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This book deals with the principle and applications of X-ray diffraction, 
which is a very useful and powerful tool for analyzing crystalline materi-
als. 

Since I joined Yonsei University as a faculty member in 2001, I have 
taught crystallography, X-ray diffraction, and optics to undergraduate 
students. X-ray diffraction is a consequence of the interaction between 
an electromagnetic wave and periodically arranged atoms. Thus, some 
knowledge on crystallography and optics is certainly helpful and, in a 
sense, requisite for a better understanding of the principle of X-ray dif-
fraction. While working at the university, I have strongly felt the necessity 
of a textbook on X-ray diffraction for the beginners who do not have any 
background in crystallography and optics. My goal was to write a book 
that is easily accessible to undergraduates and consistently teachable. In 
writing this book, it was assumed that the potential readers have only an 
elementary knowledge of mathematics.

This book consists largely of three parts. As Part I, the first three chap-
ters are given to explain the general properties of electromagnetic waves, 
the geometry of crystals, and the fundamentals of interference and dif-
fraction. The rather lengthy Chapter 2 deals with basic crystallography 
that will be necessary to comprehend the underlying principle of X-ray 
diffraction and its applications. This chapter also covers the concept of 
lattice and reciprocal lattice, symmetry elements, crystal systems, and the 
crystal structures of some important materials, together with how the in-
terplanar distances and angles in crystals can be determined. The theory of 
X-ray diffraction is described well in the Chapters 4 and 5 (Part II), where 
the direction and intensity of diffracted beams are discussed in detail. The 
final three chapters (Part III) describe how X-ray diffraction can be ap-
plied for characterizing such various forms of materials as single crys-
tals, thin films, and powders. Thin film characterization is of scientific and 
technological significance, since modern electronic and optical devices are 
mostly based on thin films. Although a great number of research articles 
appear on thin film characterization by X-ray diffraction, there are few 
books solely focused on this topic. Therefore, a considerable portion of the 
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application sections is devoted to thin film analysis. X-ray diffraction is a 
powerful nondestructive technique for characterizing thin films, provid-
ing a variety of information, such as phase, lattice parameter, film thick-
ness, orientation, internal stress and strain, etc. The purpose of the relevant 
chapter is to introduce X-ray diffraction techniques that are widely used to 
characterize thin films deposited on substrates. 

I hope that this book will be of use to the students in materials science, 
physics, and chemistry throughout their undergraduate and early graduate 
years.

Myeongkyu Lee
Department of Materials Science and Engineering
Yonsei University, 134 Sinchon-dong, Seoul, Korea

Office: B326, Engineering Building 2
Tel: +82-2-2123-2832
Fax: +82-2-312-5375

E-mail: myeong@yonsei.ac.kr
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1.1  MATERIALS ANALYSIS BY X-RAY DIFFRACTION

X-rays refer to the electromagnetic radiations that have a wavelength range 
of 10–3 nm to 10 nm. X-rays, discovered by W. Röntgen in 1895, were so 
named because their characteristics were unknown at that time. Today, 
X-rays are widely used to image the inside of visually opaque objects, 
for example, in medical radiography, computed tomography, and secu-
rity scanners. X-rays can also reveal various information on the materials, 
including crystal structure, phase transition, crystalline quality, orienta-
tion, and internal stress. This is made possible as a consequence of the 
interaction between X-rays and matter. X-rays with wavelengths below 
0.1–0.2 nm are called hard X-rays, while those with longer wavelength 
are called soft X-rays. The X-rays utilized for materials analysis are hard 
X-rays. There are two reasons why X-rays are so powerful for analyzing 
the internal state of crystalline materials. First, hard X-rays are deeply 
penetrating into all substances, although the penetration depth varies with 
the substance. While metals are optically opaque, they may be transpar-
ent or translucent to the hard X-rays. Secondly, X-rays have much shorter 
wavelengths than visible light. This makes it possible to probe small struc-
tures that cannot be seen under an ordinary microscope. In particular, hard 
X-rays have wavelengths similar to the size of atoms. Therefore, they can 
be diffracted by atoms periodically arranged within the substance. Moni-
toring the diffraction direction and intensity allows the internal structure 
of crystalline matters to be revealed at the atomic level.

The diffraction of light had already been known before X-rays were 
discovered. Diffraction refers to various phenomena that occur when a 
wave encounters an obstacle or a slit. In classical physics, the diffraction 
phenomenon is described as the bending of waves around small obstacles 
and the spreading out of waves passing through small openings. Diffrac-
tion occurs with all waves, including sound wave, water wave, and elec-
tromagnetic waves, such as visible light, X-rays, and radio waves. It is 
well known that when a light wave is confronted with a periodic structure, 
it is split into several waves traveling in different directions. This behavior 
is also called diffraction, in which the periodic structure plays a role of dif-
fraction grating. The diffraction effect becomes most profound when the 
wavelength is comparable to the grating period. Most materials are crys-
talline with regularly arranged atoms and X-rays have wavelengths similar 
to the interatomic distances. A crystalline matter contains many atomic 
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planes of different orientation and spacing, each of which can act as an 
effective diffraction grating when an X-ray beam is incident. The diffrac-
tion pattern, characterized by the direction and intensity of the diffracted 
beams, is characteristic of the matter and its internal structure. X-ray dif-
fraction is a very powerful, nondestructive tool for analyzing materials 
and a variety of information can be deduced from the obtained diffraction 
pattern.

This book deals with the principle and applications of X-ray diffrac-
tion and the Chapters 1 and 2 are concerned with the general properties 
of electromagnetic waves and the geometry of crystals, respectively. X-
ray diffraction is a consequence of the interplay between electromagnetic 
radiation and periodic atoms. Therefore, some knowledge on these topics 
is essential to comprehend the underlying principle of X-ray diffraction, 
which are described in Chapters 3, 4, and 5. X-ray diffraction is a versatile 
technique that can be utilized for phase identification, orientation determi-
nation, lattice parameter measurement, assessment of crystal quality, and 
determination of crystal structure. These common application areas are 
discussed throughout the final three chapters. Thin film characterization is 
of scientific and technological significance, since modern electronic and 
optical devices use many different thin films deposited on substrates. For 
optimal performance, these films are required to possess specific prop-
erties that are strongly affected by their microstructure. Therefore, char-
acterization of thin film microstructure is very important to improve the 
device quality to an acceptable level. X-ray diffraction is an indispens-
able technique for nondestructive in-situ characterization of thin films. It 
can provide a variety of information such as phase, lattice parameter, film 
thickness, orientation relation with the substrate, internal stress and strain, 
etc. However, there are few textbooks solely concentrated on this topic. A 
considerable portion of the application sections is thus devoted to thin film 
characterization by X-ray diffraction.

1.2  ELECTROMAGNETIC SPECTRUM

Electromagnetic wave is a transverse wave propagating with oscillating 
electric and magnetic fields. In all waves, the displacement varies both 
with the position (x) and time (t). Thus, a wave traveling in the x-direction 
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with a speed u satisfies the following one-dimensional differential wave 
equation

	
2 2

2
2 2

f f
t x

u∂ ∂=
∂ ∂

	 (1.1)

where f(x,t) is the displacement at x and t. In an electromagnetic wave, 
f(x,t) represents the electric or magnetic field. The electric and magnetic 
field components are orthogonal to each other and perpendicular to the 
direction of wave propagation. Since the magnetic field is always in phase 
with the electric field and its magnitude is proportion to the electric field 
strength, it is general to deal with the electric field only in optics and X-
ray diffraction. Let’s consider an initial electric field distribution shown 
in Figure 1.1(a). The arrows represent the direction and magnitude of the 
electric field. When the wave moves with a speed u, the electric field will 
have a different distribution like Figure 1.1(b) after a time t. If the spatial 
distribution at t = 0 is given by f(x), it is represented by ( )u−f x t  at t = t 
because the wave propagates by a distance u t along the x-direction. Thus, 

( )f x t  is the most general form of the one-dimensional wave function. 
Of course, the wave function has the form of  ( )f x tu+  when the wave 
propagates in the negative x-direction. The electromagnetic wave is math-
ematically expressed by a sinusoidal function, as shown in Figure 1.1(c).

FIGURE 1.1  The variation of electric field with x at (a) t = 0 and (b) t = t. (c) The 
propagation of electromagnetic wave expressed by a sinusoidal function.

Although waves can have many different forms such as square, tri-
angle, and saw-tooth, sinusoidal functions are the basic building blocks 
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representing waves. It follows from Fourier series that any periodic pro-
files can be generated by a superposition of sinusoidal functions. Elec-
tromagnetic wave is characterized by its wavelength (l) or frequency (n) 
and this is equally applied to non-sinusoidal waveforms. The wavelength 
means the spatial period of the wave and the frequency is the inverse of the 
temporal period (Figure 1.2). The amplitude of electromagnetic wave cor-
responds to the maximum value of the electric field (Eo). Thus, when the 
electric field is directed along the y-axis, an electromagnetic wave propa-
gating in the positive x-direction can be represented as follows

	 2 2cos 2 sin 2o oy E x t or E x tπ ππn πn
l l

   = − −      
	 (1.2)

FIGURE 1.2  Definitions of the wavelength, frequency, and amplitude.

It does not matter whether the wave is expressed by a cosine function 
or a sine function because an arbitrary point can be taken as the origin in 
the moving wave. As will be discussed in Chapter 3, the behavior of waves 
can be better explained by describing it with a complex function.

The term in parentheses of Eq. (1.2) is known as the phase (q) of the 
wave, so that

	
2 2x tπq πn
l

= − 	 (1.3)
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The displacement of the wave is identical at the same phase. In Figure 
1.3, two wave configurations have the same displacement at x1, t1 and x2, t2, 
which means that the phases at x1, t1 and x2, t2 are identical, i.e.,

	
1 1 2 2

2 22 2x t x tπ ππn πn
l l

− = − 	 (1.4)

FIGURE 1.3  The phase and displacement of the wave at x1, t1 are the same as those at x2, t2.

It can be seen from Eq. (1.4) that the speed of the wave is equal to the 
product of its frequency and wavelength.

	 2 1

2 1

 x x dx
t t dt

u n l− = = =
−

	 (1.5)

Since the electromagnetic wave moves at a constant speed of c = 2.998 
× 108 m/s in vacuum, the wavelength is inversely proportional to the fre-
quency, and vice versa. The electromagnetic radiation is classified by its 
wavelength or frequency into radio wave, microwave, infrared (IR) light, 
visible light, ultraviolet (UV) light, X-rays, and γ-rays. However, there 
are no sharp boundaries between the regions. Figure 1.4 shows the whole 
spectrum of the electromagnetic radiation. Our naked eyes can sense a 
relatively small range of wavelengths (400–700 nm) called visible spec-
trum or simply light. Other wavelengths, especially nearby IR (longer than 
700 nm) and UV (shorter than 400 nm), are also sometimes referred to as 
light. X-rays, located in between UV and γ-rays, have a wavelength range 
of 10–2 Å to 10 nm. X-rays used in diffraction experiments have wave-
lengths of 0.5–2.5 Å because the interatomic distances in materials are on 
the order of 1–10 Å.
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FIGURE 1.4  The spectrum of electromagnetic radiation.

Maxwell equations are a set of partial differential equations that form 
the foundation of classical electrodynamics, classical optics, and electric 
circuits. The fact that light is also an electromagnetic wave was revealed 
by Maxwell equations, which describe how electric and magnetic fields 
are generated and altered by each other. They are named after the Scottish 
physicist and mathematician James Clerk Maxwell. When Maxwell pub-
lished his first extensive account of the electromagnetic theory in 1867, the 
frequency range was only known to extend from the IR, across the visible, 
to the UV. Although this range is of primary concern in optics, it is just 
a small segment of the whole electromagnetic spectrum. Ten years later, 
H. Hertz succeeded in producing and detecting electromagnetic waves. 
His transmitter was an oscillating discharge across a spark gap and he 
used an open loop of wire for a receiving antenna. A small spark induced 
between the two ends of the antenna indicated the detection of an incident 
electromagnetic wave. The waves used by Hertz are now classified in the 
radio frequency range, which extends from a few Hz to about 109 Hz (in 
wavelength, from several kilometers to 30 cm). These waves are usually 
generated by an assortment of electric circuits.

The microwave region extends from about 109 Hz to 3 × 1011 Hz and 
the corresponding wavelengths lies in between 0.3 m and 1 mm. Radia-
tion that can penetrate the Earth’s atmosphere ranges from less than 1 cm 
to about 30 m. Microwaves are thus of interest in space-vehicle commu-
nications. Molecules can absorb and emit energy by altering the state of 
motion of their constituent atoms. They can be made to vibrate and rotate. 
The energy associated with each motion is quantized. Namely, molecules 
possess vibrational and rotational energy bands as well as their electron-
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ic energy bands. Only polar molecules experience forces via the electric 
field of an incident electromagnetic wave. The polar molecules can ab-
sorb a photon and make a rotational transition into an excited state. For 
instance, water molecules are polar. Thus, when exposed to an electro-
magnetic wave, they will swing around, trying to be lined up with the 
alternating electric field. This effect is particularly vigorous at any one of 
their rotational resonances (i.e., rotational energy bands). Consequently, 
water molecules efficiently absorb microwave at or near such a resonance 
frequency. The microwave oven (12.2 cm, 2.45 GHz) is a well-known ap-
plication, which utilizes heating by water molecules contained in the food. 
On the other hand, nonpolar molecules such as carbon dioxide, hydrogen, 
oxygen, and methane cannot make rotational transitions via the absorption 
of electromagnetic wave. Microwaves are also widely used for wireless 
communications.

The IR region extends approximately from 3 × 1011 Hz to 4 × 1014 Hz. 
The IR is often divided into four sub-regions: the near IR, i.e., near the 
visible (780–3000 nm), the intermediate IR (3000–6000 nm), the far IR 
(6,000–15,000 nm), and the extreme IR (15,000 nm–1 mm). This is a rath-
er loose division, and there is again no sharp boundary separating them. 
Any material radiates and absorbs IR via thermal agitation of its constitu-
ents. Although the molecules of any objects at a temperature above T = 0 
K will radiate IR, it is abundantly emitted in a continuous spectrum from 
hot bodies such as electric heaters, burning coals, and house radiators. Ap-
proximately half of the electromagnetic energy from the Sun is IR. The hu-
man body also radiates IR, even though the radiant energy is quite weak. 
A molecule can not only rotate but also vibrate in several different ways, 
with its atoms moving in various directions. For the vibration mode, the 
molecule need not be polar. For example, CO2 has three vibrational modes 
and many associated energy levels, each of which can be excited by pho-
tons. The corresponding absorption spectra lie in the IR region. A number 
of molecules have both vibrational and rotational resonances and are good 
IR absorbers. We can feel the resulting build-up of thermal energy when 
our face was put in the sunshine. IR energy is usually measured by a de-
vice that responds to the heat generated on absorption. A small difference 
in the temperatures of an object and its surroundings results in characteris-
tic IR emission, which can be effectively utilized for medical diagnostics.

Visible light has a very narrow band of frequencies from about 3.8 × 
1014 Hz to 7.5 × 1014 Hz. It is usually generated by a rearrangement of the 
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outer electrons of atoms and molecules. The color of light is determined 
by its wavelength (and frequency). Newton was the first to recognize that 
white light is essentially a mixture of all the colors of the visible spectrum. 
Colors are actually the subjective human physiological responses to the 
various wavelength regions ranging from about 650 nm for red, through 
orange, yellow, green, and blue, to violet at about 400 nm. A variety of 
different wavelength mixtures can evoke the same color response from 
the eye-brain sensor. For example, a beam of red light overlapping a beam 
of green light will result in the sensing of yellow light, even though the 
overlapped beam has no wavelengths belonging to the yellow band. That 
is why a display can be operated with only three light sources: red, green, 
and blue. Next to visible light in the electromagnetic spectrum is the UV 
region that ranges approximately from 8 × 1014 Hz to about 3.4 × 1016 Hz. 
A UV photon can be emitted by an atom when its electron makes a long 
jump down from a highly excited state. Photon energies in UV range from 
roughly 3 eV to 100 eV. UV rays from the Sun thus have more than enough 
energy to ionize atoms. Fortunately, ozone in the atmosphere substantially 
absorbs a lethal UV stream from the Sun.

X-rays was fortuitously discovered by W. Röntgen in 1895. They have 
extremely short wavelengths; most are smaller than the atom size. The 
most practical method for producing X-rays is the rapid deceleration of 
charged particles accelerated to a very high speed. A broad X-ray spectrum 
arises when an energetic electron beam collides with a target material, such 
as a Cu plate. The atoms of the target may also be ionized during the bom-
bardment. If the ionization occurs by removal of an inner electron tightly 
bound to the nucleus, the atom will emit X-rays as the vacant level is oc-
cupied by one of higher-lying electrons. The resulting quantized emissions 
are characteristic of the target atom, and accordingly are called character-
istic radiation. γ-rays are the highest-photon energy, lowest-wavelength 
electromagnetic radiations. These rays are emitted by particles undergoing 
transitions within the atomic nucleus. Since the wavelengths are so short, 
it is very difficult to observe any wave-like properties from the γ-rays.

Why X-rays can penetrate deeply into metals is well explained by the 
concept of plasma frequency. Since the derivation of plasma frequency 
from the Maxwell equations can be found in many electromagnetics and 
optics books,1–5 only its physical meaning is here mentioned. Free elec-
trons under an electric field are accelerated due to the induced electrostatic 
force. At a fixed position, the direction of electric field of the electromag-
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netic wave changes with time. When an electromagnetic radiation is in-
cident into a material, its free electrons will oscillate in response to the 
alternating electric field. The fact that the electrons are made to oscillate 
by the electromagnetic wave means that they absorb the radiation energy. 
Ordinary light is easily absorbed by free electrons within the metal and the 
absorbed energy is reflected as radiation or dissipated as heat. Since elec-
trons also have a mass, they are unable to keep pace with the electric field 
oscillating at an extremely high rate. The plasma frequency means the 
maximum rate at which the free electrons of material can make a collec-
tive motion. The plasma frequencies of most metals lie in the UV region. 
Therefore, metals do not efficiently absorb the energy of X-rays because 
X-rays have a higher frequency than their plasma frequencies. That’s why 
X-rays are permeable into metals. Of course, the penetration depth de-
pends on the substance.

EXAMPLE 1.1.

Determine the wavelength, frequency, and speed of the wave functions 
1 sin 2 (0.2 3 )f x tπ= −  and 2 sin(7 3.5 )f x t= + . The units of x and t are 

meters (m) and seconds (s).
Answer: From the general sinusoidal wave function

2 2sin ( ) sin 2π πu πn
l l

 = − = −  
f x t x t

we can know that f1 has l = 5 m, n = 3 Hz, and u = 15 m/s. f2 is a wave 
propagating in the negative x-direction and its speed is u = 0.5 m/s. The 
wavelength and frequency of f2 are l = 2p/7 m and n = 3.5/2p Hz.

1.3  WAVE-PARTICLE DUALITY

Electromagnetic radiation exhibits wave-like properties and particle-like 
properties at the same time (wave-particle duality). Therefore, the propa-
gation of an electromagnetic wave can be considered as a stream of light 
particles called photons. According to quantum theory, the energy of a 
photon (Ep) is related to the frequency and wavelength of the wave as fol-
lows,
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	 p
cE h hn
l

= = 	 (1.6)

where h is Plank constant (6.63 × 10–34j·s). As a consequence of this dual-
ity, an electromagnetic wave with l = 100 nm can be viewed as equivalent 
to a flow of photons with Ep = 12.44 eV (Figure 1.5). Various phenom-
ena occurring with the electromagnetic radiations can be better explained 
sometimes with the wave concept, and sometimes, the particle concept. 
Wave characteristics are more apparent when the radiation is measured 
over relatively large time-scales and over large distances (e.g., interfer-
ence and diffraction). On the contrary, particle characteristics will be more 
obvious in the case of absorption because it occurs quite fast in specific 
positions. The radiation intensity (I) means the energy transferred across 
unit cross-section per unit time and has units of j/m2·s.

FIGURE 1.5  Wave-particle duality.

When the wavelength and frequency are fixed, the intensity of the elec-
tromagnetic wave is proportional to the square of its amplitude. Thus, if 
the amplitude is doubled, the intensity becomes four times (Figure 1.6(a)). 
Viewed from the particle nature, this means that the number of photons 
crossing unit cross-section per unit time increases four-fold. Let’s consider 
a case in which atoms or electrons are photoexcited to higher energy states 
by absorbing the incident electromagnetic wave (Figure 1.6(b)). When 
the amplitude of the wave is doubled, four times more photons will be 
absorbed as a result of the four-fold intensity increase. It is to be noted, 
however, that the energy of individual photons is fixed and the excitation 
to energy levels exceeding the photon energy is thus impossible no matter 
how high the intensity may be.



14	 X-Ray Diffraction for Materials Research: From Fundamentals to Applications

FIGURE 1.6  (a) Intensity proportional to the square of the amplitude. (b) A four-fold 
increase in the number of photons as a result of the doubled amplitude.

EXAMPLE 1.2.

If the intensity of an X-ray-beam at l = 10 nm is four times higher than 
that of a visible light at 600 nm, how much different is the number of 
photons moving across unit area per unit time in two radiations?
Answer: Since the photon energy is inversely proportional to the wave-
length as given by Eq. (1.6), the X-ray beam has a sixty times higher 
photon energy than the visible light. However, its intensity is just four 
times higher. Therefore, the visible light carries fifteen times more pho-
tons. Intensity means the energy transferred across unit area per unit 
time. Although individual X-ray photons have a much higher energy, 
the X-ray intensity is not so much high as its photon energy. Therefore, 
the visible light has more photons flowing per unit cross-section per 
unit time.
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1.4  GENERATION OF X-RAYS

X-rays are generated when electrons accelerated to a very high speed rap-
idly decelerate. They are typically produced by an X-ray tube that contains 
two metal electrodes: a cathode (source of electrons) and an anode (metal 
target). The cathode is maintained at a high negative voltage (-V) and the 
anode, at ground potential. Figure 1.7 shows a schematic of the common 
filament-type tube. A tungsten filament within the cathode is heated by 
the passage of an electric current and produces electrons. A high electric 
potential in the range 20–60 kV accelerate the electrons emitted by the 
hot filament toward the metal target. When colliding with the target, the 
electrons lose their kinetic energy (KE) and the lost energy is emitted as X-
rays. All these processes occur inside an evacuated glass envelope. X-rays 
are emitted from the anode in all possible directions. But only a narrow 
beam making a small angle with the target face is allowed to pass out of 
the evacuated tube through a window. The window is made of a substance 
with a very low absorption coefficient for X-rays; the substance for win-
dow is usually beryllium (Be). The KE of the electrons on impact is given 
by the following equation,

FIGURE 1.7  Schematic of the common filament-type X-ray tube.

	
21

2
KE m eVu= = 	 (1.7)
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where m is the mass of the electron (9.11 × 10–31 kg) and u, its speed 
just before collision. The maximum energy of the emitted X-ray photons 
is limited by the energy of the incident electrons that is equal to the ap-
plied voltage times the electron charge. The production of X-rays is an 
inefficient process. Most of the electrical energy consumed by the tube is 
released as heat and approximately one percent is transformed into X-rays. 
Therefore, the X-ray tube should be designed to cool down the heated tar-
get. Usually, the heated target is cooled from behind by a flowing stream 
of water. The energy of the produced X-ray photons is maximized when 
the accelerated electrons completely stop in a single collision and transfer 
all their kinetic energy into the photon energy. The maximum X-ray fre-
quency and minimum wavelength available in a given voltage is deduced 
from the following relation.

	 max
min

ceV h hn
l

= = 	 (1.8)

Equation(1.8) corresponds to an extreme case where the electron ener-
gy is 100% transformed into the photon energy. However, most electrons 
undergo multiple collisions and successively lose a part of their energy, 
emitting photons with energy less than hvmax. Thus, X-ray spectrum com-
ing from the tube consists of many different wavelengths (and frequen-
cies), which is known as continuous radiation or white radiation. The in-
tensity of the emitted radiation will vary continuously with wavelength. 
The intensity at a fixed wavelength depends on the operating voltage of 
the tube and on the nature of the target metal. A typical X-ray spectrum 
from a molybdenum target is shown in Figure 1.8. As the applied potential 
difference increases, the KE of the electrons bombarding the target also 
increases. This will lead to an overall increase in the intensity of the emit-
ted X-rays. The shortest wavelength, lmin, is determined according to Eq. 
(1.8). The higher the accelerating voltage of the X-ray generator is, the 
shorter the minimum wavelength that can be obtained.
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FIGURE 1.8  Typical X-ray spectrum from a molybdenum target.

When the energy of the accelerated electrons is higher than a threshold 
value (which depends on the metal target), sharp peaks appear at certain 
wavelengths superimposed on the white radiation. They are called char-
acteristic lines and the wavelengths of these peaks depend solely on the 
target material. While the continuous radiation is caused by the KE loss of 
electrons in a series of collisions, the characteristic radiation arises from 
the ejection of an electron from one of the inner shells of the target atom. 
If one of the electrons striking the target has sufficiently high energy, it 
can knock an electron out of the K shell of the target atom, leaving the 
atom in an excited state. This will result in the transfer of an electron from 
outer shells to the vacant K level in order to lower the overall energy. Such 
a transfer will be followed by the emission of an X-ray photon whose en-
ergy is equal to the difference in energy between the two different states. 
The radiation emitted as a result of such a process will thus have a definite 
wavelength characteristic of the target element. The characteristic lines 
referred to as K, L, M, etc., correspond to transitions to the K, L, M shells, 
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respectively. The vacant K level may be filled by an electron from any of 
the outer shells. When the two orbitals involved in the transition are adja-
cent, the line is represented by a subscript a. If the involved orbitals are 
separated by two levels, the line is designated as b. For instance, when an 
electron is ejected from the K shell and its vacant site is occupied by an 
electron from the L shell, the Ka line is emitted (Figure 1.9). The Kb transi-
tion refers to the case where the vacant K shell is filled by an electron from 
the M shell. Since the b–transition has a larger energy difference than the 
a–transition, the Kb line exhibits higher photon energy (i.e., shorter wave-
length) than the Ka line. However, the Ka line is much stronger than the Kb 
line because the vacant site of the K shell is more probably occupied by 
an L electron than by an M electron. When the L shell becomes vacant as 
a result of the Ka transition, the vacancy will also be filled by an electron 
from the outer shells. Therefore, the Ka line is always accompanied by the 
L transition.

FIGURE 1.9  Electronic transitions in a target atom. The emitted characteristic lines are 
represented by arrows.

Only the characteristic lines are used in most X-ray diffraction experi-
ments, except the Laue method that requires a white X-ray spectrum. The 
L lines are not suitable for X-ray diffraction because they have rather long 
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wavelengths and also are substantially absorbed by the target before es-
caping it. The characteristic lines of common target metals are listed in 
Table 1.1. All target elements give rise to two Ka lines: Ka1 and Ka2. Since 
the two lines are very close in wavelength, they are not always resolved as 
separate lines. The Ka1 line has the shorter wavelength and is about twice 
as strong as the Ka2 line. If the two lines are not resolved, the doublet is 
simply called the Ka line. The wavelength of an unresolved Ka doublet 
is usually given by the weighted average of the wavelengths of its com-
ponents. It is written as 1 2

2 1
3 3K K Ka a al l l= + . Thus, the wavelength of the 

unresolved Cu Ka line is (2×1.541 + 1.544)/3 = 1.542 Å. The Cu Ka line 
is widely employed in many X-ray diffractometers. While the wavelength 
of characteristic radiation is dependent only on the target element, its in-
tensity is influenced by the potential applied across the tube. If the applied 
potential is below a certain threshold value, none of the accelerated elec-
trons will have sufficient energy to eject an electron from the target atom. 
The operation voltage of an X-ray tube should therefore be greater than 
this threshold value. It is maintained so that the characteristic radiation has 
an optimal intensity with respect to the white radiation.

TABLE 1.1  Wavelengths of the Characteristic Lines of Common Target Metals

Target Cu Mo Fe Co Cr

Lines Ka Kb Ka Kb Ka Kb Ka Kb Ka Kb

l (Å) 1.542 1.392 0.711 0.632 1.937 1.757 1.790 1.621 2.291 2.085

A specific characteristic line can be selected by passing the output X-
ray beam from the tube through a filter made of a material whose absorp-
tion edge lies in between the Ka and Kb wavelengths. For instance, a Ni 
filter absorbs the Cu Kb line much strongly than the Cu Ka line. After pass-
ing through the filter, the Kb line is reduced to negligible intensity, while 
the intensity of the Ka line decreases only by a small factor. Although the 
primary purpose of such a filter is to remove the Kb line, white radiation 
whose wavelength is below the absorption edge of the filter will also be 
cut out. Since the filtered output beam can have a fairly intense Ka line su-
perimposed on the weak continuous spectrum, it may be sufficient merely 
to remove the Kb line for some applications. However, many X-ray diffrac-
tion experiments require monochromatic radiation that has a fixed wave-
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length (and frequency). Even though the characteristic peaks have a very 
narrow wavelength range, they are not perfectly monochromatic. Mod-
ern diffractometers are equipped with a single-crystal monochromator to 
make the characteristic beam as close to monochromatic as possible. The 
monochromator is aligned such that only a central wavelength component 
is diffracted by the high-quality crystal. This procedure enables the char-
acteristic peak to have a much narrower wavelength range than before, 
although its intensity is inevitably reduced to a degree. A characteristic 
beam diffracted by the monochromator is used as the monochromatic X-
ray source in many experiments.

1.5  ABSORPTION

We now take a look at the absorption of electromagnetic radiation. Absorp-
tion is a physical phenomenon in which the energy of a photon is taken up 
by matter, typically by the electrons of an atom. The energy absorbed by 
matter is released in the form of radiation or simply dissipated as heat. The 
intensity of an electromagnetic wave decreases as it propagates through an 
absorptive medium. In general, the degree to which absorption occurs is 
not influenced by the intensity (linear absorption), although the medium 
can change its transparency depending on the intensity (nonlinear effect). 
In the general case, the fractional decrease in intensity is directly propor-
tional to the distance by which the wave travels. In differential form,

	
dI dx
I

a− = 	 (1.9)

where the proportionality constant a is called the linear absorption 
coefficient. The absorption coefficient depends on the wavelength of the 
electromagnetic wave as well as the medium. Integration of Eq. (1.9) gives

	 ( ) o
xI x I e a−= 	 (1.10)

where I0 is the initial intensity and I(x) is the intensity after traveling by 
a distance x. The absorption coefficient of a material is usually obtained by 
measuring the transmittance (T). The transmittance is defined as the ratio 
of the transmitted intensity to the incident intensity, i.e., T=It/Ii. At least 
two samples of different thickness are needed to precisely measure the 
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absorption coefficient of the material. Suppose that an electromagnetic 
wave with Ii is incident into a medium of thickness d1 (Figure 1.10). The 
transmittance of the medium will be given by 1

1
d

t iT I I Ae a−= = , where A 
is a constant reflecting the intensity loss due to reflection at the interfaces. 
It is impossible to derive the absorption coefficient from T1 alone if the un-
known A value is much deviating from unity. The transmittance of another 
sample of thickness d2 is expressed as 2

2
d

t iT I I Ae a−= = . Since the reflec-
tion loss is independent of the thickness, the absorption coefficient can be 
accurately determined from the following relation.

	
( )1 2

2 1

ln T T
d d

a =
− 	 (1.11)

As shown in Eq. (1.10), the intensity inside a material decays expo-
nentially with distance from its surface. Penetration depth is defined as 
the depth at which the intensity falls to 1/e of its value at (more precisely 
just beneath) the surface. It is a measure of how deeply an electromagnetic 
radiation can penetrate into the material and is equal to the inverse of 
the absorption coefficient. The penetration depth also varies with the sub-
stance and the radiation wavelength. For instance, the penetration depth of 
visible light into metals ranges from a few nm to tens of nm, depending on 
their electrical conductivity.

FIGURE 1.10  Measurement of the absorption coefficient. The absorption coefficient of a 
material can be precisely determined by measuring the transmittances of two samples with 
different thicknesses.
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EXAMPLE 1.3.

A certain material has an absorption coefficient a = 0.2 cm–1 at 500 nm. 
If a sample of 1 mm thickness exhibits a transmittance of 0.7 at this 
wavelength, what will the transmittance of a 3 mm-thick sample be?
Answer: Since the 1 mm-sample exhibits T = 0.7, we obtain the rela-
tion of 0.2 0.10.7 Ae− ×=  from which the reflection loss, represented by 
the constant A, is known. The transmittance of the 3 mm-thick sample 
will be given by 0.2 0.3T Ae− ×= . By comparison of the measured and ex-
pected transmittances, we know that the 3 mm-thick sample will have 
a transmittance of

(0.06 0.02)0.7 0.673T e− −= =

The linear absorption coefficient is dependent on the material consid-
ered, its density, and the wavelength of the incident radiation. Since the 
linear absorption coefficient a of a material is proportional to its density r, 
absorption is often described with the mass absorption coefficient defined 
as a/r . Equation(1.10) may be rewritten in terms of the mass absorption 
coefficient.

	 ( ) ( )

o

x
I x I e

a ρρ−
= 	 (1.12)

where rx is the area density also known as mass thickness. Both a and a/r 
are functions of wavelength. At a given wavelength, the mass absorption 
coefficient is a constant of the material and independent of its state (solid 
or liquid), whereas the linear absorption coefficient is a state function. The 
quantity usually tabulated is the mass absorption coefficient. The linear 
absorption coefficient may be calculated from the tabulated mass absorp-
tion coefficients of the elements (International Tables for Crystallography, 
Vol. 3),6 provided the composition and density of the material are known. 
The mass absorption coefficient is a convenient concept especially when 
we deal with the absorption of a substance containing more than one ele-
ment. Regardless of whether the substance is a mechanical mixture or a 
solution, its mass absorption coefficient is simply the weighted average 
of the mass absorption coefficients of its constituent elements. Consider a 
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solid solution containing three different elements. If w1, w2, and w3 are the 
weight fractions of these elements in the solution and (a/r)1, (a/r)2 , and 
(a/r)3 are their mass absorption coefficients, the mass absorption coeffi-
cient of this solution is then given by

	 1 1 2 2 3 3( ) ( ) ( )w w wa a a a
ρ ρ ρ ρ= + + 	 (1.13)

This is based on the fact that the mass absorption coefficient of an ele-
ment is independent of its concentration in the solution. Eq. (1.13) can be 
alternatively expressed as

	 1 1 2 2 3 3( ) ( ) ( )a a aa ρ ρ ρρ ρ ρ= + + 	 (1.14)

where r1, r2, and r3 are the densities of constituent elements of the solu-
tion. We can obtain the linear absorption coefficient of a solution sub-
stance if the densities of its constituent elements are known.

The absorption of X-rays by a matter takes place in two distinct ways: 
scattering and true absorption. These two processes constitute the total 
absorption characterized by the quantity a/r. The scattering of X-rays by 
atoms may also occur in two different ways, both of which involve inter-
action between X-radiation and electrons. An X-ray photon encountered 
with a loosely bound or free electron can be deflected by the electromag-
netic field of the electron, giving some of its energy to the electron as 
kinetic energy. Thus, the deflected (i.e., scattered) X-ray photon has lower 
energy and longer wavelength than the incident photon. This incoherent 
scattering, discovered by A. Compton, is called the Compton scattering or 
effect. The Compton scattering can be understood only by considering the 
incident beam as a stream of X-ray photons (quanta). It may be viewed as a 
collision between two billiard balls. The effect is of scientific significance 
because it demonstrates that light cannot be explained purely as a wave 
phenomenon. Compton derived the mathematical relationship between the 
scattering angle of the X-rays and the shift in wavelength by assuming 
that each scattered X-ray photon interacted with only one electron. It is 
important to note that the phase of the Compton-scattered radiation has no 
fixed relation to the phase of the incident beam. This incoherent radiation 
cannot participate in X-ray diffraction because interference does not take 
place between the waves at random phases.
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Another way in which X-rays are scattered by atoms can be explained 
by treating the incident X-ray beam as a wave with oscillating electric field. 
When the incident wave encounters an electron, its time-varying electric 
field will cause the electron to oscillate about a mean position. An oscillat-
ing charge emits an electromagnetic wave. The oscillating electron radi-
ates X-rays of the same wavelength and frequency as the incident beam. 
In this coherent scattering, there is a definite phase relationship between 
the scattered beam and the incident beam. The interference associated with 
such coherent scattering is the basis of X-ray diffraction and will be dis-
cussed in Chapters 3 and 5. Since the phase change on coherent scattering 
is identical for all the electrons in a material, we do not have to consider it 
in deriving the condition for diffraction. When X-rays in the range 0.5–2.5 
Å are incident on crystalline materials, diffraction patterns are observable 
because the distances between adjacent atoms are on the same scale and 
because the incident X-rays are coherently scattered from the electrons of 
the constituent atoms. Incoherent scattering occurs simultaneously, which 
contributes only to the background of the diffraction pattern.

True absorption arises from electronic transitions within the atom. We 
already know that an electron of sufficient energy can knock a K electron 
out of an atom. Likewise, an electron can be ejected from the atom by an 
X-ray photon of the corresponding energy. Since the vacant K shell will be 
filled by an electron from outer shells, this photo-absorption process will 
be accompanied by the emission of characteristic K radiation. The emitted 
characteristic radiation is called fluorescent radiation. Such fluorescent X-
rays, radiated in all directions, may be reabsorbed by another atom. The 
way in which the absorption coefficient varies with wavelength is helpful 
to figure out the interaction of X-rays and atoms. The mass absorption 
coefficient of Ni is shown in Figure 1.11; it is typical of all materials. The 
overall absorption drastically decreases with decreasing wavelength. This 
reflects the fact that the scattering-induced energy loss is approximately 
proportional to l3 in the X-ray wavelength range. There is a sharp discon-
tinuity (a jump) in the absorption curve, called an absorption edge. This 
absorption edge is generated because the energy of an X-ray photon is 
absorbed to eject a K electron out of a Ni atom. The K absorption edge of 
Ni is located at 1.49 Å. Thus, X-rays at wavelengths slightly shorter than 
this value can be significantly absorbed by Ni. For this reason, a Ni filter 
is used to cut out the Cu Kb line at 1.39 Å.
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FIGURE 1.11  Mass absorption coefficient of Ni at X-ray wavelengths.

Problems

1.1.	 Explain why X-rays are useful for the structural analysis of ma-
terials, while visible or infrared lights are not.

1.2.	 Show that f(x–υt) is a solution of the following one-dimensional 
wave equation

2 2
2

2 2

f f
t x

u∂ ∂=
∂ ∂

where f is any differentiable function with the argument x–υt.
1.3.	 Using the wave functions 1 4sin 2 (0.2 3 )f x tπ= −  and 

2 0.2sin(7 3.5 )f x t= + , determine in each case the values of (a) 
frequency, (b) wavelength, (c) period, (d) amplitude, and (e) di-
rection of motion. t is in seconds and x is in meters.

1.4.	 When an X-ray tube is operated at 60 kV, what are the kinetic 
energy and speed with which the electron strikes the metal tar-
get? Calculate the minimum wavelength and the maximum pho-
ton energy achievable under this condition.
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1.5.	 Characteristic Ka line is always accompanied by L line, but the L 
line is seldom used for X-ray diffraction. Explain why?

1.6.	 When an X-ray beam is incident into a crystalline matter, inco-
herent and coherent scattering takes place simultaneously as a 
consequence of the interaction with electrons. However, only the 
coherently scattered X-rays are involved in diffraction. Why?

1.7.	 The penetration depth of visible light into metals ranges from a 
few nm to tens of nm. If the penetration depth of a certain metal 
is 12 nm at l = 632.8 nm, how thin should it be to exhibit 50% 
transmittance at the same wavelength?

1.8.	 An X-ray beam of l = 1.54 Å is propagating in free space. If this 
beam has an intensity of 100 W/cm2, then how many photons are 
moving across unit area per unit time?
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2.1  INTRODUCTION

A crystal is a solid material whose constituent atoms are periodically ar-
ranged in three dimensions. Crystallography refers to the scientific area that 
studies the arrangement of atoms in solids. Not all materials are crystalline 
and some are amorphous. With respect to the atomic arrangement, there 
is no fundamental difference between an amorphous solid and a liquid. In 
this sense, the former is often regarded as a “super-cooled liquid”. Most 
solids are composed of regularly arranged atoms because the crystalline 
state is energetically more stable. The regularity of atomic arrangement 
can be described by symmetry elements, which ultimately determines the 
physical properties of a crystal. Crystallography is a very broad subject 
beyond simply comprehending the crystal structure. In-depth knowledge 
of crystallography is central to the study of many active areas in materi-
als science, chemistry, earth science, and physics. When performing any 
process on a material, it may be required to find out what phases are pres-
ent in the material. Each phase has a characteristic arrangement of atoms 
and symmetry. Crystallography covers a huge number of symmetry pat-
terns that can be formed by atoms in a crystal and has a relation to group 
theory (point group and space group). In this chapter, we explain the basic 
aspects of crystallography that are necessary for the understanding of X-
ray diffraction and its applications. These include the concept of lattice 
and reciprocal lattice, symmetry elements, crystal systems, and the crys-
tal structures of some important materials. How the interplanar distances 
and angles in crystals can be determined are also described. Textbooks by 
Kelly/Knowles7 and McKie/McKie8 would be greatly helpful to acquire 
deeper knowledge on the crystallography.

FIGURE 2.1  Crystal structure and lattice. Lattice is a three-dimensional array of lattice 
points that have identical surroundings.
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2.2  LATTICE

In this chapter, we explain the principle of geometrical crystallography by 
considering perfect single crystals. The regular arrangement of atoms in 
a single crystal can be completely described by defining a fundamental 
repeat unit coupled with a statement of the translations necessary to build 
the crystal from the repeat unit. A space lattice (simply called a lattice) is 
an array of hypothetical points introduced to figure out how the atoms of a 
crystal are periodically arranged in space. Each of the points, called a lat-
tice point, has identical surroundings and the lattice corresponds to a three-
dimensional network of lattice points. Let’s consider a crystal consisting of 
A and B atoms, as shown in Figure 2.1. The surroundings of the A atom are 
different from those of the B atom. If a pair of A and B atoms are allocated 
to one lattice point, all lattice points have identical surroundings and are 
indistinguishable from one another. These two atoms are called the basis of 
the lattice. The crystal structure is constructed by placing the basis atoms 
on each lattice point. The lattice then represents an essential element of the 
translational symmetry of the crystal. The space lattice can be built up by 
repetition of a repeat unit, known as the unit cell. A general form of the unit 
cell is a parallelepiped that contains just one lattice point (Figure 2.2). The 
sides of the unit cell are taken as the axes of the crystal. The size and shape 
of the unit cell are described with three vectors a, b, and c drawn from one 
corner of the cell. The x, y, and z directions of a crystal and its unit cell are 
taken parallel to these unit cell vectors. The lengths of a, b, and c vectors 
are denoted by a, b, and c, and the angles between them, α, β, and γ. These 
values are called the lattice parameters or constants of the crystal.

FIGURE 2.2  A general form of the unit cell. The lengths of a, b, c vectors are a, b, c, 
respectively, and the interaxial angles are denoted by α, β, and γ.
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There are various ways to choose a unit cell. The smallest repeat unit 
in space lattice is referred to as the primitive cell and it contains only one 
lattice point. However, it is more convenient to consider a larger repeat 
unit in many cases. This non-primitive cell contains more than one lattice 
point. A cubic cell is conventionally taken as the unit cell of the face-cen-
tered cubic lattice, while its primitive cell is rhombohedral (Figure 2.3). 
The axes of the conventional cubic cell have an equal length and are at 
right angles with one another, i.e., a = b = c and α = β = γ = 90°. Thus, the 
periodicity and symmetry of the lattice can be more easily visualized with 
a cubic cell. The inter-axial angle of the rhombohedral cell is 60° and its 
axis length is 1 2  times the length of the cubic axis. Since each cubic cell 
has four lattice points, its volume is also four times that of the primitive 
cell.

FIGURE 2.3  The relationship between the primitive cell and the non-primitive cubic cell 
in the face-centered cubic lattice.

There are four different lattice types: simple, body-centered, base-cen-
tered, and face-centered (Figure 2.4). When the lattice points are located 
only on the corners of the unit cell, it is called simple lattice. Thus, the lat-
tice type of all the primitive cells is simple. The body-centered lattice has 
another lattice point on the body center of the cell, and the base-centered 
lattice, two more lattice points on the centers of two parallel faces. In the 
face-centered lattice, all of the corners and face centers of the unit cell are 
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occupied with lattice points. The number of lattice points per unit cell of 
each type is one, two, two, and four, respectively. The crystal structure of a 
material is described by the arrangement of atoms within its unit cell. The 
positions of the atoms inside the unit cell are given by the set of atomic po-
sitions measured from a lattice point. This lattice point, arbitrarily chosen, 
becomes the origin of the unit cell. Commonly, atomic positions are rep-
resented in terms of factional coordinates, relative to the unit cell lengths. 
For instance, an atom located at the center of a unit cell has atomic posi-
tion (1/2,1/2,1/2), regardless of the shape and size of the unit cell.

FIGURE 2.4  Four different lattice types that can be possessed by crystals.

2.3  CRYSTAL SYSTEMS

2.3.1  SYMMETRY

In the previous section, the regular arrangement of atoms in a crystalline 
solid was described with respect to the concept of a lattice. The lattice is a 
regular array of hypothetical points in which each lattice point has identi-
cal surroundings in the same direction. As the unit cell is a repeat unit, 
the space lattice is built up by stacking unit cells in three dimensions. The 
crystal structure can be completely described by stating the lattice con-
stants (i.e., the unit cell dimensions) and the coordinates of atoms within 
the unit cell. Any two atoms separated by a lattice translation should be 
equivalent in every aspect; they should be of the same element and also 
have identical surroundings in the same direction. Different from such lat-
tice repetition, there is another kind of repetition known as symmetry. The 
symmetry arises when an atom or group of atoms is regularly repeated to 
a pattern. The symmetric arrangement of atoms in a crystal is described in 
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terms of the symmetry elements. There are four pure symmetry elements 
or operators: rotation, reflection, inversion, and rotation-inversion.

FIGURE 2.5  Numerical and graphical symbols for the rotational symmetry axes. Objects 
come into self-coincidence after rotation of 360°/n about the symmetry axis. The possible 
values of n are 1, 2, 3, 4, and 6.

A body is said to possess n-fold rotational symmetry if it comes into 
self-coincidence after rotation of 360°/n about an axis. Axes of rotational 
symmetry include one-fold, two-fold, three-fold, four-fold, and six-fold. 
These correspond to repetition every 360°, 180°, 120°, 90°, and 60° and 
are called monad, diad, triad, tetrad, and hexad, respectively. Although the 
possible values of n are 1, 2, 3, 4, and 6, a one-fold axis, which brings the 
crystal into self-coincidence after rotation of 360°, is obviously trivial. A 
five-fold axis or one of higher degree than six is impossible because such 
symmetry does not fill up space without gaps. Just as there are no penta-
gon-shaped paving blocks in the sidewalk, five-fold rotational symmetry 
cannot exist in a single crystal. Crystals can have diad, triad, tetrad, and 
hexad only. These rotation axes are denoted by the numerical symbols 2, 
3, 4, and 6. The graphical symbol for each axis is also shown in Figure 2.5. 
Another type of symmetry is reflection. The operation is that of reflection 
in a mirror. The mirror plane marked m in Figure 2.6 runs normal to the 
page and reflects a right-handed object to a left-handed one and vice versa. 
It should be noted that the right-handed object cannot be translated in the 
plane of the page to superimpose on the left-handed one. Rotation and re-
flection are easily combined to give higher symmetry. Figure 2.7(a) shows 
a two-dimensional pattern consisting of circles with different sizes. This 
pattern possesses a tetrad axis and mirror planes running normal to the 



Geometry of Crystals	 33

page. However, once the small-circle pairs are rotated like Figure 2.7(b), 
the mirror symmetry no longer exists and only a tetrad remains.

