot(cos~'(l/a) = \/*Jä — sin(cos"'(l/a). These results, studied in 1970byBr.L. 
Raphael of St. Mary's College, California, are summarized in Figure 42.1. 

I I 
t I 
I \ 
I » 

» \ 
I 1 
i ^ 
i » 

/ ' / ' 
I I 

I I 
I I 

<2-

Va. 

.. sec 
v^c«-cec 

Va-
V2/2-

1/or 
tan 

sin 

S * N ^ - ctn 
cos—»^XN 

H 1 1 1 1—I 1- H—I 1—I 1 1 1-
π/4 

Figure 42.1. 

π/2 

THE GOLDEN TRIANGLE REVISITED 

We can employ the golden triangle with vertex angle 36° to produce a surprising 
trigonometric result. The exact trigonometric values of some acute angles are known. 
The smallest such integral angle is 0 = 3°. Oddly enough, we can use the golden 
triangle to compute the exact value of sine of 3°. Once we know sin 3°, we can 
express the values of the remaining trigonometric functions of 3°, and hence those of 
the trigonometric values of multiples of 3° using the sum formulas. 

Recall from Chapter 22 that the ratio of a lateral side to the base of the golden 
triangle with vertex angle 36° is the Golden Ratio a: AB/AC — x/y = a (see 
Fig. 42.2). In particular, let JC = 1. Then l/y = a, so y = (V5 - l)/2 =-β = 1/α. 
Let BN be the perpendicular bisector of AC (see Fig. 42.3). Then 

sin 18° = 
AN 
~ÄB 

1 
2Ϊ 

V 5 - 1 
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Figure 42.2. 

FIBONOMETRY 

y!2 N yt2 

Figure 42.3. 

Since sin2 u + cos2 u = 1, this implies 

v/lO + 2V5 TVBä 

Then 

cos 18° = 

sin 15° = sin(45° - 30°) 

_ Vl >/3_V2 1 _ sfë-s/î 
~ ~2 2~ 2 ' 2 ~~ 4 

Likewise, 

cos 15° = 
Vo + v^ 

.·. sin 3° = sin(18°- 15°) 

= sin 18°cos 15°-cos 18°sin 15° 

V5-1 sfë + JÏ V6-VÏ νϊθ + ΪΤδ 
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_ (y/5 - 1)(V6 + y/2) - (Vê - >/2)>/l0 + 2V5 
16 

This formula was developed in 1959 by W. R. Ransom. 

GOLDEN WEAVES 

In 1978, W. E. Sharpe of the University of South Carolina at Columbia, while he was 
a member of the Norwegian Geological Survey, observed a set of remarkable weave 
patterns. Suppose the weave begins at the lower left-hand corner of a square loom of 
unit side. Suppose the first thread makes an angle Θ with the base, where 

n + a 
tan Θ — — n > 0 

n +a + 1 

Figure 42.4. The Development of a Golden Weave on a Square Loom of Unit Side, for n = 0: (a) 
After 3 Reflections; (b) After 5 Reflections; (c) After 15 Reflections [Source: W. E. Sharpe, "Golden 
Weaves," The Mathematical Gazette, Vol. 62, 1978. Copyright(O) 1978 by The Mathematical Association 
(www.m-a.org.uk).]. 

Initially, n — 0 (see Fig. 42.4a). Every time the thread (or line) meets a side of the 
square, it is reflected in the same way as a ray of light and a new thread of the weave 
begins. After the third reflection, the thread crosses the original thread. Suppose the 
point of intersection divides the original thread into lengths a and b, as the figure 
shows. Using the properties of isosceles triangles and parallelograms, all the lengths 
marked a are equal and so are those marked b. 

Since tan Θ — a/ (a + 1 ), it follows that the first thread meets the side of the square 
at the point that divides it into segments of lengths 

a a 1 
and 1 a + 1 a + 1 a + 1 

The shaded triangles in Figure 42.4a are congruent, so 

a + b _ α / ( α + 1) 

a ~ l / (<r+l ) 

that is, 1 + (bid) = a; 
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a 

1 1 of- — a 

Thus the first point of intersection divides the first thread in the Golden Ratio. 
From Figure 42.4fe, the second point of intersection divides the line segment of 

length a into two parts of length b and a - b. Since 

1 1 
a/b - 1 a - 1 = a 

this line segment is also divided in the Golden Ratio at the point of intersection. 
As additional crossovers occur, successive line segments are divided in the Golden 

Ratio at each intersection. For this reason, Sharpe called these weaves the golden 
weaves. 

n=1 n = 2 n = 3 

Figure 42.5. The Weaving Patterns for the First 15 Reflections [Source: W. E. Sharpe, "Golden Weaves," 
The Mathematical Gazette, Vol. 62, 1978. Copyright (©) 1978 by The Mathematical Association 
(www.m-a.org.uk).]. 

Figure 42.5 shows the weaving patterns for the first 15 reflections, for n = 1,2, 
and 3. In fact, in all four cases, the first golden division occurs after 2n + 3 reflections, 
marked with a circle in these diagrams. 

In Chapter 25, we found a trigonometric expansion of F„: 

n-l 

F» = 2 " - ' £ < - ! ) ' cos n-i-1 jr/5sin*7T/10 (25.1) 
i = 0 

Next we explore a host of additional relationships. 

Theorem 42.1. Let G„ denote the nth generalized Fibonacci number. Then 

Gn . . ._ , Gn+i\ ( - 1 ) " + V 
tan tan 

Gn+\ 
tan 

'n + \\ _ 
'n+2/ G„ + \(G„ + Gn+2) 

(42.1) 

Proof. 

LHS 
(G„/G„+i) - (Gn+i/G„+2) _ G„Gn+2 - Gn+l 

1 + (G„/G„+i) · (Gn+i/G„+2) G„G„+i + G„+iG„+2 

(~1)"+'μ 
G„+i(G„ + G„+2) 
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The following corollary follows directly from this theorem. 

Corollary 42.1. 

. . . . . _ , , . , - . ν + ' 
(1) tan 

(2) tan 

( t a n - ' ^ - t a n - ' : £ ± ! ) = ^ (42.2) 
\ Fn + \ Fn+2/ Γ2„+2 

(-- =̂- - - - ^ ) - ΪΓ^Γ— (423) 

Theorem 42.2. 

F ^ U 1 
tan"1 " ^ ' - i + i ^ — i ' F«+i fa F» 

Proof, [by the principle of mathematical induction (PMI)] When n = 1, LHS = 
tan-1 1 = ( - l ) 2 tan _ 1 I/F2 = RHS. Therefore, the formula works for n = 1. 

Now, assume it works for n = k. Then: 

£ ( - l ) i + 1 t a n - ' - L = ^ ( - D ' + ' t a n - 1 i - + (- l )*+ 2 tan- ' — — 
/=1 ^ i ! ^2/ ^2(*+l) 

" ' - ^ + (-!)* tan = tan- ' — ^ - - J - ' - I V — - 1 

^*+l ^2Α+2 

( - D t + I , . . , F * + i \ — 1- tan I 
2̂*+2 Fk+2 / 

= ( tan ' —-1 1- tan 

+ (-1 )* tan-1 By Corollary 42.1 

F2k+2 

t -1 Fk+\ 
= tan Fk+2 

since tan~'(—x) = — tan-1 x. So the formula works for n = k + 1. Thus, by PMI, 
the formula holds for every n > 1. ■ 

Corollary 42.2. 

Y\-\)n+x tan"1 — = tan- 'O/a) 

Proof. Since tan-1 is a continuous increasing function, tan_1(l/F2„) > 
tan-'(l/F2n+2). Also, lim tan-1 (I/F2,,) = tan-1 0 = 0. Therefore, the series con-

verges and 

00 . m . 

V(-ir+ 1tan- '- i- = lim £(- l)"+ 1 tan"1 - i-
t-f F2n

 m^oc^ F2n 
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= lim tan ' — — 

= tan-1 ( lim / « - ) = tan_ 1( l /a) ■ 

This corollary has a companion result for Fibonacci numbers with odd subscripts. 
However, before we state and prove it, we need to lay the groundwork in the form of 
a few lemmas. 

Lemma 42.1. 

L2nL2n+2 

This lemma follows by Identity 11 on p. 88. 

Lemma 42.2. 

1=5F2
2 „ + 1 . 

- i ! - i 1 - i 1 tan — = tan — tan — 
F2n+1 F2n F2n+2 

Proof. Let 

θη = tan ' tan ' 
Fin Fin+2 

tanö„ = 
F2n+2 — F. In 

Therefore, 

tan 

(1/F2„) - ( l / F 2 n + 2 ) 

\+(l/F2n) -iMF^+i) F2nF2n+2 + l 

"+ by Cassini's formula. 
F2 

r2n + l 
1 

F2n+\ 

- I l - I l -l l 

1 = tan ' tan ' — 
^2«+i F2n F2n+2 

The proof of the next lemma is quite similar to this proof, so we leave it as an 
exercise (see Exercise 3). 

Lemma 42.3. 

-l ! -l ] - l l 

tan = tan h tan 
F2n+\ L2n L2n+2 

We are now ready to state and prove the celebrated theorem promised just before 
Lemma 42.1. It was discovered in 1936 by the American mathematician Derrick H. 
Lehmer (1905-1991) when he was at Lehigh University. 
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Theorem 42.3. (Lehmer, 1936) 

tan ' = -
, F2n+l 4 

Proof. By Lemma 42.2, 

î>"'ftb-£("■"'ib--"'!^) n=l " , T 1 «=1 

= tan ' — - tan ' 
Fl Fim+2 

tan ' 
4 F2m+2 

oo | m -

E tan"1 = Urn Y^tan"' 
/"2/i + l m - x » ^ - ' F2„ + i 

, · (* -I l \ 

= lim — - tan — 
« - ° ° \ 4 Fim+i) 

= t an~ '0= 0 
4 4 
7Γ 

= ? 
The following theorem provides a similar result for Lucas numbers. 

Theorem 42.4. 

œ j 
y^tan" 1 = tan"'(-/?) 

Proof. By Lemma 42.3, 

Etan~' τ~ = Σ (tan_1 j - + t a n _ l τ~ ) 

( 2 Y ] t a n _ l — +tan _ 1 — 
y 2 i-2n >-2m 

n=\ ' " T 1 n = l 

_, 1 
= tan ' - + 

J \ ~T~ Lin L,2m+2 

oo j j oo j 

Y^tan - 1 = tan-1 - + 2V" tan - 1 f-0 
t^\ Fln+] 2 ^2" 

Λ ^ . ' l 1 

= 2 > tan ' tan ' -
V ^ 3 
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Since π/4 = tan ' 1, by Theorem 42.3, this yields 

1 1 
2 ^ P tan-1 —- = tan-1 - + tan~' 1 

Y Lin 3 

= tan ' 2 (See Exercise 4) 

_ i_ 

Un ~ 2 ' 

00 j j 

Etan-1 = - tan"1 2 

., V 5 - 1 
= tan (See Exercise 5) 

2 
= t an - 'HS) 

The next theorem was also proposed as a problem in 1936 by Lehmer. The proof 
given below is essentially the one derived two years later by M. A. Heaslet of San 
Jose State College, California. Alternate proofs were given by Hoggatt, Jr., in 1964 
and 1968, and by C. W. Trigg of California in 1973. 

Theorem 42.5. (Lehmer, 1936) 

00 

cot-1 1 = ^Pco t - 1 F2„+i 
1 

Proof. 

cot-1 F2k — cot-1 Fik+\ = cot 
_i FikFik+x + 1 

= cot 

Fik+\ — Fik 

i FikFik+\ + 1 

F% ,k-\ 

COI"1 F^-iF2k+2 g y I d e n t i t y 2 Q n p g 7 

F2k-\ 

= cot ' F2k+2 

.·. cot-1 F2k - cot-1 F2k+2 = cot-1 F2k+i 
n n 

^ ( c o r 1 F2k - cot-1 F2k+2) = X ^ c o r 1 F2k+i 
1 1 

n 

cot-1 F2 - cot-1 F2„+2 = ^ c o t - 1 F2k+\ 
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As m -> oo, cot ' Fm -*■ 0. Therefore, as n -> oo, this equation yields 

oo 

cot"1 1 - 0 = ^ c o t " 1 F2t+i 
I 

That is, 
oo 

co r 1 1 = ^ c o t - ' F 2 n + , 
1 

The next theorem is a generalization of Lehmer's formula in Theorem 42.3. 

Theorem 42.6. Let /„(*) denote the Fibonacci polynomial. Then 

1 °° 
t a n - - = E ' 

Proof. Let tan θ„ = !//„(*). Then 

, fln+\{x) 

tan(0„ - θη+2) 
1 + f2nMf2n+2(x) 

Xfln + \{X) 

1 + f2n(x)f2n+l(x) 

Since fk-dx)fk+i(x) - ff(x) = (-1)*, this yields 

Xfln + lix) X 

(42.4) 

tan«9„ - θη+1) = 
fi,+\{x) Î2n+\{x) 

Then 

θη-θη+2 = tan"1 ■ - -
f2n+](x) 

_i 1 _i 1 -1 * 
tan tan — = tan flnix) f2n+2(x) /în + l U ) 

V tan"'—^— = Γ ' - I ' - I 
tan ' tan ' f2n(x) fln+2(x) 

-1 ! -1 1 
= tan ' tan ' flix) f2m+2(x) 

Since fj(x) = x and tan_1(l//2m+2(x)) —* 0 as m -> oo, this yields the desired 
result: 

1 °° x 
tan-1 - = y^ tan" ' , fln+\(x) 

Lehmer's formula in Theorem 42.3 follows from this result since /*(1) = Fk. 
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Corollary 42.3. 

1 it 

F2n+\ 4 Σ tan ' 

The next formula was developed in 1973 by J. R. Goggins of Glasgow, Scotland. It 
was rediscovered 22 years later by an alternate method by M. Harvey and P. Woodruff 
of St. Paul's School, London,. 

Theorem 42.7. (Goggins, 1973) 

Σ - ι 1 - i 1 π 

tan ' h tan ' = — 
1 2 * + l F2n+2 4 

Proof, (by PMI) When n = 1, LHS = tan"1 \ + tan"1 \ = § = RHS. So the 
result is true when n = 1. 

Now, assume it is true for n =m, where m > 1 : 

m+l -, 1 m 1 
-1 l E tan~' — +tan~' = V t a n " 

9.fr 4- 1 F-._, A *<—< 2fc+l F2ra+4 *■? 2* + l 

_, 1 
+ tan ' + tan 

2w + 3 F2l '.m+4 

\ 4 F2m+2) 

+ tan"1 — — - + tan"1 (42.5) 

Im + 3 /*2m+4 
Let tan x = l/F

2m+2

 and tan y = l/F

2m+

4.Then 

l/F2m+2 — l/F2m+4 F2m+4 — F2m+2 
tan (x - y) = 

. · . x - y = tan ' 
rim+3 

That is, 

1 + ( 1 / F2m+2) ( 1 / F2m+4) 1 + F2m+2 F2 m + 4 

F 2 m + 3 _ 1 

^2m+3 F2m+3 

1 

- i ! - i 1 - i * tan tan — = tan 
F2m+2 F 2 m + 4 F 2 m + 3 
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So Eq. (42.5) becomes 

m+l . , 

Σ _ ι 1 i 1 π 

tan ' l· tan ' = — 
, 2k + 1 F2m+4 4 

Thus the result is true for n = m + 1. So, by PMI, it is true for every n > 1 

This result also yields Theorem 42.3 and, hence, Lehmer's formula. 

Corollary 42.1. 

oo . 

Σ - 1 ' π 

tan ' = — 
2k + 1 4 

FIBONACCI AND LUCAS FACTORIZATIONS REVISITED 

In Chapter 40, we found that both Fn and Ln can be factored using complex 
numbers: 

Fn = Y[(\ - 2i cosknjn) (42.6) 

n-\ 

Ln = J~](l - 2i cos(2fc + 1)π/2η) (42.7) 
o 

In 1967, D. A. Lind expressed the factorizations without the complex number i. 
They are given in the next theorem, which was posed as an advanced problem. The 
proof below is the one given by Swamy as a solution to the problem. 

Theorem 42.8. (Lind, 1967) 

L(«-1)/2J 

Fn = J~{ (3 + 2cos2*7r/n) (42.8) 

L(«-2)/2J 

Ln = Π [3 + 2 c o s ( 2 * + \)*/n} (42-9) 
o 

507 
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Proof. 

Case 1. Let n = 2m + 1 be odd. Formula (42.6) becomes 

^ + 1 = n ( l - 2 I c o s ^ - [ J 

= Π i1 -2/ cos 2^ττ) Π (L -2l'cos 2^ττ) 2m + 1 

kn 
2m r 

= Π 0 - 2/C0S 2^TTJ Π I 1 + 2/cos ( , - ^ j j 
1 N ' "' m+\ 

Let j — 2m + 1 — k in the second product. Then 

kn 
Flm+X 1 — 2/ cos 

/ 

-n('+^drr) 
= n(3+2°»sTi) 

)η(1+2"-2^ϊ) 

(42.10) 

Case 2. Let n = 2m be even. Formula (42.6) becomes 

2 m - 1 

Flm πθ- 2i cos — ) 
2m J 

As before, this yields 

m - l 

F2m = J~[ ί 1 - 2\; cos - ^ ] J~[ I 1 + 2/ cos ̂  ) · (1 + 2i cos7r/2) 

m - l , . » 

-n(1+w£) 

-nH-£) 
(42.11) 

It follows from Formulas (42.10) and (42.11) that 

L(n-1)/2J 

Fn = Y[ (3 + 2cos2ibr/n) (42.12) 
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To derive the formula for L„, we have: 

L<2n-1)/2J 

Fin = Π (3+ 2 cos Λττ/η) 

= Y[ (3 + 2cosi7r/n) ["] (3+ 2cos jn/n) 
even integers odd integers 

i<n-\ j<n~~\ 

Let i = 2k and j = 2k + 1. Then 

L(«-D/2J L("-2)/2J 

Fin = Π (3 + 2coslbr/n) ]~{ [3 + 2cos(2(t + 1)π/η] 
i o 

L(n-2)/2J 

= F„ Y\ [3 + 2cos(2*+l) ;r /n] 
o 

Since Fm = FnL„, it follows that 

L(n-2)/2J 

L„= ["] [3 + 2COS(2*+1)»/B] (42 

o 

For example, 

F6 = ]~[(3 + 2cosJfcjr/3) 
i 

= (3 + 2 cos π/3)(3 + 2 cos 2π/3) 

= (3 + 2cos7r/3)(3 - 2cos7r/3) 

= 9 - 4 C O S 2 T T / 3 = 9 - 1 

and 

U = ]~|[3 + 2cos(2ifc + l)7r/6] 
o 

= (3 + 2 cos π/6) (3 + 2 cos π/2) (3 + 2 cos 5π/6) 

= (3 + 2cosTr/6)(3-2cos7T/6)(3 + 0) 

= 3(9 - 4 cos2 7Γ/6) = 3(9 - 4 · 3/4) 

= 18 



510 FIBONOMETRY 

EXERCISES 42 

1. Deduce Formula (42.3) from Formula (42.1). 
2. Prove Formula (42.1) using PMI. 

3. Prove Lemma 42.3. 

4. Show that tan-1 1 + tan"1 | = tan""1 2. 

5. Show that tan-1 2 = 2 tan-1 ß. 

6. Let Θ be the angle between the vectors u = (B0, B\,B%,..., Bn) and v = 

(Fm, Fm+U Fm+2,..., Fm+n) in the Euclidean (n + l)-space, where B,■ = I n I. 

Find lim Θ (Gootherts, 1966). 
n->oo 

7. Show that π = tan_1(l/F2„) + tan-1 F2n+\ + tan-1 F2n+2 (Horner, 1969). 
oo . oo 1 

8. Prove that V = Vtan" 1 (Guillottee, 1972). 
JyaFn+l+Fn *f F 2 „ + , 



FIBONACCI AND LUCAS 
SUBSCRIPTS 

What are the characteristics of Fibonacci and Lucas numbers with Fibonacci and 
Lucas subscripts? That is, numbers of the form FFn, F/.,, L F„ , and L Ln ? For example, 
FFt = Fg = 21, FL„ = Fig = 2584, LFb = L8 = 47, and i,l6 = L18"= 5778. In this 
discussion, we shall, for convenience, use the following notations: 

Un = FFn Vn = FLn Xn = LF„ and W„ = LLn 

Although Binet's formulas for F„ and L„ are not extremely useful, we can employ 
them to find explicit formulas for U„, Vn, Xn, and W„. For example, 

ceF" - ßF" F ir 

U„ = η- and V„ = aF" + ßF" 
a-ß 

In 1966, R. E. Whitney of Lockhaven State College partially succeeded in defining 
U„, V„, X„, and W„ recursively in terms of hybrid relations. 

Theorem 43.1. 

5U„Un+i = Xn+2 — (—1) "Xn-\ 

Proof. We have 

V5>„ =an -ßn (43.1) 

Ln = a" + ß" (43.2) 

Replacing n by Fn in Eq. (43.1): 

V5i/n 

Ssun+l 

511 

a — p 

aF„+l _ßF.+, 
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Multiplying these, we get 

5UnUn+i = aF"+2 - ßF"+2 - (aF"ßF^ + ßF"aF"+>) 

= Xn+2 - [ßF"'(-a-l)F· +aF"<(-ß-l)F"] 

= Xn+2 - (-l)F"(aF"+'-F" + ßF»+<-F») 

= Xn+2-(-l)
F"(aF"-<+ßF-<) 

= X n + 2 - ( - l ) F " X „ _ , ■ 

For example, let n = 7. Then: 

5U7Us = 5Fi3F21 = 5 · 233 · 10, 946 = 12, 752,090 

X7+2 - (- l)F 7X7-i =X9- (-1)13*6 = L34 + L8 = 12, 752,043 + 47 

= 12,752,090 

= 5U7US 

Theorem 43.2. 

XnXn+\ = Xn+2 + (—1) "X„-\ ■ 

Its proof follows along the same lines from Equation (43.2), so we leave it as an 
exercise (see Exercise 2). 

For example, X6X7 = LsLn = 47 ■ 521 = 24,487 

Xs + (-if'Xs = 1.21 + ( -D 8 ^5 = 24,476+11 = 24,487 

= Xf>Xl 

Combining Theorems 43.1 and 43.2, we get the following result. 

Corollary 43.1. 

5UnUn+\ + X„Xn+i = 2X„+2 ■ 

The following theorem follows from Eqs. 43.1 and 43.2 by replacing n by L„ (see 
Exercises 6 and 7). 

Theorem 43.3. 

(1) 5VnVn+l=Wn+2-(-\)
L"Wn-l 

(2) WnWn+l=Wn+2 + (-l)L"Wn^ U 

The following result follows from this theorem. 
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Corollary 43.2. 

5VnVn+i + WnWn+l=2Wn+2 m 

The next theorem also follows from Eqs. (43.1) and (43.2). 

Theorem 43.4. 

(1) Xn-lXn+l =Wn + (-l)F-'Xn 

(2) 51/ , - Ι Ι / ,Η. , =W„-(-l)F^Xn m 

Corollary 43.3. 

(1) Xn-iXn+l+5U„-lUn+l=2Wn 

(2) Xn^Xn+l-5U„-iUn+l=2(-l)F-'Xn m 

In 1967, D. A. Lind of the University of Virginia succeeded in defining both 
Y„ = Fcn and Z„ = LG„ recursively, where G„ denotes the nth generalized Fibonacci 
number. We need the following identities from Chapter 5 to pursue those Fibonacci 
numbers: 

2F„+l = F„+Ln (43.3) 

F„_, = (L„ - Fn)/2 (43.4) 

L*-5F„2 = 4(-1)" (43.5) 

2Ln+1 = 5Fn + Ln (43.6) 

It follows from Identities (43.3) and (43.5) that 

Fn+1 = l- Ü5Ft + 4(-iy + F„) (43.7) 

and from Identities (43.5) and (43.6) that 

Ln+1 = I (j5Ll-20(-iy + L„\ (43.8) 

For example, 

F,o = l- OsFf - 4 + FA = l- (V5 · 1156 - 4 + 34) = 55 
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and 

Lio = X- U5L2
9 + 20 + L9 J = 1 (V5 · 5776 + 20 + 7ό) = 123 

Identity (43.7) implies that 

1 

* ) 
F„_, = - U5Fj + 4(- l )» - F„ ) (43.9) 

We require two more identities from Chapter 5: 

Fm+n+\ — FmFn + Fm+\Fn+\ (43.10) 

ί-m+n+i = FmL„ + Fm+\Ln+\ (43.11) 

Finally, let s(n) = n2 - 3[n2/3\. Clearly, 

0 if 3|n 
1 1 otherwise 

See Exercise 16. So ( - l ) s ( n ) = (-1)F" = (-1)L" = (-1)°" (see Exercise 18). 

A RECURSIVE DEFINITION OF Y„ 

Next we develop a recursive definition of Y„. We have: 

Yn+2 = FG„+2 = F{Gn+i-\)FGn + FGn+l F(Gn+D By Formula (43.10) 

= \ Ynyj5Y2
+l +4( - l )C . + . + Yn + ̂ SY2 + 4 ( - l ) C " j 

Since Y\ = FGl = Fa and Y2 = FGl — Fb, Y„ can be defined recursively as follows: 

ΙΊ = Fa, y2 = Fb 

1 
y"+ 2 = 2 

Ynyj5Y2
+l+H-\)^> + Yn+ly/5Y2 + 4(-l)G.j (43.12) 

where n > 1. 

A RECURSIVE DEFINITION OF U„ 

In particular, let a = 1 = b. Then K„ — [/„. Accordingly, we have the following 
recursive definition of Un: 

Ut = 1 = U2 

Un+2 = \ \uny/5U2
+i + 4(-l)«<»+» + Un+lj5U2 + 4(-l)*<»> n > 1 



A RECURSIVE DEFINITION OF Z„ SIS 

For example, let n = 6. Then t/6 = F8 = 21 and ϋη = F^ = 233; 

.·. Us = \ \u6}/5U? - 4 + [/7v/5t/6
2+4J 

= - [21V5 · 54289 - 4 + 233 V5 -441+4] 

= -(10941 + 10951) = 10,946 

A RECURSIVE DEFINITION OF Vn 

Substituting a = 1 and b = 3 yields the following recursive definition of V„: 

Vi = 1 V2 - 4 

v n + 2 = 1 V„y5V„2
+1 + 4(-l)'<»+» + Vn+iyj5V? +4(-l)'(»)l « > 1 

For example, let n = 5. Then i/5 = F,, = 89 and V6 = Fig = 2584; 

··· νΊ = 1 [v5v/5V6
2 + 4+V6y5V5

2-4 

= - [89v/5 · 6,677,056 + 4 + 2584 V5 ■ 7921 - 4] 

^(514,242 + 514,216) = 514,229 

A RECURSIVE DEFINITION OF Z„ 

Using Formulas (43.4), (43.5), (43.8), and (43.11), we can develop a recursive defi-
nition Z„: 

Z„+2 = Lc„+1 = £G„+I+G„ 

= F(c.+1-i)^c. + Fc.+.i.ic.+i) By Eq. (43.11) 

= i (i.c.+I - FGn+l ) LG„ + FGn+i LG„+1 By Eq. (43.2) 

= ■ZLG"LG-+> + 2^°·+ι^β"*' ~ LG"* 

= i jznZn+1 +V/[Z2
+I -4(-l)^+1][Z2-4(-l)^]j 
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Accordingly we can define Z„ as follows: 

Z) = La Z2 = L), 

Zn+2 = l- \znZn+{ + J[Z2„+l -4(-l)G.+i][Zn2 -4(-l)G«]j (43.13) 

A RECURSIVE DEFINITION OF X„ 

When a = 1 = b, Formula (43.13) yields the recursive definition of X„: 

X, = 1 X2 = 3 

Xn+2 = \ {XnXn+l + 7[X„2
+1 -4(-iy("+')][X2 -4(-l)^")]J « > 1 

For example, let n = 5. Then X5 = L5 = 11, and X6 - Ls = 47. Therefore, 

X7 = 1[Χ5Χ6 + 7(Χ^-4)(Χ5
2+4)] 

= -[11 -47 + ^(2209 - 4)(12 + 4)] = 521 

A RECURSIVE DEFINITION OF W„ 

When T„ — Ln, Formula (43.11) yields the recursive definition of W„: 

Wi = l W2=4 

Wn+2 = l- lwnWn+i + y[W„2
+1 -4(-l)^+')](W2 -4(-iyC)]J n > 1 

Using this definition, we can verify mat W(, = 5778. 

EXERCISES 43 

1. Verify Theorem 43.1 for n = 5. 
2. Prove Theorem 43.2. 
3. Verify Theorem 43.2 for n = 5. 
4. Verify Corollary 43.1 for n = 6. 
5. Verify Theorem 43.3 for n = 5. 
6. Prove Part 1 of Theorem 43.3. 
7. Prove Part 2 of Theorem 43.3. 
8. Verify Part 1 of Theorem 43.4 for n = 5. 
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9. Verify Part 2 of Theorem 43.4 for n = 5. 
10. Prove Part 1 of Theorem 43.4. 
11. Prove Part 2 of Theorem 43.4. 
12. Compute F\i using Identity (43.7). 
13. Compute L\i using Identity (43.8). 
14. Prove Identity (43.7). 

15. Prove Identity (43.8). 

16. Lets(n) = n2-3|/i2/3J,wherenisaninteger.Showthats(n) = 

17. Prove that 2\L„ if and only if 3\n. 

18. Prove that ( - l ) s ( n ) = (-1)F» = (-\)L-. 

Compute each. 

19. t/7 

20. V6 

21. X8 

22. W5 



GAUSSIAN FIBONACCI 
AND LUCAS NUMBERS 

In 1963, A. F. Horadam examined Fibonacci numbers on the complex plane and 
established some interesting properties about them. Two years later, J. H. Jordan of 
Washington State University followed up with a study of his own. We now briefly 
introduce these numbers. 

GAUSSIAN NUMBERS 

Gaussian numbers were investigated in 1832 by Gauss. A Gaussian number is a 
complex number z = a + ib, where a and b are integers. Its norm, \\z\\, is defined by 
||z|| = a2 + b2; it is the square of the distance of z from the origin on the complex 
plane: ||z|| = \z\2. 

The norm function satisfies the following fundamental properties: 

. Ilzll > 0 

. Ilzll = Oifandonlyifz = 0 

. Hu*» = IHI · Ilzll 

We leave it as an exercise to verify these (see Exercises 1-3). 

GAUSSIAN FIBONACCI AND LUCAS NUMBERS 

Gaussian Fibonacci numbers (GFNs) /„ are defined by /„ = /„_i + /„_2, where 
/o = i,f\ = l.and/i > 2. 

518 
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The first six GFNs are 1, 1 + /, 2 + /, 3 + 2/, 5 + 3/, and 8 + 5/. Clearly, /„ = 
F„ + /F„_,. Consequently, ||/„|| = F„2 + Fn

2_, = F2„_,. 
Gaussian Lucas numbers (GLNs) /„ are defined by /„ = /n-i + /n-2. where /o = 

2 - i , / i = 1+2/, and« > 2. The first six GLNs are 1+2/, 3+/ , 4+3/ , 7+4/ , 11+7/, 
and 18 + 11/. It is easy to see that /„ = !„ + iL„-\. Also ||/„|| = L2 + L2_,. 

The identities we established in Chapter 5 can be extended to Gaussian Fibonacci 
and Lucas numbers, also. A few are given below, and others will be found as exercises. 
They can be validated using the principle of mathematics induction (PMI). 

Theorem 44.1. 

n 

J > = /„+2-l 
0 

Proof, (by PMI) The formula is clearly true when n = 0, so assume it is true for 
an arbitrary integer k > 0. Then 

k+i k 

0 0 

= (fk+2 - i) + Λ+ι 

= Λ+3 - 1 

Thus the result is true for every « > 0. ■ 

The next two theorems also can be established fairly easily using PMI, so we omit 
their proofs. 

Theorem 44.2. 

n 

£/,=/„+ 2-(/ + 2/) ■ 
o 

Theorem 44.3. 

Λ-ι/„+ι-/η
2 = (2-0(-ΐ)η n>\ m 

We can extend the definitions of GFNs and GLNs to negative subscripts also: 

/_„ = F_„ + /F_„_, = ( - I )""1 + / ( - l ) " F n + 1 = (-1)"- '(F„ - / F n + 1 ) 

Likewise, 

/_„ = L_„ + /L_n_, = (-1)" + / ( - l ) n + , L „ + 1 = (- l )"(L n - iLn+]) 
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For example, /_3 = (-1)2(F3 - / F4) = 2 - 3f and /_4 = (-1)4(Z,4 - iL5) = 
7 - Hi. 

In Chapter 5, we found that L\ — 5Fn
2 = 4(—1)". The next theorem shows the 

corresponding result for Gaussian Fibonacci and Lucas numbers. 

Theorem 44.4. 

/ n
2 -5 /„ 2 = 4 ( 2 - / ) ( - l ) " ■ 

This result has an interesting by-product. Since 5 = (2 - j)(2 + /'), it follows that 
2 — i|/2, so 2 — /'(/„, where n > 2. Accordingly, we have the following result. 

Corollary 44.1. (Jordan, 1965) /„ is composite for n > 2. ■ 

For example, i5 = 11 + 7,· = (2 - i)(3 + 5i), so 2 - i 111 + li. 
Since/_„ = (— l)"(Ln —iLn+\), it follows that 2 — i|/_„, where« > 2. This gives 

the following result. 

Corollary 44.2. /„ is composite for all integers n φ ±1 . ■ 

For instance,/_5 = -11 + 18/ = (2 - / ) ( -8 + 5i), so2 - i\LS-
In Chapter 16, we found that Fm\F„ if and only if m\n, where m > 2. There is a 

corresponding result for GFNs. To establish it, we need the next lemma. 

Lemma 44.1. (Jordan, 1965) If 2m - l|2n - 1, then 2m - \\m + n - 1. 

Proof. Suppose 2m - l|2n - 1. Then 2m - 1|[(2« - 1) - (2m - 1)]; that is, 
2m — l|2n — 2m. But (2m — 1,2) = 1, so 2m — l|(n — m). Therefore, 
2m - 1|[(2« - 1) ~(n - m)]; that is, 2m - \\m + n - 1. ■ 

Theorem 44.5. (Jordan, 1965) Let m > 2.Then/m|/„ if and only if 2m - l|2n - 1. 

Proof. Suppose fm\fn. Then || fm \\ \ \\ /„ || ; that is, F2m_, | F2n-1. So, by Corollary 16.2, 
2 m - \\ln- 1. 

Conversely, let 2m — l\2n — 1.Then F2m-\\F2„-\, by Corollary 16.2. Therefore, 

A 
Jm 

II/JI F2n. 

II/JI F2m_, 

is a positive integer (see Exercise 4). But 

fn _ Fn + iF„-\ __ FmFn + Fm_iF„_i +i(Fm-iF„ — FmF„-\) 

fm ~ Fm+iFm-i ~ Fl + Fl-x 

= F" , F n + F m - ' F " - ' + 1 F m " ' F : ~ F m F " - ' By Identity (5.11). 
Flm-\ Fjm-X 

= h ι By Identity (32.4). 
Fjm-\ hm-\ 
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By Lemma 44.1 and Corollary 16.2, Fm+„_i/F2m_i is a positive integer. Since 
IIΛ ll/ll/m II is also an integer, it follows that (Fm_i F„_, - FmF„-,)/F2m-i also must 
be an integer. So f„/fm is a Gaussian integer. Thus fm \f„. ■ 

For example, let m = 3 and « = 8. Then 2m — l\2n — 1. Notice that /s = 
21 + 13/ = (2 + 0(11 + 0 = (11 + O/s- So / 3 | / g , as expected. 

Theorem 44.5 has an interesting by-product. 

Corollary 44.3. Let m > 2. Then F2m_i|(Fm_|F„ — FmF„_i) if and only if 
2m - l|2n - 1. ■ 

For example, with m = 3 and n = 8, F2m_i = F5 = 5 and Fm-\F„ — FmFn-\ = 
F2F% - F3F7 = 1 · 21 - 2 · 13 = - 5 , soclearly, F2m_1|(Fm_1F„ - FmFn.i). 

Before presenting the next result, we need to extend the definition of gcd to 
Gaussian integers. 

GCD OF GAUSSIAN INTEGERS 

The Gaussian integer y is the gcd of the Gaussian integers w and z if: 

• y\w and y\z 
. Ifjc|u> and x|z, then ||JC|| < ||>>|| 

The gcd is denoted by y = (w, z). For example, (1 + 7i, 2 + 90 = 1 + 2i. 

Theorem 44.6. (Jordan, 1965). (fm, /„) = fk, where 2k - 1 = (2m - 1, 2n - 1). 

Proof. Since 2k - 1 \2m - 1 and 2k - 112« - 1, it follows by Theorem 44.5 that 
fk\fm and fk\fn\ therefore, fk\(fm, /„). 

Suppose x\fm and x\f„. Then |k| | | | | /m| | and ||JC|| | | | /„| | ; that is, |k|||F2m_i and 
\\x||IF2n_i. Therefore, ||Jc|||(F2m_i, F2„_i); that is, ||x|||F(2m-i,2«-i). In other words, 
||jr|||F2(t-,;thatis, ||jc|||/t. Consequently, ||x|| < ||/*||.Thus (fm, /„) = /*. ■ 

For example, let m = 5 and n - 8. Then (2m - 1, 2n - 1) = 3 = 2k - 1, 
where k = 2. We have / 5 = 5 + 3/, / 8 = 21 + 13/, and f2=\+ /'. Notice that 
/s = (1 + 0 ( 4 - 0 and / 8 = (1 +/)(17 - 4 / ) , so (/5, / g ) = 1 + / = / 2 , as expected. 

EXERCISES 44 

Prove each, where w and z are Gaussian numbers. 

1- I lz | |>0 
2. Hzll =Oifandonlyifz = 0. 

3. Hwzll = IMI ■ Hzll 
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4. ||u,/z|| = IMI/Uzll 
5. /n = F„+iF n _, ,n> 1. 
6. /„ = L„ +iL„_i,n > 1. 
7· ||z|| = llzll. where z denotes the complex conjugate of z. 
8. Compute f\o and /ιο· 
9. Compute /_io and /_io-

10. Verify Theorem 44.5 for m = 4 and n = 1. 
11. Verify Corollary 44.3 for m = 4 and n = 11. 
Prove each (Jordan, 1965). 

12. έ / / = 4 + 2 - ( 1 + 2 ι ) 
o 

13. /„_,/„+, -Il = 5(2 - / ) ( - l ) n + 1 

14. /n + 1 + /„_ ,= /„ 

15· fn+fn+l= d+20/2» 
16- Λ2

+ι -Λ 2 - . = ( l + 2/)/2„-i 
17. /„/„ = (1 + 20/2„-i 
18. fm+lfn+l + /m/n — 0 + 2i)/m+„ 
19. / 2 - 5 / n

2 = 4 ( 2 - i ) ( - D " 

20. Σ / ; 2 = (1+20/η
2 + ί ( - 1 ) π - ' ' 

I 

21. Σ / a - i = / * . - ' " 
i 

22. Ê / 2 . = / 2 « + i - l 
1 

23. Σ ( - ΐ ) 7 ι = Λ.-ι + «·-ι 
1 

24. έ(- ΐ )7/ = (-ιν+ιΛ + ' - ι 
1 

Let C„ = F„ + iF„+\. Prove each, where C„ denotes the complex conjugate of C„. 
25. C„C„ = F2„+i 
26. CnCn+i = F2n+2 + i(-l)n 



ANALYTIC EXTENSIONS 

In 1966, Whitney investigated analytic generalizations of both Fibonacci and Lucas 
numbers, by extending Binet's formulas to the complex plane: 

az - Bz 

f(z) = μ— and l(z) = az+ßz 

a — β 

where z is an arbitary complex variable; f(z) is the complex Fibonacci function; and 
l(z) the complex Lucas function. Notice that f(n) — F„ and l(n) = L„, where n is 
an integer. Both functions possess several interesting properties. We will examine a 
few of them here. 

PERIODICITY OF az AND βζ 

Let p be the period of or. Then az+p = a \ soar'' = 1 = e2"'. Thus p = 2πί/\ηα. 
On the other hand, let q be the period of βζ. Then ßz+q = ßz implies ßq — 

1 = e2"'. Since ß < 0, we rewrite ß = eni{-ß). Then <*πί(-β)ΐ = ε2π'', so 
(-β)« =e*(2-?)<·. That is, α* = ^ ' » - 2 ) / , so<3-lna = n(q - 2)i; 

2πί 2π(π — i Ina) 

π-i - Ina In2a + n2 

Thus a^ is periodic with period (2π/'/1ηα) and βζ with periodic [2π(π — i lna)] / 
(1η 2 α+π 2 ) . 

PERIODICITY OF/(z) AND /(z) 

Are / (z) and l(z) periodic? If yes, what are their periods? To answer these questions, 
suppose f{z) is periodic with period w. Then / (0) = 0 = /(ιυ), which implies aw = 
ßw. So f(z+w) = f(z) yields a

z+w-ßz+w = az-ßz;thaüs,aw(az-ßz) = az-ßz. 
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Therefore, aw = 1. This implies that the real part x of w = x + iy must be zero. 
Then ayi = 1. But this is possible only if v = 0. Then w = 0 + Oi = 0, which is a 
contradiction. Thus / (z) is not periodic. Likewise, we can show that /(z) also is not 
periodic (see Exercise 1). 

ZEROS OF/ΐζ) AND /(z) 

Next we pursue the zeros of f(z) and /(z). First, notice that / ( z ) has a real zero, 
namely, 0, and /(z) has no real zeros. 

To find the complex zeros of / (z ) , let / ( z ) = 0. This yields (a/ß)z = 1 = elkm, 
where A: is an arbitrary integer. Then zln(a/ß) = 2kni. But ß = επ'(—β), so 
ot/ß = a2e~ni and lnce/ß = 2 In a - in. Thus: 

z(21na — IJT) — 2kni 

2kni 
z = X~, r -

2 In a — Ι7Γ 

_ 2fc7rt(21na + /7r) 

~ 41η2α + π 2 

_ 2kn(—π + 2i lna) 
41η2α + 7τ2 

where A is an arbitrary integer. This equation gives the infinitely many complex zeros 
of / (z) . 

Similarly, we can show that the complex zeros of/(z) are given by 

_ (2£ + 1)τΓ(-π + 2Πηα) 
Z~ 41n2or + 7T2 

See Exercise 2. 

BEHAVIOR OF f{z) AND l(z) ON THE REAL AXIS 

To see how the two functions behave on the real axis, let z = x, an arbitrary real num-
ber. Then az = ax and βζ = βχ = exlnß = e

x(!"-lna'> = e-
xlna(cosnx + i SHITT*), 

since In ß = - In a. Since Im / (z) = 0 = Im /(z), this yields e~x ln " sin πχ = 0, so 
sin πχ = 0. This implies that x must be an integer n. Thus / (z) is an integer if and 
only if z is an integer n. The same is true for /(z). 

IDENTITIES SATISFIED BY/(z) AND /(z) 

Many of the properties of F„ and L„ that we investigated in Chapter 5 have their 
counterparts on the complex plane. Some of these identities are listed below. 

(1) / ( z + 2) = f(z + 1) + / (z) 
(2) /(z + 2) = /(z + l) + /(z) 
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(3) / ( z - l ) / ( z + 1) - / 2(z) - e"zi 

(4) f 2 ( z ) -5 / 2 ( z )=4e™ 

(5) f(-z) = -f(z)e"" 
(6) / ( -z) = /(z)e™ 

(7) /(2z) = /(z)/(z) 

(8) / ( z + w) = f(z)f(w + 1) + / ( z - l)/(u;) 

(9) /(3z) = f\z + 1) + / 3(z) - / 3 (z - 1) 

We can establish these properties using Binet's formulas. For example, 

5[/(z - l ) / (z + 1) - f\z)] = (a2"' - βζ-ι)(.αζ+ί - βζ+χ) - (az - βζ)2 

- a2z + ßlz - <,αβ)ζ(α2 + ß2) 

-[a2z + ß2z - 2(aß)z] 

= 3 ( - l ) z + 2 ( - l ) z = 5e™ 

Thus / ( z — l ) / ( z + 1) - / 2 (z) = e"", as expected. We leave the proofs of the others 
as routine exercises (see Exercises 3-10). 

TAYLOR EXPANSIONS OF/((z) AND l(z) 

Since both / (z ) and /(z) are entire functions, both have Taylor expansions. Since 
(dk/dwk)(aw) = aw · In* a, it follows that 

= 7=Σ » (z-») (45.1) 

Likewise, 

Kz) = -7=y, Π (z-w)K (45.2) 

In particular, let z = n and ιυ = n — 1. Then Eq. (45.1 ) yields an interesting infinite 
series expansion: 

1 ^an-l(]j\ka)-ß"-l(\nkß) 
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Similarly, 
1 ^a"-l(\nka) + ß"-l(lnkß) 

EXERCISES 45 

1. Prove that l(z) is not periodic. 

2. Find the complex zeros of l(z)-
3-10. Prove the Identities 1, 2, and 4-9. 

Prove each. 
1 « (In* a - In* ß)nk 

"■f-^£ »■ 
1 0 , _ 1 °°(ln*a + ln*j8)n* 
12· L" - Tsh k\ 



TRIBONACCI NUMBERS 

In the case of Fibonacci and Lucas numbers, every element, except for the first two, 
can be obtained by adding its two immediate predecessors. Now, suppose we are 
given three initial conditions and add the three immediate predecessors to compute 
their successor in a number sequence. Such a sequence is the tribonacci sequence, 
originally studied in 1963 by M. Feinberg when he was a 14-year-old ninth grader at 
Susquehanna Township Junior High School in Pennsylvania (1963a). 

TRIBONACCI NUMBERS 

The tribonacci numbers T„ are defined by the recurrence relation 

T„ = Γ„_, + rn_2 + r„_3 (46.1) 

where T\ = 1 = T2, T3 = 2, and n > 4. 
The first twelve tribonacci numbers are: 

1, 1,2,4,7, 13,24,44,81, 149, 274, and 504 

Just as the ratios of consecutive Fibonacci numbers and those of Lucas numbers 
converge to the Golden Ratio, a, the tribonacci ratios Tn+\/Tn converge to the 
irrational number 1.83928675521416 

TRIBONACCI ARRAYS 

In the same way that we can extract Fibonacci numbers from the rising diagonals of 
Pascal's triangle, so can we obtain the various tribonacci numbers by computing 
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the sums of the elements on the rising diagonals of a similar triangular array, a 
tribonacci array. Every element t(m,n) of the array is defined as follows, where 
m,n > 0: 

t(m, n) = 0 if m > n or n < 0 

t(m,m) = 1 

t(m,n) = t(m - \,n - 1) +t(m - \,n) +t(m - 2 , n - 1) if m > 2 

Using the recurrence relation, we can obtain every element of the array by adding 
the neighboring elements from the two preceding arrays. Figure 46.1 shows the 
resulting array. Notice that the rising diagonal sums of this array are indeed tribonacci 
numbers. 

1 

1 1 

1 3 1 

1 5 5 1 

1 7 13 7 1 

1 9 2 5 ^ ^ 2 5 9 1 

\ 
1 11 41 63 41 11 1 

Figure 46.1. A Tribonacci Array. 

There is yet another triangular array that also yields the various tribonacci numbers. 
To construct this array, first we find the trinomial expansions of (1 + x + x2)" for 
several values of n > 0: 

(1+ jc + Jt2)0 = 1 

(1 +x + x2)1 = 1 +x+x2 

(1 + x + x2)2 = 1 + 2x + 3x2 + 2x3 + Λ;4 

(l+x+ χ2Ϋ = l + 3x + 6x2 + 7JC3 + 6x4 + 3x5 + x6 

(l+x+ x2)4 = 1 + Ax + 10*2 + 16x3 + 19JC4 + 16x5 + l(k6 + 4x7 + x% 
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Now arrange the coefficients in the various expansions to form a left-justified 
triangular array, as shown below: 

1 1 

1 2 

1 3 

1 4 

1 5 

1 6 

1 

3 

6 -

10 

15 

21 

2 

- 7 -

16 

30 

50 

1 

- 6 

19 

45 

90 

3 

16 

51 

126 

1 

10 

45 

141 

4 

30 

126 

1 

15 

90 

5 

50 

1 

21 6 1 

Obviously, every row is symmetric. With the exception of the first two rows, 
every row can be obtained from the preceding row; see the arrow in the array. 
The rising diagonal sums of this trinomial coefficient array also yield the tribonacci 
numbers. 

COMPOSITIONS WITH SUMMANDS 1,2, AND 3 

In Chapters 4 and 20, we found that the number of compositions of a positive integer n 
using the summands 1 and 2 is the Fibonacci number F„+\. Suppose that we permit the 
numbers 1,2, and 3 as summands. What can we say about the number of compositions 

To answer this, let us first find the compositions of the integers 1 through 5, 
summarize the data in a table, and then look for any obvious patterns. It appears from 
Table 46.1 that C„ = Tn+i, where n > 1. Fortunately, this is indeed the case. 

TABLE 46.1. 
n 

1 
2 
3 
4 

5 

Compositions of n Using 1, 2, and 3 

1 
1 + 1,2 
1 + 1 + 1, 1 + 2 , 2 + 1,3 
1 + 1 + 1 + 1, 1 + 1 +2, 1 + 2 + 1, 
2+ 1 + 1,2 + 2, 1 + 3 , 3 + 1 
1 + 1 + 1 + 1 + 1, 1 + 1 + 1+2, 1 + 1+3 , 
1 + 1 + 2 + 1, 1 + 2 + 1 + 1,2+1 + 1 + 1, 
1 + 3 + 1 , 3 + 1 + 1,2 + 3, 3 + 2, 1+2 + 2, 
2 + 1 + 2 , 2 + 2 + 1 

c„ 
1 
2 
4 
7 

13 

Î 
Tribonacci numbers 
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RECURSIVE ALGORITHM 

Using the recursive definition of Tn, we can fairly easily develop a recursive algorithm 
for computing Tn, as Algorithm 46.1 shows. 

Algorithm tribonacci (n) 
(* This algorithm comput es the first 

numbers using recursion, where n > 
Begin (* algorithm *) 

tribonacci (1) = 1 
tribonacci (2) = 1 
tribonacci (3) = 2 
while i < n do 

tribonacci (i) = 

endwhile 
End (»algorithm *) 

tr 
(« 
■ibonacci (i — 

n 
4 

1) 

tr 
* 

+ 
— 2) + tribonacci 

ibonacci 

) 

tribonacci 
(1-3) 

Algorithm 46.1. 

Next, we explore an explicit formula for the number of additions an needed to 
compute T„ recursively. For example, it takes two additions to compute Ύ\\ that is, 
04 = 2. 

Using the recurrence relation Eq. (46.1), we can define an recursively: 

an =an-\ + a„_2 + «n-3 + 2 

where n > 4, and a, = a2 = «3 = 0. Let bn = a„ + 1. Then this yields 

bn - 1 = b„-\ + b„-2 + b„-3 - 3 + 2 

bn — b«-i + b„-2 + b„-3 

where b\ = £2 = 63 = 1. The first 12 elements of the sequence {b„} are 1, 1, 1, 3, 5, 
9, 17,31,57, 105, 193, and 355. 

Note an interesting characteristic: Write these values in a row, except the first three; 
then write the first 10 tribonacci numbers, except the first, in a row right below. Now 
add the two rows: 

3 5 9 17 31 57 105 193 355 
+ 1 2 4 7 13 24 44 81 149 

4 7 13 24 44 81 149 274 504 ^ Tn 

See an intriguing pattern? The resulting sums are tribonacci numbers T„, where n > 4. 
So we conjecture that b„ + Ίη-ι = T„; that is, bn = T„ — Ίη-ι = Tn-\ + Γ„_3, 

where n > 4. Thus we predict that a„ = T„-\ + Γ„_3 - 1, where n > 4. 
The next theorem confirms this using the strong version of induction. 
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Theorem 46.1. Let an denote the number of additions needed to compute Tn recur-
sively. Then a„ = T„-\ + Γ„_3 — 1, where n > 4. 

Proof. Since Γ3 + T\ — 1 = 2 + 1 - 1 = 2 = a4, the formula works when n = 4. 
Now, assume it is true for all positive integers k < n, where k > 4. Then: 

So 

T„+\ = Tn + Γ„_ι + Γ„_2 

an+i — a„-V a„-\ + a„_2 + 2 

= (Γ„_ι + 7;_3 - 1) + (Γ„_2 + Γ„_4 - 1) + (Γ„_3 + Γ„_5 - 1) + 2 

= (Γ„_ι + Γ„_2 + Γ„_3) + (7;-3 + 7;_4 + Γ„_ 5) - 1 

= Τ„ + Γπ_2 - 1 

Thus, by the strong version of the principle of mathematical induction, the formula 
holds for every n > 4. ■ 

It follows by the theorem that 

a„ = 
0 if 1 < n < 3 
rn_i -)- Γ„_3 - 1 otherwise 

For example, α6 = Γ5 + Γ3 — 1 = 7 + 2— 1 = 8 additions are needed to compute T(, 
recursively. 

We can represent the recursive computation of T„ pictorially by a rooted tree, as 
Figure 46.2 illustrates. Each internal node (see the heavy dots in the figure) of the 
tree represents two additions, so a„ = 2 (number of internal nodes of the tree rooted 
at T„). For example, the tree in Figure 46.2 has four internal nodes, so it takes eight 
additions to compute T(, recursively, as we just discovered. 

Figure 46.2. 
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A GENERATING FUNCTION FOR T„ 

Using the recursive definition, we can develop a generating function for the tribonacci 
oo 

numbers. To this end, let g(x) = Σ Tnx". Since T0 = 0, it follows that (1 — x 
o 

- x2 — x3)g(x) = T\x\ that is, 
x 

«w = 1 — x — x2 — x3 

Thus 

Since 

v- γί- v-J t i MJ 1 — x — x1 — x 

1 

it follows that 

= x+x2 +2x3 +4x4 + ■■■ 
1 — x — x2 — x3 

so the various tribonacci numbers appear as coefficients on the right-hand side. 

EXERCISES 46 

The Pascal-like array in Figure 46.3 can be employed to generate all tribonacci 
numbers. 

1 

1 1 

1 3 1 

1 5 - ^ ^ - 5 1 
T 

1 7 13 7 1 

1 9 25 25 9 1 

Figure 46.3. 

1. Let B{n, j) denote the element in row n and column j of the array. Define B(n, j) 
recursively. 

2. Prove that the sum of the elements on the nth rising diagonal is a tribonacci number, 
L(n-D/2J 

Tn; that is, Σ B(nJ) = T„. 
o 



TRIBONACCI 
POLYNOMIALS 

In 1973, V. E. Hoggatt, Jr., and M. Bickneli generalized Fibonacci polynomials to 
tribonacci polynomials t„(x). These are defined by 

t„(x) = X2t„-l(x) + Xt„-2(X) + tn-ήΧ) 

where t0(x) = 0,t\(x) = l,andf2(x) = x2· Notice that /„(l) = T„, the nth tribonacci 
number. 

The first ten tribonacci polynomials are: 

f l to 

tl(x) 

tl(x) 

U(x) 

h(x) 

t6(x) 

tlix) 

hix) 

tg(x) 

fioU) 

= 1 

= x2 

= χΛ+χ 

= x6 + 2x3 + 1 

= jc8 + 3x5 4- 3JC2 

= ;c'° + 4jt7 + 6;t4+2jc 

= xl2 + 5x9+ 10r6 + 7x3 + 1 

= Jt14 + 6xn + \5x* + 16x5 +6x 2 

= x16 + 7x13 + 2\x10 + 3(k7 + 19x4 + 3JC 

= x18 + 8x15 + 28x12 + 50x9 + 45x6 + 16x3 + 1 
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TRIBONACCI ARRAY 

Table 47.1 shows the corresponding left-justified array of tnbonacci coefficients. As 
expected, the row sums yield the various tnbonacci numbers. 

Let T(n, j) denote the element in row n and column j of this array, where n > 
j > 0. It satisfies the recurrence relation 

T{n, j) = T(n - 1 , 7 ) + T(n - 2, j - 1) + T(n -3J- 2) 

where n > 4. See the arrows in the table. 

TABLE 47.1. Tribonacci Array 

X 
1 
2 
3 
4 
5 
6 
7 
8 

9 
10 

Row Sum 

1 1 
1 2 
1 3 
1 4 ̂  
1 5 
1 6 

1 7 
1 8 

1 
3 
6 
10^ 
15 

21 
28 

2 
7 
16 

30 
50 

1 
6 

19 
45 

3 
16 1 

1 
1 
2 
4 
7 
13 
24 
44 

81 
149 

t 
tribonacci numbers 

Interestingly enough, each row of the array in Table 47.1 is a rising diagonal of 
the triangular array of coefficients in the trinomial expansion of(x + y + z)n, where 
n > 0. See the left-justified trinomial coefficient array in the following display. 

1 y Coefficients of t6(x) 

i i i y 
1 2 3 ,2 1 

1 3 6 ' ' 7 6 3 1 

1 4 ' Ί θ 16 — 19—16 10 4 1 
x 1 

V' 5 15 30 45 51 45 30 15 5 1 
1 6 21 50 90 126 141 126 90 50 21 6 1 

Obviously, every row is symmetric. With the exception of the first two rows, every 
row can be obtained from the preceding row. We can obtain the tribonacci array 
from this array by lowering each column one level more than the preceding column. 
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Consequently, the rising diagonal sums of the trinomial coefficient array also yield 
the tribonacci numbers, and therefore the sum of every rising diagonal is a tribonacci 
number. 

A TRIBONACCI FORMULA 

An explicit formula for the tribonacci polynomial tn(x) is given by 

L(2n-2)/3J 

;=0 

For example, 

t5(x) = £ 7(5, 7 V -3; 

= 7(5,0)x8 + 7(5, I)*5 + 7(5, 2)x2 

= x^ + 3x5 + 3x2 

TRIBONACCI POLYNOMIALS AND THE ß-MATRIX 

We can generate tribonacci polynomials by the ß-matrix 

Q = 

Q" = 

'X2 

X 

. 1 

1 0-
0 1 
0 0 . 

Using the principle of mathematical induction, we can show that 

t„+\(x) t„(x) Λ,-iCO 
xtn(x) + t„-t(x) xt„-i(x) + t„-2(x) xt„-2(x) + t„--}(x) 

t„(x) tn~l(x) t„-2(x) 

See Exercise 4. 
Since | g | = 1, it follows that \Q"\ = 1; that is, 

tn + lM t„(x) ?„-l(*) 
Xtn(x) + t„-\(x) Xtn-\{X) + t„-2(x) Xtn-2(X) + tn-nx) = 1 

tn(x) i n- iU) t„-2(x) 

Now, multiply row 1 by x2 and add to row 2; then exchange rows 1 and 2. This yields 
the tribonacci polynomial identity: 

tn+2{x) t„+i(x) t„(x) 
tn+\(x) t„(x) tn-\{x) = - 1 
tn{x) tn-\{x) tn-2(x) 
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In particular, let x = 1. We then get the following tribonacci identity: 

Tn+2 Tn+\ Tn 

Tn+\ Tn T„-\ 
T„ 7/η_ι Γ„_2 

= - 1 

EXERCISES 47 

1. Find/_i(;t). 
2. Find t\\(x) and tn{x). 
3. Find Q2 and Q3. 
4. Establish the formula for Q". 

5. In 1973, V. E. Hoggatt, Jr., and M. Bicknell defined the nth quadranacci number 
T; by T; = r;_, + r;_2 + τ/;_3 + r;_4, where « > 5, τ* = ι = r ; , r3* = 2 
and T; = 4. Compute T5*, Τζ, and 7/7*. 

6. In 1973, V. E. Hoggatt, Jr., and M. Bicknell also introduced a new family of 
polynomials i*, called quadranacci polynomials. They are defined by t*(x) = 
x3t*.i(x) + x2t*-2(x) + xt*^{x) + t*-4(x), where n > 5, t*_2{x) = r*,(*) = 
t£(x) = 0, and f* = 1. Find /3*(JC), f£ (*), t$(x), and f£(*). 

7. FindCCD. 
The quadranacci polynomials are generated by the ô-matrix 

1-^3 

e = 
1 0 0 1 

x2 0 1 0 
χ 0 0 1 
1 0 0 0 

(Hoggatt and Bicknell, 1973) 

8. Find Q2 and β3 . 
9. Find Q" (Hoggatt, Jr. and Bicknell, 1973). 

10. Find \Q"\ (Hoggatt and Bicknell, 1973). 
11. Prove that 

T* 
ln+3 
T* 
7n+2 
τ;+ι 
T; 

T* 
'n+2 
T* 
1n+l 
T* 
' i l 
T* 
1n-\ 

T„*+i 

T: 
T* 1n-\ 
T* 1n-2 

T* 
T* 1n-\ 
T* 
1n-2 T* 7n-3 

= (-1)' n+1 (Hoggatt and Bicknell, 1973) 



FUNDAMENTALS 

This Appendix presents the fundamental symbols, definitions, and facts needed to 
pursue the essence of the theory of Fibonacci and Lucas numbers. For convenience, 
we have omitted examples and all proofs. (For a complete study of these fundamentals, 
we invite you to refer to the author's book on number theory.) 

SEQUENCES 

The sequence s\,sj, S3 , . . . , s„,... is denoted by [sn}f or simply {*„}. The «th term 
s„ is the general term of the sequence. Sequences can be classified as finite or infinite, 
as the next definition shows. 

Finite and Infinite Sequences 

A sequence is finite if its domain is finite; otherwise, it is infinite. 

The Summation Notation 

i=m 

Y^at = ak + ak+\ H \-am 

i=k 

The variable 1 is the summation index. The values k and m are the lower and 
upper limits of the index 1. The "1 =" above the Σ is usually omitted; in fact, 
the indices above and below the Σ are also omitted, when there is no confusion. 
Thus 

i—m m m 

i=k i=k k 
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The index i is a dummy variable; you can use any variable as the index without 
affecting the value of the sum, so 

Σα' = Σα; = Σ Ok 

The following results are extremely useful in evaluating finite sums. They can be 
proven using the principle of mathematical induction (PMI). 

Theorem A.l. Let n e N and c e U. Let a\,ct2,..., and b\, bz,..., be any two 
number sequences. Then: 

n 

nc 
1 

£<«+*«> = ( Σ « ) + ( Σ > ) 
(These results can be extended for any integral lower limit.) 

Indexed Summation 

The summation notation can be extended to sequences with index sets I as their 
domains. For instance, ^ α , denotes the sum of the values α,, as i runs over the 

i e / 
various values in / . 