FIGURE 2.6  Mirror plane reflects a right-handed object to a left-handed one and vice 
versa.

FIGURE 2.7  Two-dimensional patterns. Pattern (a) has a tetrad axis and mirror planes 
running normal to the page. Pattern (b) lacks mirror symmetry.
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A center of symmetry is a point through which inversion produces an 
identical arrangement. When an atom with coordinates (x, y, z) in a crystal 
is duplicated by another atom of the same element with coordinates (–x, 
–y, –z), the structure is said to possess an inversion center, i.e., a center of 
symmetry at the origin (0, 0, 0). For instance, if we stand at the inversion 
center and look in a certain direction, we will find an identical outlook 
when we look in the opposite direction. Any crystals that exhibit inversion 
symmetry have a center of symmetry. The center of symmetry is alterna-
tively called the point of inversion. The crystal needs to possess a center 
of symmetry for some applications, but it should be absent for others (see 
Example 2.3). The pure rotation axes designated as 2, 3, 4, and 6 rotate an 
object through 360°/n and have already been discussed. Rotation-inver-
sion refers to the combination of two symmetry elements. This involves a 
rotation through 360°/n, followed by an inversion through a center of sym-
metry on the axis of rotation. The basic operations of repetition by rotation 
axes are shown in Figure 2.8, together with their stereographic diagrams. 
An n-fold axis repeats an object by successive rotations through an angle 
of 360°/n. Since the operation of one-fold rotation is self-coincident, any 
line passing through a center of symmetry can be a one-fold inversion 
axis. The operation of the other rotation-inversion axes is given in Figure 
2.9. The two-fold rotation-inversion axis, denoted by 2, repeats an object 
by rotation through 360°/2 = 180° to give the dotted object, followed by 
inversion to give the full object. The objects located above and below the 
center of symmetry are represented as closed and open circles on the ste-
reogram, respectively. Similarly, the three-fold rotation-inversion axis 3
involves a rotation through 120° coupled with an inversion. It is to be 
noted that the rotation and inversion are both part of the whole operation 
and should not be regarded as separate operations. The graphical symbols 
for the rotation-inversion axes are also shown in Figure 2.9.

42 3 6

FIGURE 2.8  Basic operations of repetition by rotation axes along with their stereographic 
diagrams.
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FIGURE 2.9  Operations of rotation-inversion symmetry axes. Their graphical symbols 
are given on the diagrams.

2.3.2  CRYSTAL SYSTEMS

Crystals are classified into seven crystal systems according to their rota-
tional symmetry elements (including rotation-inversion symmetry). These 
are triclinic, monoclinic, orthorhombic, trigonal, tetragonal, hexagonal, 
and cubic. The trigonal system is sometimes regarded as a subdivision of 
the hexagonal system, rendering the number of systems to six. The mini-
mum symmetry elements required for each system are listed in Table 2.1 
and are also schematically illustrated in Figure 2.10. One system is distin-
guished from another by its symmetry elements. The presence of a certain 
minimum set of symmetry elements is an intrinsic property of each sys-
tem. The classification of the crystal systems is purely based on the mini-
mum requirement. Therefore, crystals may possess more than the mini-
mum symmetry elements imposed by the system to which they belong. 
While the minimum requirement of the tetragonal system is one four-fold 
rotation (or rotation-inversion) axis, many tetragonal crystals have mirror 
planes running perpendicular and parallel to a tetrad. The seven crystal 
systems are characterized as follows.
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TABLE 2.1  Symmetry Elements of the Crystal Systems

System Minimum symmetry elements
Triclinic

Monoclinic

Orthorhombic

Trigonal

Hexagonal

Tetragonal

Cubic

No rotation symmetry

One two-fold rotation (or rotation-inversion) axis

Three perpendicular two-fold rotation (or rotation-inversion) axes

One three-fold rotation (or rotation-inversion) axis

One six-fold rotation (or rotation-inversion) axis

One four-fold rotation (or rotation-inversion) axis

Four three-fold rotation (or rotation-inversion) axes

FIGURE 2.10  Minimum symmetry elements required for each crystal system. There is 
no requirement for the triclinic system.

Triclinic: The triclinic system has no rotation symmetry. The only 
symmetry element that a triclinic crystal can have is a one-fold rotation or 
rotation-inversion axis. This places no restriction on the shape of the unit 
cell. The unit cell of the triclinic system is a general parallelepiped with 
a ≠ b ≠ c, a ≠ b ≠ g. The symbol ≠ means“not necessarily equal to”.

Monoclinic: The characteristic symmetry of the monoclinic system 
is a two-fold rotation (or rotation-inversion) axis, which is usually taken 
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along the y axis of the unit cell. The positive x and z axes are convention-
ally chosen so that the angle between them, b, is obtuse. The unit cell 
geometry is thus a ≠ b ≠ c, a = g = 90°, b >90°.

Orthorhombic: Crystals in this system possesses three mutually per-
pendicular two-fold rotation (or rotation-inversion) axes. It is obviously 
convenient to take the x, y, and z axes parallel to the symmetry axes so that 
the unit cell becomes a rectangular parallelepiped. The sides of the unit 
cell are in general unequal to one another and the geometry is given by 
a ≠ b ≠ c, a = b = g = 90°.

Trigonal: This crystal system is characterized by the presence of a 
three-fold rotation (or rotation-inversion) axis. The unit cell is a rhom-
bohedron with a = b = c, a = b = g ≠ 90°. Although the x, y, and z axes 
of the unit cell are equally inclined to the triad, none of them are paral-
lel to the symmetry axis. For this reason, a triple hexagonal cell is more 
frequently used for the description of trigonal crystals than the primitive 
rhombohedral cell. This is simply for convenience and is discussed in the 
next section.

Tetragonal: The tetragonal system has a four-fold rotation (or rotation-
inversion) axis along the z axis of the unit cell whose geometry is given by 
a = b ≠ c, a = b = g = 90°.

Hexagonal: The hexagonal system is characterized by the presence of a 
six-fold rotation (or rotation-inversion) axis, which is taken along the z axis 
of the unit cell. The x and y axes of the unit cell are at 120° and perpendicular 
to the symmetry axis. The hexagonal unit cell thus has a = b ≠ c, a = b = 90°, 
g = 120°.

Cubic: This system possesses four three-fold rotation (or rotation-in-
version) axes along the body diagonals of the unit cell, which is a cube. 
“Cubic” in the crystal system is a term different from the adjective of cube, 
i.e., regular hexahedron. A crystal without four triads is not cubic, even 
though it may have a unit cell with a = b = c, a = b = g = 90°. The cubic 
system is characterized by triads equally inclined to the three orthogonal 
reference axes x, y, and z.

The crystal system is determined by the symmetry elements that a crys-
tal possesses, not by its lattice constants. Let’s consider two hypothetic 
crystal structures as shown in Figure 2.11. The unit cells of both crystals 
have the same dimensions. One is surely cubic because four triads exist 
along the body diagonals of the unit cell. However, the other is tetragonal 
due to the absence of the three-fold rotational symmetry. The cubic crystal 
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comes into self-coincidence when rotated through 120° about any of the 
triads, making the x, y, and z directions of the unit cell indistinguishable 
from one another. The unit cell dimensions of a = b = c and a = b = g= 90° 
are a consequence of the presence of four triads. If the crystal is cubic, its 
lattice parameters definitely have this relation. However, the opposite is 
not always true. Trigonal, tetragonal, and hexagonal crystals have a single 
characteristic symmetry axis. These crystals are thus referred to as uniax-
ial crystals. The macroscopic properties of uniaxial crystals, for example, 
electrical conduction, thermal expansion, and optical refraction, are aniso-
tropic. The properties occurring along the characteristic axis are usually 
different from those measured in a direction normal to it.

Cubic crystal Tetragonal crystal
FIGURE 2.11  Two different crystal structures having the same unit cell dimensions. One 
is cubic and the other one is tetragonal.

2.3.3  BRAVAIS LATTICES

Seven different space lattices can be obtained by simply putting lattice 
points on the corners of the unit cells of the seven crystal systems. How-
ever, there are other ways to build up lattice points in space while main-
taining the symmetry requirements imposed on such systems. The French 
scientist Bravais demonstrated that there are fourteen possible lattices and 
no more. These fourteen lattices are called the Bravais lattices after him. 
Table 2.2 lists the lattice types that each crystal system can have. For in-
stance, orthorhombic crystals can exhibit four different types of lattices: 
simple, base-centered, body-centered, and face-centered. On the contrary, 
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only simple lattice is allowed for the trigonal and hexagonal systems. The 
fourteen Bravais lattices can be derived from two-dimensional lattices. 
All the fourteen three-dimensional lattices are derived in Appendix. A few 
examples are presented here. Figure 2.12(a) shows a two-dimensional lat-
tice of tri-equiangular shape. This lattice possesses six-fold and three-fold 
rotation axes (also two-fold axes) perpendicular to the page. Space lattices 
are constructed by stacking tri-equiangular nets in a sequence. Six-fold 
axes exist only at the lattice points of the net. To preserve six-fold rota-
tional symmetry in a space lattice, the nets should be stacked vertically 
above one another so that the lattice points in a net overlap those of other 
nets when viewed along the symmetry axis. The constructed space lattice 
has a unit cell as shown in Figure 2.12(b). This is a simple hexagonal lat-
tice with a = b ≠ c, a = b = 90°, g = 120°.

TABLE 2.2  Crystal Systems and Bravais Lattices

Crystal systems Unit cell dimensions Bravais lattice

Triclinic a ≠ b ≠ c, a ≠ b ≠ g Simple

Monoclinic a ≠ b ≠ c, a = g = 90°, b > 90°
Simple
Base-centered

Orthorhombic a ≠ b ≠ c, a = b = g = 90°

Simple
Base-centered
Body-centered
Face-centered

Trigonal a = b = c, a = b = g ≠ 90° Simple

Hexagonal a = b ≠ c, a = b = 90°, g = 120° Simple

Tetragonal a = b ≠ c, a = b = g = 90°
Simple
Body-centered

Cubic a = b = c, a = b = g = 90°
Simple
Body-centered
Face-centered

*The symbol ≠ means “not necessarily equal to”.
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(a) (b)

120o

FIGURE 2.12  (a) Two-dimensional lattice of tri-equiangular shape and its rotational 
symmetry axes. (b) A space lattice constructed by stacking tri-equiangular nets such that 
six-fold rotational symmetry is maintained.

A space lattice consistent with three-fold rotational symmetry can be 
obtained by stacking tri-equiangular layers in a staggered fashion. As 
shown in Figure 2.12(a), the three-fold rotation axes run through the cen-
ters of triangles formed by the lattice points. Thus, if the second layer is 
stacked in such a way that its lattice points are placed above the centers 
of either upright or inverted triangles of the first layer, the three-fold sym-
metry is maintained (Figure 2.13(a)). To meet the fundamental transla-
tional symmetry (i.e., periodicity) of crystals, the third layer should be 
stacked by the same fashion. If stacking proceeds in this way, the fourth 
layer overlaps the first layer when viewed vertically. In Figure 2.13(a), the 
lattice points of the second and third layers were represented as gray and 
white dots, respectively and those of the first and fourth layers, black dots. 
The primitive cell of the constructed lattice is a rhombohedron as depicted 
in Figure 2.13(b). The edges of the cell are of equal length, each equally 
inclined to the three-fold axis. The lattice-constant relations of the trigonal 
system given in Table 2.2 are based on this primitive rhombohedral cell. 
However, it has none of the unit cell axes parallel to the characteristic 
three-fold rotational axis. Therefore, it is more common to take a larger 
repeat unit, called a triple hexagonal cell, as the conventional unit cell of 
a trigonal crystal (Figure 2.13(c)). This cell has internal lattice points at 
heights of 1/3 and 2/3 of the repeat distance along the characteristic triad 
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axis. The cell is of the same shape as the unit cell of the simple hexagonal 
Bravais lattice. Therefore, the lattice parameters of a trigonal crystal are 
often given by a = b ≠ c, a = b = 90°, g = 120°. It is to be noted that the 
triple hexagonal cell has nothing to do with the hexagonal system. No 
matter what the unit cell is chosen, the crystal is trigonal once it exhibits 
three-fold rotational symmetry only.

(a)

(b) (c)

s

h

h

h

h
s

α

z = h

z = 0

z = 2h

FIGURE 2.13  (a) Diagram showing how a simple trigonal lattice can be constructed by 
stacking tri-equiangular nets. The first layer is marked with dots, the second layer with 
gray circles, and the third layer with open circles. The fourth layer overlaps the first layer. 
s is the separation of lattice points on the layer and h, the inter-layer height. (b) A primitive 
rhombohedral cell of the trigonal lattice. (c) Triple hexagonal cell.
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Three different types of cubic lattices are also built up by stacking tri-
equiangular layers. We start with the rhombohedral cell shown in Figure 
2.13(b), where s is the separation of lattice points on the layer and h, the 
height between the layers. In a trigonal crystal, the inter-layer height is 
unrelated to the separation between lattice points within the layer, which 
means that three-fold rotational symmetry always exists in the vertical di-
rection regardless of the combination of s and h. If we stack tri-equiangu-
lar nets such that 6h s= , the rhombohedron of Figure 2.13(b) becomes 
a cube with a = 90°. This makes the three-fold rotational symmetry to 
be developed in three other directions. The resulting Bravais lattice is a 
simple cubic. Similarly, face-centered cubic (FCC) and body-centered cu-
bic (BCC) lattices can be derived by letting 2 6h s=  and 2 6h s= , where 
the values of a are 60° and 109.28°, respectively. The cubic lattices are 
constructed by stacking tri-equiangular nets along the body diagonal of 
the conventional unit cell. Figure 2.3 shows the primitive and conven-
tional unit cells of the FCC lattice. If the rhombohedron of Figure 2.13(b) 
is made to have the same shape as the primitive cell of this FCC lattice, 
the constructed space lattice possesses four three-fold rotation axes and 
the crystal system becomes cubic. Figure 2.14 shows the primitive cell of 
the BCC lattice. It is also a rhombohedron, which is spread over a total of 
four conventional cells. The height of the rhombohedron is half the body-
diagonal length of the conventional cell. Thus, when the cubic cell has a 
lattice constant a, we obtain the relation of 3 3 / 2h a= . Since s is equal to 

2a , the primitive cell has a geometry of / 2 6h s= . That the primitive cell 
of the FCC lattice has 2 / 6h s=  can be easily found.

a

FIGURE 2.14  A primitive cell of the BCC lattice.
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EXAMPLE 2.1.

A certain crystal has the following atomic coordinates within its unit 
cell (a = b = c, a = b = g = 90°). State the crystal system and Bravais 
lattice for each case.
(a) A: (0,0,0), (1/2,1/2,1/2) B: (0,0,1/2), (1/2,1/2, 0)
(b) A: (0,0,0), (1/2,1/2,0) B: (0,1/2,0)

FIGURE 2.15  Atomic arrangements within the unit cell and its lattice in case of 
(a)

Answer:
Figure 2.15 shows the atomic arrangement within the unit cell in (a). 
As one A atom and one B atom forms a single lattice point, the space 
lattice becomes body-centered. This structure possesses a four-fold ro-
tation axis along the z direction and two-fold axes along the x and y 
directions. The crystal system is tetragonal and the Bravais lattice is 
thus body-centered tetragonal. In the case of (b), two A atoms and one 
B atom constitute a lattice point, resulting in a simple lattice (Figure 
2.16). This structure exhibits three mutually orthogonal two-fold rota-
tion axes. Then the Bravais lattice is simple orthogonal.

FIGURE 2.16  Atomic arrangements within the unit cell and its lattice in case of 
(b)
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It should be noted that the crystal system and Bravais lattice of a 
crystal are determined by the symmetry elements that it possesses, 
not by the unit cell geometry. If a crystal is cubic, its lattice parame-
ters should be a = b = c, a = b = g = 90°. However, the opposite is not 
always true as shown by this example. Table 2.2 lists the lattice types 
allowed for each crystal system. The crystal system of a crystal and 
its Bravais lattice cannot be stated simply by the unit cell dimen-
sions. The corresponding information can be obtained only when 
the atomic arrangement associated with each lattice point is known.

EXAMPLE 2.2.

Why is there no base-centered tetragonal lattice?
Answer: As shown in Figure 2.17, the base-centered tetragonal lattice is 
fundamentally the same as the simple lattice. Although we can choose 
a repeat unit arbitrarily as long as the characteristic four-fold symmetry 
is maintained, the simple cell is more commonly used than the base-
centered cell.

Base-centered tetragonal lattice
Simple tetragonal lattice

FIGURE 2.17  The relationship between base-centered tetragonal lattice and sim-
ple tetragonal lattice.
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2.4  DIRECTIONS AND PLANES

2.4.1  INDICES OF DIRECTION

A direction in the crystal is specified as follows. When a vector r is drawn 
from one corner of the unit cell, it can be represented as r = ua + vb + wc, 
where a, b, and c are the unit cell vectors having lengths equal to the lat-
tice parameters (Figure 2.18(a)). This vector has components ua, vb, and 
wc along the x, y, and z axes of the crystal, respectively, and its direction is 
then denoted as [uvw]. No matter what the values of u, v, and w, the triple 
indices representing a direction are given by a set of smallest integers. Al-
though 1 11

2 2
 
   , [112], and [336] all represent the same direction, [112] is the 

preferred form. The indices are enclosed in square brackets and negative 
indices are written with a bar over the number. Some direction notations 
are shown in Figure 2.18(b). Directions related by symmetry are called di-
rections of a form. The directions that belong to a form can be represented 
by a single set of indices enclosed in angular brackets. In a cubic crystal, 
the four body-diagonal directions given by [111], [111], [111], and [111] are 
crystallographically identical. Thus, these directions may be represented 
by the form <111>. Likewise, [101] and [110] belong to the same form 
symbolized by <110>. However, [101] is not equivalent to [110] in the 
tetragonal system.

(a) (b)

a

b

c

ua

vb

wc

[001] [011]

[010]

[210][110]

r

FIGURE 2.18  (a) The direction of a vector given by r = va+vb+wc is 
denoted as [uvw]. The triple indices representing a direction are always 
cleared of fractions and given by a set of smallest integers. (b) Indices of 
directions



46	 X-Ray Diffraction for Materials Research: From Fundamentals to Applications

2.4.2  INDICES OF PLANE

Crystallographic planes can also be indexed using a system developed by 
W. H. Miller. When a plane makes intercepts at a/h, b/k, and c/l with the 
crystallographic axes, it is represented by (hkl) where the Miller indices h, 
k, and l are enclosed in parentheses (Figure 2.19(a)). The negative index 
is marked with a bar over it. If the given plane is parallel to a crystallo-
graphic axis, its intercept on that axis is regarded as infinity and the cor-
responding Miller index is zero. Although Figure 2.19(a) depicts a single 
plane nearest the origin, the Miller indices (hkl) refer to the whole set of 
parallel equidistant planes as shown in Figure 2.19(b). The whole set of 
(hkl) planes is thus given by

	
hx ky lz m
a b c

+ + = 	 (2.1)

where m is an integer. If m = 0, the (hkl) plane passes through the origin; 
if m = 1, the plane makes intercepts at a/h, b/k, and c/l with the crystal-
lographic axes; if m = 2, the intercepts are 2a/h, 2b/k, and 2c/l; and if m = 
–1, the intercepts are –a/h, –b/k, and –c/l. The (nh nk nl) planes are parallel 
to the (hkl) planes and have 1/nth the spacing.

(a) (b)

a

b

c

a/h

x

y

z

b/k

c/l

(h k l) plane

c/l

(h k l) planes

a/h 2a/h
3a/h

2c/l

3c/l

FIGURE 2.19  (a) Plane designation by Miller indices h, k, and l. (b) Whole set of (hkl) 
planes.
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x

y

z

(010) (020) (110)

(110) (111) (012)

FIGURE 2.20  Miller indices of some planes.

Some examples of the Miller index notation are given in Figure 2.20. 
It is important to note that negative Miller indices are not associated with 
the negative intercepts. Figure 2.21(a) shows a plane extending normal 
to the page. For simplicity, we assume that this plane is parallel to the z 
axis. Since the lattice is periodically arrayed, any corner of the unit cell 
can be taken as the origin. If we consider the point O1 of Figure 2.21(a) as 
an origin, the given plane will be denoted by (110). However, its notation 
changes to (110) if we consider the point O2 as a new origin. Once the posi-
tive directions of the crystallographic axes are determined, the indexing of 
a fixed plane should be invariant no matter which lattice point is chosen 
as the origin. Any plane has inner and outer sides. The Miller indexing 
system is in such a way that h, k, and l indices derived from the intercept 
values are used to represent the outer side of the given plane.



48	 X-Ray Diffraction for Materials Research: From Fundamentals to Applications

x
y

a

x
y

b

O1
Plane

O2

(a) (b)

(110)

(110)

FIGURE 2.21  Definition of (hkl) and (hk l ) planes.

When viewed from the origin O1, the plane shown in Figure 2.21(a) 
have intercepts of a and b on the x and y axes. Thus, its outer side is de-
noted by (110) and the inner side, (110). If the point O2 is set as a new 
origin, the intercepts are –a and–b. Likewise, the obtained Miller indices 
(110) are dedicated to the outer side of the plane, which was formerly the 
inner side. Therefore, one side of the whole set of planes is represented by 
(110) and the other, (110), as shown in Figure 2.21(b). If the front surface 
of a single crystal wafer has indices (hkl), its rear surface will be (hkl ). 
Two surfaces may or may not exhibit the same properties depending on 
the crystal symmetry. While the surface properties of (111) and (111) are 
identical in Si, they are different in GaAs due to the absence of a center 
of symmetry. Many physical and chemical properties of a crystal are in-
fluenced by its symmetry. The inversion symmetry, characterized by the 
presence of a center of symmetry, makes the properties of a crystal along 
a certain direction and its opposite direction equalized. Unlike Si, GaAs 
lacks a center of symmetry. Therefore, GaAs has different etching rates 
on the (111) and (111) surfaces whose normals are oppositely directed. 
The presence of a center of symmetry is beneficial for some applications 
but not for others. A case is discussed in Example 2.3. In crystals, there 
are sets of equivalent planes related by symmetry. They are called planes 
of a form, and the indices of any one plane, enclosed in braces, stands for 
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the whole set of planes. For example, (211), (121), (211), and (121) in a 
tetragonal crystal are planes of the form {211}. As shown in Figure 2.22, 
all of them can be generated from any one by operation of the four-fold 
rotation axis.

x
y

z

(211) (121) (211) (121)

FIGURE 2.22  Planes of the form {211} in a tetragonal crystal.

The unit cell of the hexagonal and trigonal systems is defined by two 
equal and coplanar vectors a1 and a2 at 120°, and c at right angles (Figure 
2.23). These two crystal systems differ from the other systems in that the 
operation of their characteristic symmetry generates a third axis a3 equiva-
lent to a1 and a2  axes. To take into account this extra axis, a fourth index 
i is often introduced into the plane indexing system. Thus, a plane in the 
hexagonal and trigonal systems is represented by (hkil), which are known 
as Miller-Bravais indices. Since the intercept of a plane on a3 is deter-
mined by the intercepts on a1 and a2, the value of i depends on h and k, 
with the relation of h + k = –i. Figure 2.23 shows some planes denoted by 
the Miller-Bravais indices. The reason for introducing the Miller-Bravais 
indices is to give similar indices to similar planes. It can be simply dem-
onstrated by considering the form {1010} in a hexagonal crystal. {1010} 
includes (1010), (0110), (1100), (1010), (0110), and (1100). These repre-
sent the side faces of a hexagonal prism, which are symmetrically located 
with respect to the rotation axis c. The Miller-Bravais indices contain the 
same quartet of numbers regularly interchanged in position and sign. Thus, 
the symmetry relationship between the faces is immediately obvious. In 
contrast, the Miller indices do not immediately imply this relationship, 
since the corresponding planes are denoted by (100), (010), (110), (100), 
(010), and (110). Nevertheless, many people still feel more familiar with 
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the Miller indices. Whether using the Miller indices or the Miller-Bravais 
indices is indeed a matter of choice.

a1

c

a3

a2

(h k l) = (111) 
(h k i l) = (1121)

i = - (h + k)

(1210)

(1100)
(1011)

FIGURE 2.23  Plane designation by Miller-Bravais indices (hkil) in the 
hexagonal system.

EXAMPLE 2.3. Center of symmetry vs. electro-optic effect

For some applications, the crystal should not possess a center of sym-
metry. An example is given here. The electro-optic effect refers to the 
phenomenon that the refractive index of a material changes in response 
to an electric field. This effect is widely used in many electronic and 
optical devices. A function f(x) with variable x can be expanded into the 
following power series.

	 ( ) ( ) ( )
''

' 2(0)0 0
2

ff x f f x x= + + +… 	 (2.2)

The refractive index of a medium is a function n(E) of the applied elec-
tric field E. Since this function varies slightly with E, it can be expanded 
in a power series about E = 0.

	 ( ) ( ) 22
10

2
an E n a E E= + + +…	 (2.3)
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2.5  RECIPROCAL LATTICE

2.5.1  INTRODUCTION

The reciprocal lattice literally means the reciprocal-space version of a real 
lattice. The reciprocal lattice of a reciprocal lattice is the original lattice. 
The concept of this reciprocal lattice was first introduced by the German 
physicist and crystallographer H. Ewald in 1921. The reciprocal lattice 
plays an essential role in most analytic studies of periodic structures, par-
ticularly in the theory of diffraction. Although the reciprocal lattice may 
appear abstract at first glance, it is very useful to calculate the angle be-
tween planes in a crystal. As will be discussed later, the direction of X-ray 
diffraction is governed by the Bragg law. However, there are some ef-
fects such as off-Bragg angle diffraction that cannot be explained by the 
simple Bragg law. A more general theory of diffraction is required for the 
explanation of these effects. The reciprocal lattice theory has become in-
dispensable in describing the behaviors of electrons in crystals. Moreover, 
the reciprocal lattice of a crystal can be directly visualized by electron dif-
fraction, implying that it is no longer an abstract concept. Each point hkl 
in the reciprocal lattice corresponds to a set of lattice planes (hkl) in the 

where a1 and a2 represent the first-order and second-order electro-optic 
coefficients. In usual, the second-order coefficient is much smaller than 
the first-order term. When an electric field with magnitude E is applied 
in the positive z direction of a crystal, the refractive index is given by 
Eq. (2.3). If an electric field of the same magnitude is applied in the 
negative z direction, it will be expressed by

	 ( ) ( ) 22
10

2
an E n a E E− = − + +… 	 (2.4)

If this crystal possesses a center of symmetry, the refractive index 
change should be the same in both cases, i.e., n(E) = n(–E). This leads 
to a1 = 0. Thereby, the crystal contains only the second-order coeffi-
cient. To be an effective electro-optic medium, a center of symmetry 
should be absent from the crystal.
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real lattice. The direction of the reciprocal lattice vector is normal to the 
real space planes. The magnitude of the reciprocal lattice vector is given 
in reciprocal length and is equal to the reciprocal of the interplanar spac-
ing of the real planes. The simple cubic Bravais lattice, with side a, has 
a simple cubic reciprocal lattice of side 1/a. This is based on the crystal-
lographer’s definition. In the “solid state physics” or “optics” definition, 
the corresponding reciprocal lattice has a side of 2π/a. Even in the latter 
case, the factor of 2π is common in all expressions and does not alter the 
physical implication of the reciprocal lattice concept. The reciprocal lat-
tice to an FCC lattice becomes a BCC lattice and the reciprocal lattice to 
a BCC lattice, an FCC lattice. The Bragg condition on X-ray diffraction 
in real space predicts only the possible directions of diffraction and men-
tions nothing about the diffraction intensity. Once the reciprocal lattice of 
a crystal structure is constructed, not only the diffraction direction but also 
its intensity can be predicted from the Bragg condition in reciprocal space. 
Since the reciprocal lattice is formulated with the products of vectors, we 
take a brief look at the fundamental vector analysis.

2.5.2  VECTOR ANALYSIS

A vector is an entity possessing both magnitude and direction. If a vector 
A has components Ax, Ay, Az along the x, y, z coordinate axes (Figure 2.24), 
it is given by

	 x y zA A A= + +A i j k 	 (2.5)

x

y

z

A

Ax

Ay

Az

FIGURE 2.24  A vector given by x y zA A A= + +A i j k , where i, j, and k are unit vectors 
in the directions of x, y, and z axes.
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where i, j, k are unit vectors in the directions of x, y, z axes. Another 
vector B can be represented in the same way with its components. The 
scalar product of two vectors A and B (also called the dot product) is ex-
pressed as

	 cosAB q=A B 	 (2.6)

where A and B are the magnitudes of A and B vectors, respectively, and q 
is the angle between them. It follows from Eq. (2.6) that the scalar product 
is commutative, i.e., A . B = B . A. The scalar product A . B is equal to the 
projection of A on the direction of B multiplied by the magnitude of B. 
The scalar product of a vector with itself is equal to the square of its mag-
nitude. When the coordinate axes are orthogonal to one another, this gives

	 2 2 2
y zxA A A= + +A 	 (2.7)

For orthogonal axes, the unit vectors i, j, k have the following rela-
tions.

	
1
0

= = =
= = =

i i j j k k
i j j k k i
  

  

	 (2.8)

Thus, the above Eq. (2.6) becomes

	 ( ) ( )x y z x y z x x y y z zA A A B B B A B A B A B= + + + + = + +A B i j k i j k  	 (2.9)

A

BC = A x B

θ

FIGURE 2.25  The vector product A×B is a vector perpendicular to the plane containing 
both A and B. The magnitude of A×B is AB sinq.
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The vector product of two vectors A and B, denoted by A×B, is a 
vector perpendicular to the plane containing both A and B. Let C be the 
vector product of these two vectors, i.e., C = A×B. The direction of C is 
such that A, B, C, in this order, forms a right-handed screw as shown in 
Figure 2.25. The direction of the vector product is reversed if the order of 
multiplication is reversed, that is, B×A = –(A×B). The magnitude of A×B  
is AB sinq, which is equal to the area of the parallelogram with A and B 
as adjacent sides. If two vectors are parallel, their vector product vanishes. 
If they are normal to each other, the magnitude of the vector product is 
equal to the product of their magnitudes. Thus, when the coordinate axes 
are rectangular,

	
0

, ,
× = × = × =
× = × = × =

i i j j k k
i j k j k i k i j 	 (2.10)

Using these relations, we obtain the vector product of A and B vectors 
as given below.

	 ( ) ( ) ( ) ( ) ( )x y z x y z y z z y z x x z x y y xA A A B B B A B A B A B A B A B A B× = + + × + + = − + − + −A B i j k i j k i j k 	 (2.11)

The relationship of Eq. (2.11) may be more easily memorized by ex-
pressing it in the form of a matrix.

	 x y z

x y z

A A A
B B B

× =
i j k

A B 	 (2.12)

The product ( ) ( ) ( )× = × = ×C A B A B C B C A   between three nonparallel vectors is a scalar 
whose magnitude represents the volume of a parallelepiped formed by 
these vectors. Since the volume of the parallelepiped is fixed, the follow-
ing relations are obtained.

	 ( ) ( ) ( )× = × = ×C A B A B C B C A   	 (2.13)

2.5.3  RECIPROCAL LATTICE
Suppose that the real lattice has a unit cell defined by the vectors a, b, 
and c, as shown in Figure 2.26. Then, the reciprocal lattice has a unit cell 
defined by the vectors a*, b*, and c*, where
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	 * * *, ,
V V V
× × ×= = =b c c a a ba b c 	 (2.14)

and V is the volume of unit cell of the real lattice. From these relations, we 
note that c* is a vector normal to the plane containing both a and b. With 
reference to Figure 2.26, the vector product a×b has a magnitude equal to 
the area of basal plane of the given unit cell. Thus, the magnitude of c* is 
equivalent to the reciprocal of the cell height. Its magnitude is simply the 
reciprocal of the spacing of the (001) planes in the real lattice, i.e., *

0011/ d=c . 
Similarly, we find that a* and b* are normal to the (100) and (010) planes, 
respectively, of the real lattice. Once a*, b*, and c* are obtained, the whole 
reciprocal lattice can be constructed by repeated translation of the unit cell 
defined by these vectors.

γ

c

b

a

= c cosγ

c*

c*
1

FIGURE 2.26  Definition of the reciprocal lattice vector c*.

c

b

a

b*

c*

a*

0.1 nm

5 x 109 m-1

0.25 nm

0.2 nm
1010 m-1

4 x 109 m-1

FIGURE 2.27  Relation of a real lattice to its reciprocal lattice.
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As an example, Figure 2.27 shows a real lattice and its reciprocal lat-
tice. From Eq. (2.13) and (2.14), we note that

	

* * *

* * *

1
0

= = =
= = =

a a b b c c
a b b c c a
  

  
	 (2.15)

A direction in the reciprocal lattice can also be represented with a vec-
tor drawn from the origin to any lattice point having indices hkl. This 
vector Hhkl is expressed with its coordinates in terms of the basic unit cell 
vectors.

	
* * *

hkl h k l= + +H a b c 	 (2.16)

where h, k, and l are integers. The reciprocal lattice points are labeled 
with these indices. For instance, the point at the end of the a* vector is la-
beled 100, and that at the end of a* + 2b*, 120. While h, k, and l are plane 
indices in the real lattice, they are here used to denote a direction. This is 
because the plane in a real lattice is interrelated with the direction in its 
reciprocal lattice as follows.

1.	 The Hhkl vector is perpendicular to the (hkl) plane of the real lattice.
2.	 The length of Hhkl is equal to the reciprocal of the spacing of the 

(hkl) planes, i.e., Hhkl = 1/dhkl.
It follows from these relations that each reciprocal lattice point is related 

to a set of lattice planes in the crystal and represents the orientation and spac-
ing of such a set of planes. Some examples of the reciprocal lattice are pro-
vided before proving the above statements. Let’s consider the cubic unit cell 
of a cubic crystal and its reciprocal lattice as shown in Figure 2.28(a). For 
any crystal whose unit cell is defined by three mutually perpendicular vec-
tors, i.e., cubic, tetragonal, and orthorhombic, the basic vectors a*, b*, and 
c* of the reciprocal lattice are parallel to a, b, and c, respectively, and their 
magnitudes are simply the reciprocals of a, b, and c. Figure 2.28(a) shows 
the case for cubic crystal, where a= = =a b c , * * * 1/ a= = =a b c . Some 
planes with low Miller indices are shown in Figure 2.28(a), together with 
the corresponding H vectors. It looks obvious that H100, H010, and H210 are 
perpendicular to (100), (010), and (210) planes, respectively. Since the (220) 
planes have half the spacing of the (110) planes, H220  is twice as long as H110. 
In the hexagonal crystal, two equal-magnitude a and b vectors makes an 
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angle of 120°, both of which are at right angles with another vector c. Thus, 
the angle between a* and b* becomes 60° and c* remains parallel to c, as 
depicted in Figure 2.28(b). H110 and H120 are also perpendicular to (110) and 
(120) planes, respectively, in this nonrectangular coordinate system.

bc

b*

a*

(210)

(110)

(a)

(b)

a

a

c

b

a*

b*

c*

c*

(110)

(120)

H110 H210

H110

H120

Lattice

Reciprocal lattice

Lattice Reciprocal lattice

(100)

(010)

100

100 200

210110010

220120020

200

110

220

120

020

010

210

(010)

(100)

FIGURE 2.28  (a) A cubic unit cell and its reciprocal lattice. (b) A hexagonal unit cell and 
its reciprocal lattice. The reciprocal lattice vector Hhkl is always perpendicular to the (hkl) 
plane of the real lattice.
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The fact that Hhkl is normal to (hkl) and Hhkl is the reciprocal of  dhkl  is 
valid for all crystal systems. Now we prove them with Figure 2.29, where 
an (hkl) plane nearest the origin makes intercepts at A, B, and C with the 
unit cell vectors a, b, and c. From the definitions of Miller indices, the 
vectors from the origin to the point A, B, and C are a/h, b/k, and c/l, re-
spectively. Then, the vector drawn from A to B is given by AB = b/k–a/h. 
Similarly, we have AC = c/l–a/h. If Hhkl is normal to (hkl), it must be normal 
to both AB and AC, which are nonparallel vectors lying in the same plane. 
Carrying out the dot product of Hhkl with these two vectors, we find

	

( ) ( )
( ) ( )

* * * * *

* * * * *

/ / 0

/ / 0

hkl

hkl

h k l k h

h k l l h

= + + − = − + =

= + + − = − + =

H AB a b c b a a a b b

H AC a b c c a a a c c

   

    	 (2.17)

Since the products are zero, Hhkl  are normal to AB and AC, and also 
to the (hkl) plane containing these two vectors. Let’s assume that the re-
ciprocal lattice vector Hhkl  meets with the (hkl) plane at point N. As Hhkl  is 
perpendicular to (hkl), the distance from the origin to the point N, ON , is 
equal to the spacing of the (hkl) planes, dhkl. This value can be obtained by 
projecting OA = a/h onto the direction of Hhkl.Hhkl / Hhkl is a unit vector in the 
direction of Hhkl. Therefore, dhkl is given by

	
* * *( ) 1hkl

hkl
hkl hkl hkl

h k ld ON hH H H
+ += = = =

H a b caOA 

	 (2.18)

c
Hhkl 

a

b

O A

C

N
B

(hkl)

FIGURE 2.29  Relation between the reciprocal lattice vector Hhkl and the lattice plane 
(hkl).
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The reciprocal lattice is very useful for solving many problems in crys-
tal geometry. Planes of a zone are planes that are all parallel to a line, 
called the zone axis (Figure 2.30). For instance, the planes (100), (110), 
and (120) are all parallel to the direction [001]. They would be said to lie 
in the zone [001]. Such planes may have different indices and spacings. 
When the zone axis has indices [uvw], any planes belong to that zone if 
their indices (hkl) satisfy the relation

	 0hu kv lw+ + = 	 (2.19)

This is the condition that the normal to (hkl) is perpendicular to the 
direction [uvw]; the dot product of  u v w= + +r a b c  and * * *

hkl h k l= + +H a b c  
should be zero. There is a zone axis for any two nonparallel planes because 
they are both parallel to the line of intersection. If their indices are 1 1 1( )h k l  
and 2 2 2( )h k l , the zone axis [ ]uvw  is given by

	

1 2 2 1

1 2 2 1

1 2 2 1

u k l k l
v l h l h
w h k h k

= −
= −
= − 	 (2.20)

These relations can be obtained by solving two (2.19) equations simul-
taneously for u, v, and w. Since the zone axis represents a direction, we 
are concerned with the relative ratios between u, v, and w, not the absolute 
values.

Zone axis
[u v w]

(h1 k1 l1)
(h2 k2 l2)

(h3 k3 l3)

FIGURE 2.30  Zone axis.
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The reciprocal lattice is also very convenient in calculating the planar 
spacing and interplanar angles. It has been shown in Eq. (2.18) that the 
perpendicular distance between successive (hkl) planes, dhkl, is equal to the 
inverse of the magnitude of the corresponding reciprocal lattice vector;

	 * * *

1
hkld

h k l
=

+ +a b c 	 (2.21)

The interplanar spacing dhkl can simply be calculated by forming the 
scalar product of the reciprocal lattice vector with itself.

( ) ( )2* * * * * * * * *

2 * * 2 * * 2 * * * * * * * *2 2 2

h k l h k l h k l

h k l kl lh hk

+ + = + + + +

= + + + + +

a b c a b c a b c

a a b b c c b c c a a b



     

	 (2.22)

These expressions are very easy to use when the unit cell axes are 
orthogonal as in the cubic, tetragonal, and orthorhombic systems: 

* * *1/ , 1/ , 1/ ,a b c= = =a b c  and * * * * * * 0= = =b c c a a b   . In the cubic sys-
tem, a = b = c, while the tetragonal system has a = b ≠ c. The lattice pa-
rameters a, b, and c are in general different from one another in the ortho-
rhombic system. For the hexagonal system, * * 2 / 3a= =a b , * 1/ c=c , 

* * * * 0= =b c c a 

, and * * 22 / 3a=a b . Thus, the value of dhkl is given by the 
following equations.

	

( )

( )

( )

( )

2 2 2

22 2 2
2

2 22 2 2
2 2

2 2 2
2 2

Cubic

Tetragonal
( )

Orthorhombic
( () )

Hexagonal
4( )

3

hkl

hkl

hkl

hkl

ad
h k l

ad
ah k lc

ad
a ah k lb c

ad
h hk k l

a c

=
+ +

=
+ +

=
+ +

=
+ + +

	 (2.23)
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It is to be noted that the interplanar spacing is not affected by the lattice 
type. For instance, simple cubic lattice and FCC lattice have the same dhkl  
value if their lattice constant a is the same. The trigonal system possesses 
three-fold rotational symmetry only. Nevertheless, a triple hexagonal cell 
rather than its primitive rhombohedral cell is more commonly employed 
as the conventional unit cell. When the plane indices hkl are based on this 
triple hexagonal cell, the interplanar spacing is expressed by the same way 
as in the hexagonal system. The angle between two nonparallel planes is 
identical to the angle between their normals, i.e., the angle between the 
corresponding reciprocal lattice vectors. Then, the interplanar angle q be-
tween (h1k1l1) and (h2k2l2) is given by

	
( ) ( )* * * * * *

1 1 1 2 2 2

* * * * * *
1 1 1 2 2 2

cos
h k l h k l

h k l h k l
q

+ + + +
=

+ + + +

a b c a b c

a b c a b c



	 (2.24)

This general formula can also be written out for each crystal system.

	

( )

( )

( )

( )

1 2 1 2 1 2
2 2 2 2 2 2

1 1 1 2 2 2

2
21 2 1 2 1 2

2 22 2 2 2 2 2
2 21 1 1 2 2 2

1 2 1 2 1 2
2 2 2

2 2 2 2 2 2
1 1 1 2 2 2
2 2 2 2 2 2

Cubic cos

( )Tetragonal cos
( () )

Orthorhombic cos

Hexagonal cos

h h k k l l
h k l h k l

ah h k k l lc
a ah k l h k lc c

h h k k l l
a b c

h k l h k l
a b c a b c

q

q

q

q

+ +=
+ + + +

+ +
=

+ + + +

+ +
=

+ + + +

=

2
21 2 1 2 1 2 1 2 1 2

2 22 2 2 2 2 2
2 21 1 1 1 1 2 2 2 2 2

1 3( ) ( 4 )2
3 3( (4 ) 4 )

ah h k k h k k h l lc
a ah k h k l h k h k lc c

+ + + +

+ + + + + +
	 (2.25)
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EXAMPLE 2.4.

In a tetragonal crystal, the angle between (011) and (123) is 15°. Calcu-
late the ratio of the axis lengths, c/a, and the angle between [123] and 
[102].
Answer:
The angle between (011) and (123) is equal to that between the corre-
sponding reciprocal lattice vectors * *

011 = +H b c and * * *
123 2 3= + +H a b c .The 

scalar product of these two vectors leads to the following relation.

( ) ( )* * * * * o
2 2 2 2 2 2 2

2 3 1 1 1 4 92 3 cos15
a c a c a a c

+ + + = + = + + + ×b c a b c

By multiplying both sides by a2 and solving the equation, we obtain 
c/a = 0.667. The angle q between [123] and [102] can be calculated 
from the dot product of two vectors a + 2b + 3c and a + 2c.

2 2 2 2 2 26 5 9 4 cosa c a c a c q+ = + + ×

where q = 42.82°.

EXAMPLE 2.5.

Two different single crystal slabs are stacked together as shown in Fig-
ure 2.31. Crystal A is tetragonal with a = 4.0 Å and c = 5.2 Å, and B is 
cubic with a = 4.0 Å.

Crystal A

Crystal B x

y

z

FIGURE 2.31  Two different single crystal slabs stacked together.

(a)	 What is the angle between [124]A and [111]B?
(b)	 Calculate the angle between (211)A and (111)B
(c)	 Repeat (a) and (b) when only B is counterclockwise rotated by 

45° around the z axis.
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Answer:
(a) Since the unit cell axes, x, y, and z, are the same in both crystals, the 
angle between two directions can be calculated from the dot product of 
the corresponding vectors. [124]A is given by the vector rA = aA + 2bA + 
4cA and [111]B, by rB = aB + bB + cB. Then,

2 2 2
A B A B A B A B A A B2 4 5 16 3 cosa a a a c a a c a q= + + = + ×r r

where aA, cA, and aB are the lattice parameters of A and B crystals. By 
inserting aA = 4Å, cA = 5.2Å, and aB = 4Å into the above equation, we 
obtain q = 33.2°.
(b) The angle between two planes can be obtained from the dot prod-
uct of the corresponding reciprocal lattice vectors * * *

A A A A2= + +H a b c  and 
* * *

B B B B= + +H a b c .

A B 2 2 2
A B A B A B A A B

2 1 1 5 1 3 cos
a a a a c a a c a

q= + + = + ×H H

From this relation, o23.07q = .

45o

x

y

xB

yB

FIGURE 2.32  Unit cell axes of the crystal B before and after rotation.
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(c) Since the crystal B is rotated, their axes are also rotated. Suppose 
that xB and yB denote the unit cell axes of the crystal B. These axes are 
counterclockwise rotated by 45° from the x and y directions, respec-
tively, which represent the unit cell axes of the crystal A (Figure 2.32). 
[111]B is now based on the new axes, xB and yB. We need to express 
[111]B with respect to the x and y coordinates in order to calculate the 
angle between two directions. [111]B has no component along x and its 
component along y is 2 . Thus, the angle between [124]A  and [111]B 
can be obtained from the following relation.

( ) 2 2 2
A A A B B A B A B A A B2 4 ( 2 ) 2 2 4 5 16 3 cosa a c a a c a q+ + + = + = + ×a b c b c

where o35.04q = .

Similarly, (111)B is expressed as (0 21)  in terms of the x and y co-
ordinates. The interplanar angle of 37.79° is then obtained from the 
following relation.

( )* * * * *
A A A B B 2 2 2

A B A B A A B

2 1 5 1 32 ( 2 ) cos
a a c a a c a

q+ + + = + = + ×a b c b c

EXAMPLE 2.6.

A thin film of simple hexagonal lattice was deposited on a substrate 
of FCC lattice. Both materials are single-crystalline and are lattice-
matched at the interface that is parallel to (111)Sub and (001)Film. The 
substrate has a lattice constant of 2a = 侌Å and the film has a = 1Å and 

8 / 3c = Å.
(a) Calculate the angle between [100]Sub and [111]Film

(b) What is the angle between (211)Sub and (120)Film?
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Answer:
(a) A clue to solving this problem lies in the conversion of coordinates. 
Let a, b, and c be the unit cell vectors of the substrate. Since (001) of the 
film is lattice-matched to (111) of the substrate, the unit cell of the film 
can be drawn on (111)Sub as shown in Figure 2.33. If the unit cell vec-
tors of the film are represented by aF, bF, and cF, we have the relations of 

F
1 1
2 2

= −a a c  and F
1 1
2 2

= − +b a b . The magnitude of cF is 8 / 3 times the 
magnitude of aF and the magnitude of aF is 1/ 2  times the magnitude 
of a. This leads to F

2 ( )
3

= + +c a b c  because cF is parallel to [111]Sub, i.e., 
a + b + c. Then, the vector representing [111] of the film is given by 

111 F F F
2 7 1
3 6 6

= + + = + +r a b c a b c . The angle between [100]Sub and [111]Film 
is thus equal to the angle between [100]Sub and [271]Sub, which is 60.5°.