Often we need to evaluate sums of the form £ a , j , where the subscripts / and j 
p 

satisfy certain properties P. 
Multiple summations often arise in mathematics. They are evaluated in the right-to-

left fashion. For example, the double summation Σ Σ αο is evaluated as 
' j 

Σ ( Σ au) a n d t h e t r iP l e summation Σ Σ Σ αΦ a s Σ [ Σ ( Σ aUk)]-
1 j i j k i j k 

The Product Notation 
i=m 

The product α*α*+ι · · · am is denoted by f] a,·, where product symbol f] is the Greek 
/=* 

capital letter pi. As in the case of the summation notation, the "i = " below and above 
the product symbol can be dropped if doing so leads to no confusion: 

\\cii — akak+\ ■ ·α„ 
k 

Once again, ί is just a dummy variable. 
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The Factorial Function 

Let « be a nonnegative integer. The factorial function fin) — n\ (read n factorial) is 
n 

defined by n! = n{n - 1) ·· -2.1, where 0! = l .Thus/ (n) = n! = \\i. 
1 

FLOOR AND CEILING FUNCTIONS 

The floor of a real number x, denoted by \_x\, is the greatest integer < x. The ceiling 
oix, denoted by M , is the least integer > x.* The floorfunction f(x) = [xj and the 
ceiling function g(x) = \x~\ are also known as the greatest integer function and the 
least integer function, respectively. 

Theorem A.2. Let x be any real number and n any integer. Then: 

. L«J = « = r«l · M = W + i ( **Z) 
m lx + n\ = [x] + n . Γ* + "1 = M + « 

1 . . . . . Γ«Ί " + 1 I n I n — 1 .- . ΓηΊ 
— = if n is odd · - = 

L2J 2 I 2 I 

if n is odd 

THE WELL-ORDERING PRINCIPLE 

The principle of mathematical induction is a powerful proof technique we employ 
often. It is based on the following axiom. 

The Well-Ordering Principle (WOP) 

Every nonempty set of positive integers has a least element. 

MATHEMATICAL INDUCTION 

The principle of mathematical induction (PMI) is a powerful proof technique we use 
throughout the text. 

The next result is the cornerstone of the principle of induction. Its proof follows 
by the WOP. 

'These two notations and the names, floor and ceiling, were introduced by Kenneth E. Iverson in the early 
1960s. Both notations are variations of the original greatest integer notation [x]. 
tAlthough the Venetian scientist Francesco Maurocylus (1491-1575) applied it in proofs in a book he 
wrote in 1575, the term mathematical induction was coined by the English mathematician, Augustus De 
Morgan (1806-1871). 
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Theorem A.3. Let S be a set of positive integers satisfying the following properties: 

1. 1 € 5. 

2. If k is an arbitrary positive integer in S, then k + 1 e S. 

Then S = N m 

This result can be generalized, as the next theorem shows. 

Theorem A.4. Let no be a fixed integer. Let S be a set of integers satisfying the 
following conditions: 

1. n0 e S. 
2. Ifk is an arbitrary integer > no such that t e S , then k +1 e 5. Then S contains 

all integers n > «o- ■ 

Theorem A.5. (The Principle of Mathematical Induction). Let P(n) be a statement 
satisfying the following conditions, where n e Z: 

1. P(no) is true for some integer no-
2. If P(k) is true for an arbitrary integer k > no, then P(k + 1) is also true. 

Then P(n) is true for every integer n > n0. ■ 

Proving a result by PMI involves two key steps: 

1. Basis Step. Verify that P(no) is true. 
2. Induction Step. Assume P(k) is true for an arbitrary integer k > n0 [inductive 

hypothesis (IH)]. Then verify that P(k + 1) is also true. 

Summation Facts 
■ n(n + l) 

" ,2 _ n(n + l)(2w + 1) 

3 . — ■ + 1 ) Π 2 
5 · Ρ 3 = ΡΊ 

We now turn to a stronger version of the PMI. 

Theorem A.6. (The Second Principle of Mathematical Induction). Let P(n) be a 
statement satisfying the following conditions, where n € Z: 

1. P(no) is true for some integer no-
2. If A: is an arbitrary integer > n0 such that P(no), P(n0 + 1 ) , . . . , P(k) are each 

true, then P(k + 1) is also true. 

Then P(n) is true for every integer n > no- ■ 
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RECURSION 

Recursion is one of the most elegant and powerful problem-solving techniques. It is 
the backbone of most programming languages. 

Suppose you would like to solve a complex problem. The solution may not be obvi-
ous. It may turn out, however, that the problem could be defined in terms of a simpler 
version of itself. Such a definition is called a recursive definition. Consequently, the 
given problem can be solved provided the simpler version can be solved. 

Recursive Definition of a Function 

The recursive definition of a function / consists of three parts, where a G W: 

• Basis Clause. A few initial values of the function / ( a ) , f(a + 1 ) , . . . , f(a + 
k — 1) are specified. An equation that specifies such initial values is an initial 
condition. 

• Recursive Clause. A formula to compute f{n) from the k preceding functional 
values f(n — 1), fin — 2 ) , . . . , f(n — k) is made. Such a formula is called a 
recurrence relation (or recursion formula). 

• Terminal Clause. Only values thus obtained are valid functional values. (For 
convenience, we drop this clause from the recursive definition.) 

Thus the recursive definition of / consists of one or more (a finite number of) 
initial conditions and a recurrence relation. 

The next theorem confirms that a recursive definition is indeed a valid definition. 

Theorem A.7. Let a e W, X = {a, a + \,a + 2 , . . . } , and k e N. Let / : X -»· U 
such that f(a), f(a + 1 ) , . . . , f(a + k — 1) are known. Let n be a positive integer 
> a + k such that / (« ) is defined in terms of f(n — 1), f(n — 2 ) , . . . and f(n — k). 
Then / (n) is defined for every integer n >a. ■ 

By virtue of this theorem, recursive definitions are also known as inductive 
definitions. 

THE DIVISION ALGORITHM 

The division algorithm is an application of the WOP and is often employed to check 
the correctness of a division problem. 

Suppose an integer a is divided by a positive integer b. Then we get a unique 
quotient, q, and a unique remainder, r, where the remainder satisfies the condition 
0 < r < b\ a is the dividend and b the divisor. This is formally stated as follows. 
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Theorem A.8. (The Division Algorithm). Let a be any integer and b a positive integer. 
Then there exist unique integers q and r such that 

Dividend 

Divisor 

a — b ■ q + r 
'■ \ 1— Remainder 

Quotient 

where 0 < r < b. 

Although this theorem does not present an algorithm for finding q and r, 
traditionally it has been called the division algorithm. Integers q and r can be found 
using the familiar long-division method. 

You can see that the equation a = bq + r can be written as 

a r 
b=q + b 

where 0 < r/b < 1. Consequently, q = [a/b\ and r = a — bq. 

Div and Mod Operators 

Two simple and useful operators, div and mod, are often used in discrete mathematics 
and computer science to find quotients and remainders: 

a div b = quotient when a is divided by b. 

a mod b = remainder when a is divided by b. 

It now follows from these definitions that q = a div b = [a/b} and r = a mod b = 
a — bq—a — b- \plb\. 

TI-86 provides a built-in function mod in the MATH NUM menu. 

The Divisibility Relation 

Supposea = bq+0 = bq. We then say that bdivides a, b is afactor of a, a is divisible 
by b, or a is a multiple ofb, and write b\a. If b is not a factor of a, we write bj(a. 

Divisibility Properties 

TheoremA.9. Let a and b be positive integers such that a\b and b\a. Then 
a = b. ■ 
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Theorem A.10. Let a, b, c, s, and t be any integers. Then: 

• If a\b and b\c, then a\c (transitiveproperty). 
• If a\b anda|c, then a\(sb + tc). 
• If a\b, thena|Z>c. ■ 

The expression sb + tc is called a linear combination of b and c. Thus, if a is 
a factor of b and c, then a is also a factor of any linear combination of b and c. In 
particular, a\(b + c) and a\{b - c). 

The floor function can be used to determine the number of positive integers less 
than or equal to a positive integer a and divisible by a positive integer b, as the next 
theorem shows. 

Theorem A.l l . Let a and b be any positive integers. Then the number of positive 
integers < a and divisible by b is [a/b]. ■ 

THE PIGEONHOLE PRINCIPLE 

Suppose m pigeons fly into n pigeonholes to roost, where m > n. What is your 
conclusion? Since there are more pigeons than pigeonholes, at least two pigeons must 
roost in the same pigeonhole; in other words, there must be a pigeonhole containing 
two or more pigeons. 

We now state the simple version of the pigeonhole principle. 

Theorem A.12. (The Pigeonhole Principle). If m pigeons are assigned to n pigeon-
holes, where m > n, then at least two pigeons must occupy the same pigeonhole. 

■ 

The pigeonhole principle is also called the Dinchlet box principle after the German 
mathematician, Peter Gustav Lejeune Dirichlet ( 1805-1859), who used it extensively 
in his work on number theory. 

The pigeonhole principle can be generalized as follows. 

Theorem A.13. (The Generalized Pigeonhole Principle). If m pigeons are assigned 
to n pigeonholes, there must be a pigeonhole containing at least [(m — 1)/«J + 1 
pigeons. ■ 

THE ADDITION PRINCIPLE 

Let A be a finite set and |Λ| the number of elements in A. (Often we use the vertical 
bars to denote the absolute value of a number, but here it denotes the number of 
elements in a set. The meaning of the notation should be clear from the context.) 
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Union and Intersection 

Let A and B be any two sets. Their union Ali B consists of elements belonging to A 
or B; their intersection A n B consists of the common elements. 

With this understood, we can move on to the inclusion-exclusion principle. 

Theorem A.14. (The Inclusion-Exclusion Principle). Let A, B, and C be finite sets. 
Then |A U B\ = \A\ + |B| - \A Π B\ and |A U B U C\ = \A\ + \B\ + \C\ -

|Anß | - |ßnc | - | cnA| + |Anßnc|. ■ 
This theorem can be extended to any finite number of finite sets. 

Corollary A.l. (Addition Principle). Let A, B, and C be finite, pairwise disjoint sets. 
Then \A U B\ = \A\ + \B\ - \A Π B\ and \A U B U C\ = \A\ + \B\ + \C\. U 

THE GREATEST COMMON DIVISOR 

A positive integer can be a factor of two positive integers, a and b. Such factors are 
common divisors, or common factors, of a and b. Often we are in their largest common 
divisor. 

The Greatest Common Divisor: The greatest common divisor (GCD) of two positive 
integers a and b is the largest positive integer that divides both a and b\ it is denoted by 
(fl.t). 

A Symbolic Definition of gcd 

A positive integer d is the gcd of two positive integers a and b: 

1. if d\a and d\b. 
2. if d'\a and d'\b, then d'\d, where d' is also a positive integer. 

Relatively Prime Integers 

Two positive integers a and b are relatively prime if their gcd is 1 ; that is, if (a, b) = 1. 
We now turn to a discussion of some interesting and useful properties of gcds. 

Theorem A.15. Let (a, b) = d. Then (a/d, b/d) = 1 and (a, a-b) = d. ■ 

Linear Combination 

A linear combination of the integers a and b is a sum of multiples of a and b, that is, 
a sum of the form sa + tb, where s and t are any integers. 

Theorem A.16. The gcd of the positive integers a and b is a linear combination of a 
and b. ■ 
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It follows by this theorem that the gcd (a, b) can always be expressed as a linear 
combination sa + tb. In fact, it is the smallest positive such linear combination. 

Theorem A.17. Let a, b, and c be any positive integers. Then (ac, be) = c(a, b). 

Theorem A.18. Two positive integers, a and b, are relatively prime if and only if 
there are integers s and t such that sa + tb = 1. ■ 

Corollary A.2. If a\c and b\c, and (a, b) = 1, then ab\c. ■ 

Remember that a \bc does not mean a \b or a \c, although under some conditions it 
does. The next corollary explains when it is true. 

Corollary A.3. (Euclid). If a and b are relatively prime, and if a\bc, then a\c. ■ 

The definition of gcd can be extended to three or more positive integers, as the 
next definition shows. 

The gcd of n Positive Integers 

The gcd of n(> 2) positive integers a\, ai,..., a„ is the largest positive integer that 
divides each a,·. It is denoted by (a\, a-i,..., a„). 

The next theorem shows how nicely recursion can be used to find the gcd of three 
or more integers. 

Theorem A.19. Le t a i , a 2 . . . . ,anben(> 2) positive integers. Then (a 1,02. · · · .<*«) 
= ((al,a2,...,an-i),a„). ■ 

The next corollary is an extension of Corollary A.3. 

Corollary A.4. If d\a\a2 -an and (</,a,·) = 1 for 1 < / < n - 1, thend\an. ■ 

THE FUNDAMENTAL THEOREM OF ARITHMETIC 

Prime numbers are the building blocks of all integers. Integers are made up of primes, 
and every integer can be decomposed into primes. This result, called the fundamental 
theorem of arithmetic, is the cornerstone of number theory. It appears in Euclid's 
Elements. 

Before we state it formally, we need to lay some groundwork in the form of two 
lemmas and a corollary. Throughout, assume all letters denote positive integers. 

Lemma A.l. (Euclid). If p is a prime and p\ab, then p\a or p\b. ■ 

The next lemma extends this result to three or more factors using PMI. 
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Lemma A.2. Let p be a prime and p\a\az -an, where a\,ai,.. .,a„ are positive 
integers, then p\a-, for some i, where 1 < i < n. ■ 

The next result follows nicely from this lemma. 

Corollary A.5. If p,q\,qi,..., qn are primes such that p\q\q2 ■••qn, then p = qt 

for some i, where 1 < i < n. m 

We can state the fundamental theorem of arithmetic, the most fundamental result 
in number theory. 

Theorem A.20. (The Fundamental Theorem of Arithmetic). Every positive integer 
n > 2 is either a prime or can be expressed as a product of primes. The factorization 
into primes is unique except for the order of the factors. ■ 

A factorization of a composite number n in terms of primes is a prime factorization 
of n. Using the exponential notation, this product can be rewritten in a compact 
way. Such a product is the prime-power decomposition of n; if the primes occur in 
increasing order, then it is the canonical decomposition. 

Canonical Decomposition 

The canonical decomposition of a positive integer n is of the form n = p"1 p%2 · ■ ■ pa
k
k 

where pi, P2» · · · . Pt are distinct primes with/?i < pi < ■ ■ · < pr and each exponent 
a, is a positive integer. 

THE LEAST COMMON MULTIPLE 

The least common multiple of two positive integers, a and b, is closely related 
to their gcd. We explore two methods for finding the least common multiple of a 
and b. 

Least Common Multiple: The least common multiple (LCM) of two positive inte-
gers a and b is the least positive integer divisible by both a and b; it is denoted by 
[a,b]. 

Next we rewrite a symbolic definition of LCM. 

A Symbolic Definition of LCM 

The LCM of two positive integers a and b is the positive integer m such that: 

• a\m andfr|m; 
• If a\m' and b\m', then m < m', where m' is a positive integer. 
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Next we show a close relationship between the gcd and the LCM of two positive 
integers. 

Theorem A.21. Let a and b be positive integers. Then [a, b] = ab/(a, b). ■ 

Corollary A.6. Two positive integers a and b are relatively prime if and only if 
[a, b] = ab. ■ 

Again, as in the case of gcd, recursion can be applied to evaluate the LCM of three 
or more positive integers, as the next result shows. 

Theorem A.22. Let a\, α2,..., a„ be n(> 2) positive integers. Then [a\, a2 an] 
= [[αι,α2 a„-i],a„]. m 

Corollary A.7. If the positive integers a\,a2, ...,a„ are pairwise relatively prime, 
then [a\,a2,. ..,a„] = axa2 ■ · -a„-\an. ■ 

The converse of this corollary is also true. 

Corollary A.8. Let m\,m2, ■ ..,mk and a be positive integers such that m,|a for 
1 < » < fc. Then [/MiW2 · · /n*]|a. ■ 

MATRICES AND DETERMINANTS 

Matrices contribute significantly to the study of Fibonacci and Lucas numbers. They 
were discovered jointly by two brilliant English mathematicians, Arthur Cayley 
(1821-1895) and James Joseph Sylvester (1814-1897). The matrix notation allows 
data to be summarized in a very compact form, and manipulated in a convenient way. 

Matrix 

A matrix is a rectangular arrangement of numbers enclosed by brackets. A matrix 
with m rows and n columns is an m x n (read mby n) matrix, its size being m x n. 
Urn = 1, it is a row vector, and if n = 1, then it is a column vector. If m = n, it is 
called a square matrix of order n. Each number in the arrangement is an element of 
the matrix. Matrices are denoted by uppercase letters. 

Let α,-y denote the element in row i and column j of A, where 1 < / < m and 
1 < j < n. Then the matrix is abbreviated as A = (a,y)mx„, or simply (aiy) if the 
size is clear from the context. 

Equality of Matrices 

Two matrices A = (α,·7·) and B — (&,;) are equal if they have the same size and 
a-,j = b,j for every i and j . 

The next definition presents two special matrices. 
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Zero and Identity Matrices 

If every element of a matrix is zero, then it is a zero matrix, denoted by O. 
Let A = (a,y)nxn. Then the elements an , «22. · · ·. o„„ form the main diagonal of 

the matrix A. Suppose 

au = \ l ifi=J 
10 otherwise 

Then A is called the identity matrix of order n; it is denoted by /„, or / when there is 
no ambiguity. 

Matrices also can be combined to produce new matrices. The various matrix 
operations are presented below. 

Matrix Addition 

The sum of the matrices A = (a,y)mx„ and B = (bij)mxn is defined by A + B = 
(α,·;· + bij)mx„. (You can add only matrices of the same size.) 

Negative of a Matrix 

The negative (or additive inverse) of a matrix A = (ay)> denoted by —A, is defined 
by -A = (-au). 

Matrix Subtraction 

The difference A — B of the matrices A = (α,;)ΜΧη and B = (bij)mx„ is defined by 
A — B = (fltj — bij)mxn. (You can subtract only matrices of the same size.) 

Scalar Multiplication 

Let A = (ajj) be any matrix and k any real number (called a scalar). Then kA = 
(kau). 

The fundamental properties of the various matrix operations are stated in the 
followin theorem. 

Theorem A.23. Let A, B, and C be any m x n matrices, O them x n zero matrix, 
and c and d any real numbers. Then: 

. A + B = B + A . A + (B + C) = (A + B) + C 

. A + 0 = A = 0 + A . A + (-A) = 0 = (-Α) + A 

. (-1)Λ = - Α . c(A + B) = cA + cB 

. (c + d)A = cA + dA . (cd) A = c(dA) 

Next, we define the product of two matrices as follows. 
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Matrix Multiplication 

The product AB of the matrices A — (a, ;)mxn and B = (bjj)nxp is the matrix 
C = (c,7)mxp, where cu = anbu + ai2b2j H h ainbnj. 

The product C = AB is defined only if the number of columns in A equals the 
number of rows in B. The size of the product ism x p. 

The fundamental properties of matrix multiplication are stated in the next theorem. 

Theorem A.24. Let Λ, B, and C be three matrices. Then: 

. A(BC) = (AB)C . AI = A = IA 

. A(B + C) = AB+AC . {A + B)C = AC + BC 

provided the indicated sums and products are defined. ■ 

Next we briefly discuss the concept of the determinant of a square matrix. 

DETERMINANTS 

With each square matrix Λ = (0,7)« x„, a unique real number can be associated. This 
number is called the determinant of A, denoted by |Λ|. When A is n x n, it is of 
ordern. 

The determinant of A = , denoted by |Λ| = 

\A\ =ad- be. 
Knowing how to evaluate 2 x 2 determinants, higher-order determinants can be 

evaluated, but first, a few definitions. 

Minors and Cofactors 

The determinant of the matrix (a, ;)„xn obtained by deleting row i and column j is 
called the minor of the element atj ; it is denoted by Μ,;. The cofactor Aij of the 
element α,-y is defined by C,-y· = (—\)'+jMij. 

Determinant of a Matrix 

The determinant of a matrix A = (α^)ηχ„ is defined as 

\A\ = iJjiCn 4- ai2Ci2 -\ l· ainCin. 

This sum is called the Laplace expansion of |A| by the ith row. 
The following result about determinants will come in handy in our discussions. 

Theorem A.25. Let A and B be two square matrices of the same size. Then 

\AB\ = \A\-\B\ 

a b 
c d 

, is defined by 
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CONGRUENCES 

One of the most remarkable relations in number theory is the congruence relation, 
introduced and developed by the German mathematician Carl Friedrich Gauss 
(1777- 1855). The congruence relation shares many interesting properties with the 
equality relation, so it is denoted by the congruence symbol s . It facilitates the study 
of the divisibility theory and has many fascinating applications. 

We begin our discussion with the following definition. 

Congruence Modulo m 

Let m be a positive integer. An integer a is congruent to an integer b modulo m 
if m\(a — b). In symbols, we then write a = b (mod m); m is the modulus of the 
congruence relation. 

lia is not congruent to b modulo m, then a is incongruent to b modulo m; we then 
write a φ b (mod m). 

We now present a series of properties of congruence. Throughout we assume that 
all letters denote integers and all moduli (plural of modulus) are positive integers. 

Theorem A.26. a = b (mod m) if and only if a = b + km for some integer k. ■ 

A Useful Observation: It follows from the definition (also from Theorem A.26) 
that a = 0 (mod m) if and only if m \a ; that is, an integer is congruent to 0 if and only 
if it is divisible by m. Thus a = 0 (mod m) and m\a mean exactly the same thing. 

Theorem A.27. 

. a = a (mod m). (Reflexive property) 
• If a = b (mod m), then b = a (mod m). (Symmetric property) 
. \fa = b (mod m) and b s c (mod m), then a = c (mod m). (Transitiveproperty) 

m 

The next theorem provides another useful characterization of congruence. 

Theorem A.28. a = b (mod m) if and only if a and b leave the same remainder when 
divided by m. ■ 

The next corollary follows from Theorem A.28. 

Corollary A.9. If a = r (mod m), where 0 < r < m, then r is the remainder when 
a is divided by m, and if r is the remainder when a is divided by m, then a = r 
(mod m). ■ 

By this corollary, every integer a is congruent to its remainder r modulo m; r is 
called the least residue of a modulo m. Since r has exactly m choices 0, 1,2, . . . , 
(m — 1), a is congruent to exactly one of them modulo m. Accordingly, we have the 
following result. 
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Corollary A.10. Every integer is congruent to exactly one of the least residues 0, 
1, 2 , . . . , (m — 1) modulo m. ■ 

Returning to Corollary A. 10, we find that it justifies the definition of the mod 
operator. Thus, if a = r (mod m) and 0 < r < m, then a mod m = r; conversely, if 
a mod m = r, then a = r (mod m) and 0 < r < m. 

The next theorem shows that two congruences with the same modulus can be added 
and multiplied. 

Theorem A.29. Leta = fc(modrw)andc s d(modm).Thena+c s b+d(modm) 
and ac s bd (mod m). ■ 

It follows from Theorem A.29 that one congruence can be subtracted from another 
provided they have the same modulus, as the next corollary states. 

Corollary A.ll . If a = b (mod m) and c = d (mod m), then a — c = b — d (mod m). 
m 

The next corollary also follows from Theorem A.29. Again, we leave its proof as 
an exercise. 

Corollary A.12. If a = b (mod m) and c is any integer, then a + c = b + c (mod 
m), a — c = b — c (mod m), ac s be (mod m), and a2 = b2 (mod m). ■ 

Part (4) of Corollary A. 12 can be generalized to any positive integral exponent n, 
as the next theorem shows. 

Theorem A.30. If a s b (mod m), then a" = b" (mod m) for any positive 
integer n. ■ 

The following theorem shows that the cancellation property of multiplication can 
be extended to congruence under special circumstances. 

Theorem A.31. If ac = be (mod m) and (c, m) = 1, then a = b (mod m). ■ 

Thus we can cancel the same number c from both sides of a congruence, provided 
c and m are relatively prime. 

Returning to Theorem A.31, it can be generalized as follows. 

Theorem A.32. If ac = be (mod m) and (c, m) = d, then a = b (mod m/d). ■ 

Congruences of two numbers with different moduli can be combined into a single 
congruence, as the next theorem shows. 
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Theorem A.33. If a = b (mod mi), a = b (mod »12),... ,a = b (mod mt), then 
a = b(mod[mi,ni2, ■.. ,mk]). ■ 

The next corollary follows easily from this theorem. 

Corollary A.13. If a = b (mod mi), a = b (mod mi),... ,a = b (mod /n*), where 
the moduli are pairwise relatively prime, then a = b (mod mimi · · · mrf. ■ 
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APPENDIX A.2. The First 100 Fibonacci and Lucas Numbers 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

F„ 

1 
1 
2 
3 
5 
8 
13 
21 
34 
55 

89 
144 
233 
377 
610 
987 

1,597 
2,584 
4,181 
6,765 

L„ 

1 
3 
4 
7 
11 
18 
29 
47 
76 
123 

199 
322 
521 
843 

1,364 
2,207 
3,571 
5,778 
9,349 
15,127 

(Continued) 
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APPENDIX A.2. The First 100 Fibonacci and Lucas Numbers 

n 

21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

F„ 

10,946 
17,711 
28,657 
46,368 
75,025 
121,393 
196,418 
317,811 
514,229 
832,040 

1,346,269 
2,178,309 
3,524,578 
5,702,887 
9,227,465 
14,930,352 
24,157,817 
39,088,169 
63,245,986 
102,334,155 

165,580,141 
267,914,296 
433,494,437 
701,408,733 

1,134,903,170 
1,836,311,903 
2,971,215,073 
4,807,526,976 
7,778,742,049 
12,586,269,025 

20,365,011,074 
32,951,280,099 
53,316,291,173 
86,267,571,272 
139,583,862,445 
225,851,433,717 
365,435,296,162 
591,286,729,879 
956,722,026,041 

1,548,008,755,920 

L„ 

24,476 
39,603 
64,079 
103,682 
167,761 
271,443 
439,204 
710,647 

1,149,851 
1,860,498 

3,010,349 
4,870,847 
7,881,196 
12,752,043 
20,633,239 
33,385,282 
54,018,521 
87,403,803 
141,422,324 
228,826,127 

370,248,451 
599,074,578 
969,323,029 

1,568,397,607 
2,537,720,636 
4,106,118,243 
6,643,838,879 
10,749,957,122 
17,393,796,001 
28,143,753,123 

45,537,549,124 
73,681,302,247 
119,218,851,371 
192,900,153,618 
312,119,004,989 
505,019,158,607 
817,138,163,596 

1,322,157,322,203 
2,139,295,485,799 
3,461,452,808,002 
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APPENDIX A.2. (Continued) 

n 

61 
62 
63 
64 
65 
66 
67 
68 
69 
70 

71 
72 
73 
74 
75 
76 
77 
78 
79 
80 

81 
82 
83 
84 
85 
86 
87 
88 
89 
90 

91 
92 
93 
94 
95 
96 
97 
98 
99 
100 

F„ 

2,504,730,781,961 
4,052,739,537,881 
6,557,470,319,842 
10,610,209,857,723 
17,167,680,177,565 
27,777,890,035,288 
44,945,570,212,853 
72,723,460,248,141 
117,669,030,460,994 
190,392,490,709,135 

308,061,521,170,129 
498,454,011,879,264 
806,515,533,049,393 

1,304,969,544,928,657 
2,111,485,077,978,050 
3,416,454,622,906,707 
5,527,939,700,884,757 
8,944,394,323,791,464 
14,472,334,024,676,221 
23,416,728,348,467,685 

37,889,062,373,143,906 
61,305,790,721,611,591 
99,194,853,094,755,497 
160,500,643,816,367,088 
259,695,496,911,122,585 
420,196,140,727,489,673 
679,891,637,638,612,258 

1,100,087,778,366,101,931 
1,779,979,416,004,714,189 
2,880,067,194,370,816,120 

4,660,046,610,375,530,309 
7,540,113,804,746,346,429 
12,200,160,415,121,876,738 
19,740,274,219,868,223,167 
31,940,434,634,990,099,905 
51,680,708,854,858,323,072 
83,621,143,489,848,422,977 
135,301,852,344,706,746,049 
218,922,995,834,555,169,026 
354,224,848,179,261,915,075 

L„ 

5,600,748,293,801 
9,062,201,101,803 
14,662,949,395,604 
23,725,150,497,407 
38,388,099,893,011 
62,113,250,390,418 
100,501,350,283,429 
162,614,600,673,847 
263,115,950,957,276 
425,730,551,631,123 

688,846,502,588,399 
1,114,577,054,219,522 
1,803,423,556,807,921 
2,918,000,611,027,443 
4,721,424,167,835,364 
7,639,424,778,862,807 
12,360,848,946,698,171 
20,000,273,725,560,978 
32,361,122,672,259,149 
52,361,396,397,820,127 

84,722,519,070,079,276 
137,083,915,467,899,403 
221,806,434,537,978,679 
358,890,350,005,878,082 
580,696,784,543,856,761 
939,587,134,549,734,843 

1,520,283,919,093,591,604 
2,459,871,053,643,326,447 
3,980,154,972,736,918,051 
6,440,026,026,380,244,498 

10,420,180,999,117,162,549 
16,860,207,025,497,407,047 
27,280,388,024,614,569,596 
44,140,595,050,111,976,643 
71,420,983,074,726,546,239 
115,561,578,124,838,522,882 
186,982,561,199,565,069,121 
302,544,139,324,403,592,003 
489,526,700,523,968,661,124 
792,070,839,848,372,253,127 
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APPENDIX A.3. The First 100 Fibonacci Numbers and Their Prime Factorizations 
n 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Fn 

1 
1 
2 
3 
5 
8 

13 
21 
34 
55 

89 
144 
233 
377 
610 
987 

1,597 
2,584 
4,181 
6,765 

Prime Factorization 

1 
1 
2 
3 
5 
23 

13 
3 -7 
2 · 17 
5 · 11 

89 
2 4 . 3 2 

233 
13-29 
2 - 5 - 6 1 
3 -7 -47 
1597 
23 - 17 · 19 
37- 113 
3 -5 -11 -41 

556 
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APPENDIX A.3. (Continued) 

n 

21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

F„ 

10,946 
17,711 
28,657 
46,368 
75,025 

121,393 
196,418 
317,811 
514,229 
832,040 

1,346,269 
2,178,309 
3,524,578 
5,702,887 
9,227,465 

14,930,352 
24,157,817 
39,088,169 
63,245,986 

102,334,155 

165,580,141 
267,914,296 
433,494,437 
701,408,733 

1,134,903,170 
1,836,311,903 
2,971,215,073 
4,807,526,976 
7,778,742,049 

12,586,269,025 

20,365,011,074 
32,951,280,099 
53,316,291,173 
86,267,571,272 

139,583,862,445 
225,851,433,717 
365,435,296,162 
591,286,729,879 
956,722,026,041 

1,548,008,755,920 

Prime Factorization of F„ 

2·13-421 
89 · 199 
28657 
25 · 32 · 7 · 23 
52·3001 
233 · 521 
2 · 17-53 · 109 
2- 13■29-281 
514229 
23 - 5 - 11 -31 - 61 

577 · 2417 
3 · 7 · 47 · 2207 
2 · 89 · 19801 
1597 · 3571 
5 13 141961 
2" · 33 · 17 ■ 19 · 107 
73· 149-2221 
37- 113-9349 
2-233· 135721 
3 - 5 - 7 · 11 -41 -2161 

2789 · 59369 
23· 13-29-211-421 
433494437 
3 · 43 ■ 89 · 199 · 307 
2-5 ■ 17 -61 109441 
139-461-28657 
2971215073 
2 6 · 3 2 · 7 · 2 3 · 4 7 · 1103 
13 · 97 · 6168709 
52· 11 · 101 · 151 -3001 

2 · 1597-6376021 
3 · 233 - 521-90481 
953 · 55945741 
23 17 19 53 - 109 5779 
5-89-661-474541 
3 · 72 · 13 · 29 · 281 · 14503 
2-37- 113-797-54833 
59- 19489-514229 
353 ■ 2710260697 
24 · 32 5 11 - 31 -41 61 -2521 

(Continued) 
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APPENDIX A3. The First 100 Fibonacci Numbers and Their Prime Factorizations 

n 

61 
62 
63 
64 
65 
66 
67 
68 
69 
70 

71 
72 
73 
74 
75 
76 
77 
78 
79 
80 

81 
82 
83 
84 
85 
86 
87 
88 
89 
90 

91 
92 
93 
94 
95 
96 
97 
98 

Fn 

2,504,730,781,961 
4,052,739,537,881 
6,557,470,319,842 
10,610,209,857,723 
17,167,680,177,565 
27,77,7890,035,288 
44,915,570,212,853 
72,723,460,248,141 
117,669,030,460,994 
190,392,490,709,135 

308,061,521,170,129 
498,454,011,879,264 
806,515,533,049,393 

1,304,969,544,928,657 
2,111,485,077,978,050 
3,416,454,622,906,707 
5,527,939,700,884,757 
8,944,394,323,791,464 
14,472,334,024,676,221 
23,416,728,348,467,685 

37,889,062,373,143,906 
61,305,790,721,611,591 
99,194,853,094,755,497 
160,500,643,816,367,088 
259,695,496,911,122,585 
420,196,140,727,489,673 
679,891,637,638,612,258 

1,100,087,778,366,101,931 
1,779,979,416,004,714,189 
2,880,067,194,370,816,120 

4,660,046,610,375,530,309 
7,540,113,804,746,346,429 
12,200,160,415,121,876,738 
19,740,274,219,868,223,167 
31,940,434,634,990,099,905 
51,680,708,854,858,323,072 
83,621,143,489,848,422,977 
135,301,852,344,706,746,049 

Prime Factorization of F„ 

4513-555003497 
557 · 2417 · 3010349 
2 13 17-421-35239681 
3-7-47-1087-2207-4481 
5 · 233· 14736206161 
23 · 89 · 199 · 9901 ■ 19801 
269-116849-1429913 
3-67-1597-3571-63443 
2-137-829- 18077-28657 
5 11 · 13 · 29 · 71 · 911 - 141961 

6673-46165371073 
25-33-7-17-19-23- 107- 103681 
9375829 · 86020717 
73-149-2221-54018521 
2 · 52 · 61 · 3001 · 230686501 
3-37 113-9349-29134601 
13-89-988681-4832521 
23· 79-233-521-859-135721 
157-92180471494753 
3 · 5 · 7 · 11 - 41 · 47 - 1601 · 2161 · 3041 

2 · 17 ■ 53 · 109 · 2269 · 4373 · 19441 
2789-59369-370248451 
99194853094755497 
24 · 32 · 13 · 29 · 83 · 211 · 281 · 421 · 1427 
5-1597-9521 -3415914041 
6709- 144481-433494437 
2 - 173 - 514229 ■ 3821263937 
3 · 7 · 43 · 89 · 199 · 263 · 307 · 881 · 967 
1069 · 1665088321800481 
23 - 5 -11 - 17 19-31-61 181-541 · 109441 

132· 233-741469 159607993 
3 · 139 · 461 · 4969 · 28657 · 275449 
2-557-2417-4531100550901 
2971215073 · 6643838879 
5-37-113-761 -9641-67735001 
27 · 32 · 7 · 23 · 47 · 769 · 1103 · 2207 · 3167 
193 · 389 · 3084989 · 3610402019 
13 · 29 · 97 · 6168709 · 599786069 

99 
100 

218,922,995,834,555,169,026 
354,224,848,179,261,915,075 

2 · 17 · 89 · 197 · 19801 ■ 18546805133 
3 -52 · 11 -41 101- 151 -401 -3001-570601 
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APPENDIX A.4. The First 100 Lucas Numbers and Their Prime Factorizations 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

L„ 

1 
3 
4 
7 

11 
18 
29 
47 
76 

123 

199 
322 
521 
843 

1,364 
2,207 
3,571 
5,778 
9,349 

15,127 

Prime Factorizatu 

1 
3 
22 

7 
11 
2 · 3 2 

29 
47 
22 · 19 
3 41 

199 
2 - 7 - 2 3 
521 
3-281 
22· 11 -31 
2207 
3571 
2 ■ 33 · 107 
9349 
7-2161 

(Continued) 
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APPENDIX A.4. The First 100 Lucas Numbers and Their Prime Factorizations 

Prime Factorization of L„ 

21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

24,476 
39,603 
64,079 
103,682 
167,761 
271,443 
439,204 
710,647 

1,149,851 
1,860,498 

3,010,349 
4,870,847 
7,881,196 
12,752,043 
20,633,239 
33,385,282 
54,018,521 
87,403,803 
141,422,324 
228,826,127 

370,248,451 
599,074,578 
969,323,029 

1,568,397,607 
2,537,720,636 
4,106,118,243 
6,643,838,879 
10,749,957,122 
17,393,796,001 
28,143,753,123 

45,537,549,124 
73,681,302,247 
119,218,851,371 
192,900,153,618 
312,119,004,989 
505,019,158,607 
817,138,163,596 

1,322,157,322,203 
2,139,295,485,799 
3,461,452,808,002 

22 · 29 - 211 
3 · 43 · 307 
139-461 
2-47-1103 
11 101 151 
3-90481 
22· 19 · 5779 
72·4503 
59 -19489 
2 - 3 2 · 41-2521 

3010349 
1087-4481 
22 · 199 · 9901 
3 · 67 · 63443 
11 -29-71-911 
2 ■ 7 · 23 · 103681 
54018521 
3·29134601 
22-79-521-859 
47 · 1601 · 3041 

370248451 
2 · 32 · 83 · 281 · 1427 
6709 · 144481 
7-263-881-967 
22- 11 -19-31 181-541 
3 · 4969 · 275449 
6643838879 
2 · 769 · 2207 · 3167 
29 · 599786069 
3-41 -401-570601 

22 · 919 · 3469 · 3571 
7 · 103 ·102193207 
119218851371 
2 ■ 34 -107 · 1128427 
ll2 199-331-39161 
47 ■ 10745088481 
22 · 229 · 9349 · 95419 
3·347· 1270083883 
709 · 8969 · 336419 
2-7-23-241-2161 -20641 
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APPENDIX A.4. (Continued) 

n 

61 
62 
63 
64 
65 
66 
67 
68 
69 
70 

71 
72 
73 
74 
75 
76 
77 
78 
79 
80 

81 
82 
83 
84 
85 
86 
87 
88 
89 
90 

91 
92 
93 
94 
95 
96 
97 
98 
99 
100 

Ln 

5,600,748,293,801 
9,062,201,101,803 
14,662,949,395,604 
23,725,150,497,407 
38,388,099,893,011 
62,113,250,390,418 
100,501,350,283,429 
162,614,600,673,847 
263,115,950,957,276 
425,730,551,631,123 

688,846,502,588,399 
1,114,577,054,219,522 
1,803,423,556,807,921 
2,918,000,644,027,443 
4,721,424,167,835,364 
7,639,424,778,862,807 
12,360,848,946,698,171 
20,000,273,725,560,978 
32,361,122,672,259,149 
52,361,396,397,820,127 

84,722,519,070,079,276 
137,083,915,467,899,403 
221,806,434,537,978,679 
358,890,350,005,878,082 
580,696,784,543,856,761 
939,587,134,549,734,843 

1,520,283,919,093,591,604 
2,459,871,053,643,326,447 
3,980,154,972,736,918,051 
6,440,026,026,380,244,498 

10,420,180,999,117,162,549 
16,860,207,025,497,407,047 
27,280,388,024,614,569,596 
44,140,595,050,111,976,643 
71,420,983,074,726,546,239 
115,561,578,124,838,522,882 
186,982,561,199,565,069,121 
302,544,139,324,403,592,003 
489,526,700,523,968,661,124 
792,070,839,848,372,253,127 

Prime Factorization of L„ 

5600748293801 
3·3020733700601 
22· 19-29-211 · 1009-31249 
127- 186812208641 
11-131-521-2081 -24571 
2-32-43-307-261399601 
4021 -24994118449 
7-23230657239121 
22· 139 -461 -691- 1485571 
3-41 ■ 281 - 12317523121 

688846502588399 
2-47-1103- 10749957121 
151549- 11899937029 
3·11987-81143477963 
22· 11-31- 101 151 · 12301- 18451 
7■1091346396980401 
29-199-229769-9321929 
2-32· 90481· 12280217041 
32361122672259149 
2207-23725145626561 

22· 19-3079-5779-62650261 
3 · 163 ■800483·350207569 
35761381-6202401259 
2 · 72 · 23 · 167 · 14503 · 65740583 
11-3571 1158551 ·12760031 
3·313195711516578281 
22 · 59 · 349 · 19489 · 947104099 
47 · 93058241 ·562418561 
179 · 22235502640988369 
2 · 33 · 41 · 107 · 2521 · 10783342081 

29-521 -689667151970161 
7-253367-9506372193863 
22 · 63799 ■ 3010349 · 35510749 
3-563-5641 -4632894751907 
11 · 191 -9349-41611 -87382901 
2 · 1087 · 4481 ■ 11862575248703 
3299-56678557502141579 
3 · 281 · 5881 · 61025309469041 
22 · 19 · 199 · 991 · 2179 ■ 9901 · 1513909 
7-2161 -9125201 -5738108801 
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SOLUTIONS 
TO ODD-NUMBERED 
EXERCISES 

EXERCISES 2 (p. 14) 

1. 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 
4181,6765 

3. 2 
5. F_„ = (-1)"+1F„ 
7. L_„ = (-!)»£„ 
9. 20+ 19+ 15 + 5+ 1 =60= 17+ 13+ 11 + 9 + 7 + 3 

I 

8 

13. £ F , = 3 3 
I 

15. έ ζ , , = 8 
i 

7 
17. £ L , = 7 3 

i 

19. £ £ , = £.„+2-3 
1 

5 

21. j ]F , . 2 =40 
I 

577 
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8 

23. £ F ? = 714 
1 

3 

25. χ; L? = 26 
i 

7 
27. £ L ? = 1361 

1 

29. t ^ = LnLn+l-2 
1 

31. F3 + F5 = 2 + 5 = 7 = L4; F6 + F8 = 8 + 21 = 29 = L7 

33. We have a„ = α„_ι + a„_2 + 1, where ai = 0 = a2. Let bn = a„ + 1. Then 
b„ - 1 = (fc„_, - 1) + (b„-2 - 1) + 1 = fe„_! + Z>„_2, so b„ = 2>n+i + £„_2, 
where foi = 1 = b2. Thus a„ = b„ — 1 = F„ — 1, n > 1. 

35. (J. L. Brown) Suppose Fh < Fi < Fj < Fk are in AP, so F, — Fh = Fk — Fj=d 
(say).Then</ = Fi-Fh < F;, whereas d = F*-F, > F t -F t _ i = FA_2 > F/, 
a contradiction. 

37. (DeLeon) Since Fn < x < Fn+] and Fn+i < y < Fn+2, F„ + Fn+i < * + y < 
F„+i + F„+2; that is, Fn+2 < x + y < Fn+3, a contradiction. 

*" + A: - 2 

EXERCISES 3 (p. 49) 

1. fc, = 1,£2 = 2 
b„ — bn-\ + b„-2, n > 3 
:.b„ = Fn+i,n > 1. 

3. Yes 
5. No 
7. /„ = Fn 

9. 2F„ - 1 
11. 10, 15 
13. 14,25 

EXERCISES 4 (p. 68) 

1. 00000,10000,01000,00100,10100,00010,10010,01010,00001,10001,01001, 

00101,10101 

3. a\ = \,Ü2 = 2, a„ = α„_ι +α„_2,η > 3. 
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5. b\ — \,b2 — 2, bn = b„-\ + b„^2,n > 3. 
7. 4,7 

9. ai — 2,a2 = 3, an — a„-t + a„-2, n > 3. 
11. None; ({1}, 0} ; {{1}, 0} , {{2}, 0} , {{1,2), 0 ) 

13. S„ = F„(„+i)/2+2 — F„(„-\)/2+2 

EXERCISES 5 (p. 96) 

1. Since ^ F 2 i _ i = F\ = F2, the result is true when n — 1. Assume it is true for an 
1 

k+\ k 

arbitrary positive integer*. Then £ F2,_i = £ ^21-1 +F 2 j t + | = F2k + F2k+\ = 
I 1 

F2k+i- Thus, by PMI, the formula is true for every n > 1. 

3· Σ^ = Σ Li+2-ELi+\ = (Li + L4 + - ■ - + Ln+2)-(L2 + L3 + - ■ · + £„+,) = 
I I I 

i-n+2 — L2 = Ln+2 — 3 

5· Σ i-2,· = Σ *</ ~ Σ Î-2/-I = (i-2,,+2 - 3) - (L2„ - 2) = (L2n+2 - L2„) - 1 = 
1 1 1 

L2n+t — 1 
I 

7. Since Σ ^ ? = L\ = 1 = Z-iZ-2 — 2, the result is true when n = 1. Assume 
1 

* + l k 

it is true for an arbitrary positive integer k. Then ][]L· = Σ ^? + L2
+, = 

1 1 
(LkLk+\ -2) + L2

k+] = Lk+\{Lk + Lk+i) ~ 2 = Lk+,Lk+2 - 2. Thus, by PMI, 
the result is true for every n > 1. 

9. F10 = 55 = 5 · 11 = F5L5 

11. F2 - F2 = 132 - 52 = 144 = F,2 

13. L3L1 - L | = 4 - 1 - 9 # ( - l ) 2 

15. i), = a + 0 = 1; υ2 = a2 + β2 = (a + jS)2 - laß = l2 - 2 ( - l ) = 3; and 
v„_, + υ„_2 = (a""' +/3"-1) + (a""2 + β"~2) = α"-2{\ + α)+β"~2(1 +β) = 
α"-2α2 + β"~2β2 = α" + β" = υ„. 

17. Since (a — β)\/5 = 1, the result is true when n = 1. Assume it is true for all 
positive integers < k. Then ^/5(aFk + ßFk) = (α*+ι - aßk + akß - ßk+l); 
that is, Ν/5(« + 0)F* = (α*+ι - /3*+ι) + (aß)(ak~] - ßk~l). So V5F* = 
(α*+ι _ ßk+i) _ V5Ft_i; that is, V5(F* + F*_,) = (a*+l - 0*+l). Thus 
F^+i = (a*+1 - ßk+l)/V5. So the result holds for all n > 1. 

19. Clearly, L, = F,. Conversely, let Ln = Fn. Then a" + ß" = (or" - ß")/yß, so 
( V 5 - l ) a " = -(>/5+l) |8".a" = («/ /»^"i that is .o"- ' - /?"-1 = 0 . .-.F„_i = 
0, so /1 = 1. 

21. Α : 2 - ( Δ „ + 2 Α : ) Λ : + Α : Δ Π + Α : 2 + ( - 1 ) " = 0 
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23. Let S = χ; F,. Since a' = 0 ^ + F,_i, £ > ' ' = a Σ F ' + Σ Ή- ι · T h a t is< 
1 0 0 0 

(α η + 1 -1 ) / (α -1 ) = a S + l + 0 + ( 5 - F n ) . T h i s y i e l d s ( a F n + i + F n - l ) / ( a - l ) = 
(a + 1)5 + 1 - F„ and thus S = Fn+2 - 1. 

25. F„+5 = F„+4 + Fn+3 = 2Fn+3 + Fn+2 = 3F„+2 + 2F„+i = 5F„+i + 3F„ 
27. 5(F„_,F„+1 - F2) = (a"-1 - 0"- ,)(α"+1 - 0n+1) - (a" - β")2 = 

- 3 ( - l ) " - ' + 2 ( - D " = 5 ( - l ) " .·. Fn^Fn+i - F2 = (-1)" 

29. F2„ = (a2" - ß2n)/V5 = (an - ß")[(a" + ß")/V5] = F„L„ 

31· F2
+i - F2_, = (Fn+1 + F„_,)(F„+1 - F„_,) = L„Fn = F2„ 

33. F„+2 — F„-2 = (F„ + F„+i) — (F„ - F„_i) — Fn+\ 4- F„_i = L„ 

35. F„2
+1 - F 2 = (Fn+1 + F„)(Fn+1 - F„) = Fn+2F„_, 

37. L2 + L2
+1 = (a" + ßn)2 + (a"+1 + /3"+1)2 = a2" + 02n + a2n+2 + /S2n+2 = 

a2"+'(a - a-1) + β2η+λ{β - β~χ) = (a - ß)(cc2n+] - ß2n+x) = 5F2n+i 
39. L2

n - 4 ( - l ) n = (a" + ß")2 - 4(aß)n = (a" - ß")2 = 5F 2 

41. L2„ + 2 ( - l ) n = a2" + ß2n + 2(aß)" = (ce" + ß")2 = L2
n 

43. Ln+2 - L„_2 = (a"+2 + ßn+2) - (a""2 + ß"'2) = a"(a2 - a"2) 

- ßn(ß-2 - /Ö2) = a"(a2 - yS2) - 0"(a2 - ß2) 

= (et" - ß")(a2 - ß2) = (a" - 0")(a - 0) = 5F„ 

45. Since F 2 - F2_2 = F2„_2 and F 2 + F2_, = F2„_,, it follows that F2 > F2n_2 

and F„2 < F2„_i.Thus F2n_2 < F„2 < F2„_,. 
47. L_„ = c r " + ß~" = (-ß)n + ( - a ) " = ( - l )"L n 

49. 1 + α2η = a" (a" + a'") = a"[a" + (-/?)"] 

_ la" (a" -β") if n is odd 
~ \a"(an + β") otherwise 

{ V5Fna
n if n is odd 

Lna" otherwise 

51. LHS = (a2m+n + ß2m+n) - (aß)m{an + ß") 

= am+n(am - ßm) - ßm+n(am - ßm) 

= (am -ßm)(am+n - ßm+n) 
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53. v^LHS = (a2m+n - ß2m+n) + (aß)m(an - ß") 

= am+n(am + ßm) - ßm+n(am + ßm) 

= (am + ßm)(am+n - ßm+n) = V5LmFm+H 

.·. LHS = LmFm+n. 

55. Lin = a3n + ß3n = (a" + ß")(a2n - anßn + ßn) 

= Ln[L2n - (-l)n] 

57. V5LHS = (am+n - ßm+n) - {a1""1 - ß"-n) 

= ctm(ct" - α~") - ßm(ßn - ß~n) 

= am[a" - (-ß)"] - ßm[ßn - (-o)"] 

(am - ßm)(a" + ß") if n is odd 
(am + ßm)(a" - ß") otherwise 

Fm L„ if n is odd 
Lm F„ otherwise 

53. (Homer, Jr.) Fm+n+] = Fm+iFn+x + FmFn 

'm+n—\ = 'm'n ~r 'm — \*n — \ 

■'■ Fm+\Fn+\ - Fm-\F„-\ = Fm+n+\ — Fm+„_| = Fm+n 

61. 5 · RHS = 2[α2π+4 + ß2n+* - 2(-l)"+2] 

+ 2[a2n+2 + ß2n+2 - 2( - l )" + 1] - [a2n + ß2n - 2 ( - l ) n ] 

= 2L2n+4 + 2L2„+2 - L2n + 2(— 1)" 

= 2L2„+4 + (L2n+2 + L2n+,) + 2 ( - l ) ' ' 

= 2L2n+4 + L2n+3+2{-l)n 

= L2n+4 + L2n+5 + 2(-1 )" = L2n+6 + 2 ( -1 )" 

5 LHS = a2n+6 + ) Ö
2 ' , + 6 -2 ( - l ) " + 3 = L2n+6 + 2 ( - l ) " . 

.·. LHS = RHS. 
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63. By Exercise 62, F„3
+2 + F„3

+l - F„3 = F3n+3 and F„3 + F„3_, - F„3_2 = F3n_3. 
Subtracting F3

+ 2 + F3
+1 - 2F„3 - F3_, + F„3_2 = F3n+3 - F3„_3 = 4F3„, by 

Exercise 57. .·. F3
+ 2 - 3F3 - F„3_2 = 3F3n + (F3n - F„3

+1 - F„3 + Fn
3_,) = 3F3„, 

by Exercise 62. 

65. x = L2n,y = F2„ 
67. (Carlitz) x2 - x - 1 = (JC - a)(x - /3) 

*2n - Lnx" + (-1)" = x2" - (a" + /S")*" + (αβ)η = (xn - an){xn - ß") 
Since x — a\x" — a" and x — ß\x" — ß", the desired result follows. 

69. (Wulczyn) LHS = (α2π + β2η) + (α2 + β2){αβ)η~ι 

= (απ+ι +β"+ιΗαπ-1 +β"~ι) = Ln+1Ln_, 

71. (Lord, 1995) 2L3_, + L3 + 6L2
+1Ln_, = 2L3_, 

+ (L„+i - L„_,)3 + 6L2
+1Ln_, = (L„+1 + L„_,)3 = (5F„)3 

73. (Zeitlin, 1963) a" +β" = Ln and a" - b" = V5F„. Adding, 2a" = L„ + V5Fn. 
(1 + χ/5)π = 2"-'L„ + v/5(2"-|F„) .·. a„ = 2"-'Ln and ô„ = 2"-lF„. 
Thus2 n - 'K and2"-'|Z>n. 

75. (Bruckman) Since F2n+iF2„_i - F2
2„ = 1, 2F2„+iF2n_i - 1 = 2F2

2„ + 1 = 
F2n + F2n+iF2n-i- So if 2F2n+i F2„_i - 1 is a prime, then so are 2F2n + 1 and 
^2n + F2n+\F2n-l· 

77. (J. E. Homer) LHS = j^gk+2Fk + f > * + , F * - JZgkFk = £ (F*_ 2 + ft_, -
1 1 1 3 

^ ) ^ + gn+2Î,«+gn+l(f« + F n _ 1 )+g 2 F , -g lF i -52^2 = gn+2F„+^„ + i F „ + i -
gl 

79. (Yodder) The formula is true when n = 1 and 2. Assume it is true for all positive 
integers < n, where n > 2. Let n be odd. Then / [ (7 · 2" +1)/3] = / [ (7 · 2"_1 -
l)/3] + / [ ( 7 - 2 " - ' + 2 ) / 3 ] 

= / [ (7 · 2"- ' - l)/3] + / [ (7 · 2"-2 + l)/3] 

= L„ + L„_i = Ln+\ 

Similarly, if n is even, / [ (7 · 2" - l)/3] = Ln+\- Thus, by the strong version of 
PMI, the result is true for every n > 1. 

n(n+l)/2 n(n-l)/2 
81. Sn = £ ^2i-l ~ Σ ^2/-l = F„(n+i) — F„(„_i) 

1 1 

83. Area = (Fn + I + F„_,)V3F„/4 = V3LnF„/4 = V3F2n/4 

EXERCISES 7 (p. 112) 

1. 8α + 11Ζ» 

3. b-a 
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5. A„ — 2F„_2 + 3F„_i = 2F„ + F„_| = F„ + F„+\ = Fn+2 

7. -Vs 
G„ ccr" - dß" 

9. lim — = hm = c 
n->oc L„ n-»oo Of" + ß" 

n n n n 

H . L G< = E( G<+2 - G '+i } = Σ G-+2 - E G'+> 
I I I I 

= Gn+2 - b 

n In n 

13. £ G2, = £ G' - Σ G2'-' = (G2"+2 - è) - (G2" + û - b) 

I I I 
= G2„+2 — G2„ — a = Gi„+\ — a 

10 

15. We have £ F
/+

,· = 1 lF
y + 7

, y > 0. 

ί=1 
10 10 

.'. E G t + / = ^2SaFk+i-2 + bFk+i-\) 
1 

10 10 

"k+i-l = a^Fk+i-i + b^F^ 
I 1 

= a(l\Fk.2+1)+b(UFk.l+j) 

= l\(aFk+5+bFk+6) = UGk+1 

17. Let Si = ^Gj = Gi+2 - b 
I 

n - l n-1 

Y^Si = J2Gi+2~(n-\)b 
I 1 

- Sn+l _ ( G , + G 2 ) - ( n - l ) f t 

= 5„+i - a - nb — Gn+3 - a - (n + \)b 
n n n n n 

1 1 2 3 n 

= 5„ + (5„ - 5,) + (S„ - S2) + · · · + (S„ - S„_,) 
n - l 

= nS„ - Y 5< 
1 

= H ( G „ + 2 - fc) - [Gn+3 - a - (n + \)b] 

= «G„+2 — G„+3 + a + b 
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19. (J. W. Milsom) The formula works when n = 1, so assume it is true for an arbitrary 
positive integer k > 1 : 

it 

Σ FiGa = FlcFk+lG2k+l 
1 

Then 
k+l k 

/ , FiG-Si = 2_j ^i^3i + Fk+\Gu+3 
1 1 

= FkFk+iGu+i + Fk+iGu+3 

= Fk+\(FuG2k+\ + Gjic+3) 

Since Gm+n — F„-\Gm + F„Gm+i, 

Glk+3 = G(2k+2)+(k+l) = FkG2k+2 + Fk+\G2k+3-

k+l 

.'. 2^FiG3i = Fk+\[Fk(G2k+i+ G2k+2) + Fk+\G2k+3] 
1 

= Fk+i[(Fk+2 - Fk+i)(G2k+i + Gu+i) + Fk+\G2k+3] 

= Fk+l Fk+2(G2k+l +G2k+l) = Fk+\ Fk+2G2k+3 

Thus the result is true for all n > 1. 

21. (Peck) We have the trinomial expansion (x + y + z)n = 

Σ I · " ; I x'yJzk, where [ . " . , ) = ΤΓΤΤΓΓ andi + j+ k = n.Letx = 

1, y = a, and z = —a2. Then x + y + z = 0. 

( I ) Σ(ί,;,*)(-,,ν+"=°· 
similarly, J ] ( ? Λ ( - l ) * ^ + 2 t = 0. 

» * / n \ . . ~t 

(2) 
\ l. I. K. I 

i,j,k 

Now multiply (1) by c, (2) by d, and then subtract. Divide the result by a — β to 
get the desired result. 

23. LHS = (can+k - dßn+k)(ca"~k - dßn~k) 

= A r 2 " + d2ß2n - cd(aß)"-k(a2k + ß2k) 

= 5(a2n+ß2n)-ß(-iy-kL2k 

= 5L2„-ß(-ir-kL2k 
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25. 5 · LHS = (cet" - dß")2 + (cet"-1 - dß"'*)2 

= c2a2n-2(\+a2)+d2ß2n-2(l+ß2) 0 ) 

= V f K c V " ' -d2ß2"-x) (2) 

V5 · RHS = (3a - b)(ca2"-[ - dß2"-*) 

- μ(α2"-1 - β2"-χ) 

= (c + d)(ca2"-1 -dß2"'*) 

- μ ( α 2 " - ' -ß2n~x) 

= ç2«2""1 -d2ß2n~x (3) 

The result follows by (1) and (2). 
27. Follows by changing n to m + n in Exercise 26. 
29. LHS = Gm[Fn+i + (-1)"F„_,] + Gm_,[l - (-1)"] = RHS 
31. Using Binet's formula for G,, 

5 · LHS = (-l)"+*-Vi-m-n+2* + ( - D V i » - , . (1) 

Using Binet's formula for /·}, 

5 RHS = (-1)"+*-'ßLm_n+2k + ( - l )V£- m - n . (2) 

.·. LHS = RHS. 

33. 5 · RHS = 5Z.2n-6 - 2μ(-1)"- 3 + 20Z.2„-3 - 4μ(-1)"~2 

= 5L2„-6 + 20L2„-3-2ß(-l)" 

= 5L2n - 2 μ ( - 1 ) π = 5 LHS 

.·. LHS = RHS. 

35. 5 · LHS = 5L2„ + 5L2n+6 = 30L2„ + 40L2„+i 

5 · RHS = 10L2n+2 + 10L2n+4 = 30L2„ + 40L2„+1 

.·. LHS = RHS. 

37. Since (JC — y)2 + (2xy)2 = (x + y)2, the result follows withx — Gm and y = Gn. 
39. Follows from Candido's identity [x2 + y2 + (x + y)2]2 = 2[x4 + y4 + (x + y)% 

with x = Gm and y = G„. 
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41. LHS = 5(aFn+r-2 + bFn+r^)2 + 5(aF„-r-2 + bF^r-tf 

= 5a\F2
n_2+r + Fl2_r) + b2(F2_l+r + F2_x_r) 

+ 2ab(Fn-2+rF„-\+r + F„_2_rFn_i+r) 

= a2[L2n-4L2r - 4(-1)Μ-2 +Ί + b2[L2n^L2r - 4 ( - i y - 1 + r ] 

+ 2ab[L2n^L2r-2(-ir-2+r] 

= (a2L2n^ + b2L2n-2 + 2abL2n_3)L2r - 4 a 2 ( - l ) n + r 

+ 4b2(-\)n+r -4ab(-l)n+r 

= (a2L2n^ + 2abL2n^ + b2L2n„2)L2r - 4μ(-1)η+Γ = RHS 

43. Let* = G„+2andy = G„+i.Then;t2-y2 = (x+y)(x-y) = Gn+3Gn,2xy = 
2G„+ lGn + 2 ,andx2+y2 = G2

+ 2+G 2
+ 1 .Since(*2 -y2 )2+4*2y 2 = (*2+y2)2, 

the result follows. 
45. Let x = G„ and y = Gn_,. Then x2 + xy + y2 = G2 4- G„G„_i + G2_, = 

Gn_,(Gn_, 4-G„) + G2 = Gn-iGn+l + G2 = 2 G 2 + M ( - 1)". The result now 
follows from the identity (x + y)5 - x5 - y5 — 5jcy(x + y)(x2 + xy 4- y2). 

47. Let x = G„_, and y = G„. Then x2 + xy + y2 = 2G2 + μ ( -1 )" . The result 
now follows from the identity x4 + y4 + (x + y)4 — 2(x2 + xy + y2)2. 

49. Letjc = G„_i andy = G„.Then;c2+xy + y2 = 2G2„+ß(-l)n andx4 + 3j:3y + 
4x2y2 + y4 = G 4 _ 1 +3G3_ 1 G n +4G 2 _ 1 G 2 +3G n _ 1 G3+G 4 = G 4 _ 1 + G 4 + 
3Gn_1G n(G2_ I+G2)+4G 2_1G 2 = G 4 _ 1 +G 4 + 3GM_1G„[(3«-fe)G2„_1-
M/r2n-iR4G2_,G2. The result nowfollows from the identity x*+y*+(x+y)S = 
2(x2 + xy + y2)4 + 8x2y2(.*:4 + 3*3y + 4x2y2 + 3xy3 + y4). 