FIGURE 2.33  Orientation relationship between the substrate and the film.
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2.6  CRYSTAL STRUCTURES

We now consider the crystal structures of some important materials. Since 
the atoms in a crystal are periodically arranged, the crystal structure can 
be described by stating the relative positions of atoms within the unit cell. 
An element or compound may exhibit multiple crystal structures, each 
being the thermodynamically stable form in a given range of tempera-
ture and pressure. Only the outmost electrons are involved in binding the 
atoms together in a crystal and most of the electrons reside in the same 
orbits as in an isolated atom. Therefore, the atoms are usually regarded as 
hard spheres in describing the crystal structure. The simplest structures are 
those formed by placing atoms of the same kind on the lattice points of a 
Bravais lattice. However, so many crystals have more than one atom asso-
ciated with each lattice point and the associated atoms may be of the same 
kind or different kinds. The set of atoms associated with each lattice point 
are termed the basis of the lattice. There are only fourteen Bravais lat-
tices, while the types of crystal structures are innumerable. Thus, different 
crystal structures may have the same Bravais lattice. A vast majority of the 
elements are metallic. Most metals have one of the three structures: face-
centered cubic (FCC), hexagonal close-packed (HCP), and body-centered 

(b) The angle between any two nonparallel planes is equal to the angle 
between their normal directions. Thus, the angle between the given two 
planes can be calculated with their reciprocal lattice vectors. The re-
ciprocal lattice vector perpendicular to (120)Filmis * *

120 F F2= +H a b . With 
reference to Figure 2.33, *

Fa  is parallel to F F2 +a b  and *
Fb  is parallel to 

F F2 +a b . Then we have * *
120 F F F F

1 52 4 5 2
2 2

= + = + = − + −H a b a b a b c . Since 
we are concerned with the directions of the reciprocal lattice vectors, 
not their absolute magnitudes, the common proportionality constant can 
be neglected. The reciprocal lattice vector corresponding to (211)Subis 

* * *
211 2= + +H a b c . Here, a*, b*, and c*, all of an equal length, are paral-

lel to a, b, and c, respectively. Therefore, the corresponding reciprocal 
lattice vector can be simply set as 211 2= + +H a b c . Now, both of the 
reciprocal lattice vectors are represented in terms of the unit cell vectors 
a, b, and c of the substrate. The angle between (211)Sub and (120)Film is then 
equal to the angle between Sub[211]  and Sub[154] , which is calculated to 
be 86.4°.
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cubic (BCC). FCC and HCP are close-packed structures. FCC is the acro-
nym for the face-centered cubic. The FCC structure should be differentiat-
ed from the FCC lattice. The former represents a specific crystal structure, 
while the latter is a lattice type that can be possessed by many different 
crystal structures. For instance, Au, Si, and NaCl have completely differ-
ent structure but they have the same Bravais lattice of FCC. The primary 
chemical bonds between atoms can be divided into ionic, covalent, and 
metallic bonds, depending on the nature of inter-atomic binding. Since the 
metallic bond is non-directional, metal atoms tend to make as many bonds 
as possible with others. Accordingly, more than two-thirds of the metal-
lic elements have either FCC or HCP structure. As will be discussed later 
in this section, the structures of many compounds can be derived from a 
close-packed structure. We start with common metallic structures.

2.6.1  FACE-CENTERED CUBIC STRUCTURE

Close-packed structures can be visualized as layers of hard spheres packed 
to maximum density both within layers and between adjacent layers. On 
a single layer, spheres of equal size are hexagonally arranged around a 
central sphere that touches all six neighbors. The spheres of the next lay-
er should be placed in the grooves formed by three touching spheres to 
construct a close-packed structure, but only every other groove can be 
filled because the inter-groove distance is smaller than the diameter of the 
spheres. In Figure 2.34, the spheres of the first layer are located at points 
marked A (this layer is called A layer) and the second layer occupies posi-
tions marked B. The projections of the spheres centered on points B are 
shown shaded in the figure. There are two possibilities for the third layer 
because the second layer has two different types of groove positions: C 
and A. When the spheres of the third layer are stacked at the C positions, 
the fourth layer should be located at positions A to meet the intrinsic trans-
lational symmetry of the crystal. The resulting structure is FCC, which has 
the stacking sequence of ABCABC…
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FIGURE 2.34  Close packing of hard spheres.
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FIGURE 2.35  Face-centered cubic (FCC) structure.
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Figure 2.35 shows a conventional unit cell of the FCC structure, along 
with the atomic arrangements on (100) and (111) planes. The radius of the 
atom, R, and the lattice parameter, a, have the relation of / 2 2R a= . The 
{111} planes are the close-packed layers in FCC, which are stacked in the 
sequence of ABCABC… along the <111> directions. Figure 2.36(a) shows 
successive (111) planes. Identical atoms are differently shaded on different 
planes for distinction. The stacking sequence can be easily figured out by 
examining the atomic arrangement on (110), which is perpendicular to the 
(111) planes. The (110) plane is represented as a bold-line rectangle in Fig-
ure 2.36(b). A line connecting the lower-left corner of this rectangle to the 
upper-right corner is parallel to [111]. When viewed along the [111] direc-
tion, the first (111) plane has atoms at the A position. The second and third 
planes have atoms on the B and C positions, respectively. The atoms of 
the fourth plane are coincident with those of the first plane. Thus, we have 
a stacking sequence of ABCABC. This structure has triads along the four 
body-diagonal directions of the unit cell. Since all atoms have identical en-
vironments, each atom constitutes one lattice point. The Bravais lattice of 
the FCC structure is also FCC. Conversely, this structure is obtained when 
equal atoms are placed at the lattice points of an FCC lattice (see Figure 
2.3). There are 4 atoms per unit cell: one at the corner and three at the face 
centers. The coordinates of the atoms are (0,0,0), (1/2,1/2,0), (1/2,0,1/2), 
and (0,1/2,1/2). Although a single unit cell has eight corner atoms and six 
face-centered atoms, the corner atom is shared by eight unit cells and the 
face-centered one, by two cells. Each atom has twelve nearest neighbors, 
that is, the coordination number is 12.

(110)

(111)(b)(a)

x

y
z

A B

C

A

[111]

A 

B 

C

APosition A

Position B

Position C

FIGURE 2.36  (a) Successive (111) planes in FCC structure. (b) Atomic arrangement on 
(110). Identcal atoms are differently shaded for distinction.
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When the structure is regarded as consisting of spheres in contact, the 
interstices between spheres are important because many compound struc-
tures contain one set of atoms in an FCC arrangement, with the others 
occupying the interstices. The largest interstices are located at coordinate 
(1/2,1/2,1/2) and equivalent positions (0,1/2,0; 0,0,1/2; 1/2,0,0). There 
are four such interstices per unit cell. Since this interstice has octahedral 
coordination with six neighbors (Figure 2.37), its center is called octa-
hedral site. The octahedral site is located midway between two adjacent 
(111) planes. The largest sphere that can go into the octahedral site of the 
FCC structure without lattice distortion has radius ( )2 1 0.414r R R= − = . 
The second largest interstices are located at (1/4,1/4,1/4) and equivalent 
positions. Since this interstice is formed by four atoms that possess tetra-
hedral coordination, it is called tetrahedral site. The largest sphere that 
can enter the tetrahedral site has radius ( )3 / 2 1 0.225r R R= − = . There are 
eight tetrahedral sites in the unit cell. When viewed along the <111> di-
rections, four of them are positioned at the centers of upright tetrahedrons 
and the other four, at the centers of inverted tetrahedrons (Figure 2.38). It 
should be noted that the tetrahedral sites are not located midway between 
two (111) planes. Their positions are d111/4 or 3d/111/4 away normally from 
the close-packed layers, depending on the upright or inverted type. Many 
metals including Ag, Au, Al, Ni, Co, Ni, and γ-Fe have this FCC structure.

X: Octrahedral site

X X

FIGURE 2.37  Octahedral site in FCC structure. The octahedral site is located midway 
between two adjacent (111) planes and has six neighboring atoms.
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Upright tetrahedron Inverted tetrahedron

FIGURE 2.38  Tetrahedral sites in FCC are at the centers of regular tetrahedrons, each 
formed by four atoms.

EXAMPLE 2.7. NUMBER OF BROKEN BONDS VS. SURFACE 
ENERGY

An FCC crystal with lattice parameter a = 1 nm was cut and polished so that its sur-
faces consist of (100), (110), and (111) planes. Calculate the number of broken bonds 
per unit area on each surface plane and state which one has the highest surface energy.

Answer:

The coordination number of the FCC structure is 12, that is, each atom makes bonds 
with 12 neighboring atoms. As shown in Figure 2.35, any atom on the (100) surface 
makes bonds with 4 atoms on the same surface. Since it has 4 other bonds with 
atoms residing just below the surface, the number of broken bonds per atom is 4. 
An atom on the (111) surface makes 6 bonds on the same surface. Therefore, the 
number of broken bonds is 3 because it has bonding with 3 atoms below the surface.

An atom of the (110) surface has only 2 bonds on the same surface, as shown in Fig-
ure 2.39. Thus, the number of broken bonds per atom is 5. In all cases, the number 
of broken bonds per atom is obtained by subtracting the number of surface bonds 
from the coordination number 12 and dividing the remainder by two. The number 
of broken bonds per unit area on each surface plane can be calculated by combining 
the number of broken bonds per atom with the number of atoms per unit surface 
area. The results are given in Table 2.3. The surface energy arises from the broken 
bonds and is proportional to the number of broken bonds per unit area. Therefore, 
the (100) surface has the highest surface energy.

a

2 a 

FIGURE 2.39  Atomic arrangements on the (110) plane.
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2.6.2  HEXAGONAL CLOSE-PACKED STRUCTURE

Let’s go back to Figure 2.34. There are two ways of stacking the third 
layer because the second layer has two different types of groove positions: 
C and A. When the spheres of the third layer are stacked at the A posi-
tions, the close packing is also maintained. If the stacking proceeds in this 
sequence of ABAB…, we obtain the HCP structure. The unit cell contains 
two identical atoms with coordinates (0,0,0) and (2/3,1/3,1/2), as illustrat-
ed in Figure 2.40(a). The atoms on (002) planes of the HCP structure are 
arranged in a hexagonal pattern just like those on the {111} planes of the 
FCC structure. The only difference between the two structures is the way 
in which these 2D close-packed layers are stacked above one another. The 
two atoms at (0,0,0) and (2/3,1/3,1/2) have different environments. Thus, 
they together constitute one lattice point, resulting in a simple hexagonal 
Bravais lattice (Figure 2.40(b)). The simple lattice is the only lattice type 
that the hexagonal crystal system can have. Sometimes, the crystal struc-
ture can be more easily figured out by projecting the atomic centers on a 
specific plane rather than drawing an actual 3D picture.

TABLE 2.3  Number of Broken Bonds Per Unit Area On the Different Surfaces of 
An FCC Crystal With a = 1 nm

(100) surface (110) surface (111) surface
Number of 
broken bonds 
per atom

4 5 3

Number of 
surface atoms 
per unit area

2 2
2 2

nma = 22
1.4142 ) nm( 2a

= 22
2.3094 ) nm( 3a

=

Number of 
broken bonds 
per unit area

8/nm2 7.07/nm2 6.927/nm2
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FIGURE 2.40  (a) Hexagonal close packed (HCP) structure; (b) Simple hexagonal 
Bravais lattice; (c) (001)-projection.

In Figure 2.40(c), the atomic centers are projected on the (001) plane 
of the HCP structure. The numerical values given on this (001)-projection 
represent the relative heights of atoms within the unit cell. The octahedral 
sites have coordinates (1/3,2/3,1/4) and (1/3,2/3,3/4). The tetrahedral sites 
lie at (0,0,3/8), (0,0,5/8), (2/3,1/3,1/8), and (2/3,1/3,7/8). Of course, two 
of them are the centers of upright tetrahedrons and the other two sites, the 
centers of inverted tetrahedrons. If each sphere has 12 nearest neighbors, 
the axial ratio of the unit cell, c/a, should be 8 / 3 1.633= . The packing frac-
tion, the proportion of space filled by the spheres, is then 0.74, as in the 
FCC structure. A packing fraction of 0.74 is the highest value that can be 
achieved in element crystals. Many metals with this HCP structure (e.g., 
Zn, Co, Cd, Mg, Be, Ti at room temperature) have axial ratios more or less 
different from the ideal value of 1.633. It is attributed to the fact that the 
atoms in these crystals are ellipsoidal in shape rather than spherical. It may 
look at first that the HCP structure lacks six-fold rotational symmetry and 
possesses triads only. However, its crystal system is obviously hexagonal. 
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Consider two atomic planes (plane 1 and 2) that run normal to the basal 
plane of the HCP structure and that make an angle of 60° with each other. 
Figure 2.41 shows that these two planes have the same atomic arrange-
ments. Namely, the two planes are crystallographically identical. This 
means that the HCP structure comes into self-coincidence after rotation of 
60° about its c axis, revealing the presence of six-fold rotation symmetry.

Plane 1

Plane 2

Plane 1 Plane 2

z = 0

1/2

1/2

1/2

1/2

1/2 1/2

z = 1

z = 2

FIGURE 2.41  Atomic arrangements on two atomic planes perpendicular to the HCP 
basal plane. “z” represents fractional heights relative to the lattice parameter c.
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2.6.3  BODY-CENTERED CUBIC STRUCTURE

This structure is represented by some alkali metals (Li, Na, K at room 
temperature) and transition metals (V, Cr, Mo, Nb, Ta, W, and α-Fe). There 
are two atoms per unit cell and the atomic coordinates are (0,0,0) and 
(1/2,1/2,1/2) (Figure 2.42). The Bravais lattice is BCC with one atom at 
each lattice point. Each atom has eight nearest neighbors. Unlike FCC and 
HCP, there are no closest packed planes in this structure. If the structure 
is constructed with equal spheres, then 3 / 4R a= . The packing fraction is 
0.68. When made up of equal spheres, this structure has largest interstices 
at coordinates (1/2,1/4,0) and equivalent positions. There are twelve such 
interstices. The largest sphere that can fit in such an interstice without 
lattice distortion has radius equal to 0.228R. This interstice has tetrahe-
dral coordination with four neighbors but the tetrahedron formed by these 
neighbors is not regular. The second largest interstices are at (1/2,1/2,0) 
and equivalent positions. There are six such interstices per unit cell (three 
at the face centers and three at the midpoints of cube edges). This site is 
located at the center of a distorted octahedron and can accommodate a 
sphere of radius r = 0.15 R. Metals that have a BCC structure are usually 
harder and less malleable than close-packed metals such as gold and silver. 
Slip is an important mechanism of plastic deformation in metals. When the 
metal is deformed, the planes of atoms must slip over each other. The slip 
planes are normally the planes with the highest atomic density, i.e., those 
most widely spaced. Slip in FCC crystals occurs along the close-packed 
{111} planes. Unlike FCC, there are no truly close-packed planes in the 
BCC structure. This is one of the reasons why BCC metals are more dif-
ficult to plastically deform than FCC metals.

FIGURE 2.42  Body-centered cubic (BCC) structure and its lattice.
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EXAMPLE 2.8. RECIPROCAL LATTICE OF FCC CRYSTAL

Prove that the reciprocal lattice of an FCC structure with lattice con-
stant “a” is BCC with lattice constant 2/a.
Answer:

Primitive cell

x

y
z

a

b

c

a

FIGURE 2.43  A primitive cell of the FCC lattice.

The FCC structure has an FCC lattice, as shown in Figure 2.43. The unit 
cell of the reciprocal lattice has been derived using the primitive cell 
vectors of the real lattice (see Figure 2.26 and Eq. (2.14)). To construct 
the reciprocal lattice of this FCC lattice, we need to start from its primi-
tive cell vectors, which are expressed as

, ,2 2 2 2 2 2
a a a a a a= + = + = +a i k b i j c j k

where i, j, and k are unit vectors in the x, y, and z directions of Figure 
2.43. The vector products of these three vectors are

2 2 22 1 102 2 4 4 4
1 1 02 2

a a aa× = = − + +

i j k

a b i j k
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2 2 22

2 2 22

1 1 02 2 4 4 4
1 10 2 2

1 10 2 2 4 4 4
1 102 2

a a aa

a a aa

× = = − +

× = = + −

i j k

b c i j k

i j k

c a i j k

Since the volume of the primitive cell is 3 / 4V a= , we obtain the 
following relations for the reciprocal lattice vectors.

*

V a a a
×= = − + +a b ji kc

*

V a a a
×= = + −c a ji kb

*

V a a a
×= = − +b c ji ka

These three vectors are the vectors pointing to the body centers of 
adjacent three cubes from the origin. That is, they form the primi-
tive unit cell vectors of a BCC lattice with lattice parameter 2/a, as 
shown in Figure 2.44.

2/a

x

y

z
a*

b*

c*

FIGURE 2.44  Primitive unit cell vectors of a BCC lattice.
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2.6.4  DIAMOND STRUCTURE

The diamond structure can be described with an FCC lattice coupled with 
a basis of two identical atoms. Its Bravais lattice is FCC and two atoms are 
associated with one lattice point. For instance, two identical atoms placed 
at (0,0,0) and (1/4,1/4,1/4) form the lattice point at (0,0,0). Not only the 
FCC structure but also many other structures have an FCC lattice. A con-
ventional unit cell of the diamond structure contains eight atoms. When 
four atoms are arranged in an FCC fashion (i.e., located at the corners 
and face centers of the cube), the other four occupy half of the tetrahedral 
sites. Figure 2.45 shows the diamond structure and its (001)-projection. 
In this configuration, each atom lies at the center of a regular tetrahedron 
formed by four nearby atoms. Note that the corner atom with coordinate 
(0,0,0) is also located at the center of a tetrahedron made with four atoms 
at (1/4,1/4,1/4), (–1/4,1/4,–1/4), (1/4,–1/4,–1/4), and (–1/4,–1/4,1/4). Ac-
cordingly, the coordination number of each atom is four. The stacking se-
quence of successive (111) planes can be described as A AB BC CA AB BC 
CA. Successive planes are not equally separated from one another. This is 
an open structure with the packing fraction of 0.34. Si, Ge, and diamond 
(i.e., crystalline carbon stable at high temperature and pressure) have this 
structure.

0

1/4

1/4

3/4

3/4

1/2

1/2

1/2 1/20

0

00

FIGURE 2.45  Diamond structure and (001)-projection.
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2.6.5  NaCl AND NiAs STRUCTURES

A third of the type MX compounds exhibit the NaCl structure shown in 
Figure 2.46(a). Its Bravais lattice is FCC with two different atoms associ-
ated with one lattice point. For example, M at (0,0,0) and X at (0,0,1/2) 
constitute the lattice point at (0,0,0). This structure has a configuration 
where one type of atoms (or ions) is located at the lattice points and atoms 
of the other type occupy all of the octahedral sites. In this structure, each 
atom is at the center of a regular octahedron formed by atoms of the other 
type. The coordination number is thus six. There are four formula units 
per conventional unit cell. Each {111} lattice plane specifies two sheets 
of atoms, each sheet consisting of atoms of the same type. If we denote 
atoms of one kind with Roman letters and those of the other with Greek 
letters, the stacking sequence along the [111] direction can be described as 
A γ B α C β A γ B α C β A. Many oxides (BaO, CaO, MgO, FeO, etc.) and 
alkali halides (LiCl, LiBr, KCl, KBr, etc.) have this NaCl structure. The 
NaCl structure can be derived from the FCC structure by placing another 
set of atoms in its octahedral sites. It is not surprising that another structure 
may be similarly obtained, in which atoms of a different kind are placed 
in the octahedral sites of the HCP structure. This is the NiAs structure 
shown in Figure 2.46(b). The Bravais lattice is simple hexagonal. There 
are four atoms in the unit cell: one kind at (0,0,0) and (2/3,1/3,1/2) and the 
other kind at (1/3,2/3,1/4) and (1/3,2/3,3/4). The stacking sequence of the 
atomic planes along [001] is A γ B γ A γ B γ A. FeS, CoS, NiS, and CrS 
have this NiAs structure.

(a) (b)

FIGURE 2.46  (a) NaCl structure. (b) NiAs structure.
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2.6.6  SPHALERITE AND WURTZITE STRUCTURES

The FCC structure has four atoms and eight tetrahedral sites per conven-
tional unit cell. Thus, for compounds of the type MX, only half of the 
tetrahedral sites should be filled. The resulting structure is the sphalerite 
structure in which four atoms of one kind are at the unit cell corners and 
face centers and four atoms of a different kind occupy every other tetrahe-
dral site (Figure 2.47(a)). The sphalerite structure is sometimes called the 
zinc blende structure. The Bravais lattice is also FCC with two different 
atoms associated with one lattice point. The coordination number is four. 
When all atoms are of the same kind, it renders to the diamond structure. 
The stacking sequence of (111) planes is A αB βC γA αB βC γA. A number 
of compounds exhibit this structure, which include GaAs, α-ZnS, InP, and 
InAs.

(a) (b)

FIGURE 2.47  (a) Sphalerite structure. (b) Wurtzite structure.

The hexagonal version of the sphalerite structure is the wurtzite 
structure that is obtained by filling alternate tetrahedral sites in the HCP 
structure (Figure 2.47(b)). There are two atoms of one kind at (0,0,0) and 
(2/3,1/3,1/2) and two atoms of another kind at (0,0,5/8) and (2/3,1/3,1/8). 
Each atom is of course tetrahedrally coordinated with four atoms of the 
opposite kind. The Bravais lattice is simple hexagonal and a total of four 
atoms is thus associated with one lattice point. The stacking sequence 
along [001] is A αB βA αB βA… or equivalently Aβ Bα Aβ Bα A. ZnO, 
β-ZnS, SiC, and GaN have this wurtzite structure. While the stacking se-
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quence can be easily figured out in the hexagonal crystals, it is not imme-
diately obvious in the case of cubic crystals. Figure 2.48 illustrates how 
the NaCl and sphalerite structures have the given sequences. It is to be 
noted that successive planes are equally separated from one another in the 
NaCl structure but not in the sphalerite structure.

(110)

(b)(a)

γ

[111]

A 

B 

C

APosition A

Position B

Position C

(110) [111]

A 

B 

C

A 
β

α β

γ

α

FIGURE 2.48  Stacking sequences in (a) NaCl and (b) Sphalerite structures.

2.6.7  OTHER COMPOUNDS

Figure 2.49 shows two more compound structures: CsCl and perovskite 
structures. Many intermetallic compounds such as FeAl, CuZn, and AgMg 
have the CsCl structure. In this structure, one atom is located at the unit cell 
corner and its body center is filled with another atom of a different kind. 
Since these two atoms have different environments, they together form a 
single lattice point. For instance, Cs at (0,0,0) and Cl at (1/2,1/2,1/2) are 
associated with the lattice point at (0,0,0). Accordingly, the Bravais lattice 
of the CsCl structure is simple cubic. The perovskite structure is a common 
structure possessed by a number of compounds of the type MM’X3, which 
include CaTiO3, SrTiO3, and BaTiO3. The corners and body center of the 
unit cell are filled with the M and M’ atoms (or ions), respectively, and the 
X atoms are positioned at its face centers. In CaTiO3, the atomic coordi-
nates are Ca2+ (0,0,0), Ti4+ (1/2,1/2,1/2), and O2– (1/2,1/2,0), (1/2,0,1/2), 
(0,1/2,1/2). Many perovskite compounds exhibit phase transitions. For ex-
ample, BaTiO3 is cubic above 120°C, tetragonal in the temperature range 
of 120° to 7°C, and transforms to an orthorhombic phase below 7°C. In a 
strict sense, it maintains the perovskite structure only above 120°C.
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(a) (b)

FIGURE 2.49  (a) CsCl structure. (b) Perovskite structure.

If all of the tetrahedral sites in the FCC structure are occupied with 
atoms of a different kind, we obtain the CaF2 structure. The Bravais lattice 
of this structure is also FCC. Each lattice point is associated with one Ca 
atom and two F atoms. One unit cell contains four formula units. When Ca 
atoms are located at the lattice points of an FCC lattice, F atoms occupy 
all of its tetrahedral sites. The coordination number of Ca is eight and F 
has tetrahedral coordination with four Ca atoms. More complex structures 
are also derived from the FCC structure. The spinel structure, possessed 
by MgAl2O4 and other mixed oxides of di-and trivalent metals, has a unit 
cell containing 32 oxygen ions arranged in cubic close packing. Mg2+ ions 
occupy one-eighth of the 64 tetrahedral sites and Al3+ occupy half of the 
32 octahedral sites. Inverse spinel structures have a different cation dis-
tribution. MgFe2O4 is an example of the inverse spinel structure. Here, the 
sixteen octahedral sites are filled by all of the Mg ions and half of the Fe 
ions, while the eight tetrahedral sites are filled with the remaining Fe ions.

2.6.8  SOLID SOLUTIONS

Many pure metals can dissolve other elements to form solid solutions. 
There are two types of solid solutions: substitutional and interstitial solid 
solutions. In the former, solute atoms merely substitute for the solvent 
atoms. In the latter, the solute atoms fit into the interstices of the solvent 
atoms. Unless the size difference is so large, the solute and solvent atoms 
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are likely to form a substitutional solution. Let’s consider a binary alloy 
system consisting of A and B elements, in which pure A has a BCC struc-
ture and pure B, an FCC structure (Figure 2.50). Any metal can dissolve 
other elements to a degree. Thus, when the A element contains a small 
amount of B solute atoms, it maintains a single phase denoted as α phase. 
This is equally applied to the B element. If the concentration of the solute 
atoms is above a threshold value, A-rich α phase and B-rich β phase coex-
ist because the two elements have different structures and a single phase 
cannot be maintained in intermediate compositions. In solid solutions, the 
solute atoms are somewhat randomly distributed. Therefore, the B atoms 
in the α phase may occupy either the corners or body centers of the unit 
cell in an irregular manner, as shown in Figure 2.50. As a result, some unit 
cells will not exhibit cubic symmetry. Nevertheless, the overall structure 
of the α phase is still BCC. The X-ray beam used to examine the crystal 
is much larger than the size of a unit cell. A tremendous number of unit 
cells are analyzed at the same time. We take only an average picture of the 
structure. Likewise, the β phase has the same FCC structure as the pure 
B element. In an intermediate composition, the alloy may consist of two 
phases. In this case, the resulting X-ray diffraction pattern will be a mix-
ture of the characteristic patterns of BCC and FCC structures.

A(BCC)

Structure of α phase

B(FCC)

T

α βα + β

L

Structure of β phase

A atom

B atom

FIGURE 2.50  A binary alloy system consisting of A and B elements.
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It is noteworthy of a bit mentioning the ordered and disordered struc-
tures. Generally, substitutional solid solutions have solute atoms randomly 
distributed among the available sites. In some cases, this random distribu-
tion is true only at high temperatures and ordering occurs below a cer-
tain temperature. The intermetallic compound AuCu3 is a classic example. 
Above 390°C, both atoms are randomly positioned at the corners and face 
centers of the cubic unit cell (Figure 2.51). There is no preferred position 
for Cu or Au. The probability that a particular atomic site is occupied by 
Au is 1/4, which is the atomic fraction of Au in the alloy. Accordingly, the 
probability that the same site is occupied by Cu is 3/4. Since every site is 
identical in terms of the occupation probability, the structure of this dis-
ordered state can be regarded as an FCC. Its Bravais lattice is thus FCC. 
When cooled down below 390°C, the Au atoms occupy the corners of the 
unit cell and the Cu atoms, the face centers. While the disordered state has 
an FCC lattice, this ordered structure has a simple cubic lattice. Since the 
diffraction pattern depends on the lattice type, we can determine the order-
disorder transition temperature by X-ray diffraction.

Au Cu

Ordered (T < 390 oC) Disordered (T >390 oC)

1/4Au
3/4Cu

FIGURE 2.51  Ordered and disordered states in Cu3Au.
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EXAMPLE 2.9

The Ni2In structure has a hexagonal unit cell with atoms in the follow-
ing positions:
Ni: (0,0,0) (0,0,1/2) (2/3,1/3,3/4) (1/3,2/3,1/4)
In: (2/3,1/3,1/4) (1/3,2/3,3/4)
(a) Draw the Ni2In structure and represent the (001)-projection.
(b) Draw the atomic arrangements in an alternative unit cell with In 
atoms on the corners.
Answer:
Figure 2.52(a) shows the Ni2In structure and its (001)-projection drawn 
with the given atomic coordinates. An alternative unit cell with In at-
oms on the corners can be taken, as shown in Figure 2.52(b).

(a)

(001)-projection

Ni In

1/4

3/4

1/4

3/4

0, 1/2

0

1/2

0

(b)

Alternative unit cell

FIGURE 2.52  (a) Ni2In structure and its (001)-projection drawn with 
the given atomic coordinates. (b) An alternative unit cell with In atoms 
on the corners.
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2.7  STEREOGRAPHIC PROJECTION

When we study crystallography and crystal structures, it is often necessary 
to represent planes or directions on a two-dimensional diagram so that the 
crystal symmetry and angular relationships can be easily figured out. The 
orientation of any plane in a crystal can be represented by the inclination 
of its normal relative to a reference plane. Suppose that a crystal is posi-
tioned at the center of a sphere, called the sphere of projection, as shown in 
Figure 2.53(a). When the normal of a plane is drawn from the sphere cen-
ter to intersect the surface of the sphere at P, the point P is called the pole 
of the plane. The orientation of a plane is thus represented by a pole on 
the sphere and the line OP is normal to the plane. To represent the crystal 
planes on a two-dimensional diagram, the poles should be projected on to 
a plane, denoted as the plane of projection. In analogy with the earth, let us 
define points N and S as the north and south poles. Then, it is very conve-
nient if the equatorial plane is selected as the plane of projection. There are 
various ways of projecting poles on the sphere onto the equatorial plane. 
In the stereographic projection, the north and south poles are used as the 
reference points. In Figure 2.53(b), the line SP1 connecting the pole P1 to 
the point S intersects the equatorial plane at P1’, which is the stereographic 
projection of the pole P1. Any poles in the northern hemisphere fall inside 
the circular equatorial plane by this way. A pole P2 lying in the southern 
hemisphere is projected to P2’ by taking N as the reference point for pro-
jection. Poles projected from the southern hemisphere are distinguished 
from those from the northern hemisphere, by representing the former as 
open circles and the latter as smaller solid circles. The stereographic pro-
jection of a pole lying on the equatorial plane, i.e., the plane of projection, 
is consistent with the pole itself and marked with a solid circle. Figure 2.54 
shows some poles of a cubic crystal and their stereographic projection.

The symmetry elements can combine only in a limited number of ways 
and these combinations are called the point groups. There are 32 point 
groups allowed for the seven crystal systems. Here we briefly examine 
how the symmetric relationships between planes can be represented on 
a stereogram in the tetragonal case. When the crystal has a tetrad only, 
its point group is denoted as “4” (Figure 2.55). If there is a mirror plane 
perpendicular to the tetrad, the crystal has a point group “4/m”. When the 
crystal possesses mirror planes parallel to the four-fold axis as well, the 
point group becomes “4/mmm”.
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FIGURE 2.53  (a) Sphere of projection. (b) Stereographic projection.
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FIGURE 2.54  (a) Poles of a cubic crystal. (b) Stereographic projection of poles.
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FIGURE 2.55  Point groups of the tetragonal system and their symmetry elements.
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FIGURE 2.56  Stereograms of three different point groups. The characteristic four-fold 
axis is parallel to the z axis.

Figure 2.56 shows the stereograms of three different cases. The opera-
tion of four-fold rotational symmetry to a general pole (hkl) produces three 
equivalent poles with indices (k h l), (h k l), and (k h l). When there is a mir-
ror plane running perpendicular to the four-fold rotation axis, four more 
equivalent poles are generated. Now, (hkl) and (h k l ) planes are crystal-
lographically identical and thus, the crystal of point group 4/m possesses 
a center of symmetry. In the point group 4/mmm, the number of planes 
equivalent to (hkl) increases to fifteen: sixteen including itself. It exhibits 
the highest symmetry available in the tetragonal system. As stated in Sec-
tion 2.6.7, BaTiO3 is cubic above 120°C. When cooled through 120°C, it 
transforms to a tetragonal phase and exhibits a dipole moment. The dipole 
moment is considered to arise primarily due to the movement of Ti ions 
with respect to the O ions in the same plane, but the movement of the 
other O ions (i.e., those above and below Ti ions) and the Ba ions is also 
relevant. Figure 2.57 illustrates a simplified mechanism of the cubic-to-
tetragonal transformation. In the cubic phase, BaTiO3 has three orthogo-
nal tetrads along the unit cell axes and mirror planes parallel as well as 
perpendicular to these tetrads. When the phase transition occurs, only the 
tetrad parallel to the direction of ions movement remains. This direction 
is defined as the z-axis direction of the tetragonal unit cell. A mirror plane 
perpendicular to the tetrad no longer exists but those parallel to it are still 
maintained. This is why the tetragonal BaTiO3 has a point group “4mm”. 
A center of symmetry is absent from this point group. 4/m and 4mm have 
the same number of equivalent poles but their indices are different.
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FIGURE 2.57  A simplified mechanism of the cubic-to-tetragonal transformation in 
BaTiO3. In the tetragonal phase, BaTiO3 has a point group of 4mm.

2.1. � Determine the angle between [111] and the normal to (111) in a 
tetragonal crystal with a = 5 Å and c = 12 Å.

2.2. � Prove that the reciprocal lattice of a BCC structure is FCC. If this 
BCC structure has lattice constant “a”, what is the volume of a 
primitive cell of the reciprocal lattice?

2.3. � For a tetragonal crystal with 4/mmm point group, write down all 
planes that are crystallographically identical with (321). Which 
planes should be excluded from the form {321} if the crystal be-
comes 4mm due to a phase change?.

2.4. � A certain tetragonal crystal has the following d-spacings:
	 d002 = 4.68 Å, d101 = 3.47 Å
Find the magnitudes of the lattice parameters a and c.
2.5. � There is a monoclinic crystal with a = 8.035 Å, b = 5.805 Å, c = 

7.346 Å, β = 105.63°. Calculate the reciprocal lattice constants and 
the spacing of (111) planes, i.e., d111.

2.6. � A crystal has unit cell with a = 9.85 Å, b = 15.42 Å, c = 7.71 Å, α 
= β = γ = 90°.

	 (a)  Represent (110), (123), and [211] in a unit cell.
	 (b)  What is the angle between [111] and the normal to (123)?
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	 (c) � Let (134) and (213) belong to a specific zone axis. Then write 
down the indices of two more planes that belong to this zone 
axis.

2.7.	A compound of the type ABC3 has unit cell dimensions of a = b = 
c, α = β = γ = 90°. The atomic coordinates within the unit cell are 
as follows.

	 A: (1/2,1/2,1/2) B: (0,0,0) C: (1/2,0,0), (0,1/2,0), (0,0,1/2)
     (a) � What are the crystal system and the Bravais lattice of this com-

pound?
    (b) � Give the (001)-projection and draw the atomic arrangement in an 

alternative unit cell with “A” atoms on the corners.
2.8. � Calculate the angle between (100) and (111) in each of the follow-

ing metals.
	 (a) Cu: Cubic
	 (b) Sn: Tetragonal with a = 5.82 Å and c = 3.17 Å.
	 (c) Zn: Hexagonal with a = 2.66 Å and c = 4.93 Å.
2.9. � In an AB compound, A ions are in contact with twelve A ions and 

six B ions. What is the radius ratio of the two ions and what kind 
of structure does this compound have?

2.10. � Iron (Fe) has a BCC structure at room temperature but FCC is a 
stable structure above 910°C. When a block of iron is heated to 
over 910°C, how much volume change will occur to this block?

2.11. � In a cubic crystal, the angle between a plane P and (111) is 53.96°, 
and P lies in the [010] zone.

	   (a) Find the Miller indices of the plane P.
	   (b) �Find the angle between P and the plane P* if P* is related to P 

by a mirror plane parallel to (110).
2.12. � In a tetragonal crystal, the angle between [111] and (111) is 

108.67°.
	 (a) Calculate the axial ratio, c/a.
	 (b) Calculate the angle between [001] and [236].
	 (c) Calculate the angle between (111) and (213).
2.13. � In a cubic crystal, (hkl), (101), and (011) belong to a zone. This 

(hkl) plane also lies in another zone containing (213) and (211). 
What is (hkl) if the angle between (hkl) and (101) is 19.01°?

2.14. � Calculate the atomic packing fraction of diamond structure.
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2.15. � In a hexagonal unit cell, indicate the following planes and direc-
tions: (1210), (1012), (1011), [110], [111], and [021].

2.16. � There is a hypothetical crystal (a = b = c, α = β = γ = 90°) with 
the following atomic coordinates. Give the Bravais lattice for each 
case.

	 (a) A: (0,0,0) B: (0,0,1/2)
	 (b) A: (0,0,0) B: (1/2,0,1/4) C: (0,1/2,3/4)
	 (c) A: (0,0,0) B: (1/2,1/2,1/2) C: (1/2,1/2,0) (1/2,0,1/2) (0,1/2,1/2)
2.17. � Diamond structure has hexagonal-shaped tunnels when it is viewed 

perpendicular to (110). Calculate the cross-sectional area of the 
tunnel.

2.18. � State the definition of center of symmetry and its significance in 
relation to the material property.

2.19. �b-ZnS is hexagonal with the following coordinates.
	 S: (0,0,0), (2/3,1/3,1/2) Zn: (0,0,3/8), (2/3,1/3,7/8)
	 (a) Represent the (001)-projection
	 (b) Draw the atomic arrangements in an alternative unit cell with 

Zn atoms on the corners.
	 (c) How does this β-ZnS structure (Wurtzite structure) differ from 

the a-ZnS structure.
2.20. � In a material consisting of A and B elements, A atoms are arranged 

in an FCC fashion and B atoms occupy all of the tetrahedral and 
octahedral sites.

	 (a) What would be the stoichiometry of a compound with this struc-
ture?

	 (b) In the disordered state where the A and B atoms are randomly 
distributed among the available positions, is the structure equiva-
lent to BCC?

2.21. � There is a BCC crystal with a = 1.0 nm. Calculate the diameters 
of the largest atoms that can go into the tetrahedral and octahedral 
sites without lattice distortion.

2.22.  Identify all planes identical to (123) in the point group 4/mmm.
2.23. � Calculate the number of broken bonds per atom on the (100) and 

(110) surfaces of diamond structure.
2.24. � Determine the angle between (121) and (213) and d123 in a HCP 

structure with a = 2 nm.
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3.1  REFRACTION AND REFLECTION

Refraction refers to the change in propagation direction of a wave due to 
a change in its medium. The phenomenon is mainly governed by the law 
of energy and momentum conservation. It is commonly observed when 
a wave passes from one medium to another at any angle other than 0° 
from the normal. Refraction of light is the most commonly observed phe-
nomenon, but any type of wave can be refracted when it interacts with a 
medium. Refraction is also responsible for rainbows and for the splitting 
of white light into a rainbow-spectrum as it passes through a glass prism. 
A long object such as pencil or wood stick obliquely immersed in water 
looks bent due to refraction. This is because a light ray reflected from the 
tip of the object refracts as it leaves the surface of water. Thus, the ray 
conceived by our eyes looks as if it were reflected from a point other than 
the tip of the object. Understanding of this concept led to the invention of 
lenses and glasses.

FIGURE 3.1  Definition of refractive index.

When a light is incident from free space into a matter, its speed is de-
creased. Since the frequency remains unchanged, its wavelength is also re-
duced inside the matter (Figure 3.1). The refractive index n of a substance 
is defined as

	 ocn l
u l

= = 	 (3.1)

where c and ol  are the speed and wavelength of light in vacuum, and υ and 
l, the speed and wavelength of that light in the substance. Thus, vacuum 
has n = 1 as the reference medium. Air has a refractive index only slightly 
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larger than unity. The refractive index of water is 1.33 at visible ranges, 
implying that light travels 1.33 times slowly in water than in vacuum or 
air. The refractive index also determines how light is bent, i.e., refracted, 
when entering a material. This is described by Snell’s law of refraction: 

1 1 2 2sin sinn nq q= , where 1q  and 2q  are the angles of incidence and refrac-
tion of a ray crossing the interface between two media with refractive in-
dices n1 and n2. In Figure 3.2, n2 is assumed to be larger than n1. When 
light is incident from a lower-index material into a higher-index material, 
the angle of refraction is smaller than the angle of incidence and the light 
is refracted toward the normal of the interface. When entering a medium 
with lower refractive index, the light is refracted away from the inter-
face normal. The angle of reflection is the same as the angle of incidence. 
The elementary rules of refraction and reflection are deduced from the ap-
plication of boundary conditions for electromagnetic waves. These rules 
can also be deduced from Fermat’s principle; the path taken between two 
points by a ray of light is the path that can be traversed in the least time. 
In general, the incident wave is partially refracted and partially reflected. 
The refractive indices also determine how much of the light is reflected 
from the interface, and how much is refracted in a given situation. The de-
tails of this behavior are described by the Fresnel equations for refraction 
and reflection. For normal incidence, the reflectance is proportional to the 
square of the refractive index difference between two media.

FIGURE 3.2  The angle of reflection is the same as the angle of incidence. 
The angle of refraction is related to the angle of incidence by the Snell’s 
law: 1 1 2 2sin sinn nq q= .
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The concept of refractive index is widely used within the full electro-
magnetic spectrum. The refractive index of a substance varies with the 
wavelength of incident electromagnetic radiation. All materials have a re-
fractive index very close to 1 at X-ray wavelengths. As an example, water 
has n = 1 – 2.6 × 10–7 for X-ray radiation at l = 0.04 nm.The refractive 
index lower than unity does not contradict the theory of relativity, which 
holds that no information-carrying signal can travel faster than the speed 
of light in vacuum. The refractive index is defined with respect to the 
phase velocity, which does not carry information. The phase velocity is not 
the same as the group velocity or the signal velocity. It means the speed at 
which the crests of the wave move and can be faster than the speed of light 
in vacuum, thereby giving a refractive index below 1. The analysis of ma-
terials using X-rays is much facilitated by the fact that the refractive index 
is nearly equal to 1 at X-ray regions for all materials. Since the incident 
beam is not refracted at the air-material interface, sample polishing is un-
necessary. In addition, we do not have to separately calculate the propaga-
tion direction of X-ray beam within the material because it is basically the 
same as the incident direction. The dependence of refractive index on the 
frequency of electromagnetic wave is well described in many textbooks on 
optics and electrodynamics.1–4,9,10

3.2  INTERFERENCE

Interference is a phenomenon in which two waves superpose to form a 
resultant wave of higher or lower amplitude. Interference effects can be 
observed will all types of waves, for instance, electromagnetic waves, 
acoustic waves, surface waves, and matter waves. When two or more 
propagating waves of the same type meet on the same point, the total dis-
placement at that point is equal to the sum of the displacements of the 
individual waves. The classic experiment that demonstrates interference 
of light was first carried out by Thomas Young in 1802. In the original 
experiment, sunlight was used as the source. Light was passed through a 
small pinhole so as to illuminate two narrow slits. An interference pattern 
of bright and dark fringes was observed in a screen placed behind the slits.
Young was able to estimate the wavelength of different colors in the spec-
trum from the spacing of the fringes. His experiment played a major role in 
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the general acceptance of the wave theory of light. A key to the experiment 
is the use of a single pinhole to illuminate the slits. This provides the nec-
essary mutual coherence between the lights that comes from the two slits.

FIGURE 3.3  (a) Wavefront refers to the locus of points having the same phase. (b) The 
wavefronts of a plane wave are planes.

Wavefront means an imaginary surface joining all points of equal phase 
in a wave. The wavefronts of a plane wave are planes. Any wave prop-
agates in the direction normal to its wavefront. A plane wave thus has 
a straight propagation direction, as shown in Figure 3.3. A small stone 
vertically dropped into a tranquil lake will generate a two-dimensional 
circular wave on the water surface, in which the wavefront is in the form 
of concentric circles. Similarly, an electromagnetic wave emitted radially 
from a point source can be considered as a spherical wave. The surface of 
a sphere becomes more flattened with increasing radius. Thus, a spherical 
wave will behave like a plane wave when it is far away from the source. 
As illustrated in Figure 3.3(a), the wavefronts are usually drawn along the 
crests of a wave, with the spacing between two adjacent wavefronts equal 
to one wavelength.
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EXAMPLE 3.1

State how the wavefront changes when a plane wave is focused by a 
lens.
Answer: When a plane-wave beam is focused by a lens, the beam size 
decreases and then increases after being minimized at focus. Now, the 
wave has different propagation directions depending on the position 
within the beam. Since the wave propagates normal to its wavefront, a 
plane wave focused by a lens will exhibit the wavefront shapes shown 
in Figure 3.4.

Propagation directions

Lens

Wavefront shapes within the beam

FIGURE 3.4  Wavefront shapes of a plane-wave beam focused by a lens.

FIGURE 3.5  Constructive and destructive interference.
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Because the frequency of electromagnetic waves is too high to be de-
tected by currently available detectors, it is possible to observe only the 
intensity of an interference pattern. The intensity of an electromagnetic 
wave is proportional to its amplitude squared. Therefore, the superposition 
of two or more waves may yield a resultant intensity that is not simply the 
sum of the component intensities. A crucial factor determining the inter-
ference result is the difference in phase between the involved waves. Sup-
pose that two harmonic waves with the same frequency are superposed. 
When the phase difference between these two waves is d = 0, 2p, 4p, …, 
the resulting amplitude is maximized, whereas d = p, 3p, 5p, … yield a 
minimum amplitude (Figure 3.5). The former situation is referred to as 
constructive interference, in which the waves are in phase. In the latter 
destructive interference, the waves are 180° out of phase.

FIGURE 3.6  (a) Superposition of two harmonic waves E1 and E2. (b) Resultant intensity.

As a general case, we consider two electromagnetic waves E1 and E2 
propagating along the positive x direction, with their electric fields di-
rected along the y direction (Figure 3.6(a)). When these waves of the same 
frequency have amplitudes E01 and E02 and a phase difference of d, the 
resultant disturbance is the linear superposition of the two waves and is 
expressed as

	 ( ) ( )1 2 01 02cos 2 / cos 2 /E E E E x E xπ l π l δ= + = + − 	 (3.2)

In dealing with the superposition of harmonic waves, the complex-
number representation is mathematically simpler than the trigonometric 
manipulation. Keeping in mind that cos sinie iq q q= + , the relations of Eq. 
(3.2) can be alternatively described by the following complex notations.
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	 2 / (2 / ) 2 /
01 02 01 02( )i x i x i i x

comE E e E e E E e eπ l π l δ δ π l− −= + = + 	 (3.3)

Since E is simply the real part of Ecom, we can take it after manipulation. 
The term in parentheses of Eq. (3.3) is also complex, and thus it can be 
expressed as follows.

	
'2 2

01 02( )
i x i xi i

com comE E E e e E e e
π πδ ql l−= + = 	 (3.4)

where comE  is the magnitude of Ecom. Now we know that 
( )cos 2 / 'comE E xπ l q= + . q' is a value depending on E01, E02, and d. How-

ever, the intensity of the composite wave can be obtained without calculat-
ing this value. Multiplying each side of ( ) '

01 02
i i

comE E e E eδ q−+ =  by its com-
plex conjugate leads to 2 2 2

01 02 01 022 coscomE E E E E δ= + + . If we are concerned 
only with relative intensities, we can neglect the common proportionality 
constant and represent the component intensities as 2

1 01I E=  and 2
2 02I E= . 