51. (Lind) Σ «G/ = nGn+2 - Gn+3 + a + b and £ G,- = G„+2 - b. 
i I 

_ w G«+2 ~ Gn+3 +a+b 

G„+2 — b 

(n + l)Gn + 3 - Gn+4 + a + b nG„+2 - G„+3 +a + b 
An+\ - A„ = 

Gn+3 — b Gn+2 — b 

c· I· G"+k t -.f,, ,κ ♦ r ,Λ A\ (π + 1 ) - α + 0 Since lim = a , it follows that lim (A„+i — A„) = 
n-*oo Gn n-* oo 1 — 0 

n - a + 0 _ 
1 - 0 ~~ 

53. (Bruckman) 

An — G„+2 — C„-(-| — C„ 

rt+2 n+1 n 

= ^_^ HiKn-i+2 — 2_, HiKn-i + \ — 2__, HiKn-i 
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= Ηη+ιΚο + Hn+\K\ - Hn+\K0 + 2 ^ Hj(K„-i+2 — K„-i+\ — #„_,) 
0 

— Hn+2Ko + Hn+]K\ — Hn+\Ko 

= (Hn+i + H„)KQ + Hn+\K\ — H„+\KQ = Hn+\K\ + HnKo (1) 

.'. A„+\A„^\ — An = (//„+2#i + Hn+iKo)(H„K\ + H„-\KQ) 

— {Hn+\K\ + H„Ko) 

= (Hn+iH„ — Hn+X)KX 

+ (Hn+iHn-.\ — H„+IH„)KQK\ 

+ (^n+lft- l — Hn)KQ 

ButHn+2H„-.\—Hn+\Hn = (H„+]+Hn)Hn-\—(H„ + Hn-\)H„ = Hn+\Hn-\ — 
H2

n = ( - l ) V .·. An+IA„_, - A\ = (-1)"+Vff,2+ {-\)ημΚ0Κ{ + 
(-1)"μΚ2 = (-1)"μ(Κ2 + Kç>Kx - K2) = (-1)"μΙΚ0(Κ0 + Kt) - K2] = 
(-1)πμ(Κ0Κ2 - K2) — (-\)"μν. So the characteristic of the sequence {An} is 
μν. 

It remains to show that [A„] is a GFS. From (1), we have A„_i + A„_2 = 
(H„Ki + »,-,ΑΓο) + ( # . - ι * · | + H„-2K0) = (Hn + / /„_ , )* , + (//„_, + 
Α/„_2)*ο = Hn+XKX + H„K0 = A„. Thus μ „ } is a GFS. 

55. Follows from Exercise 54 with p = Ln,q = Ln+\, r — Ln+2, and s = L„+3. 

EXERCISES 8 (p. 130) 

1. 610 
3. 28,657 

5. 610 
7. 28,657 
9. 144 

11. 610 

13. 47 

15. 1364 

17. 47 

19. 1364 

21. 123 

23. 521 

25. 4181 

27. 4181 

29. 1364 
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31. 4181 
33. Ln+i = aL„ + 1/2 + Θ, 0 < Θ < 1. 

.·. hm —-— = a 
η->·οο L„ 

35 .L n + 1 =
 L " + 1 + ^ 2

L " - 2 L " + 1
+ ^ W h e r e O < ^ < l . 

.·. hm = a 
n-*oo L„ 

37. L(17, 711 + 1/2)/«J = 10,946 
39. 24,476 

41. lim —— = lim l(Fn V (Fn-2 Fn~i F "V 
\j\Fn+J \Fn-t ' Fn ' Fn+J 

1 1 V o ^ T T V3a -j 
—r + —7 = = = — 5 - = - V 3 p 

43. Follows by the Pythagorean theorem. 

45. l i m ^ = lim ' °1 + G "" 2 

n^oo y„ n-ooV G2_, + G2_ 

_ r _Çî_ l + ( g « ~ 2 / G n ) 2 _ / l + l / " 2 _ 
- n™oo G„_, V 1 + (G„_3/G„-,)2 " "V 1 + l /« 2 " 

EXERCISES 9 (p. 140) 

1. 8 
3. 4 

5. 8 
7. 4 
9. 8 = 42 · 1024 - 43 ■ 1000 

11. 4 = (-85) · 2076 + 164 · 1076 
13. 8 = (-71) - 1976 + 79 · 1776 
15. 4 = ( -97)-3076+151 1976 

17. By the division algorithm, a = bq+r, where q is an integer and 0 < r < b. Since 
d' = {b, r), d'\b and d'\r. .·. d'\a. Thus d'\a and d'|fc. So d'\(a, b)\ that is, d'\d. 

19. L„+1 = 1 L „ + L „ _ , 

Ln = 1 - ί-π-1 + ί-η-2 
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4 = 1-3 + 

3 = 3 - 1 + 0 
u n n 

Ln+lL„ = J ] L 2 + 3 1 2 = £ L 2 + 3 - l . T h u s ^ L 2 = Ln+iLn - 2. 
2 1 I 

EXERCISES 10 (p. 146) 

1. Yes 
3. Yes 

5. No 
7. Yes 

9. a„ = 2 ( - l ) n + 2",n > 0 
11. a„ = 3(-2)" + 2 · 3", n > 0 
13. a„ = F„+2,n > 0 
15. Ln =a" +ß",n > 0 

EXERCISES 11 (p. 149) 

1. 43 = 34 + 8 + 1 

3. 137 = 89 + 34 + 8 + 5 + 1 

5. 43 = 29 + 11 + 3 
7. 137= 123+ 11 + 3 
9. 43 = 34 + 8 + 1 

1 

49* 

2 

98 

3 

147 

5 

245 

8 

392* 

13 

637 

21 

1029 

34 

1666* 

43 · 49 = 49 + 392 + 1666 = 2107 

11. I l l = 8 9 + 21 + 1 

1 

121* 

2 

242 

3 

363 

5 

605 

8 

968 

13 

1573 

21 

2541* 

34 

4114 

55 

6655 

89 

10,769* 

111-121 = 121+ 2541 + 10,769 = 13,431 

13. 43 = 2 9 + 1 1 + 3 

1 

49 

3 

147* 

4 

196 

7 

343 

11 

539* 

18 

882 

29 

1421* 

43 · 49 = 147 + 539 + 1421 = 2107 
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15. 111 = 76 + 29 + 4 + 2 
2 

242* 

1 

121 

3 

363 

4 

484* 

7 

847 

11 

1331 

18 

2178 

29 

3509* 

47 

5687 

76 

9196* 

111 121 =242 + 484 + 3509 + 9196= 13,431 

17. Let n be a positive integer and let Lm be the largest Lucas number < n. Then 
n = Lm + «i, where ti\ < Lm. Let Lmi be the largest Lucas numbers < n\. 
Then n = Lm + Lm, + «2» where «2 5 £· Continuing like this, we get n = 
Lm + Lm, + Lm2 + · · · , where n > Lm > Lm, > Lm2 ■■ ■. Since this sequence 
of decreasing positive integers terminates, the desired result follows. 

EXERCISES 12 (p. 162) 

^-ç(47')-(Î) + 0) + G)-«+«-s 

—?('οΓ·>(Όο)+α)+©+α)+α)+©= 
1+9 + 28 + 35 + 15+1 = 89 

s. ç(;)^-ç(;)<*,+rt-ç(:)-,+ç(;)"'-<■+«>■+ 
( l+£) n =a 2 n +)S 2 ' , =L2« 

a)" - ^ ( 1 + 0)"] = y- = F2n+j 

a — p 

*ç(;)<-»"W = ^[ç(;>-»'",*'-ç(;)<-«)'H 
- ^ [ 4 O H ' - 4 0 ) H - ^[«/<i-")"-
ßJ(l-ß)" = -(aJß»-ßJcxn) = -±-2-± P = (-l)J+lFn-j 

a — p a — p 

11. Whenn =4 : 

u*. *[($* + (*)* + ($* + (*),}+ ($*!] 

= 5(4 + 6 + 16 + 9) = 175 
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= 2 + 12 + 42 + 72 + 47 = 175 = LHS 

Similarly, when n = 5 also, LHS = RHS. 

13. LV = 5/f + 2(-iy Λ £ ( " ) L2, = 5 £ ( j ) /? + 2 £ ( j ) (-1)' 

15. L] = L2, + 2(-l)', by Exercise 41 in Chapter 5; 

,.ç0^t(")^ç(")—?(")-
17. 2"Ln = (1 + V5)" + (1 - V5)" = £ ( " ) [ ( V 5 ) " + ( - ^5)"] = 

L«/2J / _ \ L"/2J / „ \ 

19. G; = (caj-άβι)/(α-β) 

= -j=[c(\-2ar-d(l-2ß)n] 

= C ( - V 3 r - ^ = 5 M , [ c H ) . , r f ] 

V5 

21· £ f " ) (-D'Fa = — ^ £ f " ) (-l)'(a2' -^2/).But (-l)'(a2' -^2i) = 
o V / a - p o V / 
(-a2)'-(-£2)'. 

0 

1 
[ ( l - a 2 ) " - ( l - / 3 2 ) " ] 

— - 1 - = (-D" FB 

a — p 
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- u*-ç(;)(-,y(^) 

C d cß" — da" - î - ( l -a)" - -^-(1 -/»)" = <* 7 
a - / ö a-ß a - ß 

c(-a)-" -d(-ßyn 

a-ß 
(-1)"G_„ 

«-'.„-„r-^id-«^^"-^«-
a - / 3 a r - 0 a - ß 

cay'~" - dßJ~n 

= {αβ)»- ^ _ = (-l)»G,_„ 
a-ß 

/ „ \ ™*+2' _ *+2ί _ β*+2ι „ * / ! i „2\n _ o*/i , a2\n _βΚ+ι, α*(1+α')η -ß*(l+ßZ)n 

ß a-ß 

[an+k _ (-l)"ff»+*](V5)" 

V5 

5("-,)/2L„+ii if« is odd 
5n/2F„+t otherwise 

29. 5" = (2a - l)2n = Σ (2" J (2a)''(-1)2"-' = Σ ( y ) (~2a)'. Similarly, 

5" = (1 - 2β)2" = Σ f2" ) (-20)'. Adding, 2 · 5" = £ f 2 " ) ( -2 )%. 
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31. (Swamy) 

^/5έ(*)'Γ«=ί:(*)<«4"'-'i")=Σ(;)«,"' 

0 V 7 

4m* 

= ( 1 + α 4 Τ - ( 1 + 0 4 Τ = a 2 m " ( a 2 m + c r 2 T 
olmn / aim ι o—2m\n 

= a2mn(a2'" + ß2m)n - ß2mn(a2m + ß2m)" 

LHS = L"2m Flmn 

EXERCISES 13 (p. 178) 

3 ' ^ 1 g c r ) = G)(o) + G)a) + G)© + 

G ) 0 H - ) O — ° — 
2 

5. r5 + j 5 = £ A (5, / )p 5 - 2 , y = P5 + 5p3^ + 5pq2 

o 
o l 

7. Since r + ί = £ / t ( l , Op0"2'? ' = p and r2 + s2 = Σ, A(2, i) p2~2i q' = 
o o 

A(2, 0)/72 + A(2, 1)<7 = p2 + 2q, the formula works when n — 1 and 2. Now 
assume it is true for all positive integers < k. First notice that: 

rk+\ + sk+\ = {rk+\ + sk+\ + rsk + rks) _ {rsk + rks) 

= (rk + sk)(r + s)- rs(rk~l + sk~]) 

= p(rk+sk) + q(rk-1 +sk~l) (1) 

Let« =k + 1. Using Eq. (1): 

l*/2J 

RHS 
o 

L / - f c J I / I · \ 

,>-'-*,< 
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L*/2J 

L(*-1)/2J / . 

= Σ^(*7')^-!ν 
o 

l(*+l)/2J 

(2) 
o 

Let k be even. Then Eq. (2) yields: 

*/2 ;. / . · \ k'2 

«a - Ç π (' 7 ' ) ̂ '+'-2v+Σ £ } (f: I ) «,+,-v 

-Σ[^('7') + Β(ί:!)]^^ 
^ Γ *(*-«·)■' (fc-l)(*-i)! 1 ,+1_2, ,· 
4 - L ( * - ' ) ( * - 2 / ) ! « ! (k-t)(k+I-2i)l(i-1)1] P 

o 

*/2 

(*-i)(* + l -2 i ) ! i ! ' - Σ ».»g:!- ,« , , , '»»+- - *>+« - '"i"'""2''' 
0 

*/2 y^(fc+l)(fc-l)! , + ,_2,· ■ 
^ ( * + 1 - 2 Î ) ! Ï ! 

o 

k/2 
V * + 1 A + 1 - ' \ 4+1-2/ / 

U*+l)/2j / / , , t \ 

Σ * + * / * + 1 - I λ t+l-2i i 
A: + 1 - / V ' / 

(3) 

Similarly, it can be shown that Eq. (2) leads to Eq. (3) when k is odd. Thus, 
by the strong version of PMI, the given formula works for all n > 1. 

* * - $ ( ν ) - ( 8 * ( ϊ Μ ϊ ) * ( ϊ ) + ( ί ) - - ' * 
21 + 20 + 5 = 55 
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11. r + s = p, r - s — j p1 + Aq = Δ 
32(r5 - j 5 ) = (p + Δ)5 - (p - Δ)5 = (10/>4 + 20p2A2 + 2Δ4)Δ 
3 2 ( / + 3/73<7+92)Δ 
. - . r s - j s = (/>4 + 3 p 2 i + 9 2 ) A 

13. Since r — ί p l'q' — Δ and rL — s 2 „2 

■ , - Γ 4 ( 7 ) 

Δ ^ Ι I p1 2'q' = Δ/7, the formula works when n = 1 and 2. 
Now assume it is true for every positive integer < k. First, notice that: 

r*+l - j * + l = (r*+1 - J*+1 - ri< + r*s) + (rsk - r*j) 

= (rk - sk)(r + s)- rs(rk~l - sk~v) 

= A>(r*-s*) + i(r*_ l - j * - ' ) 

Let« =k + 1. Using Eq.(l): 

o 

L'V'-J / 

Σ ' 
o v 

L(*-")/2j . . χ 

+Δ<? Σ f ~ ; ~ 2 V 2 / _ v 

o ^ ' 

0 ^ ' 

L(*-1)/2J 

+ Δ Σ (*~I
2~'L··"'-*'*'"" 

0 ^ ' 

= Δ Σ ( Γ )"4+I"V 

l (* + D/2J 

+Λ ç (--^-v 
Let £ be even. Then Eq. (2) yields: 

k/2 

(1) 

(2) 

RHS = ΔΣ(*"!"1)' , '+ ,"ν + Δ Σ ( * 7 - 7 , ν + , " 2 , ν 

o ^ ' o ^ ' 
k/2 r , . . . , 

■'ΣΚ'-ΓΧ';:;1)]^' 
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0 ^ ' 

KM-D/2J , . , 

= Δ Σ ( ~l)pk+l-2i^ (3) 
o x ' 

Similarly, it can be shown that Eq. (2) leads to Eq. (3) when k is odd. Thus, 
by the strong version of PMI, the given formula works for all n > 1. 

Σ««->.Λ-έ(6;0+Σ(ΐ:0 
o ο χ · ^ / ο ν / 

♦[(-'.ΜίΜϊΜϊ)] 
= (1 + 5 + 6 + 1) + (0 + 1+ 3 + 1) = 18 

»■£^έ0)+£(ΐ"-!)-0:!)-Ο" 

L6/2J 3 , - 3 , . 

Σ«·-7.Λ-Σ(67θ + Σ( 7') 
ο o X J / o x , / / 

-[(:)♦ (?)♦&)♦ G)] 

[G) + (ï) + G)] + 
(1+5 + 6+1) + (1+4 + 3) = 21 

2) 
2 , D ( „ , ) = (») + (» - . ) = ^ + < ^ 

EXERCISES 14 (p. 185) 

1. A(n,n)= l ,A(n,0) = F 2 n _ i , n > 0 ; 
A(«, 7) = A(« - 1, y) + A(n - l , j - 1), « > j . 

= (« - I ) ' 
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n-1 

3. Let S„ denote the nth sum, where So = 1. S„ = 1 + £ ^2n-2* = 1 + 
o 

E ^ = l + ( F 2 „ + 1 - l ) = F2n+1. 
I 

5. (P. S. Bruckman) Let Dn denote the sum of the elements on the nth diagonal, 
where Do = 1 = D\\ 

n/2 

^ F« + 1 if n is even 
1 

(« + D/2 
Σ FAk-i otherwise 
1 

Dn 

m m 1m 
Letn = 2m.ThenD2m = E f « + 1 = / Ί + Σ Χ ^ Μ - Ι - ^ - Ι ) = E ( - 1 ) ' F 2 | + 1 . 

1 1 0 
m + \ m + \ 

On the other hand, let n = 2m + 1. Then D2m+\ = Σ ^«-2 = Σ (^4*-ι -

1 1 
2m + l n 

F4k-3)= Σ (-l)'+1F2,+,.Combiningthetwocases,D„ = Σ ( - 1 ) " - ' > 2 ί + ι = 
0 0 

Ê(-i)- f (*·,+,+/?) = έκ-η"-' ^+,-ί-ΐ)"-'-'/1;2] = ^+,-ο = F„2
+1. 

0 0 
m 

7. Let n = 2m + 1. Then the rising diagonal sum is ]T FH+Î· Using PMI, this sum 
o 

can be shown to be F2m+2F2m+3 = Fn+\ Fn+2. On the other hand, let n = 2m. 
m 

Then diagonal sum = £ F4/+1 = F2m+\ F2m+2 = F„+, F„+2. 
o 

9. S0(a,fc) = a, S,(a,è) = a + b; Sn(a,b) = S„-\(a,b) +S„-2(a,b),n > 2. 
11. Since S0(a,b) = a - aF\ + bF0 and S\(a,b) = a + b = aF2 + bFu the 

result is true when n — 0, 1. Assume it is true for all nonnegative integers < k. 
ThenSt+,(a,fc) = Sk(a,b) + S*_,(a, b) = {aFk+x + bFk) + (aFk+bFk.l) = 
a(Fk+\ + Fk) + b(Fk + Fk-\) = aFk+2 + bFk+]. .·. By the strong version of 
PMI, the result follows. 

13. T„(a, b) = T„-[(a, b) + T„-2(a, b), where To(a, b) = a and T\(a, b) = a —b. 
The result now follows by the strong version of PMI, as in Exercise 11. 

EXERCISES 15 (p. 195) 

1. H(ji, 1) = H(n - 1 , 1 ) + H(n - 2, 1), where W(l, 1) = 1 = //(2, 1). 
Λ H(n, 1) = Fn. 

3. H(n,n-\) = H(n-\,n-2) + H(n-2,n-3) = / / ( n - 1 , l) + # ( n - 2 , 1) = 
H(n, 1) = F„. 

5. Ln+2 = (—iy~lLn-2j (mod 5). Let n = 2(m - 1) and j = m — 1. Then 
L2m = ( - l ) m - 2 L 0 = 2 ( - 1 Γ (mod 5). 
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7. Let U, V, W, and X be as in the figure. Then 
i / = A + B, V = C + D, W = D-C, and X = B- A. 

:.E=V-U=C + D-A-B,F = U + V = A + B + C + D, 
G = X + W = B + D-A-CmaH = W-X = A + D-B-C. 

9. Subtracting Eq. (15.10) from Eq. (15.9), 
H{n - 1, j) + H(n-l,j-l)- H(n - 2, j - 1) = F„. 
That is, H{n, j) + H{n, j - 1) - H{n - 1, j - 1) = F„+,. 

11. By Eq. (15.10), H(n, j) + H{n - 2, j - 1) = Fn + 1. 
Λ H(n - 2, ; ) + H(n - 4, y - 1) = F„_,. 
Subtracting, //(«, j ) - H{n - 4, j - 2) = F„+, - F„_, = F„. 

EXERCISES 16 (p. 207) 

1. F-, = 13, F21 = 10, 946, and 13|10, 946. 
3. (F12, F18) = (144, 2584) = 8 = F6 = F(12,18) 

5. (F144, ^1925) = F(i44i925) = F\ = 1 

7. 18|46,368, so L6|F24. 
9. (F144, F440) = F(i44,440) = Fg = 21 

11. V5Fmn =atmn-ßmn = (am -ßm)[a<-n-i)m +a^"-2)mßm -a(-"~î)mß2m + ■ ■ ■ + 
0<"-'>»]. Clearly, Fm|Fm„. 

13. (LeVeque) Suppose (F„, F„+i) = d{> 1), that is, there is a positive integer n 
such that F„ and F„+) have a common factor d > 1. Then, by the WOP, there is 
such a least positive integer m. Since (Fi, F2) = l, m > l.lf (Fm, Fm+i) = d, 
then (Fm_i, Fm) = d. But this contradicts the choice of m. 
.·. (F„,Fn+1) = l f o r a l l n > 1. 

15. 5 |10,butL5/Lio. 
17. F*F8 / F32 

19. [F8, F12] = [21, 144] = 1008 φ F24 - F[8,12] 

21. (F„ ,L„)= l o r2 . 

23. 5 
25. 11 
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27. 5 

29. 11 

31. 37|F19 

33. F3|F3„;thatis,2|F3„. 
35. Suppose 3|F„; that is, F4|F„. So 4|n. Conversely, let 4|n. Then F4|F„; that is, 

3|F„. 
37. 5|« iff F5|F„,thatis, iff5|F„. 

39. L3„ = a3" + ßin = (1 + 2a)" + (1 + 2ß)" = £ (n\ [(2a)' + (20)'] = 

£ ( n ) 2'L,. Since L0 = 2, it follows that 2|L3„. 

41. Let (F„, L„) = 2. Then 2|F„, so 3\n. Conversely, suppose 3|w. Let n = 3m. 
Then 2|F3m and 2|L3m. Then 2|(F3m, L3m). .·. (F„, L„) = (F3m, L3m) = 2. 

43. Since £,·_,- = (-l)j(Fi+lLj - F,LJ+i), L(2*-i)n = L2 t n-n = 
{-\)n{F2kn+xL„ - F2k„Ln+]). Fln\F2k„\ that is, FnLn\F2kn. :. Ln\RHS; that 
1S, Ln\L(2k-\)n· 

45. Clearly, Fm \ Fm. Assume Fm | Fmn for all positive integers« < k. Since Fm(t+i) = 
Fmll+m = Fmk^\Fm + FmkFm+\, it follows by the inductive hypothesis that 
Fm\Fm{k+\) . .'. By the strong version of PMI, the result holds for all n > 1. 

47. LHS = (21 + 34)F7 = 715, where n = 8. RHS = [21, 34] + (-1)8(21, 34) = 
714+ 1 =715 = LHS. 

49. (Freeman) The identity is true when n = 2. Assume it is true for an arbitrary 
integer k > 2. Then F2k+I = F2k + F2k-\ = FkLk + Fk+\Lk+2 - LkLk+i = 
FkLk + (Fk+2 — Fk)Lk+2 — LkLk+\ 

= FkLk + Fk+2(Lk+3 — Lk+\) — FkLk+2 — LkLk+\ 

= Fk+2Lk+3 — Fk+2Lk+\ — FkLk+\ — (Lk+2 — Lk+\)Lk+\ 

— Fk+2Lk+3 — Lk+\Lk+2 + Lk+\(Lk+\ — Fk+2 — Fk) 

= Fk+2Lk+3 — Lk+\Lk+2 + Lk+\ ■ 0 

= Fk+2Lk+3 — Lk+\Lk+2. 

Thus, by PMI, the result follows. 
51. n = 5 , so LHS = (11 + 18)F6 = 232 = [11, 18]+ (11, 18)F9 = RHS. 
53. LHS = (72+ 116)F7 = 2444=[72, 116]+ (72, 116)F|, = RHS. 
55. Follows since (Fm, F„) = F(mn) and (a, b) = (a, a + b) = (b, a + b). 
57. (Carlitz) Suppose Fk\Ln. Let n = mk + r, where 0 < r < k. Since a" + ß" = 

ctr(amk -ßmk) + ßmk(ar + ßr), Fk\ß
mkLr, so Fk\Lr. Since Lr = Fr_, + Fr+1, it 

follows that Lr < Fr+2forr > 2. Hence we need only consider the case Fr+\\Lr. 
Then this implies Fr+\ |Fr_i, which is imposable for r > 2. Thus Fk / L„ for 
k>4. 

59. Ft„ — 1 = Ft„ — F2 = F(2„ + |)+(2n-l) — ^(2π+1)-(2π-1) = ^2η+Ι^2η-1 

61. F4rt+2 + 1 = F4„+2 + F2 = F(2„+2)+2n + ^(2n+2)-2n = F2n+2L2n 
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63. F4„+3 + 1 = F4n+3 + F] = F(2„+2)+(2n + 1) + F(2„+2)-(2n + l) = F2n + iL2n+2 

65. LHS = (F2nL2n+l. Fln+lI-2n + \) = L2n+\(F2n, F2n+2) = L2n+\ = RHS 
67. LHS = (F4n —1, Fjn+i + 1) = (F2n+\L2n-\, F2n+iZ,2n) = F2„+i(L2n-l, ^2n) = 

F2n+1 = RHS 
69. LHS = (F4n+2 - l ,F 4 n + 3 + 1) = (F2nL2n+2, F2n+lL2n+2) = 

L2n+2(F2„, F2n+i) = L2n+2 = RHS 
71. Since go = 0, g\ = 12, and gn+2 = 7gn+i — gn, the proof follows by the strong 

version of PMI. 

73. (Stanley) Fkn+2r = F2r-XFkn + F2rFkn+1 and Fin_2r = F2r_{Fkn - F2 rFt n_i. 

.'. Fjt„_2r + Fkn + Fkn+2r = (2F2r_i + \)Fkn + (Fkn+i — Fkn-i)F2r 

= (2F2r^ + l)Fkn + FknF2r 

= (F2r + 2F2r_, + I) Fb, = (L2r + \)Fkn 

75. (Lord) When k = 1, h = 5 and 5|F5. .·. The statement is true when k = 1. 
Assume it is true for k. We have x5 - v5 = (* — y)(x*+xiy+x2y2+xy:i+ y4). 
Let* = ah and y = /3A. Then F5A = Ffc(L4A - L2Ä + 1)· But LAh - L2h + 1 = 
(5F2

2
A +2) - (5A2 - 2) + 1 =E 0 (mod 5). .·. F5h = 0 (mod 5h). Thus the statement 

is true for all k > 1. 

EXERCISES 17 (p. 213) 

1. Gm+n + Gm-n = Gm[Fn+l + (-1)"F„_,] + Gm_,F„[l - (-1)"] 

GmLn if «is even 
Gm(Fn+l - F„_i) + 2Gm_,Fn otherwise. 

Gm L„ if n is even 
(Gm + 2Gm_j)F„ otherwise 

GmLn if n is even 
(Gm+i + Gm-X)Fn otherwise 

3. By Exercises 1 and 2, 

r 2 _ r 2 _ { (Gm+i + Gm_i)GmF2„ if« is even 
^m+„ I ' m - { (G m + 1 +G m _ 1 )G m F 2 n otherwise 

= (Gm+i +Gm_i)GmF2„ 

5. (Swamy) 

J2a2k-i = X)(aa-i +α2*) - £ α 2 * = Σ β * - Σ 
1 1 1 1 1 

2n 

= («4n+l - a ) - («2n + l ~ a) 

= #4n+l — «2n+l 
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7. G4,„+i + a = G4m+i + G\ = G(2m+\)+2m + G(2m+i)-2m = G2 m + |L 2 m , by 
Exercise 1. 

9. G4 m + 3 + a — G4m+3 + G\ = G(2m+2)+(2m + l) + G(2m+2)-(2m + l) 

= (G2 m +3 + G2m+\)F2m+\, by Exercise 1. 

11. G 4 m + i —a = G4m + \ — G] — G(2m+l)+2m — G(2m + |)-2m 

= (G2 m + 2 + G2m)F2m, by Exercise 2. 

13. G4m+3 — a = G4m+3 — Gi = G(2m+2)+(2m + l) - G(2m+2)-(2m+l) 

= G2m+2 L2m+\, by Exercise 2. 

15. (G4m+i — a, Gim+2 — b) — ((G2m+2 + G2m)F2m, (G2m+3 + G2m+i)/*2m) 
= F2m 

EXERCISES 18 (p. 225) 

2 1 
1. 

x - 1 x + 3 
2 3 

3- ■:—Γ- + 1 + 2x 1 - 3JC 

1 2x - 1 

2 + 3x x2 + 1 
„ 1 — jc 2x 
7. -^ r + x2 + 2 x2 + 3 

x - 1 2x + 1 
9. - ; r + x2 + 1 x2 - J C + 1 

11. an = 2",n > 0 

13. a„ = 2n — 1, « > 1 

15. a„ = 2"+I -6n-2",n > 0 

17. α„ = 5 · 2" - 3 " , n > 0 

19. a„ = F„+3,n > 0 

21. a„ =3-2" +n ·2"+',η > 0 

23. a„ = 3 ( - 2 ) " + 2 ' ' - 3 " , n > 0 

25. a„ = 2" +3n-2" -3",n > 0 

27. an =n-2n+] -n22",n > 0 

29. a„ = 2 ( - l ) " - « ( - l ) " + 3 « 2 ( - l ) " - 2 " + ' , « > 0 

EXERCISES 19 (p. 237) 

1. By Eq. (19.3), f(x) = p — . .·. / ( - * ) -
e «-* _ £ - £ Λ ĝ 1-» _ ^<™ 

■——, so f{x) = -ex f{-x). 
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3. By Exercise 2, g(x) = eax + eßx, so g ( -x ) = e~ax + e~ßx = 
eax + eßx 

g(x) 
■ :.g(x) = exg(-x). 

5. Let g(x) = Σ^ηΧ". Then 4xg(x) = E4F3„_3x" and x2g(x) = 
0 1 

oo 
Y^F3n_6x

n, so (1 - Ax - x2)g(x) = 2x, since F3n = 4F3n_3 + F3n_6. 
2 

2JC 

■'•«to = -,—: a· 
1 - 4* - x2 

7. (Hansen) Let Δ = 1 — x — x2. Then: 

m=0 

2_^(LmLn + Lm-\L„-.\)xm 

OO 00 

= LH
,£iL„xm + LH.iJ2Lm.ixm 

m=0 m=0 

[L„ + (L„ - £„_,)] + [2L„_i + (L»_i - L„)]x 

£« + ί-π-1* ^«-2 + £-n-3* 
Δ Δ 

oo 

m=0 

.'. L,mLn + Lm — iLn — \ — Lm+n T i-m+n—2 — 3·«ΊΠ+Λ—1 

9. Let A(t) = — = B(t). Then, by Eq. (19.6), 
e°" - eßt 

a- ß 

00 

Σ 
n=0 

έ(ϊ) FkF„ 

k=0 v 7 

-* 

,« e2<*' + e2^i _ 2e(«+^)r 

n\ (α-β)2 

^ ( 2 " L „ - 2 ) t" 

*-H 5 n! 
n=0 

2"L„ - 2 
Ft F n-k - , 
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11. (Padilla) (1 - x -x2)An(x) = F„xn+2 + Fn+lx
n+l -x. 

F„x"+2 + Fn+ix
n+l - x 

■ ■.A„(x) = -
1 - x - x2 

Fn (tt + l ) F » + v + 1 + g , 
13.(1-Χ-Χ2)Β(Χ) = - Χ 2 Σ ^ Χ " - Σ - , ^ „ , 

o n\ o ( " + 1)! 
■v/5(l - JC - x2)B(x) = VBV - x2(eax - e?*) - x{aeax - ße^) 

oo 

15. ΣLm+nx
m = Y^{am+" + ßm+n)xm =α"Σotmxm + β"Σ^χ" 

0 0 

β" 

m=0 n=0 

a" 
+ 1 - ax 1 - βχ 

(an + ß") + (er""1 + β"-ι)χ L„ + Ln-ix 
l-x-x2 l - x - x 2 

17. (Carlitz) Let C(x) = Σ Cnx
n, where C0 = 0. 

o 
00 

(1 - x - x2)C{x) = Ctx + (C2 - Ci)x2 + Σ Fnx
n 

3 
00 OO 

= Fix + F2X
2 + Σ, F„X" = Σ PnX" = 

l-x-x2 

Λ C(x) 
(1 -x-x2)2 χΣα + i)(x + χ2γ = Σ(Ϊ + i)xi+i(\ +xy = 

Ed + D*/+l t ( 0 xJ' = Σ fta + D Î / ; ) 
i=o j=o\J / «=o u=o \ " ' / 

•■■c-=,ç„(i+ i ,(»-/)=ï>-f+i ,("<") 
00 

19. Let Λ(ί) = e<" + e?' and B(t) = e'. Then A(f)ß(/) = Σ 
n=0 

That is, E i 2 , - = «" ' + e"' = e ( a + , ) ' + ^ + 1 ) ' = Σ 
=0 1 ! n=0 

nf 
t" 

n\' 

(" 

ah _ pßh 
21. Let A(/) = —- and ß(/) = <r'. Then -

a - j 8 

Σ 
«=o 
00 

Σ 
n=0 

" / . \ I t " *<" 
Ε Η Γ ' ^ - . T h a t i s , — 
=o \ k / J «! « 

t(-D 
,*=o 

n-k 

Ï) '2* 

„«' _ e/" 
a - ß 

£ 
■ So F„ = £ ( - ! > 

fc=o -'(0 ' 2 * · 
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23. (Church and Bicknell) Let A(t) = 
e""' - e""' 

a-ß 
oo t" e2"'"' — e2^™' oo Γ n 

yields Σ 2" Fmn-= — ~ ~ 
«=o n\ a-ß 

and B{t) = ea"' + eßm'. This 

l\t(n) 
n=0 U=0 V * / 

^mk^mn—mk 
n\ 

■ ■ 2—1 I i I *'mki-'mn-mk = £ rmn. 

25. (Church and Bicknell) Let Ait) = e""' + eßm' = Bit). This yields 

{f'+ef·')2 = g \± (n) LmkLmn-mk\ -. 
n=OU=0 \K / J n-

That is, £(2n Lm ( l + 2L-J 
t" 

02aml 

«=0 n\ 
+ e2^' + 2e<«"+"">' 

/ . I F I '-'mk'-'mn—mk . 

t = o W J " ! 

00 

= Σ 
n=0 

n 

.·■ Σ 
27. (Church and Bicknell) 

. ( : ) 
^-mk^mn—mk — ^ *->mn i ^ ^ m 

Σ*« 
n=0 

ί" 

n! 

e « " ' _ eß
m' e(aFm + Fm-t)l _ e(ßF„ + Fm-X)i 

a-ß a-ß 

/ . o f . l „ßFmt\ °° Γ " / „ \ 

ν " ^ / „=0 LA=O v 7 

/" 

«! 

The desired result now follows by equating the coefficients of t"/n\. 

EXERCISES 20 (p. 246) 

1. Yes 
3. Yes 

5. Ά a ? 5 
AC . \-CB 1 , 

= a; that is, = a. .·. = a + 1 = a 
CB CB CB 
Thus, BC = \/a2 and AC =a■BC = l/a. 

7. t2 + t - \ = 0 
9. -/3 

11. Let x denote the given sum. Then x = vT^3 t ; that is, x2+x — \ = 0. ;.x = — β. 
13. Let a/b = c/d = k. Then b/a=l/k = d/c. 

15. Let a/& = c/rf = k. Then (a - è)/è = ibk - b)/b = k - 1 = idk - d)/d = 
(c - d)/d. 
Sum of the triangular faces 4(2fo · a)/2 a 

17. — = ———:— = - = a, sa a = ba. 
Base area (2o) b 

19. 1 + l/a = (a + l)/a = a2/a = a. 
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21. a2 =a+ \,soa" = a"'1 + αη~2,η > 2. 

23. LHS = —- = = a 
1 — 1/or a — 1 

25. LHS = a4 = (a + l)2 = 3a + 2 
27. ay/3-a = V3a2 - a3 = V3(a + l ) - a ( a + 1) = VÖT+2 

V5 10 + 2^5 
— - 4 ■ · -

1 + cos π/5 a + 2 

oo ^ o 5 + ^ 1 0 + 2 ^ 5 r—-z y/lO + 2V5 
29. a + 2 = = .·. \/a + 2 = 

2 4 2 
3 1 . 0Ο527Γ/10 = 

/ in ^ " " + ^ 
. · . COS7T/10 = 

2 
1 ! p - 1 , 1 

33. υ + — = v + = v + = v + 1 - -
vl v + 1 v v 

v2-l 
= (v - 1/v) + 1 = + 1 = 1 + 1 = 

35. hm —-— = hm 
»->» L „ + i n^-oc an + 1 + β' n + 1 J- Λ«+Ι 

<*"[!+(/?/«)"] = 

™ a " + 1 [ l + (j8/a)"+1] 

„ ,. G«+i ,· c<*n+x-dß"+i 

37. hm = hm = a 
η-κχ> G„ n-voo c a " — dß" 

EXERCISES 21 (p. 265) 

1. πα 
na2y/?> — a 

' 24 

5. (x * y) * z = [a + />(* + y) + cxy] * z 

= a +b[a + b(x + y) + cxy + z] + [a + b(* + _y) + cxy]cz 

= a + b(a + cjry + z + czx + cyz) 

+b2(x + y) + c2xyz+caz (1) 

Likewise, 

x * (y * z) = a + b(a + x + cyz + cxy + czx) 

+ b2(y + z)+ cax + c2xyz (2) 
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Since * is associative, Eqs. ( 1 ) and (2) yield b2(x — z) + b(z — x) + (z - x) = 0. 
Since x, y, and z are arbitrary, this implies b2 — b — 1 = 0, so b = a or ß. 

7. (Alexanderson) Let p(x) = x" — xF„ — F„_i, g(x) = x2 — x — 1, and h{x) = 
H h F„_2x + F„-i. Then p(x) = xn~2 + xn~3 + 2xn~4 + ■■■ + Fkx"-k-] 

g(x)h(x). When x > 0, h(x) > 0. When x > a, g(x), h(x) > 0; so p(x) > 0. 
When 0 < x < a, g(a) < 0; so p(a) < 0. 

Suppose Xk > a. Since p(x) > 0, x£ > jc*Fn -f F„_i = x£+1, so JC* > JC*+I. 

In addition, x£+l = XkF„ + F„_i > aF„ + F„_i = a". So χ*+ι > α; .·. xk > 
Xk+i > a. Thus xo > a implies xo > x\ > xi ■ ■ ■ > a. Similarly, if 0 < xo < a, 
then 0 < XQ < x\ < xi < ■ ■ ■ < a. 

Thus, in both cases, the sequence {**} is monotonie and bounded, so xk 

converges to a limit/ as k -*■ oo : I = f/Fn-\ + /F„. Since/2 —IF„ — F„_] = 0, / 
is the positive zero of p(x). But a is the unique positive zero of p(x), so 
/ = lim Xk = a. 

k-*oo 

9. Since \ß\ < 1, Sum = 
1 1 1 

= a 

„(+1 
11. t = 

1 

i + 1 

13. (King, 1971) 

i + 1 

Fn+k 

\-\ß\ l+ß ß2 

. So t2 +1 - 1 = 0; that is, / = -a, β. 

a n+k ß n+k ak 1 - 0 n+it 

Ln 

Θ" -*· 0 as n -> oo; 
»00 Ln 

15. (Ford) By PMI, a„ = Fn + k(FH+i 

V5(a" + ß") V5 
Fn+k _ ak 

l); 

1+0" 
, where \θ \ = <, so 

lim 

lim^=limri+^^±i-f) 
«-»•oo F„ «-»oo |_ \ F„ r" ) 

17. By PMI, b„=L„+ kF„_,; 

1 1 , * 

a V5 V5a 

= 1 + ka. 

l+k -1- 1+*· 

19. (Lord)Ê ( " ) ö3 ' - 2" = a"2" Σ ( " ) (<*3)' = a - 2 n ( l+a 3 ) " = a-2 n(2a2)" = 

2". 

21. (Ford) Assume xn φ — 1 for every n. By PMI, *„ = 
*oF„_i + F„ 

*oF„ + F„+i 

—̂ — · =r—7ΪΓ-; ·'· ·*« is defined when XQ φ —F„+\/Fn, n > 1. When 
F„ xo + F„+i/Fn 

*o # -F n + 1 /F„ , hm Λ:„ = ■— = - = -β. 
n-*°o a xo + « a 

23. Clearly.r ^ 0. (r, r 2 , . . . , r",...) 6 Viffr" = rn- '+r"-2; thatis, iffr2 = r+l. 
25. au + b\= (aa + bß,..., aa" + bß",...) = F iff au + bß = 1 = act2 + bß2. 

Solving these two equations, we get a = I/(a — ß) = —b. 

27. f\x) = (x /A) l / n and/ ( m )x = A n ( n - l ) · · · (n-m+l)jcn-m.Then/-1(;c) = 
f(m\x) implies (x/A)i/n = An(n - 1) · · · (n - m + \)xn~m; that is, x/A = 
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A"P[n(n - 1) · · · (n - m + 1)]"PX»P<"-»>\ Then A"p+l[n(n - 1) · · · (n - m + 
\^γρxnp(n-m)-\ _ Q SO pn2 _ mpn _ j _ Q Solving, we get the desired result. 

EXERCISES 22 (p. 271) 

1. Since A ABC is a golden triangle, 

AB 

AC 

AD 

CD' 

AD 

~CD 

AC 

C~D 

AB 

~ÄC 
BC 

AC 
a. Since AABC ~ AADC, 

= a, so AC AD is a golden triangle. 

3. Since AABC is golden, 
BC 

A~C 
isosceles, it follows that AD = AC 

AreaAAßC 
from A to BC. Then = 

AreaABDA 
BC Area Δ A B C 

Area AB DA 
BC BC 

CD 

= a; that is, 

1 

a and AC AD is also golden. Since AABD is 

- BD. Let h be the length of the altitude 
1/2BC -h _ BC _ BC _ 

\/2BDh ~ B D ~ A~C ~ "' 
Area AABC \/2BCh 

BD = «; 

BC-BD 1 - 1/a 

Area AC DA 1 /2CDA 

EXERCISES 23 (p. 292) 

1. -ß 
AB 

3. 
BC 
ß £ 

/ 
k. Let 

Area ABCD 

Area AEFD 
k\ that is, 

AB ■ BC 
AE ■ BC 

= k, so 
BC ob w 
AB I 

= k. Thus = k, so AE — vu. Since ABCD and BCFE are similar, 
AE AE 
AB BC I w I 
—— = —— ; that is, — = , so — = k = a . 
BC CF w I — w w 

I 

A E B 
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, , , ' ^ AB BC 
Conversely, let k — — — a. Then 

w BC 
1 

is, . „ , „ „ = «■ So AE = BC = w 

BC 
= a, so 

CF AB-AE 
= a. That 

AieaABCD AB ■ BC 
Area AEFD AE ■ BC a-AE/BC 

AB _ AB _ 
~ÂÊ~~BC~ ~U 

In both cases, AE — w; so AEFD is a square. 
FG BG 

5. Using Figure 23.3, since both are golden rectangles, = = a. Since 
BG BC 

FG FP BG 
AFPG ~ ABPC,a = — - = - — . Since ABPG ~ AB PC,a = = 

BG GP BC 
BP FP _BP 

~CP' ~GP~~ CP~a' 
BG AC AB 

7. Since BGHC is a golden rectangle, —— = a; that is, —— = a. Then —— = 
BC BC BG 

AC + BC AC + BC , BC , , , , Λ ^ . 
= — — = 1 + T £ = 1 + 1/a = 1 - β = a; .·. A 5 G F is a 

ßG AC AC 

golden rectangle. 

9. Z 5 F ß = 1 8 0 ° - ( Ζ Λ Ρ 5 + Ζ Α Ρ Ο ) = 180° - (45°+45°) = 90°. 

.·. The parallelogram PQRS is a rectangle. Since ΔΑΡ5 ~ ABPQ, 

PS AP PS 
. But = a, so = a. Thus PQRS is a golden rectangle. 

PQ BP PQ 

AP 
~BP 

11. Shorter side = {-\)n+\bFn - aF„-i); longer side = (-l)"(feF„_i - aF„_2). 

EXERCISES 24 (p. 307) 

1. Follows by Candido's identity [x2 + y2 + (x + y)2]2 = 2[x4 + y4 + (x + y)4], 
with x = Fn and y = Fn+\. 

3. Follows by Candido's identity with x = G„ and y = G„+\. 

5. (Prielipp) (Ln_,Ln+2)2 + (2LnLn+l)
2 

(2L„L„+1)2 = (L2
+1 - L2)2 + (2L„Ln+i)

2 = (L2
+1 + L2)2 = (L2„ + L2n+2)

2. 
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EXERCISES 25 (p. 324) 

1. ACQR and ACDR are isosceles triangles with CQ - CR and CR = DR, 
respectively. Thus CQ = CR — DR. Continuing like this, we get CQ — CR = 
DR = DS = ES = ET = AT = AP. 

Since the point of intersection of any two diagonals originating at adjacent 
vertices of a regular pentagon divides each diagonal in the Golden Ratio, it 
follows that DQ = aDR, so RQ = DQ - DR = (a - l)DR. Similarly, 
ST = (a - l)SD; .·. QR = ST. Continuing like this, we get PQ = QR = 
RS = ST = TP. Thus PQRST is a regular pentagon. 

3. By Heron's formula, Area = Js(s — a)(s — b)(s — c), where 2s = 2AP + 
TP — 2{a/a2) + a/a3 = 2a/a; :. s = a/a. 

Area = y/a/a(a/a — a/a2)(a/a — a/a2)(a/a — a/a3) 
2 

= —J{a - \){a - \){a2 - 1) 
n/t 

a2(a — l)J(a2 - 1) a2{a - 1 )^5 

1 a ay/a+ 2 a2 Ja + 2 
5. Area ACDS = 1/2 · CS ■ h = „ , = - ^ — ; . 

2 a 2al 4cr 
„ 1 a a Ja + 2 a2 Ja + 2 

7. Area SPRD = 2 (area ARDS) = 2 ■ 7 = _ . 
2 a6 2az 2a5 

9. or3 : 1 

11. SR = a/a3, TQ = (a/a3)a = a/a2, and ZY = SR/a3 = a/a6; .·. 2s = 
2PV + ZV = 2(SR/a2)+a/a6 = 2a/a5 + a/a6 = 2a(a + \)/a6 = 2a /a4; 
so s = a/a4. By Heron's formula, 

/
a / a a \ / a a \ / a a \ 
i ï 4 V a 5 / V a 4 a5/\a4 a 6 / 

fl2 n—Π7—ΪΤ7!—ίτ α 2 ( α ~ ] ) ^ " 
= -ÏHV (a - l)(a - l)(a2 - 1) = Tn . 

. „ . 1 „ , \ a a ,„ a2cos7z75 a2 

13. Area Δ£>/?5 = - · RS ■ h = · - COSTT/5 = ~ = — -
2 2 a3 a 2a4 4a3 

Desired area = area PQRST + 5(area Δ DRS) 
5a2 5a2[a2 + (a - \)Ja~^l] 

aJT^t 4a4 

5α2(α3 - Jl^ä - (a - l)J3a-4) 

5a2 

+ 4a3 

4 a 4 V 3 - a 
15. By the Pythagorean theorem, (ar2)2 = a2 + (ar)2. Then r4 = r2 + 1, so r2 = a 

and hence r = yfä. 
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17. Since AGOK is isosceles, GK = GO = r. AGLD and AGOK are similar and 
GD GK , . GD r 

g 0 , d e n ; ■■ -15 = OK = a ; t h a t 1S' I D = όκ = α ; Λ G D = aLD-But 

LD = OD = r, so GD = ra. 
Since AD = GD,AD = ra. 

19. jc5 - 1 = (JC - 1)(Λ:4 + x3 + x2 + x + 1) 

x4+x3+x2+x + l = Ogives (x2 + l/x2) + (x + l/x) + l = O.Lety = x+l/x. 
Then .y2 4- y — 1 = 0, so y — —a, — β. When _y = —a, x+l/x — —a. Then 

—a ± •Ja2—A 
x2 + ax + 1 = 0, so x = . When y = -ß, x + l/x = -ß. 

-ß ± Jß2 - 4 
Then x2 + /3JC + 1 = 0, so x — . Thus, the five solutions are 

-a ± V o 2 " ^ J -ß ± y/ß2-4 
1, , and . 

/ a - 1 a \ 2 it _ . . aV3 — a \ /3 — a 
21. Aßz ' ' 

2 2 y 

( 2 a - l)2 + ( 3 - a ) ( a - l)2 

4 

[4(a + 1) - 4a + 1] + [(3 - a)(a + 1 - 2a + 1)] 
= 3 - a; 

.·. AB = V 3 - a 

. , a a — 1 2a — 1 
23. AE = V 3 - a , BD = aV3 - a , and Λ = - + — — = — - — 

1 . _ . 1 
Area of trapeziod ABDE = -(AE + BD)h = - ( V 3 - a + 

2a - 1 (3a - l )V3~^ä 
a-s/3 — a) 

2 4 

( M f I + f ) 
2 ' ßJT=a~ ßJT=ü\ η Λ V19^ + 13 

25. P Ö 2 = - ^ — + Τ + l·^ + ^ \PQ = 1 ) 2 

, / 2 / 8 + 1 α \ 2 h<JT^~ä~ V3" - , , „ 
Α/>2 = [ -^—- + - ) + - ^ + — - — \ΑΡ = 

0 4 ( 3 - α ) 

2 
2/8+1 α \ 2 3*/3~ΞΤα~ ^/3~^~α~\ Λη y/9ß + 2\ 

2 2 

QC2 = (1 + β/2)2 + ß ( 3 Γ α ) ; ß C = 3 + 4)3 
4 

27. 1 : 1/α : 1/α2 : 1/α3 

AE AD 
29. AAC£ ~ AAED; .·. = = Λ: (say). Since Α£ = AB and AC = 

AD AB + BD AE + BD , AC 
fîD, = = = 1 H ; that is JC = 1 + l/x, so 

' AE AE AE AE 
x = a. 
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31. F2 = 2£(- i rcos1 -*7r /5s in*7r /10 

= 2[(-1)°(α/2)(-ρ72)° + (-1) ' (α/2)0(-ρ72)] = 1 

3 

F4 = 23^(- l)*cos3- ' :7r /5sin*7r/10 
o 

= 8[(-1)°(α/2)3(-^/2)° + (-1)(α/2)2(-ρ72)] 

+ [(-l)2(a/2)(-ß/2)2 + ( - l ) 3 (a /2)0(-py2)3] 

a3 a2ß aß2 ß3 

8 8 8 8 

= a3 + a2ß + aß2 + ß3 = (a + βΫ - laß (a + ß) = 1 + 2 · 1 = 3 

33. (V. E. Hoggatt) By Eqs. (25.2) and (25.3), 

F„ = —-—(cos" π/5 sin π /5 sin 3π/5 + cos" 3π/5 sin 3π/5 sin 97Γ/5) and 

(-1)"F„ 
2«+2 

- (cos" 27Γ/5 sin 2π/5 sin 6π/5 + cos" 4π/5 sin 4π/5 sin 12ττ/5). 
2"+2 4 

Adding, [1 + ( - 1)"]F„ = £ cos" kn/5 sin ibr/5 sin 3*ττ/5 
5 i 

2« + l 4 t r· 'ç 

Thus Vcos" &π/5 sin &π/5 sin 3&π75 = I " 
5 i lO otherwise 

EXERCISES 26 (p. 331) 

X X 
1. The asymptotes are y = ± —=.. Solving the equations y = ± —= and y2 = 4ax, 

Va ν α 

we get the given points. 

3. PQ = y/(aa2 - aß2)2 + (2aa - laß)2 = J5a2(a - ß)2 = 5a 

5. x - ßy + aß2 - 0, x - ay - 4a + aa - 0. 

7. The slopes of the tangents at P and Q are 1/ar and l/p\ respectively; 

1 / a - l / p " 
tan 6· 

1 + 1/a-l/p-
^ = oo, so θ = π/1. 

9. The slopes of the normals at P and Q are —a and —p", respectively; 
- a + p " 

.·. tan Θ -
\+αβ 

= ^ψ- — oo, so θ = 7τ/2. 

11. SQ = y/(a - aß2)2 + (0 - 2αρ~)2 = V5a|/Ö| and 
QR = ^(αρ"2 - O)2 + (2e/î + 2α)2 = jlaß2; .·. SQ : ß/? = |/J| : p"2 = 
a : 1. 
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EXERCISES 27 (p. 338) 

23 
3 10 43 225 

' ' 2' Τ ' 30' 157 
P4 5 · 43 + 10 _ 225 p5 _ 6 ■ 225 + 43 _ 1393 

' C4~~q~*~ 5-30 + 7 ~ 157; 5 "" q5 ~ 6 · 157 + 30 ~ 972 
9. Since C\ = 1 = F2/F1 and C2 = 2 = F3/F2, the formula works for n = 1 and 

n = 2. Assume it is true for all positive integers k < n, where n > 2 : C* = 
P*/<?* = Fk+i/Fk, so /?* = F/fc+i and <?* = F*. Then p„ = 1 · />„_i + p„_2 = 
F„ + F„_i = Fn+i; similarly, q„ = F„; .·. C„ = p„/q„ = F„+i/Fn. Thus, by 
PMI, the formula is true for all n > 1. 

11. C„ = , . . C„ — Cn_i = — — 
F„ F„ F„_i F„F„_ 

.·. l im(Cn-Cn_,) = 0. 

EXERCISES 28 (p. 347) 

7 

1. £ i F i = 1-1+2-1+3-2 + 4-3+ 5-5 + 6-8 + 7-13 = 185 = 7-34-55 + 2 = 

7F9 - Fio + 2. 

3. LetSj = £,F2k = F2j+l-l. 

LHS = 2 ^ F 2 t + 2 ^ F 2 , + · · · + 2 ^ F 2 ( k 

1 2 « 

= 2[S„ + (S„-S,) + --- + (Sn-S„_1)] 

n - l 

= 2[nS„ - Σ Sj] = 2[n(F2n+1 - 1) - (F2„ - 1) - n + 1] 
1 

= 2(nF2n+1 - F2„) = RHS. 

5. LetS, = :CL2,-, = L 2 , - 2 . 
1 

LHS = Σ Ux-\ + 2 Σ L21-1 + · · · + 2 £ L2i_, 
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= S„ + 2[(Sn-S,) + --- + (Sn-Sn-,)] 

n-\ n-l 

= (2n - \)S„ - 2 J2 Sj = (2n - 1)S„ - 2 £ ( L 2 ; - 2) 

= (2n - 1)(L2„ - 2) - 2[(L2„_, - 1) - 2(n - 1)] 

= (2n - \)L2n - 2L2n-\ = RHS. 

y 
7. Let 5; = £ L2* = L2;+i - 1-

LHS = 2 J ^ L a + 2 ^ L2 /+ · · ■ + 2 ^ L 2 / 

1 2 n 

= 2[S„+(S„-SI) + --- + (S„-S„_,)] 

n-\ n-\ 

= 2{nSn - £ > , ) = 2[n(L2n+i - 1) - ]T(Z,2;+1 - 1)] 

= 2[«(L2n+, - 1) - (L2n - 3) + (n - 1)] 

= 2(nL2 n + 1-L2„+2) = RHS. 

9. LHS = (a - d) £ L i + rf Σ iL/ = (a - d)(Ln+2 - 3) 
1 I 

+ d(nLn+2 - L„+3 + 4) 

= (a+nd- d)Ln+2 - d(Ln+3 - 7) - 3a = RHS. 

n n 

11. LHS = (a - d) Σ Ff + d J^ iFf = (a - d)F„Fn+] 
I I 

+ d(nFnFn+l -Ff + v) 

= (a+nd- d)FnFn+] - d(F2
n - v) = RHS. 

13. Let S„ = Σιί,? and 5„* = Σ(η - i + 1)L?. Then S„ + S* = (n + 1)ΣΖ,? = 
(n + l)(LnLH+i - 2); .·. S*n =(n+ \)(LnLn+i - 2) - (nL„Ln+, - h\ + υ) = 
L„L„+i + Lj - 2(n + 1) - v) = LnLn+2 - 2(n + 1) - v. 

15. Let 5 = E[a + (i-\)d]Lj and S* = Έ[(α + (η -i)d]L?.ThenS + S* = (2a+ 
(n-\)dT,L] = [2a + (n-l)i/](Z.„Ln+1-2); .-.5* = [2a + (n-l)</](LIIL(I+1-
2)-(a+iii/-i/)(L)ILII+|-v)+d(L2-2n-w)=a(L(ILn+i-2)+i/(L2-2n-w). 
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17. Let Sj = Σ/G* = Gj+2 - b. 

n n n n 

1 1 2 n 

n - l 

= S„ + (S„ - S,) + ■ ■ ■ + (S„ - S„_,) = nS„ -J2Si 

1 

n - l 

= n(Gn+2 -b)~ £(G, + 2 - b) 
1 

n - l 

= n(Gn+2 -b)-J2 G>+2 + (« - D* 
1 

= n(G„+2 - ft) - (G„+3 -b-a-b) + (n-\)b 

= rtG„+2 - G„+3 + a + b 

19. ΣGv-i = Σ G a - Σ G2/-2 = G2« - G0 = G2n +a - b 
1 1 1 

21. Let S,· = Σ, Gik-\ = G2j +a-b. 
1 

£ ( 2 i - l )G a - i = £ G2/-1 + 2 Σ Gji-i + ■ ■ ■ + 2 ] T G2i-i 
1 1 2 n 

= S„ + 2(S„ - 5.) + · · · + 2(S„ - S„_,) 
n - l n - l 

= S„ + 2(n - 1)S„ - 2 ^ 5 , = (2n - \)S„ - 2 ^ S , 
1 1 

n - l 

= (2n - 1)S„ - 2 £](G2, + a - b) 
1 

n - l 

= (2« - \)Sn -2J2 G2, - 2(II - l)(a - fe) 
1 

= {In - l)(G2n +a-b)- 2(G2„_i - a) 

- 2 ( n - l ) ( a - f c ) 

= (2n - l)G2n - 2G2n_i + 3a - fc 
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EXERCISES 29 (p. 354) 

10 
1. £ , 2 F , = 121Fi2 - 23F14 + 2F,6 - 8 = 121 · 144 - 23 · 377 + 2 · 987 - 8 

= 10,719. 
5 

3. £ i 3 F i = 2I6F7 - 127F9 + 42F n - 6F,3 + 50 
1 

= 216 · 13 - 127 · 34 + 42 · 89 - 6 · 233 + 50 = 880. 

5 

5. £ V F , = 1296F7 - 1105F9 + 590Fn - I8OF13 +24F1 5 - 4 1 6 
1 

= 1296 13 -1105 -34 + 590 - 8 9 - 180 · 233 + 24 · 6 1 0 - 4 1 6 

= 4072. 

7. LHS = F, + 4F2 + 9F3 + 16F4 + 25F5 + 36F6 = 1 + 4 - 1 + 9 - 2 + 1 6 - 3 + 
25 · 5 + 36 · 8 = 484. 
RHS = 49F8-15F,o + 2F i2 -8 = 49 -21-15-55+2-144-8 = 484 = LHS. 

9. LHS = F, + 8F2 + 27F3 + 64F4 + 125F5 + 216F6 = 1 + 8 · 1 + 27 · 2 + 
6 4 - 3 + 125-5+ 216· 8 = 2608. 
RHS = 343F8 - 169F10 + 48F,2 - 6F,4 + 50 = 343 · 21 - 169 · 55 + 
48 - 144 - 6 · 377 + 50 = 2608 = LHS. 

11. LHS = Li + 16L2 + 81L 3 +256L 4+625L 5 + 1296L6 

= 1 + 16 · 3 + 81 · 4 + 256 · 7 + 625 · 11 + 1296 · 18 = 32,368 

RHS = 2401L8 - 1695L10 + 770L,2 - 204L14 + 24L,6 - 930 

= 2401 · 47 - 1695 · 123 + 770 · 322 - 204 · 843 + 24 · 2207 - 930 

= 32,368 = LHS. 

13. Let Sj = Σ Ft and A,· = £ Sj. Then Sj = FJ+2 - 1 and A, = T.(Fj+2 - 1) = 
1 1 1 

2+i 2+i 

Σ Fj - ' = Σ Fj - 2 _ ' = ^4+i - i - 3, so Λ„_ι = F„+3 - n - 2. 
3 1 

Using the technique of staggered addition, 
n—\ n—\ n—\ n—1 n—\ 

J2(2i + l)Si = 3 ^ 5 / + 2 ^ 5 , + 2 j ] 5 , + - - - + 2^5 , - (Π 
1 1 2 3 n-\ 

= 3A„_, + 2(A„_| - A,) + 2(A„_, - A2) + · · · 
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+ 2(A„_i -A„-2) 

n-2 

[3 + 2(n-2)]An^-2j2Ai 
1 

n-2 

( 2 n - l ) A „ _ , - 2 ^ ( F 4 + , - / - 3 ) 
1 

/•o Ι\Λ <-> ^ IT , 2 ( n - 2 ) ( / i - 1) (2/1 - 1)Λ„_ι - 2 2 ^ F4+l· H + 6(« - 2) 

n - 2 

= (2n - l)A„_i - 2 ^ Fj + (n - 2)(« - 1) +6(« - 2) 

= (2» - 1)A„_, - 2 + ( n - 2 ) ( n + 5 ) 

5 

"n-2 4 

. 1 1 . 

= (2« - l)A„_i - 2[(F„+4 - 1) - 7] + (n - 2)(n + 5) 

= ( 2 « - l ) ( F n + 3 - n - 2 ) - 2 F n + 4 

+ ( n - 2 ) ( n + 5 ) + 16 (2) 
n 

J2 i2Fi = F, + 4F2 + 9F3 + 16F4 + · · · + n2F„ 
1 

n n n n 

= £ F, + 3 £ F, + 5 £ F,- + ■ ■ · + (2n - 1) £ F 
1 2 3 n 

= Sn+ 3(5„ - 5,) + 5(5„ - 52) + · · · + (2n - 1)(5„ - 5„_,) 

n 

= Y^{2i - \)Sn - [35, + 552 + 753 + · · · + (2n - l)5n_,] 

1 

n n~\ 

= £(2i - l )SB-£(2i + l)S, 
. 1 1 

= n 2 5 „ - ( 2 n - l ) ( F „ + 3 - n - 2 ) 

+ 2F„+4 - (n - 2)(n + 5) - 16 by Eq. (1) 

= n2(F«+2 - 1) - (2n - l)(F„+3 - n - 2) + 2Fn + 4 

- (n - 2)(n + 5) - 16 
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n2Fn+2 - (2n - l)F„+3 + 2F„+4 - 8 

(n + l)2F„+2 - (2« + 3)F„+4 + 2F„+6 - 8 

EXERCISES 32 (p. 384) 

, F,Q+F,.,, - F,[\ ; ] + m ?]-['■+,;- * , ] -
F„+i F„ 
F„ F„_! = 0"· 

n+l 

3. LHS = Σ Q'' - Σ Ô' = Ô"+1 - ß° = Ô"+1 - /· 
1 0 

5. Follows by equating the corresponding elements in the last two matrices in the 
proof of Corollary 32.2. 

7. Add Identity (32.10) and Identity (32.23): 2Fm+n = Fm(F„_,+Fn +,)+Fn(Fm_,+ 

9. Using Exercise 7, 2Fm_„ = FmL-„ + F_„Lm = (-1)"FmL„ + 
(-1)"+ 1 FnLm = (-l)"(FmL„ - FnLm). 

11. LHS = 5(am + ßm)(an + ßn) + (am - ßm)(a" - ß") 

= 6(am+" + ßm+") + A(amß" + ct"ßm) 

= 6Lm+n + 4 [ a m ( - « ) - n + (-ßrnßm] 

= 6 L m + B + 4 ( - l ) " («"-" +ßm~") 

= 6L m + n +4( - l ) "L m _„ 

13. Change m to -m in the identity Fm+„ = Fm+]F„ + FmF„_i : F_m+„ = 
F„m+lFn + F_mFn-û that is, (-1)»-«+'Fm_„ = ( - i r F m _ , F „ + 
( -1Γ+ 1 FmF„_,.Thus, Fm_„ = (-l)"FmF„_, - Fm^Fn). 