The total intensity is then

	 1 2 1 22 cosI I I I I δ= + + 	 (3.5)

where 1 22 cosI I δ  is called interference term. The resultant intensity may be 
greater, equal to, or less than I1 + I2, depending on the value of the interfer-
ence term, as plotted in Figure 3.6(b). The maximum intensity is obtained 
at cos 1δ = , when δ is an integer multiple of 2p. For 0 cos 1δ< < , we have 

1 2I I I> + . The minimum intensity occurs when the waves are 180° out of 
phase, that is, when δ is an odd multiple of p. Interference refers to the in-
teraction of waves that are coherent with each other. If the two waves are 
mutually incoherent, the phase difference δ varies with time in a random 
fashion. Then, the mean value of the interference term is zero, and there is 
no interference. The two waves must have the same polarization in order 
to maximize the interference effect. In particular, if the polarizations are 
mutually orthogonal, there is no interference again.

An interference fringe pattern is produced if two plane waves of the 
same frequency intersect at a non-zero angle q. Interference is essentially 
an energy redistribution process. The energy lost at the destructive in-
terference is regained at the constructive interference. The fringe pattern 
generated by two nonparallel plane waves is a series of straight lines. The 
fringes are observed wherever the two waves overlap. The fringe spacing 
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increases with increasing wavelength and decreasing angle q (see Exam-
ple 3.2). A point source produces a spherical wave. If the light from two 
point sources overlaps, the interference pattern maps out the way in which 
the phase difference between the two waves varies in space. This depends 
on the wavelength and on the separation of the point sources. When the 
plane of observation is far away, the fringe pattern will be a series of near-
ly straight lines, since the waves will then be almost planar.
We have thus far been concerned with the interference between two beams. 
Multi-beam interference is more general. The most common method of 
producing a large number of coherent beams is by division of amplitude. 

EXAMPLE 3.2

The superposition of two nonparallel plane waves of the same wavelength generates 
a one-dimensional interference pattern, as shown in Figure 3.7.

K

Interference 
pattern

d

2θ

K1 
λ

K2 

K1 

K2 

Δ

FIGURE 3.7  One-dimensional interference pattern generated by superposition of 
two nonparallel plane waves of the same wavelength.

This can be more easily understood with the concept of wave vector. 
The wave vector K is parallel to the propagation direction, i.e., normal 
to the wavefront, and has a magnitude of 2p/l. If two beams with the 
wave vectors K1 and K2 are superimposed, an interference pattern is 
generated with a vector DK that is defined by the difference of the 
incident wave vectors, i.e., DK = K2–K1. The magnitudes of these 
vectors are K1 = K2 = 2p/l, DK=2p/d, where “d” is the period of the 
interference pattern. When the two beams have an intersection angle of 
2q, the magnitude of K2–K1 is 4psinq/l. Then, we have
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2sin

d l
q

=                                                      (3.6)

The period of the pattern, i.e., the spacing of the interference fringes 
is dependent on the wavelength and intersection angle of the interfer-
ing beams. For instance, when the angle 2q between two interfering 
plane waves is 60°, the period of the resulting pattern is equal to the 
wavelength of the waves. Eq. (3.6) is equivalent to the Bragg law that 
governs the direction of X-ray diffraction, which will be discussed later 
throughout this book. In this example, we just emphasize the usefulness 
of the wave vector concept described above. Suppose that two He-Ne 
laser beams (l = 632.8 nm in air) are symmetrically incident into a 
material of refractive index n at an external angle of 60° and gener-
ates an interference pattern inside the material, as shown in Figure 3.8. 
Then, find the period “d” by explaining how we can calculate it without 
knowing the refractive index of the material.

30o

d

n

FIGURE 3.8  An interference pattern generated by two beams.

Answer: When a plane wave is incident into a material of refractive 
index n from free space, it is refracted toward the normal of the interface 
(Figure 3.9). As the angles of incidence and refraction are governed by 
the Snell’s law: sinqi = nsinqr, the incident and refracted waves have 
different propagation directions. When the incident wave vector Ki  has 
a magnitude of 2p/l, the magnitude of the refracted wave vector Kr 
becomes 2pn/l, since the wavelength inside the material is decreased 
to l/n.
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The amplitude division occurs by multiple reflection between two paral-
lel, partially reflecting surfaces. These surfaces might be semitransparent 
mirrors, or merely the two sides of a film or slab of transparent material. 
A plane wave reflected from a flat surface is also a plane wave. The rays 
A and B in Figure 3.10(a) maintain the same phase all the way along their 

Interface

n 

Ki θi

θr

Kr

FIGURE 3.9  Wave vectors of the incident and refracted beams.

The Snell’s law is rewritten as

	 2 2sin sini r
nπ πq q

l l
=                     (3.7)

Both sides of Eq. (3.7) represent the components of the wave vec-
tors tangential to the interface. In other words, the Snell’s law states that 
the tangential components of the wave vectors are preserved. As the 
wave refracts, the direction and magnitude of its wave vector change. 
However, the tangential component of the wave vector remains un-
changed. Therefore, the interference pattern formed inside a material 
has the same period as that obtained without the material. For 2q = 60°, 
the period is equal to the wavelength, i.e., d = 632.8 nm.
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paths because the angle of incidence is identical to that of reflection. If the 
surface is perfectly reflecting, the reflectance, defined as the ratio of the 
reflected intensity to the incident intensity, becomes 100%. Figure 3.10(b) 
shows the case where a plane wave is incident onto a free-standing thin 
dielectric slab. Here, the ray A is directly reflected from the top surface of 
the slab and the ray B undergoes an internal reflection once. The two rays 
may have a phase difference arising from the difference in path lengths. 
When the phase difference is a multiple of 2p, the constructive interfer-
ence occurs, resulting in high reflectance. On the contrary, if they have 
a phase difference of p, 3p, … the reflected beam will be weakened due 
to the destructive interference. The incident primary beam is partially re-
flected and partially transmitted at the top surface. The transmitted part is 
subsequently reflected back and forth between the two surfaces. Only two 
rays A and B are depicted in Figure 3.10(b), because the overall reflec-
tance is dominantly influenced by the phase relationship between these 
two rays.

FIGURE 3.10  (a) A plane wave reflected from a flat surface is also a plane wave, since 
the rays A and B are always in phase. (b) Reflection from a thin slab.

Once two media have different refractive indices, reflection from their 
interface is inevitable. Air is also a medium of n = 1. For normal incidence, 
the reflectance of a material is given by 2 2/ ( 11) )(R n n += − . For example, 
a glass (n = 1.5) in air has R = ~ 4%. A typical method of suppressing the 
reflectance of a bulk material is to coat it with a thin film of different re-
fractive index so that the component waves reflected from the air-film and 
film-material interfaces destructively interfere (Figure 3.11). Interference 
is very common in our daily life. For example, the colors seen in a soap 
bubble arise from interference of light reflecting off the front and back 
surfaces of the thin soap film. Depending on the thickness of the film, dif-
ferent colors interfere constructively and destructively.
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FIGURE 3.11  Principle of anti-reflection coating.

3.3  DIFFRACTION

There is no way to satisfactorily explain the difference between interfer-
ence and diffraction. Although not always appropriate, it is sometimes 
customary to speak of interference when treating the superposition of a 
few waves and diffraction when considering a large number of waves. The 
propagation of light in media is often explained by Huygens’s principle; 
every point on a primary wavefront serves as the source of secondary 
spherical waves (or wavelets) and these secondary waves constitute the 
new wavefront. The essential features of diffraction can be qualitatively 
described by Huygens’s principle either. A simple illustration of the prin-
ciple is shown in Figure 3.12 for a plane wave.

This principle states that the propagation of a light wave can be pre-
dicted by assuming that each point of the wavefront acts as the source of a 
secondary wave spreading out in all directions. Therefore, we can suppose 
that a planar wavefront contains a lot of (imaginary) oscillators and each 
oscillator generates a spherical wave. Since every point on a wavefront 
serves as the source, the oscillators are considered very closely spaced. 
Thus, the new wavefront formed by these secondary waves will also be 
planar. A plane wave propagates through a medium in this way. According 
to Huygens’s principle, there would have been a backward wave moving 
toward the source, which is not observed in reality. When a light wave 
propagates inside a material, each atom of the material interacts with an 
incident primary wavefront. Therefore, the atoms can be regarded as a 
point source of the scattered secondary wavelets. However, things are not 
quite clear when the principle is applied to the propagation of light through 
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a vacuum. Nevertheless, the imaginary oscillator model proposed by Huy-
gens fits in well with many optical phenomena.

FIGURE 3.12  Propagation of a plane wave via Huygens’s principle .

FIGURE 3.13  Refraction at an interface via Huygens’s principle.

As an example, Figure 3.13 illustrates the application of Huygens’s 
principle to the law of refraction, where a plane wave propagates from a 
medium with higher index (n2) to a medium with lower index (n1). The 
incident wave generates secondary wavelets and these wavelets overlap 
to form the new wavefront. Since n2> n1 , the lower-index medium has 
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a higher light speed, i.e., v2> v1. This means that in a given time t, the 
wavelet travels a longer distance in the lower-index medium than in the 
higher-index medium. Therefore, the wavefront formed in the lower-index 
medium is more inclined toward the interface normal, making the angle of 
refraction larger than the angle of incidence. It can be easily proved that 
the result is consistent with the Snell’s law of refraction. When a beam is 
focused by a lens, the beam size at focus is decreased as the focal length 
of the lens decreases. Since the beam shape is symmetric with respect to 
the focal point (refer to Figure 3.4), a more tightly focused beam is more 
widely spread. This can also be explained with the oscillator model. If the 
areal density of oscillators is fixed constant, a small beam containing only 
a few oscillators will be highly divergent. As the beam becomes bigger, 
the number of oscillators increases as much. Thus, more secondary waves 
are generated and this makes the wavefront more planar (Figure 3.14).

FIGURE 3.14  Beam size vs. wavefront shape.

A classic example of diffraction is the spreading out of a wave pass-
ing through a small aperture, as depicted in Figure 3.15(a). There are nu-
merous point sources on the incoming plane wave. However, secondary 
waves only from some points in front of the aperture can pass through it 
and those from the others are blocked, as depicted in Figure 3.15(b). As 
the aperture gets smaller, the number of unobstructed points decreases. 
This makes an incoming wave more widely spread. When the aperture is 
a long, narrow slit, a cylindrical wave will emerge, as illustrated in Fig-
ure 3.16(a). Suppose that a plane wave falls on two narrow, parallel, and 
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closely spaced slits. Then, the slits can serve as secondary sources. Two 
cylindrical waves coming from the slits are always in phase along certain 
directions and 180° out of phase along some others. Thus, if a screen is 
placed far away from the slits, alternating bright and dark interference 
fringes will be produced on the screen (Figure 3.16(b)). Here we see again 
that there is no physical difference between interference and diffraction. 
When a light beam is confronted with a periodic structure, it is split into 
several beams traveling in specific directions. This behavior is also called 
diffraction, in which the periodic structure plays a role of diffraction grat-
ing. Any periodic structures (e.g., periodically arranged apertures, surface 
relief pattern, and refractive-index variation) can serve as an effective dif-
fraction grating, once the grating period is similar to the wavelength of an 
electromagnetic wave in question.

FIGURE 3.15  (a) A classic example of diffraction: the spreading out of a wave passing 
through a small aperture. (b) Secondary waves only from some points in front of the 
aperture can pass through it and those from the others are blocked.
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FIGURE 3.16  (a) Cylindrical wave emerging from a long, narrow slit. (b) Interference 
between two cylindrical waves emerging from the double slits.

As stated earlier, all materials have a refractive index n = 1 at X-ray 
wavelengths. Thus, it is impossible to generate a refractive-index grating 
inside or on the surface of a material for X-rays. Since crystalline materi-
als comprise periodically arranged atoms, they already have embedded-
diffraction gratings for X-rays. The origin of X-ray diffraction is scattering 
by these atoms. The atoms in a crystal scatter incident X-rays in all direc-
tions but the amplitude of the scattered wave depends on the scattering 
direction (Figure 3.17). The wave scattered by a single atom has an ex-
tremely weak electric field compared to that of the incident X-ray beam. 
However, when the scattered waves from a number of atoms are in phase 
and constructively interfere, the scattering intensity becomes considerably 
high.

FIGURE 3.17  Scattering of X-rays by an atom.
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As a simple bridge between the interference and diffraction, consider a 
linear array of N scattering centers illustrated in Figure 3.18. We are con-
cerned with the scattering along the x-direction and measure its intensity 
at some distant point P. If the spatial extent of the array is comparatively 
small, the amplitudes of the waves arriving at P will be essentially equal. 
Then, the total electric field at P may be written in its complex exponential 
form as follows.

2 2 2 2( ) ( ) ( 2 ) ( ( 1) )x x x xi i i i N
o o o oE E e E e E e E e

π π π πδ δ δl l l l− − − −= + +…+ 	 (3.8)

where E0 is the amplitude of the scattered wave and d is the phase differ-
ence between the waves scattered from two adjacent centers. Eq. (3.8) can 
be rewritten as

	 ( ) ( )2 12(1 )
xi i Ni i

oE E e e e e
π δδ δl − −− −= + + +…+ 	 (3.9)

The parenthesized geometric series has the value of (1 ) / (1 )iN ie eδ δ− −− − , 
which can be rearranged into the form /2 /2 /2 /2 /2 /2[ ( )] [ ( )]iN iN iN i i ie e e e e eδ δ δ δ δ δ− − − −− −  
or equivalently
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sin / 2
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e δ δ
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The total field then becomes
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FIGURE 3.18  Scattering of X-rays by a linear array of N scattering centers.

As shown in Figure 3.19(a), the intensity depends strongly on the 
phase difference d. It rises to maxima 2 2

oI N E=  at 2mδ π= , where m is an 
integer. The intensity is essentially zero except for the limited range of 

2 2 / 2 2 /m N m Nπ π δ π π− < < + . As the number of scattering centers, N, in-
creases, the peaks become stronger and narrower. This means that with 
more scattering centers, the peak intensity increases but the condition for 
constructive interference gets stricter. Figure 3.19(b) compares the peak 
shapes for N = 10 and N = 20. For very large N, a small deviation from 

2mδ π=  will make the intensity drop to zero.
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Problems

FIGURE 3.19  (a) Dependence of intensity on the phase difference d. (b) 
Peak shapes for two different numbers of scattering centers.

3.1. � It has been shown in Example 3.2 that the superposition of two 
nonparallel plane waves generates a one-dimensional interfer-
ence pattern and the pattern period can be derived by consider-
ing their wave vectors. By the same token, we can generate a 
two-dimensional pattern using three plane waves. In Figure 3.20, 
three plane-wave beams at l = 500 nm are incident onto a photo-
sensitive thin film with the following wave vectors.

1

2

3

2 1 3 2( )
2 6 6

2 1 3 2( )
2 6 6

2 2 3 2( )
6 6

π
l
π
l
π
l

= + −

= − + −

= − −

K i j k

K i j k

K j k

where i, j, and k are unit vectors along the x, y, and z directions. 
Then, what are the shape and period of a two-dimensional pattern 
generated in the film? Refer to the Refs. [31–35] for more details on 
the multi-beam interference and applications.
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FIGURE 3.20  Three-beam interference.

3.2. � The following graph shows a ripple structure observed in the trans-
mission spectrum of a water layer formed on slide glass. The bot-
toms in the ripple were found at l = 497 nm, 520 nm, 545 nm, 574 
nm, 606 nm, 641 nm, 681 nm, 722 nm, etc. Water has n = 1.33 and 
glass, n = 1.50.
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FIGURE 3.21  Transmission spectrum of a water layer on slide glass.

(a) � Estimate the thickness of this water layer from the given data.
(b) � In a thin film/substrate structure, the height of the ripple (i.e., the 

transmittance difference between the top and bottom of the ripple) 
increases as the refractive index difference between the film and the 
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substrate increases. Explain how the period of the ripple will change 
if the film thickness increases.

3.3. � Three different electromagnetic waves of the same frequency and 
polarization direction are spatially overlapped, interfering with one 
another. Each of the waves is represented as follows at a certain 
instant.

1 o 2 o 3 o
2 2 2cos , 2 cos , cos

6 4
x x xE E E E E Eπ π π π π

l l l
     = = − = −          

Express the combined wave as a single cosine function and find its in-
tensity in terms of oE .
3.4. � Diffraction, caused by the wave nature of light, can be explained 

with the oscillator model. Suppose that the distance between oscil-
lators is similar to the wavelength. Then, which one between vis-
ible and infrared lights will be spread more widely when they are 
passing through a small aperture of fixed size?

3.5. � According to Fermat’s principle, a light beam traversing an inter-
face does not take a straight line but travels along a path that takes 
the least time. Derive the law of refraction of 1 1 2 2sin sinn nq q=  by 
applying Fermat’s principle to the diagram of Figure 3.22. To solve 
the problem, it is necessary to express the transit time from A to 
B with respect to the variable x and find its minimum value. The 
smallest transit time will then coincide with the actual path.

θ1

θ2

n1 

n2 

A

B

x

b

h

a

a - x

FIGURE 3.22  Fermat’s principle applied to refraction.
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4.1  INTRODUCTION

In the previous chapter, we mentioned that X-ray diffraction is essentially 
a scattering phenomenon in which a large number of atoms are involved. 
Since the atoms in a crystal are periodically arranged, the X-rays scattered 
by these atoms can be in phase and constructively interfere in a few direc-
tions. If the atoms were not arranged in a regular, periodic fashion, the rays 
scattered by them would have a random phase relationship to one another. 
Under this condition, neither constructive nor destructive interference 
takes place, and the scattering intensity in a particular direction will be 
simply the sum of the intensities of all the rays scattered in that direction. 
The intensity of electromagnetic radiation is proportional to the square of 
its amplitude. If there are N scattered rays, each of amplitude Eo, the total 
amplitude is NEo when they are all in phase. Then, the intensity of the scat-
tered beam becomes N2Eo

2. On the contrary, when the scattered rays have 
a random phase relationship, the scattering intensity is NEo

2, which is N 
times smaller than the former case. Since solid materials contain 1022–1023 
atoms/cm3, N is a very large number in X-ray diffraction.

The diffraction of light had been well understood before X-rays were 
discovered. It had already been known that a visible light is diffracted 
whenever it encounters regularly spaced obstacles, apertures, or engraved 
structures having a period of the same order of magnitude as the wave-
length. The German physicist Max von Laue was the first to use X-rays to 
study the arrangement of atoms in crystals. The precise nature of X-radi-
ation, discovered by W. C. Röntgen in 1895, had not yet been determined 
when von Laue initiated his study of X-rays in 1912. He guessed that if 
crystals were composed of regularly arranged atoms, and if X-rays were 
electromagnetic waves of wavelength similar to the distance between the 
atoms, it would be possible to diffract X-rays by crystals. Experiments 
were carried out to prove this hypothesis and his co-workers succeeded in 
recording diffraction spots from a copper sulfate crystal on a photographic 
plate. These experiments simultaneously confirmed the wave nature of X-
rays and the periodic arrangement of atoms within a crystal and also made 
it possible to measure the wavelength of X-rays with great accuracy. The 
significance of these experiments was immediately recognized by the sci-
entific community. The pioneering work by Laue and his colleagues gave 
scientists a new tool for investigating the atomic structure of matter and 
established the so-called “X-ray crystallography” area. It was X-ray dif-
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fraction study that enabled the molecular structures of DNA and RNA to 
be revealed in 1950s.

In the same year of 1912, the British physicist William L. Bragg and 
his father William H. Bragg expressed the condition for X-ray diffraction 
in a much simpler mathematical form than that explained by von Laue. 
They found that some crystals, at certain wavelengths and incident angles, 
produced intense peaks of reflected X-rays known as Bragg peaks. W. L. 
Bragg explained this result by modeling the crystal as a set of discrete par-
allel planes separated by a constant parameter. It was proposed that the in-
cident X-rays would produce a Bragg peak if their reflections off the vari-
ous planes interfered constructively. The interference is constructive when 
the phase difference is a multiple of 2p; this condition can be expressed 
by Bragg’s law. In the following year, W. L. Bragg revealed the structures 
of NaCl, KCl, KBr, and KI, which all have the NaCl structure. This was 
the first to completely analyze the structure of crystalline material. W. L. 
Bragg and W. H. Bragg were awarded the Nobel Prize in physics in 1915 
for their pioneering work in determining crystal structures. They are the 
only father-son team to jointly win the prize. W. L. Bragg was then 25 
years old, the youngest Nobel laureate. Although it is very simple, Bragg’s 
law confirmed the existence of real particles at the atomic scale, as well as 
providing a powerful tool for examining crystals. The early work by Bragg 
had an immeasurable impact on the development of X-ray diffraction and 
modern diffractive optics. It is not surprising that Eq. (3.6), which dictates 
the period of two-beam interference pattern, is the same as the Bragg law 
for X-ray diffraction.

FIGURE 4.1  Rays 1 and 2 are always in phase when the incident and scattering angles 
are identical with respect to the atomic planes.
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4.2  BRAGG LAW

Let’s suppose that an X-ray beam of plane wave is incident into a crystal 
with atoms arranged on a set of parallel planes and the incident beam 
makes an angle of θ with the crystal plane, as shown in Figure 4.1. While 
the X-ray beam is scattered in all directions, we here consider the case 
where scattering occurs at an angle of θ with respect to the plane. The 
ray 1 scattered by the atom located at point A always has the same phase 
as the ray 2 scattered by the atom at B because the length AD is equal to 
the length CB. In fact, there is no path length difference between the rays 
scattered by the atoms of a plane when the angle of scattering equals the 
angle of incidence. The scattered rays 1 and 2 of Figure 4.1 are spatially 
apart from each other. The diffraction intensity is determined by the phase 
relationship between the spatially overlapped rays. In Figure 4.2, the ray 
1S, scattered from the first plane, spatially overlaps the ray 3S scattered 
from the second plane. The diffraction intensity is ultimately decided by 
the phase relationship between these rays. The rays 3S and 2S, both scat-
tered from the second plane, have no path length difference. Therefore, the 
phase difference between the rays 1S and 3S is identical to that between 
the rays 1S and 2S. It is easier to calculate the phase difference with the 
rays 1S and 2S, rather than the rays 1S and 3S.

FIGURE 4.2  The path length difference between rays 1S and 3S is identical to that 
between rays 1S and 2S.
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Figure 4.3(a) depicts how the condition for diffraction is derived. The dif-
ference in path length between the rays 1S and 2S is CA + AD = 2d sinθ, 
where d is the interplanar spacing. When this path length difference is 
equal to an integer multiple of the wavelength, the two rays are completely 
in phase and an arbitrary plane XY normal to the scattering direction be-
comes a planar wavefront. The condition for diffraction is then

	 2 sinn dl q= 	 (4.1)

where n is an integer. This relation was first derived by W. L. Bragg and 
is known as the Bragg law or equation. It states that the incident and dif-
fracted beams are coplanar with the normal to the lattice planes and equal-
ly inclined at 90°–θ to it and that the angle θ (called the Bragg angle) is 
related to the X-ray wavelength and to the interplanar spacing. A number 
of planes are involved in scattering because the X-ray beam size is much 
larger than the interatomic distance. An alternative way of looking at the 
Bragg equation is that the diffracted beam can be regarded as a reflection 
of the incident beam by a set of lattice planes. Bragg considered first how 
the X-rays scattered by all the lattice points (or atoms) in a single plane 
might be in phase. The condition for optical reflection is that the angle of 
incidence is equal to the angle of reflection (see Figure 3.10(a)). This en-
sures that the waves scattered by all points in that plane are in phase with 
one another, as illustrated in Figure 4.2. In general, the waves reflected 
from successive lattice planes will not be in phase. Figure 4.3(b) shows 
reflection from two adjacent planes. The waves reflected from the upper 
plane have a shorter path length than those reflected from the lower plane. 
When the path length difference is equal to a whole number of wave-
lengths, the waves reflected from successive planes are in phase and re-
inforce one another. In other words, the X-rays scattered by all the atoms 
in all the planes constructively interfere to form a diffracted beam in the 
given direction. The waves scattered in other directions are out of phase 
and cancel out with one another. In both of the optical reflection and Bragg 
reflection (i.e., X-ray diffraction), the angle of incidence is equal to the 
angle of reflection. However, two phenomena are fundamentally different. 
The optical reflection occurs in a very thin surface layer. On the contrary, 
the diffracted beam from a crystal is built up of waves scattered by all 
the atoms of the crystal irradiated by the incident X-ray beam. While the 
reflection of visible light can take place at any angles of incidence, the 
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diffraction of monochromatic X-rays is possible only at specific angles of 
incidence that satisfy the Bragg law. 
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FIGURE 4.3  (a) Diffraction of X-rays by a crystal. (b) Reflection from successive lattice 
planes.

The integer n of Eq. (4.1), which is called the order of reflection, can 
take on any value unless sinθ exceeds unity. Therefore, for fixed λ and d, 
there may be several angles of incidence θ1, θ2…, which correspond to n = 
1, 2, … For the first-order reflection (n = 1), the scattered rays 1S and 2S of 
Figure 4.3(a) would differ in path length by λ. For n = 2, their path length 
difference would be twice, i.e., 2λ. Consider the first-order and second-
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order reflections from (001) planes, as shown in Figure 4.4. If the angles 
of incidence for the two reflections are θ1 and θ2, respectively, we obtain 
the following relations.

001 12 sindl q=

	        001 22 2 sindl q= 	 (4.2)

The second-order reflection of Eq. (4.2) can be alternatively expressed 
as ( )001 2 002 22 / 2 sin 2 sind dl q q= = . This means that the second-order reflec-
tion from the (001) planes is equivalent to the first-order reflection from 
(002) planes. In Figure 4.4, the dotted plane midway between the (001) 
planes corresponds to part of the (002) set of planes. An nth-order reflec-
tion from (hkl) planes may be regarded as a first-order reflection from the 
(nh nk nl) planes with 1/nth the spacing of the former. It is conventional 
to represent the reflection from the (hkl) planes by hkl without parenthe-
ses. Although 002, 003, and 004 reflections are equivalent to the second-, 
third-, and fourth-order reflections from the (001) planes, it is more gen-
eral to view them as the first-order reflections from the (002), (003), and 
(004) planes. This allows us to write the Bragg law of Eq. (4.1) simply as

	 2 sindl q= 	 (4.3)

FIGURE 4.4  First-order and second-order reflections from (001) planes. The second-
order 001 reflection is equivalent to the first-order 002 reflection.
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This new form of Bragg law is more dominantly used in X-ray diffrac-
tion. The Bragg law can be experimentally applied in two different ways. 
By using monochromatic X-rays of known wavelength λ and measuring q, 
we can determine the spacing d of various planes. Alternatively, a crystal 
with planes of known spacing d can be used to determine the radiation 
wavelength λ. Most applications of X-ray diffraction are associated with 
the measurement of the diffraction angle (2θ rather than θ is experimen-
tally measured). The essential components of typical X-ray diffractometer 
are shown in Figure 4.5. A collimated beam from the X-ray source is in-
cident onto a sample stationed on the sample holder, which may be set at 
any desired angle to the incident beam. A detector measures the intensity 
of the diffracted beam; it can be rotated around the sample and set at any 
desired angular position. The sample holder can also be rotated around its 
center independently of or in conjunction with the detector. The diffrac-
tometer measures the angle 2θ between the incident and detected beams. 
In the symmetric scan (often called θ-2θ scan or 2θ-θ scan), the angle θ 
between the incident beam and the sample holder is maintained at half the 
measured diffraction angle 2θ, as depicted in Figure 4.5.

θ

θ

2θ

X-ray source Sample holder

Detector

FIGURE 4.5  Essential components of typical diffractometer.
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EXAMPLE 4.1

A plate sample was cut from a single crystal of simple cubic structure (a 
= 3 Å) so that its surface is parallel to (001) planes. When this sample 
is θ-2θ scanned in the range of 2θ = 20–120° using a Cu Kα line (λ = 
1.54 Å) as the X-ray source, what will the obtained diffraction pattern 
look like?
Answer: The surface is parallel to the (001), (002), (003), etc., planes 
whose interplanar distances are d001 = 3 Å, d002 = 1.5 Å, d003 = 1 Å, etc. 
Since sinθ < 1, the basic condition for diffraction at any angle is d> λ/2. 
However, d004 = 0.75 Å < λ/2. Thus, 004 and higher-order reflections are 
impossible. We will have three diffraction peaks denoted as 001, 002, 
and 003 reflections (Figure 4.6). Their positions (i.e., diffraction angles) 
are easily obtainable from Eq. (4.3); 2θ001 = 29.74°, 2θ002 = 61.76°, 2θ003 
= 101.06°.
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FIGURE 4.6  Expected diffraction pattern.
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EXAMPLE 4.2

In the Bragg law of 2 sindl q=  for X-ray diffraction, θ refers to the 
incident and scattering angles with respect to the reflecting planes. 
Thus, diffraction can occur only at the same angle as the incident an-
gle, as depicted in Figure 4.7(a) where the path length CA + AD equals 
the wavelength λ. Consider a configuration shown in Figure 4.7(b). 
Even when the scattering angle θ2 is different from the incident angle 
θ1, the path length difference between the rays 1S’ and 2S’, i.e., the 
length C’A + AD’, may be equal to one wavelength. In this case, how-
ever, diffraction does not take place in the θ2 direction. Explain why?

Plane wave

θ θ

d d
C C’

(a) 1S

D

A

D’

B

2S
2S’

θ

(b)

θ1 θ2

A

B

1S’

FIGURE 4.7  (a) Symmetric and (b) nonsymmetric scatterings.

Answer: Interference between rays occurs when they are spatially over-
lapped. In Figure 4.8, the diffraction intensity is determined by the phase 
relationship between the rays 1S’ and 3S’. When the incident and scat-
tering angles are different, the path length FAD’ is unequal to the length 
EB and thus the rays 2S’ and 3S’ are not in phase. Only when the incident 
and scattering angles are identical, the ray 2S’, instead of the ray 3S’, can 
be used to judge whether diffraction will occur or not. Even though the 
length C’AD’ in Figure 4.7(b) might be one wavelength, the path length 
difference between the rays 1S’ and 3S’ is different from this value and 
diffraction does not take place.

d

E

D’
F

2S’

θ1 θ2

A

B

1S’

3S’

FIGURE 4.8  Nonsymmetric scattering; rays 2S’ and 3S’ are not in phase.
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4.3  LAUE EQUATIONS

Although the Bragg law well describes the necessary condition for dif-
fraction in a very simple manner, we take a brief look at Laue equations as 
well. Consider a row of scattering centers separated by a repeat distance 
“a”, as shown in Figure 4.9. Let a monochromatic X-ray beam of wave-
length λ is incident on the row at an angle αο and scattered at an angle α. 
The difference in path length between rays scattered at point A and D is AB 
– CD. If the incident rays are originally in phase, this path length differ-
ence should be some integral multiple of the wavelength for constructive 
interference to occur. This leads to the following relation:

	 ( ) ( )cos cos 'oAB CD a ha a l− = − = 	 (4.4)

FIGURE 4.9  A row of scattering centers separated by a repeat distance a. The incident 
and scattered beams are represented by unit vectors So and S, respectively, and the repeat 
distance, by a unit cell vector a.

where h’ is an integer. This relation can be rewritten in vector forms. 
If we replace the repeat distance “a” with a unit cell vector a and let the 
incident and scattered beams be represented by unit vectors So and S, re-
spectively, then cosa a = a S  and ocos oa a = a S . The above Eq. (4.4) is thus 
rewritten as

	 ( )o 'h l− =a S S 	 (4.5)

For a three-dimensional crystal with the unit cell vectors a, b, and c, we 
have two more Laue equations
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where k’ and l’ are also integers. The three Laue equations of Eq. (4.5) 
and (4.6) should be simultaneously satisfied for diffraction to occur. This 
condition can be met only when

	 * * *o ' ' 'h k l
l
−

= + +
S S a b c 	 (4.7)

The dot products of Eq. (4.7) with a, b, and c will lead to Eq. (4.5) and 
(4.6). The three Laue equations give the necessary conditions for an inci-
dent beam to be diffracted by a crystal.

The Bragg law is given in Eq. (4.3) in a simple scalar form. The Bragg 
equation for (hkl) planes can be reformatted as

	
2sin 1B

hkld
q

l
= 	 (4.8)

Figure 4.10 shows a graphical configuration for the Bragg law in which 
the incident and diffracted beams are represented by the vector S/λ and 
So/λ, respectively. Here, So and S are unit vectors along the given direc-
tions. Then, the magnitude of (S – So)/λ is equal to the left-hand side of 
Eq. (4.8) and the magnitude of Hhkl is 1/dhkl. (S – So)/λ and Hhkl have the 
same directions because both are perpendicular to the reflecting planes. 
The Bragg law in vector form is then given by

	 o
hkll

−
=

S S H 	 (4.9)

It can be seen that Eq. (4.7) is simply the Bragg law for the plane 
(h’k’l’). The integers h’k’l’ of the Laue equations are the Miller indices of 
the corresponding reflection. The Bragg equation provides a simple and 
convenient statement of the geometry of the diffraction of X-rays by crys-
tals. It is the fundamental equation of X-ray crystallography. Its applica-
tion in a variety of situations will be explored in the later sections of this 
chapter and in the following chapters.
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FIGURE 4.10  Graphical representation of the Bragg law.

It is worthy to note the analogy between Eq. (4.9) and the vector re-
lation 1 2D = −K K K  for two-beam interference, which was described in 
Example 3.2. Two plane-wave beams represented by the wave vectors K1 
and K2 generate a one-dimensional interference pattern characterized by 
the vector DK. The magnitudes of these vectors are 1 2K K 2 /π l= = , 

K 2 / dπD = , where “d” is the period of the interference fringes. The two 
relations of 1 2D = −K K K  and Eq. (4.9) are basically the same. The com-
mon factor “2π” may be or may not be included in the expressions. It is 
usually included in optics and solid state physics, but not in X-ray crys-
tallography. Just as Hhkl is normal to the reflecting planes, DK is also per-
pendicular to the generated interference fringes. The difference between 
two-beam interference and X-ray diffraction is that the former concerns 
the formation of a new grating with two incident beams, while the lat-
ter is to generate a secondary beam through the interaction between an 
X-ray beam and an already existing grating (a set of atomic planes). The 
equations describing two phenomena are identical. Two X-ray beams can 
generate a one-dimensional interference pattern. Of course, a visible light 
can be diffracted from a periodic structure once the Bragg law is satisfied.
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4.4  DIFFRACTION CONDITION IN RECIPROCAL SPACE

The reciprocal lattice can provide a simple graphical representation of the 
Bragg law, as illustrated in Figure 4.11. The incident beam vector So/λ is 
first drawn to the origin of the reciprocal lattice. A sphere of radius 1/λ is 
then drawn centered on the initial point of the incident beam vector. This 
sphere is known as the sphere of reflection or Ewald sphere. The condi-
tion for diffraction is satisfied when any reciprocal lattice point hkl falls 
on the surface of this sphere. The direction of the diffracted beam is given 
by the vector S/λ drawn from the origin of the sphere to the point hkl. This 
construction is known as the Ewald construction. It is evident that the rela-
tion of the three vectors So/λ, S/λ, and Hhkl is that of the Bragg law given 
by Eq. (4.9). Although Figure 4.11 illustrates this relation schematically 
in two dimensions, the Ewald construction is valid in three dimensions. 
The geometric meaning of Figure 4.11 is that if the origin of the recipro-
cal lattice is placed at the tip of So/λ, then diffraction will occur only for 
the reciprocal lattice points that lie on the surface of the Ewald sphere. If 
the incident beam is a white beam, with a wavelength range λmin ≤ λ ≤ λmax, 
there will be a nest of Ewald spheres of radii 1/λmax ≤ 1/λ ≤ 1/λmin.

Hhkl

2θB

Incident, So/λ  

Diffracted, S/λ

Ewald sphere 
with radius 1/λ

Reciprocal lattice

000

hkl

FIGURE 4.11  Diffraction condition in reciprocal space.
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The diffraction condition in reciprocal space may be better understood 
with some examples. When the reflecting (hkl) plane and the X-ray wave-
length are fixed (Figure 4.12), the beam should be incident at a specific an-
gle in order for diffraction to occur. For other angles of incidence, the Hhkl 
vector cannot terminate on the surface of the Ewald sphere. Suppose that 
white X-rays are incident into the fixed (hkl) planes at a specific angle. In 
this case, the radius of the Ewald sphere is not fixed but variant. Thus, there 
may be a sphere touching the tip of the H vector. Then, the wavelength 
whose reciprocal is the radius of this sphere is diffracted (Figure 4.13). A 
real crystal has a number of planes of different orientation and spacing. 
There are also various H vectors corresponding to these planes. When an 
X-ray beam of fixed wavelength is incident onto the crystal at a specific an-
gle, diffraction occurs by the H vector that terminates on the surface of the 
Ewald sphere, as shown in Figure 4.14. It means that only a specific plane 
satisfies the Bragg condition in this case. The Bragg law is valid for any 
incident beam that makes an angle qB with the reflecting plane. The beam 
can be incident in any directions once this Bragg angle is maintained. Thus, 
the incident and diffracted beams constitute a cone centered about the H 
vector (Figure 4.15). When the incident beam lies on a cone of semi-angle 
90 – θB about the normal to the (hkl) plane, the diffracted beam also lies on 
the same cone in order to be coplanar with the normal to the plane and the 
incident beam. In the Ewald construction, the origin of the reciprocal lattice 
(i.e., the origin of the H vector) is always placed at the tip of the incident 
beam vector. This makes incident and diffracted cones separately generated 
in the Ewald sphere. Whenever the X-ray beam is incident along the side of 
the incident cone, it can be diffracted along the side of the diffracted cone. 
Of course, diffraction occurs in such a direction that the incident beam, dif-
fracted beam, and H vector are coplanar.

dhkl

(hkl)

Hhkl

HhklHhkl

Bragg-matched

Incident

Diffracted

Incident

Non Bragg-matched

FIGURE 4.12  Diffraction condition when the reflecting plane and the X-ray wavelength 
are both fixed. The X-ray beam should be incident at a specific angle. For other angles 
of incidence, the corresponding Hhkl vector cannot terminate on the surface of the Ewald 
sphere.
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dhkl

(hkl)

Hhkl

Hhkl

Diffracted

FIGURE 4.13  Diffraction condition when white X-rays are incident into the fixed 
reflecting plane at a specific angle.

Diffracted

Incident

Incident H vectors

Crystal planes with different orientations and spacings

FIGURE 4.14  Diffraction condition when an X-ray beam of fixed wavelength is incident 
onto the crystal at a specific angle. Among many H vectors corresponding to different sets 
of crystal planes, diffraction occurs by the H vector that terminates on the surface of the 
Ewald sphere.
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Diffracted cone

Incident

Incident cone
θB θB

Hhkl

(hkl)

Hhkl
Diffracted

FIGURE 4.15  Incident and diffracted cones.

EXAMPLE 4.3

White X-rays of λ = 1.5–1.6 Å are incident on (001)-oriented sample 
A at a fixed angle of 35° and the beam diffracted from the sample A is 
made incident onto (111)-oriented sample B, as shown in Figure 4.16. 
The angle θ can be varied by rotating the sample B and the detector. If θ 
changes from 20° to 70°, how many diffraction peaks would be observed? 
The sample A has a simple cubic lattice (a = 1.35 Å) and B is simple te-
tragonal with a = 3.0 Å and c = 3.6 Å.

Sample A

White X-rays 
(λ = 1.5 - 1.6 A) θ

Sample B

θ

Detector

ο

35o

FIGURE 4.16  Diffraction geometry.

Answer:
Because the plane orientation and the incident angle were fixed, the sample 
A diffracts only a specific wavelength. We know that the wavelength of the 
diffracted beam is 1.548 Å from the equation of l = 2 × 1.35Å × sin35°. 
Since the sample B is (111)-oriented, diffraction can occur from (111), 
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4.5  OFF-BRAGG ANGLE DIFFRACTION

In Section 3.3, we have considered a linear array of N scattering centers 
and investigated the dependence of diffraction intensity on the phase dif-
ference d between scattered waves. The intensity was essentially zero ex-
cept for the limited range of 2 2 / 2 2 /N Nπ π δ π π− < < + . This means that the 
condition for constructive interference becomes stricter with more scatter-
ing centers. Conversely, it states that the diffraction condition is mitigated 
as the number of involved scattering centers decreases. X-ray diffraction 
is a consequence of the constructive interference between waves scattered 
from successive lattice planes. Then, a question arises; what happens if 
the number of involved planes is not so large? The answer is that the dif-
fraction signal can also be found at off-Bragg angles. For a large crystal, 
only a slight deviation from the Bragg condition will make the diffraction 
intensity essentially zero because the waves scattered from a large number 
of planes are completely out of phase with one another. For a small crystal, 
however, some signal can be detected at angles near the Bragg angle due 
to the incomplete destructive interference. As the resulting peak broaden-
ing can provide a method for estimating the size of small crystals, it is 
worthwhile to examine the scattering of X-rays incident at angles deviat-
ing from the Bragg angle.

(222), (333), etc., planes. The spacing of these planes can be calculated 
using Eq. (2.23); d111 = 1.828 Å, d222 = 0.914 Å, and d333 = 0.609 Å. No 
diffraction peak will be observed from the (333) planes because d333 
does not meet the fundamental requirement of sinθ = λ/2d < 1. Thus, 
we have 001 and 002 reflections only, whose angular positions are given 
below.

1.548 Å = 2 d111 × sinθ, θ = 25.02°
1.548 Å = 2 d222 × sinθ, θ = 57.78°
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FIGURE 4.17  Diffraction from a thin crystal with a total of N planes.

Suppose that a crystal has a thickness t in the direction perpendicu-
lar to a particular set of (hkl) planes and contains a total of N planes of 
spacing hkld  (Figure 4.17). When the X-rays of wavelength l is incident 
onto the planes at an angle q, ray 1 scattered from the first plane has a 
path length difference of 2 sinhklL d q=  with ray 2 scattered from the sec-
ond plane. Any rays scattered from two adjacent planes has the same path 
length difference. The difference in phase between the two rays is then 

2 / 4 sin /hklL dδ π l π q l= = . If the scattered rays are assumed to have the 
same amplitude oE , the intensity I at some remote position P is then given 
by

	
2

2
2

sin ( / 2)
sin ( / 2)o

NI E δ
δ

= 	 (4.10)

Equation(4.10) was already derived in section 3.3.
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FIGURE 4.18  (a) Diffraction intensity vs. phase difference. (b) Diffraction intensity vs. 
scattering angle.

The dependence of intensity on the phase difference is plotted in Fig-
ure 4.18(a). When the incident angle is completely Bragg-matched (i.e., q  
= qB), the path length difference L is equal to one wavelength and then, we 
have d = 2p and 2 2

oI N E= . As the phase difference d deviates from 2p, the 
intensity I decreases and drops to zero at d = 2p + 2p/N. The diffraction 
intensity will also be lowered with an incident angle deviating from the 
Bragg angle, as shown in Figure 4.18(b). The angles q1 and q2  at which 
the intensity becomes zero can be derived from the following relations.

12 2 / 4 sin /hklN dπ π π q l− =

	 22 2 / 4 sin /hklN dπ π π q l+ = 	 (4.11)

Side lobes outside the main peak are seldom observed in X-ray diffrac-
tion. From Eq. (4.11), we obtain

	 2 1 2 1 2 1
2 1 Bsin sin 2cos( )sin( ) 2cos sin{ }

2 2 2hklNd
q q q q q qlq q q+ − −− = = ≈ 	 (4.12)

The approximation 2 1
B

( )
2

q q q+ ≈  is valid because q2 and q1 are almost 
equally away from qB. The angular separation, q2 –q1, can be calculated 
as follows.

2 1 2 1

B

sin
2 2cos 2hklNd

q q q ql
q

− −  = ≈ 
 
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	 2 1
B Bcos coshklNd t

l lq q
q q

− ≈ ≈ 	 (4.13)

where (q2– q1)/2 is a small value compared to the absolute values of q2 and 
q1. Thus, sin{(q2– q1)/2} can be approximated to (q2– q1)/2. The approxima-
tion ( )1 hkl hklt N d Nd= − ≈  is also acceptable unless the crystal has just a few 
reflecting planes. As stated earlier, 2q value rather than q is experimentally 
measured in X-ray diffraction. The broadening of a peak is customarily 
evaluated by measuring its intensity at half the maximum value (Figure 
4.19).

FIGURE 4.19  Definition of the Full Width at Half Maximum.

The measured peak width is referred to as the Full Width at Half Maxi-
mum (FWHM). As FWHM is approximately half the separation between 
two angles 2q2 and 2q1, it is expressed by Eq. (4.13). A more accurate 
analysis on this problem gives

	 2 1
B

0.9
cos

FWHM
t

lq q
q

≈ − = 	 (4.14)

This is known as the Scherrer equation or formula. It states that the 
peak width is inversely proportional to the crystal thickness measured per-
pendicular to the reflecting planes. This means that a smaller crystal re-
sults in a more broadened peak. Consider a reflection from (001) planes of 
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d001 = 3 Å at l = 1.54 Å. A crystal with t = 1 µm will have an FWHM value 
of ~ 0.01°, while it is increased to ~ 0.2° for a 50 nm-thick crystal (Figure 
4.20). When the phase difference d is exactly 2p, complete constructive in-
terference will result regardless of the magnitude of N. However, the situ-
ation for destructive interference is different. For a big crystal, waves scat-
tered from a large number of reflecting planes annul one another even for 
a phase difference slightly different than 2p. On the contrary, a tiny crystal 
contains a much smaller number of planes. Thus, when the phase differ-
ence slightly deviates from 2p, the scattered waves do not completely an-
nul one another. Assume d = 2p + 2p/100 as a specific example. According 
to Figure 4.18(a), a crystal with N = 100 has no diffraction at this phase 
difference but a smaller crystal with N = 50 will give a non-zero intensity.

FIGURE 4.20  Peak widths estimated for two different crystal thicknesses.

The Scherrer equation is a formula that relates the size of sub-microm-
eter particles or crystallites in a solid to the broadening of a diffraction 
peak. It is often used to determine the size of crystalline particles in the 
form of powder. It is to be noted that the Scherrer formula is applicable to 
particles or grains smaller than about 0.2 µm and provides a lower bound 
on the particle size. The Scherrer equation is limited to nano-scale crys-
tallites. It is not applicable to grains larger than about 0.2 µm, which pre-
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cludes those observed in most metallographic microstructures. There are 
many other factors contributing to the broadening of a diffraction peak. 
In actual experiments, the incident beam is not perfectly parallel but con-
tains convergent and divergent rays as well as parallel rays. In addition, 
the characteristic line (e.g., Cu Kα line) used as the monochromatic X-ray 
source is not perfectly monochromatic either, even after passing through a 
monochromator. Therefore, fairly large crystals of perfect crystalline qual-
ity will exhibit a non-zero peak width. Besides these instrumental effects, 
there are also material-related sources of the peak broadening, which in-
clude inhomogeneous strain, lattice imperfections, dislocations, and so on. 
If the other contributions to the peak width are non-zero, the actual crystal-
lite size can be larger than that predicted by the Scherrer formula. As the 
particle size decreases, the size effect becomes more dominant than the 
other factors and the Scherrer formula would apply. For each hkl reflec-
tion, the value of t is interpreted as an average crystal dimension perpen-
dicular to the reflecting planes.

FIGURE 4.21  Relationship between the crystal dimensions in real space and the shapes 
of reciprocal lattice point.