15. By Exercises 5 and 13, 

Fm+„ + Fm_„ = F m F n _ 1 [ l + ( - l ) " ] + F „ [ F m + 1 - ( - l ) " F m _ 1 ] 

Lm Fn if n is odd 
Fm Ln otherwise 

17. By Exercises 6 and 14, 

Lm+n + Lm_„ = Fm+xLn[\ + (-1)"] + Fm[L„-i - ( - l )"Ln + 1 ] 

Fm(L„_i + L„+i) if n is odd 
2Fm+|L„ + Fm(L„_i - L„+1) otherwise 
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5FmF„ 
1Fm + \L„ F I 

1 m'-'n 

if n is odd 
otherwise 

''m'-'n 

if n is odd 
otherwise 

19. The result is true when n = 1. Now assume it is true for an arbitrary positive 
integer k. Then 

M 

[ Fu-\ + F2k F2k-\ + 2F2i 1 _ Γ F2k+l F2k+2 
F2k + F2k+] ^2* + 2F2,t+i J |_ /*2<:+2 ^2*+3 . 

Thus, by PMI, the result is true for every n > 1. 

21. (Rabinowitz, 1998) A2„ = - ί Γ J \ 1 A2 - Γ 

[2 oJ^+'J 

A„A„+i + 

23. By Cramer's rule, y = 

G„ G„+\ 
G„+\ Gn+2 

G„ G„-\ 
G„+i G„ 

.·. GnG„+2 - G2
n.x = - (G„_,G n + , - G2). Let?„ = C,_iG,+i - G2, where 

G„Gn+2 - G„+l 

G2 — G„_ iG n + i 
But y 1. 

91 = G0G2 -

.'. Gn-\Gn+\ 
Gf = (fc - a) ,, - (b-a)b-a2 = -ß.Thenq„ = (-1) 
G2 = (-1)"μ. 

n-\ 
q\ (-1)"μ· 

25 

27. 
if n is odd 

otherwise 

Γ Fn 1 
- f«+ i J 

OQ V D" - (I . I Λ - \Fn+2 F " + ' l - ïLm+lFn+2 + LmFn+i 

(Lm+n+2, Lm+n+i) = Vm+n+\. 

31. (a + e - fc - d)(e + j-h-f)-(b + f - c - e)(d + h - g - e) 
1 1 2 1 10 0 1 I 

33. λ ( Ρ ) = 1 2 3 - 0 1 2 = - 1 
2 2 2 1 11 1 1 I 

35. λ(Λ) = Ι,,^Ζ,,,+, - L\ = 5 ( - l ) " + 1 

37. G„+t + G„-k — 1G„ 
39. Notice that F„2

+1 - F„_iF„ + 2F„F„+1 = F„+1(Fn+1 + F„) + Fn(Fn+l -
F„_0 = F„+1 Fn + 2 + F„2 - Fn + 2(Fn + 2 - F„) + F„2 = F2

+ 2 - F„(F„+2 - F„) = 
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F2+2 - F„Fn+\ and 2F„2
+1 + 2F„F„+l = 2Fn+l(Fn+l + Fn) = 2Fn+iFn+2. It 

can be verified that it is true for an arbitrary positive integer n. Then: 

pn + l _ pn p 

2F„_iF„ F2
+ l 

L F2 

0 0 ΐη 
0 1 2 
1 1 1 

- i? 
2F„F„+i 

F2 

2F„F„ 

F2 
■ + \ 

F2 -i 

- F„-\F„ 2F„Fn+\ 

FnFn+i F2
+ | 

F2 

rn+\ 

Fn-\F„ + F„ 

■ F„-\F„ + 2F„Fn+\ 

FnF„+\ + Fn+1 

F„2_1+2F„_,Fn + F 2 -

2Fn + ) + 2F„Fn+\ 

F„2 + 2F„F„+1 + F 2
+ | J 

F2 

Γη+2 

F„Fn+\ 

FnFn+\ 

F„+\Fn+2 

F2 

F„+\Fn+2 

F2 . 

Thus, by PMI, the formula works for every n > 1. 
41. LHS - F„{F„ - F„_,) + F„+,(F„+1 - F„) - 2F„F„_, = F„F„_2 + 

F„_i (F„+| — F„) — F„F„_i = F„F„_2 + Fn_( — F„F„_i = F„F„_2 — 
F„-i(F„ — F„_i) = F„F„_2 - F„_iF„_2 = Fn-.2(F„ — F„_|) = F„_2 

EXERCISES 33 (p. 399) 

1. L„Ln+2 — Ln+i = 5(— 1)" 
3. (Finkelstein) Let r = L6<//̂ 3rf ands = Ζ,6</+ι — rZ^+i.Then, by PMI, L„+6rf = 

rLn+3d + sL„ for all n. In particular, let n = a,a + d, and a + 2d. Hence the 
rows of the determinant are linearly dependent, so the determinant is zero. 

5. Since G„ = aF„-2 + bF„-t, the determinant is zero by Exercise 3. 

7. (Jaiswal) Consider the determinant D G, 
Gr 

*-* p+m 

Gq+m 

(jr+m 

*-* p+m+n 

{Jq+m+n 

{-* r+m+n 

Since Gk+„,+n = 

D = Fn+1 

= Fn 

Gk+mFn+\ + Gk+m-l 

GP 

Gq 

Gr 

GP 

Gq 

C ~>r 

G p+m 

Gq+m 

Gr+m 

G p+m 

Gq+m 

Gr+,„ 

G p+m 

Gq+m 

Gr+m 

Gp+m-\ 

Gq+m-\ 

Gr+m-\ 

F„, it follows that 

+ Fn 

= F„ 

GP 

Gq 

Gr 

GP 

Gq 

Gr 

G p+m 

Gq+m 

Gr+m 

G p+m 

Gq+m 

Gr+m-

G p+m-\ 

Gq+m-l 

Gr+m-\ 

-2 Gp+m-\ 

-2 Gq+m-\ 

-2 Gr+m -1 
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GP 

Gq 

Gr 

Gp+m-2 

Gq+m-2 

Gr+m-2 

Gp+m-3 

Gq+m--} 

Gr+m-3 

= Fn 

Thus, by alternately subtracting columns 2 and 3 from one another, the process 
can be continued to decrease the subscripts. After a certain stage, when m is 
even, columns 1 and 2 would become identical; and if m is odd, columns 1 and 
3 would become identical. In either case, D = 0. 

The given determinant Δ can be written as the sum of eight determinants. 
Using the fact that D = 0 and that a determinant vanishes if two columns are 
identical, 

Δ = 
Gp+m 
Gq+m 
Gr+m Gr 

GmG„_i = (— l)m" 

G, 
Δι = kFm 

+ ... + . . . = Λ , + Δ2 + Δ3 (say). Since Gm_iG„-

lßF„-„ 

Gp-i 
Gq-l 

Gr Gr-

.·. A = kß[(-l)< Fr-q 

a I 
h . 

(Jaiswal) Since 

= kßFm[(-\)r-xFq„r + (-l)P-1Fr-p+ 

(-Ό" p-q 

a 
b 
c 
d 

b 
a 
d 
c 

c 
d 
a 
b 

d 
c 
b 
a 

{-lYFr-p + {-\YFq_p][Fm - Fm+n + (-1)"F„] 

= [(a+b)2-(c + d)2][(a-b)2-(c-d)2], the 

given determinant Δ = [(Gn+3 + G„+2)2 - (G„+i + Gn) ][(G„+3 - Gn+2) -
(Gn + 1-G„) 2] = (G2

H+4-G
2
n+2HGl+i-G

2
n_l).B*G2

m+l-G
2
m_t = aG2m-2 + 

bG2m-\. .·. Δ = (aG2n+4 + bG2n+s){aG2n-2 + bG2n-i). 
11. Using Theorem 33.7 with k = 2, m = 1, r = 0, and a„ = L„, 

D = (-1Γ2·3/2Α2(Ζ.0) = (-1)3" 

= 250(- l)" 

13. Using Theorem 33.7 with A; = 3, m = 1, r = 0, and a„ = Ln, 

r2 r2 i2 

L'Q Lt\ L 2 
L· i L/j AJ-2 

L·^ L·-^ L·^ 

= (-D" 
4 1 9 
1 9 16 
9 16 49 

D = (-l)n3-4 /2A3(L0) = A3(L0) = 

Ll 
L\ 
L3 Lj

2 

L3 

^ 3 
4 
1 

27 
343 

L* i *^Ύ "\ 

^ 2 ^ 3 ^ 4 

^ 3 ^ 4 ^ 5 
r 3 ; 3 f 3 L·^ L·$ Ut 

1 27 
27 64 
64 343 

1331 5832 

64 
343 
1331 

24389 

= 0 
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15. gn+2(x) = 2xgn+i(x) +g„(x),n > 0. 

17. (Brown) Q" = Fn+\ Fn 
Fn F„-\ 

; e ß " 

■ °° Fnk+i » fa -, 

= 0 

00 F ί ea"x — e'3"* °° L l· 
We have Σ Τ Γ = ^ W Σ Τ Γ = e " " x + ^ x . Since Lnt = F„ t+1 + 

k=0 kl a-ß k=0 kl 
Fnk-l, 

= e« + i " ; t h a t i s , 2 ^ · 
Jfc! 

(*""+^")-Ë 
it=0 t=0 

Since F„t+i = F„t + Fnk-\, we also have 

F„t_i é- -e 

k=0 

Fnk-

k\ 

, n k\ *-> kl ' f-; *! 
it=0 fc=0 *=0 *=0 

From (1) and (2), 

V~* Fnk+] ^ 

+ Σ 
Fn k-l 

*-p s *! 

t=0 
*! [(«"" + «") + e" —C 

a-ß 
and 

/k=0 u 0 J 

(1) 

(2) 

γ ^ Fnk+l \ | y i ***»*-1 \ _ /v~> fil* \ 

= e « , , + ^ = ^ . 

19. (Parker) Let D„ denote the given determinant. Expanding it by the last column, 
D„ = a„D„_, + bn_xDn_2. Then gn = gn-\ + g„_2, where gx = 1 and g2 = 
2; : .gn = F„+\. 

21. (Parker) Let D„ denote the given determinant. Then D\ = a + b and D2 = 
a2 Λ- ab + fo2. Expanding D„ by row 1, Dn = (a + b)Dn-\ — abDn-2- Solving 
this second order LHRRWCC, we get 

Dn = 
(n+\)an if a = b 
(a"+1 - b"+l)/(a - b) otherwise 
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EXERCISES 34 (p. 413) 

1. F6135 + F5136 = 8-135+5-136 = 134 + 4 8 = 1 (mod 181);L6135 + L5136 = 
18· 135 + 11 · 136 = 30+ 178 = 2 7 = 1 + 2 · 13 (mod 181) 

3. F 4 - 11F5 = 3 - 11 -5 = 7 9 ü ; ( - l ) 5 l l 5 ( m o d l 3 1 ) 

5. Let F„ = 0 (mod 3). Then 3|F„; that is, F4|F„. So n = 0 (mod 4). Conversely, 
let n = 0 (mod 4). Then 4|n, so F4|F„; that is, 3|F„; .·. F„ = 0 (mod 3). 

7. F„ = 0 (mod 5) iff 5|F„, that is, iff F5\Fn. Thus F„ = 0 (mod 5) iff n = 0 
(mod 5). 

9. Since 5F„2 = L2 - 4 ( - l ) n , F„2 = L2 (mod 4). 
11. Since 2Lm+n - LmLn+ 5FmF„,2Lm+n = LmLn (mod 5). 
13. Ldk-Dn = α*2*-"" + £(2*-'>" = (a- + /3η)[α<2*-2>π - α<2*-3>»0» + . . . + 

0<2*-2)n] = O(modZ.„). 

15. Since Fm+„ = Fm_iF„ + FmF„+i, F„+24 = F23F„ + F24F„+i, where F23 = 

28,657 = 1 (mod 9) and F24 = 46,368 == 0 (mod 9); .·. Fn + 2 4 = F„ (mod 9). 

17. Since F3|F3„, F3n = 0 (mod 2). 

19. Since F5|F5„, F5n = 0 (mod 5). 

21. Since 2|n and 3/n, n is of the form 6& + 2 or 6fc + 4. 

Case 1. Let n = 6k + 2. Then L„ = L6k+2 = F^+xLj + F(,kL\. Since 
6|6fc, 8|F6i; so F6k = 0 (mod 4); .·. Ln = F«+i ■ 3 + 0 = 3F6*+I (mod 4). 
But F6k+i = 1 (mod 4). Thus L„ = 3 (mod 4). 

Case 2. Let n = 6k + 4. Then L„ = L6*+4 = ^(6t+i)+3 = F6I1+2L3 + 
F(,k+\L2 = Fojt+2 0 + 1 - 3 = 3 (mod 4). Thus, in both cases, L„ = 3 (mod 4). 

23. By Exercise 39 in Chapter 16, 2|L3„. So L3„ = 0 (mod 2). 
25. Let (F„, L„) = 2. Then 2|F„; that is, F3|F„; .·. n = 0 (mod 3). Conversely, let 

n = 3m. Then 2|F3m, and by Exercise 23,2|L3m also; .·. 2|(F3m, L3m). Suppose 
(F3m, L3m) = ^ > 2 for all n. Then F3 m + 3 = F3mF4 + F3m_iF3 = 3F3m + 
2F3m_, and L3m+3 = F3mL4 + L3m_iL3 = 7F3m + 4F3m_i. Then d|F3m+3 

implies <i|2F3m_i. This is a contradiction since d > 2 and (F3m, F3m_i) = 1. 
Thus(Fn ,Ln) = ( F 3 m , L 3 m ) = 2 . 

27. Since 5(F2 + F„2_2) = 3Z.2n-2 - 4(-1)", by Exercise 36 in Chapter 5, the result 
follows. 

29. (Lind) We have Lp = ( 1 /2"~ ' ) Σ ( ^· ) 5 ' · S i n c e Pis Prime> ( P ) = ° ( m o d 

p) for 0 < j < p; also 2p~l = 1 (mod p), by Fermat's little theorem; .·. Lp = 1 
(mod p). 

31. (Wessner) The statement is true for n = 1. Assume it is true for every i < k, 
where k > 1 : 2'F, = 2/ (mod 5), 1 < / < k. Then 2*+1F t = 2(2* Fk + 
2 ■ 2*-' F t_,) = 2[2* + 2 · 2(k - 1)] = 2(4 - 4) = 2(* + 1) (mod 5); .·. by the 
strong version of PMI, the result follows for every n > 1. 
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33. (Bruckman) We shall use the identity F5m = 25F^+25( - l ) m F^ + 5Fm> m > 0 
and PMI. The given result is true when n — 0 and n = 1. Assume it is true for 
an arbitrary positive integer k: F5* = 5* (mod 5*+3), so Fm = m{\ + 125a) 
for some integer a, where m = 5k. By the preceding identity, F<,m = 52m5(l + 
125a)5 - 52m3(l + 125a)3 +5m(l + 125a) = 52ro5 - 52m3 + 5m (mod 54/w). 
Since k > 1, 5|m; so 52|m2. Hence 54m|52ra3; .·. F5m = 5m (mod 54m); that 
is, F5»+i s 5*+1 (mod 5k+4). Thus, by PMI, the result is true for all n > 0. 

35. (Prielipp) Since L\ = 5F2 + 4 ( - l ) n , (L 2 ) 2 = (5F„2)2 + 8(-l)"(5F„2) + 
42. .·. (5F2)2 + 42 s (L2)2 (mod 5F2). 
20 n+20 n 

37. Ç F„+, = Σ ^ - Σ 1 = CW22 - 1) - (F.+2 - 1) = F.,+22 - Fn + 2 = 

( f « / ^ + F„+lF22) - (F„ + F„+1) = Fn(F21 - 1) + F„+I(F22 - 1) = F„ · 0 + 
F„+i · 0 = O(modFio), since F2) = F22 =. 1 (mod 55). 

39. 5,89, 11,199 
41. Let 51«. The 5|F„, so F„ = 5m for some integer m. Then FFn = F5m. Since 

5|F5m, it follows that FFn = 0 (mod 5). Conversely, let FF„ = 0 (mod 5). Then 
5|F„, so n = 0 (mod 5). 

43. Follows since 2Lm+n — LmL„ + 5FmF„. 

EXERCISES 35 (p. 422) 

1. 8 
3. 7 
5. 6 

7. L25 = L24 + L23 = 1 + 2 = 1 (mod 8) 
9. L,_2 = L, - L,_i = 3 - 4 = 7 (mod 8) 

11. Since F\ = 1 (mod 4), the result is true when n = 0. Assume it is true for 
an arbitrary positive integer k: F^+i = 1 (mod 4). Then F6ik+\)+\ — F6*+7 — 
Fek+5 + Fôt+6 = Ff,k+A + 2F^k+5 = ··· = 5F6*+i + 8F6*+2 = 5 1 + 0 = 1 
(mod 4); .·. by PMI, the result follows. 

13. F6„_i = F6„+i - F6n == 1 - 0 = 1 (mod 4), since F6|F6„. 
15. L(,n+2 = Fen+\ + Ffa+3 = F6n+i + (F6n+i + F6n+2) = 2F(,n+\ + (F(,„+\ + 

F6n) = 3F6„+i + F6„ = 3 · 1 + 0 =. 3 (mod 4), since F6|F6„. 

17. RHS = (a4n+i + ß*n+i)[a*n+b + ß*n+b + 2(αβΤη+3 + 3] 

= (α4π+3 + /ß
4n+3)(a8',+6 + β%η+6 + 1) 

= αηη+9 + βι2η+9 + ( a 0 ) 4 " + V + 3 + ß4n+i) + Un 

= i-l2n+9 — ί-4η+3 + ί-4«+3 = ί-12π+9 

= LHS 
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19. Since Lm+n = Fm-\Ln + FmLn-\, L4n+2 = F4n-\L2 + F$nL\ = 3/*4„_i + 
F4n = 0 (mod 3). 

21. L4n+i = i-4„+2 — Z-4„ = 0 — ±1 = ±1 (mod 3), by Exercises 19 and 20. 
23. Follows by Exercise 21 in Chapter 34. 
25. Lm+2k = (-1)1« s (-l)2Lm_2* = (-l)3Lm_4* = · · · = 

(_1)L">/4J Lm_2Lm/4jt (mod Lk). Let k = 2 and m = An - 2. Then L4n+2 = 
£(4«-2)+2-2 = ( - 1 )"-'Z-4«-2-4L(4n-2)/4j = ( -1 ) " _ 1 L2 = 0 (mod 3). 

27. (Kramer and Hoggatt) 

„ s " ' - β?+ι a5"5 - a5"5 

LHS = -n = -n— 
a-ß a- ß 

= α* ~ ß5" (a5"4 + a5"'3)85" + a5"'2/*5"2 + α5"β5"3 + ßrA) 
a — ß 

= Fy[ayA + β5"Λ + (aß)5n (a5"2 + ß5"2) + (aßf2] 

= Fy(L4.5»-l2.5» + l ) = R H S 

29. (Turner) We have: 

2- . , . = ( » ) + 5 ( ^ ) + i ( ? ) + . . . + 5 - ( L „ » 2 J ) 

ΈΞΠ -\ (mod 25) 
6 

.·. 2m-lFm s 60k + 50k(60k - l)(60fc - 2) = 10k (mod 25). Since 220 = 1 
(mod 25), it follows that F60* = 20k (mod 25). Since 6|60&, FOIF«)*; that is, 
81 Foot- So Fax =0 = 20k (mod 4). Combining the two congruences yields the 
desired result. (Follows from Exercise 31 also.) 

31. Since Fr+S — FrFs_i + Fr+iFs, Fm+n = FmF„-i + F(,ok+iF„ = 20£F„_i + 
(60k + 1)F„ (mod 100), by Exercises 29 and 30. 

33. (Peck) Follows since F(„+2>;t — F„j = Z,*F(n+i)i, where k is odd. 
35. (Zeitlin) Since F(n+2)t - LkF(n+nk + (-l)kFnk = 0, F(„+2)* - 2F(n+l)k + 

(-l)kFnk - (Lk - 2)F(„+i)jt. So, when k is even, F(n+2)k + Fnk = 2F(n+m 

(mod Lk — 2). 
37. FollOWS Since L(2m+l)(4n+l) — L2m+l = 5F(2m+l)2nF(2m+l)(2n+l)-

39. (Prielipp) Since F, + F3 = 3 s 0 (mod 3) and F4 + F4 = 6 s 0 (mod 
3), the statement is true when n = 0 and n = 1. Assume it is true for all 
nonnegative integers < k. So F3jt_2 4- Fk+2 =0 = F3k+i + F*+3 (mod 3). Then 
F3*-2 + F3k+i + Fk+4 = 0 (mod 3). But 6F3t_i + 4F3 i_2 + 3F3jt+i = F3jt+4, 
so F3*_2 + F-sk+i = F3k+4 (mod 3); .·. F3(t+4 + F i + 4 = 0 (mod 3). Thus, by the 
strong version of PMI, the statement is true for all n > 0. 

41. (Somer) Since L4 = 7, the result is true for n = 2. Assume it is true for an 
arbitrary integer k>2. Since L2 = L2m + 2 ( - l ) " \ L2*+' = L\k - 2( - l ) 2 < = 
72 - 2 = 7 (mod 10). Thus, by PMI, the result holds for all n > 2. 



SOLUTIONS TO ODD-NUMBERED EXERCISES 625 

43. (Wulczyn) Since Lf, — 18 = 2 + 24, the result is true when n = 1. Assume 
it is true for an arbitrary k > 1: L32< = 2 + 22k+2 (mod 22k+2). Since L2

2m = 
L4m + 2, L3.2*+i = L2

 2t - 2 = 2 + 22*+4 + 24Är+4 (mod 24*+5) = 2 + 22*+4 (mod 
22k+6); .·. by PMI, the result is true for all n > 1. 

EXERCISES 36 (p. 440) 

00 1 00 f. 

1. ^ F , x ' - 1 = - j . Using x = l / 2 , £ - f = 2 . 
2' 

b - aß act - ß 
3. M„ = Λα" + ß/ß", where A = and B = - . 

a - ß a — ß 

~ «,· a{k - l) + b 
5. By Exercise 4, > —— = . Let a = 0 and b = 1. 

1 1 
Desired sum (k-a)(k-ß) k2-k-]' 

7. Since ß < 0, 1 + ß2 > 0 and 02*"1 < 0; .·. 0 > /32*-'(l + ß2), that is, 
„2*-i _ „24-1 > ^ a - i + ^a+i . Then a2*"1 - ß2k~[ > -ß(a2k - ß2k); thus 
F2k-l/F2k> -ß,so-m/nt(ß,-ß). 

9. Since Fu/Fu-i >\>-ß, F2k/F2k^ $ (ß, -ß) 
11. Yes, by Exercise 10. 
13. Solving the characteristic equation t2 — at — b = 0, ί = r or 5. So the general 

solution is U„ = Rr" + Ss", where R and S are to be determined. The two 
initial conditions yield the linear system R + S = c and Rr + Ss — d. Solving, 

c 2d — ca , „ c 2d — ca „ „ „ 
/? = - + —, = P and 5 = , = Q; :. U„ = Pr" + 

2 2 Va2 + 4b 2 2 Va2 + 4/> 
Qs",n > 0. 

15. Let a = fc = </ = 1, B = -10 , and c = 0. Then m = 109 and /V = 
— 10 °° F i °° F- i 1 

-10 ; .·. = r - L ^ i - ; t h a t i s , y : - ^ ! - = — · 
(-10) 109 , (-10)' , (-10)' 109 

17. (Pond) Since lim —— = lim ——-— = lim —— = — < 1, the series 
n-»oo an n^oa \jFn n->oo Fn + \ a 

converges by d'Alembert's test. 

" 1 
19. (Lindstrome) Let 5„ = Y —. Then 240513 = 240 + 240 + 120 + 80 + 48 

i Fi 
240 240 240 240 240 240 240 

+ 30 H 1 1 1 1 1 1 > 803. ■ S > 5n > 
13 21 34 55 89 144 233 

803/240. 
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00 1 1 / 1 \ 
21. (Peck) Since an + l = aFn+x + F„, sum = ^ — - = — — ) = 1. 

1 an+l a2 \ 1 - l/aj 

23. (Graham) £ = Σ F F F = Σ I 7? -=-p~ ) = 

fg-JL-^-M^ëf-L-J-H-L^gf-L-lU 
V 1 ^η+ι FnFn+2 ) 1 \F„+i F„ F„+2/ 1 \ F n + i F„ / 
oo J /oo 1 \ 00 1 
Σ = - 1 + ( Σ 2 ) = - 3 + Σ ΤΓ- The desired sum now follows. 
1 F„+2 \ 1 F„ / 1 F„ 

25. (Parker) F" F"+ 1 F " - ' 
Fn-iF„+i F„_iF„+i F„_i F„+i 

...UB.ff ' « ) 

1 1 

27. As in Exercise 25, LHS = V ( I = I I + 
2 \G„_i G n + i / Va a + bj 

\b ~ a + 2b) + \a + b ~ 2a+b) + " ' = ~a + b' 

29. RHS = 1 + tFi+l^~F' = l + t f ^ 1 - ^ - ) = 1 + 

/ F ^ , _ FA = £+, = 

V F„ F , ; F„ 

3 1 . (Carlitz) Since F 2 n + i = F „ + 1 L „ + 2 - Fn+2L„,J2 " ■ = 
I L„Ln+iLn+2 

F, m+2 I (Ja+1 *»*_) = Jl ^ - i - . S i n c e lim , , 
1 \L„Ln+i Ln+\Ln+2/ L\L2 Lm+\Lm+2 m-><x> Lm+\Lm+2 

0, the result follows. 
00 (—1)" °° (—11" 1 

33. (Carlitz) LHS = ^ Σ , , ^ + η ^ + η = ^ Σ ^ α 2(2η+1) _ β2(2η+1) Ύ ^ α 2 (2η+1) 1 _ α - 4 ( 2 η + 1 ) 

οο οο οο Λ,—2(2r+l) 

= ν5Σ(-ΐ)"Σ«-2(2Γ+Ι)(2π+,) = ν ^ Σ " 4(2f+1) -

^ S a2(2r+l)+ß2(2r+i) = R H S 

35. LHS = lim Σ (~~ Γ ' | = lim (-J— - —-L—) = 
"-oo , \FkFk+i Fk+lFk+2/ n-+oo\FiF2 F n + iF„ + 2 / 
1 - 0 = 1. 
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31. U ) = t „ FM - Fk · That is, 
l \FkFk+\Fk+2 Fk+iFk+2Fk+i/ \ FkFk+\Fk+2Fk+-i 

1 1 , Λ Fk±1 

= 2 2^ = — · As n -* oo, 1-1-2 Fn+iF„+2F„+3 | FkFk+\Fk+iFk+-i 
00 1 1 1 

2 £] >· - — 0 = - . The desired result now follows. 
l FkFk+\Fk+3 2 2 

39. Let S„ = Σ h+X = - Σ (- —) 
l FkFk+i 2 | \ F j Fk+3/ 

_JVJ_ J_ J 1 1 1_\ 
2\Fi F2 F3 Fn+\ Fn+2 f „ + 3 / 

■K 
5 1 1 1 \ ,. „ 5 

hm 5„ 2 F n + | F„+2 F n + 3 / " « - o o 4 

1 — x °° 
41. (Mana) Let = V* CJX'. This series converges for |JC| < r, where r 

1 — 3x + xl o 
is the zero of of 1 — 3x+X2 with the least absolute value, namely, β2; .·. 1 — x = 

00 

(1 — 3JC + jc2) 5Z Cjjc'. Equating the coefficients of like terms, Q = 1, C\ = 2, 
o 

and Cn+2 — 3Cn+i + C„ = 0 for n > 2. This implies C„ = F2„+]. 
43. Notice that β < Fk/Lk < -β. Using Eqs. (36.15) and (36.16), LHS = 

Fk/Lk FkLk F2k 

1 - Fk/Lk - F,1/Li Lz
k -LkFk- F2 L{ - LkFk - Fk 

= RHS 

EXERCISES 37 (p. 456) 

5 

1. Whenn = 5, LHS = x £ /)·(*) = JC[1 + J C 4 - ( X 2 + 1) + U 3 + 2JC) + U 4 + 3JC2 + 
i 

l)] = x5 + x4 + 4JC3 + 3x2 + 3x = (x5 + 4x3 + 3x) + (x4 + 3x2 + 1) - 1 = 
6 

feM+fsW-l =RHS.Whenn = 6, LHS = x Σ Μχ) = * [ l+*+(* 2 + l )+ 
1 

(Λ:3 + 2Λ:) + (Λ:4 + 3 Λ : 2 + 1 ) + (Λ:5+4Λ:3 + 3Λ:)] = x6+x5+5x4+4x3+6x2 + 3x = 
(x6 + 5x4 + 6x2 + l) + (x5 + 4*3 + 3x) - 1 = /7(JC) + f6(x) - 1 = RHS. 

3. fwix) = /t+s+iOO = /s(Jt)/6(x) + /4(JC)/S(X) = (Jc4 + 3x2 + 1)U5 + 4x3 + 
3JC) + (x3 + 2x)(x4 + 3*2 + 1) = x9 + Sx1 + 2\x5 + 2(k3 + 5x 

(0» x9 + 8JC7 + 21Λ:5 + 2(k3 + 5x 

7- /7'(JC) = E / i W / 7 - ι « = 2[/,(JC)/6(X) + /2(JC)/5(JC) + /3(x)/4(x)] = 
1 

2[(JC5 +4x 3 + 3JC) + X(JC4 + 3Λ:2 + l) + (JC2 + DC*3 +2x)] = 6x5 +2 (k 3 + 12* 
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9. (.Swmy)LHS = [(x3 + 2x)fn+l(x) + (x2+l)fn(x)][(yi+2y)fn+l(y) + (y2 + 
l)fn(y)]-xy[(.x3 + l)fn+i(x)+xfn(x)][(y3 + l)f„+i(y)+yf„(y)]-(x2+y2+ 
2)lxfn+i(x)+fn{x)]l(yfn+i(y)+yf*(y)]-xyfn+i(x)fn+i(y)+Mx)fn(y)] = 
/„+,(*)/„+, (y)[(x3 + 2x)(y3 + 2y) - xy(x3 + \)(y3 + 1) - xy(x2 + y2 + 
2)-xy] + fn+i(x)fn(y)[(x3 + 2xHy3 + \)-xy2(x2 + l)-x(x2 + y2+2)-
Mx)fn+i(y)[(x3+lKy3+2y)-x2y(y3+l)-y(x2+y2+2)+Mx)fn(y)[(x2+ 
l)(y2 + \)-x2y2-(x3+y3+2) + \] = 0-fn+l(x)fn+](y)+0-fn+l(x)My) + 
0 · fn(x)fn+dy) + 0 ■ /„(*)/„ 00 = 0. 

11. Notice that *,(*) = Σ ( /)χ~2] = \andg2(x) = £ ( l j) 
j=o \ J I j=o\ J J 

L(»-2)/2j / ; _ 2 \ 
Besides, xgn-i(x) + g„-2(x) = Σ ,· * ' " ' + 

j=o \ J / 
L(«-3)/2J / _ ■ _ 3 \ 

δ ( J y 

xl-2J=. 