The peak broadening caused by small crystal dimensions can also 
be related to the diffraction condition in reciprocal space. This recipro-
cal approach is very useful for explaining thin film X-ray diffraction and 
transmission electron microscopy. If a feature’s dimension along a certain 
direction in real apace is small, the feature size along that direction in re-
ciprocal space is large. The converse is also true. A crystal with infinitely 
large dimensions has very tiny reciprocal lattice points that have essen-
tially no volume. When the crystal dimension is reduced along a certain 
direction, it reciprocal lattice points are elongated along that direction. 
Thus, a thin plate crystal will exhibit reciprocal lattice points of rod shape, 
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while a large bulk crystal has small spherical lattice points (Figure 4.21). 
This rod shape is a consequence of the elongation of lattice points along 
the direction of the reduced dimension. As the crystal is more thinned, 
the rod becomes longer. Let’s consider diffraction from a thin film whose 
surface is parallel to (001) planes, as shown in Figure 4.22. The sample is 
thin and the number of reflecting planes is small. It is thus expected that a 
diffraction peak exhibit quite a large width. This thin crystal has a recip-
rocal lattice composed of rods aligned perpendicular to the film surface. 
Then, the length of the H001 vector is not fixed but has a certain range. This 
enables diffraction to take place at other incidence angles near the Bragg 
angle qB, resulting in peak broadening. As the film gets thinner, the peak 
will be more broadened. When it is too thin, however, the overall diffrac-
tion intensity becomes very weak, making it difficult to define the peak 
width. It is important to note that the reciprocal lattice vector H may have 
a certain range in its direction as well as in the magnitude. Consider a thin 
crystal layer of cubic structure. If the layer has a small dimension in the 
z-direction, its reciprocal lattice points are elongated along the z-direction, 
as illustrated in Figure 4.23. Then, the H010 vector (also other vectors such 
as H020 and H100) has divergent directions. In this case, the H001 vector has 
multiple lengths with a nearly fixed direction.

FIGURE 4.22  Peak broadening related to the diffraction condition in reciprocal space.

FIGURE 4.23  Origin of divergent H vector directions.
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4.6  ELECTRON DIFFRACTION

The de Broglie postulate, formulated in 1924, predicts that particles 
should also behave like waves. De Broglie’s hypothesis was confirmed 
some years later with the observation of electron diffraction in two inde-
pendent experiments by G. Thomson, C. Davisson, and L. Germer. The 
wavelength of a traveling electron is given by the following de Broglie 
equation

	
o

h
m

l
u

= 	 (4.15)

where h is Plank’s constant, and mo, the rest mass of the electron. The 
electrons are accelerated in an electric potential V to the desired velocity 

2 / oeV mu = . The electron wavelength is thus given by / 2 oh m eVl = . 
Electron diffraction is usually carried out in a transmission electron mi-
croscope (TEM). Since the electrons in a TEM are accelerated to a veloc-
ity comparable to the speed of light, a relativistic modification should be 
made. The formula for the electron wavelength is then modified to
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= +    

	 (4.16)

where c is the speed of light. The electron wavelength in a 200 kV TEM 
is 0.025 Å (Cu Kα, λ = 1.54 Å). In a TEM analysis, the electrons pass 
through a thin film of the material to be investigated. The thin sample 
has reciprocal lattice points elongated along the direction of an incident 
electron beam (elongated reciprocal lattice points are hereafter referred to 
as reciprocal lattice rods). As mentioned above, the electron wavelength 
used in electron diffraction is much shorter than the wavelength of X-rays. 
This means that the radius of the Ewald sphere is much larger in electron 
diffraction experiments than in X-ray diffraction. As a consequence, the 
quite flat surface of the Ewald sphere can intersect a considerable number 
of reciprocal lattice rods, as shown in Figure 4.24.
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FIGURE 4.24  Principle of electron diffraction.

The radius, 1/λ, of the Ewald sphere is of the order of 40 Å–1 in a typi-
cal TEM and the reciprocal lattice constants of crystals are of the order of 
0.1 Å–1. Diffraction occurs by reciprocal lattice vectors terminating on the 
surface of this sphere of reflection. Since the electrons have a very small 
wavelength, the diffraction angles are also much smaller than those of 
X-ray diffraction. Unlike X-ray diffraction, the electron diffraction arises 
from planes parallel to the incident beam. The resulting diffraction pattern 
is recorded on a fluorescent screen or photographic film (Figure 4.25). If 
the electron beam is incident along a zone axis of the crystal, the incident 
electrons are reflected from the planes that belong to this zone. That is, 
when the incident beam is parallel to the [ ]uvw  direction of the crystal, it 
can be diffracted from the planes whose Miller indices hkl satisfy the rela-
tion of 0hu kv lw+ + =  (refer to Eq. (2.19)). This allows a two-dimensional 
distribution of the reciprocal lattice to be revealed. While the diffracted 
beams have appreciable intensity at small diffraction angles, the intensity 
falls off rapidly as the diffraction angle increases. The reciprocal lattice 
rods are more unlikely to touch the Ewald sphere when they are further 
away from the reciprocal space origin. Thus, the spots in a diffraction pat-
tern are from the planes with low Miller indices. The central spot is caused 
by a part of the beam that is not diffracted. Figure 4.26 shows TEM image 
of a Si film and its electron diffraction pattern. The indexing of diffraction 
spots will be discussed in the following chapter.
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FIGURE 4.25  Formation of electron diffraction spots.

FIGURE 4.26  Transmission electron microscopy image of a Si film and electron 
diffraction pattern.

In TEM, a single crystal grain or particle may be selected for the dif-
fraction experiments. If the sample is tilted with respect to the incident 
electron beam, one can obtain diffraction patterns from several crystal ori-
entations. In this way, we can map the reciprocal lattice of the crystal in 
three dimensions. Although electron diffraction is a very powerful tech-
nique for analyzing the crystalline quality and orientation of a material, 
it is subject to several limitations. First of all, the sample to be studied 
should be electron transparent and be made very thin. The required thick-
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Problems

ness is usually less than 100 nm. Therefore, a careful and time-consuming 
sample preparation procedure is necessary. Furthermore, many samples 
are vulnerable to radiation damage induced by the incident electrons. The 
study of magnetic materials by electron diffraction is very complicated 
because electrons in magnetic fields are deflected by the Lorentz force. 
Although this effect may be utilized to study the magnetic domains of ma-
terials by Lorenz force microscopy, it makes structure determination vir-
tually impossible. While both X-ray and neutron diffraction experiments 
are highly automated and routinely executed, electron diffraction requires 
a much higher level of user interaction. X-ray and neutron diffractions 
are therefore the preferred methods for determining lattice parameters and 
atomic positions.

4.1. � A material of simple tetragonal Bravais lattice (a = 3 Å, c = 2 Å) is 
prepared in a plate shape as shown in Figure 4.27. An X-ray beam 
of 1.54 Å is incident at an angle of θ with the sample surface that 
is parallel to (001). What is the angle θ in order for diffraction to 
occur from (012) plane? If the wavelength of the incident X-ray 
beam increases by 0.1 Å, then how much should the incident angle 
change to get a diffraction peak from the same (012) plane?

θ

X-rays

(001)

y
x

z

FIGURE 4.27. 



Directions of X-ray Diffraction	 145

4.2. � Suppose that a white X-ray beam (λ = 0.5–3 Å) is incident on a 
(001)-oriented thin plate sample (simple cubic with a = 2.0 Å) at 
an angle of θ = 30° (Figure 4.28). The incident X-ray beam will 
be partially reflected as a result of diffraction and the rest will be 
transmitted. If we analyze the spectrum (wavelength vs. intensity) 
of the transmitted beam, the reduction in transmitted intensity will 
be observed at specific wavelengths.

θ = 30o

White X-ray beam
Reflected

Transmitted

FIGURE 4.28  Reflection and transmission from a thin plate sample.

(a) � At which wavelengths will the intensity reduction be observed? 
Assume that the incident beam has a uniform intensity distribution 
over the given wavelength range.

(b) � How does the result change when the X-ray beam is normally 
incident, i.e., θ = 90°?

4.3. � State the advantages and limitations of electron diffraction, relative 
to X-ray diffraction.

4.4. � The Bragg law l = 2dsinq predicts only the possible directions of 
diffraction, but it mentions nothing about the diffraction intensity. 
In the cubic system, the interplanar spacing d is dependent on the 
lattice parameter only, not influenced by the crystal structure. Then, 
can the intensity of a diffraction signal predicted by the Bragg law 
be zero? If yes, explain why?
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5.1  INTRODUCTION

In the previous chapter, it has been shown that the diffraction direction is 
determined by the Bragg law: 2 sindl q= . It states that an X-ray beam of 
given wavelength can be diffracted from a given set of reflecting planes 
when it is incident at a specific angle called the Bragg angle. For a set of 
(hkl) planes, the diffraction angle 2 hklq  can be obtained from the relation 
of sin / 2hkl hkldq l= . For any set of planes, the diffraction direction (i.e., the 
diffraction angle) is influenced only by the interplanar spacing. Figure 5.1 
shows an example where the Bragg angle for (001) decreases as a result 
of the increase in 001d . Since the interplanar spacing hkld  is dependent on 
the crystal system to which the crystal belongs and its lattice constants, 
the diffraction direction is solely determined by the shape and size of the 
unit cell. The crystal structures shown in Figure 5.1 are rather simple, with 
atoms only on the corners of the unit cell. Even though the crystal has a 
complex structure with many atoms within the unit cell, the diffraction 
angle for a specific set of (hkl) planes is not influenced by the presence of 
these atoms once the unit cell dimensions remain unaltered.

FIGURE 5.1  Decrease of the Bragg angle for (001) as a result of the 
increase in 001d .
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It is important to note that the Bragg law mentions nothing about the 
intensity of a diffracted beam and suggests only the possible directions 
of diffraction. No diffraction signal may be observed in the direction pre-
dicted by the Bragg law. The zero intensity means that diffraction does not 
take place. The Bragg law is a necessary condition for diffraction to occur, 
but it is not a sufficient condition. Then, what determines the intensity of 
a diffracted beam? This is the subject that we will discuss in this chapter. 
Although there are many variables involved, the diffraction intensity is 
dominantly determined by the arrangement of atoms within the unit cell. 
As a simple example, consider 001 reflection from three different cubic 
crystals with identical lattice constant “a”. Figure 5.2 shows simple cubic 
(top), body-centered cubic (middle), and CsCl (bottom) structures. Since 
all these structures are assumed to have the same lattice constant (i.e., 001d  
value), their Bragg angles for 001 reflection, 001q , are also identical. Thus, 
an X-ray beam should be incident at this angle in all cases. It should be 
noted that this is the minimum requirement for diffraction and that the dif-
fraction intensity depends on the actual crystal structure. When the crystal 
has a simple cubic structure, the path difference between rays 1 and 2 is 
one wavelength and diffraction occurs in the direction shown. In a crys-
tal of body-centered cubic structure, rays 1 and 2 are also in phase with 
each other. In this case, however, there is another plane of atoms midway 
between the (001) planes. Since the path difference between rays 1 and 3 
is one-half wavelength, they are completely out of phase and annul each 
other. Similarly, ray 4 from the next plane (not shown) annuls ray 2. It 
means that the diffraction intensity from the set of (001) planes is zero, 
even though the Bragg condition is satisfied. In other words, there is no 
001 reflection from the body-centered cubic structure. In the CsCl struc-
ture, rays 1 and 3 are also 180° out of phase. However, they are scattered 
from different types of atoms. As will be discussed later in this chapter, 
different atoms have different scattering strengths. Since the rays 1 and 3 
have unequal amplitudes, complete destructive interference will not re-
sult. Thus, we have non-zero diffraction intensity in the given direction. 
Of course, the diffracted beam will be much weaker compared to the 001 
reflection from a simple cubic structure of the same lattice constant.
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FIGURE 5.2  Diffraction from three different cubic structures (top: simple 
cubic structure, middle: body-centered cubic structure, bottom: CsCl 
structure). When these structures have the same lattice constant, their 
Bragg angles for 001 reflection, 001q , are also identical. However, the 
diffraction intensity is significantly affected by the arrangement of atoms 
within the unit cell.

The above example shows that the intensity of a diffraction signal pre-
dicted by the Bragg law is significantly affected by the actual arrangement 
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of atoms within the unit cell. Conversely, it also indicates that we can 
deduce atomic positions within the unit cell by measuring the diffraction 
intensities. The Bragg condition in reciprocal space is graphically illus-
trated in Figure 4.9. It states that in order for a monochromic X-ray beam 
to reflect from a set of (hkl) planes, the difference between the scattered 
and incident beam vectors should be equal to the reciprocal lattice vector 
Hhkl. As we have already seen above, the incident beam may not be dif-
fracted even though the Bragg condition is satisfied. It arises from the fact 
that the corresponding reciprocal lattice point is missing, which is known 
as the systematic absence. In this respect, the reciprocal lattice of a crystal 
should be constructed taking the systematic absence into account. In order 
to discuss all issues relevant to the diffraction intensity, we need to con-
sider scattering by an electron at first.

5.2  SCATTERING BY AN ELECTRON

FIGURE 5.3  Coherent scattering of X-rays by an electron.

The X-ray beam is an electromagnetic wave with electric field varying 
sinusoidally with time at any position and directed perpendicular to the di-
rection of propagation. This electric field exerts forces on the electrons of 
atom, making them oscillate about a mean position. According to the clas-
sical electromagnetic theory, an oscillating charge radiates, i.e., emits an 
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electromagnetic wave. This radiation has the same frequency and wave-
length as the primary beam and is called scattered radiation. Although X-
rays are scattered in all directions, the intensity of the scattered radiation 
depends on the angle of scattering. Let us consider Figure 5.3, in which 
an X-ray beam is incident along the y-axis into an electron located at the 
origin O. We are interested in the scattered intensity at P, which is at a dis-
tance R from the electron at an angle 2θ with the y-axis. The x- and z-axes 
are chosen so that the point P is in the x-y plane. Since the primary beam 
generated from an X-ray tube is unpolarized, its electric field vector oE  is 
in a random direction in the x-z plane and is expressed as

	 ˆ cos(2 )o oE tπn=E u 	 (5.1)

where Eo is the amplitude of a time-varying electric field and û is a unit 
vector along the field. Since oE  is a vector, it can be resolved into two 
components Eox and Eoz. Thus, we obtain the following relations.

	 ( ) ( )o ox oz ox ozcos 2 cos 2E t E tπn πn= + = +E E E i k 	 (5.2)

where Eox and Eoz are the amplitudes of the component fields. The am-
plitude E of the scattered electric field E at distance R from the origin is 
given by

	
2

o sin
4

oeE E
mR

µ a
π

= 	 (5.3)

where mo is the magnetic susceptibility in vacuum (4π × 10–7 m kg C–2) and 
a is the angle between the scattering direction and the oscillation direction 
of the electron. The Eoz component of the primary beam oscillates the elec-
tron along the z-axis, giving rise to a scattered field Ez at P. Its amplitude 
is found from Eq. (5.3) to be
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= 	 (5.4)

Similarly, the amplitude of the scattered component Exy is given by
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= 	 (5.5)
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Here, ( )sin sin 2 cos(2 )2
πa q q= − = . The resultant amplitude at P is then 

given by
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π

 
= + = +   	 (5.6)

The amplitudes of the two components Eox and Eoz will be identical on 
the average because the electric field vector Eo of the primary beam takes 
all orientations in the x–z plane with equal probability; 2 2 2

oz ox o / 2E E E= = . 
This leads to
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where I and Io are the intensities of the scattered and primary beams, 
respectively. Eq. (5.7) represents the intensity of classical scattering 
by a single electron and is known as the Thomson equation. The factor 

2(1 cos 2 ) / 2q+  is called the polarization factor for an unpolarized primary 
beam. If the primary beam is polarized, this factor takes a different form. 
For R of about 1 cm, I/Io is of the order of 10–26. One might think that the 
intensity of scattered X-rays is too small to measure. But we need to recall 
that only 1 mg of matter contains approximately 1020 electrons. The inten-
sity of X-rays scattered from a sample is not too low to measure. It can be 
considerable when the scattered waves constructively interfere in particu-
lar directions. As shown in Eq. (5.7), the scattering intensity is stronger in 
forward or backward directions than at right angles to the incident beam. 
Since the scattering intensity increases in proportion to the intensity of the 
incident beam, its absolute value is not so meaningful. Relative values are 
sufficient for most X-ray diffraction experiments.

In the above-mentioned coherent scattering, there is a definite phase 
relationship between the scattered beam and the incident beam. Since the 
phase change on coherent scattering is identical for all the electrons in a 
material, we don’t need to consider it in deriving the diffraction condition. 
The coherently scattered X-rays have the same wavelength and frequency 
as the incident X-ray beam. The interference between such coherently 
scattered rays is the basis of X-ray diffraction. The scattering of X-rays by 
an electron may occur in a quite different way. An X-ray photon encoun-
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tered with a loosely bound or free electron can be deflected by the electro-
magnetic field of the electron and give some of its energy to the electron as 
kinetic energy. It is like the collision between two billiard balls. Thus, the 
deflected (i.e., scattered) X-ray photon has lower energy than the incident 
photon. As a result, the wavelength of the scattered radiation is slightly 
longer than that of the incident beam. This effect, discovered by A. Comp-
ton, is called the Compton scattering or effect. The Compton scattering 
can be understood only by considering the incident beam as a stream of 
X-ray photons (quanta), and it cannot be explained with the wave theory. 
It is important to note that the phase of the Compton-scattered radiation 
has no fixed relation to the phase of the incident beam. This incoherent 
radiation cannot participate in X-ray diffraction because interference does 
not take place between the waves at random phases. The incoherently scat-
tered rays have the undesirable effect of increasing the background level 
in diffraction patterns.

5.3  SCATTERING BY AN ATOM

An atom of atomic number Z contains a positively charged nucleus and 
Z electrons. When an X-ray beam encounters an atom, all of its electrons 
scatter part of the incident radiation in accordance with the Thomson equa-
tion. However, the nucleus makes a negligible contribution to the scatter-
ing process because it has a significantly large mass compared to that of 
electrons and is unable to respond with a rapidly-oscillating electric field. 
Therefore, the net scattering effect is only due to the electrons and the 
wave scattered by an atom is simply the sum of the waves scattered by 
its component electrons. Since the electrons of an atom are located at dif-
ferent positions, the amplitude of the wave scattered by an atom is deter-
mined by the phase relationship between the waves scattered by different 
electrons. Consider Figure 5.4, in which the electrons are situated at differ-
ent positions around the nucleus. The amplitude of the wave scattered by 
an atom containing Z electrons becomes Z times the amplitude of the wave 
scattered by a single electron in the scattering of forward direction (2θ = 
0), because the waves scattered by all the electrons are in phase. This is 
not true for other scattering directions. For instance, the waves scattered in 
the forward direction by electrons on points A and B have no phase differ-
ence on a plane marked as X-X’. However, the waves scattered in a direc-
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tion shown in the figure have a path difference of CB – AD and are thus 
somewhat out of phase on Y-Y’. This leads to partial interference between 
the scattered waves so that the resulting amplitude is less than that of the 
wave scattered in the forward direction. The atomic scattering factor, f, is 
defined as the ratio of the amplitude of the wave scattered in a particular 
direction by an atom to the amplitude of the wave scattered in the same 
direction by an electron. When the amplitude E of the wave scattered by 
a single electron is given by Eq. (5.7), the amplitude Ea of the wave scat-
tered by an atom is thus Ea = fE. The atomic scattering factor f means the 
amplitude of scattering per atom expressed in units of the amplitude from 
a single electron.

FIGURE 5.4  X-ray scattering by an atom.

In Figure 5.4, the electrons are depicted as situated at specific points. 
In reality, the electrons are spread out in space and occupy a finite volume. 
For an object that is spherically symmetric, the spatial density distribution 
can be expressed as a function of radius. If the electron distribution in an 
atom has spherical symmetry, each small element of volume dV within 
the electron cloud will give rise to scattered radiation of amplitude pro-
portional to ( )r dVρ , where ( )rρ  is the electron density at a distance r from 
the center of the atom. For each atom, we have ( )r dV Zρ =∫ . There will be a 
difference in path length between the waves scattered by any pair of vol-
ume elements; the path difference is zero for 2q = 0 and will increase with 
increasing 2q. To obtain the total amplitude of scattering from an atom, 
we should consider the phase relationship between all the contributing 



156	 X-Ray Diffraction for Materials Research: From Fundamentals to Applications

elements and integrate over the volume occupied by the electrons. When 
the distribution of electrons is spherically symmetric around a nucleus, the 
atomic scattering factor is given by

	
2

0

sin4 ( ) krf r r dr
kr

π ρ
∞

= ∫ 	 (5.8)

where 4 sin /k π q l= . This atomic scattering factor plays a significant role 
in X-ray diffraction. Atomic scattering factors are used to calculate the 
structure factor for a given Bragg peak. For any atom, it is a function of 
sinθ/λ, where θ  is half the scattering angle and λ, the X-ray wavelength.
When the scattering occurs in the forward direction, i.e., the scattering 
angle 2q = 0, the above Eq. (5.8) reduces to

	 2

0

4 ( )f r r dr Zπ ρ
∞

= =∫ 	 (5.9)

It is evident from Eq. (5.8) that f approaches Z at small values of 
sin /q l . As q increases, the waves scattered by individual volume ele-
ments become more and more out of phase and f decreases. The atomic 
scattering factor also depends on the wavelength of the incident X-ray 
beam. At a fixed value of q, the path difference will be larger as the wave-
length gets shorter. Therefore, the atomic scattering factor will decrease 
with decreasing wavelength. To obtain f, we need only to know the radial 
distribution of the electron density in the atom. The atomic scattering fac-
tors calculated for various atoms are tabulated in Ref. [2, 3]. Those of some 
atoms are plotted in Figure 5.5. The atomic scattering factor is sometimes 
called the atomic form factor because it depends on how the electrons 
are distributed around the nucleus. The above treatment is rather simpli-
fied, and the atomic scattering factor is generally complex. However, the 
use of its real component is sufficient for ordinary X-ray diffraction since 
the imaginary components only become large near an absorption edge. 
Anomalous X-ray scattering makes use of the variation of the atomic scat-
tering factor close to an absorption edge to evaluate the scattering power 
of specific atoms in the sample. This anomalous scattering is out of the 
scope of this book.
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FIGURE 5.5  Atomic scattering factors of some elements.

5.4  SCATTERING BY A UNIT CELL AND STRUCTURE FACTOR

If the Bragg law is not satisfied, diffraction does not take place. Even if the 
Bragg law is satisfied for a particular set of atomic planes, no diffraction 
may occur, as discussed earlier in this chapter. The atoms of a crystal are 
periodically arranged with a repeat unit called the unit cell. The fact that 
no diffraction signal is observed even under the Bragg condition means 
that the waves scattered by all the atoms within the unit cell are completely 
out of phase with one another. The arrangement of atoms is identical in all 
unit cells. Thus, if complete destructive interference occurs between the 
waves scattered by a single unit cell, we have no diffracted beam because 
the crystal is just a repetition of the unit cell. In other words, the phase 
relationship between the waves scattered by the individual atoms of a unit 
cell is a dominant factor affecting the diffraction intensity.
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FIGURE 5.6  Effect of atom position on the phase difference between scattered rays. 
When the Bragg law is satisfied for a set of (hkl) planes, the phase difference between rays 
1 and 2 is 2p. Therefore, rays 1 and 3 have a phase difference of ( )/ 2hklx dδ π= .

Suppose that the Bragg law is satisfied for a set of (hkl) atomic planes 
when an X-ray beam of wavelength l is incident at an angle qB, as shown 
in Figure 5.6(a). Here we take point O as the origin of the unit cell. The 
path length difference between scattered rays 1 and 2 is AO + OB = 

B2 sinhkldl q= . Assume that there is another plane of atoms at a vertical 
distance x from the origin and ray 3 is reflected from this plane given by 
broken lines in Figure 5.6(b). Then, the path difference between the rays 
1 and 3 will be ( )/ hklx d l . Since the phase difference between the rays 1 
and 2 is 2p, the rays 1 and 3 have a phase difference of ( )/ 2hklx dδ π= . 
Consider an atom on the broken-line plane whose position within the unit 
cell is represented by vector rn in Figure 5.6(c). The position vector can 
be written as n u v w= + +r a b c , where u, n , and w are the coordinates of 
the atom. We wish to know the phase difference between rays scattered by 
this atom and an atom situated at the origin O (not shown in the figure). 
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As illustrated in Figure 4.2, scattered rays from any points of a plane are 
in phase with one another; there is no phase difference between the ray 3 
and the ray scattered by the atom at rn. Thus, the phase difference between 
the rays scattered by these two atoms will also be ( )/ 2hklx dδ π= . The 
value of x can be obtained by forming the scalar product between rn and 

/ Hhkl hklH . The phase difference is then given by

	 n
2 2 2 ( )

H
hkl

hkl hkl hkl

x hu kv lw
d d
π πδ π= = ⋅ = + +

H r 	 (5.10)

FIGURE 5.7  A body-centered atom represented by vector 0.5 0.5 0.5n = + +a b cr .

When the Bragg condition is satisfied for (hkl) planes, two atoms 
with coordinates (0,0,0) and (u,v,w) has a phase difference given by Eq. 
(5.10). As shown in Figure 5.7, a BCC crystal contains two equivalent 
atoms within the unit cell, each at (0,0,0) and (1/2,1/2,1/2). When the 
Bragg condition is satisfied for (001) planes, these two atoms have a 
phase difference of δ π= . If the wave scattered by the corner atom is 
represented by ( )cos 2 /f xπ l , the scattered wave from the body-cen-
tered atom can be given by ( )cos 2 /f xπ l π− , where f is the atomic scat-
tering factor of the atom. Since the total wave scattered from a unit cell 
is ( ) ( )cos 2 / cos 2 / 0f x f xπ l π l π+ − = , diffraction does not occur from 
the (001) planes. Namely, there is no 001 reflection peak. One might 
think that we will have a diffracted beam when the path length differ-
ence between successive (001) planes is made equal to 2l by increas-
ing the incident angle. Note that this is the Bragg condition for (002) 
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planes, not (001) planes; 001 002sin 2 sind dl q q= = . Evidently, we have a 
002 reflection peak from a BCC crystal because the phase difference be-
tween the same atoms is now 2δ π=  and the scattered wave represented 
by ( ) ( ) ( )cos 2 / cos 2 / 2 2 cos 2 /f x f x f xπ l π l π π l+ − =  has non-zero am-
plitude.

FIGURE 5.8  Superposition of waves.

It is mathematically simpler to manipulate the superposition of waves 
by use of complex number notation. A complex number with real and 
imaginary parts, for example, a + ib, is marked as a point in the complex 
plane and is represented by a vector drawn from the origin to this point. 
The length of this vector is the magnitude of the complex number. Figure 
5.8 shows two waves ( )1 1 1cos 2 /E f xπ l δ= −  and ( )2 2 2cos 2 /E f xπ l δ= −
. These waves have the same wavelength but differ in amplitude and phase. 
Their sum 3 1 2E E E= +  is given by the dotted curve. To obtain the inten-
sity of the resultant wave E3, we should know its amplitude. In this case, 
the amplitude and phase of E3 can be easily calculated by trigonometric 
manipulation. However, the trigonometric calculation is obviously cum-
bersome when a larger number of waves are involved. From the relation 
of cos siniAe A iAq q q= + , we find that a sinusoidal wave can be expressed 
in a complex exponential form. The complex number iAe q  is represented 
in the complex plane by a vector of length A inclined at an angle q to the 
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real axis. As q increases, this vector is counterclockwise rotated and the 
real part of the complex number changes between A and –A. Likewise, the 
two waves shown in Figure 5.8 can be expressed in complex exponential 
forms.
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= =

= = 	 (5.11)

The term ( )2 /i xe π l  is a common factor in all expressions and need not be 
considered anymore; it is here set to a unity for simplicity. The complex 
numbers E1 and E2 are represented by vectors E1 and E2 in Figure 5.9. The 
length of the vector is equal to the amplitude of the corresponding com-
ponent wave. The amplitude f3 and phase d3 of the resultant wave E3  can 
be found simply by adding the vectors E1 and E2. As a practical example, 
Figure 5.10 shows how the amplitude and phase of the total wave can be 
determined, when the waves scattered by two different atoms has a certain 
phase difference.

FIGURE 5.9  Complex representation of the superposition of waves with different 
amplitudes and phases.

FIGURE 5.10  Superposition of the waves scattered by two different atoms.
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We now return to the matter of adding the waves scattered by each of 
the atoms within the unit cell. The amplitude of each wave is given by the 
atomic scattering factor of the atom scattering it. As shown by Eq. (5.10), 
the phase of each wave is related to the Miller indices of the reflecting 
planes and the coordinates of the scattering atom. If a unit cell contains a 
total of N atoms, the resultant wave scattered by all the atoms of the unit 
cell will be given by

	 N1 2
1 2 N

ii iF f e f e f e δδ δ= + +…+ 	 (5.12)

where F is called the structure factor. The magnitude F  of the structure 
factor shown in Figure 5.11 represents the amplitude of the resultant wave. 
For hkl reflection, the structure factor is more concisely expressed as

	 2 ( )
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n n n
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i hu kv lw

hkl n
n

F f e π + +

=

= ∑ 	 (5.13)

where fn is the atomic scattering factor of the nth atom and un, nn, and wn 
represent its coordinates. F  is defined as the ratio of the amplitude of 
the wave scattered by all the atoms of a unit cell to the amplitude of the 
wave scattered by a single electron. When the Bragg law is satisfied for 
a set of (hkl) planes, the diffraction intensity from these planes is propor-
tional to 

2
hklF . The structure factor may be real or a complex number. For 

a complex structure factor F, the squared magnitude can be obtained with 
multiplication by its complex conjugate F*; 2 *F FF= . The structure fac-
tors for hkl and hkl  are complex conjugates to each other; i.e., *

lhkl hkF F= . 
This result means that the corresponding diffraction intensities are equal: 

lhkl hkI I= . Thus, the diffraction pattern of a crystal is centrosymmetric ir-
respective of whether the crystal itself has a center of symmetry or not. If 
the structure factor Fhkl is zero for a certain reflection hkl, the intensity of 
that reflection will be zero. In this respect, Eq. (5.13) is a very important 
relation in X-ray diffraction (also in electron diffraction). Actual examples 
are not only helpful but also essential for understanding the meaning of a 
new equation or relation. The structures of many different crystals have 
been investigated in Section 2.3. The structure factors of some crystals are 
here calculated for this purpose.
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FIGURE 5.11  The magnitude F  of the structure factor represents the 
amplitude of the resultant wave.

(a) A crystal of FCC structure has four atoms of the same kind at 
(0,0,0), (1/2,1/2,0), (1/2,0,1/2), and (0,1/2,1/2) in a unit cell. The structure 
factor for hkl reflection is then

	 ( ) ( ) ( )[1 ]i h k i h l i k lF f e e eπ π π+ + += + + + 	 (5.14)

If h, k, and l are unmixed, i.e., all even or all odd, the three sums (h + k), 
(h + l), and (k + l) are even integers and each exponential term in the above 
equation becomes 1. If h, k, and l are mixed, ( ) ( ) ( ) 1i h k i h l i k le e eπ π π+ + ++ + = −  
regardless of whether two indices are even and one odd, or two odd and 
one even. The structure factor of the FCC structure can be summarized as

	
4 for unmixed
0 for mixed

F f hkl
F hkl

=
= 	 (5.15)

Thus, diffraction occurs for such planes as (111), (200), and (220) but 
not for (100), (110), (210), etc. When h, k, and l are unmixed, all the four 
atoms in the unit cell are in phase with one another. Therefore, their atomic 
scattering factors add up, resulting in 4F f=  as shown in Figure 5.12(a). 
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On the contrary, when h, k, and l are mixed, two atoms that are in phase 
with each other are 180° out of phase with the other two atoms. This leads 
to F = 0 (Figure 5.12(b)).

FIGURE 5.12  Complex-plane representation of the structure factor in FCC structure. (a) 
When the Miller indices h, k, and l are unmixed, all the four atoms in the unit cell are in 
phase and their atomic scattering factors add up, resulting in F = 4f. (b) For mixed h, k, and 
l, two atoms in phase are 180° out of phase with the other two atoms. This leads to F = 0.

(b) The CsCl structure contains two atoms per unit cell: one Cs at 
(0,0,0) and one Cl at (1/2,1/2,1/2). The structure factor is then given by
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i h k l
Cs Cl

Cs Cl

Cs Cl

F f f e
F f f h k l

F f f h k l

π + += +

= + + + =

= − + + = 	 (5.16)

When (h + k + l) is even, scattered rays from the Cs and Cl atoms are in 
phase and ( )Cs ClF f f= +  is obtained, as shown in Figure 5.13(a). Although 
the scattered rays are completely out of phase when (h + k + l) is odd, 
the structure factor does not become zero because Cs and Cl have differ-
ent atomic scattering factors (Figure 5.13(b)). The BCC structure has two 
atoms of the same kind per unit cell located at (0,0,0) and (1/2,1/2,1/2). 
Thus, its structure factor can be easily calculated from Eq. (5.16) and takes 
the forms

	

2 for even
0 for odd

F f h k l
F h k l

= + + =
= + + = 	 (5.17)
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In Section 5.1, we have shown with geometric analysis that there would 
be no 001 reflection from the BCC structure. This is consistent with the 
results of the structure factor calculation.

FIGURE 5.13  Complex-plane representation of the structure factor in CsCl structure. (a) 
(h + k + l) is even, (b) (h + k + l) is odd.

(c) We next consider the structure factor of NaCl structure. The unit 
cell of NaCl contains 4 Na and 4 Cl at the following positions:

Na: (0,0,0) (1/2,1/2,0) (1/2,0,1/2) (0,1/2,1/2)
Cl: (1/2,1/2,1/2) (0,0,1/2) (0,1/2,0) (1/2,0,0)
Inserting the atomic positions into Eq. (5.12) gives the structure factor 

as follows.

	 ( ) ( ) ( ) ( )1 i h k i h l i k l i h k l
Na ClF e e e f f eπ π π π+ + + + +   = + + + +    	 (5.18)

In the derivation of this equation, we made use of the relation of 
n i n ie eπ π− =  where n is any integer. NaCl has a face-centered cubic lattice. 

The terms in the first bracket correspond to the face-centering translations 
and have already appeared in Eq. (5.14). They are 0 for mixed indices and 
4 for unmixed indices. The terms in the second bracket describe the basis 
of a lattice point at the unit cell origin, namely, Na at (0,0,0) and Cl at 
(1/2,1/2,1/2). The structure factor of NaCl takes the three forms:

	

( )
( )

4 for all even 

4 for all odd 
0 for mixed 

Na Cl

Na Cl

F f f hkl

F f f hkl
F hkl

= +

= −
= 	 (5.19)
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Like the FCC structure, the NaCl structure will exhibit diffraction 
peaks from the planes whose Miller indices are unmixed. However, the 
diffraction intensity obtained for all odd indices is much lower than that 
for all even indices.

(d) The zinc blende structure (sometimes called the sphalerite struc-
ture) also has a face-centered cubic lattice with two different atoms asso-
ciated with one lattice point. In the zinc blende form of ZnS, the unit cell 
contains 4 Zn and 4 S at the following positions:

Zn: (0,0,0) (1/2,1/2,0) (1/2,0,1/2) (0,1/2,1/2)

S: (1/4,1/4,1/4) (3/4,3/4,1/4) (3/4,1/4,3/4) (1/4,3/4,3/4)

The structure factor will also contain the terms corresponding to the 
face-centering translations. We already know that they are zero for mixed 
indices. The lattice point at the origin is associated with Zn at (0,0,0) and S 
at (1/4,1/4,1/4). Thus, the structure factor for unmixed indices is given by

	 ( )/24 i h k l
Zn SF f f eπ + + = +  	 (5.20)

Since it may be real or complex, we need to consider the squared mag-
nitude:

( ) ( )2 /2 /2 2 216 16 2 cos ( )
2

i h k l i h k l
Zn S Zn S Zn S Zn SF f f e f f e f f f f h k lπ π π+ + − + +     = + + = + + + +      

(5.21)
The structure factor of ZnS takes the four forms:

( ) ( )
( ) ( )
( )

22

22

2 2 2

2

16 when is an even multiple of 2

16 when is an odd multiple of 2

16 for all odd 

0 for mixed 

Zn S

Zn S

Zn S

F f f h k l

F f f h k l

F f f hkl

F hkl

= + + +

= − + +

= +

= 	 (5.22)

In the diamond structure, the unit cell contains eight atoms of the same 
kind at the positions that would be occupied by Zn and S. Thus, Zn Sf f=  
and we have its structure factor given by



Intensities of X-ray Diffraction	 167

	

( )

( )

2 2

2 2

2

2

64 when  is an even multiple of 2

32 for all odd 

0 when  is an odd multiple of 2

0 for mixe

 

d 

F f h k l

F f hkl

F h k l

F hkl

= + +

=

= + +

= 	 (5.23)

Diamond has a face-centered cubic lattice. Therefore, diffraction does 
not occur from planes with mixed indices. Even for unmixed indices, how-
ever, reflections are missing when (h + k + l) is an odd multiple of 2. This 
is because unlike other structures of FCC lattice, the diamond structure 
has two equivalent atoms associated with one lattice point (refer to Ex-
ample 5.2). It is important to note the distinction between a structure and 
a Bravais lattice. NaCl, zinc blende, and diamond structures all have a 
face-centered cubic Bravais lattice. Of course, the Bravais lattice of FCC 
structure is also face-centered cubic. Although the structure factor mainly 
depends on the lattice type, it is also strongly influenced by the actual 
atomic arrangement as demonstrated above.

(e) The hexagonal close-packed structure shown in Figure 2.40(a) has 
two atoms of the same kind at (0,0,0) and (2/3,1/3,1/2). The structure fac-
tor is expressed as

2 22 [ /2] 2 [ /2]2 2 2 23 3 21 1 4 cos ( )
3 2

h k h ki l i l h k lF f e e f
π π

π
+ ++ − +    += + + = +   

   
	 (5.24)

It can be divided into the following four forms:

	

2 2

2 2

2 2

2

4 2 3 , even

3 2 3 1, odd

2 3 1, even

0 2 3 , odd

F f h k n l

F f h k n l

F f h k n l

F h k n l

= + = =

= + = ± =

= + = ± =

= + = = 	 (5.25)

Here n is an integer. If 2h + k = 3n, then h + 2k = 6n – 3h = 3n’. Thus, 
h and k are interchangeable in the condition of Eq. (5.25). The structure 
factor of the HCP structure can be recognized such that reflections are 
missing when (2h + k) is a multiple of 3 and l is odd.
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EXAMPLE 5.1

As shown in Figure 2.51, Cu3Au is cubic with one Cu3Au unit per unit 
cell. In the ordered form, the atomic positions are Au: (0,0,0) and Cu: 
(1/2,1/2,0), (1/2,0,1/2), and (0,1/2,1/2). In the disordered form, the same 
positions are randomly occupied and we can consider this random occu-
pation equivalent to 1/4 Au and 3/4 Cu at each position. Derive the struc-
ture factors of Cu3Au for the order and disorder forms and state for which 
hkl reflections the structure factor will be identical in the two forms.
Answer: From Eq. (5.13), the structure factor of the ordered form is given 
by

( ) ( ) ( )[ ]i h k i h l i k l
Au CuF f f e e eπ π π+ + += + + +

The structure factor is non-zero for any indices and all reflections are thus 
possible. This is due to the simple cubic Bravais lattice of the ordered 
Cu3Au structure. In the disordered state, there is no preferred position for 
Cu or Au. The probability that a particular atomic site is occupied by Au 
atom is 1/4, the atomic fraction of Au in the alloy, and the probability that 
it is occupied by Cu is 3/4. Since every site has the same probability, the 
disordered form of Cu3Au has an FCC structure on the average. Its struc-
ture factor is then equivalent to Eq. (5.14) and is expressed as

( ) ( ) ( )[ ]i h k i h l i k lF f f e e eπ π π+ + += + + +

where / 4 3 / 4cAu uf ff += . If h, k, and l are unmixed, each exponential 
term in the above equations becomes 1. Thus, both forms have the same 
structure factor of 3 4Au CuF f f f= + = . For mixed indices, the structure 
factor of the disordered form is zero, while the ordered form has a non-
zero value.
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EXAMPLE 5.2

Si and GaAs have the same Bravais lattice of FCC. Explain with geo-
metrical considerations why 222 reflection is missing in Si, while it is 
observed from GaAs.
Answer: Si and GaAs have the diamond and zinc blende structures, re-
spectively. It is evident from Eq. (5.22) and (5.23) that F222 = 0 in Si and 
F222 ≠ 0 in GaAs. Figure 5.14(a) shows the stacking sequence of succes-
sive (111) planes along [111] in Si, which can be described as A AB BC 
CA AB BC CA. Successive planes are not equally separated from one 
another and there is another plane d111/4 away from two planes with spac-
ing of d111. When the Bragg condition for 222 reflection is satisfied, the 
path length difference between rays 1 and 2 is 2l. Since scattered rays 1 
and 3 have a path difference of l/2, they are completely out of phase and 
canceled out. Similarly, rays 2 and 4 annul each other. Thus, we have no 
diffraction signal. In GaAs, rays 1 and 3 are also 180° out of phase. How-
ever, they are scattered from different types of atoms and do not com-
pletely annul each other. Thus, an incident X-ray beam can be reflected in 
the given direction although the diffraction intensity may not be so high.

[111]

d111 d111

3asi 3aGaAs

1

2

3

4

1

2

3

4

(a) (b)

FIGURE 5.14  Diffraction in (a) Si and (b) GaAs when the Bragg condition for 222 
reflection is satisfied.

Calculations of the structure factor in some crystals were given above. 
It is important to realize that the structure factor is independent of the 
shape and size of the unit cell. For example, two compounds of the type 
AB are given in Figure 5.15. Suppose that the unit cells of these two com-
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pounds differ in shape and size. If both contain two atoms per unit cell 
with fractional coordinates of A: (0,0,0) and B: (1/2,1/2,1/2), their struc-
ture factor is equivalently expressed by ( )i h k l

A BF f f eπ + += + . As discussed 
earlier, the diffraction direction predicted by the Bragg law is determined 
solely by the shape and size of the unit cell. However, the intensities of 
diffracted beams are determined by the positions of atoms within the unit 
cell, being independent of its shape and size.

FIGURE 5.15  Two compounds of the type AB. Although the unit cells 
of these two compounds differ in shape and size, their structure factor is 
equivalently expressed by ( )i h k l

A BF f f eπ + += + .

When the Bragg law is satisfied for an incident beam of intensity Io, the 
diffraction intensity Ip from a small single crystal is predicted to be

	
2 2

p eI I F N= 	 (5.26)

where
22 2

o
1 cos 2

4 2
o

e
eI I
mR

µ q
π

   +=      

and N is the total number of unit cells in the crystal. It is to be noted that 
the intensity given by Eq. (5.26) is the maximum peak intensity obtainable 
only in ideal cases. As discussed in Section 4.5, the primary incident beam 
is neither perfectly parallel nor monochromatic. In addition, a crystal con-
tains imperfections and is slightly mosaic in general. All these broaden 
the observed diffraction profile. Thus, the intensity value predicted by Eq. 
(5.26) is not an observable quantity. We already know that the diffrac-
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tion intensity is highest at the Bragg angle but still appreciable at angles 
slightly deviating from it. The integrated intensity of a diffraction peak is 
defined as the area under its I vs. 2q curve. Meanwhile, the peak intensity 
refers to the maximum intensity observed with a diffraction peak, i.e., the 
intensity value at 2qB. Even for an infinite, perfect single crystal, the dif-
fraction profile will be spread out by the various instrumental-broadening 
factors. While the peak intensity is a strong function of the instrumental 
factors, the integrated intensity is characteristic of the sample and is much 
less sensitive to them. In this respect, the integrated intensity is a more 
robust quantity than the peak intensity.

5.5  SYSTEMATIC ABSENCE

As graphically illustrated in Figure 4.10, the Bragg condition in reciprocal 
space is that in order for an incident X-ray beam to reflect from a set of 
(hkl) planes, the difference between the scattered and incident beam vec-
tors should be equal to the reciprocal lattice vector Hhkl. What happens if 
Fhkl= 0? Let’s consider reflection from a set of (001) planes. If F001 is not 
zero, diffraction occurs when the Bragg condition is satisfied for this set 
of planes (Figure 5.16(a)). When F001= 0, however, no diffraction will be 
observed although the Bragg condition is satisfied. This means that the 
corresponding reciprocal lattice point 001 does not exist, as illustrated in 
Figure 5.16(b). The reciprocal lattice points missing due to Fhkl= 0 are 
called “systematic absences”. Thus, the reciprocal lattice of a crystal struc-
ture should be constructed taking the systematic absence into account.

H001

Incident, So/λ  

Diffracted, S/λ

000

002

000

002

001 No diffraction

(a) (b)

Incident, So/λ  

FIGURE 5.16  Bragg condition in reciprocal space vs. systematic absence. 
(a) If F001 is not zero, diffraction occurs when the Bragg condition is 
satisfied for a set of (001) planes. (b) When F001 = 0, the corresponding 
reciprocal lattice point 001 does not exist. Thus, diffraction signal is not 
observed even though the Bragg condition is satisfied.
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When the Bragg law is satisfied for a set of (hkl) planes, the diffraction 
intensity from these planes is proportional to 2

hklF . The structure factor 
may be real or a complex number. For a complex structure factor F, the 
squared magnitude can be obtained with multiplication by its complex 
conjugate F*; 2 *F FF= . The structure factors for hkl and hkl  are complex 
conjugates to each other; i.e., *

hkl hk lF F= . It means that the corresponding 
diffraction intensities are equal: hkl hk lI I= . Thus, the diffraction pattern of 
a crystal is centro-symmetric irrespective of whether the crystal actually 
contains a center of symmetry or not. This is equivalent to saying that the 
reciprocal lattice is always centro-symmetric, because the symmetry in-
formation provided by the diffraction pattern is the symmetry of the recip-
rocal lattice. Accordingly, the existence of the center of symmetry in the 
crystal cannot be inferred from the existence of the same operation in the 
diffraction pattern. As a consequence, the crystal may have lower symme-
try than the one displayed by the diffraction pattern. For example, GaAs 
lacks a center of symmetry, as manifest with the different etching rates 
on (111) and (111). However, the reflections from these two oppositely-
directed surfaces have equal diffraction intensities. For this reason, there 
will be some uncertainty when trying to determine the crystal symmetry 
from the diffraction experiment. Fortunately, some symmetry operations 
show their “footprints” in the reciprocal space and certain types of re-
flections from valid lattice planes produce no diffraction spots. This phe-
nomenon is known as the systematic absence. The first type of systematic 
absence arises due to lattice centering. As a simple example, we consider 
a face-centered lattice of cubic symmetry. Many different structures such 
as NaCl, diamond, and zinc-blende structures have a face-centered cubic 
(FCC) lattice. Once the lattice type is face-centered, the structure factor is 
always zero for the lattice plane whose indices h, k, and l are mixed. This 
means that for a face-centered crystal, we do not expect to observe any 
intensity, for example, the (100), (210),… reflections. Consequently, the 
centering of a diffraction pattern that we obtain experimentally will tell us 
what particular type of lattice centering exists in real space. The other two 
symmetry elements, namely, glide planes and screw axes, also give rise to 
systematic absence. All these factors are already reflected in the structure 
factor, which depends on the arrangement of atoms within the unit cell.

It has been shown in Example 2.8 that the reciprocal lattice of an FCC 
structure with lattice constant “a” is BCC with lattice constant “2/a”. In 
the earlier derivation of the reciprocal lattice, we started from the primitive 
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cell vectors of the real lattice because the unit cell of the reciprocal lattice 
has been defined accordingly in Eq. (2.14). Now, the reciprocal lattice of a 
crystal structure can be derived straightforward from its conventional unit 
cell. The conventional cubic cell of an FCC structure with lattice constant 
“a” is represented by vectors a, b, and c in Figure 5.17. We neglect the 
face-centering translations of the structure and start from these conven-
tional unit cell vectors. Then, three reciprocal vectors a*, b*, and c* ob-
tained from Eq. (2.14) will be parallel to a, b, and c, respectively and have 
a length of 1/a. Since Fhkl is zero for mixed hkl in the FCC structure, the 
reciprocal lattice points with corresponding indices (e.g., 100, 010, 001, 
110, etc.) do not exist and should be removed from the as-derived lattice 
structure. This process leads to a BCC lattice with lattice constant “2/a”, 
as depicted in Figure 5.17. It can be easily shown that the reciprocal lattice 
of a BCC structure with lattice constant “a” is FCC with lattice constant 
“2/a”. For a simple cubic structure, there is no systematic absence because 
the structure factor Fhkl = f is constant for any hkl reflections. Thus, the re-
ciprocal lattice of a simple cubic structure is also simple cubic with lattice 
parameter of 1/a. An example problem given below may help to be more 
familiar with the concept of systematic absence.

020

002

000

a

FCC structure

1/a

c

b

a

c*

b*

a*

220200

111

Reciprocal lattice of FCC structure

FIGURE 5.17  FCC structure and its reciprocal lattice.
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EXAMPLE 5.3

As discussed in Section 4.6, electron diffraction pattern directly visual-
izes the two-dimensional reciprocal lattice of a crystal. Let’s suppose that 
an electron beam is incident along the [110] direction of a thin (110)-ori-
ented sample of FCC structure. Then,

(a) Draw the expected diffraction pattern and give an index to each 
spot.

(b) If the sample had a diamond structure, with all other conditions 
remaining unchanged, how would the diffraction pattern be modi-
fied?

Answer:
(a) As shown in Figure 5.18(a), the reciprocal lattice of FCC structure 
does not have lattice points for mixed Miller indices. Since the electron 
beam is incident along [110], diffraction occurs by the reciprocal lattice 
vectors perpendicular to [110]. Some of these vectors are represented 
with bold arrows in Figure 5.18(a). When drawn from the origin, the 
reciprocal lattice vector Hhkl should satisfy the condition of h + k = 0, 
where h and k are unmixed. Then we will have a diffraction pattern like 
Figure 5.18(b). The reciprocal lattice of the FCC structure is BCC and 
the incident direction of the electron beam is [110]. Diffraction occurs 
from the reciprocal lattice points on a plane perpendicular to the inci-
dent beam direction. In cubic systems, [110] is perpendicular to (110). 
Thus, the obtained electron diffraction pattern is consistent with the lat-
tice point configuration on (110) of a BCC lattice. The size of diffraction 
spots decreases with increasing distance from the pattern center because 
the reciprocal lattice points (actually rods) are more unlikely to touch the 
Ewald sphere. In usual, the central spot is much stronger than the others 
and is often blocked with a long bar when taking a photo.
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FIGURE 5.18  Diffraction of an electron beam incident along the [110] 
direction of a thin (110)-oriented FCC sample. (a) BCC reciprocal lattice 
of the FCC structure. (b) Electron diffraction pattern.

(b) In the diamond structure, the structure factor is also zero when (h + k 
+ l) is an odd multiple of 2. So there are extra missing reciprocal lattice 
points in addition to those due to the mixed indices. Therefore, such spots 
as 002 and 002 - in Figure 5.18(b) would not be observed in the electron 
diffraction pattern from a sample of diamond structure. Both of the FCC 
and diamond structures have an FCC lattice. However, their reciprocal 
lattices are different. While the FCC structure has a BCC reciprocal lat-
tice, the reciprocal lattice of the diamond structure is not BCC anymore.
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Problems

5.1. �We have a row of N identical atoms with atomic scattering factor 
f and equally separated from each other, as shown in Figure 5.19. 
We expose this one-dimensional crystal to a monochromatic X-ray 
beam and wish to know the scattering intensity at P. When the phase 
difference between waves scattered from two adjacent atoms is δ,

Atom 1 2 3 N
P

FIGURE 5.19  One-dimensional crystal consisting of N identical atoms.
    (a) �Give the X-ray scattering intensity at point P, as a function of 

N, f, and δ.
    (b) �Calculate the scattering intensity when we remove the mth atom.
5.2. � AB compound ( , 90oa b c a b γ≠ ≠ = = = ) has 4 atoms per unit 

cell with the following coordinates.
		 A: (0,0,0), (1/2,1/2,0) B: (1/2,0,0), (0,1/2,0)

   (a)	 Derive simplified expressions for 2F .
   (b)	What is the Bravais lattice of this material?
5.3.	� A material of simple tetragonal Bravais lattice (a = 2.4 Å, c = 3.6 

Å) is prepared in a plate shape so that the sample surface is parallel 
to (001). When the sample was symmetrically scanned in the 2θ 
range from 20° to 100° using an X-ray beam at 1.54 Å, at which 
2θ positions will the diffraction peaks be observed? How will the 
diffraction pattern change if the sample is replaced by a crystal of 
body-centered tetragonal lattice? Assume that all the other condi-
tions are the same.

5.4.	� We have two different cubic crystals with the same lattice constant 
of a = 4.0 Å. One has the diamond structure and the other, zinc-
blende structure. Both are made in plate shape and (001)-oriented. 
If we carry out diffraction experiments with λ = 1.54 Å and 2θ = 
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20°–120°, will you find any difference between these two sam-
ples?

5.5. � Three thin single-crystalline samples are put together as shown in 
Figure 5.20, and their diffraction patterns are measured. All sam-
ples have the same lattice parameter of a = 3.6 Å and their struc-
tures and orientations are given below. When the 2q value changes 
from 20° to 120°, state the peak positions observed in each sample 
and from which planes the observed peaks come.

θ θ

Sample A: (001)-oriented S.C structure
Sample B: (111)-oriented BCC structure
Sample C: (110)-oriented FCC structure

Detector 
X- ray

λ = 1.54 Å

FIGURE 5.20  Diffraction from stacked thin single-crystalline sam-
ples.

5.6. �Electron diffraction pattern directly represents the 2-D reciprocal 
lattice pattern. Let’s consider the electron beam is incident along 
the [001] direction of a thin (001)-oriented Si sample. Draw the 
expected diffraction pattern and give an index to each spot (Hint: 
Consider the structure factor of Si. The reciprocal lattice vector cor-
responding to each spot is perpendicular to the incident direction of 
the electron).

5.7. �The wurtzite form of ZnS is hexagonal with two Zn atoms and two 
S atoms per unit cell at positions:

       Zn: (0,0,0), (1/3,2/3,1/2) S: (0,0,3/8), (1/3,2/3,7/8)
       �Derive simplified expressions for the structure factor F. For what hkl 

combinations will F vanish?
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6.1  INTRODUCTION

X-ray diffraction is a powerful nondestructive technique that can be uti-
lized for phase identification, orientation determination, lattice parameter 
measurement, assessment of crystal quality, and determination of crystal 
structure. As discussed in the previous chapters, diffraction peaks are pro-
duced by constructive interference of X-rays scattered from a specific set 
of lattice planes. Since the peak intensities are determined by the atomic 
arrangement within the unit cell, the X-ray diffraction pattern is charac-
teristic of a particular phase and material, providing a kind of fingerprint 
for comparison. Therefore, a large variety of crystalline samples can be 
quickly identified by a search of the standard database of X-ray diffraction 
patterns. In the Chapters 4 and 5, we have described the fundamental theo-
ry of X-ray diffraction. The common application areas of X-ray diffraction 
are discussed throughout the following three chapters, and we begin with 
the characterization of thin films. Modern electronic and opto-electronic 
devices are mostly made with thin films. Thin film analysis with X-rays 
requires no special sample preparation. It is a quick, non-contact method 
that can be used to determine important material parameters and predict 
device performance.

A thin film is a layer of material, which is typically deposited onto 
a substrate or previously deposited layers. Although “thin” is a relative 
term, a thin film usually refers to a layer with thickness less than 1 µm. 
Layers thicker than 1 µm are often called thick films. Thin films are widely 
used for optics and electronics. A familiar optics application is the house-
hold mirror, which has a thin metal layer coated on the back of a sheet of 
glass. Optical applications include reflective and anti-reflective coatings 
that consist of multiple layers having varying thicknesses and refractive 
indices. Most electronic devices require many different thin films that act 
as insulators, semiconductors, and conductors to form integrated circuits. 
Thin films are also useful to protect materials against corrosion, oxidation, 
and wear. Thin film deposition techniques are categorized into two primary 
methods, depending on whether the process is chemical or physical. The 
chemical method includes chemical vapor deposition, chemical solution 
deposition, and atomic layer deposition. Thermal evaporation, electron-
beam evaporation, sputtering, and pulsed laser deposition are examples of 
the physical methods. Most deposition techniques can control layer thick-
ness at the nanometer scales and some enable a single layer of atoms to 
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be deposited at a time. For optimal performance, thin films are required to 
possess specific electrical, optical, and mechanical properties that strongly 
depend on their microstructure and crystallinity. The microstructure and 
crystallinity of films are significantly influenced by the substrate material 
and deposition conditions. Therefore, thin film characterization is essen-
tial to improve device quality to the acceptable level. X-ray diffraction is 
a very powerful nondestructive technique for characterizing thin films. It 
can provide a variety of information such as phase, lattice parameter, film 
thickness, orientation, internal stress and strain, etc. The purpose of this 
chapter is to introduce X-ray diffraction techniques that are commonly 
used to characterize thin films deposited on substrates. Before proceeding 
into the diffraction methods in detail, it is necessary to know some termi-
nology relevant to thin film characterization.

Thickness < 1 µm
Thin film

Substrate

Out-of-plane 
orientation

In-plane orientation

FIGURE 6.1  Definition of out-of-orientation and in-plane orientation in a thin film.

The out-of-plane orientation of film or substrate refers to the direction 
perpendicular to its surface (Figure 6.1). When a surface is known, its nor-
mal can be easily recognized. Therefore, it is more convenient to represent 
the out-of-plane orientations of the film and substrate by planes rather than 
directions. Thin films are mostly grown on single-crystal substrates, es-
pecially for electronic and optoelectronic applications. In these cases, the 
substrate surface is specified with Miller indices: e.g., (111)-oriented MgO 
and (001)-Si. Thus, if a film with (hkl) surface is deposited on a (001)-ori-
ented substrate, the relationship between their out-of-plane orientations is 
simply expressed as (hkl)F//(001)S. Meanwhile, the in-plane orientation 
represents directions within the film and is parallel to the surface. Since it 
can be arbitrarily chosen, the in-plane orientation of a film relative to that 
of the substrate is stated by the angle between specific in-plane directions 
in two materials. Figure 6.2 shows an example where [100] and [010] of 
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the film are at an angle of 45° to [100] of the (001)-oriented substrate. 
The relationship between their in-plane orientations is thus represented by 
[010]F//[110]S.

Film atom

(001)-oriented substrate

[100]Sub

[010]Sub

[010]Film

[100]Film

Substrate atom

[110]Sub // [010]Film

FIGURE 6.2  In-plane orientation relationship between the substrate and film.

A number of factors influence the microstructure of a thin film. Though 
deposited on a highly lattice-matched, single-crystalline substrate, the ob-
tained film may be polycrystalline or even amorphous depending on the 
deposition conditions such as substrate temperature, gas pressure, and in-
cident angle of the vapor beam. In general, the microstructures of crystal-
line films fall into three different categories, depending on the numbers of 
out-of-plane and in-plane orientations. When the film is perfectly single-
crystalline, it has a single out-of-plane orientation and a single in-plane 
orientation, as depicted in Figure 6.3(a). A single-crystalline film is rarely 
achieved unless it is grown by homoepitaxy or deposited on a well lattice-
matched substrate. Many thin films exhibit a single out-of-plane orienta-
tion and multiple in-plane orientations (Figure 6.3(b)), or multiple out-of-
plane orientations (Figure 6.3(c)). In both cases, the films consist of many 
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grains and are thus polycrystalline. In the former, all grains have the same 
out-of-plane orientation and only the in-plane orientations change across 
the grain boundary. On the contrary, the latter has multiple out-of-plane 
orientations and the surface of each grain has different Miller indices. The 
structures shown in Figures 6.3(b) and 6.3(c) represent two extreme states 
of a polycrystalline film. Actual films may have an intermediate state. Tex-
ture refers to the distribution of crystallographic orientations of a poly-
crystalline sample. A sample in which these orientations are completely 
random is said to have no texture. If the crystallographic orientations are 
not random, but have some preferred orientation, then the sample has a 
weak, moderate or strong texture. The degree of texture depends on the 
percentage of crystallites or grains having the preferred orientation. Tex-
ture can have a significant influence on materials properties. The structure 
given in Figure 6.3(b) is a completely textured structure, since all grains 
have the same out-of-plane orientations. When most of the grains have a 
specific orientation, with only a few having others, the film is said to be 
highly textured.

(c)

(a)

(b)

(h1 k1 l1)

[u v w]
(h k l)

[u v w]

(h k l)
(h k l)

[u v w] (h2 k2 l2)
(h3 k3 l3)

FIGURE 6.3  Three different types of thin films. (a) Single-crystalline film. (b) 
Polycrystalline film with a single out-of-plane orientation and multiple in-plane 
orientations. (c) Polycrystalline film with multiple out-of-plane orientations.
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6.2  FOUR-CIRCLE DIFFRACTOMETER

FIGURE 6.4  Four-circle diffractometer.

ω

X-ray source

Detector
Sample holder

- Top view - - Side view -

Sample holder

2θ ω

φ

κ

FIGURE 6.5  Configuration of four-circle diffractometer. 2θ, ω, κ, and φ angles can 
be varied independently.

Four-circle diffractometer is an X-ray diffraction apparatus that is 
widely utilized for characterizing thin films (Figure 6.4). Although the dif-
fractometer may have different geometries and specifications depending 
on the manufacturer, its configurations are basically the same; the sample 
is stationed on a multi-axis goniometer that allows it to be rotated to a pre-
cise angular position. Figure 6.5 schematically illustrates the top and side 
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views of the four-circle diffractometer. We here need to define the angles 
that appear in thin film characterization. 2θ means the angle between the 
incident and diffracted X-ray beams. ω refers to the angle between the 
incident X-ray beam and the sample holder. The sample holder can be 
tilted up and down and κ represents the tilting angle. The sample holder 
is also made to rotate around its surface normal and φ means this rotation 
angle. As described, the diffractometer consists of four circles allowing 
the attached sample to be brought into various orientations. Two circles, 
denoted by κ and φ, are used to adjust the crystal orientation relative to the 
diffractometer coordinate system. A third circle, ω, permits the orientation 
of the crystal lattice planes at a specific angle to the incident X-ray beam. 
Finally, the fourth circle, denoted by 2θ, moves the detector to lie at an 
angle of 2θ to the primary X-ray beam. The directions of the primary and 
diffracted beams should be in a horizontal plane so that each reciprocal 
lattice vector H can be brought into this diffraction plane. As illustrated in 
Figure 4.9, the incident beam vector, scattered beam vector, and recipro-
cal lattice vector should be coplanar in order for diffraction to occur. The 
four-circle diffractometer allows a specific reciprocal lattice vector of the 
sample to meet this condition by adjusting the ω, κ, and φ angles.

X-ray source

(a)
Detector

Sample holder

2θ

ω = θ

φκ

(d)(c)

(b)

2θ = fixed

ω

2θ = fixed2θ = fixed

ω = fixed ω = fixed

FIGURE 6.6  Four scanning modes: (a) θ-2θ scan, (b) ω scan, (c) κ scan, and (d) φ scan.
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The diffractometer can be operated in four different scanning modes. 
In θ-2θ scan, both of the detector and sample holder are rotated while 
maintaining ω = θ (Figure 6.6(a)). This is a symmetric scan that enables 
the incident X-ray beam to be reflected from crystal planes parallel to the 
sample surface. In ω scan, the detector is fixed and only the sample holder 
is rotated as illustrated in Figure 6.6(b). This ω scan is useful to estimate 
the orientation spread of a film, i.e., the degree of mosaicity. In κ scan, the 
sample holder is tilted up and down with 2θ and ω fixed at certain values 
(Figure 6.6(c)). Here, κ = 0 represents the state where the normal to the 
sample holder becomes coplanar with the incident and diffracted direc-
tions. In φ scan, the planar sample holder is rotated 360° around its surface 
normal with all the other circles fixed, as depicted in Figure 6.6(d).

The out-of-plane orientations of a thin film are generally determined by 
four steps. Each step is here explained with a hypothetical sample. Figure 
6.7(a) shows a thin film with (hkl) surface deposited on a (001)-oriented 
substrate. (hkl) of the film and (001) of the substrate are assumed to have 
non-zero structure factors.

Film

(a)
(001)Sub

(001)-oriented substrate
Step 1

(b)

2θ 

(hkl)

(hkl)Film

I

FIGURE 6.7  (a) (hkl)-oriented film on (001)-oriented substrate. (b) Diffraction patterns 
expected from the initial θ-2θ scan (step 1) and the final scan.

Step 1: First, θ-2θ scan is carried out for the substrate to find a 2θ 
value giving rise to the maximum peak intensity. This value is 2θ001 for 
the substrate.

Step 2: After fixing the detector at 2θ001, ω scan is performed to find out 
a ω value giving the maximum intensity.

Step 3: With the 2θ and ω values fixed as above, κ scan is carried out 
to determine a κ value giving the maximum intensity.

Step 4: Finally, θ-2θ scan is conducted again.
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Thin film has much weaker diffraction peaks than the substrate. Then, 
a slight misalignment of the sample may cause no peaks from the film. 
The ω and κ angles are the instrumental angles measured with respect 
to the sample holder, not from the actual crystal planes. The substrate, 
usually cut from a single-crystal boule, may have a slightly different ori-
entation from the designated one. The steps 2 and 3 are needed to adjust 
the crystal planes to the desired directions. As the film is constrained by 
the substrate, with its surface always parallel to the substrate surface, the 
substrate planes should be well aligned at first. If the substrate were cut to 
have a slightly different orientation from the intended (001) orientation, 
the corresponding reciprocal lattice vector H001 would not exactly bisect 
the angle between the X-ray source, sample holder, and detector when 
the detector was at 2θ001 and the sample holder, at ω = θ001. If this is the 
case, it is highly probable that only a substrate peak will be obtained in 
the step 1, as shown in Figure 6.7(b). The 2θ001 value is determined by the 
interplanar spacing of the (001) planes and is independent of the orienta-
tion. If the substrate peak is rather weak and no film peaks are observed 
in the first θ-2θ scan, the Steps 2 and 3 are necessary. These two steps 
are tuning processes to maximize the diffraction intensity. If the substrate 
surface were not perfectly (001)-oriented, the ω and κ values giving rise 
to the maximum peak intensity would also slightly deviate from θ001 and 
0, respectively. While the diffraction intensity may significantly change 
with ω, it is more or less insensitive to the κ value. The deviation angles 
are determined through the ω and κ scans, and the final θ-2θ scan is per-
formed with these angles as offset angles. Then, we may have a stronger 
peak from the substrate than before, with the appearance of a film peak. 
When the substrate is simple cubic and the film has a body-centered cubic 
structure with its surface parallel to (110), the observed diffraction pattern 
will look like Figure 6.8. The structure factor of a body-centered structure 
is non-zero when h + k + l are even. Thus, (220), (330), ..., peaks will 
also be obtained from the film. Since the substrate is simple cubic with no 
systematic absence, it will exhibit (001), (002),…, peaks. If the surface of 
the film is (001)-oriented, (002), (004), (006),…, peaks will be observed 
from the film. However, such peaks as (001), (003), and (005) are missing 
because the structure factor is zero for h + k + l = odd.
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(002)Sub

2θ 

(001)Sub

(110)Film (220)Film (330)Film

I

FIGURE 6.8  Diffraction pattern expected when a (110)-oriented film is deposited.

EXAMPLE 6.1

A thin film of BCC structure (a = 5.0 Å) was deposited on a (111)-orient-
ed substrate of simple cubic structure (a = 4.0 Å). When the sample was 
symmetrically scanned in the 2θ range of 20–90° using a monochromatic 
X-ray beam of λ = 1.54 Å, a diffraction pattern shown in Figure 6.9 was 
obtained. Then, how many out-of-plane orientations exist in the film?

2θ 
25.2o

83.6o

81.6o

76.1o51.7o

38.9o

35.9o

I

FIGURE 6.9  Diffraction pattern.
Answer: The spacing of a set of planes giving rise to a diffraction peak 
can be calculated from the Bragg law: 2 sindl q= . The interplanar 
spacings corresponding to the observed peaks are 3.530, 2.498, 2.310, 
1.766, 1.249, 1.178, and 1.155 Å, respectively. Since the substrate 
is (111)-oriented, diffraction can occur from (111), (222), (333), … 
planes. As it has d111 = 2.310 Å and d222  = 1.155 Å, the peaks observed 
at 2θ = 38.9° and 83.6° are from the substrate. The interplanar spacing 
of a cubic structure is given by 2 2 2/hkld a h k l= + + . It is easily found 
that
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3.530 Å = Film 2a

2.498 Å = Film 4a

1.755 Å = Film 8a

1.249 Å = Film 16a

1.178 Å = Film 18a

Thus, the peaks observed at 2θ = 25.2°, 35.9°, 51.7°, 76.1°, and 81.6° are 
from (110), (200), (220), (400), and (330) planes of the film, respective-
ly. As 2 2 2 2 2 13 3 0 4 1 1+ + = + + , the peak at 81.6° might have come from 
(411). However, it is more likely that this peak arises from (330) planes, 
because peaks from (110) and (220) planes that are parallel to (330) are 
observed together. Then, the film has grains with two different out-of-
plane orientations: (100) and (110). Note that although some grains are 
(001)-oriented, (001) and (003) peaks are missing due to the systematic 
absence.

6.3  DETERMINATION OF IN-PLANE ORIENTATIONS

In the symmetric θ-2θ scan, reflection occurs from planes parallel to the 
sample surface. Thus, it provides information only on the out-of-plane ori-
entation of a film. Figure 6.3(a) depicts the film that possesses a single 
out-of-plane orientation (hkl) and a single in-plane orientation. The film 
shown in Figure 6.3(b) exhibits the same out-of-plane orientation but has 
multiple in-plane orientations. The diffraction pattern of these two struc-
tures would be identical under the conventional θ-2θ scan, even though 
the former is perfectly single-crystalline and the latter is polycrystalline 
consisting of many grains. The symmetric scan detects only the out-of-
plane orientation of a film and provides nothing about its in-plane orienta-
tion. Suppose that through the θ-2θ scan, we already know that the film in 
question has a single out-of-plane orientation. In order to find out whether 
it is truly single-crystalline or polycrystalline like Figure 6.3(b), we need 
to measure the in-plane orientation of the film, which can be revealed by 
the φ scan. No information on the in-plane orientation can be extracted 
from reflecting planes parallel to the film surface. Therefore, we should 



192	 X-Ray Diffraction for Materials Research: From Fundamentals to Applications

make the incident beam to be diffracted from planes suitably inclined to 
the surface. In the performed φ scan, the sample holder is first tilted and 
then rotated 360° around its normal with all the other circles fixed at cer-
tain values. This enables reflection to occur from a set of planes inclined to 
the sample surface. The in-plane orientation of a film is described relative 
to that of the substrate, by the angle between specific in-plane directions 
in two materials. Thus, the φ scan is separately performed for the substrate 
and the film. The resulting patterns are compared to derive their in-plane 
orientation relationship.

45o

360o rotation

101

Cubic crystal

(101)

z

y

x

(101)

011011 101

011

101
101

011

(101)

FIGURE 6.10  (101) and equivalent planes represented as poles on the sphere of 
projection in a cubic crystal.
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For the determination of in-plane orientations in a thin film, it is neces-
sary to understand the geometry between planes in the film itself and their 
geometric relations with those of the substrate. As discussed in Section 
2.7, the crystal planes are often represented as poles on the sphere of pro-
jection in order to figure out the associated symmetry and angular relation-
ships more easily. When the normal of a plane is drawn from the sphere 
center to intersect the surface of the sphere, the intersecting point is called 
the pole of the plane. The orientation of a plane is represented by a pole on 
the sphere and the line connecting the sphere center to the pole is normal 
to the plane. Suppose a cubic crystal with 4-fold rotation symmetry along 
the z-axis is located at the center of a sphere, as shown in Figure 6.10. The 
poles of (101) and equivalent planes are marked as solid circles on the sur-
face of the sphere. The line from the sphere center to any of the poles is at 
an angle of 45° to the 4-fold axis, i.e., the z-axis. When the crystal is tilted 
by 45° to any directions and then rotated 360° around the z-axis, the four 
poles alternately arrive at the north pole of the sphere every 90°.

Tetragonal crystal

H111

z

y

x

111

a
a

c

z

α

α

α

111

(111)

FIGURE 6.11  (111) and equivalent planes represented as poles on the sphere of 
projection in a tetragonal crystal.
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Another example is given in Figure 6.11 for (111) and equivalent 
planes of a tetragonal crystal. The angle, α, between the 4-fold axis and 
the normal of {111} planes depends on the lattice parameters a, c of the 
crystal. This angle is equal to the angle between the z-axis and the recipro-
cal lattice vector H111. Similarly, if the crystal is tilted by α and then rotat-
ed around the z-axis, the {111} poles arrive at the north pole of the sphere 
every 90 degrees. The line connecting the sphere center to the (hkl) pole 
is parallel to the corresponding reciprocal lattice vector Hhkl. Thus, when 
this crystal is rotated around its 4-fold axis after tilting, the four recipro-
cal lattice vectors take turns being vertically oriented every 90 degrees. In 
this case, the tilting angle is the angle between the 4-fold axis and the Hhkl 
vector.

(a)

0
Rotating angle,    (degree)

Rotation

α

(001)

(b)

(c)

S/λSo/λ
(S - So)/λ

(S - So)/λ

(001)
2θ111

H111

H111

H111

So/λ
S/λ

φ
90 180 270

I

360

90o

FIGURE 6.12  Diffraction from (111) plane in a (001)-oriented sample with four-fold 
rotational symmetry: (a) Diffraction condition for (111), (b) tilting and rotation of the 
sample, and (c) φ scan pattern.
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To find out the in-plane orientation of a two-dimensional material such 
as substrate and film, diffraction should be made to occur from a set of 
planes inclined to the surface because X-ray beams diffracted from planes 
parallel to it contain no information on the in-plane orientations. Of course, 
the plane selected for the in-plane orientation measurement must have a 
non-zero structure factor; planes of large structure factor are preferred. 
Suppose that a slab of crystal is (001)-oriented and has a 4-fold rotation 
axis perpendicular to the surface (see, Figure 6.12(a)). In order for diffrac-
tion to occur from {111} planes, the X-ray source and detector should first 
be arranged so that the angle between the incident and scattered beams 
becomes 2θ111, which satisfies the Bragg law λ = 2d111sinθ111. Then, the 
difference between the incident and scattered beam vectors, (S – So)/λ, 
has a magnitude of 1/d111, which equals the length of H111. It is important 
to note here that the normal to (111) is not perpendicular to the sample 
surface. Although the reciprocal lattice vector H111 has the same magnitude 
as the (S – So)/λ vector, diffraction does not occur because these two vec-
tors are not parallel to each other. The four reciprocal lattice vectors are 
equally inclined to the symmetry axis, as shown in Figure 6.12(b) and the 
inclination angle depends on the lattice parameters of the crystal. Let this 
angle be α. If the crystal is tilted by α and subsequently rotated around the 
symmetry axis with the detector fixed at 2θ111, the reciprocal lattice vec-
tors alternately coincide with (S – So)/λ every 90 degrees, satisfying the 
Bragg condition for diffraction. Then we have four peaks on 360° rotation 
and they are 90° separated from one another, as shown in Figure 6.12(c).

κ

φ

κ = α

FIGURE 6.13  Sample can be tilted and rotated by varying the κ and φ angles of the 
sample holder.

The crystal can be tilted by changing the κ angle of the sample holder 
and rotated around the surface normal by varying its φ angle, as depicted 
in Figure 6.13. Here 2θ, ω, and κ are fixed at 2θ111, θ111, and α, respec-
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tively, and the diffraction intensity is measured as a function of . If the 
(111) peak is missing due to the systematic absence as in a BCC crystal, 
(222) can be used as the reflecting plane. In this case, the detector should 
be set at 2q222. Two factors should be taken into account when we choose 
the reflecting plane with which the φ scan is performed. First, it should 
have a structure factor as large as possible. Another consideration is that 
the plane to be analyzed needs to be suitably inclined to the surface, with 
the tilting angle of 30–60°. For the tilting angle beyond 60°, the sample 
holder may block the diffracted beams.

FIGURE 6.14  A single-crystalline film/substrate with an in-plane orientation relation of 
[110]Film/[010]Sub.

The in-plane orientation relationship between the film and substrate 
can be known by comparing the results of the φ scans that are separately 
conducted for the two materials. In actual analysis, the orientation rela-
tionship is deduced from the measured diffraction patterns. However, the 
underlying principle may be better explained in the opposite order, i.e., by 
deriving the expected diffraction patterns from a specific film/substrate 
combination. Figure 6.14 shows an example in which a single-crystalline 
film is deposited on a single-crystal substrate. The film has a simple te-
tragonal structure and the substrate, a simple cubic structure. Both of the 
substrate and film are (001)-oriented and their in-plane orientations have 
a relationship of [110]Film/[010]Sub. That is, the x-axis of the film is rotated 
by 45° from the x-axis of the substrate. As discussed before, a set of planes 
suitably inclined to the surface should be selected for the φ scan on this 
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purpose. Here, (101) planes are selected for both the substrate and the 
film, as shown in Figure 6.15. Any set of planes has non-zero diffraction 
intensity in simple structures. Both of the substrate and film have four-fold 
rotational symmetry along the z-axis. Figure 6.15 also shows the poles 
of (101) and its equivalent planes marked on a sphere. Since the x-axis 
of the film is at 45° to the x-axis of the substrate, the {101} poles of the 
film are rotated by 45° around the z-axis with respect to those of the sub-
strate. Therefore, the {101} diffraction peaks of the film are also shifted 
by 45° in φ from the substrate peaks. Although Figure 6.15 compares the 
{101} peaks of both materials in a single graph, the φ-scans are carried out 
separately because the required 2θ and κ values are different. The in-plane 
orientation relationship between the film and substrate can be deduced 
from the relative positions of the observed peaks. The absolute φ values do 
not have any meaning because they simply depend on how we attach the 
sample to the sample holder. Only the relative peak positions are mean-
ingful. When (111) instead of (101) is selected for the φ scan of the film 
(Figure 6.16), the corresponding diffraction peaks will be observed at the 
same φ angles as the substrate {101} peaks. This is because the x-axis of 
the film is already rotated by 45° from that of the substrate and thus the 
{111} poles of the film have the same rotation angles as the {101} poles 
of the substrate.

FIGURE 6.15  {101} poles of the substrate and film and their diffraction peaks.
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FIGURE 6.16  Substrate {101} and film {111} poles and their diffraction peaks.

As described above, any planes inclined to the surface can be chosen 
for the φ scans unless their reciprocal lattice points are systematically ab-
sent. To select a proper plane for the φ-scan, the out-of-plane orientation 
of the film should be known in advance so that the sample can be tilted 
in accordance with the Bragg condition for diffraction. Therefore, the φ 
scan is usually preceded by a symmetric θ-2θ scan to determine the out-
of-plane orientation of the film. The in-plane orientation relationship can 
then be derived by comparing the diffraction patterns of φ-scans separately 
performed for the substrate and film. Suppose that the substrate and film 
are already known to be (001)-oriented through the θ-2θ scan, and thus we 
selected (101) planes for the φ scans in both materials. If the film {101} 
peaks were observed at angular positions shifted by β from those of the 
substrate {101} peaks, it means that <100>Film makes an angle of β with 
<100>Sub on the surface plane, as illustrated in Figure 6.17.
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FIGURE 6.17  Angular separation of the peaks vs. in-plane orientation relation.

FIGURE 6.18  (a) In cubic and tetragonal systems, it is equally probable that the film 
is oriented with its [100] rotated either by +β or –β from [100] of the substrate. (b) 
Polycrystalline film with two in-plane orientations. (c) Diffraction pattern obtained when 
the in-plane orientation relation is like (a).

A practical aspect is worthy of consideration in this case. In the cubic 
and tetragonal structures, [100] and [010] directions are crystallographi-
cally identical. Thus, in the actual thin film deposition, it is equally prob-
able that the film is oriented with its [100] rotated either by +β or –β from 
[100] of the substrate, as depicted in Figure 6.18(a). This will lead to a 
polycrystalline film with two in-plane orientations (Figure 6.18(b)). As a 
result, eight φ peaks will be observed from the film (Figure 6.18(c)). The 
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appearance of eight peaks from a crystal with four-fold symmetry confirms 
the existence of two in-plane orientations. When β becomes 0° or 45°, a 
single-crystalline film can be obtainable and then the number of observed 
peaks renders to four, as depicted in Figure 6.19. A number of factors af-
fect the orientation and crystalline quality of a thin film deposited on the 
rigid substrate. One of the most critical factors is the lattice match between 
the film and substrate. To grow a high-quality, single-crystalline thin film, 
a substrate of suitable structure and lattice parameter should be searched 
at first. Figure 6.20 is a schematic illustration of the well lattice-matched 
case.The φ scan is very useful to determine the in-plane orientation of a 
single-crystalline or highly textured film. However, there is no much need 
for determining the in-plane orientation in a film with multiple out-of-
plane orientations like Figure 6.3(c). Moreover, the diffraction peaks (ob-
tained from the φ scan) are very weak in this type of polycrystalline film.

FIGURE 6.19  In-plane orientation relationship and the resulting diffraction pattern. 
When b is 45°, a single-crystalline film can be obtainable and four peaks are observed 
from the film.

FIGURE 6.20  Well lattice-matched interfacial structure: (a) cross-section and (b) top 
view.
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EXAMPLE 6.2

A thin film of FCC structure (a = 4.60 Å) was deposited on the substrate 
with an HCP structure (a = 3.25 Å) and their out-of-plane orientation was 
found to be (111)Film/(001)Sub. In this problem, the possibility that the film 
is single-crystalline is very high, when considering the interfacial struc-
ture and the lattice constants. But we like to confirm whether it is actually 
single-crystalline or not, through φ scans using λ = 1.54 Å.

(a)	 Select a plane of the substrate with which you perform the φ scan, 
and give 2θ and κ values required for this scan.

(b)	 Repeat (a) for the film.
(c)	 We finished scans both for the substrate and film. If the film is ac-

tually single-crystalline, how many peaks will you observe from 
each scan and what will their relative positions be?

Answer:
(a) When selecting a plane for the φ scan, two things must be taken into 
consideration. First, it should be inclined to the surface at some degrees. 
Second, its structure factor should not be zero. Since the structure factor 
of HCP is given by ( )22 3 3 2[1 ]

h k liF f e π + +
= + , (101), (102), ..., and so on 

can be selected. We here choose (102) as shown in Figure 6.21. The tilting 
angle κ is equal to the angle between the c-axis and H102. From the rela-
tion of c/2tan

3a / 2
κ = , κ is 44.33°. The 2θ value of 47.02° can be calculated 

from the interplanar spacing given by 102 3 sin / 2d a κ= .

(102)

 3a/2a

c

b

H102
c

c/2
(102)

FIGURE 6.21  (102) plane in HCP structure.
(b) As the film is (111)-oriented, (200) is here selected for the φ-scan. It 
is to be noted that (100) cannot be chosen because the structure factor 
is zero. The tilting angle κ = 54.74° is obtained by calculating the angle 
between the surface normal, i.e., [111] and H200. The Bragg law for (200) 
gives 2θ200 = 39.12°.
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(c) The rotation axis of the substrate has six-fold rotation symmetry and 
thus a total of six peaks will be observed in the φ scan (Figure 6.22). The φ 
values of the peaks are determined by the angular positions of the recipro-
cal lattice vectors when they are projected onto a plane perpendicular to 
the rotation axis, that is, by the directions of the projected reciprocal lat-
tice vectors on the surface plane. The rotation axis, [111], of the film has 
three-fold symmetry, giving rise to three peaks diffracted from the (200), 
(020), and (002) planes. The projected H200 and equivalent vectors have 
angular positions coincident with three of the six projected H102 vectors of 
the substrate. Therefore, the film {200} peaks will have the same φ angles 
as three of the substrate peaks.

[001]

Projected H102

φ (degree)

I

H102

Substrate

Film

[111]

Projected H200

H200

{200}F

{102}Sub

Projected H102

FIGURE 6.22  Projected reciprocal lattice vectors vs. φ peak positions.
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6.4  STRESS AND STRAIN IN THIN FILMS

As a starting point in the discussion of stress and strain, consider a uni-
form cylindrical bar of cross-sectional area A that is subjected to an axial 
tensile force P (Figure 6.23). The normal stress, s, is defined as force per 
unit area and expressed as s = P/A. The tensile stress is represented with 
a positive value and the compressive stress, a negative value. The stress 
induces a strain that is defined as the change in length per unit length. The 
strain, e, is then given by e = ∆l/lo, where lo is the original length and ∆l, 
the length change. While the stress has units of N/m2, the strain is a dimen-
sionless quantity. In addition to the defined normal stress and strain, there 
are also shear stress and shear strain in mechanics. However, they are not 
directly measurable by X-ray diffraction, thus not being dealt with here. 
All solid materials can be deformed when subjected to an external load. It 
is already known from our daily experiences that up to a certain limiting 
load, a solid will recover its original dimensions when the load is removed. 
This is known as elastic deformation or behavior. The limiting load be-
yond which a material no longer behaves elastically is the elastic limit. 
When the elastic limit is exceeded, the loaded material has a permanently 
remnant deformation even after the load is removed.

E: Young’s modulus

P: forceP

A: area

Stress, σ = P/A (N/m2)

Strain, ε = ∆l/lo

lo ∆l

σσ

Elastic

σ

ε

Plastic

AA

FIGURE 6.23  Definition of stress and strain, and a typical relation.

A material that is permanently deformed is said to have undergone plas-
tic deformation. As long as the load is below the elastic limit, the deforma-
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tion is proportional to the load in most solid materials. This relationship is 
known as Hooke’s law, which governs the elastic behavior of a material. 
The load-deformation relationship is more frequently expressed as stress 
vs. strain. A typical σ-ε curve encountered in the solid material is also 
given in Figure 6.23. In the elastic region, the stress-strain relationship is 
linear with a slope of E = s/e, known as Young’s modulus. E is therefore a 
measure of the stiffness of an elastic material and has units of pressure (N/
m2 or Pa). Young’s modulus is not always the same in all orientations of a 
material. Here we shall only consider isotropic elastic solids. The theory 
of plasticity deals with the behavior of materials at strains where Hooke’s 
law is no longer valid. A number of factors make the mathematical formu-
lation of plasticity much more difficult than the description of the elastic 
behavior. For example, plastic strain is a function of the loading path by 
which the final state is reached, while the elastic deformation depends only 
on the initial and final states of stress and strain. The stress and strain in 
a thin film are largely caused by a lattice mismatch with the supporting 
substrate. The lattice mismatch-induced deformation is more likely to be 
elastic, rather than plastic.

FIGURE 6.24  (a) Uniaxial and (b) biaxial stress systems.

While a tensile force applied in the x direction produces an elongation 
along that direction, it also causes a contraction in the transverse y and z 
directions (Figure 6.24(a)). It has been found that the transverse strains are 
a constant fraction of the strain in the longitudinal direction. These strains 
are related by the following equation.

	 x
y z x E

σε ε nε n= = − = − 	 (6.1)

where n is Poisson’s ratio. The uniaxial stress xσ  produces a normal 
strain /x x Eε σ=  and two transverse strains y xε nε= −  and z xε nε= − . The val-
ues of n are close to 1/3 for most metals. The strain produced by more 
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than one stress component can be determined by applying the principle of 
superposition. The stress-strain relations for a three-dimensional state of 
stress are then given by

	

( )
( )

( )

1 [ ]

1 [ ]

1 [ ]

x x y z

y y z x

z z x y

E

E

E

ε σ n σ σ

ε σ n σ σ

ε σ n σ σ

= − +

= − +

= − + 	 (6.2)

Many problems can be simplified for a two-dimensional state of stress 
like Figure 6.24(b), which consists of two normal stresses sx and sy. This 
biaxial stress system is frequently encountered when one of the dimen-
sions of the body is small relative to the others. A typical example of the 
two-dimensional body is a thin film. In fact, there is no stress acting per-
pendicular to the free surface of the film. In a thin film, Eq. (6.2) reduces to
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FIGURE 6.25  Schematic showing how a thin film got to have residual stress and strain.

How a thin film got to have residual stress and strain can be explained 
with a simple geometry given in Figure 6.25. There is a free-standing film 
with dimensions a and b along the x and y directions. Suppose that we 
like to attach it to a substrate with slightly smaller dimensions of a–Da 
and b–Db along the same directions. If this film needs to be side-matched 
with the substrate, it should first be contracted in dimensions, before being 
glued to the substrate. This requires that compressive stresses sx and sy be 
applied to the film. To keep the film being attached to the substrate with 
sides matched, it must be under the same stress fields. Otherwise, the film 
would be detached from the substrate and recover its original dimensions. 
In other words, once the film remains constrained by the substrate, it has 
residual stresses. The compressive stresses sx and sy residual in the film 
causes a thickness increase from t to t + Dt. Assuming that the film is (hkl)-
oriented, the interplanar spacing would change from dhkl to hkl hkld d+ D . It 
will result in a shift of the (hkl) peak position from 2qo to 2qs (Figure 6.26). 
In this case, the strains within the film are given by

	 ( )

1 /

1 /

/ /
1

x x y

y y x

z x y hkl hkl

a a
E

b b
E

t t d d

ε σ nσ

ε σ nσ

nε ε ε
n

 = − = −D 

 = − = −D 

= − + = D = D
− 	 (6.5)
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FIGURE 6.26  Peak shift arising from the change in interplanar spacing.

By differentiating the Bragg law: 2 sindl q= , we obtain the relation of 
0 2sin 2 cosd dq q q= D + D . Manipulation of this relation gives

	 ( )2 2 2 2 tans o o zq q q q εD = − = − 	 (6.6)

where 2qs is the experimentally measured position and 2qo, the theoretical-
ly calculated one. Eq. (6.6) makes it possible to determine a strain normal 
to the film surface by measuring a shift in the peak position.

FIGURE 6.27  A small difference in the lattice parameters can be accommodated by 
strain energy. The misfit strain gives rise to an elastic stress in the film.
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As mentioned previously, a major source of the elastic stresses devel-
oped in a thin film is the lattice mismatch between the film and substrate. 
These stresses arise when the films have coherent interfaces with their sub-
strates. Coherent interface means an interface in which the crystal lattices 
(or atoms) match up on a 1-to-1 basis. Even in the case of perfect atomic 
matching, there is always a chemical contribution to the interface energy. 
Incoherent interface refers to an interface in which the atomic structure 
is disordered. The disordered structure results in a higher interfacial en-
ergy. Whether the film will exhibit a coherent or incoherent interface is 
determined by a competition between the elastic energy and the interfacial 
energy. A small difference in the lattice parameters, i.e., a small misfit, 
can be accommodated by strain energy and the misfit strain gives rise to 
an elastic stress in the film, as shown in Figure 6.27. The biaxial elastic 
stresses developed in a thin film depend on its lattice parameters relative to 
those of the substrate. If the film has smaller lattice parameters in both of 
the x and y directions, tensile stresses are generated along both directions 
(see Figure 6.28(a)). When it has a larger parameter along one direction 
and a smaller one along the other, the developed stresses will be mixed, 
as shown in Figure 6.28(b). In the latter case, two strain components in-
duced along the z direction may cancel out each other. Then, the film will 
exhibit no strain normal to its surface. Different materials have different 
thermal expansion behaviors. Thus, when a film on a substrate is subjected 
to a temperature change, thermal stresses can be generated in the film and 
substrate. It is often observed that some stresses develop in films during 
deposition or growth. They are not due to lattice mismatch or thermal mis-
match strains. These intrinsic stresses (or growth stresses) arise because 
thin films are usually deposited under non-equilibrium conditions. Since 
the film is constrained by the substrate, any redistribution of matter will re-
sult in stress. It is always strain that is directly measured by X-ray diffrac-
tion. The stress is determined indirectly, either by a calculation using such 
mechanics equations as Eqs. (6.2) and (6.3) or calibration. It is a challenge 
to exactly determine the residual stress of a thin film by X-ray diffraction 
alone, because its elastic constants (E and n) are generally different from 
those at the bulk state. Nevertheless, X-ray diffraction is a useful tool for 
comparatively analyzing the residual stresses of thin films.
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FIGURE 6.28  (a) When the film has smaller lattice parameters in both directions, tensile 
stresses are generated. (b) If it has a larger parameter along one direction and a smaller one 
along the other, the developed stresses are mixed.

EXAMPLE 6.3

Materials A and B have the same simple cubic structures. The lattice con-
stant is generally a function of temperature, and those of A and B are 
given as below.

4 44.00 2 10 , 4.05 10A Ba T a T− −= + × = +

where T is the temperature in Kelvin and the lattice constant has units 
of Å. A thin film of material A was deposited on a (001)-oriented B 
substrate at T = 500 K. It was found that the film/substrate has a coher-
ent interface with the orientation relations of (001)F//(001)S and [100]F//
[100]S. Then, calculate the elastic strains developed in the film when it 
was cooled to room temperature (T = 298 K). Also find the 2θ position 
of (001)F peak when θ-2θ scan is carried out with X-rays of λ = 1.54 
Å. The Poisson’s ratio of A is v = 0.3.
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Answer:
Both materials have an identical lattice parameter of 4.1 Å at 500 K. 
Therefore, the film and substrate are perfectly lattice-matched without 
any elastic strain. At 298 K, the materials A and B have lattice parameters 
of 4.06 Å and 4.08 Å, respectively. However, the thin film (material A) 
will exhibit the same in-plane lattice parameter as the substrate at room 
temperature, because it is supported and constrained by the substrate. 
This induces mutually orthogonal in-plane strains ex and ey in the film 
that have an equal magnitude of 30.02 / 4.06 4.93 10x yε ε −= = = × . From 
Eq. (6.4) and v = 0.3, we obtain 34.23 10zε −= − × . Since tensile strains are 
developed in the film plane, a compressive strain is induced along the sur-
face normal. As a result of the compressive strain, the film has d001 = 4.04 
Å. Thus, the (001)F peak will be observed at 2θ = 21.98°. If there were no 
strain, it would have been obtained at 21.87°.

6.5  FILM QUALITY AND ROCKING CURVE

The misfit that can be accommodated by elastic strain is limited. When 
a film constrained by a rigid substrate is very thin, it would be uniformly 
strained. Thus, the developed stress will also be uniform over the whole 
thickness, as illustrated in Figure 6.29. The elastic strain energy stored in 
a film increases in proportion to the film thickness. As the film gets thick-
er, top atomic layers would have its original lattice parameter to reduce 
the total energy. This will result in a nonuniform strain and stress (Figure 
6.30). Namely, the top layers of the film are nearly free from strain and 
stress. Under this circumstance, the spacing of any particular set of planes 
varies with a distance from the interface. The nonuniform strain causes a 
broadening of the corresponding diffraction peak. In fact, the diffraction 
lines may be both shifted and broadened, because not only do the plane 
spacings vary from position to position but their mean value differs from 
that of the strain-free film. The mechanics equations of Eq. (6.3) to (6.6) 
have been derived on the assumption of uniform stress and strain fields. 
These expressions only hold when the film is sufficiently thin so that it can 
take the lattice parameter of the substrate. When the film thickness further 
increases and exceeds a critical value, it becomes energetically favorable 
for misfit dislocation at the interface to reduce the stress (Figure 6.31).
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FIGURE 6.29  Uniform stress developed in a very thin film.
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FIGURE 6.30  With increasing thickness, the developed stress becomes more nonuniform.
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FIGURE 6.31  Misfit dislocation.