When n is even, say, n — 2m: 

RHS = £ (2m ~j ~2)x2m~2j-1 + Σ (2m " 7' ~ 3 ) x2"-2y-3 

= Σ ( 2 w ~ - ~ 2 ) *2m~2 '̂ + Σ ( 2 w Γ Λ ~ 2 ) * 2 " , ~ 2 7 ~ ' 

_ y ^ (2m - j - 2 \ 2m-2j-l +y^ (2m~ J ~ 2 ^ χ2τη-2}-\ 

j=0 \ J ' 7=0 ^ J ~ ' 

= Σ(2"'7"1)*!"^'=8!"ω 

Similarly, when n = 2m + 1, RHS = g2m+\(x). Thus, in both cases, g„{x) 
satisfies the recurrence relation Eq. (37.1). .·. g„{x) = f„(x). 

13. Follows by Exercise 10. 
00 

15. Let g(t) = Σ/2η(χ)ι2η- Since /0(JC) = 0 = h„{x) - (x2 + 2) / 2„_ 2 (JC) + 
o 

/2.-4W, it follows that [1 - (x2 + 2)t2 + t4]g(t) = xt2; .·. g(t) = 
xt2 

1 - (x2 + 2)t2 + t4 ' 
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OO OO y 0Û 

17. RHS = xEf2n+l(x)t2n + Efln+lWt2" = ^Σ, flmix)^ + 

o o to 

» Y / 2 " + l W /2 ' l - U 2 + 2)r2 + /4 + ί ' i - ( ^ + 2) f2 + i4 -
x2 + 1 - t2 

1 - C*2 + 2)ί2 + f4 

«(*) - )8(JC) a2(jt) - β2(χ) 
19. / , (*) = — — — — = 1; f2(x) = — — — — = a(x) + /3(Λ:) = x; 

a(x) - β(χ) a{x) - β(χ) 
ak _ ßk ak-\ _ ßk-\ 

and */*(*) + fk-\{x) - x — + — = 
a - ß a — ß 

α*-'(χα + 1)- /?*- ' (* /?+1) _ «*"'(a2)-/?*- '( /?2) _ «*+1 - /?*+' 
a - 0 ~ a - / ? ~ a -/Ö ' 

where a = a(x) and ß = ß(x). So /„(*) is the Fibonacci polynomial. 
oi . i /o Λ ^ 2«(n + fc)! 1 "-> (« + *)! 

t t & ( « - * - l ) ! ( 2 * + D! 2* t t o (2* + l ) ! ( n - * - l ) ! 
n-1 

sU+*)=F2-
23. Since HQ{X) = 1 = f\(x) + fo(x), the statement is true when n = 0. Assume 

it is true for all integers i < n : H,(x) — /+ I ( JC) 4- f,(x). Then / / „ + ] ( Λ ) = 
XH„(X) + H„-i(x) = * [ / „ + , ( * ) + / „ ( * ) ] + [fn(x) + fn-lW] = [xfn + lM + 

fn(x)] + [xfn(x) + /n- iU)] = fn+iix) + fn+\(x)· Thus, by the strong version 
of PMI, the result is true for all n > 0. 

25. 2x + 2; 4x2 + Ax + 1; 8*3 + 8ΛΓ2 + 4* + 2; 16*4 + 16Λ:3 + 12*2 + 8* + 1. 

27. ft, (1/2) = L„ 
00 

29. Let g(f) = i>B(jr)f". Then (-1 + 2xt + t2)g(t) = -2χψ0(χ) - Ψο(χ) -
o 

Axt - t - 2 
ψι(x)t = -Axt -2-t; .".g(t) = - — r 

1 — 2xt — tl 

31. yn{\) = Fn 

33. Let g(t) = Zyn(x)t"-Then (l-xt-t2)g(t) = y0 + (yi-xyo)t = t; .:g(0 = 
o 

t 

l-xt-t2 

35. y„(l) = L„ 
OO 

37. Let g(t) = £ ) , W ( " . Then (1 - xt - t2)g(t) = y0 + (y, - xy0)t = 2 + 
o 

2 + (l -2x)t 
( l - 2 x ) , ; .·.*(» = , _ „ _ ,2 

39. z„(l) = F„ 
00 J 

41. Let g(t) = ^ „ ( ^ " . T h e n (1 - t - xt2)g(t) = t, so g(t) = χ_ _ 2 

43. Zn(\) = L„. 
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45. Let g(t) = ΣζηΜί". Then (1 - t-xt2)g(t) = 2-t, so g(t) = - . 
o 1 - t - xt2 

47. Expanding Dn(x) with respect to row 1, Dn{x) = 2xDn-X(x) - iA, where 

= iD„-2(x). So Dn(x) = 2xDn_i(x) + D„_2(.x); A 
Λ — 

·. Dn(-

i i 
0 2x . . . 

0 
0 = Ψη(χ)· 

0 
0 
0 
2x 

EXERCISES 38 (p. 467) 

1. * 1 1 + 1 1 * 9 + 4 4 Λ : 7 + 7 7 Λ : 5 + 5 5 * 3 + 11.Χ 

3. Since f2(x) + fo(x) = x = h(x) and /3(JC) + / , (*) = x2 + 2 = l2(x), the 
statement is true when n = 1 and n = 2. Assume it is true for all positive integers 
< n, where« > 2.Then fn+2(x) + /„(*) = [*/„+i(*) + /«(*)] + [xf„-i{x) + 
f„-2(x)] = x[fn+lW + Λ-ιΟΟ] + [/„(*) + Λ-2(*)1 = */«<*) + /«-ι(*) = 
l„+i(x). Thus, by the strong version of PMI, the result follows. 

5. xl„(x) = x[fn+i(x) + fn-i(x)] = [xfn+\(x) + Mx)]-[Mx)-xfn-i(x)] = 
fn+2(x) - fn-2(x) 

'■«■■·»-{I ~ 
fi(n, n - 1) = 0; ß(n, n) = 1; B(n, j) = Ä(« - 1, y - 1) + ß(« - 2, j), where 
1 < y < n - 3, n > 4. 

9. Let α = α(*) and β = β(χ). Then /ι(*) = a + β = x; l2(x) = a2 + β2 = 
(α + 0)2 - 2αβ = χ2 - 2(-1) = χ2 + 2; andx/„_,U) + /η_2(χ) = χ{αη~ι + 
0"-Ι) + (α',-2 + /ϊ'1-2) = α"-2(.χα + 1) + β"-2(χβ+ 1) = αη~2α2 + βη~2 β2 = 
α" + β" = /„(*). Thus /„(oc) is the Lucas polynomial. 

11. Let a = a(x) and β = /3(x). Then (a - 0)2LHS = (a" - /3")2 + (a"+1 -
^»+1)2 = a2n + a2«+2 + ßln + ßln+2 = a 2«+ l ( a + „-!) + ßln + l (ß + ß-l) = 

a2n+1 (a -ß)- ß2tt+l(a-ß) = (a- ß)(a2n+l -ß2n+l); .·.LHS = f2n+l(x). 

13. Let a = a(x) and ß = ß(x). Then LHS = (a"- ' + βπ-ι)(αη+ι + βη+ι) -
{an + ßn)2 = (aß)"-l(a2 + ß2) - 2(aß)n = ( - 1 ) " - ' ( Λ : 2 + 2) + 2 ( - l ) n - ' = 
( - 1 ) " - 1 ( A : 2 + 4 ) = R H S . 

15. a"(x) + ßn(x) = /„(*) and an(x) - ßn(x) = y/x2 + 4fn(x). Adding the two 
equations yields the desired result. 

17. x;x2 - l\ x3 - 2x; x* - 3x2 + 1. 

19. Clearly,g0(x) =0andgi (*) = 1.Letγ = γ(χ)and5 = <$(*). Then ; tg„_i(*)-

gn-2ix) = 

y" -S" 

x(y-1 -δ"-1) -S"'2 γη-2(χγ-1)-δ"-2(χδ-1) 

γ-δ 

γ-δ 

= 8η(Χ)· 

γ-δ γ-δ 
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21. Let y — γ(χ) and S = 8(x). 

(x2 — 4)(v" — 8")2 
LHS = (y" + Snf - ψ- - = (y" + S")2 - (y" - S")2 

x2- — 4 

= 4(y<5)" = 4 · 1" = 4 = RHS 

23. Clearly, g0(x) = Σ (~l ~ M (-l)'"*-2·"-' = 0 and g](x) = 

W ~' V-l)'*-2 ' = l.Whenn > 2: 

L(«-2)/2J 

Xgn-\W - gn-l{x) (-i)'V-2''-1 - Σ "T 
LC«-3)/2j . . -

- Σ ("~i~ )(-D'v-2' 
i—n \ ' 

(1) 

Let n = 2m : 

RHS = Σ (2m ".'" " 2 ) (-l)^2"-2 '-1 

_ g / 2 w i - I - - 3 \ ( _ 1 ) / j c 2 m _ 2 i 
1=0 ^ ' 

= Xj(2w,- ,'-2)(-i)^2"-2i-' 
i=0 ^ ' 

+Σ(27-Γ2)<- | ) 

y=o v J ' 

Σ ( 2m — j — 2 \ ( 2m — z — 2 \ 

= Σ(2ν_'Γ')<-"' 

Jx2m-2j-\ 

( - l ) ' j t i' 2m-2i-l 

_2m-2i-l 

0 

L(«-1)/2J 

= Σ ( Μ " Γ )(-ΐ)'χ"-2,-'=β211.ω = «„(*) 

Similarly, when n = 2m + 1, RHS of (1) yields gn(jc). 
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25. Since l2„(x) = / 2„+iW + A - i W , Ehn(x)t2n = Ef2n+i(x)t2n+ 
0 0 

00 1 — t2 t2 — i4 

Σί2η-ΛΧ^ = l_(x2 + 2)t2 + t , + / - . W + L ^ + ̂ 2 + ,4 = 
2-(x2 + 2)t4 . 

T _ _ ^ - _ . B n c e / . l W = l. 

27. (Webb and Parberry) Let x = 2i'cos0, where 0 < θ < π. Then a(x) = 
2/cos0 + V-4cos20 + 4 Λ . Λ J . ., , Λ / , 

= « cosö 4- sinö and similarly, ß(x) = i cosö -

™ , , „ Λ, (ί' cos 0 + sin θ)η - (i cos θ - sin 0)" 
sinö. Then /„(2zcos0) = - —-^ — = 

2 sind 
( - i ) " ( g - w + « " » ' ) ( - i )" - ' su ing . 

: = —- . .·. /„(2i cos0) = 0 iff &ιηηθ = 0 and 
2sin0 sinö 

sind φ 0, that is, iffö = for/n, where 1 < k < n — 1. 
29. xtn-x{x) + f„_i(jc) = x[bxfH-2(x) + α/„_3(*)] + [bxf„-3(x) + af„^4(x)] = 

bx2fn-2(x) + axfn-3(x) + bxfn-2(x) + af„-i{x) = bx[xfn-2{x) + fn-3(x)] + 
a[xf„-2(x) + fn-*(x)] = bxf„-i(x) + af„-2(x)] = tn(x) 

EXERCISES 39 (p. 476) 

I. xs + 15*4 + 35JC3 + 2Sx2 + 9x + 1; 6*5 + 35*4 + 56x3 + 36x2 + lOx + 1. 

3. Notice that Ji(x) = £ ( ° J x° = 1 and /2(*) = Σ ( j ! ) *° = !· Besides, 

L(n-2)/j / ( / , w „ , , . x 

2)/2j-; 

V / 2 V L ( « - 2 ) / 2 J + A ,(n 

4* VL(«-3)/2J-y7 

L(n-3)/2J 
+ JC Υ ^ ί ^ - ^Ι^ + J \ rL(n-3)/2J-; 

-έ ( 4 ΐ ί7 ' )^+ ?( ΐ - ί= ί ) ' 

* * - ' 

1 

-έ[(ί+Γ')+(ΐ-ί:ί)]^+Ι+-
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= Σ ( * ; · ' ) * * - ' - + * * + 1 

Similarly, it can be shown that the formula works for n = 2k. Thus it holds for 
all« > 1. 

5. Let r and s be the zeros of t2 — t — x. Then 1 — t — xt2 = (1 — rt)(l — st). 
T £ , „ 1 1 A B 
Let 2^ant" = = — = h , where 

o \-t-xt2 (\-rt)(\-st) l-rt 1 - st 
f p 00 OO 

A = , andß = = = . T h e n R H S = ATrnt" + B Tsntn, so 
sfT+ΑΊ VÎT4Î o o 

j.n + 1 _ ^ " + ' oo 

α„ = Ar" + Bsn = — = Λ,+ ιΟΟ, by Exercise 4; .·. £ ·/„+,(*)/" = 
V l + 4 * ο 

1 
l-t-xt2' 

7. Μ Ό = L„ 
9. kn(l) = Ln 

Π. Q«d)=\ 
13. L«/2J 

15. The characteristic roots, given by/2—tx—x — 0,are given byi = . 

Let r denote the positive root and s the negative root. Then r + s — x,rs = — x, 
and the general solution is Qn = Ar" + Bs". Since Q„{\) — 1 and ß„(2) = 

x — s 
x, Ar + Bs = 1 and Ar2 + Bs2 = x. Solving A = — j = ^ = ; and B = 

ry/x2 + Ax 
r -x (x - s)r" (r - x)sn 

QnW = —/ , . + 
s\/x2 + Ax' ryjx2 + 4x s\/x2 + 4x 
(JC - s)r"~i + (r - x)sn~l _ r · r""1 - s · s"~i _ r" - s" 

s/x2 + Ax s/x2 + Ax VxTT~Äx 
17. The characteristic equation is u2 — ux — x = 0; that is, 1 — xt — xt2 = 0. Let 1 — 

oo 1 ] 
xt-xt2 = (1 -rO(l-i/).LetE<V" = -j - — = 

o i — xt — xt1 (1 — r/)(l — st) 
A B r s °° 

1 , where A = , and B = ; .·. T^ ant" = 
l-rt \-st' v/FT4^ Jx2+Ax o 

oo oo _n+l _ c "+ l 
A Σ r"tn + ΒΣ sntn, so a„ = Ar" + Bs" = —==- = Qn+l (x). Thus 

o o \/x2 + Ax 
00 J OO t 

Σ Qn+iMt" = 1 7l, so Σ Q*(x)t" = -j -r 
o \ - xt - xt1 o 1— xt — xt1 
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EXERCISES 41 (p. 494) 

1. Wehavef>„ = JCB„_I + b„-\,andxB„ = (x2 +x)Bn-\ +*fc„-i from Eq. (41.2). 
Subtracting, xBn - bn = x2B„-\ + (x - l)b„_i; that is, (bn+i - bn) - b„ = 
x(bn - 6„_i) + (x - l)b„-i, using Eq. (41.5). Thus bn+l = (x + 2)b„ - £„_,; 
that is, bn = (x + 2)b„-i — b„-2, n > 2. 

( ^ j x5 = x5 + 9x* + 28x3 + 35*2 + 15* + 1 

v. Χ«.-,«+»,-,Μ = Χ Σ ( „ ! Ϊ 1 , ) ^ + Σ : ( ; Ϊ ! : ! ) ^ 
0 V / 0 V ' 

-Σ(":ΐτ ,)' ,+έ(:ΐ!:!)'' 
0 V 7 0 V 7 

^ç[(":i-')+("-;:!)]'' 

0 X ' 

9. Since &oO) = 1 = Fi, the result is true when n = 0. Assume it is true for every 
nonnegative integer / < n, where n > 0. Then bn+\(l) = 3fe„(l) — b„_i(l) = 
3F2n+i - F2n-\ = 2F2n+i + F2„ = F2n+1 + F2„+2 = F2„+3. Thus, by the strong 
version of PMI, the result follows. 

11. Since M x ) = Bn(x) - ß„_ , (* ) ,Ml) = ß„(l) - ß„_,(l) = F2n+2 - F2n = 
F 2 n +i . 

13. UsingIdentity(41.9),ßm+n(l) = ß m ( l )ß n ( l ) -ß m _ , ( l )ß n _ 1 ( l ) .Bu tß*( l ) = 
Fu+2\ .'. F2m++2„ = F2m+2F2n — F2mF2„_2; thus Fm+2Fn — FmF„-2 — Fm+„. 

15. Using Identity (41.12), ß2„_,(l) = [ß„(l) - ßn_2(l)]ßn_,(l) ; that is, F4n = 
(F2n+2 - F2n-2)F2„. Thus F2n = (F„+2 - F„_2)F„. 

17. (Swamy) Using Identity (41.7), bn+l - b„ — {x + \)b„ — fe„_i; that is, xB„ = 
(x + \)bn - *„_i, by Identity (41.5). 

19. By Identity (41.5),xB„ = bn+\ — bn, andxBn-\ = bn - bn-\. Adding, x(B„ + 
ßn-l) = bn+[ — b„-\. 

21. Follows from Eq. (41.21). 
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23. (Swamy) From Eq. (41.9), (x + 2)b2n+l = b2n+2 + b2„ = (bn+iB„+i -bnB„) + 
{bnBn — b„-\B„-\) = bn+\B„+\ — &„_iß„_|. 

25. (Swamy) b2n = Bnbn - B„-\bn-\, by Exercise 21, and b2n-\ = b„B„-\ -
b„-iB„-2, by Exercise 22; .·. b2n - £>2„_, = b„(Bn - £„_,) - i>„_,(B„_i -
Bn-i) = b\- b2

n_x, by Identity (41.6). 

27. (Swamy) B2i = B2 - B?_,, by Identity (41.11); .·. £ B2i = B2
n - B2_x = 

B2
n-0 = Bl 

29. (Swamy) By Identity (41.22), b2i = M i - V i ^ i - i ; .'. I > 2 i = b„Bn -

b-,Β-ι =b„Bn-0 = b„Bn. 

31. (Swamy) By Exercise 25, fc2,-&2;-i = b2-b}_x; .·. £> 2 , - fc 2 ,_ i ) = *>2-&2,; 
o 

that is, Σ ( - 1 ) ' Λ - ^ , = fc2 - b2_x. Thus ÎK-D'fc,· = fc2. 
0 0 

33. Clearly, g\(x) = M·*2) = 1 and gi(x) — xB0(x
2) = JC · 1 = x. Let n = 2k. 

Then xgn+x + g„ = xg2*+i + g2* = xbk(x
2) + xBk_x(x

2) - x[x2Bk^(x2) + 
bk^(x2)] + xBk-dx2) = x[(x2 + l)ß*-i(*2) + bk-i(x

2)] = xBk(x
2) = 

gik+2 = gn+2- On the other hand, let n = 2k + 1. Then xgn+] + g„ = x£2jt+2 + 
g2t+, = x[xß*(.x2)] + M* 2 ) = *2ß-tC*2) + M* 2 ) = g2k+3 = gn+2- Thus 
gn(x) = /«(*)· 

35. M * ) = Bn(x) - *.-,(*) = ^ - ^ - ^ = Sin(W + 1 ) V S i n W " 
sin0 sin0 sin0 

_ 2cos(2« + 1)0/2 sin 0/2 _ cos(2n + 1)0/2 
~~ 2 sin 0/2 cos 0/2 ~~ cos 0/2 

37. Using Exercise 35, bn(x) = 0 iff cos(2n + 1)0/2 = 0, that is, iff (2n + 1)0/2 = 

(2k + 1)π/2, where 0 < k < n. Then 0 = —, so x + 2 = 2cos0 = 
2n + 1 

(2* + 1)π , 
cos — 1 

2n + 1 

(2*+1)ττ T U 

2cos .Thus* = 2 
2« + 1 

n. 

= _4 s in2(?±tÎ i£ ,0<Â:< 

39. (Law) (a) First, we shall show that y„ = (b„ + b„-\)/2 = C„: 

(1) yo = (bo + b.i)/2 = (l + l)/2=\ 
(2) yi = (ft, + *o)/2 = [(jr + 1) + l]/2 = (jr + 2)/2 

(3) (x + 2)y„_, - yn-2 = (x + 2)(fe„_, + fo„_2)/2 - (fcn_2 + 6B_3)/2 = 
[(JC + 2)è„_, - fc„_2]/2 + [(* + 2)i>„_2 - fc„_3]/2 = (*„ + bn-i)/2 = y„. 
Soy„ = C„. 

(b) Next we shall show that z„ = (B„ - B„_2)/2 = C„: 

(1) 2o - (Bo - B-2)/2 = [1 - (-D1/2 = 1 
(2) z^ = (Bi - ß_i)/2 = [(x + 2) - 0]/2 = (x + 2)/2 
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(3) (X + 2)Z„_! - Zn-Z = (X + 2)(Ä„_, - £ „ - 3 ) / 2 - (B„-2 - 5„_ 4 ) /2 = 
[Oc + 2)ß„_, - B„_2] /2- [(je + 2)ß„_3 - ß„_4]/2 = (ß„ - B„.2)/2 = zn. 
So z„=C„. 

Thus 2C(*) = *„(*) + *—I(JC) = £„(*) - B»-2(JC) 

41. Using Exercise 40, -C„+1(^)Cn_i(x) + C2(x) = \S"+l - S"-1|/2 = IS""1) 
;C2+4JC + 2 -(x + 2) 

x+2 -2 
Cn+l(x)Cn-dx) - C2

n(x) = x(x + 4)/4. 
43. (x2 + 4x + 2)/2; (x + 2){x2 + 4x + l) /2; and (x4 + Sx3 + 23x2 + 16* + 2)/2 

\S2 - / | / 2 = i · 1 -X(X + 4). Thus 

EXERCISES 42 (p. 510) 

1. Let G„ = Ln. Then μ = - 5 and Gn+i(G„ + Gn+2) = Ln+l(Ln + Ln+2) = 
Li„+\ + L2„+3. Thus Eq. (42.3) follows from Eq. (42.1). 

-, T . n nxic TU * Λ l/i-2/1 + 1 / L 2 n + 2 L2n + L2n+2 

3. Let θη = RHS. Then tan0„ = - — — — = - — = 
1 — l/i-2n · l/^2n+2 ^2n^2n+2 ~ 1 

5%tI = _ L ; . , t a n - i _ L = R H S . 
5F2„+1 F2„+i F2„+i 

2tan0 
5. Let 2Θ = tan-1 2. Then tan 20 = 2; that is, 5— = 2. Solving, tan0 = 1 — tan2 Θ 

=*%£■. Since tan0 > 0, tan<9 = =*±& = -β; .·. θ = tan"1 ß = ± tan"1 2. 

7. (Peck) We have tan-1 — = tan-1 — + tan-1 — . Since 

F2n F2„+2 t2n+\ 
tan-1 x + tan-1 l/x = π/2, this implies tan-1 j ^ = (π/2 - tan-1 F2n+2) + 
(π/2 - tan-1 F2„+i) = π - tan-1 F2n+2 - tan-1 F2n+i. This gives the desired 
result. 

EXERCISES 43 (p. 516) 

1. u5 = F5 = 5, U6 = F8 = 21, X4 = L3 = 4, and X7 = L,3 = 521. LHS = 
5U5U6 = 525 = Χη- (-l)FsX4 = RHS 

3. X5X6 = L5LS = 11 · 47 = 517 = 521 - 4 = Χη + (~1)F'X4. 

5. LHS = 5V5V6 = 5FuF,g = 5 · 89 · 2584 = 1,149,880 = 1149851 + 29 = 

L29 + Ln = W7 - (-\)L>W4 = RHS 

7. Since Ln = a" + ß",W„ = a1" + ßL" and Wn+l = aL»+' + ßL»+'; 
.■.WnWn+i = (aL^+ßL^)+(ceL"ßL^+aL"+<ßL'·) = WH+2+[aL"» (-a-L-)+ 
ßL»+<(-ß-L»)] = Wn+2 + ( - 1 )*■»(«*·»+.-/-,. 4. ßLn+i-L.) 
Wn+2 + (-l)L"(aL-> +ßL->) = W„+2 + (-l)£»Wn_!. 

9. LHS = 5U4U6 = 5F3F8 = 5 - 2 - 2 1 = 210 = 199 + 11 = L„ + L5 = 
W 5 - ( - l ) 3 X 5 = R H S 



SOLUTIONS TO ODD-NUMBERED EXERCISES 637 

11. Since V5F„ = a" - ßn,sflun = aF» - ßF". Then 5U„-,Un+l = 
(aF„-, + F„+, + ßFn-, + F„+l) _ (aF„_l/?F„+, + aF„+lßF„-,) = („*.„ + ßLn) _ 

[aF^>(-a-F"->)+ßF^(-ß-F"-')] = Wn-(-l)
F-<(aF"+<-F"->+ßF"+<-F-<) = 

!Vfi-(-l)F-(gf"+/?fO = Wn-(-\)
F-<Xn. 

13. 2Li3 = y5Lf2-20(-l)l2 + L,2 = -/5 ■ 3222 - 20 + 322 = 1042; .·. L,3 = 
521. 

15. 2L„+1 =5F„ + L„rrv/5L2-20(-l)" + L„; .·. L„+l = [^Lj-20(-l)» + 
Z-»]/2. 

17. L3„ = a3" + jo3" = (1 + lot)" + (1 + 2/3)" = £ ( " ) [ W + W ] = 

]T I n I 2'L(. Since L0 = 2, it follows that 2|L3„. Conversely, let 2\L„. Since 

Fin = F„Ln, this implies 2|F2„; that is, F3|F2„. .·. 3|n, since 3 /2 . 
19. 233 
21. 24,476 

EXERCISES 44 (p. 521) 

1. Let z = a + bi. Then ||z|| = a2 + b2 > 0. 

3. Let w = a + bi and z — c + di. Since wz = (ac — bd) + (ad + bc)i, \\wz\\ = 
(ac - bd)2 + (ad + be)2 = (a2 + b2)(c2 + d2) = \\w\\ ■ \\z\\. 

5. Since /i = 1 = 1 + i ■ 0 = F, + iF0 and f2 = 1 + i = F2 + iFu the 
result is true when n — 1 and n — 2. Assume it is true for every positive 
integer k < n. Then /„+, = /„ + /„_, = (F„ + i'F„_i) + (F„_, + i'F„_2) = 
(F„ + F„_i) + /(F„_i + F„_2) = F„+| + iF„. Thus, by the strong version of 
PMI, the result follows. 

7. Let z = a + bi. Then z = a- bi, so ||z|| = a2 + b2 = \\z\\. 
9. /_,„ = F_10 + (F_|, = ( - i ) "F ,o + / ( - l ) 1 2 F „ = -55 + 89/ and /_10 = 

L-io + iL-,ι = ( - l ) l o L , o + i ( - l ) " i - „ = 123 — 199/ 

11. 2m - 1 = 7 and 2« - 1 = 21, so 2m - l | 2 n - 1. F7 = 13, F^FU - F4Fi0 = 
2 · 89 - 3 · 55 = 13, so F7 |F3Fn - F4F|0. 

13. LHS = (L„_, + iLn.2)(Ln+] + iLn) - (Ln + /L„_,)2 = (Ln_,L„+1 - L2
n) -

(Ln-2Ln - L2_,) + i(.Ln+lL„-2 - L„Ln-t) = - 5 ( - l ) " + 5(-1)"" ' -
5 ( - l ) n - ' i = 10(-1)"+1 - 5(- l )"+ 1 i = 5(2 - i ) ( - l ) " + 1 = RHS 

15. LHS = (F„ + /F„_,)2 + (F„+1 + iF„)2 = (F2 + F2
+l) - (F,2_, + F2) + 

2((F„F„_, + Fn+lF„) = F2n+I - F2„_, + 2/(F2„) = F2„ + 2iF2n = (1 + 
2/)F2„ = RHS 

17. /„/„ - (F„ + fF„_,)(Ln + iLn-ù = (FnLn - F„_,L„_,) + i(F„L„_x + 
F„_,L„) = F2„-F2„_2+/(2F2„_,) = F2„_,+2/F2„_, = (1+2<)F2„_, = RHS 
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19. LHS = (Ln + /Ln_,)2 - 5(F„ + /F„_,)2 = (L2 - 5F2) - (L2_, - 5F2 ,) + 
2/(LnL„_, -5FnF„_,) = 4(-l)" -4(-1)"-> +4/(- l) ' ' - 1 = 4(2- i ) ( - l ) " = 
RHS 

21. LHS = £(F2 t_ , + iFu-2) = Σ F2k-i + i Σ F2jk_2 = F2n + i(F2„_, - 1) = 
1 1 1 

f2„ - i = RHS 
2n In 2n n 

23. LHS = E(-1)*(F* + iFk-i) = EM)*** + Œ ( - l M - i = Σ^2* -
1 1 1 1 

Σ *2*-ι + ' [ Σ F2k-i - Σ ί » ] = (FM - 1) - F2n + i[F2n - (F2n_i - 1)] = 
1 1 ! 

(F2n_i - l) + i(F2n_2 + 1) = (F2n_i +iF2n_2) = ι - 1 = /2„_, + i - 1 = RHS 
25. C„C„ = (F„ + /Fn+1)(Fn - iF„+i) = F2 + F2

+I = F2n+1. 

EXERCISES 45 (p. 526) 

1. /(O) = /(u>) implies 2 = aw + ßw. l(z +w) = l(z) implies α·°+ζ + ßw+z = 
az+ßz;thatis,aw+z+ßz{2-aw) = uz+ßz.Thenaw{az-ßz)+2ßz = az+ßz, 
so otw(az - ßz) =az- ßz. Thus α1" = 1, so Re(u>) = 0. Let w = 0 + yi. Then 
α>" = 0, which is possible only if y = 0. Thus w = 0, a contradiction. 

3. 5-RHS = (αζ + 1-/3ζ + ,)+(α2-£ζ) = αζ(α+1)-άζ(/3+1) = αζ·α2-βζ·β2 = 

az+2 _ £Z+2 _ 5 y ( z + 2); .·. RHS = f(z + 2) = LHS. 
5. LHS = (az + βζ)2 - (otz - βζ)2 = 4(orö)z = 4(- l) z = Ae"zi = RHS 

7. /(-z) = α~ζ + β~ζ = 
αζ + βζ Kz) = Kz). 

(αβ)ζ ( - l ) z 

9. 5 · RHS = (αζ - ßz)(aw+l - ßw+l) + (αζ~ι - ßz-l)(aw - ßw) = az+u>(a + 
a-l) + ßz+w(ß + ß~1)-az-lßw(aß +1) -awßz~l(aß +1) = ccz+w(a-ß) -
ßz+w(a -ß) = J5(az+W - ßz+w); .·. RHS = f(z + w) = LHS 

, , i · n A . B , „ η π F 1 £ (ln*c* - In*/?)/»* 
11. Let w = 0 and z = n in Eq. (45.1). Then F„ = — 2^ r: · 

V5 *=o *' 

EXERCISES 46 (p. 532) 

1. ß(«,0) = l = B(n,n),n>0; 
B(n, j) = B(n - 2, y - 1) + ß(n l , ; - l ) + ß ( n - ! , ; ) , « > 2, y > 1. 

EXERCISES 47 (p. 536) 

1. 0 

3. Ql = 
x2 l o-i 
x 0 1 
1 0 OJ 

Γχ2 1 01 
x 0 1 

L 1 0 OJ 
= 

rx4 + x x2 l 
x3 + 1 x 0 

L *2 l o 
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r v-2 

<23 = 
x- 1 0 
x 0 1 
1 0 0, 

5. 8, 15, 29 
7. T* 

x4 + x 
x3 + \ 

,-2 

X2 1 

JC 1 

1 0 

Χ6 + 2Λ:3 + 1 
x5 + 2x2 

x4 + x 
x3 + 1 X 

0 

Ö" = 

'«+1 c 

< + C - l * C l + C - 2 
/* '»*-! 

/:_ 
* C-2 + < -3 + C-4 A*-3 + *C-4 + C-5 

< -2 + C-3 
C-2 

xt: + t* 
1 *n-

n - 4 

C-3 

11. By Exercise 10, ΙΟΊ = (-1)"+1· Since i„*(l) = T*, it follows that the given 
determinant equals (—l)"+l. 
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