Dislocations are very common in epitaxially grown thin films and are 
spontaneously formed to relax the misfit strain. The appearance of misfit 
dislocations is influenced by the degree of lattice mismatch as well as the 
film thickness. If the lattice mismatch is fairly small, the misfit can be 
accommodated by the elastic strain energy and thus a dislocation-free epi-
taxial film may be grown up to a considerable thickness. On the contrary, 
dislocations will appear in a relatively thin film when the lattice mismatch 
becomes more profound. Figure 6.32 shows cross-sectional TEM images 
of a Si0.7Ge0.3 film grown on Si wafer. This epitaxial film is dislocation-
free. Si and Ge have the same diamond structure. The lattice constants 
of Si and Ge are aSi = 5.43 Å, aGe = 5.66 Å. SixGe1–x has an intermediate 
lattice constant. When “x” is larger than 0.7, the lattice mismatch between 
SixGe1–x and Si can be accommodated by the elastic strain formed in the 
SixGe1–x film. The misfit increases with the decreasing value of “x”. Ge 
and Si have a lattice misfit of 4.2%. Therefore, an epitaxial Ge film grown 
on Si substrate exhibits some dislocations, as shown in Figure 6.33(a). 
A high-resolution image of the interface clearly shows the existence of 
misfit dislocation (Figure 6.33(b)). The presence of dislocations may have 
an adverse effect on the electrical performance of semiconductor materi-
als, providing easy diffusion pathways for dopants to cause short-circuits, 
or recombination centers to reduce carrier lifetime and density. The crys-
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talline quality of an epitaxial film is rapidly deteriorated with increasing 
density of dislocations.

FIGURE 6.32  Cross-sectional TEM images of a Si0.7Ge0.3 film grown on Si wafer 
(Courtesy: prof. D. Ko).

FIGURE 6.33  (a) Epitaxial Ge film grown on Si substrate. (b) High-resolution image of 
the Ge/Si interface (Courtesy: prof. D. Ko).
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A rocking curve is a plot of Omega (ω) vs. X-ray intensity; it is ob-
tained by changing the ω angle while keeping the X-ray source and detec-
tor stationary. From a rocking curve measurement, it is possible to deter-
mine the mean spread in orientation of the different crystalline domains of 
an imperfect crystal. When diffraction from a set of (hkl) planes parallel to 
the sample surface is concerned, the source and detector are fixed at 2θhkl 
and only the sample is rotated (or “rocked”), as shown in Figure 6.34(a). 
Rocking curves are primarily used to study imperfections such as disloca-
tions, mosaic spread, curvature, misorientation, and inhomogeneity. The 
rocking curve from a perfect crystal will have an intrinsic width arising 
from the instrument broadening and thickness effect. Different planes of a 
crystal also exhibit different intrinsic peak widths. Defects like mosaicity, 
dislocations, and curvature create disruptions in the perfect parallelism of 
atomic planes, causing the rocking curve to broaden beyond the intrinsic 
width for the Bragg peak. A crystal with mosaic structure does not have its 
atoms on a perfectly regular lattice throughout the whole crystal. Instead, 
the crystal is broken up into many tiny blocks, each slightly disoriented 
from one another. As a result, diffraction will occur not only at the Bragg 
angle but at other angles. The width of a rocking curve shown in Figure 
6.34(b) is thus a combined product of the material and defects.

FIGURE 6.34  (a) Measurement of rocking curve. (b) Rocking curve has some width, 
which is a combined product of the material and defects.
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A thin film with high dislocation density has some angular spread in 
the crystal axes. This structure can be viewed as a structure consisting of 
mosaic blocks, each slightly disoriented from one another (Figure 6.35(a)). 
The angle of disorientation will increase with increasing dislocation den-
sity. The mosaic spread elongates the reciprocal lattice point in a direction 
parallel to the reflecting plane (hkl), causing the reciprocal lattice vec-
tor Hhkl to have some angular spread (Figure 6.35(b)). This will result in 
broadening of the rocking curve, because each mosaic block successively 
comes into diffraction position as the film is rotated (i.e., ω-scanned). The 
width of a rocking curve is a direct measure of the orientation distribution 
in a mosaic crystal. As the degree of mosaicity is related to the dislocation 
density in an epitaxial film without any curvature, it is possible to quanti-
tatively analyze the dislocation density within a film by X-ray diffraction. 
The rocking curves are widely used for assessing the overall crystalline 
quality of thin films. It is to be noted that for the comparative analysis 
by rocking curves, the films should have similar thicknesses so that their 
intrinsic widths are not much different from one another.

FIGURE 6.35  (a) Film with high dislocation density can be viewed as a structure 
consisting of mosaic blocks. (b) Angular spread of the reciprocal lattice vector in a mosaic 
structure and the resulting peak broadening.
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6.6  GRAZING INCIDENCE X-RAY DIFFRACTION

X-ray radiation has a large penetration depth into any matter. Owing to 
this property, X-ray diffraction is not surface sensitive. Grazing incidence 
X-ray diffraction (GIXRD) is a technique to overcome this restriction. 
GIXRD measurements are performed at very low incident angles to maxi-
mize the signal from thin layers. It is sometimes very difficult to analyze 
thin films due to their low diffracted intensities, which results from small 
diffracting volumes compared to the substrates. When a thin film is char-
acterized by the conventional θ-2θ scan (Figure 6.36(a)), diffraction sig-
nals from the film are much weaker than those from the substrate because 
the incident X-ray beam penetrates deeply into the substrate. Although 
the penetration depth varies with the symmetric sweep angle θ/2θ, it is 
generally much greater than the film thickness. The penetration depth of 
Cu Kα line at 2θ = 60° ranges from just above 1 µm for gold to 500 µm 
for graphite. When analyzing films much thinner than these values, strong 
scattering from the substrate may interfere with or completely drown out 
the weak signal from the film. The combination of low diffraction signal 
and high background makes it difficult to identify the phases present in 
the film. In the GIXRD geometry (Figure 6.36(b)), the stationary incident 
beam makes a very small angle with the sample surface (typically 0.3° to 
3°), which increases the path length of the X-ray beam through the film. 
This can enhance the diffraction intensity of an ultrathin film, while con-
siderably reducing the signal from the substrate at the same time. Since 
the path length is increased at grazing incidence, the diffracting volume of 
the film (i.e., its effective thickness) increases proportionally. As a result, 
there is a dramatic improvement in the film’s signal-to-background ratio.

FIGURE 6.36  Schematic diagrams of (a) conventional θ-2θ scan and (b) GIXRD.
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It is important to understand a fundamental difference between the 
conventional XRD based on a θ-2θ scan and the GIXRD. In the θ-2θ scan 
shown in Figure 6.37(a), the planes that contribute to diffraction peaks 
are always parallel to the surface. No information on any other planes can 
be obtained from this symmetric scan. With reference to the schematic 
geometry given in Figure 6.37(b), GIXRD detects planes that are tilted 
at an angle of θ – Φ from the surface, where Φ is the angle of incidence. 
In whatever geometry, the incident and diffracted beams are symmetric 
with respect to the reflecting planes. They make the same angle of θ with 
the reflecting planes. The incident angle Φ refers to the angle measured 
from the sample surface. In GIXRD, the incidence angle Φ is fixed and 
the angle (2θ) between the incident and diffracted beams is varied. When 
collecting the diffraction signal, only the detector is rotated through the 
angular range, keeping the incident angle, the beam path length, and the 
irradiated area constant. Under these conditions, crystal planes inclined to 
the sample surface are observed. The normal to these planes bisects the 
angle formed by the X-ray source, sample holder, and detector.

FIGURE 6.37  Schematic of the difference between (a) conventional XRD and (b) 
GIXRD.

The GIXRD method is not suitable, if the film has a high degree of pre-
ferred orientation (such as, an epitaxial film). In the symmetric θ-2θ scan, 
reflection occurs from planes that are parallel to the surface. Thus, an X-
ray beam incident in any directions can be diffracted once the Bragg angle 
is maintained between the incident beam and the sample surface. It means 
that diffraction takes place independent of the incident direction. This is 
because the normal to the reflecting planes has no directional change even 
though the sample is rotated around its surface normal. When the reflect-
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ing planes are inclined to the surface, their normal varies in direction with 
the sample rotation. An epitaxial film is itself a single crystal, with a spe-
cific orientation relation with the underlying substrate material. Thus, dif-
fraction at a particular wavelength only occurs when the sample is aligned 
correctly. For example, when the epitaxial film is (h1k1l1)-oriented, a set of 
inclined (h2k2l2) planes would have a specific normal direction depending 
on the rotational position of the sample. In order for diffraction to occur 
from the (h2k2l2) planes, the X-ray beam should be incident in such a way 
that the normal to these planes becomes coplanar with a plane containing 
the X-ray source, sample, and detector all together.

The main purpose of the grazing incidence is to increase the effective 
thicknesses of very thin films, which are difficult to analyze by the typical 
θ-2θ scan. When the film is single-crystalline or highly textured, it should 
be accurately aligned with respect to the incident X-ray beam so that 
diffraction can occur from a particular set of planes inclined to the film 
surface. This requires information on the in-plane orientation of the film. 
However, there is no way of knowing it in advance. Therefore, GIXRD is 
not suitable for analyzing such thin films as shown in Figure 6.3(a) and 
(b). Meanwhile, a polycrystalline film like Figure 6.3(c) diffracts the in-
cident X-ray beam in a conical fashion and some of the diffracted signals 
are captured by the detector. A polycrystalline film consists of a number 
of grains that have different orientations. As the normal to a set of (hkl) 
planes has random directions, the (hkl) planes in some grains will be prop-
erly oriented so that the diffraction condition is satisfied. The geometry 
of Figure 6.37(b) is primarily aimed for identifying the phases present in 
polycrystalline films. A great advantage of the grazing incidence method is 
that depth profile analysis is also possible by varying the incidence angle. 
In each scan, the angle of incidence is fixed so that the degree of penetra-
tion into the sample is kept constant throughout the measurement. At low 
incidence angles, the X-ray beam penetrates only the uppermost layers. 
At higher incidence angles, the X-rays penetrate deeper into the sample. 
Thus, successive layers can be sampled by adjusting the angle of grazing 
incidence.
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FIGURE 6.38  Grazing incidence in-plane X-ray diffraction (GIIXRD).

There is another configuration based on the grazing incidence, which 
is known as grazing incidence in-plane X-ray diffraction (GIIXRD). This 
geometry is illustrated in Figure 6.38. Both of the incident and diffracted 
beams are at grazing angles with respect to the sample surface. In GI-
IXRD, the incident X-ray beam impinges onto the surface of a film at an 
angle of 1° or less, and the detector is placed in a horizontal plane nearly 
parallel to the film surface to detect diffraction from lattice planes that are 
perpendicular to the surface. GIIXRD data can be collected using a θ-2θ 
scan and/or an ω scan. In the θ-2θ scan, both of the film and detector are 
rotated, with the former rotating at half a rate which the detector is rotated. 
This is to record diffraction from planes perpendicular to a particular di-
rection on the substrate. In the ω scan, the detector is stationary at a par-
ticular angle of 2θ and the film is rotated about its surface normal to record 
in-plane diffraction from a set of lattice planes that have a fixed value of 
spacing. In this respect, GIIXRD can be utilized to analyze the orientation 
relationship of an epitaxial film with the underlying substrate and measure 
the in-plane strains developed parallel to the film surface. Since the inci-
dent beam and the diffracted beam are both at very small angles with the 
sample surface, the use of Soller slits is necessary in both sides to ensure 
high angular resolution. This reduces the available X-ray intensity rather 
severely. Although GIIXRD experiments are also possible with laboratory 
X-ray sources, many such experiments are carried out by synchrotron ra-
diation facilities that allow ultrathin films to be analyzed. In the symmetric 



220	 X-Ray Diffraction for Materials Research: From Fundamentals to Applications

Problems

θ-2θ diffraction, one-dimensional information along the surface normal 
is obtained. In GIIXRD, two-dimensional information on the surface is 
measured. The combination of both methods makes it possible to achieve 
three-dimensional information on any epitaxial films.

6.1. � The following graph shows the diffraction pattern obtained with a 
θ-2θ scan on ZnO film/LiTaO3 substrate. ZnO is hexagonal with a 
= 3.249 Å and c = 5.206 Å. LiTaO3 is trigonal and its triple hex-
agonal unit cell has dimensions of a = 5.154 Å and c = 13.780 Å. 
The substrate is (100)-oriented. The Cu Kα line (λ = 1.54 Å) was 
used as the X-ray source. The position of the peaks are 2θ = 31.4° 
for ZnO and 62.0° for LiTaO3. State which planes these peaks are 
coming from?

FIGURE 6.39  XRD pattern of ZnO film/LiTaO3 substrate.
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6.2. � An AB3 compound thin film (cubic with a = 4 Å) was deposited 
on a (001)-oriented substrate (body-centered tetragonal with a = 4 
Å, c = 5.6 Å), with the out-of-plane orientation of (001)Sub//(001)
Film. This compound has an order-disorder transition like AuCu3. At 
T < 100°C, A atoms are located on the corners of the unit cell and 
B occupy the face-center positions. Above 100°C, all positions are 
randomly occupied by A and B atoms. We are carrying out θ-2θ 
scan for this sample in the scan range of 2θ = 30°–120° with an 
X-ray beam at λ = 1.54 Å.

     (a) � When the scan is performed at room temperature, identify all the 
observed peaks with their positions (2θ value).

     (b) � The same scan is carried out with the sample heated over the transi-
tion temperature. State if there are any changes to the result of (a). 
(Assume that there is no change in the lattice parameters).

6.3. � MgO is cubic and Sr0.5Ba0.5Nb2O6 is tetragonal with 4mm point 
group. A Sr0.5Ba0.5Nb2O6 thin film was deposited on a (001)-ori-
ented MgO substrate and their out-of-plane orientation relation-
ship was found to be (001)S//(001)F. In order to find the in-plane 
orientation relationship between these two materials, φ scans were 
performed for the substrate (202) plane and the film (221) plane. 
The separately obtained two patterns are compared in the following 
graph. How many in-plane orientations exist in the film? What are 
the angles between [100]S and [100]F?

φ90o 180o 270o 360o0

I

Substrate (202) peak
Film (221) peak

28o

52o

FIGURE 6.40  φ scan peaks.
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6.4. � A (001)-oriented thin film (simple tetragonal structure, a = 3 Å, c = 
4 Å) was deposited on the (001)-oriented substrate of simple cubic 
structure (a = 3 Å). When the sample is symmetrically scanned us-
ing a Cu Kα line (λ = 1.54 Å) in the range of 2θ = 20°–120°, draw 
the expected diffraction intensity vs. 2θ graph and state from which 
plane each of the peaks comes from.

6.5. � θ-2θ scan (λ = 1.54 Å, 2θ = 20°–120°) for a Si film (a = 5.43 Å) 
deposited on the glass substrate revealed diffraction peaks at 2θ = 
28.43°, 47.31°, 56.38°, and 106.82°. How many out-of-plane ori-
entations exist in the film?

6.6. � In thin film growth, a buffer layer is often inserted between the film 
and the substrate when two materials have poor adhesion. Here is 
an example. After depositing a buffer layer B on the substrate A, 
a film C was deposited on top of the buffer layer. The substrate is 
simple cubic with a = 2.4 Å. The buffer layer has a body-centered 
tetragonal structure with a = 2.4 Å and c = 3.4 Å. The film pos-
sesses a simple orthogonal structure (a = 3.0 Å, b = 2.4 Å, and c = 
3.4 Å). The out-of-plane orientation relationship is (110)A//(100)B//
(100)C. Explain about the diffraction pattern obtained with a sym-
metric scan performed in the 2θ range of 20°–100°. λ = 1.54 Å.

6.7. � A thin film of BCC structure (a = 4.28 Å) deposited on a Si substrate 
(a = 5.43 Å) revealed diffraction peaks at 2θ = 42.18°, 52.29°, and 
69.08°, when the θ-2θ scan was performed with an X-ray beam of 
λ = 1.54 Å. Then, identify each of the observed peaks.

6.8. � A tetragonal thin film with point group 4mm (a = 5.43 Å, c = 3.43 
Å) was deposited on a Si substrate. A θ-2θ scan using an X-ray 
beam of 1.54 Å confirmed the out-of-plane orientation relation of 
(001)S//(001)F. Considering the lattice constants, the deposited film 
was expected to be single-crystalline and exhibit an in-plane orien-
tation relation of [100]S//[100]F. The φ scan performed for the sub-
strate (111) plane produced peaks at 0°, 90°, 180°, and 270°. When 
the φ scan was carried out for the film (211) plane, at which posi-
tions would the peaks be observed if the film is single-crystalline, 
possessing the expected in-plane orientation.
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  6.9. � A thin film of BCC structure (a = 4.0 Å) was deposited on a 
(001)-oriented substrate of FCC structure (a = 5.65 Å). If the out-
of-plane orientation relation is (001)S//(001)F, at which positions 
will the peaks be observed when a symmetric scan is carried out 
in the 2θ range of 20°–150° using a Cu Kα line (λ = 1.54 Å)?

6.10. � A certain material having atomic radius of 1.5 Å can exhibit either 
an FCC or BCC structure in the thin film state. A thin film of this 
material showed diffraction peaks at 2θ = 52.85° and 125.50° un-
der the θ-2θ scan performed using an X-ray beam at 1.54 Å. What 
are the structure and out-of-plane orientation of this film?
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7.1  INTRODUCTION

The Laue method is mainly used to determine the orientation of single 
crystals. It reproduces von Laue’s original experiment that was the first 
diffraction method ever used. The Bragg equation: λ = 2dsinθ imposes 
very stringent conditions on λ and θ for any single crystal. When a parallel 
monochromatic X-ray beam falls on a stationary crystal, very few planes 
will be oriented so as to satisfy the Bragg law and as a result, very few 
reflections will be observed. To increase the number of reflections, either 
λ or θ should be continuously varied during the experiment. In the Laue 
method, a white X-rays beam (i.e., the continuous spectrum from an X-ray 
tube) is made to fall on a stationary single crystal. The Bragg angle θ is 
then fixed for every set of planes in the crystal. Each set of planes selects 
and diffracts a particular wavelength from the white radiation that satisfies 
the Bragg law for the values of d and θ involved. Thus, each diffracted 
beam has a different wavelength. The diffracted spots are recorded on a 
flat photographic film placed perpendicular to the incident X-ray beam. 
The symmetry of this Laue pattern corresponds to the symmetry of the 
crystal and directions of the crystal axes are determined by the symmetry 
axes of the Laue pattern. It allows a volume of as-grown single crystal to 
be cut in specific orientations. This begins with finding out the character-
istic symmetry axes of the crystals: for example, the 4-fold rotational axis 
in tetragonal and <100> or <111> directions in cubic crystals.

h1 k1 l1

(a)

h2 k2 l2

h1 k1 l1

h2 k2 l2

(b)

FIGURE 7.1  (a) Representation of crystal planes as poles on the projection sphere. (b) 
Stereographic projection of two crystal planes and their equivalent planes in a tetragonal 
crystal.
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The underlying principle of Laue diffraction may be better explained 
with the projection of crystal planes. As discussed in Chapter 2, the sym-
metry of a crystal can be more easily figured out by representing the orien-
tations of planes on a two-dimensional diagram. Suppose that a tetragonal 
crystal is positioned at the center of a projection sphere with its 4-fold 
rotational axis directed in the north, as shown in Figure 7.1(a). The ar-
bitrary (h1k1l1) and (h2k2l2) planes marked as poles in Figure 7.1(a) are 
stereographically represented in Figure 7.1(b) along with their equivalent 
planes. This stereographic diagram clearly shows a 4-fold rotational sym-
metry axis perpendicular to the plane. This four-fold symmetry is still 
preserved with more projected poles from some other planes, since the 
crystal is tetragonal. In the stereographic projection, the plane normals are 
projected onto the equatorial plane of a projection sphere with its north 
and south poles as the reference points. For the understanding of Laue 
diffraction, it is more helpful to make use of the gnomonic projection, in 
which the point of projection is the sphere center.

(a) (b)

Film

FIGURE 7.2  (a) Gnomonic projection of an arbitrary crystal plane and its equivalent 
planes. (b) Example of the gnomonic projection for many different planes in a tetragonal 
crystal.

In Figure 7.2(a), an arbitrary crystal plane and its equivalent planes are 
gnomonically projected onto a flat film vertically attached to the sphere of 
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projection, where the four-fold axis of the crystal is set perpendicular to 
the film. Figure 7.2(b) shows an example of the gnomonic projection for 
many different planes. The projected poles exhibit a four-fold axis verti-
cally running through the center of the film. When the characteristic sym-
metry axis of the crystal (here, the 4-fold axis) is inclined from the normal 
to the film surface, the symmetry center of the projected poles will be off 
the film center, as shown in Figure 7.3. If the Laue experiment in question 
is ultimately to cut the crystal normal or parallel to its characteristic sym-
metry axis, we need to tilt and/or rotate the crystal by adjusting the sample 
holder so that the symmetry center of the poles becomes coincident with 
the center of the film.

FIGURE 7.3  Gnomonically projected poles expected when the characteristic symmetry 
axis of the crystal is inclined from the normal to the film surface.

Suppose that an X-ray beam is incident parallel to the 4-fold axis of 
a tetragonal crystal through the center of a film, as illustrated in Figure 
7.4(a). The plane normal always bisects the angle formed by the incident 
and diffracted beams. Therefore, the diffraction spots recorded on the film 
will have the same symmetry as the projected planes (Figure 7.4(b)). As-
grown single crystals often have arbitrary shapes. Utilizing the diffraction 
patterns, they can be cut in specific orientations and prepared in the form 
of wafer, plate, cube, and others. Laue diffraction is also very useful to 
determine the longitudinal orientation of such one-dimensional crystals 
as wire and rod. Single crystals are usually anisotropic, with their physi-
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cal and chemical properties depending on the orientation. In this respect, 
the crystals should be prepared in particular orientations not only for re-
search purposes but also for device applications. This chapter describes 
the principle of Laue method, along with how the crystal orientation can 
be determined.

(a) (b)

X-ray 
beam

Diffracted 
beam

Incident beam

Plane normal

Reflecting planes

Plane normal Diffraction spot

Film

FIGURE 7.4  (a) Schematic illustration of the formation of a diffraction spot. (b) 
Symmetry equivalence of the projected plane normals and diffraction spots. It is to be 
noted that only the diffraction spots are recorded on the film.

7.2  LAUE METHOD

The Laue method is the oldest of the X-ray diffraction methods, in which 
a collimated beam of continuous spectrum falls on a stationary crystal. A 
broad X-ray spectrum in the incident beam is achieved by utilizing the 
unfiltered output from an X-ray tube. Since the intensity of the continu-
ous spectrum increases with the atomic number of the target element, it 
is preferable to use a heavy-metal target, such as tungsten (W), but the 
unfiltered radiation from a copper target also does very well. For each 
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set of (hkl) planes, the interplanar spacing d and the incident angle θ are 
fixed. A diffracted beam will be generated if the wavelength that satisfies 
the Bragg law is contained in the spectrum, as shown in Figure 7.5. For 
instance, if the incident white X-ray beam makes an angle of θ1 with a set 
of (h1k1l1) planes whose interplanar spacing is d1, the λ1 component will 
be diffracted in which the Bragg law of λ1 = 2d1sinθ1 is applied. Similarly, 
a set of (h2k2l2) planes with θ2 and d2 will diffract the λ2 component in ac-
cordance with λ2 = 2d2sinθ2. The different diffracted beams have different 
wavelengths and hence a Laue pattern is “colored”. If X-rays were visible 
to the naked eyes like ordinary lights, each diffracted beam would exhibit 
a different color. Although these colors cannot be seen by our eyes, col-
ored Laue patterns may be obtained by special photographic procedures. 
The positions of diffracted spots on the film depend on the crystal orienta-
tion relative to the incident beam. If the crystal is symmetrically oriented 
with respect to the primary beam, the resulting Laue pattern will also show 
such a symmetry since it directly reflects the symmetry of the crystal. If 
the crystal is bent or twisted, the diffraction spots become distorted and 
smeared out. In this respect, the Laue method is useful for both the deter-
mination of crystal orientation and the assessment of crystal quality.

FIGURE 7.5  Principle of Laue diffraction.

The reciprocal-space treatment of Laue diffraction is given in Figure 
7.6 for a particular set of (hkl) planes. As the incident beam has multiple 
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wavelengths, it is represented by a series of parallel vectors, each with a 
different length equal to 1/λ. All these vectors terminate at the origin of the 
reciprocal lattice. The origins of the incident beam vectors are the center 
of the Ewald sphere. Since the Ewald sphere now has varying radius, these 
vectors have different origins. Diffraction occurs when the reciprocal lat-
tice vector Hhkl terminates on the surface of the Ewald sphere. The diffrac-
tion direction is given by a vector drawn from the sphere origin to the tip 
of Hhkl. Of course, the wavelength of the diffracted beam is the reciprocal 
of the radius of this Ewald sphere. It is to be noted that higher-order reflec-
tions from (2h 2k 2l) and (3h 3k 3l) planes are also possible, if the incident 
white X-ray beam has a very wide spectral range. These reflections have 
the same Bragg angle as the (hkl) reflection and so all reflections will be 
superimposed on the same spot. When the wavelength of the (hkl) reflec-
tion is λ, the diffracted beams from the (2h 2k 2l) and (3h 3k 3l) planes 
have wavelengths of λ/2 and λ/3, respectively. Different spots have differ-
ent wavelengths, but a few different wavelengths of integer multiples may 
also be mixed on the same spot. The spectral range of wavelengths in the 
incident beam is not infinitely wide but has lower and upper limits, which 
depend on the used X-ray tube and some other experimental factors.

White X-rays

(h k l)

Diffracted

Hhkl

Incident

Ewald sphere

Hhkl

FIGURE 7.6  Laue diffraction condition for a set of (hkl) planes in reciprocal space.
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radius = 1/λL

a*
000

radius = 1/λU

b*

100

010 110

FIGURE 7.7  Reciprocal-space mapping of diffraction under a continuous X-ray spectrum 
of finite spectral width.

If λL and λU are the lower and upper wavelength limits, respectively, 
the largest Ewald sphere has a radius equal to 1/λL and the smallest one, a 
radius of 1/λU (Figure 7.7). There are a series of Ewald spheres between 
these two extremes. Any reciprocal lattice point lying in the shaded region 
of Figure 7.7 is on the surface of one of these Ewald spheres. It represents 
a set of crystal planes oriented to diffract one of the multiple wavelengths. 
As the spectral range of the incident beam gets broader, the number of 
reciprocal lattice points within the shaded region increases. Thus, more 
diffraction spots are obtained. Diffraction can take place either forward 
or backward. The direction of reflection from a particular set of planes 
can be easily found on the reciprocal diagram by drawing a circle passing 
through the origin of the reciprocal lattice and the corresponding lattice 
point. Then, a vector drawn from the center of this circle to the reciprocal 
lattice point represents the diffraction direction. For example, when the 
primary beam is incident along the a* vector, i.e., perpendicular to the 
(h00) planes of the crystal, 310  reflection occurs in the backward direc-
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tion while 220  reflection takes place in the forward direction (Figure 7.8). 
The real-space illustrations for these reflections are given in Figure 7.9. 
Laue method is the only X-ray diffraction technique that utilizes a white 
radiation consisting of many wavelength components. This is because 
the materials to be analyzed are single crystals. Each set of crystal planes 
has fixed spacing and orientation and thus selects a particular wavelength 
component that satisfies the Bragg law. Of course, there are no reflections 
from the planes whose structure factors are zero, even though the Bragg 
law may be satisfied.

λL < λβ < λU 

000
S/λα

(a)

000

310

220

So/λα

S/λβ

So/λβ

λL < λα < λU 

(b)

FIGURE 7.8  Examples of reflection in (a) the backward direction and (b) the forward 
direction.
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FIGURE 7.9  Real-space illustration of the forward and backward reflections.

The Laue method has two different configurations, depending on the 
relative locations of X-ray source, crystal, and film (Figure 7.10). In the 
transmission Laue method, the film is placed behind the crystal to record 
the beams diffracted in the forward direction. This method is so named be-
cause the recorded beams are transmitted through the crystal. In the back-
reflection Laue method, the film is placed between the X-ray source and the 
crystal. Here, the incident beam passes through the center of the film and 
the beams diffracted in the backward direction are recorded by the film. 
In both cases, the diffracted beams form an array of spots on the film and 
the positions of these spots depend on the orientation of the crystal. Thus, 
either transmission or back-reflection method can be used to determine the 
orientation of a crystal. From the practical point of view, the back-reflec-
tion method is more dominantly utilized. Since the positions of diffraction 



Laue Method and Determination of Single Crystal Orientation	 235

spots on the film depend on the crystal orientation, it is necessary to orient 
the sample relative to the incident X-ray beam. Single crystals to be ana-
lyzed often have irregular shape and arbitrary size. In both configurations, 
the crystal is stationed on a sample holder (usually a goniometer) and can 
be rotated and tilted by adjusting it. In the transmission method, it is more 
or less inconvenient to handle the sample freely because the sample holder 
should not block the transmitted beams. In addition, when the sample has 
high absorption at X-ray wavelengths, it should be prepared very thin. 
Otherwise, the diffracted beams recorded on the film would be very weak. 
The back-reflection method, however, requires no special preparation of 
the sample, which may be of any shape and thickness. The back-reflection 
configuration is particularly useful for large crystals that absorb X-rays 
very strongly, for example, metal crystals.

FIGURE 7.10  (a) Transmission Laue method. (b) Back-reflection Laue method.

The angle between the incident and diffracted beams is twice the Bragg 
angle. The back-reflection method records reflections of high Bragg angle, 
whereas the transmission Laue method captures only reflections of low 
Bragg angle. In other words, the back-reflected spots are obtained from 
the planes that make relatively large angles with the incident beam, while 
the transmitted spots are from those planes of small angles. Regarding the 
transmission Laue method, one obvious feature that is worthy of comment 
is the absence of reflections on the film over an area centered on the inter-
section of the incident beam with the film. A reflection close to the forward 
direction of the X-ray beam should have rather a small Bragg angle θ. Ac-
cordingly, λ/2d for this reflection should also be small. As we have already 
seen in Figure 1.8, there is a sharp cut-off at the low wavelength side of the 
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continuous emission from an X-ray tube, which depends on the operating 
voltage of the tube. This indicates that the wavelength required for this 
reflection may not be contained in the used white radiation. Moreover, the 
maximum value of d is limited by the unit cell dimensions of the crystal. 
Therefore, there will be a minimum value of θ below which reflection is 
impossible. It results in a circular blank area around the film center when 
the X-ray beam is incident parallel to one of the symmetry axes. Of course, 
the size and shape of the blank area on the film will depend on the orienta-
tion of the crystal relative to the incident beam. We can generally state that 
for a continuous spectrum with a certain cut-off wavelength, a substance 
with small unit cell dimensions (i.e., small d values) will exhibit a big-
ger blank area than a substance with larger cell dimensions. With more 
diffraction spots, it is easier to index the spots and determine the crystal 
orientation. The absence of reflections on the film is not a feature of the 
back-reflection Laue method. This is another reason why it is more widely 
used than the transmission method.

FIGURE 7.11  Formation of diffraction spots on the film in (a) transmission and (b) back-
reflection geometry.

The diffraction spots obtained with either method can be seen to lie on 
certain curves. These curves are usually ellipses or hyperbolas in the trans-
mission pattern and hyperbolas for the back-reflection pattern, as shown in 
Figure 7.11. The spots lying on a curve correspond to the reflections from 
planes belonging to one zone. It follows from the fact that the reflections 
from planes of a zone lie on the surface of a cone, whose semi-angle φ 
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is the angle between the zone axis and the forward direction of the inci-
dent beam. Thus, one side of the cone is tangent to the transmitted beam. 
Diffractions along the cone sides will be represented by spots lying on a 
curve on the film. The shape of a zonal curve depends very much on the 
inclination angle φ of the zone axis to the transmitted beam. A film placed 
for the transmission geometry will intersect the cone in an ellipse, with 
the diffraction spots arranged on this ellipse (Figure 7.11(a)). If the angle 
φ does not exceed 45°, the cone will not intersect a film placed for the 
back-reflection configuration. When φ is between 45° and 90°, the cone 
intersects the film in a hyperbola, as shown in Figure 7.11(b). If φ equals 
90°, the cone of diffracted beams becomes a plane containing the incident 
X-ray beam. In this case, the diffracted spots will be arranged on a straight 
line passing through the center of the film. Therefore, diffraction spots 
recorded on a back-reflection film lie on hyperbolas or straight lines. The 
distance of any hyperbola from the film center is a measure of the inclina-
tion angle of the corresponding zone axis.

FIGURE 7.12  (a) Cone formed by all diffracting planes belonging to a zone. (b) 
Diffraction from two different set of planes that have the corresponding reciprocal lattice 
vectors H1 and H2.

The fact that the Laue diffraction from planes of a zone occurs in a 
conical manner can be easily demonstrated by considering the Bragg 
condition in reciprocal space. This is true regardless of whether the crys-
tal has a symmetrical orientation or not. Consider a zone axis defined as 

u v w= + +r a b c , where a, b, and c are the unit cell axes of the crystal. 
Any planes belong to this zone if their indices (hkl) satisfy the relation,
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	 0hu kv lw+ + = 	 (7.1)

because the plane normals are perpendicular to the zone axis; the dot prod-
uct of u v w= + +r a b c  and * * *

hkl h k l= + +H a b c  should be zero. From 
Eq. (4.9), the direction of diffraction from the (hkl) planes is given by

	 o hkll− =S S H 	 (7.2)

Forming the scalar product of u v w= + +r a b c  with Eq. (7.2), we have the 
following relation.

	 o hkll= +r S r S r H   	 (7.3)

Since hklr H  is zero for all planes (hkl) belonging to this zone, we obtain 
o=r S r S   and φ = φo, where φo is the angle between the incident beam and 

the zone axis, and φ is the angle between the zone axis and the diffracted 
beam from any (hkl) planes. As shown in Figure 7.12(a), the diffracted 
beams from all planes belonging to this zone form a cone that contains the 
incident beam as one element of the cone. Figure 7.12(b) is a graphical il-
lustration of the diffraction from two different sets of planes that have the 
corresponding reciprocal lattice vectors H1 and H2. The unit vectors of the 
diffracted beams, given by S1 and S2, are equally inclined to the zone axis. 
While the diffracted beams have different wavelengths, their inclination 
angle to the zone axis is the same as the angle between the incident beam 
and the zone axis. If [ ]uvw  is a prominent zone axis in the crystal, there 
are many reflections on the curve and reflections generated by planes of 
low indices will lie at the intersection of several such curves, each related 
to a zone axis. If the X-ray beam is incident along a symmetry axis of the 
crystal, the curves connecting the diffracted spots are also symmetric with 
respect to the center of the film.

As discussed in Section 5.4, the structure factors for  hkl  and hkl  are of 
the same magnitude. It means that the reflections from either side of a set 
of (hkl) planes are equal in intensity: lhkl hkI I= . When X-rays are incident 
parallel to a symmetry axis of the crystal, the resultant Laue pattern will 
exhibit the symmetry of that axis. However, it is important to note that 
the Laue pattern may not display all the symmetry elements possessed by 
the crystal, i.e., its point group symmetry. Suppose, for example, that the 
X-ray beam is incident parallel to the tetrad in a tetragonal crystal of point 
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group 4/m and that the (hkl) plane is oriented so that it can reflect X-rays 
of wavelength λ. Then, the symmetry-related planes ( )khl , ( )hkl , and ( )khl  
will also reflect X-rays of the same wavelength. All four reflections will 
have the same intensity and be symmetrically disposed on the film about 
its center. Similarly, when the incident beam is parallel to a hexad, triad, 
or diad axis in the crystal, the resulting Laue pattern will display the cor-
responding symmetry. If the incident beam is coplanar with a mirror plane 
in the crystal, the obtained pattern will exhibit a line of symmetry parallel 
to the mirror plane and passing through the center of the film. The Bragg 
law restricts θ to values between 0° and 90°. Once the Bragg angle is set 
to one side of the (hkl) plane, there is no way of making a reflection occur 
from the other side of this plane. It is impossible to simultaneously record 
an hkl reflection and an hkl  reflection without moving the crystal relative 
to the incident X-ray beam. In a tetragonal crystal of point group 4/m, (hkl) 
and ( hkl ) are crystallographically identical due to the presence of a center 
of symmetry. However, if reflections are recorded from the planes (hkl), 
( )khl , ( )hkl , and ( )khl , any reflections will not be observed from their op-
posite planes. Of course, if the crystal is rotated through 180° about an axis 
perpendicular to its tetrad and the opposite sense of the tetrad is brought 
into coincidence with the direction of the incident X-ray beam, reflections 
will take place from all four opposites. Then, the reflections from (hkl) and 
three symmetry-related planes will be absent.

The symmetry discernible on a Laue pattern is the crystal symmetry 
about a direction parallel to the incident beam. Since the mirror plane in 
a 4/m crystal is perpendicular to the tetrad, the mirror symmetry is not 
recorded on the film when the X-ray beam is incident parallel to the four-
fold axis. This is the reason why the Laue pattern for a 4/m crystal will 
have the same symmetry as that for a tetragonal crystal of point group 4. 
Both have plane symmetry 4. By the same token, the diffraction pattern 
for a 4/mmm crystal will have plane symmetry 4mm, where the mirror 
planes parallel to the tetrad are recorded on the film as straight lines but 
the mirror plane perpendicular to it is not observed. The Laue symmetry of 
all tetragonal crystals is either 4 or 4mm. It is concluded that if the crystal 
is already known to be tetragonal, its plane symmetry can be determined 
by taking a single Laue photograph but the point group is not determined 
solely by it. This holds for other crystal systems. Figure 7.13 is a Laue pat-
tern taken along the characteristics symmetry axis of LiNbO3. As LiNbO3 
is a trigonal crystal with point group 3m, it shows a three-fold rotational 
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axis and mirror planes vertically passing through the center of the film. 
Since LiNbO3 lacks a center of symmetry, it does not possess a mirror 
plane perpendicular to the three-fold axis. Even if there were such a mirror 
plane, the observed diffraction pattern would have been the same as Figure 
7.13, since the Laue method does not record any mirror plane perpendicu-
lar to the incident beam.

FIGURE 7.13  Laue diffraction pattern from a LiNbO3 crystal.

7.3  INDEXING OF DIFFRACTION SPOT

The diffraction spots on a Laue photograph can be indexed, i.e., attributed 
to particular planes using special charts. Indexing can be achieved by cor-
relating the angular relationships between the normals to reflecting planes 
with the known axial ratios and interaxial angles. The interpretation of 
back-reflection Laue patterns is facilitated by using the Greninger chart. 
The back-reflection Laue camera has a film-to-sample distance, L, of 3 
cm or 6 cm. A Greninger chart for L = 3 cm is shown in Figure 7.14. This 
chart, usually printed on a transparency, is placed over the film to give the 
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coordinates of the diffraction spots. The principle of this chart is explained 
with Figure 7.15, in which the X-ray beam is incident into the crystal 
situated at point O along the z-axis after passing through the film center 
denoted by point C. The x- and y-axes lie in the plane of the film and the 
beam diffracted by the plane shown is recorded at point S on the film. The 
normal to the diffraction plane intersects the film at point N. The incident 
beam, plane normal, and diffracted beam are coplanar and ON bisects the 
angle between the lines OS and OC. The diffraction plane is assumed to 
belong to a zone whose axis lies in the y-z plane. There may be some other 
planes that belong to this zone. The reflections from these planes will be 
recorded on the hyperbola AB, with their plane normals moving along the 
straight line DE. Thus, AB and DE are the trajectories of diffracted beams 
and plane normals on the film, respectively. To index any diffraction spot, 
it is necessary to know the orientation of the plane from which this spot 
comes. The angular coordinates γ and δ  of the plane normal N can be eas-
ily correlated with the measured coordinates x and y of the diffraction spot 
S, once the film-to-sample distance is known. The result is the Greninger 
chart, which directly gives the angular coordinates γ and δ of the normal 
to the diffracting planes producing the spot. On the chart, the horizontal 
lines are curves of constant γ and the vertical lines are curves of constant δ.

FIGURE 7.14  Greninger chart.
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The Greninger chart shown in Figure 7.14 has 2° intervals both in the 
horizontal and vertical curves. The position of any diffraction spot S on 
this chart represents the γ and δ coordinates of the corresponding plane 
normal N. When reading the coordinates, the chart is placed over the film 
with its center consistent with the film center and with their edges parallel 
to one another. By rotating the film against the Greninger chart, we can 
get the angle between the reciprocal lattice vectors (i.e., the angle between 
the plane normals) of any two spots on the film. If we keep the center of 
the film on the Greninger chart center and rotate the film to bring the two 
spots on a curve of constant γ, then the difference in δ readings directly 
gives the angle between the two plane normals. The lower half of the chart 
has a protractor, which can be used to measure the rotation angle of the 
film. The Bragg angle of any diffraction spot, say, the spot S in Figure 
7.15, can also be determined in a similar way. Rotating the film against the 
chart and bringing the point S on the curve of δ = 0°, then the γ reading of 
this point equals the angle between the lines OC and ON in Figure 7.15. 
Let this angle be α. Since the Bragg angle θ is half the angle between the 
positive z direction and the line OS, we have θ = 90° – α. Nowadays, there 
are some other options except for the Greninger chart. One approach is to 
scan the Laue photograph and use a mathematical program or data analy-
sis software to measure the angular coordinates of the spots. We can also 
use the software that generates a simulated Laue pattern.

There is no standard procedure for determining the Laue symmetry of 
a crystal and its orientation. From the practical point of view, the reflec-
tions on a Laue photograph cannot be easily indexed although the use of 
a Greninger chart or software is sure to be helpful. A common difficulty is 
that the Laue symmetry can be clearly displayed on the film only when the 
crystal is precisely aligned with its symmetry axis parallel to the incident 
beam. When two symmetry-related planes are inclined at different angles 
to the incident beam, the produced diffraction spots will be recorded at 
different distances from the center of the film. The two planes have the 
same interplanar spacing but will reflect different wavelengths, because 
the inclined angles to the incident beam (i.e., the Bragg angles) are unlike. 
The Laue method utilizes a wide range of continuous spectrum and the 
X-ray intensity may rapidly change in certain parts of the spectral range. 
Thus, the two spots may have significantly different strengths on the film 
even though the misalignment of the crystal is only marginal. When the 
crystals are of low symmetry, for example, monoclinic, indexing becomes 
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very difficult due to the limited number of diffraction spots. Trial and er-
ror is inevitable until any conspicuous symmetry element is found. This 
is carried out by taking successive photographs while moving the sample-
mounted goniometer relative to the direction of the primary X-ray beam. 
On the contrary, the Laue patterns from high-symmetry cubic and tetrago-
nal crystals will contain a larger number of spots. Thus, one may be able to 
easily discern a trace of the symmetry axis at a considerable inclination to 
the incident beam (see Figure 7.3). Once the presence of a symmetry axis 
is conceived, the crystal should be adjusted to bring its orientation into 
precise alignment with the incident beam. Of course, a Laue photograph 
must be taken to confirm it.

FIGURE 7.15  Positions of the diffraction spot and the normal to diffraction plane in 
back-reflection Laue method.
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FIGURE 7.16  Indexing of an arbitrary diffraction spot in tetragonal system.

Except for specialized applications, it is rarely required to index all 
the diffraction spots. Some close to the film center suffice to determine 
and align the crystal orientation. Once the characteristic symmetry axis is 
determined, indexing can be carried out without using a Greninger chart. 
Assume that we have already aligned the c-axis of a tetragonal crystal 
parallel or anti-parallel to the incident X-ray beam through the procedure 
mentioned above. In either case, the tetrad is perpendicular to the film and 
passes through its center. The next step is to find how the a- and b-axes 
of the crystal are oriented with respect to the edges of the film. This is 
necessary when we wish to cut the crystal at right faces. Suppose that we 
like to index an arbitrary hkl spot on the imaginary Laue pattern shown in 
Figure 7.16, where the X-ray beam is incident anti-parallel to the c-axis of 
the crystal. The angle between the c-axis of the crystal and the diffracted 
beam, 2a, is given by
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	 tan 2 D La = 	 (7.4)

where D is the spot distance measured from the film center and L, the film-
to-crystal distance. Thus, the angle a can be readily obtained. Since the 
reciprocal lattice vector Hhkl perpendicular to the diffracting planes bisects 
the angle between the c-axis and the diffracted beam, it makes an angle of 
a with the c-axis of the crystal. The dot product of Hhkl  with the unit cell 
vector c gives the following relation

	 2 2 2 2 2 2

/cos
/ / /

l c
h a k a l c

a =
+ + 	 (7.5)

where a and c are the lattice parameters. The given spot can be indexed 
if we find out indices h, k, and l that satisfy this relation. The right Miller 
indices may be readily obtained by substituting some combinations of low 
indices into Eq. (7.5). In the tetragonal system, the a- and b-axes are in-
terchangeable, i.e., indistinguishable due to the presence of a tetrad. It is 
obvious from the diffraction pattern that the a-axis of the crystal is either 
parallel to the edges of the film or 45° rotated from the edge. In the former 
case, the indices will be h0l (or 0kl), whereas the latter will have indices 
hhl.

FIGURE 7.17  Dependence of the indices of a diffraction spot on the crystal orientation.
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This is more clearly illustrated in Figure 7.17, where the X-ray beam 
is incident along the negative c-axis of a volume of tetragonal crystal; it is 
of cubic shape, not a cubic crystal. If the a-axis of the crystal, i.e., [100] is 
parallel to the horizontal edge of the film, the indices of the given spot will 
be 0kl (e.g., 013, 024, etc.) because the corresponding reflection should 
occur from planes running parallel to the a-axis. This results in h = 0. Con-
versely, if the indices of the spot were found to be 0kl, it means that the a-
axis of this crystal was horizontally aligned (Figure 7.17(a)). Meanwhile, 
if the spot has indices hhl, the a-axis, i.e., [100] of the crystal would be 45° 
rotated from the horizontal edge, as shown in Figure 7.17(b). In this way, 
we can determine the in-plane orientation of the crystal projected onto the 
film. Figure 7.18 shows 013 and 113 reflections as specific examples. The 
diffraction spot to be indexed lies on a vertical line passing through the 
center of the film. To indicate this, the upper left corner of the film was 
cut in Figure 7.18. The incident beam, plane normal, and diffracted beam 
are always coplanar. The plane containing all of them intersects the film 
as a vertical line on which the diffraction spot is located. This plane is 
perpendicular to the a-axis of the crystal for the 013 reflection, as depicted 
in Figure 7.18(a). Thus, the a-axis will be parallel to the horizontal edge 
of the film. For the 113 reflection (Figure 7.18(b)), the plane containing 
the incident and diffracted beams is (110 ), which will also cut the film as 
a vertical line. Therefore, the a- and b-axes of the crystal are at 45° from 
the edges of the film. Let’s go back to the configuration of Figure 7.17(b), 
where the a- and b-axes of the crystal are at 45° from the edges of the 
film and its sides parallel to the incident beam are {110}. If we ultimately 
wish to prepare the crystal in {100} faces, it should be rotated through 45° 
about the film normal and then vertically cut.

FIGURE 7.18  In-plane orientations of the crystal with respect to the film in (a) 013 
reflection and (b) 113 reflection.
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Problems

7.1.	State the difference between the Laue diffraction and the electron 
diffraction. Is there a reflection(s), which is observable in one 
method but missing in the other?

7.2.	Si has a lattice constant of 5.43 Å. A back-reflection Laue photo-
graph is taken using a white X-ray beam impinging on a Si single 
crystal, where the film-to-sample distance is 3 cm.

	 (a) � Draw the expected diffraction pattern when the X-ray beam is 
incident along [001] of the crystal.

	 (b) � What is the closest distance of spots to the film center when the 
X-rays has a spectral range of 0.1–100 Å?

	 (c) � Describe how the results of (a) and (b) will change when the 
X-ray beam is incident along [111] of the same crystal.

7.3.	Laue photography is very useful to determine the orientation of 
a crystal. However, it does not exhibit all the symmetry elements 
possessed by the crystal. Explain why?
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8.1  INTRODUCTION

Powder diffraction is a technique using X-ray diffraction on powder or 
microcrystalline samples for the structural analysis of materials. It is 
most widely used for the phase identification of a crystalline material 
and can provide information on unit cell dimensions. As the name sug-
gests, the sample is usually prepared in a powder form. The ideal sample 
consists of an enormous number of tiny crystal fragments in completely 
random orientation, as shown in Figure 8.1. Suitable samples may be 
obtained as fine-grained crystallites or by grinding crystalline materials. 
Here, “powder” means either an actual physical powder held together 
with a binder or any specimen in polycrystalline form. Thus, polycrys-
talline materials with a large number of small grains may be investi-
gated nondestructively without the need for special sample preparation. 
This method involves the use of a monochromatic X-ray beam, which, in 
general, is the strong Kα characteristic line emitted from an X-ray tube. 
Copper is the most common target material, with Cu Kα radiation of λ 
= 1.542 Å. The K lines are classified with respect to the other energy 
level involved. While an electron transition from the L shell to the K 
shell gives rise to a Kα line, a transition from the M shell to the K shell 
produces a Kβ line. Since the L shell is of lower energy than the M shell, 
the Kα line of a given element always has a longer wavelength than its 
Kβ line. In general, the Kα line is much stronger than the Kβ line because 
the vacant site of the K shell is more probably occupied by an L electron 
than by an M electron. Therefore, the Kα line is invariably selected when 
monochromatic X-radiation is required. For this purpose, the continuous 
emission from an X-ray tube is monochromated by a crystal monochro-
mator or by a filter whose absorption edge falls between the Kα and Kβ 
wavelengths. While the wavelengths of the characteristic lines depend 
only on the kind of the target, their intensities are influenced by the volt-
age applied across the tube. Below a certain threshold voltage, none of 
the accelerated electrons will have sufficient energy to eject a K electron 
from a target atom and no K lines will be emitted.
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FIGURE 8.1  A single crystal and its powder.

X-ray powder diffraction has been historically used for the identifi-
cation and classification of minerals, but it can now be utilized for any 
materials as long as a suitable reference pattern is available. The powder 
diffraction allows for nondestructive analysis of multi-component mix-
tures without a special preparation procedure, which makes it possible to 
quickly analyze unknown as well as known materials encountered in such 
diverse fields as metallurgy, mineralogy, archeology, solid-state physics 
and chemistry, and biology. The primary use of powder diffraction lies in 
the identification and characterization of crystalline solids, each of which 
produces a distinctive diffraction pattern. Identification is performed by 
comparison of the obtained diffraction pattern to a known standard or to 
a database such as the Powder Diffraction File (PDF) of the International 
Center for Diffraction Data. In a powder pattern, both the peak positions 
and its relative intensities are characteristic of a particular phase and mate-
rial. This provides a “fingerprint” for comparison. A multi-phase mixture 
will show multiple patterns superposed, enabling the relative concentra-
tions of phases in the mixture to be determined.

The fundamental physics, upon which the method is based, provides 
high precision and accuracy in the measurement of interplanar spacings 
and unit cell dimensions, sometimes to fractions of an Ångström. The an-
gular position of a diffraction peak is independent of the atomic arrange-
ment within the unit cell and solely determined by the shape and size of 
the cell. Each peak represents a certain set of lattice planes and can there-
fore be characterized by Miller indices. If the crystal is highly symmetric, 
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for example, cubic, it is not so difficult to index each peak even for an 
unknown phase. Once the peak is indexed, the unit cell dimensions may 
be derived from the obtained pattern. For the accurate determination of 
lattice parameters, a standard substance with precisely known cell dimen-
sions can be added into the sample to correct its peak positions. The posi-
tions of diffraction peaks may be shifted by instrumental factors. It is not 
a rare case where the diffraction pattern measured today may be slightly 
different from that obtained from the same sample yesterday. Then, the 
standard substance is effectively utilized to calibrate the peak positions of 
the sample. A care is also required, particularly when the powder sample 
is prepared by grinding the crystal. A residual stress may be induced in the 
course of sample preparation and this is apt to alter the lattice parameters. 
The sample prepared in this way should be annealed at an appropriate 
temperature prior to diffraction experiment to remove any residual stress. 
The powder pattern can be recorded either on a photographic film or by 
a diffractometer. In the photographic method, the whole diffraction pat-
tern is simultaneously recorded on a film, while it is scanned by a moving 
detector in the latter case. The resolution achievable in diffractometry is 
much better than in photography. The diffractometer is particularly useful 
when we need to determine the Bragg angles very accurately. It has an 
additional advantage that the positions and intensities of diffraction peaks 
can be measured simultaneously and quickly.

Although not impossible, the determination of an unknown crystal 
structure is extremely challenging due to the overlap of reflections. The 
crystal structure of a substance determines its diffraction pattern; the shape 
and size of the unit cell determines the angular positions of the diffraction 
peaks, and the atomic arrangement within the cell determines the relative 
intensities of the peaks. Thus, it should be possible to derive the structure 
from the pattern. However, it is not an easy task to directly deduce the 
structure from the observed pattern, since completely different structures 
may give rise to similar patterns. The general procedure is basically trial 
and error. A structure is first assumed to theoretically calculate its dif-
fraction pattern and the calculated pattern is compared with the observed 
one. Complex structures require some mathematical programs as well as 
diffraction data. The determination of unknown crystal structures is very 
specialized, beyond the scope of this book. Here, the basic principle of 
structure determination is described with simple structures.
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8.2  PRINCIPLE OF POWDER DIFFRACTION

In X-ray diffraction, the incident beam, plane normal, and diffracted beam 
are always coplanar. Consider a reflection from (hkl) planes in a large sin-
gle crystal, as shown in Figure 8.2. When a monochromatic X-ray beam is 
incident onto the crystal, it is diffracted only in a specific direction because 
the reciprocal lattice vector normal to the (hkl) planes has a fixed orien-
tation and So, Hhkl, and S should be coplanar. In the powder method, the 
sample contains a very large number of tiny crystallites oriented at random 
with respect to the incident beam. Thus, each set of planes is randomly 
oriented. Some of the crystallites will be so oriented that their (hkl) planes 
satisfy the Bragg law and diffract the incident beam. The Bragg condition 
for powder diffraction may be better explained in reciprocal space. As the 
incident beam is monochromatic, the Ewald sphere has a fixed radius of 
1/λ. In the powder sample, every set of planes has random orientation, so 
does the set of (hkl) planes. Then, we can construct a sphere of reciprocal 
vector Hhkl whose radius is equal to the length of this vector (Figure 8.3). 
The incident beam vector, denoted by So/λ, terminates on the center of the 
Hhkl vector sphere. Two spheres intersect in a circle. A cone is formed by 
a number of lines connecting the center of the Hhkl vector sphere and the 
circumference of this circle. Reflection can occur from all (hkl) planes 
whose normals lie on this cone. The incident beam will thus be diffracted 
in a conical manner, giving rise to a cone of diffracted beams. The axis of 
the cone is coincident with the incident beam and makes an angle of 2θ 
with the diffracted beams. Figure 8.3 shows the diffraction condition for a 
particular set of planes. A crystal contains a number of sets of planes with 
different interplanar spacings. Different set of planes has different Bragg 
angles. The total diffraction pattern produced by a powder sample is thus 
a series of cones, each cone corresponding to a particular set of planes 
satisfying the Bragg law (Figure 8.4(a)). As we have described in Section 
6.6, the grazing incidence X-ray diffraction is not suitable, if the film has 
a high degree of preferred orientation. On the contrary, a polycrystalline 
film has a number of small grains at random orientation. Thus, it diffracts 
the incident X-ray beam in a conical fashion, just like powder diffraction.
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FIGURE 8.2  Diffraction from a single crystal.

FIGURE 8.3  Powder diffraction in real and reciprocal space. Since a particular set of 
(hkl) planes is randomly oriented, diffraction occurs in a conical fashion.

FIGURE 8.4  (a) Diffraction from different sets of planes. (b) Power diffractometer.
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The powder pattern has been recorded on a narrow strip of photograph-
ic film in a cylindrical camera whose axis is coincident with the speci-
men. The cones of diffracted beams intersect the cylindrical strip of film in 
lines and the resulting pattern appears when the film is unrolled and made 
flattened. Nowadays, the use of a diffractometer is more prevalent. The 
powder diffractometer consists of three basic elements: an X-ray tube, a 
sample holder, and a detector (Figure 8.4(b)). The powder sample is filled 
in a disc-shape container, with its surface carefully flattened. It is impor-
tant that the sample should be homogeneous and large enough in area to 
catch the whole incident beam at the lowest Bragg angle to be employed. 
The container is put on one axis of the diffractometer and tilted by an 
angle θ with respect to the incident beam. The detector rotates around the 
sample holder on an arm at twice this angle. The intensity of diffracted 
X-rays is continuously recorded as the sample and detector rotate through 
their respective angles. Since the detector swings in a horizontal plane, 
it intercepts only a short arc in a cone of diffracted beams. In a powder 
sample, the plane orientations are completely random. Therefore, it is not 
necessarily required to vary the angle between the incident beam and the 
sample. However, it is more general to rotate the sample holder together 
with the detector. In the grazing incidence X-ray diffraction, the sample is 
stationary and only the detector is rotated. This is because if the sample is 
rotated, the path length of the X-ray beam through a thin film is drastically 
reduced.

Powder X-ray diffraction is mostly used to characterize and identify 
phases, and to refine already known structures rather than to solve un-
known structures. In materials science and chemistry, it is often required 
to synthesize new materials. Although large single crystals are typically 
not immediately obtainable, micro-crystallites sufficient for powder dif-
fraction may be readily available. Powder diffraction is therefore one of 
the most powerful methods to identify and characterize new materials in 
these fields. The unit cell parameters are somewhat temperature-depen-
dent. Powder diffraction can be combined with in situ temperature control. 
As the temperature varies, the positions of the diffraction peaks will also 
change. This allows for the measurement of thermal expansion tensor of 
the material. When the material undergoes a phase transition, some dif-
fraction peaks will newly appear or disappear. For instance, the diffraction 
peaks from (100) and (001) planes can be found at two different Bragg 
angles for a tetragonal crystal, while the two peaks will coincide in a cubic 
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phase. Powder diffractometry can also be used in kinetic studies of poly-
morphic transitions. It the intensities of two diffraction peaks, one belong-
ing to the reactant and the other to the product phase, are measured in a 
series of samples isothermally heated for different times, their ratio can be 
plotted against time to give the time required for a certain fraction of the 
reactant to be transformed into the product phase. Since the intensity of 
any diffraction peak is decreased by an increase in temperature, the expo-
sure time required for a high-temperature diffraction experiment is rather 
long, compared to that used for typical room-temperature measurements. 
Atoms vibrate about their mean positions. This atomic vibration becomes 
more profound with increasing temperature. The diffraction peak is a con-
sequence of the reinforcement of waves scattered at the Bragg angle. The 
Bragg law requires that the path length difference between waves scattered 
by atoms of adjacent layers be an integral multiple of the wavelength. As 
the temperature increases, the atoms vibrate more strongly. Therefore, the 
reinforcement is not as perfect as it is for a crystal with fixed atoms. This 
results in a decrease of the peak intensity. For a constant temperature, the 
diffraction intensity is more reduced by thermal vibration at higher Bragg 
angles (i.e., at smaller d-spacings) than at low angles.

8.3  INDEXING OF POWDER PATTERN

All substances produce a characteristic diffraction pattern. X-ray diffrac-
tion discloses the presence of a substance as its existing form, not in terms 
of the constituent elements. This is the reason why graphite can be dif-
ferentiated from diamond by the diffraction method, though both consist 
of carbon. By the same token, X-ray diffraction reveals the presence of 
sodium chloride (NaCl), whereas typical chemical analysis detects only 
the presence of elements Na and Cl. Diffraction methods have the advan-
tage that the substance does not have to be dissociated or dissolved. As 
stated in Chapter 5, the diffraction intensity is proportional to the squared 
magnitude of the structure factor. In powder diffraction, there is another 
factor strongly affecting the diffraction intensity, which is known as the 
multiplicity factor. All lattice planes of equal d-spacing give reflections at 
the same position, i.e., the same Bragg angle. Since reflections from such 
planes are independent of one another, the intensity of a powder peak will 
be simply the sum of the intensities of all reflections involved. A crystal 
may possess some symmetry elements and all lattice planes related by 
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symmetry have the same d-spacing. Thus, the number of planes contribut-
ing to a powder reflection peak hkl will be the number of planes belong-
ing to the form {hkl}. For example, all six planes of (100), (010), 
(001), (100), (010) and (001) equally contribute to the 100 reflection of 
a cubic crystal. Thus, its multiplicity factor is 6. All these planes have 
different orientations in a single crystal but will be correctly oriented for 
powder diffraction with equal probability. Likewise, there are eight planes 
in the form {111}: (111), (111), (111), (111) and their opposites. The cor-
responding intensity in a powder pattern will thus be eight times that of a 
single 111 reflection. (111) and its opposite (111) planes may be crystal-
lographically identical or different, depending on the point group of the 
crystal. Regardless of their surface properties, both planes are equally in-
volved in diffraction and are counted separately in the multiplicity factor. 
The multiplicity factor also depends on the crystal system. In a tetragonal 
crystal, the (100) and (001) planes may have different d-spacings so that 
the multiplicity factor for {100} is 4 and that for {001} is 2. In brief, the 
multiplicity factor is the number of equivalent reflections that contribute 
to the powder peak.

FIGURE 8.5  Diffraction pattern form a NaCl powder.
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The powder diffractometry enables a direct determination of the Bragg 
angle of every cone of diffracted X-rays. Solution of the Bragg equation 
for each diffraction peak gives the corresponding interplanar spacing, 
known as d-spacing. The spacing of the (hkl) planes in a cubic crystal is 
given by 2 2 2/hkld a h k l= + + . Certain values of h, k, and l can be obtained 
for the values of 2 2 2S h k l= + +  calculated from the measured Bragg angles. 
Thus, if the unit cell dimension of the substance is known, the planes con-
tributing to each diffraction peak can be easily indexed. In a cubic sub-
stance, some sets of planes that are not related by symmetry may have the 
same d-spacing so that their powder peaks are coincident; e.g., 300 and 
221 peaks coincide with each other. Figure 8.5 shows a diffraction pat-
tern of NaCl powder where Cu Ka radiation of λ = 1.54 Å was used as the 
monochromatic X-ray source. Each diffraction peak was indexed in Table 
8.1. Since the lattice parameter of NaCl is already known (a = 5.64 Å), 
straightforward and unambiguous indexing can be achieved. Even if the 
unit cell is unknown, it is generally possible, with somewhat less certainty, 
to index the diffraction peaks and then to find the cell dimensions.

TABLE 8.1  Data From a NaCl Powder Pattern

Measured 2θ sin2θ S = h2 + k2 + l2 h k l sin2θ/S = λ2/4a2

27.46° 0.0563 3 111 1.877 × 10–2

31.78° 0.0750 4 200 1.875 × 10–2

45.53° 0.1497 8 220 1.871 × 10–2

53.96° 0.2058 11 311 1.871 × 10–2

56.62° 0.2249 12 222 1.874 × 10–2

66.38° 0.3000 16 400 1.875 × 10–2

73.20° 0.3555 19 331 1.871 × 10–2

75.42° 0.3741 20 420 1.871 × 10–2

84.10° 0.4486 24 422 1.869 × 10–2

We here restrict our discussion mainly to cubic patterns that can satisfac-
torily be indexed at all times. For this purpose, suppose that we intend to 
index the NaCl pattern shown in Figure 8.5 without knowing its lattice pa-
rameter. Substitution of 2 2 2/hkld a h k l= + +  into the Bragg equation yields
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2 2 2 2
2 2sin

4 4
h k l S

a a
l lq = + + = 	 (8.1)

where S is an integer representing the sum of three squared Miller indices. 
This equation provides a means of indexing the powder pattern of any 
substance that is known to be cubic from other information or simply by 
suspicion. The values of 2sin q  can be calculated from the measured Bragg 
angles, which are also listed in Table 8.1. Since 2 2/ 4al  is a constant and S 
can have the values of 1, 2, 3, 4, 5, 6, 8, etc., the ratio between the 2sin q  
values for two different peaks should be equal to the ratio between any 
two allowed integers. In Table 8.1, the ratio of the lowest 2sin q  value to 
the second-lowest value is very close to 0.75 = 3/4. It means that the first 
peak (the smallest Bragg angle) has S = 3 and the second one, S = 4. That 
is, they have indices 111 and 200, respectively. Once the first two peaks 
are successfully indexed, the remainder can be indexed without difficulty, 
allowing the lattice parameter to be determined. Each peak was also in-
dexed in Figure 8.5. Two things are conspicuous from the obtained powder 
pattern. The diffraction peaks with all even indices are much stronger than 
those with all odd indices. This is consistent with the structure factor of 
NaCl (Eq. (5.18)). As the Bragg angle increases, the overall peak intensity 
decreases. As we have already seen in Eq. (5.7), the intensity of the scat-
tered radiation decreases with increasing scattering angle.

The derived 2 2/ 4al  value may slightly vary from peak to peak. The 
unit cell dimension can be more accurately evaluated when a measured 
value of θ as close as to 90° is used. Differentiation of the Bragg equation 
yields 2sin 2 cos 0d dq q qD + D = . Then

	 cotd d q
q

D = −
D 	 (8.2)

For a fixed error in θ, the deviation in d will be minimized as θ ap-
proaches 90°. Measurement accuracy can be significantly improved by 
mixing the sample with a pure substance whose unit cell dimensions are 
very precisely known. This substance serves as an internal standard to 
calibrate the peak positions and then to reduce the error in θ. Si is the 
most common standard substance. Powder diffractometry is particularly 
useful for accurately measuring the unit cell dimensions of solid solutions. 
Cu and Au, both having an FCC structure, are completely mixed in the 
temperature range from 400°C to 900°C maintaining a single FCC phase. 
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When the Cu-Au alloy is rapidly cooled, its lattice parameter varies 
linearly with atomic percentage from a = 3.61 Å for pure Cu to a = 4.07 Å 
for pure Au. Powder diffractometry on the quenched alloy will thus yield 
its composition.

Cubic crystals have only one unknown parameter, the unit cell edge a. 
The indexing of powder patterns becomes more difficult as the number of 
unknown parameters increases. In tetragonal crystals, there are two un-
known parameters a and c. Then, the 2sin q  relation is given by

	 ( ) ( )
2 2

2 2 2 2 2 2 2
2 2sin

4 4
h k l A h k Bl

a c
l lq = + + = + + 	 (8.3)

where A and B are constants. To solve this equation analytically, we need 
to find the value of A at first. For the hk0 peaks, Eq. (8.3) reduces to

	 ( )2 2 2sin A h kq = + 	 (8.4)

Since the allowed values of h2 + k2 are 1, 2, 4, 5, 8, … etc, the sin2q  values 
of the hk0 peaks should be in the ratio of these integers. This procedure is 
to find out some peaks whose sin2q  values have the ratio of these permis-
sible integers. Then the value of A can be obtained. B is obtained from the 
other peaks (l ≠ 0) on the pattern. Equation(8.3) is rewritten as

	 ( )2 2 2 2sin A h k Blq − + = 	 (8.5)

The l2 has the values of 1, 4, 9, 16, etc. Therefore, the left-hand side of 
Eq. (8.5) should have values in the ratio of these integers. The value of A 
is already known through the procedure described above. Various values 
of h and k are then assumed to find a consistent set of ratio; 1, 4, 9, etc. 
If these values are found, the value of B can be derived. Any orthorhom-
bic crystals have three unknown parameters a, b, and c, and the index-
ing becomes far more difficult. The governing equation is in the form of 

2 2 2 2sin Ah Bk Clq = + + , where three unknown constants A, B, and C should 
be determined. Analytical methods of indexing the powder patterns are 
procedures to find certain numerical relationships among the experimen-
tally observed 2sin q  values. The use of a computer may be inevitable to 
index the patterns of non-cubic crystals and many computer programs are 
currently available.
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8.4  PHASE IDENTIFICATION

The most widespread use of powder diffraction is in the phase identifica-
tion of crystalline substances, each of which exhibits a distinctive diffrac-
tion pattern. Materials research often involves synthesis and modification 
of substances. When synthesizing or modifying a material, it is essential to 
confirm whether it has the desired phase. If an unknown phase (or pattern) 
is observed by chance, it is also necessary to identify what that is. A collec-
tion of diffraction patterns for a great number of different substances may 
allow identification of an unknown by recording its diffraction pattern and 
finding a pattern in the database file that exactly matches the pattern of 
the unknown. Hanawalt, a chemist who worked for Dow Chemical in the 
1930s, was the first to realize the potential of creating a database. He and 
two colleagues began to collect and classify known diffraction patterns. 
Today, this activity is represented by the Powder Diffraction File (PDF) 
of the International Centre for Diffraction Data (ICCD). The 2006 PDF 
databases contained over 550,000 reference patterns. The PDF has many 
sub-files on elements, alloys, semiconductors, minerals, etc., with large 
collections of organic, inorganic, and organometallic compounds. The rel-
evant activity has been carried out by the Joint Committee on Powder Dif-
fraction Standards (JCPDS) found in 1969. The name of this organization 
was changed to the ICCD in 1978 to highlight its global commitment.

Most of the PDF data were obtained with Cu Kα radiation, except for 
those of Fe-containing substances. Fe is extremely absorbing at the wave-
length of the Cu Kα line, making it difficult to retrieve much information 
from the substance. Kα consists, in part, of Kα1 and Kα2. Kα1 has a slightly 
shorter wavelength and is twice as strong as Kα2. These two lines are suf-
ficiently close in wavelength. The powder patterns measured using the 
stronger Kα1 line only are also available for many substances. When they 
are not resolved as separate lines, a weighted average of the two lines, 
simply the Cu Kα line (λ = 1.542 Å), is used in calculation. The PDF data-
bases are interfaced to a wide variety of diffraction analysis software and 
are searchable by computer. This information is typically an integral por-
tion of the software that comes with the X-ray instrumentation. The card 
containing diffraction data is still called the JCPDS card among research-
ers. Note that a specific substance may have multiple cards because data 
have been progressively updated. Any diffraction pattern is characterized 
by a set of peak positions 2θ (also d-spacings) and a set of relative inten-
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sities where the maximum intensity is scaled to 100. If the strongest and 
weakest peaks in a powder pattern have absolute intensities of 200 and 16, 
their intensities are represented as 100 and 8 on the card, respectively. The 
reason why the d-spacing is listed on the card is because it is an invariant 
fundamental quantity, while the angular position of the peak depends on 
the used X-ray wavelength. As an example, a JCPDS card for SrTiO3 is 
reproduced in Table 8.2. In the card, all observed peaks are arranged in 
sequence of increasing 2θ and decreasing d, being identified with the cor-
responding Miller indices.

TABLE 8.2  JCPDS Card For SrTiO3 (PDF-2/Release 2001; International Centre for 
Diffraction Data) 35-0734

SrTiO3 2θ (o) d (Å) Int. hkl
Strontium Titanium Oxide 22.873 3.887 12 100

Tausonite, syn 32.424 2.760 100 110

Rad: CuKα1λ: 1.5405 Å  Filter: Ni Beta   d-sp: 
Calculated 39.984 2.254 30 111

Ref: Swanson, H. Fuyat, Natl. Bur. Stand. 
(U.S), Circ. 539, 3, 44, (1954) 46.483 1.953 50 200

Sys. Cubic                     S.G. Pm3m (221) 52.357 1.747 3 210

a: 3.905 Å         b:                 c: 57.794 1.595 40 211

α:                      β:                 γ: 67.803 1.382 25 220

72.543 1.303 1 300

Pattern taken at 25°C. Sample from Nat. Lead 
Co. 77.175 1.235 15 310

Spectroscopic analysis: <0.01% Al, Ba, Ca, Si; 
<0.001% Cu, Mg. 81.721 1.178 5 311

Perovskite Super Group, 1C Group. PSC: cP5 86.204 1.128 8 222

Mwt: 183.52.   Volume[CD]: 59.55 95.127 1.044 16 321

The PDF is a very powerful source for the identification of unknown 
substances. Identification of the unknown begins with obtaining its pow-
der diffraction pattern. An ideal powder sample should have a great num-
ber of crystallites in random orientation. If the crystallites are very large, 
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a smooth distribution of crystal orientations will not be achieved. They 
should be less than 10 µm in size to guarantee good powder statistics. 
Large crystallite sizes and non-random orientations both lead to peak in-
tensity variation. Then, the obtained diffraction pattern may not agree with 
reference patterns in the PDF database. Computer-integrated diffractom-
eters have software to catch the positions of peaks (also d-spacings) and 
to calculate their relative intensities. Phase identification can be performed 
by comparing a set of experimental d values with those in the database. A 
substance is characterized by the d-spacings of its three strongest peaks, 
referred to as d1, d2, and d3. Since different substances may have nearly 
the same d-spacing for a specific peak, a set of d-spacings are necessary to 
characterize each substance. The three experimental values of d1, d2, and 
d3, together with relative intensities, are usually sufficient to characterize 
an unknown pattern. Many ‘search-match’ programs can be used to com-
pare experimental and tabulated values. Commonly this is an integral part 
of the software that comes with the instrumentation. Automated search/
match routine is first conducted for d1, the d-spacing for the strongest 
peak, and is successively done for d2 and d3. When the closest match is 
found for d1, d2, and d3, the d-spacings and relative intensities of all ob-
served peaks should be compared with the tabulated values. If a complete 
agreement is achieved between the measured and reference patterns, the 
phase identification is finished. The identification of phases in a mixture 
is basically possible, but not an easy task unless the number of substances 
present in the mixture is two or three. The analysis becomes far more diffi-
cult when a diffraction peak from one phase overlaps a peak from another, 
and when this superimposed peak is one of the three strongest peaks in 
the unknown pattern. For reliable identification, it is essential to compare 
the powder pattern of the mixture with those of the suspected substances. 
The detection limit of any phase depends much on whether its diffraction 
pattern contains a very strong peak that can be resolved from the peaks of 
the other phases.

8.5  DETERMINATION OF CRYSTAL STRUCTURE

Now we briefly describe on the structure determination of a crystal from 
its diffraction pattern. The diffraction of X-rays by crystals was discovered 
by Laue in 1912. In the following year, Bragg revealed the structure of 
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NaCl, which was the first structural determination of crystalline material. 
Since then, the structures of innumerable crystals have been determined, 
including those containing a few hundreds of atoms within the unit cell. 
X-ray diffraction provides a primary means for the structural analysis of 
crystalline materials. Structures of increasing complexity have become 
soluble, since the techniques of structure determination have also pro-
gressed continuously. It is now possible to solve the crystal structures of 
biological proteins that contain thousands of atoms in the unit cell. Com-
puter simulations based on the group theory and Fourier series approach 
are often utilized to reveal the possible atomic arrangement and are thus 
combined with X-ray and neutron diffractions in the determination of an 
unknown complex structure. These methods are out of the scope of this 
book. Although a complex structure cannot be determined solely by the 
X-ray diffraction, it is sure to be the most powerful and inevitable tool for 
the structural analysis. Here we are concerned only with the basic prin-
ciple and its application to the solution of fairly simple structures of cubic 
symmetry.

FIGURE 8.6  (a) Simple cubic structure and (b) CsCl structure.

The fundamental physics involved in structure analysis has already 
been discussed in Chapter 2, 4, and 5. In brevity, the shape and size of the 
unit cell determines the angular positions of the diffraction peaks, while 
their relative intensities are determined by the arrangement of atoms with-
in the unit cell. In the determination of a crystal structure, the first step is to 
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measure the unit cell dimensions. Once the shape and size of the unit cell 
is determined, the number of atoms per unit cell can be calculated from 
the measured density of the substance and its chemical composition. The 
atomic coordinates within the unit cell are finally deduced from the rela-
tive intensities of the diffraction peaks. As given in Eq. (8.1), the Bragg 
equation for a cubic crystal can be reformatted in the form of

	
2 2 2

2 2 2 2

sin sin
4h k l S a

q q l= =
+ +

	 (8.6)

where 2 2 2S h k l= + +  is an integer representing the sum of three squared 
Miller indices. Some integers, such as 7, 15, 23, 28, and 31, are impossible 
for the value of S because they cannot be produced as the sum of three 
squared integers. Since 2 2/ 4al  has a fixed value in the powder diffrac-
tion, 2sin q /s is a constant for any one pattern while all the observed peaks 
have different 2sin q  values. Therefore, the indexing of a cubic diffraction 
pattern is to find a set of integers S that will yield a constant quotient sat-
isfying this criterion. The possible set of integers S depends on the type 
of Bravais lattice; simple cubic, body-centered cubic (BCC), and face-
centered cubic (FCC). Thus, we can figure out the Bravais lattice from the 
obtained set of integers S. If the observed diffraction peaks arise from a 
single, particular type of lattice, the 2sin q /s value should be constant. It is 
to be noted that structure is different from lattice. Different structures may 
have the same type of Bravais lattice.

FIGURE 8.7  (a) BCC structure and (b) FCC structure.
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Figure 8.6(a) and (b) show simple cubic structure and CsCl structure, 
respectively. Both structures have a simple cubic lattice. In this primitive 
lattice, all planes have non-zero structure factor. That is, the simple cubic 
lattice has no systematic absence. Unlike the simple cubic structure, the 
CsCl structure has two different atoms per unit cell: one at (0,0,0) and the 
other at (1/2,1/2,1/2). Thus, if h + k + l is odd, the structure factor will 
have a very small magnitude. Nevertheless, it is not zero because the two 
atoms are of different kinds. The set of integers S exhibited by a simple 
cubic lattice are listed in Table 8.3. Once the integers S are found, the hkl 
indices can be easily obtained by inspection. In some cases, the same value 
of S leads to more than one set of hkl indices.

TABLE 8.3  Set of Integers S Exhibited by a Simple Cubic Lattice

hkl 100 110 111 200 210 211 220 300 310 311 222 320

S 1 2 3 4 5 6 8 9 10 11 12 13

In the non-primitive lattices, such as BCC and FCC, the structure fac-
tors of certain lattice planes are zero and reflection from these planes is 
thus systematically absent. Figure 8.7(a) and (b) depict BCC and FCC 
structures, respectively. They are representative of the BCC and FCC lat-
tices, since each atom forms one lattice point in both cases. The BCC 
structure has two atoms of the same kind per unit cell located at (0,0,0) and 
(1/2,1/2,1/2). As a result, the structure factor becomes zero when h + k + l 
is odd. Therefore, such reflections as 100, 111, 210, and 300 are missing 
from the diffraction pattern. The corresponding set of integers S is then 2, 
4, 6, 8, 10, etc., as listed in Table 8.4. This sequence of S values is common 
to all structures that have a BCC lattice. The structure factor of the FCC 
structure is zero when the h, k, and l indices are mixed. This leads to the 
set of S values of 3, 4, 8, 11, 12, 16, etc., as given in Table 8.5. Such other 
structures of FCC lattice as NaCl, GaAs, and α-ZnS also follow the same 
sequence. Diamond structure is an exceptional case. The diamond struc-
ture possessed by diamond, Si, and Ge also has an FCC lattice. Therefore, 
diffraction does not occur from the planes with mixed Miller indices. Even 
for unmixed indices, however, reflections are missing when the value of 
h + k + l is an odd multiple of 2. This is because the diamond structure 
has two equivalent atoms associated with one lattice point. No diffraction 
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peaks are observed from such planes as (200) and (222). In this structure, 
the S values have a sequence of 3, 8, 11, 16, etc.

TABLE 8.4  Set of Integers S in the BCC Structure

hkl 100 110 111 200 210 211 220 300 310 311 222 320

S 2 4 6 8 10 12

TABLE 8.5  Set of Integers S in the FCC Structure

hkl 100 110 111 200 210 211 220 300 310 311 222 320

S 3 4 8 11 12

FIGURE 8.8  Hypothetical pattern.

The procedure of determining the Bravais lattice of a cubic substance 
and its lattice parameter can be better understood by introducing a hypo-
thetical pattern and mentioning the steps required to index this pattern. 
Suppose that we have more than eight diffraction peaks from a cubic sub-
stance. The eight peaks, counted from the lowest 2θ angle, are numbered 1 
to 8 in Figure 8.8. At this moment, we do not consider the peak intensities 
because the lattice type and dimension are dependent only on the angular 
positions of the peaks.



268	 X-Ray Diffraction for Materials Research: From Fundamentals to Applications

TABLE 8.6  Hypothetical Diffraction Pattern from a Cubic Substance and Its Indexing

Peak # 2θ (o) sin2θ S = h2 + k2 + l2 h k l sin2θ/S = λ2/4a2

1 28.35 0.0600 1 100 6.000 × 10–2

2 40.52 0.1199 2 110 5.995 × 10–2

3 50.20 0.1799 3 111 5.997 × 10–2

4 58.64 0.2398 4 200 5.995 × 10–2

5 66.42 0.3000 5 210 6.000 × 10–2

6 73.74 0.3600 6 211 6.000 × 10–2

7 87.70 0.4799 8 220 5.999 × 10–2

8 94.58 0.5399 9 300, 221 5.999 × 10–2

TABLE 8.7  Hypothetical Diffraction Pattern that Leads to an FCC Lattice

Peak # 2θ (o) sin2θ S = h2 + k2 + l2 h k l sin2θ/S = λ2/4a2

1 27.46 0.0563 3 111 0.0188

2 31.72 0.0747 4 200 0.0187

3 45.00 0.1464 8 220 0.0183

4 53.90 0.2054 11 311 0.0187

5 56.54 0.2243 12 222 0.0187

6 66.33 0.2993 16 400 0.0187

7 72.98 0.3536 19 331 0.0186

8 75.25 0.3727 20 420 0.0186

Suppose that the peaks were observed at the 2θ values listed in the sec-
ond column of Table 8.6. It is easy to find that their sin2q  values given in 
the third column are in the ratio of 1, 2, 3, 4, 5, 6, 8, and 9. The resulting set 
of integer S should be of the same sequence. This sequence is character-
istic of a simple cubic lattice. The Miller indices for each peak can be de-
duced from the S value. Reflections 300 and 221 are superimposed for the 
peak with S = 9. If the observed peaks have the 2θ values listed in Table 
8.7, the corresponding set of integers S becomes 3, 4, 8, 11, 12, 16, 19, and 
20, revealing that the substance has an FCC lattice. Note that if the peaks 
corresponding to S = 4, 12, and 20 were absent from the list, it means 
that the substance has the diamond structure. This is a very special case 
where the crystal structure as well as the lattice type of a substance can be 
revealed only with the first indexing step. Whatever sequence the S values 
have, the lattice parameter can be derived from the relation of sin2θ/S = 
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λ2/4a2 and the used X-ray wavelength. According to Eq. (8.2), the error in 
“a” decreases as θ increases. Thus, the lattice parameter derived from the 
highest-angle peak is the most accurate. To calibrate any systematic error 
in θ, a standard substance whose unit cell dimensions are precisely known 
should be mixed with the sample in question. Kα radiation consists of a 
strong Kα1 line and a weaker Kα2 line. Although these two lines are suf-
ficiently close in wavelength, the split of a diffraction peak into doublet is 
often observed under the Kα radiation, particularly at high Bragg angles. 
This makes it difficult to exactly define the peak position. While the whole 
Kα radiation is widely used for the purpose of phase identification, a fil-
tered Kα1 line is highly preferred when the lattice parameter of a substance 
is to be accurately measured.

If the shape and size of the unit cell is successfully determined, we can 
calculate the volume of the unit cell. The next step is to find the number 
of atoms within the cell. This information should be known before the 
positions of atoms in the unit cell can be determined. The weight of all the 
atoms within the unit cell equals the density of the substance multiplied by 
the unit cell volume. The density r of a substance is given by

	 /W N
V

ρ Σ= 	 (8.7)

where WΣ  is the sum of the atomic weights of all atoms within the 
cell, N is Avogadro’s number, and V is the volume of the unit cell. If the 
substance is an element of atomic weight M and contains n atoms in the 
unit cell, then

	 W N V nMρΣ = = 	 (8.8)

If the substance is a compound, then

	 ' mW N V n MρΣ = = 	 (8.9)

where n' is the number of “molecules” per cell and Mm, the molecular 
weight. For example, NaCl contains 4 Na atoms and 4 Cl atoms in the unit 
cell. Then, n' is 4 and m Na ClM M M= + , where MNa and MCl are the atomic 
weight of Na and Cl, respectively. The constituent elements and composi-
tion of a substance can be easily revealed by ordinary chemical analysis. 
The volume of the unit cell can be calculated from its shape and size ob-
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tained in the previous step. Thus, the number of atoms in the unit cell can 
be determined if we measure the density of the substance.

The relative intensities of diffraction peaks are determined by the 
atomic arrangement in the unit cell. However, there is no general method 
of directly calculating the atomic positions from the observed intensities. 
We need to proceed by trial and error. As described previously, computer 
simulations based on the space group theory and Fourier series approach 
are often utilized in order to reveal the possible atomic arrangements. In 
case that the substance has a cubic lattice and the number of atoms per unit 
cell is not so large, we can approach it just by intuition. One example is 
given below. Let’s suppose we are now to determine the atomic arrange-
ments of an AB compound. We already know that this compound has an 
FCC lattice (through sin2θ values) and has 4 molecules in the unit cell (by 
the density measurement). How to determine the atomic arrangements of 
A and B atoms? There are two possible AB-type structures with FCC lat-
tice: NaCl structure and ZnS structure. These two structures are depicted 
in Figures 8.9 and 8.10, respectively. Here, the structure of ZnS refers to 
that of its cubic phase, i.e., α-ZnS. Since the Bravais lattices of both struc-
tures are face-centered, their structure factor will be zero for the planes 
with mixed indices. This gives rise to an identical S sequence of 3, 4, 8, 
11, 12, 16, 19, and 20.

FIGURE 8.9  NaCl structure and its lattice.
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FIGURE 8.10  ZnS structure and its (001)-projection.

We now turn to the relative intensities of the observed peaks. If the AB 
compound has the NaCl structure, its atomic coordinates within the unit 
cell are

A: (0, 0, 0), (½, ½, 0), (½, 0, ½), (0, ½, ½)
B: (½, 0, 0), (0, ½, 0), (0, 0, ½), (½, ½, ½)

Then, the structure factor will be

F2 = 16 (fA + fB)2       if h, k, and l are all even

	 F2 = 16 (fA – fB)2               if h, k, and l are all odd	 (8.10)

If the AB compound has the ZnS structure, its atomic coordinates with-
in the unit cell is then

A: (0, 0, 0), (½, ½, 0), (½, 0, ½), (0, ½, ½)

B: (¼, ¼, ¼), (¾, ¾, ¼), (¾, ¼, ¾), (¼, ¾, ¾)

The resulting structure factor will be

F2 = 16 (fA
2 + fB

2)      if h, k, and l are all odd
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F2 = 16 (fA + fB)2       if (h + k + l) is an even multiple of 2

	 F2 = 16 (fA – fB)2        if (h + k + l) is an odd multiple of 2	 (8.11)

Although the two structures have the same type of Bravais lattice, their 
intensity distributions will be totally different due to the unequal atomic 
configurations. For example, the 200 reflections will be strong in the NaCl 
structure while it is very weak and may not be detected for the ZnS struc-
ture. In Table 8.8, the intensity of each peak is qualitatively compared for 
both structures. There are many factors affecting the absolute intensity of 
a diffraction peak, including the output intensity of an X-ray tube, struc-
ture factor, multiplicity factor, polarization factor, etc. The relative inten-
sities among the observed peaks, not their absolute intensities, are used 
to determine the atomic arrangement. The relative intensities of this AB 
compound will depend on whether it has the NaCl type structure or ZnS 
type structure. Figure 8.11(a) and (b) compare the intensity distributions 
expected when the compound has the NaCl structure and ZnS structure.

TABLE 8.8  Qualitative Comparison of the Diffraction Intensity of Each Peak in NaCl 
and ZnS Structures

Peak # S = h2 + k2 + l2 h k l
Intensity

NaCl structure ZnS structure

1 3 111 Low High

2 4 200 High Low

3 8 220 High High

4 11 311 Low High

5 12 222 High Low

6 16 400 High High

7 19 331 Low High

8 20 420 High Low
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FIGURE 8.11  Expected patterns from (a) NaCl structure and (b) ZnS structure.

Problems

8.1.	A material is known to be cubic, with one atom per lattice point. 
Through the powder diffraction experiment, the five largest inter-
planar spacings are found to be: 2.087 Å, 1.808 Å, 1.278 Å, 1.090 
Å, and 1.044 Å. Determine the Bravais lattice of this material and 
its lattice parameter.

8.2.	A powder diffraction pattern was obtained from a crystal of BCC 
lattice (a = 3.154 Å), which was conducted in the 2θ range of 20°–
120° using a Cu Kα line at 1.542 Å. Specify the angular positions 
and indices of the observed peaks.
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8.3.	Powders of two different elements A and B are mixed together and 
a powder diffraction experiment was performed with this mixture. 
A has an FCC structure with a = 4 Å and B is body-centered tetrag-
onal (a = 4 Å and c = 6 Å). Cu Kα line is used as the X-ray source 
and 2θ is in the range of 20°–120°. State the positions and indices 
of expected peaks.

8.4.	Powder diffraction experiment using a Cu Kα line was carried out 
for a material in the range of 2θ = 20°–100°. The stable structure of 
this material is BCC with a = 3.42 Å.

	 (a) � State the positions of the observed peaks and from which planes 
they are coming.

	 (b) � Let’s assume that the material is transformed into FCC struc-
ture by application of a high pressure. Then, repeat “(a)”.

8.5.	Compare the powder diffraction patterns expected from Si and 
GaAs.



APPENDIX: FOURTEEN BRAVAIS 
LATTICES

There are five different types of two-dimensional (2D) lattices, simply 
called plane lattices: oblique P-lattice, rectangular P-lattice, rectangular 
C-lattice, square P-lattice, and hexagonal P-lattice. In crystallographic 
notations, P, C, I, F represent “primitive”, “base-centered”, “body-cen-
tered”, and “face-centered”, respectively. Figure A1 shows five 2D lat-
tices along with their rotational symmetry elements. The most general 2D 
lattice (a ≠ b, g general) has a diad perpendicular to the plane through 
every lattice point and midway between lattice points. This lattice type is 
known as oblique P-lattice, since the unit cell contains one lattice point. 
The rectangular P- and C-lattices also have diads only, but their unit cells 
are rectangular with g = 90°. When the two unit cell axes of the rectangular 
P-lattice are of equal length, the square P-lattice is obtained. This type of 
lattice possesses four-fold rotational symmetry. The hexagonal P-lattice 
has a hexad through every lattice point, a triad on the center of a triangle 
formed by three lattice points, and a diad midway between two adjacent 
lattice points.

The ‘Fourteen Bravais Lattices’ can be derived from the five 2D lat-
tices. To build up a space lattice, we should stack these 2D nets regularly 
above one another to form an infinite set of parallel sheets. We start with 
the net based on a parallelogram, i.e., the oblique P-lattice of Figure A1. 
If we stack nets of this type so that the lattice points in successive nets do 
not lie vertically above one another (Figure A2), the two-fold rotational 
symmetry is not maintained. Then, we have a simple triclinic lattice that 
exhibits no rotational symmetry. The unit cell is an arbitrary parallelepi-
ped with edges a, b, c, no two of which are necessarily equal. The unit cell 
angles can take any value. In order to preserve two-fold symmetry, the 
two-fold axes in successive nets should be coincident with one another. 
There are two different ways of accomplishing this. We can arrange nets 
vertically above one another, or we can produce the staggered arrange-
ment, viewed perpendicular to the nets, as shown in Figure A3. In the stag-
gered arrangement, the two-fold axes at the unit cell corners of the second 
net coincide with those at the centers of the unit cell sides of the first net. 
These two stacking sequences produce the simple monoclinic and base-
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centered monoclinic lattices, both of which exhibit the two-fold rotation 
symmetry along one direction.

Oblique P-lattice

Rectangular P-lattice

Rectangular C-lattice

Square P-lattice

Hexagonal P-lattice

γ

a

b

a

a

b

b

a

a

a

a

FIGURE A1  Five 2D lattices and their rotational symmetry elements.

a

b
c

b

a

Simple triclinic (P)

FIGURE A2  Buildup of a simple triclinic lattice.
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c b

a

Simple monoclinic (P)

Base-centered monoclinic (C)

γ

γ

FIGURE A3  Stacking sequences for monoclinic P and C lattices.

Orthorhombic system, which is characterized by three mutually per-
pendicular diads, can have four different types of space lattices: simple, 
body-centered, based-centered, and face-centered. Two of them are de-
rived from the rectangular P-lattice, and the other two, from the rectangu-
lar C-lattice. If we stack rectangular P-nets vertically above one another, 
we produce the simple orthorhombic lattice, as shown in Figure A4(a). The 
unit cell, a rectangular parallelepiped, possesses three mutually orthogonal 
diads. We can also preserve the orthorhombic symmetry by stacking the 
rectangular P-nets in a staggered sequence, as shown in Figure A4(b). The 
lattice obtained by this sequence is the body-centered orthorhombic. If 
we stack rectangular C-nets vertically above one another, we produce the 
base-centered orthorhombic lattice (Figure A4(c)). Another staggered ar-
rangement of the rectangular C-nets leads to the face-centered orthorhom-
bic lattice, as depicted in Figure A4(d).
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FIGURE A4  Four different types of orthorhombic lattices.

The two tetragonal lattices can be easily developed. The square net 
in Figure A1 has four-fold rotation axes at the corners and centers of the 
squares. The four-fold symmetry can be preserved if the second net is 
stacked over the first net, with their corners vertically overlapping one 
another. This four-fold symmetry is also maintained by placing the square 
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corner of the second net above the square center of the first net. The result-
ing space lattices are the simple tetragonal and body-centered tetragonal 
lattices shown in Figure A5.

FIGURE A5  Stacking sequences for tetragonal P and I lattices.

We have so far derived nine of the Bravais lattices. All the remaining 
lattices are based on the stacking of the hexagonal P-lattice. To preserve 
six-fold rotational symmetry in a space lattice, such hexagonal nets should 
be stacked vertically above one another, as shown in Figure A6. There is 
no other way of maintaining the six-fold symmetry. Therefore, hexagonal 
system has a single lattice type: simple hexagonal. A space lattice consis-
tent with three-fold rotational symmetry can be obtained by stacking these 
hexagonal P-nets in a staggered fashion. As shown in Figure A1, the three-
fold rotation axes run through the centers of triangles formed by the lattice 
points. Thus, if the second net is stacked in such a way that its lattice points 
are placed above the centers of either upright or inverted triangles of the 
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first net, the three-fold symmetry is maintained, as illustrated in Figure 
2.13(a). To meet the fundamental translational symmetry (i.e., periodicity) 
of a lattice, the third net should be stacked by the same fashion. If stack-
ing proceeds in this way, the fourth net overlaps the first one when viewed 
vertically. The primitive cell of the constructed lattice is a rhombohedron 
as depicted in Figure 2.13(b). The trigonal system also has a single lattice 
type, although a triple hexagonal cell given in Figure 2.13(c) is often taken 
as the conventional unit cell. As we have already described in Chapter 2, 
three different types of cubic lattices can be built up from the same 2D lat-
tice by adjusting the height between the successive nets.

FIGURE A6  Hexagonal system has a single lattice type: simple hexagonal.
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